CINXE.COM

Search results for: petrochemical engineering

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: petrochemical engineering</title> <meta name="description" content="Search results for: petrochemical engineering"> <meta name="keywords" content="petrochemical engineering"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="petrochemical engineering" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="petrochemical engineering"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3126</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: petrochemical engineering</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2946</span> Design of a Professional Development Framework in Teaching and Learning for Engineering Educators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Orla%20McConnell">Orla McConnell</a>, <a href="https://publications.waset.org/abstracts/search?q=Cormac%20MacMahon"> Cormac MacMahon</a>, <a href="https://publications.waset.org/abstracts/search?q=Jen%20Harvey"> Jen Harvey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ireland’s national professional development framework for those who teach in higher education, aims to provide guidance and leadership in the planning, developing and engaging in professional development practices. A series of pilot projects have been initiated to help explore the framework’s likely utility and acceptance by educators and their institutions. These projects require engagement with staff in the interpretation and adaption of the framework within their working contexts. The purpose of this paper is to outline the development of one such project with engineering educators at three Institutes of Technology seeking designation as a technological university. The initiative aims to gain traction in the acceptance of the framework with the engineering education community by linking core and discipline-specific teaching and learning competencies with professional development activities most valued by engineering educators. Informed by three strands of literature: professional development in higher education; engineering education; and teaching and learning training provisions, the project begins with a survey of all those involved in teaching and learning in engineering across the three institutes. Based on engagement with key stakeholders, subsequent qualitative research informs the contextualization of the national framework for discipline-specific and institutional piloting. The paper concludes by exploring engineering educator perceptions of the national framework’s utility based on their engagement with the pilot process. Feedback from the pilot indicates that there is a significant gap between the professional development needs of engineering educators and the current professional development provision in teaching and learning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=engineering%20education" title="engineering education">engineering education</a>, <a href="https://publications.waset.org/abstracts/search?q=pilot" title=" pilot"> pilot</a>, <a href="https://publications.waset.org/abstracts/search?q=professional%20development" title=" professional development"> professional development</a>, <a href="https://publications.waset.org/abstracts/search?q=teaching%20and%20learning" title=" teaching and learning"> teaching and learning</a> </p> <a href="https://publications.waset.org/abstracts/87202/design-of-a-professional-development-framework-in-teaching-and-learning-for-engineering-educators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87202.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2945</span> The Attitude towards Sustainable Development Issues among Malaysian Engineering Undergraduates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Balamuralithara%20Balakrishnan">Balamuralithara Balakrishnan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reports the findings of the perception and attitude towards Sustainable Development among Malaysian undergraduates. The study was carried out involving 86 engineering undergraduates from three universities in Malaysia. This research was conducted based on a survey whereby the respondents were given a questionnaire to gauge their attitude towards sustainable development. The output of the analyses showed that the respondents have an appropriate attitude towards the sustainability issues expect for economic and social equality aspects. These findings suggest that the engineering educators involved in sustainable development education need to educate undergraduate students on this important issue. This investigation serves as a cornerstone to which the current paradigm of sustainable development education can be examined for further improvement by related stakeholders. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title="sustainable development">sustainable development</a>, <a href="https://publications.waset.org/abstracts/search?q=engineering%20education" title=" engineering education"> engineering education</a>, <a href="https://publications.waset.org/abstracts/search?q=Malaysia" title=" Malaysia"> Malaysia</a>, <a href="https://publications.waset.org/abstracts/search?q=attitude" title=" attitude"> attitude</a> </p> <a href="https://publications.waset.org/abstracts/114269/the-attitude-towards-sustainable-development-issues-among-malaysian-engineering-undergraduates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114269.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2944</span> Analysis of the Engineering Judgement Influence on the Selection of Geotechnical Parameters Characteristic Values</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Ivandic">K. Ivandic</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Dodigovic"> F. Dodigovic</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Stuhec"> D. Stuhec</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Strelec"> S. Strelec</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A characteristic value of certain geotechnical parameter results from an engineering assessment. Its selection has to be based on technical principles and standards of engineering practice. It has been shown that the results of engineering assessment of different authors for the same problem and input data are significantly dispersed. A survey was conducted in which participants had to estimate the force that causes a 10 cm displacement at the top of a axially in-situ compressed pile. Fifty experts from all over the world took part in it. The lowest estimated force value was 42% and the highest was 133% of measured force resulting from a mentioned static pile load test. These extreme values result in significantly different technical solutions to the same engineering task. In case of selecting a characteristic value of a geotechnical parameter the importance of the influence of an engineering assessment can be reduced by using statistical methods. An informative annex of Eurocode 1 prescribes the method of selecting the characteristic values of material properties. This is followed by Eurocode 7 with certain specificities linked to selecting characteristic values of geotechnical parameters. The paper shows the procedure of selecting characteristic values of a geotechnical parameter by using a statistical method with different initial conditions. The aim of the paper is to quantify an engineering assessment in the example of determining a characteristic value of a specific geotechnical parameter. It is assumed that this assessment is a random variable and that its statistical features will be determined. For this purpose, a survey research was conducted among relevant experts from the field of geotechnical engineering. Conclusively, the results of the survey and the application of statistical method were compared. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=characteristic%20values" title="characteristic values">characteristic values</a>, <a href="https://publications.waset.org/abstracts/search?q=engineering%20judgement" title=" engineering judgement"> engineering judgement</a>, <a href="https://publications.waset.org/abstracts/search?q=Eurocode%207" title=" Eurocode 7"> Eurocode 7</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20methods" title=" statistical methods"> statistical methods</a> </p> <a href="https://publications.waset.org/abstracts/87290/analysis-of-the-engineering-judgement-influence-on-the-selection-of-geotechnical-parameters-characteristic-values" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87290.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2943</span> Learning Made Right: Building World Class Engineers in Tunisia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zayen%20Chagra">Zayen Chagra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Several educational institutions are experimenting new approaches in learning in order to guarantee the success of its students. In Tunisia, and since 2011, the experience of making a new software engineering branch called mobile software engineering began at ESPRIT: Higher School of Engineering and Technology. The project was surprisingly a success since its creation, and even before the graduation of the first generation, partnerships were held with the biggest mobile technology manufacturers and several international awards were won by teams of students. This session presents this experience with details of the approaches made from idea stage to the actual stage where the project counts 32 graduated engineers, 90 graduate students and 120 new participants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=innovation" title="innovation">innovation</a>, <a href="https://publications.waset.org/abstracts/search?q=education" title=" education"> education</a>, <a href="https://publications.waset.org/abstracts/search?q=engineering%20education" title=" engineering education"> engineering education</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile" title=" mobile"> mobile</a> </p> <a href="https://publications.waset.org/abstracts/26325/learning-made-right-building-world-class-engineers-in-tunisia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26325.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2942</span> Auditing of Building Information Modeling Application in Decoration Engineering Projects in China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lan%20Luo">Lan Luo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In China&rsquo;s construction industry, it is a normal practice to separately subcontract the decoration engineering part from construction engineering, and Building Information Modeling (BIM) is also done separately. Application of BIM in decoration engineering should be integrated with other disciplines, but Chinese current practice makes this very difficult and complicated. Currently, there are three barriers in the auditing of BIM application in decoration engineering in China: heavy workload; scarcity of qualified professionals; and lack of literature concerning audit contents, standards, and methods. Therefore, it is significant to perform research on what (contents) should be evaluated, in which phase, and by whom (professional qualifications) in BIM application in decoration construction so that the application of BIM can be promoted in a better manner. Based on this consideration, four principles of BIM auditing are proposed: Comprehensiveness of information, accuracy of data, aesthetic attractiveness of appearance, and scheme optimization. In the model audit, three methods should be used: Collision, observation, and contrast. In addition, BIM auditing at six stages is discussed and a checklist for work items and results to be submitted is proposed. This checklist can be used for reference by decoration project participants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=audit" title="audit">audit</a>, <a href="https://publications.waset.org/abstracts/search?q=evaluation" title=" evaluation"> evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=dimensions" title=" dimensions"> dimensions</a>, <a href="https://publications.waset.org/abstracts/search?q=methods" title=" methods"> methods</a>, <a href="https://publications.waset.org/abstracts/search?q=standards" title=" standards"> standards</a>, <a href="https://publications.waset.org/abstracts/search?q=BIM%20application%20in%20decoration%20engineering%20projects" title=" BIM application in decoration engineering projects"> BIM application in decoration engineering projects</a> </p> <a href="https://publications.waset.org/abstracts/45526/auditing-of-building-information-modeling-application-in-decoration-engineering-projects-in-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45526.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2941</span> Metal Ship and Robotic Car: A Hands-On Activity to Develop Scientific and Engineering Skills for High School Students</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jutharat%20Sunprasert">Jutharat Sunprasert</a>, <a href="https://publications.waset.org/abstracts/search?q=Ekapong%20Hirunsirisawat"> Ekapong Hirunsirisawat</a>, <a href="https://publications.waset.org/abstracts/search?q=Narongrit%20Waraporn"> Narongrit Waraporn</a>, <a href="https://publications.waset.org/abstracts/search?q=Somporn%20Peansukmanee"> Somporn Peansukmanee </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal Ship and Robotic Car is one of the hands-on activities in the course, the Fundamental of Engineering that can be divided into three parts. The first part, the metal ships, was made by using engineering drawings, physics and mathematics knowledge. The second part is where the students learned how to construct a robotic car and control it using computer programming. In the last part, the students had to combine the workings of these two objects in the final testing. This aim of study was to investigate the effectiveness of hands-on activity by integrating Science, Technology, Engineering and Mathematics (STEM) concepts to develop scientific and engineering skills. The results showed that the majority of students felt this hands-on activity lead to an increased confidence level in the integration of STEM. Moreover, 48% of all students engaged well with the STEM concepts. Students could obtain the knowledge of STEM through hands-on activities with the topics science and mathematics, engineering drawing, engineering workshop and computer programming; most students agree and strongly agree with this learning process. This indicated that the hands-on activity: &ldquo;Metal Ship and Robotic Car&rdquo; is a useful tool to integrate each aspect of STEM. Furthermore, hands-on activities positively influence a student&rsquo;s interest which leads to increased learning achievement and also in developing scientific and engineering skills. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hands-on%20activity" title="hands-on activity">hands-on activity</a>, <a href="https://publications.waset.org/abstracts/search?q=STEM%20education" title=" STEM education"> STEM education</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20programming" title=" computer programming"> computer programming</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20work" title=" metal work"> metal work</a> </p> <a href="https://publications.waset.org/abstracts/58917/metal-ship-and-robotic-car-a-hands-on-activity-to-develop-scientific-and-engineering-skills-for-high-school-students" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58917.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">465</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2940</span> Analysis of Patent Protection of Bone Tissue Engineering Scaffold Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yunwei%20Zhang">Yunwei Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Na%20Li"> Na Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuhong%20Niu"> Yuhong Niu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bone tissue engineering scaffold was regarded as an important clinical technology of curing bony defect. The patent protection of bone tissue engineering scaffold had been paid more attention and strengthened all over the world. This study analyzed the future development trends of international technologies in the field of bone tissue engineering scaffold and its patent protection. This study used the methods of data classification and classification indexing to analyze 2718 patents retrieved in the patent database. Results showed that the patents coming from United States had a competitive advantage over other countiries in the field of bone tissue engineering scaffold. The number of patent applications by a single company in U.S. was a quarter of that of the world. However, the capability of R&D in China was obviously weaker than global level, patents mainly coming from universities and scientific research institutions. Moreover, it would be predicted that synthetic organic materials as new materials would be gradually replaced by composite materials. The patent technology protections of composite materials would be more strengthened in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bone%20tissue%20engineering" title="bone tissue engineering">bone tissue engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=patent%20analysis" title=" patent analysis"> patent analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Scaffold%20material" title=" Scaffold material"> Scaffold material</a>, <a href="https://publications.waset.org/abstracts/search?q=patent%20protection" title=" patent protection"> patent protection</a> </p> <a href="https://publications.waset.org/abstracts/105186/analysis-of-patent-protection-of-bone-tissue-engineering-scaffold-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105186.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2939</span> Low Enrollment in Civil Engineering Departments: Challenges and Opportunities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alaa%20Yehia">Alaa Yehia</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayatollah%20Yehia"> Ayatollah Yehia</a>, <a href="https://publications.waset.org/abstracts/search?q=Sherif%20Yehia"> Sherif Yehia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is a recurring issue of low enrollments across many civil engineering departments in postsecondary institutions. While there have been moments where enrollments begin to increase, civil engineering departments find themselves facing low enrollments at around 60% over the last five years across the Middle East. There are many reasons that could be attributed to this decline, such as low entry-level salaries, over-saturation of civil engineering graduates in the job market, and a lack of construction projects due to the impending or current recession. However, this recurring problem alludes to an intrinsic issue of the curriculum. The societal shift to the usage of high technology such as machine learning (ML) and artificial intelligence (AI) demands individuals who are proficient at utilizing it. Therefore, existing curriculums must adapt to this change in order to provide an education that is suitable for potential and current students. In this paper, In order to provide potential solutions for this issue, the analysis considers two possible implementations of high technology into the civil engineering curriculum. The first approach is to implement a course that introduces applications of high technology in Civil Engineering contexts. While the other approach is to intertwine applications of high technology throughout the degree. Both approaches, however, should meet requirements of accreditation agencies. In addition to the proposed improvement in civil engineering curriculum, a different pedagogical practice must be adapted as well. The passive learning approach might not be appropriate for Gen Z students; current students, now more than ever, need to be introduced to engineering topics and practice following different learning methods to ensure they will have the necessary skills for the job market. Different learning methods that incorporate high technology applications, like AI, must be integrated throughout the curriculum to make the civil engineering degree more attractive to prospective students. Moreover, the paper provides insight on the importance and approach of adapting the Civil Engineering curriculum to address the current low enrollment crisis that civil engineering departments globally, but specifically in the Middle East, are facing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence%20%28AI%29" title="artificial intelligence (AI)">artificial intelligence (AI)</a>, <a href="https://publications.waset.org/abstracts/search?q=civil%20engineering%20curriculum" title=" civil engineering curriculum"> civil engineering curriculum</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20technology" title=" high technology"> high technology</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20enrollment" title=" low enrollment"> low enrollment</a>, <a href="https://publications.waset.org/abstracts/search?q=pedagogy" title=" pedagogy"> pedagogy</a> </p> <a href="https://publications.waset.org/abstracts/147851/low-enrollment-in-civil-engineering-departments-challenges-and-opportunities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147851.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2938</span> Benefits of Social Justice Pedagogy and Ecofeminist Discourse for Engineering Education</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hollie%20M.%20Lewis">Hollie M. Lewis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A large body of corroborating research provides evidence that traditional undergraduate engineering education fails to provide students with a role and identity that requires social concern and moral reasoning. Engineering students demonstrate a low level of engagement with social and political contexts, which further declines over the course of engineering education. This detachment is thought to stem from beliefs that the role of the engineer is purely to design machines, systems, and structures. In effect, engineers objectify the world. The purpose of this paper is to provide an ecofeminist critique of engineering education and pose the benefits of social justice pedagogies incorporating ecofeminist discourse. The challenges currently facing the world stem from anthropocentric industrialization, an agenda that is historically absent of Environmental, Feminist, People of Color, and Indigenous voices. A future in which the global collective achieves its Sustainable Development Goals requires its engineers to have a solid understanding of the broader social and political contexts in which they manage projects. Engineering education must convey the influence of the professional role of engineer and encourage the practice of critical reflection and social perspective-taking, priming students with the skills to engage with varying perspectives and discourses. There will be discussed the facets of social justice pedagogies that aid students in surpassing threshold concepts in social justice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=feminism%20in%20engineering" title="feminism in engineering">feminism in engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title=" sustainable development"> sustainable development</a>, <a href="https://publications.waset.org/abstracts/search?q=engineering%20education" title=" engineering education"> engineering education</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20justice%20pedagogies" title=" social justice pedagogies"> social justice pedagogies</a> </p> <a href="https://publications.waset.org/abstracts/179073/benefits-of-social-justice-pedagogy-and-ecofeminist-discourse-for-engineering-education" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179073.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">59</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2937</span> Teacher Professional Development Programs on K-12 Engineering Education: A Systematic Review of the Literature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Canan%20Mesutoglu">Canan Mesutoglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Evrim%20Baran"> Evrim Baran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Teachers have a prominent role in facilitating the place of engineering in K-12 classrooms. This study addresses the need to understand how teacher professional development programs focusing on K-12 engineering education can be designed and delivered more effectively. A systematic review of the literature on such programs can offer possible ideas and recommendations. The purpose of this study is to systematically synthesize the peer-reviewed articles published on K-12 engineering education teacher professional development programs. The methodology that guided the study was comprised of four phases: search, selection, coding, and synthesis. The search phase included articles published in the time period between 2000 and 2016. With a comprehensive search in databases, inclusion criteria were applied. This was followed by evaluation of the quality of articles with a checklist, and finally analysis of the results. The results revealed two categories of themes. These were 1) five themes related to the overarching agenda of the PD programs, and 2) five themes related to the instructional techniques of the PD programs. Finally, core elements were generated to guide the design and delivery of teacher PD programs for K-12 engineering education. The results aimed to provide a conceptual basis for future research and practice on teacher PD programs for K-12 engineering education. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=core%20elements" title="core elements">core elements</a>, <a href="https://publications.waset.org/abstracts/search?q=K-12%20engineering%20education" title=" K-12 engineering education"> K-12 engineering education</a>, <a href="https://publications.waset.org/abstracts/search?q=systematic%20literature%20review" title=" systematic literature review"> systematic literature review</a>, <a href="https://publications.waset.org/abstracts/search?q=teacher%20professional%20development%20programs" title=" teacher professional development programs"> teacher professional development programs</a> </p> <a href="https://publications.waset.org/abstracts/65553/teacher-professional-development-programs-on-k-12-engineering-education-a-systematic-review-of-the-literature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65553.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2936</span> Decision Making for Industrial Engineers: From Phenomenon to Value</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Abbas">Ali Abbas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Industrial Engineering is a broad multidisciplinary field with intersections and applications in numerous areas. In out current environment, the path from a phenomenon to value involves numerous people with expertise in various areas including domain knowledge of a field and the ability to make decisions within an operating environment that lead to value creation. We propose some skills that industrial engineering programs should focus on, and argue that an industrial engineer is a decision maker instead of a problem solver. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=decision%20analysis" title="decision analysis">decision analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=problem-solving" title=" problem-solving"> problem-solving</a>, <a href="https://publications.waset.org/abstracts/search?q=value%20creation" title=" value creation"> value creation</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20engineering" title=" industrial engineering"> industrial engineering</a> </p> <a href="https://publications.waset.org/abstracts/50988/decision-making-for-industrial-engineers-from-phenomenon-to-value" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50988.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2935</span> Careers-Outreach Programmes for Children: Lessons for Perceptions of Engineering and Manufacturing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Niall%20J.%20English">Niall J. English</a>, <a href="https://publications.waset.org/abstracts/search?q=Sylvia%20Leatham"> Sylvia Leatham</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Isabel%20Meza%20Silva"> Maria Isabel Meza Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Denis%20P.%20Dowling"> Denis P. Dowling</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The training and education of under- and post-graduate students can be promoted by more active learning especially in engineering, overcoming more passive and vicarious experiences and approaches in their documented effectiveness. However, the possibility of outreach to young pupils and school-children in primary and secondary schools is a lesser explored area in terms of Education and Public Engagement (EPE) efforts – as relates to feedback and influence on shaping 3rd-level engineering training and education. Therefore, the outreach and school-visit agenda constitutes an interesting avenue to observe how active learning, careers stimulus and EPE efforts for young children and teenagers can teach the university sector, to improve future engineering-teaching standards and enhance both quality and capabilities of practice. This intervention involved careers-outreach efforts to lead to statistical determinations of motivations towards engineering, manufacturing and training. The aim was to gauge to what extent this intervention would lead to an increased careers awareness in engineering, using the method of the schools-visits programme as the means for so doing. It was found that this led to an increase in engagement by school pupils with engineering as a career option and a greater awareness of the importance of manufacturing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=outreach" title="outreach">outreach</a>, <a href="https://publications.waset.org/abstracts/search?q=education%20and%20public%20engagement" title=" education and public engagement"> education and public engagement</a>, <a href="https://publications.waset.org/abstracts/search?q=careers" title=" careers"> careers</a>, <a href="https://publications.waset.org/abstracts/search?q=peer%20interactions" title=" peer interactions"> peer interactions</a> </p> <a href="https://publications.waset.org/abstracts/128514/careers-outreach-programmes-for-children-lessons-for-perceptions-of-engineering-and-manufacturing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128514.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2934</span> Constructability Driven Engineering in Oil and Gas Projects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Srikanth%20Nagarajan">Srikanth Nagarajan</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Parthasarathy"> P. Parthasarathy</a>, <a href="https://publications.waset.org/abstracts/search?q=Frits%20Lagers"> Frits Lagers</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lower crude oil prices increased the pressure on oil and gas projects. Being competitive becomes very important and critical for the success in any industry. Increase in size of the project multiplies the magnitude of the issue. Timely completion of projects within the budget and schedule is very important for any project to succeed. A simple idea makes a larger impact on the total cost of the plant. In this robust world, the phases of engineering right from licensing technology, feed, different phases of detail engineering, procurement and construction has been so much compressed that they overlap with each other. Hence constructability techniques have become very important. Here in this paper, the focus will be on how these techniques can be implemented and reduce cost with the help of a case study. Constructability is a process driven by the need to impact project’s construction phase resulting in improved project delivery, costs and schedule. In construction phase of one of our fast-track mega project, it was noticed that there was an opportunity to reduce significant amount of cost and schedule by implementing Constructability study processes. In this case study, the actual methodology adopted during engineering and construction and the way for doing it better by implementing Constructability techniques with collaborative engineering efforts will be explained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=being%20competitive" title="being competitive">being competitive</a>, <a href="https://publications.waset.org/abstracts/search?q=collaborative%20engineering" title=" collaborative engineering"> collaborative engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=constructability" title=" constructability"> constructability</a>, <a href="https://publications.waset.org/abstracts/search?q=cost%20reduction" title=" cost reduction"> cost reduction</a> </p> <a href="https://publications.waset.org/abstracts/62360/constructability-driven-engineering-in-oil-and-gas-projects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62360.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2933</span> Effect of Open-Ended Laboratory toward Learners Performance in Environmental Engineering Course: Case Study of Civil Engineering at Universiti Malaysia Sabah</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Bolong">N. Bolong</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Makinda"> J. Makinda</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Saad"> I. Saad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Laboratory activities have produced benefits in student learning. With current drives of new technology resources and evolving era of education methods, renewal status of learning and teaching in laboratory methods are in progress, for both learners and the educators. To enhance learning outcomes in laboratory works particularly in engineering practices and testing, learning via hands-on by instruction may not sufficient. This paper describes and compares techniques and implementation of traditional (expository) with open-ended laboratory (problem-based) for two consecutive cohorts studying environmental laboratory course in civil engineering program. The transition of traditional to problem-based findings and effect were investigated in terms of course assessment student feedback survey, course outcome learning measurement and student performance grades. It was proved that students have demonstrated better performance in their grades and 12% increase in the course outcome (CO) in problem-based open-ended laboratory style than traditional method; although in perception, students has responded less favorable in their feedback. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=engineering%20education" title="engineering education">engineering education</a>, <a href="https://publications.waset.org/abstracts/search?q=open-ended%20laboratory" title=" open-ended laboratory"> open-ended laboratory</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20engineering%20lab" title=" environmental engineering lab"> environmental engineering lab</a> </p> <a href="https://publications.waset.org/abstracts/13413/effect-of-open-ended-laboratory-toward-learners-performance-in-environmental-engineering-course-case-study-of-civil-engineering-at-universiti-malaysia-sabah" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13413.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2932</span> Design of a Multidisciplinary Project-Oriented Capstone Course for Mechanical Engineering Education</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chi-Cheng%20Cheng">Chi-Cheng Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Che-Hsin%20Lin"> Che-Hsin Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Jen%20Wang"> Yu-Jen Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chua-Chin%20Wang"> Chua-Chin Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The project-oriented capstone course has become a required element for most engineering educational units. It is not only because the capstone course is an important criterion for international accreditation of engineering degree programs under Washington Accord, but also the capstone course provides an opportunity for students to apply what they have learned in their school years to actual engineering problems. Nevertheless, most project-oriented capstone courses are conducted with one single project for all students or teams. In other words, students work to reach the same or similar goals by coming up with different layouts and approaches. It appears not suitable for a multidisciplinary engineering department. Therefore, a one-year multidisciplinary project-oriented capstone course was designed for the junior year of the undergraduate program. About one-half of faculty members in the department needs to be involved in generating as many projects as possible to meet different students' interests and specialties. Project achievement has to be displayed and demonstrated in the annual exposition and competition at the end of this course. Significant success in attracting attention and hardworking of students on projects was witnessed for the past two pilot years. Analysis of course evaluation demonstrates positive impact on all perspectives despite of slightly negative influence due to poor communication and collaboration between students and their project supervisors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Capstone%20course" title="Capstone course">Capstone course</a>, <a href="https://publications.waset.org/abstracts/search?q=CDIO" title=" CDIO"> CDIO</a>, <a href="https://publications.waset.org/abstracts/search?q=engineering%20education" title=" engineering education"> engineering education</a>, <a href="https://publications.waset.org/abstracts/search?q=project-oriented%20learning" title=" project-oriented learning"> project-oriented learning</a> </p> <a href="https://publications.waset.org/abstracts/69448/design-of-a-multidisciplinary-project-oriented-capstone-course-for-mechanical-engineering-education" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69448.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2931</span> Students Perceptions on the Relevance of High School Mathematics in University Education in South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gilbert%20Makanda">Gilbert Makanda</a>, <a href="https://publications.waset.org/abstracts/search?q=Roelf%20Sypkens"> Roelf Sypkens</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study we investigated the relevance of high school mathematics in university education. The paper particularly focused on whether the concepts taught in high school are enough for engineering courses at diploma level. The study identified particular concepts that are required in engineering courses whether they were adequately covered in high school. A questionnaire was used to investigate whether relevant topics were covered in high school. The respondents were 228 first year students at the Central University of Technology in the Faculty of Engineering and Information Technology. The study indicates that there are some topics such as integration, complex numbers and matrices that are not done at high schools and are required in engineering courses at university. It is further observed that some students did not cover the topics that are in the current syllabus. Female students enter the university less prepared than their male counterparts. More than 30% of the respondents in this study felt that high school mathematics was not useful for them to be able to do engineering courses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20school%20mathematics" title="high school mathematics">high school mathematics</a>, <a href="https://publications.waset.org/abstracts/search?q=university%20education" title=" university education"> university education</a>, <a href="https://publications.waset.org/abstracts/search?q=SPSS%20package" title=" SPSS package"> SPSS package</a>, <a href="https://publications.waset.org/abstracts/search?q=students%27%20perceptions" title=" students&#039; perceptions"> students&#039; perceptions</a> </p> <a href="https://publications.waset.org/abstracts/74745/students-perceptions-on-the-relevance-of-high-school-mathematics-in-university-education-in-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74745.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2930</span> Using Design Sprint For Software Engineering Undergraduate Student Projects: A Method Paper</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sobhani%20U.%20Pilapitiya">Sobhani U. Pilapitiya</a>, <a href="https://publications.waset.org/abstracts/search?q=Tharanga%20Peiris"> Tharanga Peiris</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Software Engineering curriculums generally consist of industry-based practices such as project-based learning (PBL) which mainly focuses on efficient and innovative product development. These approaches can be tailored and used in project-based modules in software engineering curriculums. However, there are very limited attempts in the area especially related to the Sri Lankan context. This paper describes a tailored pedagogical approach and its results of using design sprint which can be used for project-based modules in SE curriculums. A controlled group of second-year software engineering students was selected for the study. The study results indicate that 100% of students agreed that the Design Sprint approach is effective in group-based projects and 83% of students stated that it minimized the re-work compared to traditional project approaches. The tailored process was effective, easy to implement and produced desired results at the end of the session while providing students an enjoyable experience. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design%20sprint" title="design sprint">design sprint</a>, <a href="https://publications.waset.org/abstracts/search?q=PBL" title=" PBL"> PBL</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20engineering" title=" software engineering"> software engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=curriculum" title=" curriculum"> curriculum</a> </p> <a href="https://publications.waset.org/abstracts/138995/using-design-sprint-for-software-engineering-undergraduate-student-projects-a-method-paper" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138995.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2929</span> A Holistic Approach for Technical Product Optimization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harald%20Lang">Harald Lang</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Bader"> Michael Bader</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Buchroithner"> A. Buchroithner</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Holistic methods covering the development process as a whole – e.g. systems engineering – have established themselves in product design. However, technical product optimization, representing improvements in efficiency and/or minimization of loss, usually applies to single components of a system. A holistic approach is being defined based on a hierarchical point of view of systems engineering. This is subsequently presented using the example of an electromechanical flywheel energy storage system for automotive applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design" title="design">design</a>, <a href="https://publications.waset.org/abstracts/search?q=product%20development" title=" product development"> product development</a>, <a href="https://publications.waset.org/abstracts/search?q=product%20optimization" title=" product optimization"> product optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=systems%20engineering" title=" systems engineering"> systems engineering</a> </p> <a href="https://publications.waset.org/abstracts/35380/a-holistic-approach-for-technical-product-optimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35380.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">624</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2928</span> Engineering Academics’ Strategies of Modelling Mathematical Concepts into Their Teaching of an Antenna Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vojo%20George%20Fasinu">Vojo George Fasinu</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadaraj%20Govender"> Nadaraj Govender</a>, <a href="https://publications.waset.org/abstracts/search?q=Predeep%20Kumar"> Predeep Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An Antenna, which remains the hub of technological development in Africa had been found to be a course that is been taught and designed in an abstract manner in some universities. One of the reasons attached to this is that the appropriate approach of teaching antenna design is not yet understood by many engineering academics in some universities in South Africa. Also, another problem reported is the main difficulty encountered when interpreting and applying some of the mathematical concepts learned into their practical antenna design course. As a result of this, some engineering experts classified antenna as a mysterious technology that could not be described by anybody using mathematical concepts. In view of this, this paper takes it as its point of departure in explaining what an antenna is all about with a strong emphasis on its mathematical modelling. It also argues that the place of modelling mathematical concepts into the teaching of engineering design cannot be overemphasized. Therefore, it explains the mathematical concepts adopted during the teaching of an antenna design course, the Strategies of modelling those mathematics concepts, the behavior of antennas, and their mathematics usage were equally discussed. More so, the paper also sheds more light on mathematical modelling in South Africa context, and also comparative analysis of mathematics concepts taught in mathematics class and mathematics concepts taught in engineering courses. This paper focuses on engineering academics teaching selected topics in electronic engineering (Antenna design), with special attention on the mathematical concepts they teach and how they teach them when teaching the course. A qualitative approach was adopted as a means of collecting data in order to report the naturalistic views of the engineering academics teaching Antenna design. The findings of the study confirmed that some mathematical concepts are being modeled into the teaching of an antenna design with the adoption of some teaching approaches. Furthermore, the paper reports a didactical-realistic mathematical model as a conceptual framework used by the researchers in describing how academics teach mathematical concepts during their teaching of antenna design. Finally, the paper concludes with the importance of mathematical modelling to the engineering academics and recommendations for further researchers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modelling" title="modelling">modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20concepts" title=" mathematical concepts"> mathematical concepts</a>, <a href="https://publications.waset.org/abstracts/search?q=engineering" title=" engineering"> engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=didactical" title=" didactical"> didactical</a>, <a href="https://publications.waset.org/abstracts/search?q=realistic%20model" title=" realistic model"> realistic model</a> </p> <a href="https://publications.waset.org/abstracts/114354/engineering-academics-strategies-of-modelling-mathematical-concepts-into-their-teaching-of-an-antenna-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114354.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2927</span> An Orphan Software Engineering Course: Supportive Ways toward a True Software Engineer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haya%20Sammana">Haya Sammana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A well-defined curricula must be adopted to meet the increasing complexity and diversity in the software applications. In reality, some IT majors such as computer science and computer engineering receive the software engineering education in a single course which is considered as a big challenged for the instructors and universities. Also, it requires students to gain the most of practical experiences that simulate the real work in software companies. Furthermore, we have noticed that there is no consensus on how, when and what to teach in that introductory course to gain the practical experiences that are required by the software companies. Because all of software engineering disciplines will not fit in just one course, so the course needs reasonable choices in selecting its topics. This arises an important question which is an essential one to ask: Is this course has the ability to formulate a true software engineer that meets the needs of industry? This question arises a big challenge in selecting the appropriate topics. So answering this question is very important for the next undergraduate students. During teaching this course in the curricula, the feedbacks from an undergraduate students and the keynotes of the annual meeting for an advisory committee from industrial side provide a probable answer for the proposed question: it is impossible to build a true software engineer who possesses all the essential elements of software engineering education such teamwork, communications skills, project management skills and contemporary industrial practice from one course and it is impossible to have a one course covering all software engineering topics. Besides the used teaching approach, the author proposes an implemented three supportive ways aiming for mitigating the expected risks and increasing the opportunity to build a true software engineer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=software%20engineering%20course" title="software engineering course">software engineering course</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20engineering%20education" title=" software engineering education"> software engineering education</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20experience" title=" software experience"> software experience</a>, <a href="https://publications.waset.org/abstracts/search?q=supportive%20approach" title=" supportive approach"> supportive approach</a> </p> <a href="https://publications.waset.org/abstracts/36629/an-orphan-software-engineering-course-supportive-ways-toward-a-true-software-engineer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36629.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2926</span> Educational Engineering Tool on Smartphone</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maya%20Saade">Maya Saade</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafic%20Younes"> Rafic Younes</a>, <a href="https://publications.waset.org/abstracts/search?q=Pascal%20Lafon"> Pascal Lafon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper explores the transformative impact of smartphones on pedagogy and presents a smartphone application developed specifically for engineering problem-solving and educational purposes. The widespread availability and advanced capabilities of smartphones have revolutionized the way we interact with technology, including in education. The ubiquity of smartphones allows learners to access educational resources anytime and anywhere, promoting personalized and self-directed learning. The first part of this paper discusses the overall influence of smartphones on pedagogy, emphasizing their potential to improve learning experiences through mobile technology. In the context of engineering education, this paper focuses on the development of a dedicated smartphone application that serves as a powerful tool for both engineering problem-solving and education. The application features an intuitive and user-friendly interface, allowing engineering students and professionals to perform complex calculations and analyses on their smartphones. The smartphone application primarily focuses on beam calculations and serves as a comprehensive beam calculator tailored to engineering education. It caters to various engineering disciplines by offering interactive modules that allow students to learn key concepts through hands-on activities and simulations. With a primary emphasis on beam analysis, this application empowers users to perform calculations for statically determinate beams, statically indeterminate beams, and beam buckling phenomena. Furthermore, the app includes a comprehensive library of engineering formulas and reference materials, facilitating a deeper understanding and practical application of the fundamental principles in beam analysis. By offering a wide range of features specifically tailored for beam calculation, this application provides an invaluable tool for engineering students and professionals looking to enhance their understanding and proficiency in this crucial aspect of a structural engineer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mobile%20devices%20in%20education" title="mobile devices in education">mobile devices in education</a>, <a href="https://publications.waset.org/abstracts/search?q=solving%20engineering%20problems" title=" solving engineering problems"> solving engineering problems</a>, <a href="https://publications.waset.org/abstracts/search?q=smartphone%20application" title=" smartphone application"> smartphone application</a>, <a href="https://publications.waset.org/abstracts/search?q=engineering%20education" title=" engineering education"> engineering education</a> </p> <a href="https://publications.waset.org/abstracts/168735/educational-engineering-tool-on-smartphone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168735.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2925</span> The Impact of Artificial Intelligence on Construction Engineering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mina%20Fawzy%20Ishak%20Gad%20Elsaid">Mina Fawzy Ishak Gad Elsaid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is a strong link between technology and development. Architecture as a profession is a call to service and society. Maybe next to soldiers, engineers and patriots. However, unlike soldiers, they always remain employees of society under all circumstances. Despite the construction profession's role in society, there appears to be a lack of respect as some projects fail. This paper focuses on the need to improve development engineering performance in developing countries, using engineering education in Nigerian universities as a tool for discussion. A purposeful survey, interviews and focus group discussions were conducted on one hundred and twenty (120) prominent companies in Nigeria. The subject is approached through a large number of projects that companies have been involved in from the planning stage, some of which have been completed and even reached the maintenance and monitoring stage. It has been found that certain factors beyond the control of engineers are hindering the full development and success of the construction sector in developing countries. The main culprit is corruption and its eradication will put the country on a stable path to develop construction and combat poverty. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=decision%20analysis" title="decision analysis">decision analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20engineering" title=" industrial engineering"> industrial engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20vs.%20indirect%20values" title=" direct vs. indirect values"> direct vs. indirect values</a>, <a href="https://publications.waset.org/abstracts/search?q=engineering%20management" title=" engineering management"> engineering management</a> </p> <a href="https://publications.waset.org/abstracts/188295/the-impact-of-artificial-intelligence-on-construction-engineering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188295.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">45</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2924</span> The Impact of Artificial Intelligence on Construction Engineering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haneen%20Joseph%20Habib%20Yeldoka">Haneen Joseph Habib Yeldoka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is a strong link between technology and development. Architecture as a profession is a call to service and society. Maybe next to soldiers, engineers and patriots. However, unlike soldiers, they always remain employees of society under all circumstances. Despite the construction profession's role in society, there appears to be a lack of respect as some projects fail. This paper focuses on the need to improve development engineering performance in developing countries, using engineering education in Nigerian universities as a tool for discussion. A purposeful survey, interviews and focus group discussions were conducted on one hundred and twenty (120) prominent companies in Nigeria. The subject is approached through a large number of projects that companies have been involved in from the planning stage, some of which have been completed and even reached the maintenance and monitoring stage. It has been found that certain factors beyond the control of engineers are hindering the full development and success of the construction sector in developing countries. The main culprit is corruption and its eradication will put the country on a stable path to develop construction and combat poverty. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=decision%20analysis" title="decision analysis">decision analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20engineering" title=" industrial engineering"> industrial engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20vs.%20indirect%20values" title=" direct vs. indirect values"> direct vs. indirect values</a>, <a href="https://publications.waset.org/abstracts/search?q=engineering%20management" title=" engineering management"> engineering management</a> </p> <a href="https://publications.waset.org/abstracts/188180/the-impact-of-artificial-intelligence-on-construction-engineering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188180.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">40</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2923</span> A Project-Based Learning Approach in the Course of &#039;Engineering Skills&#039; for Undergraduate Engineering Students</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Armin%20Eilaghi">Armin Eilaghi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Sedaghat"> Ahmad Sedaghat</a>, <a href="https://publications.waset.org/abstracts/search?q=Hayder%20Abdurazzak"> Hayder Abdurazzak</a>, <a href="https://publications.waset.org/abstracts/search?q=Fadi%20Alkhatib"> Fadi Alkhatib</a>, <a href="https://publications.waset.org/abstracts/search?q=Shiva%20Sadeghi"> Shiva Sadeghi</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Jaeger"> Martin Jaeger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A summary of experiences, recommendations, and lessons learnt in the application of PBL in the course of “Engineering Skills” in the School of Engineering at Australian College of Kuwait in Kuwait is presented. Four projects were introduced as part of the PBL course “Engineering Skills” to 24 students in School of Engineering. These students were grouped in 6 teams to develop their skills in 10 learning outcomes. The learning outcomes targeted skills such as drawing, design, modeling, manufacturing and analysis at a preliminary level; and also some life line learning and teamwork skills as these students were exposed for the first time to the PBL (project based learning). The students were assessed for 10 learning outcomes of the course and students’ feedback was collected using an anonymous survey at the end of the course. Analyzing the students’ feedbacks, it is observed that 67% of students preferred multiple smaller projects than a single big project because it provided them with more time and attention focus to improve their “soft skills” including project management, risk assessment, and failure analysis. Moreover, it is found that 63% of students preferred to work with different team members during the course to improve their professional communication skills. Among all, 62% of students believed that working with team members from other departments helped them to increase the innovative aspect of projects and improved their overall performance. However, 70% of students counted extra time needed to regenerate momentum with the new teams as the major challenge. Project based learning provided a suitable platform for introducing students to professional engineering practice and meeting the needs of students, employers and educators. It was found that students achieved their 10 learning outcomes and gained new skills developed in this PBL unit. This was reflected in their portfolios and assessment survey. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=project-based%20learning" title="project-based learning">project-based learning</a>, <a href="https://publications.waset.org/abstracts/search?q=engineering%20skills" title=" engineering skills"> engineering skills</a>, <a href="https://publications.waset.org/abstracts/search?q=undergraduate%20engineering" title=" undergraduate engineering"> undergraduate engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=problem-based%20learning" title=" problem-based learning"> problem-based learning</a> </p> <a href="https://publications.waset.org/abstracts/100014/a-project-based-learning-approach-in-the-course-of-engineering-skills-for-undergraduate-engineering-students" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100014.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2922</span> BIM Application and Construction Schedule Simulation for the Horizontal Work Area</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyeon-Seong%20Kim">Hyeon-Seong Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang-Mi%20Park"> Sang-Mi Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Seul-Gi%20Kim"> Seul-Gi Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Seon-Ju%20Han"> Seon-Ju Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Leen-Seok%20Kang"> Leen-Seok Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of BIM, including 4D CAD system, in a construction project is gradually increasing. Since the building construction works repeatedly in the vertical space, it is relatively easy to confirm the interference effect when applying the BIM, but the interference effect for the civil engineering project is relatively small because the civil works perform non-repetitive processes in the horizontal space. For this reason, it is desirable to apply BIM to the construction phase when applying BIM to the civil engineering project, and the most active BIM tool applied to the construction phase is the 4D CAD function for the schedule management. This paper proposes the application procedure of BIM by the construction phase of civil engineering project and a linear 4D CAD construction methodology suitable for the civil engineering project in which linear work is performed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BIM" title="BIM">BIM</a>, <a href="https://publications.waset.org/abstracts/search?q=4D%20CAD" title=" 4D CAD"> 4D CAD</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%204D%20simulation" title=" linear 4D simulation"> linear 4D simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=VR" title=" VR"> VR</a> </p> <a href="https://publications.waset.org/abstracts/83745/bim-application-and-construction-schedule-simulation-for-the-horizontal-work-area" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83745.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2921</span> Design of a New Package for Saffron Using Kansei Engineering </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sotiris%20Papantonopoulos">Sotiris Papantonopoulos</a>, <a href="https://publications.waset.org/abstracts/search?q=Marianna%20Bortziou"> Marianna Bortziou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aimed at developing a new package of saffron using emotional design and specifically the Kansei Engineering method. Kansei Engineering is a proactive product development methodology, which aims to improve the product development process and to translate consumers' feelings and image of a product into design elements. A survey was conducted with two major purposes: (1) to determine the target group of saffron use and to collect information about the adequacy of the product’s promotion and the importance of its packaging, (2) to collect the most important properties of a package according to consumers and to evaluate the existing saffron packages according to these properties (benchmarking). The interaction with the general public conducted by the distribution of online questionnaires and personal interviews as well as the statistical analysis of the results were performed using the SPSS software. The results of the survey were used in all stages of Kansei Engineering. Based on the results, a new saffron package was designed by using various designing and image processing software. This improved package is expected to achieve a better promotion and increased sales of the product. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design" title="design">design</a>, <a href="https://publications.waset.org/abstracts/search?q=emotional%20design" title=" emotional design"> emotional design</a>, <a href="https://publications.waset.org/abstracts/search?q=Kansei%20Engineering" title=" Kansei Engineering"> Kansei Engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=packaging" title=" packaging"> packaging</a>, <a href="https://publications.waset.org/abstracts/search?q=saffron" title=" saffron"> saffron</a> </p> <a href="https://publications.waset.org/abstracts/101052/design-of-a-new-package-for-saffron-using-kansei-engineering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101052.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2920</span> An Investigation on Engineering Students’ Perceptions Towards E-learning in the UK</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vida%20Razzaghifard">Vida Razzaghifard</a> </p> <p class="card-text"><strong>Abstract:</strong></p> E-learning, also known as online learning, has indicated an increased growth in recent years. One of the critical factors in the successful application of e-learning in higher education is students’ perceptions towards it. The main purpose of this paper is to investigate the perceptions of engineering students about e-learning in UK. For the purpose of the present study, 145 second year Engineering students were randomly selected from the total population of 1280 participants. The participants were asked to complete a questionnaire containing 16 items. The data collected from the questionnaire were analyzed through the Statistical Package for Social Science (SPSS) software. The findings of the study revealed that the majority of participants have negative perceptions on e-learning. Most of the students had trouble interacting effectively during online classes. Furthermore, the majority of participants had negative experiences with the learning platform they used during e-learning. Suggestions were made on what could be done to improve the students’ perceptions towards e-learning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=E-learning" title="E-learning">E-learning</a>, <a href="https://publications.waset.org/abstracts/search?q=higher" title=" higher"> higher</a>, <a href="https://publications.waset.org/abstracts/search?q=education" title=" education"> education</a>, <a href="https://publications.waset.org/abstracts/search?q=engineering%20%20education" title=" engineering education"> engineering education</a>, <a href="https://publications.waset.org/abstracts/search?q=online%20learning" title=" online learning"> online learning</a> </p> <a href="https://publications.waset.org/abstracts/155359/an-investigation-on-engineering-students-perceptions-towards-e-learning-in-the-uk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155359.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2919</span> Towards Automated Remanufacturing of Marine and Offshore Engineering Components </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aprilia">Aprilia</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Liang%20Keith%20Nguyen"> Wei Liang Keith Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Shu%20Beng%20Tor"> Shu Beng Tor</a>, <a href="https://publications.waset.org/abstracts/search?q=Gerald%20Gim%20Lee%20Seet"> Gerald Gim Lee Seet</a>, <a href="https://publications.waset.org/abstracts/search?q=Chee%20Kai%20Chua"> Chee Kai Chua</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Automated remanufacturing process is of great interest in today’s marine and offshore industry. Most of the current remanufacturing processes are carried out manually and hence they are error prone, labour-intensive and costly. In this paper, a conceptual framework for automated remanufacturing is presented. This framework involves the integration of 3D non-contact digitization, adaptive surface reconstruction, additive manufacturing and machining operation. Each operation is operated and interconnected automatically as one system. The feasibility of adaptive surface reconstruction on marine and offshore engineering components is also discussed. Several engineering components were evaluated and the results showed that this proposed system is feasible. Conclusions are drawn and further research work is discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20surface%20reconstruction" title="adaptive surface reconstruction">adaptive surface reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=automated%20remanufacturing" title=" automated remanufacturing"> automated remanufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=automatic%20repair" title=" automatic repair"> automatic repair</a>, <a href="https://publications.waset.org/abstracts/search?q=reverse%20engineering" title=" reverse engineering"> reverse engineering</a> </p> <a href="https://publications.waset.org/abstracts/57009/towards-automated-remanufacturing-of-marine-and-offshore-engineering-components" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57009.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2918</span> Investigation of Engineers` and Student Engineers` University Choices Effect over Professional Expectations </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alev%20Erenler">Alev Erenler</a>, <a href="https://publications.waset.org/abstracts/search?q=Yeliz%20Yazici"> Yeliz Yazici</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is undoubtful that the development in the technology has been increasing the importance of engineering day by day along with the interest of the profession also. Like in any other genre, the success in engineering career is directly related to the amount of the satisfaction from the profession. Having satisfaction is an important factor for both having psychological health and efficiency. In this concept, the engineers from all steps, like students from different grades, working in related professions and the candidates of engineering have been included in order to define the expectations of the profession and the levels if professional satisfaction. In the concept of the study, the factors such as; the graduated university, the university which has been attending at, the grades of the participants, the reasons behind the choosing the university, the order of the choices and demographic values have planned to examine. It is thought that these factors have a meaningful effect on the professional expectations. It is also aimed to find the similar participants from the working life, and the data is to be compared to candidates of engineering in terms if differentiation of expectations. The related data will be gathered by the help of the scale prepared and developed by the researchers special for this study, titled as ' the professional expectation scale for engineers'. The data is to be analyzed in SPSS program, and the results will be interpreted in relation with the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=engineering%20education" title="engineering education">engineering education</a>, <a href="https://publications.waset.org/abstracts/search?q=engineers%27%20professional%20expectations" title=" engineers&#039; professional expectations"> engineers&#039; professional expectations</a>, <a href="https://publications.waset.org/abstracts/search?q=engineering%20students%27%20professional%20expectations" title=" engineering students&#039; professional expectations"> engineering students&#039; professional expectations</a>, <a href="https://publications.waset.org/abstracts/search?q=students%E2%80%99%20university%20choices" title=" students’ university choices"> students’ university choices</a> </p> <a href="https://publications.waset.org/abstracts/79481/investigation-of-engineers-and-student-engineers-university-choices-effect-over-professional-expectations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79481.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2917</span> 3D Multimedia Model for Educational Design Engineering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohanaad%20Talal%20Shakir">Mohanaad Talal Shakir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper tries to propose educational design by using multimedia technology for Engineering of computer Technology, Alma'ref University College in Iraq. This paper evaluates the acceptance, cognition, and interactiveness of the proposed model by students by using the statistical relationship to determine the stage of the model. Objectives of proposed education design are to develop a user-friendly software for education purposes using multimedia technology and to develop animation for 3D model to simulate assembling and disassembling process of high-speed flow. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CAL" title="CAL">CAL</a>, <a href="https://publications.waset.org/abstracts/search?q=multimedia" title=" multimedia"> multimedia</a>, <a href="https://publications.waset.org/abstracts/search?q=shock%20tunnel" title=" shock tunnel"> shock tunnel</a>, <a href="https://publications.waset.org/abstracts/search?q=interactivity" title=" interactivity"> interactivity</a>, <a href="https://publications.waset.org/abstracts/search?q=engineering%20education" title=" engineering education"> engineering education</a> </p> <a href="https://publications.waset.org/abstracts/19853/3d-multimedia-model-for-educational-design-engineering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19853.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">623</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=petrochemical%20engineering&amp;page=6" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=petrochemical%20engineering&amp;page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=petrochemical%20engineering&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=petrochemical%20engineering&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=petrochemical%20engineering&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=petrochemical%20engineering&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=petrochemical%20engineering&amp;page=6">6</a></li> <li class="page-item active"><span class="page-link">7</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=petrochemical%20engineering&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=petrochemical%20engineering&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=petrochemical%20engineering&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=petrochemical%20engineering&amp;page=104">104</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=petrochemical%20engineering&amp;page=105">105</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=petrochemical%20engineering&amp;page=8" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10