CINXE.COM
Lendület – Wikipédia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available" lang="hu" dir="ltr"> <head> <meta charset="UTF-8"> <title>Lendület – Wikipédia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )huwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t."," \t,"],"wgDigitTransformTable":["",""], "wgDefaultDateFormat":"ymd","wgMonthNames":["","január","február","március","április","május","június","július","augusztus","szeptember","október","november","december"],"wgRequestId":"540f64f5-04f7-4846-8580-e0bb4175f6ca","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Lendület","wgTitle":"Lendület","wgCurRevisionId":26904602,"wgRevisionId":26904602,"wgArticleId":47708,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Wikipédia-szócikkek LCCN-azonosítóval","Wikipédia-szócikkek GND-azonosítóval","Fizikai mennyiségek"],"wgPageViewLanguage":"hu","wgPageContentLanguage":"hu","wgPageContentModel":"wikitext","wgRelevantPageName":"Lendület","wgRelevantArticleId":47708,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":true, "wgFlaggedRevsParams":{"tags":{"accuracy":{"levels":2}}},"wgStableRevisionId":26904602,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"hu","pageLanguageDir":"ltr","pageVariantFallbacks":"hu"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":10000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q41273","wgCheckUserClientHintsHeadersJsApi":["architecture","bitness","brands","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false, "wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.gadget.infobox":"ready","ext.gadget.wikiMenuStyles":"ready","ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.flaggedRevs.basic":"ready","mediawiki.codex.messagebox.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.flaggedRevs.advanced","ext.gadget.wdsearch", "ext.gadget.irclogin","ext.gadget.ImageAnnotator.loader","ext.gadget.collapsible","ext.gadget.kepdia","ext.gadget.kinai","ext.gadget.poziciosTerkep","ext.gadget.wikiMenu","ext.gadget.wiwosm","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","oojs-ui.styles.icons-media","oojs-ui-core.icons","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=hu&modules=ext.cite.styles%7Cext.flaggedRevs.basic%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cmediawiki.codex.messagebox.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=hu&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=hu&modules=ext.gadget.infobox%2CwikiMenuStyles&only=styles&skin=vector-2022"> <link rel="stylesheet" href="/w/load.php?lang=hu&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.3"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Lendület – Wikipédia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//hu.m.wikipedia.org/wiki/Lend%C3%BClet"> <link rel="alternate" type="application/x-wiki" title="Szerkesztés" href="/w/index.php?title=Lend%C3%BClet&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipédia (hu)"> <link rel="EditURI" type="application/rsd+xml" href="//hu.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://hu.wikipedia.org/wiki/Lend%C3%BClet"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.hu"> <link rel="alternate" type="application/atom+xml" title="Wikipédia Atom-hírcsatorna" href="/w/index.php?title=Speci%C3%A1lis:Friss_v%C3%A1ltoztat%C3%A1sok&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Lendület rootpage-Lendület skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Ugrás a tartalomhoz</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Wiki"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Főmenü" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Főmenü</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Főmenü</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">áthelyezés az oldalsávba</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">elrejtés</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigáció </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Kezd%C5%91lap" title="A kezdőlap megtekintése [z]" accesskey="z"><span>Kezdőlap</span></a></li><li id="n-sidebar-contents" class="mw-list-item"><a href="/wiki/Wikip%C3%A9dia:Tartalom"><span>Tartalom</span></a></li><li id="n-sidebar-featured" class="mw-list-item"><a href="/wiki/Wikip%C3%A9dia:Kiemelt_sz%C3%B3cikkek_list%C3%A1ja"><span>Kiemelt szócikkek</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Speci%C3%A1lis:Friss_v%C3%A1ltoztat%C3%A1sok" title="A wikiben történt legutóbbi változtatások listája [r]" accesskey="r"><span>Friss változtatások</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Speci%C3%A1lis:Lap_tal%C3%A1lomra" title="Egy véletlenszerűen kiválasztott lap betöltése [x]" accesskey="x"><span>Lap találomra</span></a></li><li id="n-sidebar-enquiries" class="mw-list-item"><a href="/wiki/Wikip%C3%A9dia:Tudakoz%C3%B3"><span>Tudakozó</span></a></li> </ul> </div> </div> <div id="p-sidebar-participate" class="vector-menu mw-portlet mw-portlet-sidebar-participate" > <div class="vector-menu-heading"> Részvétel </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-sidebar-basics" class="mw-list-item"><a href="/wiki/Wikip%C3%A9dia:%C3%9Aj_szerkeszt%C5%91knek"><span>Kezdőknek</span></a></li><li id="n-sidebar-help" class="mw-list-item"><a href="/wiki/Wikip%C3%A9dia:Seg%C3%ADts%C3%A9g"><span>Segítség</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Port%C3%A1l:K%C3%B6z%C3%B6ss%C3%A9g" title="A projektről, miben segíthetsz, mit hol találsz meg"><span>Közösségi portál</span></a></li><li id="n-sidebar-contact" class="mw-list-item"><a href="/wiki/Wikip%C3%A9dia:Kapcsolatfelv%C3%A9tel"><span>Kapcsolatfelvétel</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Kezd%C5%91lap" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipédia" src="/static/images/mobile/copyright/wikipedia-wordmark-fr.svg" style="width: 7.4375em; height: 1.125em;"> <img class="mw-logo-tagline" alt="" src="/static/images/mobile/copyright/wikipedia-tagline-hu.svg" width="120" height="13" style="width: 7.5em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Speci%C3%A1lis:Keres%C3%A9s" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Keresés a Wikipédián [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Keresés</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Keresés a Wikipédián" aria-label="Keresés a Wikipédián" autocapitalize="sentences" title="Keresés a Wikipédián [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Speciális:Keresés"> </div> <button class="cdx-button cdx-search-input__end-button">Keresés</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Személyes eszközök"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Megjelenés"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Megjelenés" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Megjelenés</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_hu.wikipedia.org&uselang=hu" class=""><span>Adományok</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Speci%C3%A1lis:Szerkeszt%C5%91i_fi%C3%B3k_l%C3%A9trehoz%C3%A1sa&returnto=Lend%C3%BClet" title="Arra bíztatunk, hogy hozz létre egy fiókot, és jelentkezz be, azonban ez nem kötelező" class=""><span>Fiók létrehozása</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Speci%C3%A1lis:Bel%C3%A9p%C3%A9s&returnto=Lend%C3%BClet" title="Bejelentkezni javasolt, de nem kötelező [o]" accesskey="o" class=""><span>Bejelentkezés</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="További lehetőségek" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Személyes eszközök" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Személyes eszközök</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="Felhasználói menü" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_hu.wikipedia.org&uselang=hu"><span>Adományok</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Speci%C3%A1lis:Szerkeszt%C5%91i_fi%C3%B3k_l%C3%A9trehoz%C3%A1sa&returnto=Lend%C3%BClet" title="Arra bíztatunk, hogy hozz létre egy fiókot, és jelentkezz be, azonban ez nem kötelező"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Fiók létrehozása</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Speci%C3%A1lis:Bel%C3%A9p%C3%A9s&returnto=Lend%C3%BClet" title="Bejelentkezni javasolt, de nem kötelező [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Bejelentkezés</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Lapok kijelentkezett szerkesztőknek <a href="/wiki/Seg%C3%ADts%C3%A9g:Bevezet%C3%A9s" aria-label="Tudj meg többet a szerkesztésről"><span>további információk</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Speci%C3%A1lis:K%C3%B6zrem%C5%B1k%C3%B6d%C3%A9seim" title="Erről az IP-címről végrehajtott szerkesztések listája [y]" accesskey="y"><span>Közreműködések</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Speci%C3%A1lis:Vit%C3%A1m" title="Az általad használt IP-címről végrehajtott szerkesztések megvitatása [n]" accesskey="n"><span>Vitalap</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Wiki"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Tartalomjegyzék" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Tartalomjegyzék</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">áthelyezés az oldalsávba</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">elrejtés</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">Bevezető</div> </a> </li> <li id="toc-A_klasszikus_mechanikában" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#A_klasszikus_mechanikában"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>A klasszikus mechanikában</span> </div> </a> <button aria-controls="toc-A_klasszikus_mechanikában-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>A(z) A klasszikus mechanikában alszakasz kinyitása/becsukása</span> </button> <ul id="toc-A_klasszikus_mechanikában-sublist" class="vector-toc-list"> <li id="toc-Lendület_és_erőlökés_kapcsolata" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Lendület_és_erőlökés_kapcsolata"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Lendület és erőlökés kapcsolata</span> </div> </a> <ul id="toc-Lendület_és_erőlökés_kapcsolata-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Lendületmegmaradás" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Lendületmegmaradás"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Lendületmegmaradás</span> </div> </a> <button aria-controls="toc-Lendületmegmaradás-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>A(z) Lendületmegmaradás alszakasz kinyitása/becsukása</span> </button> <ul id="toc-Lendületmegmaradás-sublist" class="vector-toc-list"> <li id="toc-A_tér_homogenitása" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#A_tér_homogenitása"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>A tér homogenitása</span> </div> </a> <ul id="toc-A_tér_homogenitása-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-A_relativisztikus_mechanikában" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#A_relativisztikus_mechanikában"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>A relativisztikus mechanikában</span> </div> </a> <button aria-controls="toc-A_relativisztikus_mechanikában-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>A(z) A relativisztikus mechanikában alszakasz kinyitása/becsukása</span> </button> <ul id="toc-A_relativisztikus_mechanikában-sublist" class="vector-toc-list"> <li id="toc-Speciális_relativitáselmélet" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Speciális_relativitáselmélet"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Speciális relativitáselmélet</span> </div> </a> <ul id="toc-Speciális_relativitáselmélet-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Általános_relativitáselmélet" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Általános_relativitáselmélet"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Általános relativitáselmélet</span> </div> </a> <ul id="toc-Általános_relativitáselmélet-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-A_kvantummechanikában" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#A_kvantummechanikában"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>A kvantummechanikában</span> </div> </a> <ul id="toc-A_kvantummechanikában-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Jegyzetek" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Jegyzetek"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Jegyzetek</span> </div> </a> <ul id="toc-Jegyzetek-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Források" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Források"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Források</span> </div> </a> <ul id="toc-Források-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Tartalomjegyzék" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Tartalomjegyzék kinyitása/becsukása" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Tartalomjegyzék kinyitása/becsukása</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Lendület</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Ugrás egy más nyelvű szócikkre. Elérhető 97 nyelven" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-97" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">97 nyelv</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Momentum" title="Momentum – angol" lang="en" hreflang="en" data-title="Momentum" data-language-autonym="English" data-language-local-name="angol" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Momentum" title="Momentum – afrikaans" lang="af" hreflang="af" data-title="Momentum" data-language-autonym="Afrikaans" data-language-local-name="afrikaans" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-als mw-list-item"><a href="https://als.wikipedia.org/wiki/Impuls_(Physik)" title="Impuls (Physik) – svájci német" lang="gsw" hreflang="gsw" data-title="Impuls (Physik)" data-language-autonym="Alemannisch" data-language-local-name="svájci német" class="interlanguage-link-target"><span>Alemannisch</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%B2%D8%AE%D9%85_%D8%A7%D9%84%D8%AD%D8%B1%D9%83%D8%A9" title="زخم الحركة – arab" lang="ar" hreflang="ar" data-title="زخم الحركة" data-language-autonym="العربية" data-language-local-name="arab" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-as mw-list-item"><a href="https://as.wikipedia.org/wiki/%E0%A6%AD%E0%A7%B0%E0%A6%AC%E0%A7%87%E0%A6%97" title="ভৰবেগ – asszámi" lang="as" hreflang="as" data-title="ভৰবেগ" data-language-autonym="অসমীয়া" data-language-local-name="asszámi" class="interlanguage-link-target"><span>অসমীয়া</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Cantid%C3%A1_de_movimientu" title="Cantidá de movimientu – asztúr" lang="ast" hreflang="ast" data-title="Cantidá de movimientu" data-language-autonym="Asturianu" data-language-local-name="asztúr" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/%C4%B0mpuls" title="İmpuls – azerbajdzsáni" lang="az" hreflang="az" data-title="İmpuls" data-language-autonym="Azərbaycanca" data-language-local-name="azerbajdzsáni" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-bcl mw-list-item"><a href="https://bcl.wikipedia.org/wiki/Momentum" title="Momentum – Central Bikol" lang="bcl" hreflang="bcl" data-title="Momentum" data-language-autonym="Bikol Central" data-language-local-name="Central Bikol" class="interlanguage-link-target"><span>Bikol Central</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%86%D0%BC%D0%BF%D1%83%D0%BB%D1%8C%D1%81" title="Імпульс – belarusz" lang="be" hreflang="be" data-title="Імпульс" data-language-autonym="Беларуская" data-language-local-name="belarusz" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-be-x-old mw-list-item"><a href="https://be-tarask.wikipedia.org/wiki/%D0%86%D0%BC%D0%BF%D1%83%D0%BB%D1%8C%D1%81" title="Імпульс – Belarusian (Taraškievica orthography)" lang="be-tarask" hreflang="be-tarask" data-title="Імпульс" data-language-autonym="Беларуская (тарашкевіца)" data-language-local-name="Belarusian (Taraškievica orthography)" class="interlanguage-link-target"><span>Беларуская (тарашкевіца)</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%98%D0%BC%D0%BF%D1%83%D0%BB%D1%81_(%D0%BC%D0%B5%D1%85%D0%B0%D0%BD%D0%B8%D0%BA%D0%B0)" title="Импулс (механика) – bolgár" lang="bg" hreflang="bg" data-title="Импулс (механика)" data-language-autonym="Български" data-language-local-name="bolgár" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bh mw-list-item"><a href="https://bh.wikipedia.org/wiki/%E0%A4%B5%E0%A5%87%E0%A4%97%E0%A4%AE%E0%A4%BE%E0%A4%A8" title="वेगमान – Bhojpuri" lang="bh" hreflang="bh" data-title="वेगमान" data-language-autonym="भोजपुरी" data-language-local-name="Bhojpuri" class="interlanguage-link-target"><span>भोजपुरी</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%AD%E0%A6%B0%E0%A6%AC%E0%A7%87%E0%A6%97" title="ভরবেগ – bangla" lang="bn" hreflang="bn" data-title="ভরবেগ" data-language-autonym="বাংলা" data-language-local-name="bangla" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Koli%C4%8Dina_kretanja" title="Količina kretanja – bosnyák" lang="bs" hreflang="bs" data-title="Količina kretanja" data-language-autonym="Bosanski" data-language-local-name="bosnyák" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-bxr mw-list-item"><a href="https://bxr.wikipedia.org/wiki/%D0%98%D0%BC%D0%BF%D1%83%D0%BB%D1%8C%D1%81" title="Импульс – Russia Buriat" lang="bxr" hreflang="bxr" data-title="Импульс" data-language-autonym="Буряад" data-language-local-name="Russia Buriat" class="interlanguage-link-target"><span>Буряад</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Quantitat_de_moviment" title="Quantitat de moviment – katalán" lang="ca" hreflang="ca" data-title="Quantitat de moviment" data-language-autonym="Català" data-language-local-name="katalán" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%DA%95%D8%A7%D9%88%DB%95%D8%B4" title="ڕاوەش – közép-ázsiai kurd" lang="ckb" hreflang="ckb" data-title="ڕاوەش" data-language-autonym="کوردی" data-language-local-name="közép-ázsiai kurd" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Hybnost" title="Hybnost – cseh" lang="cs" hreflang="cs" data-title="Hybnost" data-language-autonym="Čeština" data-language-local-name="cseh" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%98%D0%BC%D0%BF%D1%83%D0%BB%D1%8C%D1%81" title="Импульс – csuvas" lang="cv" hreflang="cv" data-title="Импульс" data-language-autonym="Чӑвашла" data-language-local-name="csuvas" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Momentwm" title="Momentwm – walesi" lang="cy" hreflang="cy" data-title="Momentwm" data-language-autonym="Cymraeg" data-language-local-name="walesi" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Impuls_(fysik)" title="Impuls (fysik) – dán" lang="da" hreflang="da" data-title="Impuls (fysik)" data-language-autonym="Dansk" data-language-local-name="dán" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Impuls" title="Impuls – német" lang="de" hreflang="de" data-title="Impuls" data-language-autonym="Deutsch" data-language-local-name="német" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%9F%CF%81%CE%BC%CE%AE" title="Ορμή – görög" lang="el" hreflang="el" data-title="Ορμή" data-language-autonym="Ελληνικά" data-language-local-name="görög" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Movokvanto" title="Movokvanto – eszperantó" lang="eo" hreflang="eo" data-title="Movokvanto" data-language-autonym="Esperanto" data-language-local-name="eszperantó" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Cantidad_de_movimiento" title="Cantidad de movimiento – spanyol" lang="es" hreflang="es" data-title="Cantidad de movimiento" data-language-autonym="Español" data-language-local-name="spanyol" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Impulss" title="Impulss – észt" lang="et" hreflang="et" data-title="Impulss" data-language-autonym="Eesti" data-language-local-name="észt" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Momentu_lineal" title="Momentu lineal – baszk" lang="eu" hreflang="eu" data-title="Momentu lineal" data-language-autonym="Euskara" data-language-local-name="baszk" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%AA%DA%A9%D8%A7%D9%86%D9%87" title="تکانه – perzsa" lang="fa" hreflang="fa" data-title="تکانه" data-language-autonym="فارسی" data-language-local-name="perzsa" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Liikem%C3%A4%C3%A4r%C3%A4" title="Liikemäärä – finn" lang="fi" hreflang="fi" data-title="Liikemäärä" data-language-autonym="Suomi" data-language-local-name="finn" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Quantit%C3%A9_de_mouvement" title="Quantité de mouvement – francia" lang="fr" hreflang="fr" data-title="Quantité de mouvement" data-language-autonym="Français" data-language-local-name="francia" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-fy mw-list-item"><a href="https://fy.wikipedia.org/wiki/Ympuls_(natuerkunde)" title="Ympuls (natuerkunde) – nyugati fríz" lang="fy" hreflang="fy" data-title="Ympuls (natuerkunde)" data-language-autonym="Frysk" data-language-local-name="nyugati fríz" class="interlanguage-link-target"><span>Frysk</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/M%C3%B3iminteam" title="Móiminteam – ír" lang="ga" hreflang="ga" data-title="Móiminteam" data-language-autonym="Gaeilge" data-language-local-name="ír" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Cantidade_de_movemento" title="Cantidade de movemento – gallego" lang="gl" hreflang="gl" data-title="Cantidade de movemento" data-language-autonym="Galego" data-language-local-name="gallego" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-gu mw-list-item"><a href="https://gu.wikipedia.org/wiki/%E0%AA%B5%E0%AB%87%E0%AA%97%E0%AA%AE%E0%AA%BE%E0%AA%A8_%E0%AA%B8%E0%AA%82%E0%AA%B0%E0%AA%95%E0%AB%8D%E0%AA%B7%E0%AA%A3%E0%AA%A8%E0%AB%8B_%E0%AA%A8%E0%AA%BF%E0%AA%AF%E0%AA%AE" title="વેગમાન સંરક્ષણનો નિયમ – gudzsaráti" lang="gu" hreflang="gu" data-title="વેગમાન સંરક્ષણનો નિયમ" data-language-autonym="ગુજરાતી" data-language-local-name="gudzsaráti" class="interlanguage-link-target"><span>ગુજરાતી</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%AA%D7%A0%D7%A2" title="תנע – héber" lang="he" hreflang="he" data-title="תנע" data-language-autonym="עברית" data-language-local-name="héber" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%B8%E0%A4%82%E0%A4%B5%E0%A5%87%E0%A4%97_(%E0%A4%AD%E0%A5%8C%E0%A4%A4%E0%A4%BF%E0%A4%95%E0%A5%80)" title="संवेग (भौतिकी) – hindi" lang="hi" hreflang="hi" data-title="संवेग (भौतिकी)" data-language-autonym="हिन्दी" data-language-local-name="hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Koli%C4%8Dina_gibanja" title="Količina gibanja – horvát" lang="hr" hreflang="hr" data-title="Količina gibanja" data-language-autonym="Hrvatski" data-language-local-name="horvát" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-ht mw-list-item"><a href="https://ht.wikipedia.org/wiki/Elan" title="Elan – haiti kreol" lang="ht" hreflang="ht" data-title="Elan" data-language-autonym="Kreyòl ayisyen" data-language-local-name="haiti kreol" class="interlanguage-link-target"><span>Kreyòl ayisyen</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D4%BB%D5%B4%D5%BA%D5%B8%D6%82%D5%AC%D5%BD_(%D5%B7%D5%A1%D6%80%D5%AA%D5%B4%D5%A1%D5%B6_%D6%84%D5%A1%D5%B6%D5%A1%D5%AF)" title="Իմպուլս (շարժման քանակ) – örmény" lang="hy" hreflang="hy" data-title="Իմպուլս (շարժման քանակ)" data-language-autonym="Հայերեն" data-language-local-name="örmény" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Momentum" title="Momentum – indonéz" lang="id" hreflang="id" data-title="Momentum" data-language-autonym="Bahasa Indonesia" data-language-local-name="indonéz" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Skri%C3%B0%C3%BEungi" title="Skriðþungi – izlandi" lang="is" hreflang="is" data-title="Skriðþungi" data-language-autonym="Íslenska" data-language-local-name="izlandi" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Quantit%C3%A0_di_moto" title="Quantità di moto – olasz" lang="it" hreflang="it" data-title="Quantità di moto" data-language-autonym="Italiano" data-language-local-name="olasz" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E9%81%8B%E5%8B%95%E9%87%8F" title="運動量 – japán" lang="ja" hreflang="ja" data-title="運動量" data-language-autonym="日本語" data-language-local-name="japán" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-jv mw-list-item"><a href="https://jv.wikipedia.org/wiki/Mom%C3%A8ntum" title="Momèntum – jávai" lang="jv" hreflang="jv" data-title="Momèntum" data-language-autonym="Jawa" data-language-local-name="jávai" class="interlanguage-link-target"><span>Jawa</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%98%E1%83%9B%E1%83%9E%E1%83%A3%E1%83%9A%E1%83%A1%E1%83%98" title="იმპულსი – grúz" lang="ka" hreflang="ka" data-title="იმპულსი" data-language-autonym="ქართული" data-language-local-name="grúz" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%94%D0%B5%D0%BD%D0%B5_%D0%B8%D0%BC%D0%BF%D1%83%D0%BB%D1%8C%D1%81%D1%96" title="Дене импульсі – kazah" lang="kk" hreflang="kk" data-title="Дене импульсі" data-language-autonym="Қазақша" data-language-local-name="kazah" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-kn mw-list-item"><a href="https://kn.wikipedia.org/wiki/%E0%B2%86%E0%B2%B5%E0%B3%87%E0%B2%97_(%E0%B2%AD%E0%B3%8C%E0%B2%A4%E0%B2%B6%E0%B2%BE%E0%B2%B8%E0%B3%8D%E0%B2%A4%E0%B3%8D%E0%B2%B0)" title="ಆವೇಗ (ಭೌತಶಾಸ್ತ್ರ) – kannada" lang="kn" hreflang="kn" data-title="ಆವೇಗ (ಭೌತಶಾಸ್ತ್ರ)" data-language-autonym="ಕನ್ನಡ" data-language-local-name="kannada" class="interlanguage-link-target"><span>ಕನ್ನಡ</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%9A%B4%EB%8F%99%EB%9F%89" title="운동량 – koreai" lang="ko" hreflang="ko" data-title="운동량" data-language-autonym="한국어" data-language-local-name="koreai" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Momentum" title="Momentum – latin" lang="la" hreflang="la" data-title="Momentum" data-language-autonym="Latina" data-language-local-name="latin" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Judesio_kiekis" title="Judesio kiekis – litván" lang="lt" hreflang="lt" data-title="Judesio kiekis" data-language-autonym="Lietuvių" data-language-local-name="litván" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Impulss" title="Impulss – lett" lang="lv" hreflang="lv" data-title="Impulss" data-language-autonym="Latviešu" data-language-local-name="lett" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%98%D0%BC%D0%BF%D1%83%D0%BB%D1%81_(%D0%BC%D0%B5%D1%85%D0%B0%D0%BD%D0%B8%D0%BA%D0%B0)" title="Импулс (механика) – macedón" lang="mk" hreflang="mk" data-title="Импулс (механика)" data-language-autonym="Македонски" data-language-local-name="macedón" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%86%E0%B4%95%E0%B5%8D%E0%B4%95%E0%B4%82" title="ആക്കം – malajálam" lang="ml" hreflang="ml" data-title="ആക്കം" data-language-autonym="മലയാളം" data-language-local-name="malajálam" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-mn mw-list-item"><a href="https://mn.wikipedia.org/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82" title="Момент – mongol" lang="mn" hreflang="mn" data-title="Момент" data-language-autonym="Монгол" data-language-local-name="mongol" class="interlanguage-link-target"><span>Монгол</span></a></li><li class="interlanguage-link interwiki-mr mw-list-item"><a href="https://mr.wikipedia.org/wiki/%E0%A4%B8%E0%A4%82%E0%A4%B5%E0%A5%87%E0%A4%97" title="संवेग – maráthi" lang="mr" hreflang="mr" data-title="संवेग" data-language-autonym="मराठी" data-language-local-name="maráthi" class="interlanguage-link-target"><span>मराठी</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Momentum" title="Momentum – maláj" lang="ms" hreflang="ms" data-title="Momentum" data-language-autonym="Bahasa Melayu" data-language-local-name="maláj" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-my mw-list-item"><a href="https://my.wikipedia.org/wiki/%E1%80%A1%E1%80%9F%E1%80%AF%E1%80%94%E1%80%BA" title="အဟုန် – burmai" lang="my" hreflang="my" data-title="အဟုန်" data-language-autonym="မြန်မာဘာသာ" data-language-local-name="burmai" class="interlanguage-link-target"><span>မြန်မာဘာသာ</span></a></li><li class="interlanguage-link interwiki-nds mw-list-item"><a href="https://nds.wikipedia.org/wiki/Impuls_(Physik)" title="Impuls (Physik) – alsónémet" lang="nds" hreflang="nds" data-title="Impuls (Physik)" data-language-autonym="Plattdüütsch" data-language-local-name="alsónémet" class="interlanguage-link-target"><span>Plattdüütsch</span></a></li><li class="interlanguage-link interwiki-ne mw-list-item"><a href="https://ne.wikipedia.org/wiki/%E0%A4%AA%E0%A4%B0%E0%A4%BF%E0%A4%B5%E0%A5%87%E0%A4%97" title="परिवेग – nepáli" lang="ne" hreflang="ne" data-title="परिवेग" data-language-autonym="नेपाली" data-language-local-name="nepáli" class="interlanguage-link-target"><span>नेपाली</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Impuls_(natuurkunde)" title="Impuls (natuurkunde) – holland" lang="nl" hreflang="nl" data-title="Impuls (natuurkunde)" data-language-autonym="Nederlands" data-language-local-name="holland" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/R%C3%B8rslemengd" title="Rørslemengd – norvég (nynorsk)" lang="nn" hreflang="nn" data-title="Rørslemengd" data-language-autonym="Norsk nynorsk" data-language-local-name="norvég (nynorsk)" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Bevegelsesmengde" title="Bevegelsesmengde – norvég (bokmål)" lang="nb" hreflang="nb" data-title="Bevegelsesmengde" data-language-autonym="Norsk bokmål" data-language-local-name="norvég (bokmål)" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-oc mw-list-item"><a href="https://oc.wikipedia.org/wiki/Quantitat_de_movement" title="Quantitat de movement – okszitán" lang="oc" hreflang="oc" data-title="Quantitat de movement" data-language-autonym="Occitan" data-language-local-name="okszitán" class="interlanguage-link-target"><span>Occitan</span></a></li><li class="interlanguage-link interwiki-om mw-list-item"><a href="https://om.wikipedia.org/wiki/Furguga" title="Furguga – oromo" lang="om" hreflang="om" data-title="Furguga" data-language-autonym="Oromoo" data-language-local-name="oromo" class="interlanguage-link-target"><span>Oromoo</span></a></li><li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://pa.wikipedia.org/wiki/%E0%A8%B8%E0%A9%B0%E0%A8%B5%E0%A9%87%E0%A8%97" title="ਸੰਵੇਗ – pandzsábi" lang="pa" hreflang="pa" data-title="ਸੰਵੇਗ" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="pandzsábi" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/P%C4%99d_(fizyka)" title="Pęd (fizyka) – lengyel" lang="pl" hreflang="pl" data-title="Pęd (fizyka)" data-language-autonym="Polski" data-language-local-name="lengyel" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pms mw-list-item"><a href="https://pms.wikipedia.org/wiki/Quantit%C3%A0_%C3%ABd_moviment" title="Quantità ëd moviment – Piedmontese" lang="pms" hreflang="pms" data-title="Quantità ëd moviment" data-language-autonym="Piemontèis" data-language-local-name="Piedmontese" class="interlanguage-link-target"><span>Piemontèis</span></a></li><li class="interlanguage-link interwiki-pnb mw-list-item"><a href="https://pnb.wikipedia.org/wiki/%D9%85%D9%88%D9%85%D9%86%D9%B9%D9%85" title="مومنٹم – Western Punjabi" lang="pnb" hreflang="pnb" data-title="مومنٹم" data-language-autonym="پنجابی" data-language-local-name="Western Punjabi" class="interlanguage-link-target"><span>پنجابی</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Momento_linear" title="Momento linear – portugál" lang="pt" hreflang="pt" data-title="Momento linear" data-language-autonym="Português" data-language-local-name="portugál" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Impuls" title="Impuls – román" lang="ro" hreflang="ro" data-title="Impuls" data-language-autonym="Română" data-language-local-name="román" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%98%D0%BC%D0%BF%D1%83%D0%BB%D1%8C%D1%81" title="Импульс – orosz" lang="ru" hreflang="ru" data-title="Импульс" data-language-autonym="Русский" data-language-local-name="orosz" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Impuls" title="Impuls – szerbhorvát" lang="sh" hreflang="sh" data-title="Impuls" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="szerbhorvát" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-si mw-list-item"><a href="https://si.wikipedia.org/wiki/%E0%B6%9C%E0%B6%B8%E0%B7%8A%E2%80%8D%E0%B6%BA%E0%B6%AD%E0%B7%8F%E0%B7%80%E0%B6%BA" title="ගම්යතාවය – szingaléz" lang="si" hreflang="si" data-title="ගම්යතාවය" data-language-autonym="සිංහල" data-language-local-name="szingaléz" class="interlanguage-link-target"><span>සිංහල</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Momentum" title="Momentum – Simple English" lang="en-simple" hreflang="en-simple" data-title="Momentum" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Hybnos%C5%A5" title="Hybnosť – szlovák" lang="sk" hreflang="sk" data-title="Hybnosť" data-language-autonym="Slovenčina" data-language-local-name="szlovák" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Gibalna_koli%C4%8Dina" title="Gibalna količina – szlovén" lang="sl" hreflang="sl" data-title="Gibalna količina" data-language-autonym="Slovenščina" data-language-local-name="szlovén" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sn mw-list-item"><a href="https://sn.wikipedia.org/wiki/Runhanhira" title="Runhanhira – sona" lang="sn" hreflang="sn" data-title="Runhanhira" data-language-autonym="ChiShona" data-language-local-name="sona" class="interlanguage-link-target"><span>ChiShona</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Vrulli" title="Vrulli – albán" lang="sq" hreflang="sq" data-title="Vrulli" data-language-autonym="Shqip" data-language-local-name="albán" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%98%D0%BC%D0%BF%D1%83%D0%BB%D1%81" title="Импулс – szerb" lang="sr" hreflang="sr" data-title="Импулс" data-language-autonym="Српски / srpski" data-language-local-name="szerb" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-su mw-list-item"><a href="https://su.wikipedia.org/wiki/Mom%C3%A9ntum" title="Moméntum – szundanéz" lang="su" hreflang="su" data-title="Moméntum" data-language-autonym="Sunda" data-language-local-name="szundanéz" class="interlanguage-link-target"><span>Sunda</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/R%C3%B6relsem%C3%A4ngd" title="Rörelsemängd – svéd" lang="sv" hreflang="sv" data-title="Rörelsemängd" data-language-autonym="Svenska" data-language-local-name="svéd" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%89%E0%AE%A8%E0%AF%8D%E0%AE%A4%E0%AE%AE%E0%AF%8D" title="உந்தம் – tamil" lang="ta" hreflang="ta" data-title="உந்தம்" data-language-autonym="தமிழ்" data-language-local-name="tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-te mw-list-item"><a href="https://te.wikipedia.org/wiki/%E0%B0%A6%E0%B1%8D%E0%B0%B0%E0%B0%B5%E0%B1%8D%E0%B0%AF%E0%B0%B5%E0%B1%87%E0%B0%97%E0%B0%82" title="ద్రవ్యవేగం – telugu" lang="te" hreflang="te" data-title="ద్రవ్యవేగం" data-language-autonym="తెలుగు" data-language-local-name="telugu" class="interlanguage-link-target"><span>తెలుగు</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B9%82%E0%B8%A1%E0%B9%80%E0%B8%A1%E0%B8%99%E0%B8%95%E0%B8%B1%E0%B8%A1" title="โมเมนตัม – thai" lang="th" hreflang="th" data-title="โมเมนตัม" data-language-autonym="ไทย" data-language-local-name="thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Momentum" title="Momentum – tagalog" lang="tl" hreflang="tl" data-title="Momentum" data-language-autonym="Tagalog" data-language-local-name="tagalog" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Momentum" title="Momentum – török" lang="tr" hreflang="tr" data-title="Momentum" data-language-autonym="Türkçe" data-language-local-name="török" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-tt mw-list-item"><a href="https://tt.wikipedia.org/wiki/%C4%B0mpuls" title="İmpuls – tatár" lang="tt" hreflang="tt" data-title="İmpuls" data-language-autonym="Татарча / tatarça" data-language-local-name="tatár" class="interlanguage-link-target"><span>Татарча / tatarça</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%86%D0%BC%D0%BF%D1%83%D0%BB%D1%8C%D1%81_(%D0%BC%D0%B5%D1%85%D0%B0%D0%BD%D1%96%D0%BA%D0%B0)" title="Імпульс (механіка) – ukrán" lang="uk" hreflang="uk" data-title="Імпульс (механіка)" data-language-autonym="Українська" data-language-local-name="ukrán" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D9%85%D8%B9%DB%8C%D8%A7%D8%B1_%D8%AD%D8%B1%DA%A9%D8%AA" title="معیار حرکت – urdu" lang="ur" hreflang="ur" data-title="معیار حرکت" data-language-autonym="اردو" data-language-local-name="urdu" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Impuls" title="Impuls – üzbég" lang="uz" hreflang="uz" data-title="Impuls" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="üzbég" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/%C4%90%E1%BB%99ng_l%C6%B0%E1%BB%A3ng" title="Động lượng – vietnámi" lang="vi" hreflang="vi" data-title="Động lượng" data-language-autonym="Tiếng Việt" data-language-local-name="vietnámi" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E5%8A%A8%E9%87%8F" title="动量 – wu kínai" lang="wuu" hreflang="wuu" data-title="动量" data-language-autonym="吴语" data-language-local-name="wu kínai" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-yi mw-list-item"><a href="https://yi.wikipedia.org/wiki/%D7%90%D7%99%D7%9E%D7%A4%D7%A2%D7%98" title="אימפעט – jiddis" lang="yi" hreflang="yi" data-title="אימפעט" data-language-autonym="ייִדיש" data-language-local-name="jiddis" class="interlanguage-link-target"><span>ייִדיש</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%8A%A8%E9%87%8F" title="动量 – kínai" lang="zh" hreflang="zh" data-title="动量" data-language-autonym="中文" data-language-local-name="kínai" class="interlanguage-link-target"><span>中文</span></a></li><li class="interlanguage-link interwiki-zh-classical mw-list-item"><a href="https://zh-classical.wikipedia.org/wiki/%E5%8B%95%E9%87%8F" title="動量 – Literary Chinese" lang="lzh" hreflang="lzh" data-title="動量" data-language-autonym="文言" data-language-local-name="Literary Chinese" class="interlanguage-link-target"><span>文言</span></a></li><li class="interlanguage-link interwiki-zh-min-nan mw-list-item"><a href="https://zh-min-nan.wikipedia.org/wiki/%C5%AAn-t%C5%8Dng-li%C5%8Dng" title="Ūn-tōng-liōng – min nan kínai" lang="nan" hreflang="nan" data-title="Ūn-tōng-liōng" data-language-autonym="閩南語 / Bân-lâm-gú" data-language-local-name="min nan kínai" class="interlanguage-link-target"><span>閩南語 / Bân-lâm-gú</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E5%8B%95%E9%87%8F" title="動量 – kantoni" lang="yue" hreflang="yue" data-title="動量" data-language-autonym="粵語" data-language-local-name="kantoni" class="interlanguage-link-target"><span>粵語</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q41273#sitelinks-wikipedia" title="Nyelvközi hivatkozások szerkesztése" class="wbc-editpage">Hivatkozások szerkesztése</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Névterek"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Lend%C3%BClet" title="A lap megtekintése [c]" accesskey="c"><span>Szócikk</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Vita:Lend%C3%BClet" rel="discussion" title="Az oldal tartalmának megvitatása [t]" accesskey="t"><span>Vitalap</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Nyelvvariáns váltása" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">magyar</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Nézetek"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Lend%C3%BClet"><span>Olvasás</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Lend%C3%BClet&action=edit" title="Az oldal forráskódjának szerkesztése [e]" accesskey="e"><span>Szerkesztés</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Lend%C3%BClet&action=history" title="A lap korábbi változatai [h]" accesskey="h"><span>Laptörténet</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Oldal eszközök"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Eszközök" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Eszközök</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Eszközök</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">áthelyezés az oldalsávba</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">elrejtés</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="További lehetőségek" > <div class="vector-menu-heading"> Műveletek </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Lend%C3%BClet"><span>Olvasás</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Lend%C3%BClet&action=edit" title="Az oldal forráskódjának szerkesztése [e]" accesskey="e"><span>Szerkesztés</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Lend%C3%BClet&action=history"><span>Laptörténet</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> Általános </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Speci%C3%A1lis:Mi_hivatkozik_erre/Lend%C3%BClet" title="Az erre a lapra hivatkozó más lapok listája [j]" accesskey="j"><span>Mi hivatkozik erre?</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Speci%C3%A1lis:Kapcsol%C3%B3d%C3%B3_v%C3%A1ltoztat%C3%A1sok/Lend%C3%BClet" rel="nofollow" title="Az erről a lapról hivatkozott lapok utolsó változtatásai [k]" accesskey="k"><span>Kapcsolódó változtatások</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Speci%C3%A1lis:Speci%C3%A1lis_lapok" title="Az összes speciális lap listája [q]" accesskey="q"><span>Speciális lapok</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Lend%C3%BClet&oldid=26904602" title="Állandó hivatkozás ezen lap ezen változatához"><span>Hivatkozás erre a változatra</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Lend%C3%BClet&action=info" title="További információk erről a lapról"><span>Lapinformációk</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Speci%C3%A1lis:Hivatkoz%C3%A1s&page=Lend%C3%BClet&id=26904602&wpFormIdentifier=titleform" title="Információk a lap idézésével kapcsolatban"><span>Hogyan hivatkozz erre a lapra?</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Speci%C3%A1lis:UrlShortener&url=https%3A%2F%2Fhu.wikipedia.org%2Fwiki%2FLend%25C3%25BClet"><span>Rövidített URL készítése</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Speci%C3%A1lis:QrCode&url=https%3A%2F%2Fhu.wikipedia.org%2Fwiki%2FLend%25C3%25BClet"><span>QR-kód letöltése</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Nyomtatás/exportálás </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-create_a_book" class="mw-list-item"><a href="/w/index.php?title=Speci%C3%A1lis:K%C3%B6nyv&bookcmd=book_creator&referer=Lend%C3%BClet"><span>Könyv készítése</span></a></li><li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Speci%C3%A1lis:DownloadAsPdf&page=Lend%C3%BClet&action=show-download-screen"><span>Letöltés PDF-ként</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Lend%C3%BClet&printable=yes" title="A lap nyomtatható változata [p]" accesskey="p"><span>Nyomtatható változat</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> Társprojektek </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Momentum" hreflang="en"><span>Wikimédia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q41273" title="Kapcsolt adattárelem [g]" accesskey="g"><span>Wikidata-adatlap</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Oldal eszközök"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Megjelenés"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Megjelenés</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">áthelyezés az oldalsávba</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">elrejtés</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> <div id="mw-indicator-indicator-fr-review-status" class="mw-indicator"><indicator name="fr-review-status" class="mw-fr-review-status-indicator" id="mw-fr-revision-toggle"><span class="cdx-fr-css-icon-review--status--stable"></span><b>Ellenőrzött</b></indicator></div> </div> <div id="siteSub" class="noprint">A Wikipédiából, a szabad enciklopédiából</div> </div> <div id="contentSub"><div id="mw-content-subtitle"><div id="mw-fr-revision-messages"><div id="mw-fr-revision-details" class="mw-fr-revision-details-dialog" style="display:none;"><div tabindex="0"></div><div class="cdx-dialog cdx-dialog--horizontal-actions"><header class="cdx-dialog__header cdx-dialog__header--default"><div class="cdx-dialog__header__title-group"><h2 class="cdx-dialog__header__title">Változat állapota</h2><p class="cdx-dialog__header__subtitle">Ez a lap egy ellenőrzött változata</p></div><button class="cdx-button cdx-button--action-default cdx-button--weight-quiet 							cdx-button--size-medium cdx-button--icon-only cdx-dialog__header__close-button" aria-label="Close" onclick="document.getElementById("mw-fr-revision-details").style.display = "none";" type="submit"><span class="cdx-icon cdx-icon--medium 							cdx-fr-css-icon--close"></span></button></header><div class="cdx-dialog__body">Ez a <a href="/wiki/Wikip%C3%A9dia:Jel%C3%B6lt_lapv%C3%A1ltozatok" title="Wikipédia:Jelölt lapváltozatok">közzétett változat</a>, <a class="external text" href="https://hu.wikipedia.org/w/index.php?title=Speci%C3%A1lis:Rendszernapl%C3%B3k&type=review&page=Lend%C3%BClet">ellenőrizve</a>: <i>2024. február 21.</i><p><table id="mw-fr-revisionratings-box" class="flaggedrevs-color-1" style="margin: auto;" cellpadding="0"><tr><td class="fr-text" style="vertical-align: middle;">Pontosság</td><td class="fr-value40" style="vertical-align: middle;">ellenőrzött</td></tr></table></p></div></div><div tabindex="0"></div></div></div></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="hu" dir="ltr"><p>A <b>lendület</b> (ritkán <b>mozgásmennyiség</b>, fizikus szóhasználattal <b>impulzus vagy mozgásállapot</b>) egy test mozgását leíró dinamikai vektormennyiség. Nagysága arányos a <a href="/wiki/T%C3%B6meg" title="Tömeg">tömeggel</a> és a <a href="/wiki/Sebess%C3%A9g" title="Sebesség">sebességgel</a>. Jele <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {I} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">I</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {I} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8a458c8aeb096ce732abf346ae8edf3e4f53a126" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.014ex; height:2.176ex;" alt="{\displaystyle \mathbf {I} }"></span> (ritkán <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {p} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {p} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dd73e3862cb92b016721b8c492eadb4e8a577527" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.485ex; height:2.009ex;" alt="{\displaystyle \mathbf {p} }"></span><sup id="cite_ref-Holics_1-0" class="reference"><a href="#cite_note-Holics-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup>). Mértékegysége a <a href="/wiki/Kilogramm" title="Kilogramm">kg</a>·<a href="/wiki/M%C3%A9ter" title="Méter">m</a>/<a href="/wiki/M%C3%A1sodperc" title="Másodperc">s</a>, vagy az ezzel ekvivalens <a href="/wiki/Newton_(m%C3%A9rt%C3%A9kegys%C3%A9g)" title="Newton (mértékegység)">N</a>·<a href="/wiki/M%C3%A1sodperc" title="Másodperc">s</a>. </p><p><a href="/wiki/Megmarad%C3%A1si_t%C3%A9tel" title="Megmaradási tétel">Megmaradó mennyiség</a>, azaz zárt rendszer összes lendülete állandó. Ez a lendületmegmaradás (vagy impulzusmegmaradás) törvénye. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="A_klasszikus_mechanikában"><span id="A_klasszikus_mechanik.C3.A1ban"></span>A klasszikus mechanikában</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lend%C3%BClet&action=edit&section=1" title="Szakasz szerkesztése: A klasszikus mechanikában"><span>szerkesztés</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A lendület egy <a href="/wiki/Fizika" title="Fizika">fizikai</a> <a href="/wiki/Vektor" title="Vektor">vektormennyiség</a>, értéke egyenlő a test <i>v</i> <a href="/wiki/Sebess%C3%A9g" title="Sebesség">sebességének</a> és <i>m</i> <a href="/wiki/T%C3%B6meg" title="Tömeg">tömegének</a> a szorzatával: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {p} =m\mathbf {v} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> <mo>=</mo> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {p} =m\mathbf {v} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a271a96e7b925fd39686375167c76d406e87c813" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.035ex; height:2.009ex;" alt="{\displaystyle \mathbf {p} =m\mathbf {v} }"></span>,</dd></dl> <p>tehát nemcsak nagysága, hanem iránya és irányítása is van, ezek pedig megegyeznek a sebességvektoréval.<sup id="cite_ref-:0_2-0" class="reference"><a href="#cite_note-:0-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> Koordináta-rendszerfüggő mennyiség, azaz ha egy objektumnak van valamekkora lendülete, akkor az a lendület a konkrét <a href="/wiki/Koordin%C3%A1ta-rendszer" title="Koordináta-rendszer">koordináta-rendszerben</a> akkora. </p> <div class="mw-heading mw-heading3"><h3 id="Lendület_és_erőlökés_kapcsolata"><span id="Lend.C3.BClet_.C3.A9s_er.C5.91l.C3.B6k.C3.A9s_kapcsolata"></span>Lendület és erőlökés kapcsolata</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lend%C3%BClet&action=edit&section=2" title="Szakasz szerkesztése: Lendület és erőlökés kapcsolata"><span>szerkesztés</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Testek kölcsönhatása során megváltozik a mozgásállapotuk, vagyis az impulzusuk. Emellett, az is következik, hogy a kölcsönhatás erőssége függ az adott idő alatt végbemenő impulzusváltozástól, minél nagyobb az impulzusváltozás, annál erősebb a kölcsönhatás. Középértékben, a kölcsönhatás mértékének az egységnyi időre vonatkoztatott impulzusváltozást tekintjük. <sup id="cite_ref-:0_2-1" class="reference"><a href="#cite_note-:0-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> </p><p>Értelmezhető a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{\Delta t\to 0}{\frac {\Delta \mathbf {p} }{\Delta t}}={\frac {d\mathbf {p} }{dt}}=\mathbf {F} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>t</mi> <mo stretchy="false">→<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> </mrow> <mrow> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{\Delta t\to 0}{\frac {\Delta \mathbf {p} }{\Delta t}}={\frac {d\mathbf {p} }{dt}}=\mathbf {F} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b0971abce160a3847beb5c3219b35893b8b62b1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:20.489ex; height:5.676ex;" alt="{\displaystyle \lim _{\Delta t\to 0}{\frac {\Delta \mathbf {p} }{\Delta t}}={\frac {d\mathbf {p} }{dt}}=\mathbf {F} }"></span> vektormennyiség, amit erőnek nevezünk. Ez a kölcsönhatás mértéke.<sup id="cite_ref-:0_2-2" class="reference"><a href="#cite_note-:0-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> </p><p>A testek tömege állandónak vehető kis sebességű mechanikai folyamatok esetében, így következik, hogy: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} ={\frac {d\mathbf {p} }{dt}}=m{\frac {d\mathbf {v} }{dt}}=m\mathbf {a} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {F} ={\frac {d\mathbf {p} }{dt}}=m{\frac {d\mathbf {v} }{dt}}=m\mathbf {a} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4d4085efb141b38b038358b14185888f6cdc1392" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:23.359ex; height:5.509ex;" alt="{\displaystyle \mathbf {F} ={\frac {d\mathbf {p} }{dt}}=m{\frac {d\mathbf {v} }{dt}}=m\mathbf {a} }"></span>.<sup id="cite_ref-:0_2-3" class="reference"><a href="#cite_note-:0-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> </p><p>Ha egy testre <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} (t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {F} (t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e6021e03ed38ee7ada97d1f9e95e14b51f9af962" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.332ex; height:2.843ex;" alt="{\displaystyle \mathbf {F} (t)}"></span> erő hat bizonyos <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tau }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>τ<!-- τ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tau }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/38a7dcde9730ef0853809fefc18d88771f95206c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.202ex; height:1.676ex;" alt="{\displaystyle \tau }"></span> ideig, akkor a </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\operatorname {d} \mathbf {p} \over \operatorname {d} t}={\operatorname {d} m\mathbf {v} \over \operatorname {d} t}=\mathbf {F} (t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">d</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> </mrow> <mrow> <mi mathvariant="normal">d</mi> <mo>⁡<!-- --></mo> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">d</mi> <mo>⁡<!-- --></mo> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> </mrow> <mrow> <mi mathvariant="normal">d</mi> <mo>⁡<!-- --></mo> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\operatorname {d} \mathbf {p} \over \operatorname {d} t}={\operatorname {d} m\mathbf {v} \over \operatorname {d} t}=\mathbf {F} (t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0546e4966905395102825c071232b7df9104fa84" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:20.497ex; height:5.509ex;" alt="{\displaystyle {\operatorname {d} \mathbf {p} \over \operatorname {d} t}={\operatorname {d} m\mathbf {v} \over \operatorname {d} t}=\mathbf {F} (t)}"></span></dd></dl> <p>mozgásegyenlet integrálásával meghatározhatjuk a test impulzusának megváltozását. Ez a mozgásegyenlet az <i>impulzustétel</i> matematikai megfogalmazása. Az impulzusváltozást tehát a </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta \mathbf {p} =\int \limits _{0}^{\tau }\mathbf {F} (t)\operatorname {d} \!t={\Biggl (}\int \limits _{0}^{\tau }{\dot {\mathbf {p} }}\operatorname {d} \!t{\Biggr )}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> <mo>=</mo> <munderover> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>τ<!-- τ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mi mathvariant="normal">d</mi> <mspace width="negativethinmathspace" /> <mi>t</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.470em" minsize="2.470em">(</mo> </mrow> </mrow> <munderover> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>τ<!-- τ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> <mo>˙<!-- ˙ --></mo> </mover> </mrow> </mrow> <mi mathvariant="normal">d</mi> <mspace width="negativethinmathspace" /> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.470em" minsize="2.470em">)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta \mathbf {p} =\int \limits _{0}^{\tau }\mathbf {F} (t)\operatorname {d} \!t={\Biggl (}\int \limits _{0}^{\tau }{\dot {\mathbf {p} }}\operatorname {d} \!t{\Biggr )}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f755b186e82062948bae6dc09ad4f751d808890a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:29.703ex; height:8.843ex;" alt="{\displaystyle \Delta \mathbf {p} =\int \limits _{0}^{\tau }\mathbf {F} (t)\operatorname {d} \!t={\Biggl (}\int \limits _{0}^{\tau }{\dot {\mathbf {p} }}\operatorname {d} \!t{\Biggr )}}"></span> </dd></dl> <p>összefüggés adja meg. Az <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int \limits _{0}^{\tau }\mathbf {F} (t)\operatorname {d} \!t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>τ<!-- τ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mi mathvariant="normal">d</mi> <mspace width="negativethinmathspace" /> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int \limits _{0}^{\tau }\mathbf {F} (t)\operatorname {d} \!t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72b4d2303d3ed6a8569b22dc77eb8717b737ff95" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:9.432ex; height:8.843ex;" alt="{\displaystyle \int \limits _{0}^{\tau }\mathbf {F} (t)\operatorname {d} \!t}"></span> mennyiséget <i>erőlökésnek</i> nevezzük. A <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta \mathbf {p} =\int \limits _{0}^{\tau }\mathbf {F} (t)\operatorname {d} \!t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> <mo>=</mo> <munderover> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>τ<!-- τ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mi mathvariant="normal">d</mi> <mspace width="negativethinmathspace" /> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta \mathbf {p} =\int \limits _{0}^{\tau }\mathbf {F} (t)\operatorname {d} \!t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8a025ee708f85aec32420df83b0b9c6bfcf3bdb4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:15.951ex; height:8.843ex;" alt="{\displaystyle \Delta \mathbf {p} =\int \limits _{0}^{\tau }\mathbf {F} (t)\operatorname {d} \!t}"></span> összefüggés az impulzustétel erőlökéssel megfogalmazott alakja. Eszerint a <i>tömegpont impulzusának megváltozása az erőlökéssel egyenlő</i>.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Lendületmegmaradás"><span id="Lend.C3.BCletmegmarad.C3.A1s"></span>Lendületmegmaradás</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lend%C3%BClet&action=edit&section=3" title="Szakasz szerkesztése: Lendületmegmaradás"><span>szerkesztés</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/F%C3%A1jl:Billard.JPG" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/86/Billard.JPG/300px-Billard.JPG" decoding="async" width="300" height="200" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/86/Billard.JPG/450px-Billard.JPG 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/86/Billard.JPG/600px-Billard.JPG 2x" data-file-width="3456" data-file-height="2304" /></a><figcaption>A lendület megmaradási tétel vizualizálása biliárdgolyókkal.</figcaption></figure> <p>A lendület <a href="/wiki/Megmarad%C3%A1si_t%C3%A9tel" title="Megmaradási tétel">megmaradó mennyiség</a>, azaz <a href="/wiki/Z%C3%A1rt_rendszer_(fizika)" title="Zárt rendszer (fizika)">zárt rendszer</a> (olyan rendszer, melyben csak belső erők hatnak) összes lendülete az időben állandó. Ennek egyik következménye, hogy akármilyen rendszer tömegközéppontja megtartja egyenes vonalú egyenletes mozgását mindaddig, amíg külső erő annak megváltoztatására nem kényszeríti. </p><p>Mivel a lendület és így megváltozása is vektormennyiség, iránya is van. Jól szemlélteti ezt az elsütött ágyú, ahol a golyó lendületváltozása az egyik irányban ugyanakkora, mint a visszalökődő ágyúé az ellenkező irányban. Az ágyú nagyobb tömege miatt az ágyú sebességváltozása jóval kisebb, mint az ágyúgolyóé, de a sebességváltozások és tömegek szorzata ugyanaz. </p><p>Legyen <i>n</i> darab anyagi pontból álló pontrendszer, ahol <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/95ec8e804f69706d3f5ad235f4f983220c8df7c2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.84ex; height:2.009ex;" alt="{\displaystyle m_{i}}"></span>,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {r} _{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {r} _{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed603561819ebd007acd75a0931d3ba401ad677a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.902ex; height:2.009ex;" alt="{\displaystyle \mathbf {r} _{i}}"></span>,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} _{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} _{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/51747274b58895dd357bb270ba1b5cb71e4fa355" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.211ex; height:2.009ex;" alt="{\displaystyle \mathbf {v} _{i}}"></span> és <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {p} _{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {p} _{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f92664042a291accf70dd087f3dea939ad833419" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.285ex; height:2.176ex;" alt="{\displaystyle \mathbf {p} _{i}}"></span> az <i>i</i>-edik pont tömege, helyzetvektora, sebessége illetve impulzusa. A pontrendszerre ható erőket két csoportba lehet osztani: <i>külső erők,</i> amelyek a rendszerhez nem tartozó testektől származnak és <i>belső erők,</i> amelyek a rendszer tagjainak a kölcsönhatásaiból származnak. Az <i>i</i>-edik anyagi pont esetében: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} _{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {F} _{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d49039f831a156e0c33270962d8d159d553a8bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.482ex; height:2.509ex;" alt="{\displaystyle \mathbf {F} _{i}}"></span> a pontra ható külső erők eredője, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} _{ik}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {F} _{ik}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a09bdb13f1399c99949aee25fc5b775111b3d1f3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.339ex; height:2.509ex;" alt="{\displaystyle \mathbf {F} _{ik}}"></span> pedig a <i>k</i>. anyagi pont részéről ható belső erő. Ekkor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{i}{\frac {d^{2}\mathbf {r} _{i}}{dt^{2}}}=\mathbf {F} _{i}+\mathbf {F} _{i1}+\mathbf {F} _{i2}+...+\mathbf {F} _{in}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mrow> <mi>d</mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>+</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>+</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{i}{\frac {d^{2}\mathbf {r} _{i}}{dt^{2}}}=\mathbf {F} _{i}+\mathbf {F} _{i1}+\mathbf {F} _{i2}+...+\mathbf {F} _{in}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/959fadd741c3250ef7fe91d0589f083dafcee637" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:35.907ex; height:6.009ex;" alt="{\displaystyle m_{i}{\frac {d^{2}\mathbf {r} _{i}}{dt^{2}}}=\mathbf {F} _{i}+\mathbf {F} _{i1}+\mathbf {F} _{i2}+...+\mathbf {F} _{in}}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} _{ii}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {F} _{ii}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ef6ae797310a3733c5f210eb6cfbb653bc178335" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.311ex; height:2.509ex;" alt="{\displaystyle \mathbf {F} _{ii}=0}"></span> (az anyagi pont önmagára nem fejt ki hatást).<sup id="cite_ref-:0_2-4" class="reference"><a href="#cite_note-:0-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> </p><p>Vegyük a legegyszerűbb, két anyagi pontot tartalmazó pontrendszert. A pontok mozgásegyenletei: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{1}{\frac {d^{2}\mathbf {r} _{1}}{dt^{2}}}={\frac {d\mathbf {p} _{1}}{dt}}=\mathbf {F} _{1}+\mathbf {F} _{12}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mrow> <mi>d</mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{1}{\frac {d^{2}\mathbf {r} _{1}}{dt^{2}}}={\frac {d\mathbf {p} _{1}}{dt}}=\mathbf {F} _{1}+\mathbf {F} _{12}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b848cca4b8f7e3722399a59d58192a7f244e9fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:28.284ex; height:6.009ex;" alt="{\displaystyle m_{1}{\frac {d^{2}\mathbf {r} _{1}}{dt^{2}}}={\frac {d\mathbf {p} _{1}}{dt}}=\mathbf {F} _{1}+\mathbf {F} _{12}}"></span> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{2}{\frac {d^{2}\mathbf {r} _{2}}{dt^{2}}}={\frac {d\mathbf {p} _{2}}{dt}}=\mathbf {F} _{2}+\mathbf {F} _{21}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mrow> <mi>d</mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>21</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{2}{\frac {d^{2}\mathbf {r} _{2}}{dt^{2}}}={\frac {d\mathbf {p} _{2}}{dt}}=\mathbf {F} _{2}+\mathbf {F} _{21}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f2ff5cad88258ba0f3ac3c92b89334247f61e36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:28.284ex; height:6.009ex;" alt="{\displaystyle m_{2}{\frac {d^{2}\mathbf {r} _{2}}{dt^{2}}}={\frac {d\mathbf {p} _{2}}{dt}}=\mathbf {F} _{2}+\mathbf {F} _{21}}"></span><sup id="cite_ref-:0_2-5" class="reference"><a href="#cite_note-:0-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> </p><p>Ezeket vektoriálisan összegezve megkapjuk az egész pontrendszerre felírható mozgásegyenletet: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d\mathbf {p} _{1}}{dt}}+{\frac {d\mathbf {p} _{2}}{dt}}=\mathbf {F} _{1}+\mathbf {F} _{2}+(\mathbf {F} _{12}+\mathbf {F} _{21})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </msub> <mo>+</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>21</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d\mathbf {p} _{1}}{dt}}+{\frac {d\mathbf {p} _{2}}{dt}}=\mathbf {F} _{1}+\mathbf {F} _{2}+(\mathbf {F} _{12}+\mathbf {F} _{21})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ccfc7af1b65f36b15aafb158b0f819d2e1512f53" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:38.044ex; height:5.676ex;" alt="{\displaystyle {\frac {d\mathbf {p} _{1}}{dt}}+{\frac {d\mathbf {p} _{2}}{dt}}=\mathbf {F} _{1}+\mathbf {F} _{2}+(\mathbf {F} _{12}+\mathbf {F} _{21})}"></span>. </p><p>Itt <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} _{12}+\mathbf {F} _{21}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </msub> <mo>+</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>21</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {F} _{12}+\mathbf {F} _{21}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/385ca1c48750c7c0578ec16c6078679a505396a0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.958ex; height:2.509ex;" alt="{\displaystyle \mathbf {F} _{12}+\mathbf {F} _{21}}"></span> a belső erők eredője, amely nulla, ugyanis <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} _{12}=-\mathbf {F} _{21}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </msub> <mo>=</mo> <mo>−<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>21</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {F} _{12}=-\mathbf {F} _{21}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f97fcba525156471e06baa0709bc5ba01622b986" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.024ex; height:2.509ex;" alt="{\displaystyle \mathbf {F} _{12}=-\mathbf {F} _{21}}"></span>(kölcsönhatási erők ellentétes irányításúak). Így azt kapjuk, hogy: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d(\mathbf {p} _{1}+\mathbf {p} _{2})}{dt}}=\mathbf {F} _{1}+\mathbf {F} _{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d(\mathbf {p} _{1}+\mathbf {p} _{2})}{dt}}=\mathbf {F} _{1}+\mathbf {F} _{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8dc9a5003b2bca078a42c41a0f6d83dbac5edb00" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:23.194ex; height:5.843ex;" alt="{\displaystyle {\frac {d(\mathbf {p} _{1}+\mathbf {p} _{2})}{dt}}=\mathbf {F} _{1}+\mathbf {F} _{2}}"></span>.<sup id="cite_ref-:0_2-6" class="reference"><a href="#cite_note-:0-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> </p><p>Ezt általánosítva <i>n</i> anyagi pontra azt kapjuk, hogy: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d}{dt}}\sum _{i=1}^{n}\mathbf {p} _{i}=\sum _{i=1}^{n}\mathbf {F} _{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d}{dt}}\sum _{i=1}^{n}\mathbf {p} _{i}=\sum _{i=1}^{n}\mathbf {F} _{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d5ad28e1d51d1595824436bcde0a03666126a30f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:18.629ex; height:6.843ex;" alt="{\displaystyle {\frac {d}{dt}}\sum _{i=1}^{n}\mathbf {p} _{i}=\sum _{i=1}^{n}\mathbf {F} _{i}}"></span>. Legyen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {p} =\sum _{i=1}^{n}\mathbf {p} _{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {p} =\sum _{i=1}^{n}\mathbf {p} _{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06bc2d2b1874c36a542955f4f047678a66f4f115" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:10.611ex; height:6.843ex;" alt="{\displaystyle \mathbf {p} =\sum _{i=1}^{n}\mathbf {p} _{i}}"></span> a pontrendszer teljes impulzusa és <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} =\sum _{i=1}^{n}\mathbf {F} _{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {F} =\sum _{i=1}^{n}\mathbf {F} _{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/41b4cfdfb48e0be6d6964589870b50f7f09fddd2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:11.006ex; height:6.843ex;" alt="{\displaystyle \mathbf {F} =\sum _{i=1}^{n}\mathbf {F} _{i}}"></span> a pontrendszerre ható erők eredője. Így <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d}{dt}}\mathbf {p} =\mathbf {F} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d}{dt}}\mathbf {p} =\mathbf {F} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c239867819037b3b3e5c970d98ea1333107b601b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:9.158ex; height:5.509ex;" alt="{\displaystyle {\frac {d}{dt}}\mathbf {p} =\mathbf {F} }"></span>, ezt nevezzük impulzustételnek, amely azt fogalmazza meg, hogy a pontrendszer impulzusváltozását csak a külső erők okozzák, csak ezek tudják megváltoztatni.<sup id="cite_ref-:0_2-7" class="reference"><a href="#cite_note-:0-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> </p><p>Ha <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} =0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {F} =0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88ec97bade4834c8f45f78dfebd744d0edf6a192" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.944ex; height:2.176ex;" alt="{\displaystyle \mathbf {F} =0}"></span>, vagyis a külső erők eredője nulla, akkor a rendszer impulzusa <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {p} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {p} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dd73e3862cb92b016721b8c492eadb4e8a577527" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.485ex; height:2.009ex;" alt="{\displaystyle \mathbf {p} }"></span> állandó, nem változik, ez az impulzusmegmaradásának tétele.<sup id="cite_ref-:0_2-8" class="reference"><a href="#cite_note-:0-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="A_tér_homogenitása"><span id="A_t.C3.A9r_homogenit.C3.A1sa"></span>A tér homogenitása</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lend%C3%BClet&action=edit&section=4" title="Szakasz szerkesztése: A tér homogenitása"><span>szerkesztés</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Az impulzusmegmaradás a tér homogenitásának következménye. A <a href="/wiki/Hat%C3%A1selv" title="Hatáselv">hatáselv</a> által használt <a href="/wiki/Lagrange-f%C3%BCggv%C3%A9ny" title="Lagrange-függvény">Lagrange-függvény</a> nyelvén ez úgy fejezhető ki, hogy ha egy rendszer Lagrange-függvénye nem függ explicit módon a koordinátáktól, csak az időderiváltjuktól, akkor a rendszer impulzusa megmarad: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L(x,{\dot {x}})=L({\dot {x}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo>˙<!-- ˙ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mi>L</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo>˙<!-- ˙ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L(x,{\dot {x}})=L({\dot {x}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a35370f82c44e3ea3f8831fd7313d38923c2ee27" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.906ex; height:2.843ex;" alt="{\displaystyle L(x,{\dot {x}})=L({\dot {x}})}"></span></dd></dl> <p>Ebben az esetben a megfelelő <a href="/wiki/Lagrange-f%C3%BCggv%C3%A9ny" title="Lagrange-függvény">Euler–Lagrange-egyenlet</a> a következőre egyszerűsödik: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {d \over dt}{\partial L \over \partial {\dot {x}}}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>L</mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo>˙<!-- ˙ --></mo> </mover> </mrow> </mrow> </mrow> </mfrac> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {d \over dt}{\partial L \over \partial {\dot {x}}}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c19f9b4f5bb3b8c040435347547de9ee0a1b4450" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:10.89ex; height:5.509ex;" alt="{\displaystyle {d \over dt}{\partial L \over \partial {\dot {x}}}=0}"></span></dd></dl> <p>ahol az <i>x</i> koordinátához tartozó impulzust </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p={\partial L \over \partial {\dot {x}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>L</mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo>˙<!-- ˙ --></mo> </mover> </mrow> </mrow> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p={\partial L \over \partial {\dot {x}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04ff1d5dc1b95478c811777cf3927bf8d62d8e3c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; margin-left: -0.089ex; width:8.094ex; height:5.509ex;" alt="{\displaystyle p={\partial L \over \partial {\dot {x}}}}"></span></dd></dl> <p>alakban definiálva azt látjuk, hogy ez egy időben állandó, azaz megmaradó mennyiség, hiszen a teljes időderiváltja nulla. Például szabad tömegpont Lagrange-függvénye: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L={1 \over 2}m{\dot {x}}^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mi>m</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo>˙<!-- ˙ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L={1 \over 2}m{\dot {x}}^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dfc7d983796c5050ccde72baac1750d225e2e164" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:11.104ex; height:5.176ex;" alt="{\displaystyle L={1 \over 2}m{\dot {x}}^{2}}"></span></dd></dl> <p>esetén az impulzus: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p=m{\dot {x}}=mv_{x}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>=</mo> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo>˙<!-- ˙ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mi>m</mi> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p=m{\dot {x}}=mv_{x}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ced079c2eb5cca7c64a3f94af49bb268f604c6b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:15.166ex; height:2.509ex;" alt="{\displaystyle p=m{\dot {x}}=mv_{x}}"></span></dd></dl> <p>ahogy azt vártuk. </p><p>Az impulzusmegmaradás a <a href="/wiki/Noether-t%C3%A9tel" title="Noether-tétel">Noether-tétel</a> speciális esete, az <b>impulzus</b> a téreltolási szimmetria <b>Noether-töltés</b>e. </p> <div class="mw-heading mw-heading2"><h2 id="A_relativisztikus_mechanikában"><span id="A_relativisztikus_mechanik.C3.A1ban"></span>A relativisztikus mechanikában</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lend%C3%BClet&action=edit&section=5" title="Szakasz szerkesztése: A relativisztikus mechanikában"><span>szerkesztés</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Speciális_relativitáselmélet"><span id="Speci.C3.A1lis_relativit.C3.A1selm.C3.A9let"></span>Speciális relativitáselmélet</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lend%C3%BClet&action=edit&section=6" title="Szakasz szerkesztése: Speciális relativitáselmélet"><span>szerkesztés</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Legyen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m={\frac {m_{0}}{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msqrt> <mn>1</mn> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </msqrt> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m={\frac {m_{0}}{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ff2a40618bc9cd33363bf9282821e5aba01918e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.671ex; width:14.767ex; height:7.509ex;" alt="{\displaystyle m={\frac {m_{0}}{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}}}"></span>, a test mozgási tömege, amelyet a megfigyelő mér (tehetetlenségi vonatkoztatási rendszerben), amikor a test a vonatkoztatási rendszerhez képest <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e07b00e7fc0847fbd16391c778d65bc25c452597" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.128ex; height:1.676ex;" alt="{\displaystyle v}"></span> sebességgel mozog, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3a6ff51ee949104fe6fae553cfbdfba29d5fac1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.095ex; height:2.009ex;" alt="{\displaystyle m_{0}}"></span> a test nyugalmi tömege (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba3d414a23bf4ecfa36cdd039241efc60a5bd9e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.389ex; height:2.176ex;" alt="{\displaystyle v=0}"></span>). Ekkor a test impulzusát a megfigyelő <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {p} =m\mathbf {v} ={\frac {m_{0}\mathbf {v} }{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> <mo>=</mo> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> </mrow> <msqrt> <mn>1</mn> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </msqrt> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {p} =m\mathbf {v} ={\frac {m_{0}\mathbf {v} }{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/93fcc236600c53b218886551902a3ae6a3068e24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.671ex; width:20.761ex; height:7.509ex;" alt="{\displaystyle \mathbf {p} =m\mathbf {v} ={\frac {m_{0}\mathbf {v} }{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}}}"></span> -nek méri.<sup id="cite_ref-:0_2-9" class="reference"><a href="#cite_note-:0-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> </p><p>A speciális relativitáselméletben a külön kezelt <a href="/wiki/Id%C5%91" title="Idő">idő</a> és a háromdimenziós <a href="/wiki/Euklideszi_t%C3%A9r_(line%C3%A1ris_algebra)" title="Euklideszi tér (lineáris algebra)">Euklideszi-tér</a> helyére a négydimenziós <a href="/wiki/T%C3%A9rid%C5%91" title="Téridő">téridő</a> egy speciális esete, a <a href="/wiki/Minkowski-t%C3%A9r" title="Minkowski-tér">Minkowski-tér</a> lép. Az energia itt egy <a href="/wiki/Minkowski-t%C3%A9r" title="Minkowski-tér">négyesvektorban</a> összekapcsolódik az impulzussal és az energiamegmaradás, mint az idő homogenitásának következménye a hármasimpulzus megmaradásával, mint a hármastér homogenitásának következményével. Együtt a Minkowski-tér homogenitásáról beszélünk. Itt az impulzus a következő alakban írható: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {p} =\gamma m\mathbf {v} \qquad \gamma ={\frac {1}{\sqrt {1-v^{2}/c^{2}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> <mo>=</mo> <mi>γ<!-- γ --></mi> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mspace width="2em" /> <mi>γ<!-- γ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>1</mn> <mo>−<!-- − --></mo> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {p} =\gamma m\mathbf {v} \qquad \gamma ={\frac {1}{\sqrt {1-v^{2}/c^{2}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/97dde575a3df71e74371daf97f0246645e75ca96" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:30.872ex; height:6.509ex;" alt="{\displaystyle \mathbf {p} =\gamma m\mathbf {v} \qquad \gamma ={\frac {1}{\sqrt {1-v^{2}/c^{2}}}}}"></span></dd></dl> <p>míg az energia: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E=\gamma mc^{2}\;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>=</mo> <mi>γ<!-- γ --></mi> <mi>m</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="thickmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E=\gamma mc^{2}\;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b5d503b5cdeafc60d08617014bc23fabdf9ec152" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.883ex; height:3.176ex;" alt="{\displaystyle E=\gamma mc^{2}\;}"></span></dd></dl> <p>Kettejükre igaz a következő összefüggés: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {E^{2} \over c^{2}}-p^{2}=m^{2}c^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>−<!-- − --></mo> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {E^{2} \over c^{2}}-p^{2}=m^{2}c^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7672fa7d7876990307605979e94bddea67518730" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:17.002ex; height:6.009ex;" alt="{\displaystyle {E^{2} \over c^{2}}-p^{2}=m^{2}c^{2}}"></span></dd></dl> <p>Nyugalmi tömeg nélküli részecske, mint a <a href="/wiki/Foton" title="Foton">foton</a> esetén egyszerűen: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p={E \over c}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>E</mi> <mi>c</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p={E \over c}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2d57bd14f2b109bc2517b8d32e15a3987cb2715f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; margin-left: -0.089ex; width:6.969ex; height:5.176ex;" alt="{\displaystyle p={E \over c}}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Általános_relativitáselmélet"><span id=".C3.81ltal.C3.A1nos_relativit.C3.A1selm.C3.A9let"></span>Általános relativitáselmélet</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lend%C3%BClet&action=edit&section=7" title="Szakasz szerkesztése: Általános relativitáselmélet"><span>szerkesztés</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Az általános relativitáselméletben a <a href="/wiki/T%C3%A9rid%C5%91" title="Téridő">téridő</a> görbült, nincs értelmezve az egyenes vonalú eltolásokhoz és mozgásokhoz kapcsolódó impulzus és annak megmaradása. </p> <div class="mw-heading mw-heading2"><h2 id="A_kvantummechanikában"><span id="A_kvantummechanik.C3.A1ban"></span>A kvantummechanikában</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lend%C3%BClet&action=edit&section=8" title="Szakasz szerkesztése: A kvantummechanikában"><span>szerkesztés</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A <a href="/wiki/Kvantummechanika" title="Kvantummechanika">kvantummechanikában</a> egy részecske impulzusát a <a href="/wiki/Hull%C3%A1m-r%C3%A9szecske_kett%C5%91ss%C3%A9g" title="Hullám-részecske kettősség">hullám-részecske kettősség</a> következtében a következőképpen lehet kifejezni: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p={\frac {h}{\lambda }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>h</mi> <mi>λ<!-- λ --></mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p={\frac {h}{\lambda }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88f22af43e3fc6f7d59e7cbbb727c070a1987cb4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; margin-left: -0.089ex; width:6.549ex; height:5.509ex;" alt="{\displaystyle p={\frac {h}{\lambda }}}"></span></dd></dl> <p>ahol h a <a href="/wiki/Planck-%C3%A1lland%C3%B3" title="Planck-állandó">Planck-állandó</a>, λ pedig a részecske <a href="/wiki/Louis_de_Broglie" title="Louis de Broglie">De Broglie-hullámhossza.</a> </p> <div class="mw-heading mw-heading2"><h2 id="Jegyzetek">Jegyzetek</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lend%C3%BClet&action=edit&section=9" title="Szakasz szerkesztése: Jegyzetek"><span>szerkesztés</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="ref-1col"><div style="-moz-column-count:2; -webkit-column-count:2; column-count:2; -webkit-column-gap: 3em; -moz-column-gap: 3em; column-gap: 3em;"><ol class="references"> <li id="cite_note-Holics-1"><span class="mw-cite-backlink"><a href="#cite_ref-Holics_1-0">↑</a></span> <span class="reference-text"><i>Fizika.</i> Főszerk. Holics László. változatlan utánnyomás. Budapest: Akadémiai. 2011.  89. o. = Akadémiai Kézikönyvek, <a href="/wiki/Speci%C3%A1lis:K%C3%B6nyvforr%C3%A1sok/9789630584876" title="Speciális:Könyvforrások/9789630584876">ISBN 978-963-05-8487-6</a> <a href="/wiki/ISSN" title="ISSN">ISSN</a> <a rel="nofollow" class="external text" href="https://portal.issn.org/resource/ISSN/1787-4750">1787-4750</a> <small><span title="ctx_ver=Z39.88-2004&rfr_id=info%3Asid%2Fhu.wikipedia.org%3ALend%C3%BClet&rft.btitle=Fizika&rft.date=2011&rft.edition=v%C3%A1ltozatlan+ut%C3%A1nnyom%C3%A1s&rft.genre=book&rft.isbn=978-963-05-8487-6&rft.pages=89&rft.place=Budapest&rft.pub=Akad%C3%A9miai&rft.series=Akad%C3%A9miai+K%C3%A9zik%C3%B6nyvek&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;"> </span></span></small></span> </li> <li id="cite_note-:0-2"><span class="mw-cite-backlink">↑ <a href="#cite_ref-:0_2-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:0_2-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:0_2-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-:0_2-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-:0_2-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-:0_2-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-:0_2-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-:0_2-7"><sup><i><b>h</b></i></sup></a> <a href="#cite_ref-:0_2-8"><sup><i><b>i</b></i></sup></a> <a href="#cite_ref-:0_2-9"><sup><i><b>j</b></i></sup></a></span> <span class="reference-text"><cite class="book citation" style="font-style:normal">Filep Emőd, Néda Árpád. <i>Mechanika</i> (2003)</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Mechanika&rft.au=Filep+Em%C5%91d&rft.date=2003"><span style="display: none;"> </span></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><a href="#cite_ref-3">↑</a></span> <span class="reference-text"><cite class="book citation" style="font-style:normal"> <i>Bérces György - Skrapits Lajos - Dr. Tasnádi Péter: Mechanika I. - Általános fizika, Budapest, Ludovika Egyetemi Kiadó Nonpr.Kft., 2013, 9789638988911</i></cite><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=B%C3%A9rces+Gy%C3%B6rgy+-+Skrapits+Lajos+-+Dr.+Tasn%C3%A1di+P%C3%A9ter%3A+Mechanika+I.+-+%C3%81ltal%C3%A1nos+fizika%2C+Budapest%2C+Ludovika+Egyetemi+Kiad%C3%B3+Nonpr.Kft.%2C+2013%2C+9789638988911"><span style="display: none;"> </span></span></span> </li> </ol></div></div><div class="ref-1col"><div style="-moz-column-count:2; -webkit-column-count:2; column-count:2; -webkit-column-gap: 3em; -moz-column-gap: 3em; column-gap: 3em;"></div></div> <div class="mw-heading mw-heading2"><h2 id="Források"><span id="Forr.C3.A1sok"></span>Források</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lend%C3%BClet&action=edit&section=10" title="Szakasz szerkesztése: Források"><span>szerkesztés</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><span style="font-size:90%;" title="ugrás az első hivatkozásra" class="dokulink" id="hely:Landau_I"><b><a href="#back:Landau_I">↑</a></b> <b>Landau I:</b> </span> <cite class="book citation" style="font-style:normal"><a href="/wiki/Lev_Davidovics_Landau" title="Lev Davidovics Landau">L. D. Landau</a>, <a href="/w/index.php?title=E._M._Lifsic&action=edit&redlink=1" class="new" title="E. M. Lifsic (a lap nem létezik)">E. M. Lifsic</a>. <i>Elméleti fizika - Mechanika</i>. Tankönyvkiadó, Budapest (1974). <a href="/wiki/Speci%C3%A1lis:K%C3%B6nyvforr%C3%A1sok/963_17_0436_X" title="Speciális:Könyvforrások/963 17 0436 X">ISBN 963 17 0436 X</a></cite><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Elm%C3%A9leti+fizika+-+Mechanika&rft.au=%5B%5BLev+Davidovics+Landau%7CL.+D.+Landau%5D%5D%2C+%5B%5BE.+M.+Lifsic%5D%5D&rft.date=1974&rft.pub=Tank%C3%B6nyvkiad%C3%B3%2C+Budapest&rft.isbn=963 17 0436 X"><span style="display: none;"> </span></span></li> <li><span style="font-size:90%;" title="ugrás az első hivatkozásra" class="dokulink" id="hely:Landau_III"><b><a href="#back:Landau_III">↑</a></b> <b>Landau III:</b> </span> <cite class="book citation" style="font-style:normal">L. D. Landau, <a href="/w/index.php?title=E._M._Lifsic&action=edit&redlink=1" class="new" title="E. M. Lifsic (a lap nem létezik)">E. M. Lifsic</a>. <i>Elméleti fizika - Kvantummechanika</i>. Tankönyvkiadó, Budapest (1978). <a href="/wiki/Speci%C3%A1lis:K%C3%B6nyvforr%C3%A1sok/963_17_3259_2" title="Speciális:Könyvforrások/963 17 3259 2">ISBN 963 17 3259 2</a></cite><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Elm%C3%A9leti+fizika+-+Kvantummechanika&rft.au=L.+D.+Landau%2C+%5B%5BE.+M.+Lifsic%5D%5D&rft.date=1978&rft.pub=Tank%C3%B6nyvkiad%C3%B3%2C+Budapest&rft.isbn=963 17 3259 2"><span style="display: none;"> </span></span></li></ul> <p><br /> </p> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r26593303">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r26641489">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{width:100%;line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}</style></div><div role="navigation" class="navbox" aria-labelledby="Fizika" style="padding:3px"><table class="nowraplinks mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div class="navbar noprint hlist plainlinks mini" style=";;background:none transparent;border:none;box-shadow:none;padding:0;;font-size:xx-small"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r26593303"><span style="display:none"><a href="/wiki/Sablon:Fizika" title="Sablon:Fizika">Sablon:Fizika</a></span><ul style="display:inline"><li class="nv-view"><a class="external text" href="https://hu.wikipedia.org/wiki/Sablon:Fizika"><span title="Mutasd ezt a sablont" style=";;background:none transparent;border:none;box-shadow:none;padding:0;">m</span></a></li> <li class="nv-talk"><a class="external text" href="https://hu.wikipedia.org/wiki/Sablonvita:Fizika"><span title="A sablon vitalapja" style=";;background:none transparent;border:none;box-shadow:none;padding:0;">v</span></a></li> <li class="nv-edit"><a class="external text" href="https://hu.wikipedia.org/w/index.php?title=Sablon:Fizika&action=edit"><span title="A sablon szerkesztése" style=";;background:none transparent;border:none;box-shadow:none;padding:0;">sz</span></a></li></ul></div><div id="Fizika" style="font-size:114%;margin:0 4em"><a href="/wiki/Fizika" title="Fizika">Fizika</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Részterületek</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Akusztika" title="Akusztika">Akusztika</a></li> <li><a href="/w/index.php?title=Alacsony_h%C5%91m%C3%A9rs%C3%A9kletek_fizik%C3%A1ja&action=edit&redlink=1" class="new" title="Alacsony hőmérsékletek fizikája (a lap nem létezik)">Alacsony hőmérsékletek fizikája</a></li> <li><a href="/w/index.php?title=Anyagtudom%C3%A1ny&action=edit&redlink=1" class="new" title="Anyagtudomány (a lap nem létezik)">Anyagtudomány</a></li> <li><a href="/wiki/Asztrofizika" title="Asztrofizika">Asztrofizika</a></li> <li><a href="/w/index.php?title=H%C3%A9jfizika&action=edit&redlink=1" class="new" title="Héjfizika (a lap nem létezik)">Héjfizika</a> <ul><li><a href="/wiki/Atomfizika" title="Atomfizika">atomfizika</a></li> <li><a href="/w/index.php?title=Molekulafizika&action=edit&redlink=1" class="new" title="Molekulafizika (a lap nem létezik)">molekulafizika</a></li></ul></li> <li><a href="/w/index.php?title=Fel%C3%BCletfizika&action=edit&redlink=1" class="new" title="Felületfizika (a lap nem létezik)">Felületfizika</a></li> <li><a href="/wiki/Klasszikus_mechanika" title="Klasszikus mechanika">Klasszikus mechanika</a></li> <li><a href="/w/index.php?title=Kontinuumok_mechanik%C3%A1ja&action=edit&redlink=1" class="new" title="Kontinuumok mechanikája (a lap nem létezik)">Kontinuumok mechanikája</a></li> <li><a href="/wiki/Elektrom%C3%A1gness%C3%A9g" title="Elektromágnesség">Elektromágnesség</a></li> <li><a href="/wiki/%C3%81ltal%C3%A1nos_relativit%C3%A1selm%C3%A9let" title="Általános relativitáselmélet">Általános relativitáselmélet</a></li> <li><a href="/wiki/R%C3%A9szecskefizika" title="Részecskefizika">Részecskefizika</a></li> <li><a href="/wiki/Kvantumt%C3%A9relm%C3%A9let" title="Kvantumtérelmélet">Kvantumtérelmélet</a></li> <li><a href="/wiki/Kvantummechanika" title="Kvantummechanika">Kvantummechanika</a></li> <li><a href="/wiki/Szil%C3%A1rdtestfizika" title="Szilárdtestfizika">Szilárdtestfizika</a></li> <li><a href="/wiki/Speci%C3%A1lis_relativit%C3%A1selm%C3%A9let" title="Speciális relativitáselmélet">Speciális relativitáselmélet</a></li> <li><a href="/wiki/Statisztikus_fizika" title="Statisztikus fizika">Statisztikus fizika</a></li> <li><a href="/wiki/Termodinamika" title="Termodinamika">Termodinamika</a></li> <li><a href="/wiki/Optika" title="Optika">Optika</a></li> <li><a href="/w/index.php?title=Gyors%C3%ADt%C3%B3k_fizik%C3%A1ja&action=edit&redlink=1" class="new" title="Gyorsítók fizikája (a lap nem létezik)">Gyorsítók fizikája</a></li> <li><a href="/w/index.php?title=Kondenz%C3%A1lt_anyagok_fizik%C3%A1ja&action=edit&redlink=1" class="new" title="Kondenzált anyagok fizikája (a lap nem létezik)">Kondenzált anyagok fizikája</a></li> <li><a href="/wiki/Magfizika" title="Magfizika">Magfizika</a></li> <li><a href="/wiki/Plazmafizika" title="Plazmafizika">Plazmafizika</a></li> <li><a href="/w/index.php?title=Polimerek_fizik%C3%A1ja&action=edit&redlink=1" class="new" title="Polimerek fizikája (a lap nem létezik)">Polimerek fizikája</a></li> <li><a href="/w/index.php?title=Reaktorfizika&action=edit&redlink=1" class="new" title="Reaktorfizika (a lap nem létezik)">Reaktorfizika</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Kapcsolódó tudományágak</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Biofizika" title="Biofizika">Biofizika</a></li> <li><a href="/wiki/Csillag%C3%A1szat" title="Csillagászat">Csillagászat</a></li> <li><a href="/wiki/Geofizika" title="Geofizika">Geofizika</a></li> <li><a href="/wiki/Fizikai_k%C3%A9mia" title="Fizikai kémia">Fizikai kémia</a></li> <li><a href="/wiki/Kozmol%C3%B3gia" title="Kozmológia">Kozmológia</a></li> <li><a href="/w/index.php?title=Matematikai_fizika&action=edit&redlink=1" class="new" title="Matematikai fizika (a lap nem létezik)">Matematikai fizika</a></li> <li><a href="/w/index.php?title=Orvosi_fizika&action=edit&redlink=1" class="new" title="Orvosi fizika (a lap nem létezik)">Orvosi fizika</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Alapfogalmak</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Anyag_(fizika)" title="Anyag (fizika)">Anyag</a></li> <li><a href="/wiki/Antianyag" title="Antianyag">Antianyag</a></li> <li><a href="/wiki/Elemi_r%C3%A9szecske" title="Elemi részecske">Elemi részecske</a></li> <li><a href="/wiki/Bozon" title="Bozon">Bozon</a></li> <li><a href="/wiki/Fermion" title="Fermion">Fermion</a></li> <li><a href="/wiki/Mozg%C3%A1s_(fizika)" title="Mozgás (fizika)">Mozgás</a></li> <li><a href="/wiki/T%C3%B6meg" title="Tömeg">Tömeg</a></li> <li><a href="/wiki/Energia" title="Energia">Energia</a></li> <li><a class="mw-selflink selflink">Lendület</a></li> <li><a href="/wiki/Perd%C3%BClet" title="Perdület">Perdület</a></li> <li><a href="/wiki/Spin" title="Spin">Spin</a></li> <li><a href="/wiki/Id%C5%91" title="Idő">Idő</a></li> <li><a href="/wiki/T%C3%A9r_(fizika)" title="Tér (fizika)">Tér</a></li> <li><a href="/wiki/Dimenzi%C3%B3" title="Dimenzió">Dimenzió</a></li> <li><a href="/wiki/T%C3%A9rid%C5%91" title="Téridő">Téridő</a></li> <li><a href="/wiki/Hossz%C3%BAs%C3%A1g" title="Hosszúság">Hosszúság</a></li> <li><a href="/wiki/Sebess%C3%A9g" title="Sebesség">Sebesség</a></li> <li><a href="/wiki/Er%C5%91" title="Erő">Erő</a></li> <li><a href="/wiki/F%C3%A1zis%C3%A1talakul%C3%A1s" title="Fázisátalakulás">Fázisátalakulás</a></li> <li><a href="/wiki/Forgat%C3%B3nyomat%C3%A9k" title="Forgatónyomaték">Forgatónyomaték</a></li> <li><a href="/wiki/Hull%C3%A1m" title="Hullám">Hullám</a></li> <li><a href="/wiki/Hull%C3%A1mf%C3%BCggv%C3%A9ny" title="Hullámfüggvény">Hullámfüggvény</a></li> <li><a href="/wiki/Harmonikus_oszcill%C3%A1tor" title="Harmonikus oszcillátor">Harmonikus oszcillátor</a></li> <li><a href="/wiki/Elektrom%C3%A1gneses_sug%C3%A1rz%C3%A1s" title="Elektromágneses sugárzás">Elektromágneses sugárzás</a></li> <li><a href="/wiki/Entr%C3%B3pia" title="Entrópia">Entrópia</a></li> <li><a href="/wiki/Fizikai_mennyis%C3%A9g" title="Fizikai mennyiség">Fizikai mennyiség</a></li> <li><a href="/wiki/H%C5%91m%C3%A9rs%C3%A9klet" title="Hőmérséklet">Hőmérséklet</a></li> <li><a href="/w/index.php?title=Kritikus_jelens%C3%A9gek&action=edit&redlink=1" class="new" title="Kritikus jelenségek (a lap nem létezik)">Kritikus jelenségek</a></li> <li><a href="/wiki/Szimmetria" title="Szimmetria">Szimmetria</a></li> <li><a href="/wiki/Szupravezet%C3%A9s" title="Szupravezetés">Szupravezetés</a></li> <li><a href="/wiki/Szuperfoly%C3%A9konys%C3%A1g" title="Szuperfolyékonyság">Szuperfolyékonyság</a></li> <li><a href="/w/index.php?title=Kvantum_f%C3%A1zis%C3%A1tmenet&action=edit&redlink=1" class="new" title="Kvantum fázisátmenet (a lap nem létezik)">Kvantum fázisátmenet</a></li> <li><a href="/wiki/Spont%C3%A1n_szimmetrias%C3%A9rt%C3%A9s" title="Spontán szimmetriasértés">Spontán szimmetriasértés</a></li> <li><a href="/w/index.php?title=V%C3%A1kuumenergia&action=edit&redlink=1" class="new" title="Vákuumenergia (a lap nem létezik)">Vákuumenergia</a></li> <li><a href="/w/index.php?title=Z%C3%A9r%C3%B3ponti_energia&action=edit&redlink=1" class="new" title="Zéróponti energia (a lap nem létezik)">Zéróponti energia</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Alapvet%C5%91_k%C3%B6lcs%C3%B6nhat%C3%A1sok" title="Alapvető kölcsönhatások">Alapvető kölcsönhatások</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Gravit%C3%A1ci%C3%B3" title="Gravitáció">Gravitáció</a></li> <li><a href="/wiki/Elektrom%C3%A1gness%C3%A9g" title="Elektromágnesség">Elektromágneses</a></li> <li><a href="/wiki/Gyenge_k%C3%B6lcs%C3%B6nhat%C3%A1s" title="Gyenge kölcsönhatás">Gyenge</a></li> <li><a href="/wiki/Er%C5%91s_k%C3%B6lcs%C3%B6nhat%C3%A1s" title="Erős kölcsönhatás">Erős</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Javasolt elméletek</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/A_mindens%C3%A9g_elm%C3%A9lete" title="A mindenség elmélete">A mindenség elmélete</a></li> <li><a href="/wiki/Kvantumgravit%C3%A1ci%C3%B3" title="Kvantumgravitáció">Kvantumgravitáció</a></li> <li><a href="/wiki/Szuperszimmetria" title="Szuperszimmetria">Szuperszimmetria</a></li> <li><a href="/w/index.php?title=M-elm%C3%A9let&action=edit&redlink=1" class="new" title="M-elmélet (a lap nem létezik)">M-elmélet</a> / <a href="/wiki/H%C3%BArelm%C3%A9let" title="Húrelmélet">Húrelmélet</a></li> <li><a href="/wiki/Hurok-kvantumgravit%C3%A1ci%C3%B3" title="Hurok-kvantumgravitáció">Hurok-kvantumgravitáció</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Módszerek</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/w/index.php?title=Dimenzi%C3%B3anal%C3%ADzis&action=edit&redlink=1" class="new" title="Dimenzióanalízis (a lap nem létezik)">Dimenzióanalízis</a></li> <li><a href="/wiki/Tudom%C3%A1nyos_m%C3%B3dszer" title="Tudományos módszer">Tudományos módszer</a></li> <li><a href="/wiki/M%C3%A9r%C3%A9s" title="Mérés">Mérés</a></li> <li><a href="/w/index.php?title=Statisztikai_m%C3%B3dszerek&action=edit&redlink=1" class="new" title="Statisztikai módszerek (a lap nem létezik)">Statisztikai módszerek</a></li> <li><a href="/w/index.php?title=Sk%C3%A1l%C3%A1z%C3%A1s&action=edit&redlink=1" class="new" title="Skálázás (a lap nem létezik)">Skálázás</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Alapelvek</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Hat%C3%A1rozatlans%C3%A1gi_rel%C3%A1ci%C3%B3" title="Határozatlansági reláció">Határozatlansági reláció</a></li> <li><a href="/wiki/Hat%C3%A1selv" title="Hatáselv">Hatáselv</a></li> <li><a href="/wiki/Megmarad%C3%A1si_t%C3%A9tel" title="Megmaradási tétel">Megmaradási törvény</a></li> <li><a href="/wiki/Szuperpoz%C3%ADci%C3%B3" title="Szuperpozíció">Szuperpozíció elve</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Fizikai táblázatok</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/SI-m%C3%A9rt%C3%A9kegys%C3%A9grendszer" title="SI-mértékegységrendszer">SI-mértékegységrendszer</a></li> <li><a href="/wiki/SI-prefixum" title="SI-prefixum">SI-prefixum</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div><a href="/wiki/A_fizika_t%C3%B6rt%C3%A9nete" title="A fizika története">A fizika története</a></div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r26593303"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r26641489"><style data-mw-deduplicate="TemplateStyles:r26643308">@media screen and (max-width:719px){.mw-parser-output div.navbox.authoritycontrol{display:block}.mw-parser-output .authoritycontrol tbody,.mw-parser-output .authoritycontrol tr,.mw-parser-output .authoritycontrol th,.mw-parser-output .authoritycontrol td,.mw-parser-output .authoritycontrol .navbox-row>th+td{display:block;text-align:center}.mw-parser-output .authoritycontrol .navbox-list-with-group{border:none}}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r26593303"></div><div role="navigation" class="navbox authoritycontrol" aria-labelledby="Nemzetközi_katalógusok" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th id="Nemzetközi_katalógusok" scope="row" class="navbox-group" style="width:auto"><a href="/wiki/Sablon:Nemzetk%C3%B6zi_katal%C3%B3gusok/doc" title="Sablon:Nemzetközi katalógusok/doc">Nemzetközi katalógusok</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Kongresszusi_K%C3%B6nyvt%C3%A1r" title="Kongresszusi Könyvtár">LCCN</a>: <span class="uid"><a rel="nofollow" class="external text" href="http://lccn.loc.gov/sh85086658">sh85086658</a></span></li> <li><a href="/wiki/Integr%C3%A1lt_katal%C3%B3gust%C3%A1r" title="Integrált katalógustár">GND</a>: <span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4130721-5">4130721-5</a></span></li> <li><a href="/wiki/A_Cseh_K%C3%B6zt%C3%A1rsas%C3%A1g_Nemzeti_K%C3%B6nyvt%C3%A1ra" title="A Cseh Köztársaság Nemzeti Könyvtára">NKCS</a>: <span class="uid"><a rel="nofollow" class="external text" href="https://aleph.nkp.cz/F/?func=find-c&local_base=aut&ccl_term=ica=ph120957&CON_LNG=ENG">ph120957</a></span></li></ul> </div></td></tr></tbody></table></div> <div class="noprint noviewer" style="overflow: hidden; clear: both;"><div style="margin-left:0; margin-right:2px;"><ul style="display:block; list-style-image:none; list-style-type:none; width:100%; vertical-align:middle; margin:0; padding:0; min-height: 27px;"><li style="float:left; min-height: 27px; line-height:25px; width:100%; margin:0; margin-top:.5em; margin-left:0; margin-right:0; padding:0; border:1px solid #CCF; background-color:#F0EEFF"><span typeof="mw:File"><a href="/wiki/F%C3%A1jl:P_physics.svg" class="mw-file-description" title="Fizika"><img alt="Fizika" src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b4/P_physics.svg/25px-P_physics.svg.png" decoding="async" width="25" height="23" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b4/P_physics.svg/38px-P_physics.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b4/P_physics.svg/50px-P_physics.svg.png 2x" data-file-width="400" data-file-height="360" /></a></span> <b><a href="/wiki/Port%C3%A1l:Fizika" title="Portál:Fizika">Fizikaportál</a></b> • összefoglaló, színes tartalomajánló lap</li></ul></div></div></div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">A lap eredeti címe: „<a dir="ltr" href="https://hu.wikipedia.org/w/index.php?title=Lendület&oldid=26904602">https://hu.wikipedia.org/w/index.php?title=Lendület&oldid=26904602</a>”</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Wikip%C3%A9dia:Kateg%C3%B3ri%C3%A1k" title="Wikipédia:Kategóriák">Kategória</a>: <ul><li><a href="/wiki/Kateg%C3%B3ria:Fizikai_mennyis%C3%A9gek" title="Kategória:Fizikai mennyiségek">Fizikai mennyiségek</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Rejtett kategóriák: <ul><li><a href="/wiki/Kateg%C3%B3ria:Wikip%C3%A9dia-sz%C3%B3cikkek_LCCN-azonos%C3%ADt%C3%B3val" title="Kategória:Wikipédia-szócikkek LCCN-azonosítóval">Wikipédia-szócikkek LCCN-azonosítóval</a></li><li><a href="/wiki/Kateg%C3%B3ria:Wikip%C3%A9dia-sz%C3%B3cikkek_GND-azonos%C3%ADt%C3%B3val" title="Kategória:Wikipédia-szócikkek GND-azonosítóval">Wikipédia-szócikkek GND-azonosítóval</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> A lap utolsó módosítása: 2024. február 21., 08:09</li> <li id="footer-info-copyright">A lap szövege <a rel="nofollow" class="external text" href="http://creativecommons.org/licenses/by-sa/4.0/deed.hu">Creative Commons Nevezd meg! – Így add tovább! 4.0</a> licenc alatt van; egyes esetekben más módon is felhasználható. Részletekért lásd a <a href="/wiki/Wikip%C3%A9dia:Felhaszn%C3%A1l%C3%A1si_felt%C3%A9telek" title="Wikipédia:Felhasználási feltételek">felhasználási feltételeket</a>.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Adatvédelmi irányelvek</a></li> <li id="footer-places-about"><a href="/wiki/Wikip%C3%A9dia:R%C3%B3lunk">A Wikipédiáról</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikip%C3%A9dia:Jogi_nyilatkozat">Jogi nyilatkozat</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Magatartási kódex</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Fejlesztők</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/hu.wikipedia.org">Statisztikák</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Sütinyilatkozat</a></li> <li id="footer-places-mobileview"><a href="//hu.m.wikipedia.org/w/index.php?title=Lend%C3%BClet&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobil nézet</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-5fb746f978-l9wk9","wgBackendResponseTime":203,"wgPageParseReport":{"limitreport":{"cputime":"0.200","walltime":"0.352","ppvisitednodes":{"value":1418,"limit":1000000},"postexpandincludesize":{"value":28467,"limit":2097152},"templateargumentsize":{"value":1698,"limit":2097152},"expansiondepth":{"value":11,"limit":100},"expensivefunctioncount":{"value":1,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":20711,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 177.529 1 -total"," 37.37% 66.346 1 Sablon:Fizika"," 35.61% 63.221 1 Sablon:Navbox"," 30.77% 54.625 1 Sablon:Jegyzetek"," 29.44% 52.272 2 Sablon:References"," 21.70% 38.520 1 Sablon:Nemzetközi_katalógusok"," 18.53% 32.901 1 Sablon:CitLib"," 6.30% 11.188 4 Sablon:Cite_book"," 6.22% 11.051 1 Sablon:Portál"," 2.62% 4.655 1 Sablon:ISSN"]},"scribunto":{"limitreport-timeusage":{"value":"0.083","limit":"10.000"},"limitreport-memusage":{"value":1525620,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-6c476644db-dnrnk","timestamp":"20241112194958","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Lend\u00fclet","url":"https:\/\/hu.wikipedia.org\/wiki\/Lend%C3%BClet","sameAs":"http:\/\/www.wikidata.org\/entity\/Q41273","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q41273","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2005-12-12T21:14:46Z","headline":"fizikai mennyis\u00e9g"}</script> </body> </html>