CINXE.COM

Gaussian process - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Gaussian process - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"fa4fb324-7143-4c2d-bf7c-c7ec3a4ae0b0","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Gaussian_process","wgTitle":"Gaussian process","wgCurRevisionId":1250257913,"wgRevisionId":1250257913,"wgArticleId":302944,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1 errors: periodical ignored","Articles with short description","Short description is different from Wikidata","Webarchive template wayback links","Stochastic processes","Kernel methods for machine learning","Nonparametric Bayesian statistics","Normal distribution"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Gaussian_process","wgRelevantArticleId":302944,"wgIsProbablyEditable":true, "wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":40000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q1496376","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics": true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar", "ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Gaussian process - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Gaussian_process"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Gaussian_process&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Gaussian_process"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Gaussian_process rootpage-Gaussian_process skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Gaussian+process" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Gaussian+process" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Gaussian+process" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Gaussian+process" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Definition" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Definition"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Definition</span> </div> </a> <ul id="toc-Definition-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Variance" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Variance"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Variance</span> </div> </a> <ul id="toc-Variance-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Stationarity" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Stationarity"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Stationarity</span> </div> </a> <ul id="toc-Stationarity-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Example" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Example"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Example</span> </div> </a> <ul id="toc-Example-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Covariance_functions" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Covariance_functions"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Covariance functions</span> </div> </a> <button aria-controls="toc-Covariance_functions-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Covariance functions subsection</span> </button> <ul id="toc-Covariance_functions-sublist" class="vector-toc-list"> <li id="toc-Usual_covariance_functions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Usual_covariance_functions"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Usual covariance functions</span> </div> </a> <ul id="toc-Usual_covariance_functions-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Continuity" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Continuity"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Continuity</span> </div> </a> <button aria-controls="toc-Continuity-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Continuity subsection</span> </button> <ul id="toc-Continuity-sublist" class="vector-toc-list"> <li id="toc-Stationary_case" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Stationary_case"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Stationary case</span> </div> </a> <ul id="toc-Stationary_case-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Brownian_motion_as_the_integral_of_Gaussian_processes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Brownian_motion_as_the_integral_of_Gaussian_processes"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Brownian motion as the integral of Gaussian processes</span> </div> </a> <ul id="toc-Brownian_motion_as_the_integral_of_Gaussian_processes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-RKHS_structure_and_Gaussian_process" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#RKHS_structure_and_Gaussian_process"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>RKHS structure and Gaussian process</span> </div> </a> <ul id="toc-RKHS_structure_and_Gaussian_process-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Linearly_constrained_Gaussian_processes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Linearly_constrained_Gaussian_processes"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Linearly constrained Gaussian processes</span> </div> </a> <ul id="toc-Linearly_constrained_Gaussian_processes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Applications" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Applications"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Applications</span> </div> </a> <button aria-controls="toc-Applications-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Applications subsection</span> </button> <ul id="toc-Applications-sublist" class="vector-toc-list"> <li id="toc-Gaussian_process_prediction,_or_Kriging" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Gaussian_process_prediction,_or_Kriging"> <div class="vector-toc-text"> <span class="vector-toc-numb">10.1</span> <span>Gaussian process prediction, or Kriging</span> </div> </a> <ul id="toc-Gaussian_process_prediction,_or_Kriging-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Bayesian_neural_networks_as_Gaussian_processes" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Bayesian_neural_networks_as_Gaussian_processes"> <div class="vector-toc-text"> <span class="vector-toc-numb">10.2</span> <span>Bayesian neural networks as Gaussian processes</span> </div> </a> <ul id="toc-Bayesian_neural_networks_as_Gaussian_processes-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Computational_issues" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Computational_issues"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>Computational issues</span> </div> </a> <ul id="toc-Computational_issues-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">13</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">14</span> <span>External links</span> </div> </a> <button aria-controls="toc-External_links-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle External links subsection</span> </button> <ul id="toc-External_links-sublist" class="vector-toc-list"> <li id="toc-Literature" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Literature"> <div class="vector-toc-text"> <span class="vector-toc-numb">14.1</span> <span>Literature</span> </div> </a> <ul id="toc-Literature-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Software" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Software"> <div class="vector-toc-text"> <span class="vector-toc-numb">14.2</span> <span>Software</span> </div> </a> <ul id="toc-Software-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Video_tutorials" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Video_tutorials"> <div class="vector-toc-text"> <span class="vector-toc-numb">14.3</span> <span>Video tutorials</span> </div> </a> <ul id="toc-Video_tutorials-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Gaussian process</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 16 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-16" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">16 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Proc%C3%A9s_gaussi%C3%A0" title="Procés gaussià – Catalan" lang="ca" hreflang="ca" data-title="Procés gaussià" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Gau%C3%9F-Prozess" title="Gauß-Prozess – German" lang="de" hreflang="de" data-title="Gauß-Prozess" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Proceso_de_Gauss" title="Proceso de Gauss – Spanish" lang="es" hreflang="es" data-title="Proceso de Gauss" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%81%D8%B1%D8%A7%DB%8C%D9%86%D8%AF_%DA%AF%D8%A7%D9%88%D8%B3%DB%8C" title="فرایند گاوسی – Persian" lang="fa" hreflang="fa" data-title="فرایند گاوسی" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Processus_gaussien" title="Processus gaussien – French" lang="fr" hreflang="fr" data-title="Processus gaussien" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EA%B0%80%EC%9A%B0%EC%8B%9C%EC%95%88_%EA%B3%BC%EC%A0%95" title="가우시안 과정 – Korean" lang="ko" hreflang="ko" data-title="가우시안 과정" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Processo_gaussiano" title="Processo gaussiano – Italian" lang="it" hreflang="it" data-title="Processo gaussiano" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Gauss-folyamat" title="Gauss-folyamat – Hungarian" lang="hu" hreflang="hu" data-title="Gauss-folyamat" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%82%AC%E3%82%A6%E3%82%B9%E9%81%8E%E7%A8%8B" title="ガウス過程 – Japanese" lang="ja" hreflang="ja" data-title="ガウス過程" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Proces_gaussowski" title="Proces gaussowski – Polish" lang="pl" hreflang="pl" data-title="Proces gaussowski" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Processo_gaussiano" title="Processo gaussiano – Portuguese" lang="pt" hreflang="pt" data-title="Processo gaussiano" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%93%D0%B0%D1%83%D1%81%D1%81%D0%BE%D0%B2%D1%81%D0%BA%D0%B8%D0%B9_%D0%BF%D1%80%D0%BE%D1%86%D0%B5%D1%81%D1%81" title="Гауссовский процесс – Russian" lang="ru" hreflang="ru" data-title="Гауссовский процесс" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-su mw-list-item"><a href="https://su.wikipedia.org/wiki/Pros%C3%A9s_Gauss" title="Prosés Gauss – Sundanese" lang="su" hreflang="su" data-title="Prosés Gauss" data-language-autonym="Sunda" data-language-local-name="Sundanese" class="interlanguage-link-target"><span>Sunda</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%93%D0%B0%D1%83%D1%81%D1%81%D1%96%D0%B2%D1%81%D1%8C%D0%BA%D0%B8%D0%B9_%D0%BF%D1%80%D0%BE%D1%86%D0%B5%D1%81" title="Гауссівський процес – Ukrainian" lang="uk" hreflang="uk" data-title="Гауссівський процес" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E9%AB%98%E6%96%AF%E9%81%8E%E7%A8%8B" title="高斯過程 – Cantonese" lang="yue" hreflang="yue" data-title="高斯過程" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E9%AB%98%E6%96%AF%E8%BF%87%E7%A8%8B" title="高斯过程 – Chinese" lang="zh" hreflang="zh" data-title="高斯过程" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1496376#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Gaussian_process" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Gaussian_process" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Gaussian_process"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Gaussian_process&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Gaussian_process&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Gaussian_process"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Gaussian_process&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Gaussian_process&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Gaussian_process" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Gaussian_process" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Gaussian_process&amp;oldid=1250257913" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Gaussian_process&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Gaussian_process&amp;id=1250257913&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FGaussian_process"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FGaussian_process"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Gaussian_process&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Gaussian_process&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1496376" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Statistical model</div> <p>In <a href="/wiki/Probability_theory" title="Probability theory">probability theory</a> and <a href="/wiki/Statistics" title="Statistics">statistics</a>, a <b>Gaussian process</b> is a <a href="/wiki/Stochastic_process" title="Stochastic process">stochastic process</a> (a collection of random variables indexed by time or space), such that every finite collection of those random variables has a <a href="/wiki/Multivariate_normal_distribution" title="Multivariate normal distribution">multivariate normal distribution</a>. The distribution of a Gaussian process is the <a href="/wiki/Joint_distribution" class="mw-redirect" title="Joint distribution">joint distribution</a> of all those (infinitely many) random variables, and as such, it is a distribution over functions with a continuous domain, e.g. time or space. </p><p>The concept of Gaussian processes is named after <a href="/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss">Carl Friedrich Gauss</a> because it is based on the notion of the Gaussian distribution (<a href="/wiki/Normal_distribution" title="Normal distribution">normal distribution</a>). Gaussian processes can be seen as an infinite-dimensional generalization of multivariate normal distributions. </p><p>Gaussian processes are useful in <a href="/wiki/Statistical_model" title="Statistical model">statistical modelling</a>, benefiting from properties inherited from the normal distribution. For example, if a <a href="/wiki/Random_process" class="mw-redirect" title="Random process">random process</a> is modelled as a Gaussian process, the distributions of various derived quantities can be obtained explicitly. Such quantities include the average value of the process over a range of times and the error in estimating the average using sample values at a small set of times. While exact models often scale poorly as the amount of data increases, multiple <a href="/wiki/Gaussian_process_approximations" title="Gaussian process approximations">approximation methods</a> have been developed which often retain good accuracy while drastically reducing computation time. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Definition">Definition</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Gaussian_process&amp;action=edit&amp;section=1" title="Edit section: Definition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A time continuous <a href="/wiki/Stochastic_process" title="Stochastic process">stochastic process</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\{X_{t};t\in T\right\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>{</mo> <mrow> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>;</mo> <mi>t</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>T</mi> </mrow> <mo>}</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\{X_{t};t\in T\right\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2257ced472e676e5616b80c206e53ac7d686f84e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.426ex; height:2.843ex;" alt="{\displaystyle \left\{X_{t};t\in T\right\}}"></span> is Gaussian <a href="/wiki/If_and_only_if" title="If and only if">if and only if</a> for every <a href="/wiki/Finite_set" title="Finite set">finite set</a> of <a href="/wiki/Indexed_family" title="Indexed family">indices</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t_{1},\ldots ,t_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t_{1},\ldots ,t_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cf03a56ed44ff585274049a0a19fffb67f12ff4c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9ex; height:2.343ex;" alt="{\displaystyle t_{1},\ldots ,t_{k}}"></span> in the index set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {X} _{t_{1},\ldots ,t_{k}}=(X_{t_{1}},\ldots ,X_{t_{k}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {X} _{t_{1},\ldots ,t_{k}}=(X_{t_{1}},\ldots ,X_{t_{k}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dd510e614a30a32b89fe8afa6dbcf0d50d8fa49b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:25.248ex; height:3.009ex;" alt="{\displaystyle \mathbf {X} _{t_{1},\ldots ,t_{k}}=(X_{t_{1}},\ldots ,X_{t_{k}})}"></span> </p><p>is a <a href="/wiki/Multivariate_normal_distribution" title="Multivariate normal distribution">multivariate Gaussian</a> <a href="/wiki/Random_variable" title="Random variable">random variable</a>.<sup id="cite_ref-DrMacKayGPNN_1-0" class="reference"><a href="#cite_note-DrMacKayGPNN-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> That is the same as saying every linear combination of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (X_{t_{1}},\ldots ,X_{t_{k}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (X_{t_{1}},\ldots ,X_{t_{k}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/05b9108033c8c802062415a3c3ffae32db02e27c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:14.179ex; height:3.009ex;" alt="{\displaystyle (X_{t_{1}},\ldots ,X_{t_{k}})}"></span> has a univariate normal (or Gaussian) distribution. </p><p>Using <a href="/wiki/Characteristic_function_(probability_theory)" title="Characteristic function (probability theory)">characteristic functions</a> of random variables with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span> denoting the <a href="/wiki/Imaginary_unit" title="Imaginary unit">imaginary unit</a> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i^{2}=-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i^{2}=-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88e98a401d352e5037d5043028e2d7f449e83fa6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:7.926ex; height:2.843ex;" alt="{\displaystyle i^{2}=-1}"></span>, the Gaussian property can be formulated as follows: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\{X_{t};t\in T\right\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>{</mo> <mrow> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>;</mo> <mi>t</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>T</mi> </mrow> <mo>}</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\{X_{t};t\in T\right\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2257ced472e676e5616b80c206e53ac7d686f84e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.426ex; height:2.843ex;" alt="{\displaystyle \left\{X_{t};t\in T\right\}}"></span> is Gaussian if and only if, for every finite set of indices <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t_{1},\ldots ,t_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t_{1},\ldots ,t_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cf03a56ed44ff585274049a0a19fffb67f12ff4c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9ex; height:2.343ex;" alt="{\displaystyle t_{1},\ldots ,t_{k}}"></span>, there are real-valued <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma _{\ell j}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x2113;<!-- ℓ --></mi> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma _{\ell j}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/506fb5978751cf86187284378899c1b21eaeb33c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.923ex; height:2.343ex;" alt="{\displaystyle \sigma _{\ell j}}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu _{\ell }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x2113;<!-- ℓ --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu _{\ell }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a32057fb715999b8780b5805f605bd4935401769" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.32ex; height:2.176ex;" alt="{\displaystyle \mu _{\ell }}"></span> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma _{jj}&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mi>j</mi> </mrow> </msub> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma _{jj}&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8de9e3098c8961852a177f33ed0c6ea3d50f9845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.175ex; height:2.843ex;" alt="{\displaystyle \sigma _{jj}&gt;0}"></span> such that the following equality holds for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s_{1},s_{2},\ldots ,s_{k}\in \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s_{1},s_{2},\ldots ,s_{k}\in \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d2298f45c44333110424df23ceaec945dec79794" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:17.199ex; height:2.509ex;" alt="{\displaystyle s_{1},s_{2},\ldots ,s_{k}\in \mathbb {R} }"></span>, </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathbb {E} }\left[\exp \left(i\sum _{\ell =1}^{k}s_{\ell }\,\mathbf {X} _{t_{\ell }}\right)\right]=\exp \left(-{\tfrac {1}{2}}\sum _{\ell ,j}\sigma _{\ell j}s_{\ell }s_{j}+i\sum _{\ell }\mu _{\ell }s_{\ell }\right),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">E</mi> </mrow> </mrow> <mrow> <mo>[</mo> <mrow> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mi>i</mi> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x2113;<!-- ℓ --></mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </munderover> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x2113;<!-- ℓ --></mi> </mrow> </msub> <mspace width="thinmathspace" /> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x2113;<!-- ℓ --></mi> </mrow> </msub> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> <mo>=</mo> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x2113;<!-- ℓ --></mi> <mo>,</mo> <mi>j</mi> </mrow> </munder> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x2113;<!-- ℓ --></mi> <mi>j</mi> </mrow> </msub> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x2113;<!-- ℓ --></mi> </mrow> </msub> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>+</mo> <mi>i</mi> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x2113;<!-- ℓ --></mi> </mrow> </munder> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x2113;<!-- ℓ --></mi> </mrow> </msub> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x2113;<!-- ℓ --></mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathbb {E} }\left[\exp \left(i\sum _{\ell =1}^{k}s_{\ell }\,\mathbf {X} _{t_{\ell }}\right)\right]=\exp \left(-{\tfrac {1}{2}}\sum _{\ell ,j}\sigma _{\ell j}s_{\ell }s_{j}+i\sum _{\ell }\mu _{\ell }s_{\ell }\right),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bdb34f9f73060f65ce8450012831f2f32f0264b6" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:60.381ex; height:7.676ex;" alt="{\displaystyle {\mathbb {E} }\left[\exp \left(i\sum _{\ell =1}^{k}s_{\ell }\,\mathbf {X} _{t_{\ell }}\right)\right]=\exp \left(-{\tfrac {1}{2}}\sum _{\ell ,j}\sigma _{\ell j}s_{\ell }s_{j}+i\sum _{\ell }\mu _{\ell }s_{\ell }\right),}"></span> </p><p>or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathbb {E} }\left[{\mathrm {e} }^{i\,\mathbf {s} \,(\mathbf {X} _{t}-\mathbf {\mu } )}\right]={\mathrm {e} }^{-\mathbf {s} \,\sigma \,\mathbf {s} /2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">E</mi> </mrow> </mrow> <mrow> <mo>[</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">s</mi> </mrow> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> </mrow> <mo stretchy="false">)</mo> </mrow> </msup> <mo>]</mo> </mrow> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">s</mi> </mrow> <mspace width="thinmathspace" /> <mi>&#x03C3;<!-- σ --></mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">s</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathbb {E} }\left[{\mathrm {e} }^{i\,\mathbf {s} \,(\mathbf {X} _{t}-\mathbf {\mu } )}\right]={\mathrm {e} }^{-\mathbf {s} \,\sigma \,\mathbf {s} /2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/97565415a502310350caf381b920a8bece43914d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:23.601ex; height:4.843ex;" alt="{\displaystyle {\mathbb {E} }\left[{\mathrm {e} }^{i\,\mathbf {s} \,(\mathbf {X} _{t}-\mathbf {\mu } )}\right]={\mathrm {e} }^{-\mathbf {s} \,\sigma \,\mathbf {s} /2}}"></span>. The numbers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma _{\ell j}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x2113;<!-- ℓ --></mi> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma _{\ell j}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/506fb5978751cf86187284378899c1b21eaeb33c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.923ex; height:2.343ex;" alt="{\displaystyle \sigma _{\ell j}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu _{\ell }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x2113;<!-- ℓ --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu _{\ell }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a32057fb715999b8780b5805f605bd4935401769" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.32ex; height:2.176ex;" alt="{\displaystyle \mu _{\ell }}"></span> can be shown to be the <a href="/wiki/Covariance" title="Covariance">covariances</a> and <a href="/wiki/Mean_(mathematics)" class="mw-redirect" title="Mean (mathematics)">means</a> of the variables in the process.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Variance">Variance</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Gaussian_process&amp;action=edit&amp;section=2" title="Edit section: Variance"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The variance of a Gaussian process is finite at any time <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span>, formally<sup id="cite_ref-Lapidoth2017_3-0" class="reference"><a href="#cite_note-Lapidoth2017-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page / location: p. 515">&#58;&#8202;p. 515&#8202;</span></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {var} [X(t)]={\mathbb {E} }\left[\left|X(t)-\operatorname {E} [X(t)]\right|^{2}\right]&lt;\infty \quad {\text{for all }}t\in T.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>var</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">]</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">E</mi> </mrow> </mrow> <mrow> <mo>[</mo> <msup> <mrow> <mo>|</mo> <mrow> <mi>X</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">]</mo> </mrow> <mo>|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>]</mo> </mrow> <mo>&lt;</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>for all&#xA0;</mtext> </mrow> <mi>t</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>T</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {var} [X(t)]={\mathbb {E} }\left[\left|X(t)-\operatorname {E} [X(t)]\right|^{2}\right]&lt;\infty \quad {\text{for all }}t\in T.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/66fc2c7877763c8da8ffd6a8b1276b477bddecec" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:53.889ex; height:4.843ex;" alt="{\displaystyle \operatorname {var} [X(t)]={\mathbb {E} }\left[\left|X(t)-\operatorname {E} [X(t)]\right|^{2}\right]&lt;\infty \quad {\text{for all }}t\in T.}"></span> </p> <div class="mw-heading mw-heading2"><h2 id="Stationarity">Stationarity</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Gaussian_process&amp;action=edit&amp;section=3" title="Edit section: Stationarity"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For general stochastic processes <a href="/wiki/Stationary_process#strict-sense_stationarity" title="Stationary process">strict-sense stationarity</a> implies <a href="/wiki/Stationary_process#wide-sense_stationarity" title="Stationary process">wide-sense stationarity</a> but not every wide-sense stationary stochastic process is strict-sense stationary. However, for a Gaussian stochastic process the two concepts are equivalent.<sup id="cite_ref-Lapidoth2017_3-1" class="reference"><a href="#cite_note-Lapidoth2017-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page / location: p. 518">&#58;&#8202;p. 518&#8202;</span></sup> </p><p>A Gaussian stochastic process is strict-sense stationary if and only if it is wide-sense stationary. </p> <div class="mw-heading mw-heading2"><h2 id="Example">Example</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Gaussian_process&amp;action=edit&amp;section=4" title="Edit section: Example"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>There is an explicit representation for stationary Gaussian processes.<sup id="cite_ref-KacSiegert1947_4-0" class="reference"><a href="#cite_note-KacSiegert1947-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> A simple example of this representation is </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{t}=\cos(at)\,\xi _{1}+\sin(at)\,\xi _{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>=</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mi>t</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <msub> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mi>t</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <msub> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{t}=\cos(at)\,\xi _{1}+\sin(at)\,\xi _{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed03460829682e20852623a86fa335eb2bd667d9" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:27.333ex; height:2.843ex;" alt="{\displaystyle X_{t}=\cos(at)\,\xi _{1}+\sin(at)\,\xi _{2}}"></span> </p><p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \xi _{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \xi _{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c1693cc144ee14052d3469486163441bec3d8e88" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.073ex; height:2.509ex;" alt="{\displaystyle \xi _{1}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \xi _{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \xi _{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/837e12bb12fde6a1a8f6585a7e56635b4c7113d1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.073ex; height:2.509ex;" alt="{\displaystyle \xi _{2}}"></span> are independent random variables with the <a href="/wiki/Normal_distribution#Standard_normal_distribution" title="Normal distribution">standard normal distribution</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Covariance_functions">Covariance functions</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Gaussian_process&amp;action=edit&amp;section=5" title="Edit section: Covariance functions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Covariance_function" title="Covariance function">Covariance function</a></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Variogram" title="Variogram">Variogram</a></div> <p>A key fact of Gaussian processes is that they can be completely defined by their second-order statistics.<sup id="cite_ref-prml_5-0" class="reference"><a href="#cite_note-prml-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> Thus, if a Gaussian process is assumed to have mean zero, defining the <a href="/wiki/Covariance_function" title="Covariance function">covariance function</a> completely defines the process' behaviour. Importantly the non-negative definiteness of this function enables its spectral decomposition using the <a href="/wiki/Karhunen%E2%80%93Lo%C3%A8ve_theorem" class="mw-redirect" title="Karhunen–Loève theorem">Karhunen–Loève expansion</a>. Basic aspects that can be defined through the covariance function are the process' <a href="/wiki/Stationary_process" title="Stationary process">stationarity</a>, <a href="/wiki/Isotropy" title="Isotropy">isotropy</a>, <a href="/wiki/Smoothness" title="Smoothness">smoothness</a> and <a href="/wiki/Periodic_function" title="Periodic function">periodicity</a>.<sup id="cite_ref-brml_6-0" class="reference"><a href="#cite_note-brml-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-gpml_7-0" class="reference"><a href="#cite_note-gpml-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> </p><p><a href="/wiki/Stationary_process" title="Stationary process">Stationarity</a> refers to the process' behaviour regarding the separation of any two points <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ac74959896052e160a5953102e4bc3850fe93b2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.014ex; height:2.509ex;" alt="{\displaystyle x&#039;}"></span>. If the process is stationary, the covariance function depends only on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x-x'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x-x'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/273083d6dc2067936bfd0dd5d911d0640762f734" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.184ex; height:2.676ex;" alt="{\displaystyle x-x&#039;}"></span>. For example, the <a href="/wiki/Ornstein%E2%80%93Uhlenbeck_process" title="Ornstein–Uhlenbeck process">Ornstein–Uhlenbeck process</a> is stationary. </p><p>If the process depends only on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |x-x'|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |x-x'|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee2387353866aacde6bccfb2fc0586c1105b2b37" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.478ex; height:3.009ex;" alt="{\displaystyle |x-x&#039;|}"></span>, the Euclidean distance (not the direction) between <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ac74959896052e160a5953102e4bc3850fe93b2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.014ex; height:2.509ex;" alt="{\displaystyle x&#039;}"></span>, then the process is considered isotropic. A process that is concurrently stationary and isotropic is considered to be <a href="/wiki/Homogeneous" class="mw-redirect" title="Homogeneous">homogeneous</a>;<sup id="cite_ref-PRP_8-0" class="reference"><a href="#cite_note-PRP-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> in practice these properties reflect the differences (or rather the lack of them) in the behaviour of the process given the location of the observer. </p><p>Ultimately Gaussian processes translate as taking priors on functions and the smoothness of these priors can be induced by the covariance function.<sup id="cite_ref-brml_6-1" class="reference"><a href="#cite_note-brml-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> If we expect that for "near-by" input points <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ac74959896052e160a5953102e4bc3850fe93b2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.014ex; height:2.509ex;" alt="{\displaystyle x&#039;}"></span> their corresponding output points <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>y</mi> <mo>&#x2032;</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3a535de94a2183d7130731eab8a83531d7c35c6b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.845ex; height:2.843ex;" alt="{\displaystyle y&#039;}"></span> to be "near-by" also, then the assumption of continuity is present. If we wish to allow for significant displacement then we might choose a rougher covariance function. Extreme examples of the behaviour is the Ornstein&#8211;Uhlenbeck covariance function and the squared exponential where the former is never differentiable and the latter infinitely differentiable. </p><p>Periodicity refers to inducing periodic patterns within the behaviour of the process. Formally, this is achieved by mapping the input <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> to a two dimensional vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u(x)=\left(\cos(x),\sin(x)\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>u</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u(x)=\left(\cos(x),\sin(x)\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bfa81b5da3aa5ec1e5fab82ecbbb1d0d121682f5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.655ex; height:2.843ex;" alt="{\displaystyle u(x)=\left(\cos(x),\sin(x)\right)}"></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Usual_covariance_functions">Usual covariance functions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Gaussian_process&amp;action=edit&amp;section=6" title="Edit section: Usual covariance functions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Gaussian_process_draws_from_prior_distribution.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b4/Gaussian_process_draws_from_prior_distribution.png/300px-Gaussian_process_draws_from_prior_distribution.png" decoding="async" width="300" height="100" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b4/Gaussian_process_draws_from_prior_distribution.png/450px-Gaussian_process_draws_from_prior_distribution.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b4/Gaussian_process_draws_from_prior_distribution.png/600px-Gaussian_process_draws_from_prior_distribution.png 2x" data-file-width="1200" data-file-height="400" /></a><figcaption>The effect of choosing different kernels on the prior function distribution of the Gaussian process. Left is a squared exponential kernel. Middle is Brownian. Right is quadratic.</figcaption></figure> <p>There are a number of common covariance functions:<sup id="cite_ref-gpml_7-1" class="reference"><a href="#cite_note-gpml-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> </p> <ul><li>Constant&#160;: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K_{\operatorname {C} }(x,x')=C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">C</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K_{\operatorname {C} }(x,x')=C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0756d185c3a83e4ec8bba9ae5cd8aec81185dc6c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.444ex; height:3.009ex;" alt="{\displaystyle K_{\operatorname {C} }(x,x&#039;)=C}"></span></li> <li>Linear: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K_{\operatorname {L} }(x,x')=x^{\mathsf {T}}x'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">L</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> </msup> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K_{\operatorname {L} }(x,x')=x^{\mathsf {T}}x'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06fbac263e1e602c612f9dd351d1966cb994c13c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.214ex; height:3.176ex;" alt="{\displaystyle K_{\operatorname {L} }(x,x&#039;)=x^{\mathsf {T}}x&#039;}"></span></li> <li>white Gaussian noise: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K_{\operatorname {GN} }(x,x')=\sigma ^{2}\delta _{x,x'}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>GN</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msub> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo>,</mo> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K_{\operatorname {GN} }(x,x')=\sigma ^{2}\delta _{x,x'}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c92ea585bff179aaf1b59c15e377801d6e3579d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:20.532ex; height:3.343ex;" alt="{\displaystyle K_{\operatorname {GN} }(x,x&#039;)=\sigma ^{2}\delta _{x,x&#039;}}"></span></li> <li>Squared exponential: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K_{\operatorname {SE} }(x,x')=\exp \left(-{\tfrac {d^{2}}{2\ell ^{2}}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>SE</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>2</mn> <msup> <mi>&#x2113;<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mstyle> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K_{\operatorname {SE} }(x,x')=\exp \left(-{\tfrac {d^{2}}{2\ell ^{2}}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/847d2a947eeb93077e6cae60e71376a2346573f8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:24.836ex; height:4.843ex;" alt="{\displaystyle K_{\operatorname {SE} }(x,x&#039;)=\exp \left(-{\tfrac {d^{2}}{2\ell ^{2}}}\right)}"></span></li> <li>Ornstein&#8211;Uhlenbeck: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K_{\operatorname {OU} }(x,x')=\exp \left(-{\tfrac {d}{\ell }}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>OU</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mi>d</mi> <mi>&#x2113;<!-- ℓ --></mi> </mfrac> </mstyle> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K_{\operatorname {OU} }(x,x')=\exp \left(-{\tfrac {d}{\ell }}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b36149661847bf5041a1945b106712603388c5cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:23.834ex; height:4.843ex;" alt="{\displaystyle K_{\operatorname {OU} }(x,x&#039;)=\exp \left(-{\tfrac {d}{\ell }}\right)}"></span></li> <li>Matérn: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K_{\operatorname {Matern} }(x,x')={\tfrac {2^{1-\nu }}{\Gamma (\nu )}}\left({\tfrac {{\sqrt {2\nu }}d}{\ell }}\right)^{\nu }K_{\nu }\left({\tfrac {{\sqrt {2\nu }}d}{\ell }}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Matern</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msup> <mrow> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>&#x03BD;<!-- ν --></mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mstyle> </mrow> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mi>&#x03BD;<!-- ν --></mi> </msqrt> </mrow> <mi>d</mi> </mrow> <mi>&#x2113;<!-- ℓ --></mi> </mfrac> </mstyle> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msup> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mi>&#x03BD;<!-- ν --></mi> </msqrt> </mrow> <mi>d</mi> </mrow> <mi>&#x2113;<!-- ℓ --></mi> </mfrac> </mstyle> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K_{\operatorname {Matern} }(x,x')={\tfrac {2^{1-\nu }}{\Gamma (\nu )}}\left({\tfrac {{\sqrt {2\nu }}d}{\ell }}\right)^{\nu }K_{\nu }\left({\tfrac {{\sqrt {2\nu }}d}{\ell }}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ad681401cbf6e54118f8a4a3b87ccc7b83f1c01" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:40.617ex; height:5.009ex;" alt="{\displaystyle K_{\operatorname {Matern} }(x,x&#039;)={\tfrac {2^{1-\nu }}{\Gamma (\nu )}}\left({\tfrac {{\sqrt {2\nu }}d}{\ell }}\right)^{\nu }K_{\nu }\left({\tfrac {{\sqrt {2\nu }}d}{\ell }}\right)}"></span></li> <li>Periodic: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K_{\operatorname {P} }(x,x')=\exp \left(-{\tfrac {2}{\ell ^{2}}}\sin ^{2}(d/2)\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">P</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>2</mn> <msup> <mi>&#x2113;<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mstyle> </mrow> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K_{\operatorname {P} }(x,x')=\exp \left(-{\tfrac {2}{\ell ^{2}}}\sin ^{2}(d/2)\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e6f70cc8ed39ef9d9db2b631e4130e257da7df3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:32.747ex; height:4.843ex;" alt="{\displaystyle K_{\operatorname {P} }(x,x&#039;)=\exp \left(-{\tfrac {2}{\ell ^{2}}}\sin ^{2}(d/2)\right)}"></span></li> <li>Rational quadratic: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K_{\operatorname {RQ} }(x,x')=\left(1+d^{2}\right)^{-\alpha },\quad \alpha \geq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>RQ</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mo>,</mo> <mspace width="1em" /> <mi>&#x03B1;<!-- α --></mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K_{\operatorname {RQ} }(x,x')=\left(1+d^{2}\right)^{-\alpha },\quad \alpha \geq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f0870e824b58ae9a42508b075b2cb38cb4964d1f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:34.052ex; height:3.676ex;" alt="{\displaystyle K_{\operatorname {RQ} }(x,x&#039;)=\left(1+d^{2}\right)^{-\alpha },\quad \alpha \geq 0}"></span></li></ul> <p>Here <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d=|x-x'|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d=|x-x'|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/560e0a16bb73467956196db4417cba3af9b1b69f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.792ex; height:3.009ex;" alt="{\displaystyle d=|x-x&#039;|}"></span>. The parameter <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ell }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x2113;<!-- ℓ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ell }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f066e981e530bacc07efc6a10fa82deee985929e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.97ex; height:2.176ex;" alt="{\displaystyle \ell }"></span> is the characteristic length-scale of the process (practically, "how close" two points <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ac74959896052e160a5953102e4bc3850fe93b2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.014ex; height:2.509ex;" alt="{\displaystyle x&#039;}"></span> have to be to influence each other significantly), <i><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B4;<!-- δ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5321cfa797202b3e1f8620663ff43c4660ea03a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:2.343ex;" alt="{\displaystyle \delta }"></span></i> is the <a href="/wiki/Kronecker_delta" title="Kronecker delta">Kronecker delta</a> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59f59b7c3e6fdb1d0365a494b81fb9a696138c36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle \sigma }"></span> the <a href="/wiki/Standard_deviation" title="Standard deviation">standard deviation</a> of the noise fluctuations. Moreover, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K_{\nu }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K_{\nu }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f151831e9842e5daee3a71075a17102d10f1cf7e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.077ex; height:2.509ex;" alt="{\displaystyle K_{\nu }}"></span> is the <a href="/wiki/Modified_Bessel_function" class="mw-redirect" title="Modified Bessel function">modified Bessel function</a> of order <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BD;<!-- ν --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c15bbbb971240cf328aba572178f091684585468" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.232ex; height:1.676ex;" alt="{\displaystyle \nu }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Gamma (\nu )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>&#x03BD;<!-- ν --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Gamma (\nu )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99c96ce0382e2739b2363985a0de7123a47c6560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.494ex; height:2.843ex;" alt="{\displaystyle \Gamma (\nu )}"></span> is the <a href="/wiki/Gamma_function" title="Gamma function">gamma function</a> evaluated at <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BD;<!-- ν --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c15bbbb971240cf328aba572178f091684585468" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.232ex; height:1.676ex;" alt="{\displaystyle \nu }"></span>. Importantly, a complicated covariance function can be defined as a linear combination of other simpler covariance functions in order to incorporate different insights about the data-set at hand. </p><p>The inferential results are dependent on the values of the hyperparameters <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B8;<!-- θ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e5ab2664b422d53eb0c7df3b87e1360d75ad9af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:2.176ex;" alt="{\displaystyle \theta }"></span> (e.g. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ell }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x2113;<!-- ℓ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ell }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f066e981e530bacc07efc6a10fa82deee985929e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.97ex; height:2.176ex;" alt="{\displaystyle \ell }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59f59b7c3e6fdb1d0365a494b81fb9a696138c36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle \sigma }"></span>) defining the model's behaviour. A popular choice for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B8;<!-- θ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e5ab2664b422d53eb0c7df3b87e1360d75ad9af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:2.176ex;" alt="{\displaystyle \theta }"></span> is to provide <i><a href="/wiki/Maximum_a_posteriori" class="mw-redirect" title="Maximum a posteriori">maximum a posteriori</a></i> (MAP) estimates of it with some chosen prior. If the prior is very near uniform, this is the same as maximizing the <a href="/wiki/Marginal_likelihood" title="Marginal likelihood">marginal likelihood</a> of the process; the marginalization being done over the observed process values <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span>.<sup id="cite_ref-gpml_7-2" class="reference"><a href="#cite_note-gpml-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> This approach is also known as <i>maximum likelihood II</i>, <i>evidence maximization</i>, or <i><a href="/wiki/Empirical_Bayes" class="mw-redirect" title="Empirical Bayes">empirical Bayes</a></i>.<sup id="cite_ref-seegerGPML_9-0" class="reference"><a href="#cite_note-seegerGPML-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Continuity">Continuity</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Gaussian_process&amp;action=edit&amp;section=7" title="Edit section: Continuity"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For a Gaussian process, <a href="/wiki/Continuous_stochastic_process#Continuity_in_probability" title="Continuous stochastic process">continuity in probability</a> is equivalent to <a href="/wiki/Continuous_stochastic_process#Mean-square_continuity" title="Continuous stochastic process">mean-square continuity</a>,<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page / location: 145">&#58;&#8202;145&#8202;</span></sup> and <a href="/wiki/Continuous_stochastic_process#Continuity_with_probability_one" title="Continuous stochastic process">continuity with probability one</a> is equivalent to <a href="/wiki/Continuous_stochastic_process#Sample_continuity" title="Continuous stochastic process">sample continuity</a>.<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page / location: 91 &quot;Gaussian processes are discontinuous at fixed points.&quot;">&#58;&#8202;91 "Gaussian processes are discontinuous at fixed points."&#8202;</span></sup> The latter implies, but is not implied by, continuity in probability. Continuity in probability holds if and only if the <a href="/wiki/Autocovariance" title="Autocovariance">mean and autocovariance</a> are continuous functions. In contrast, sample continuity was challenging even for <a href="#Stationarity">stationary Gaussian processes</a> (as probably noted first by <a href="/wiki/Andrey_Kolmogorov" title="Andrey Kolmogorov">Andrey Kolmogorov</a>), and more challenging for more general processes.<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page / location: Sect. 2.8">&#58;&#8202;Sect. 2.8&#8202;</span></sup> <sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page / location: 69, 81">&#58;&#8202;69,&#8202;81&#8202;</span></sup> <sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page / location: 80">&#58;&#8202;80&#8202;</span></sup> <sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> As usual, by a sample continuous process one means a process that admits a sample continuous <a href="/wiki/Stochastic_process#Modification" title="Stochastic process">modification</a>. <sup id="cite_ref-Dudley67_16-0" class="reference"><a href="#cite_note-Dudley67-16"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page / location: 292">&#58;&#8202;292&#8202;</span></sup> <sup id="cite_ref-MarcusShepp72_17-0" class="reference"><a href="#cite_note-MarcusShepp72-17"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page / location: 424">&#58;&#8202;424&#8202;</span></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Stationary_case">Stationary case</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Gaussian_process&amp;action=edit&amp;section=8" title="Edit section: Stationary case"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For a stationary Gaussian process <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X=(X_{t})_{t\in \mathbb {R} },}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X=(X_{t})_{t\in \mathbb {R} },}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba371409b0f1ccc245817330ec3463badb10ddf2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.394ex; height:2.843ex;" alt="{\displaystyle X=(X_{t})_{t\in \mathbb {R} },}"></span> some conditions on its spectrum are sufficient for sample continuity, but fail to be necessary. A necessary and sufficient condition, sometimes called Dudley–Fernique theorem, involves the function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59f59b7c3e6fdb1d0365a494b81fb9a696138c36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle \sigma }"></span> defined by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma (h)={\sqrt {{\mathbb {E} }{\big [}X(t+h)-X(t){\big ]}^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">(</mo> <mi>h</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">E</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em">[</mo> </mrow> </mrow> <mi>X</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>+</mo> <mi>h</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>X</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em">]</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma (h)={\sqrt {{\mathbb {E} }{\big [}X(t+h)-X(t){\big ]}^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64ab58a38a47b0e6e16940be44327bb0ab0b957e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:30.722ex; height:4.843ex;" alt="{\displaystyle \sigma (h)={\sqrt {{\mathbb {E} }{\big [}X(t+h)-X(t){\big ]}^{2}}}}"></span> (the right-hand side does not depend on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span> due to stationarity). Continuity of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> in probability is equivalent to continuity of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59f59b7c3e6fdb1d0365a494b81fb9a696138c36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle \sigma }"></span> at <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/916e773e0593223c306a3e6852348177d1934962" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.809ex; height:2.176ex;" alt="{\displaystyle 0.}"></span> When convergence of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma (h)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">(</mo> <mi>h</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma (h)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa80ecf1b85c2e04d492a0597c226d245ad86823" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.478ex; height:2.843ex;" alt="{\displaystyle \sigma (h)}"></span> to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"></span> (as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h\to 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h\to 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3f15c1e6800f6e3fca9fec99720fc67a13780215" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.116ex; height:2.176ex;" alt="{\displaystyle h\to 0}"></span>) is too slow, sample continuity of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> may fail. Convergence of the following integrals matters: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I(\sigma )=\int _{0}^{1}{\frac {\sigma (h)}{h{\sqrt {\log(1/h)}}}}\,dh=\int _{0}^{\infty }2\sigma (e^{-x^{2}})\,dx,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mo stretchy="false">(</mo> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">(</mo> <mi>h</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>log</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>h</mi> <mo stretchy="false">)</mo> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>h</mi> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mn>2</mn> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">(</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </msup> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I(\sigma )=\int _{0}^{1}{\frac {\sigma (h)}{h{\sqrt {\log(1/h)}}}}\,dh=\int _{0}^{\infty }2\sigma (e^{-x^{2}})\,dx,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5c50206e029f0e15b82b96822345525bda64dc84" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:47.273ex; height:7.009ex;" alt="{\displaystyle I(\sigma )=\int _{0}^{1}{\frac {\sigma (h)}{h{\sqrt {\log(1/h)}}}}\,dh=\int _{0}^{\infty }2\sigma (e^{-x^{2}})\,dx,}"></span> these two integrals being equal according to <a href="/wiki/Integration_by_substitution" title="Integration by substitution">integration by substitution</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle h=e^{-x^{2}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>h</mi> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle h=e^{-x^{2}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a4c9f21dd63bed5e219f5a361412031123d6ee7c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.45ex; height:3.176ex;" alt="{\textstyle h=e^{-x^{2}},}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle x={\sqrt {\log(1/h)}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>log</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>h</mi> <mo stretchy="false">)</mo> </msqrt> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle x={\sqrt {\log(1/h)}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/741e13998905881a2bd9c3030a8216ff0a1dc8b6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:15.844ex; height:3.343ex;" alt="{\textstyle x={\sqrt {\log(1/h)}}.}"></span> The first integrand need not be bounded as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h\to 0+,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mn>0</mn> <mo>+</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h\to 0+,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4f05c350fbc7ec8c07d389093ed12029caa6c9d7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.57ex; height:2.509ex;" alt="{\displaystyle h\to 0+,}"></span> thus the integral may converge (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I(\sigma )&lt;\infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mo stretchy="false">(</mo> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">)</mo> <mo>&lt;</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I(\sigma )&lt;\infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d3ed4154e33429e0d0eb63575d10d8627c38524" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.733ex; height:2.843ex;" alt="{\displaystyle I(\sigma )&lt;\infty }"></span>) or diverge (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I(\sigma )=\infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mo stretchy="false">(</mo> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I(\sigma )=\infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/66c8e6d33a48aadb22f1e9c486edb80400e6cf49" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.733ex; height:2.843ex;" alt="{\displaystyle I(\sigma )=\infty }"></span>). Taking for example <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \sigma (e^{-x^{2}})={\tfrac {1}{x^{a}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">(</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \sigma (e^{-x^{2}})={\tfrac {1}{x^{a}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1773caad220ef15ff438e73826d9771a34e6eedd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:13.25ex; height:3.676ex;" alt="{\textstyle \sigma (e^{-x^{2}})={\tfrac {1}{x^{a}}}}"></span> for large <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/feff4d40084c7351bf57b11ba2427f6331f5bdbe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.977ex; height:2.009ex;" alt="{\displaystyle x,}"></span> that is, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \sigma (h)=(\log(1/h))^{-a/2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">(</mo> <mi>h</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>log</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>h</mi> <mo stretchy="false">)</mo> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \sigma (h)=(\log(1/h))^{-a/2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8db45f568af40e7aa79b0b1d53fad29c8b61539f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.855ex; height:3.176ex;" alt="{\textstyle \sigma (h)=(\log(1/h))^{-a/2}}"></span> for small <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8c92993ef69282ac39ddc98b7150dabfae40c14" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.986ex; height:2.509ex;" alt="{\displaystyle h,}"></span> one obtains <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I(\sigma )&lt;\infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mo stretchy="false">(</mo> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">)</mo> <mo>&lt;</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I(\sigma )&lt;\infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d3ed4154e33429e0d0eb63575d10d8627c38524" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.733ex; height:2.843ex;" alt="{\displaystyle I(\sigma )&lt;\infty }"></span> when <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a&gt;1,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&gt;</mo> <mn>1</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a&gt;1,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1748da13cbfe2011c831ffe06f5fcc8c1b986fa0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.138ex; height:2.509ex;" alt="{\displaystyle a&gt;1,}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I(\sigma )=\infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mo stretchy="false">(</mo> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I(\sigma )=\infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/66c8e6d33a48aadb22f1e9c486edb80400e6cf49" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.733ex; height:2.843ex;" alt="{\displaystyle I(\sigma )=\infty }"></span> when <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0&lt;a\leq 1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>&lt;</mo> <mi>a</mi> <mo>&#x2264;<!-- ≤ --></mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0&lt;a\leq 1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d49006e5a15e44ee8d06c1519f6a8d5bb5bf52a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:10.398ex; height:2.343ex;" alt="{\displaystyle 0&lt;a\leq 1.}"></span> In these two cases the function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59f59b7c3e6fdb1d0365a494b81fb9a696138c36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle \sigma }"></span> is increasing on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [0,\infty ),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [0,\infty ),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/149e364417799ba3a8c23e972f2e59d97fb1a6a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.718ex; height:2.843ex;" alt="{\displaystyle [0,\infty ),}"></span> but generally it is not. Moreover, the condition </p> <style data-mw-deduplicate="TemplateStyles:r996643573">.mw-parser-output .block-indent{padding-left:3em;padding-right:0;overflow:hidden}</style><div class="block-indent" style="padding-left: 1.5em;"><style data-mw-deduplicate="TemplateStyles:r1238216509">.mw-parser-output .vanchor>:target~.vanchor-text{background-color:#b1d2ff}@media screen{html.skin-theme-clientpref-night .mw-parser-output .vanchor>:target~.vanchor-text{background-color:#0f4dc9}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .vanchor>:target~.vanchor-text{background-color:#0f4dc9}}</style><span class="vanchor"><span id="(*)"></span><span class="vanchor-text">(*)</span></span> &#160; there exists <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varepsilon &gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B5;<!-- ε --></mi> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varepsilon &gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e04ec3670b50384a3ce48aca42e7cc5131a06b12" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.344ex; height:2.176ex;" alt="{\displaystyle \varepsilon &gt;0}"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59f59b7c3e6fdb1d0365a494b81fb9a696138c36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle \sigma }"></span> is monotone on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [0,\varepsilon ]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mi>&#x03B5;<!-- ε --></mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [0,\varepsilon ]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/09b79b1e11f2a6c9b36a919ddbbf91204fe7a1df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.574ex; height:2.843ex;" alt="{\displaystyle [0,\varepsilon ]}"></span></div> <p>does not follow from continuity of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59f59b7c3e6fdb1d0365a494b81fb9a696138c36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle \sigma }"></span> and the evident relations <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma (h)\geq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">(</mo> <mi>h</mi> <mo stretchy="false">)</mo> <mo>&#x2265;<!-- ≥ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma (h)\geq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d8632b4ce579321accf2057cc15b618708758a16" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.739ex; height:2.843ex;" alt="{\displaystyle \sigma (h)\geq 0}"></span> (for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b26be3e694314bc90c3215047e4a2010c6ee184a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.339ex; height:2.176ex;" alt="{\displaystyle h}"></span>) and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma (0)=0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma (0)=0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9bd960be9051a1cf53de2674c397bf554f876c31" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.209ex; height:2.843ex;" alt="{\displaystyle \sigma (0)=0.}"></span> </p> <style data-mw-deduplicate="TemplateStyles:r1110004140">.mw-parser-output .math_theorem{margin:1em 2em;padding:0.5em 1em 0.4em;border:1px solid #aaa;overflow:hidden}@media(max-width:500px){.mw-parser-output .math_theorem{margin:1em 0em;padding:0.5em 0.5em 0.4em}}</style><div class="math_theorem" style=""> <p><strong class="theorem-name">Theorem 1</strong><span class="theoreme-tiret">&#160;&#8212;&#160;</span>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59f59b7c3e6fdb1d0365a494b81fb9a696138c36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle \sigma }"></span> be continuous and satisfy <a href="#(*)">(*)</a>. Then the condition <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I(\sigma )&lt;\infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mo stretchy="false">(</mo> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">)</mo> <mo>&lt;</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I(\sigma )&lt;\infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d3ed4154e33429e0d0eb63575d10d8627c38524" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.733ex; height:2.843ex;" alt="{\displaystyle I(\sigma )&lt;\infty }"></span> is necessary and sufficient for sample continuity of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ba76c5a460c4a0bb1639a193bc1830f0a773e03" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.627ex; height:2.176ex;" alt="{\displaystyle X.}"></span> </p> </div> <p>Some history.<sup id="cite_ref-MarcusShepp72_17-1" class="reference"><a href="#cite_note-MarcusShepp72-17"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page / location: 424">&#58;&#8202;424&#8202;</span></sup> Sufficiency was announced by <a href="/wiki/Xavier_Fernique" title="Xavier Fernique">Xavier Fernique</a> in 1964, but the first proof was published by <a href="/wiki/Richard_M._Dudley" title="Richard M. Dudley">Richard M. Dudley</a> in 1967.<sup id="cite_ref-Dudley67_16-1" class="reference"><a href="#cite_note-Dudley67-16"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page / location: Theorem 7.1">&#58;&#8202;Theorem 7.1&#8202;</span></sup> Necessity was proved by Michael B. Marcus and <a href="/wiki/Lawrence_Shepp" title="Lawrence Shepp">Lawrence Shepp</a> in 1970.<sup id="cite_ref-MarcusShepp70_18-0" class="reference"><a href="#cite_note-MarcusShepp70-18"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page / location: 380">&#58;&#8202;380&#8202;</span></sup> </p><p>There exist sample continuous processes <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I(\sigma )=\infty ;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mo stretchy="false">(</mo> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo>;</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I(\sigma )=\infty ;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/335dc6f20a5b8097d0900c6f2a24c84886e18b7c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.38ex; height:2.843ex;" alt="{\displaystyle I(\sigma )=\infty ;}"></span> they violate condition <a href="#(*)">(*)</a>. An example found by Marcus and Shepp <sup id="cite_ref-MarcusShepp70_18-1" class="reference"><a href="#cite_note-MarcusShepp70-18"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page / location: 387">&#58;&#8202;387&#8202;</span></sup> is a random <a href="/wiki/Lacunary_function#Lacunary_trigonometric_series" title="Lacunary function">lacunary Fourier series</a> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{t}=\sum _{n=1}^{\infty }c_{n}(\xi _{n}\cos \lambda _{n}t+\eta _{n}\sin \lambda _{n}t),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mi>t</mi> <mo>+</mo> <msub> <mi>&#x03B7;<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mi>t</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{t}=\sum _{n=1}^{\infty }c_{n}(\xi _{n}\cos \lambda _{n}t+\eta _{n}\sin \lambda _{n}t),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99ef7f2fd8f1015c069278e49472092a2897fc94" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:36.065ex; height:6.843ex;" alt="{\displaystyle X_{t}=\sum _{n=1}^{\infty }c_{n}(\xi _{n}\cos \lambda _{n}t+\eta _{n}\sin \lambda _{n}t),}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \xi _{1},\eta _{1},\xi _{2},\eta _{2},\dots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>&#x03B7;<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>&#x03B7;<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \xi _{1},\eta _{1},\xi _{2},\eta _{2},\dots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4e3fd57269c7bb85e4820ba88efae1ac7f27e2d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.424ex; height:2.676ex;" alt="{\displaystyle \xi _{1},\eta _{1},\xi _{2},\eta _{2},\dots }"></span> are independent random variables with <a href="/wiki/Normal_distribution#Standard_normal_distribution" title="Normal distribution">standard normal distribution</a>; frequencies <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0&lt;\lambda _{1}&lt;\lambda _{2}&lt;\dots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>&lt;</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&lt;</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&lt;</mo> <mo>&#x2026;<!-- … --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0&lt;\lambda _{1}&lt;\lambda _{2}&lt;\dots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/429ee29a14763fba8181db6f60aaaaa398e7be56" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:18ex; height:2.509ex;" alt="{\displaystyle 0&lt;\lambda _{1}&lt;\lambda _{2}&lt;\dots }"></span> are a fast growing sequence; and coefficients <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c_{n}&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c_{n}&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2bad48de7e3ff5a22e32b25d39f0b878cff56a4c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.486ex; height:2.509ex;" alt="{\displaystyle c_{n}&gt;0}"></span> satisfy <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \sum _{n}c_{n}&lt;\infty .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munder> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&lt;</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \sum _{n}c_{n}&lt;\infty .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2ee74863f8757d75064a58d7274c6851e1c666f6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:12.354ex; height:3.009ex;" alt="{\textstyle \sum _{n}c_{n}&lt;\infty .}"></span> The latter relation implies </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\mathbb {E} }\sum _{n}c_{n}(|\xi _{n}|+|\eta _{n}|)=\sum _{n}c_{n}{\mathbb {E} }[|\xi _{n}|+|\eta _{n}|]={\text{const}}\cdot \sum _{n}c_{n}&lt;\infty ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">E</mi> </mrow> </mrow> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munder> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>&#x03B7;<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munder> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">E</mi> </mrow> </mrow> <mo stretchy="false">[</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>&#x03B7;<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo stretchy="false">]</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>const</mtext> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munder> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&lt;</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\mathbb {E} }\sum _{n}c_{n}(|\xi _{n}|+|\eta _{n}|)=\sum _{n}c_{n}{\mathbb {E} }[|\xi _{n}|+|\eta _{n}|]={\text{const}}\cdot \sum _{n}c_{n}&lt;\infty ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f2397aa6b5b6fe4708619c38b3098a7fb9b096d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:64.775ex; height:3.009ex;" alt="{\textstyle {\mathbb {E} }\sum _{n}c_{n}(|\xi _{n}|+|\eta _{n}|)=\sum _{n}c_{n}{\mathbb {E} }[|\xi _{n}|+|\eta _{n}|]={\text{const}}\cdot \sum _{n}c_{n}&lt;\infty ,}"></span> </p><p>whence <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \sum _{n}c_{n}(|\xi _{n}|+|\eta _{n}|)&lt;\infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munder> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>&#x03B7;<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo stretchy="false">)</mo> <mo>&lt;</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \sum _{n}c_{n}(|\xi _{n}|+|\eta _{n}|)&lt;\infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d34ebbca44593973533ae177e3cfeea12b4b5863" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:23.555ex; height:3.009ex;" alt="{\textstyle \sum _{n}c_{n}(|\xi _{n}|+|\eta _{n}|)&lt;\infty }"></span> almost surely, which ensures uniform convergence of the Fourier series almost surely, and sample continuity of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ba76c5a460c4a0bb1639a193bc1830f0a773e03" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.627ex; height:2.176ex;" alt="{\displaystyle X.}"></span> </p> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Autocorrelation_of_a_random_lacunary_Fourier_series.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f1/Autocorrelation_of_a_random_lacunary_Fourier_series.svg/411px-Autocorrelation_of_a_random_lacunary_Fourier_series.svg.png" decoding="async" width="411" height="193" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f1/Autocorrelation_of_a_random_lacunary_Fourier_series.svg/617px-Autocorrelation_of_a_random_lacunary_Fourier_series.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f1/Autocorrelation_of_a_random_lacunary_Fourier_series.svg/822px-Autocorrelation_of_a_random_lacunary_Fourier_series.svg.png 2x" data-file-width="823" data-file-height="387" /></a><figcaption>Autocorrelation of a random lacunary Fourier series</figcaption></figure> <p>Its autocovariation function <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathbb {E} }[X_{t}X_{t+h}]=\sum _{n=1}^{\infty }c_{n}^{2}\cos \lambda _{n}h}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">E</mi> </mrow> </mrow> <mo stretchy="false">[</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mo>+</mo> <mi>h</mi> </mrow> </msub> <mo stretchy="false">]</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msubsup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mi>h</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathbb {E} }[X_{t}X_{t+h}]=\sum _{n=1}^{\infty }c_{n}^{2}\cos \lambda _{n}h}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c74c4fe6d709650c8080cc792a2e3081ecc6456f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:27.434ex; height:6.843ex;" alt="{\displaystyle {\mathbb {E} }[X_{t}X_{t+h}]=\sum _{n=1}^{\infty }c_{n}^{2}\cos \lambda _{n}h}"></span> is nowhere monotone (see the picture), as well as the corresponding function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dec50432d2d0f5329dacde3a76c502563f6bda6c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.977ex; height:2.009ex;" alt="{\displaystyle \sigma ,}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma (h)={\sqrt {2{\mathbb {E} }[X_{t}X_{t}]-2{\mathbb {E} }[X_{t}X_{t+h}]}}=2{\sqrt {\sum _{n=1}^{\infty }c_{n}^{2}\sin ^{2}{\frac {\lambda _{n}h}{2}}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">(</mo> <mi>h</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">E</mi> </mrow> </mrow> <mo stretchy="false">[</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo stretchy="false">]</mo> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">E</mi> </mrow> </mrow> <mo stretchy="false">[</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mo>+</mo> <mi>h</mi> </mrow> </msub> <mo stretchy="false">]</mo> </msqrt> </mrow> <mo>=</mo> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msubsup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mi>h</mi> </mrow> <mn>2</mn> </mfrac> </mrow> </msqrt> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma (h)={\sqrt {2{\mathbb {E} }[X_{t}X_{t}]-2{\mathbb {E} }[X_{t}X_{t+h}]}}=2{\sqrt {\sum _{n=1}^{\infty }c_{n}^{2}\sin ^{2}{\frac {\lambda _{n}h}{2}}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b2744f474eb0c2acec5b901987219b0955a7e121" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:56.611ex; height:7.509ex;" alt="{\displaystyle \sigma (h)={\sqrt {2{\mathbb {E} }[X_{t}X_{t}]-2{\mathbb {E} }[X_{t}X_{t+h}]}}=2{\sqrt {\sum _{n=1}^{\infty }c_{n}^{2}\sin ^{2}{\frac {\lambda _{n}h}{2}}}}.}"></span> </p> <div class="mw-heading mw-heading2"><h2 id="Brownian_motion_as_the_integral_of_Gaussian_processes">Brownian motion as the integral of Gaussian processes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Gaussian_process&amp;action=edit&amp;section=9" title="Edit section: Brownian motion as the integral of Gaussian processes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A <a href="/wiki/Wiener_process" title="Wiener process">Wiener process</a> (also known as Brownian motion) is the integral of a <a href="/wiki/White_noise#Continuous-time_white_noise" title="White noise">white noise generalized Gaussian process</a>. It is not <a href="/wiki/Stationary_process" title="Stationary process">stationary</a>, but it has <a href="/wiki/Stationary_increments" title="Stationary increments">stationary increments</a>. </p><p>The <a href="/wiki/Ornstein%E2%80%93Uhlenbeck_process" title="Ornstein–Uhlenbeck process">Ornstein–Uhlenbeck process</a> is a <a href="/wiki/Stationary_process" title="Stationary process">stationary</a> Gaussian process. </p><p>The <a href="/wiki/Brownian_bridge" title="Brownian bridge">Brownian bridge</a> is (like the Ornstein–Uhlenbeck process) an example of a Gaussian process whose increments are not <a href="/wiki/Statistical_independence" class="mw-redirect" title="Statistical independence">independent</a>. </p><p>The <a href="/wiki/Fractional_Brownian_motion" title="Fractional Brownian motion">fractional Brownian motion</a> is a Gaussian process whose covariance function is a generalisation of that of the Wiener process. </p> <div class="mw-heading mw-heading2"><h2 id="RKHS_structure_and_Gaussian_process">RKHS structure and Gaussian process</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Gaussian_process&amp;action=edit&amp;section=10" title="Edit section: RKHS structure and Gaussian process"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> be a mean-zero Gaussian process <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\{X_{t};t\in T\right\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>{</mo> <mrow> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>;</mo> <mi>t</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>T</mi> </mrow> <mo>}</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\{X_{t};t\in T\right\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2257ced472e676e5616b80c206e53ac7d686f84e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.426ex; height:2.843ex;" alt="{\displaystyle \left\{X_{t};t\in T\right\}}"></span> with a non-negative definite covariance function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span> and let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span> be a symmetric and positive semidefinite function. Then, there exists a Gaussian process <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> which has the covariance <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span>. Moreover, the <a href="/wiki/Reproducing_kernel_Hilbert_space" title="Reproducing kernel Hilbert space">Reproducing kernel Hilbert space</a> associated to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span> coincides with the <a href="/wiki/Cameron%E2%80%93Martin_theorem" title="Cameron–Martin theorem">Cameron–Martin theorem</a> associated space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R(H)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo stretchy="false">(</mo> <mi>H</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R(H)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/677c05c38726da75779f1b366960a095f4f12190" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.637ex; height:2.843ex;" alt="{\displaystyle R(H)}"></span> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span>, and all the spaces <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R(H)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo stretchy="false">(</mo> <mi>H</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R(H)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/677c05c38726da75779f1b366960a095f4f12190" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.637ex; height:2.843ex;" alt="{\displaystyle R(H)}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H_{X}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H_{X}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/883938efb884234e8f4a68e0ea47bddb405f36e9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.564ex; height:2.509ex;" alt="{\displaystyle H_{X}}"></span>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {H}}(K)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">H</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>K</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {H}}(K)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4e73491f29de05a6871398855b198e9f4e41c16a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.839ex; height:2.843ex;" alt="{\displaystyle {\mathcal {H}}(K)}"></span> are isometric.<sup id="cite_ref-Viitasaari2014_19-0" class="reference"><a href="#cite_note-Viitasaari2014-19"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> From now on, let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {H}}(R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">H</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {H}}(R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5a4de379799baa32531a5e980558ca14bcc8962b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.537ex; height:2.843ex;" alt="{\displaystyle {\mathcal {H}}(R)}"></span> be a <a href="/wiki/Reproducing_kernel_Hilbert_space" title="Reproducing kernel Hilbert space">Reproducing kernel Hilbert space</a> with positive definite kernel <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span>. </p><p>Driscoll's zero-one law is a result characterizing the sample functions generated by a Gaussian process: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{n\to \infty }\operatorname {tr} [K_{n}R_{n}^{-1}]&lt;\infty ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msubsup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> <mo stretchy="false">]</mo> <mo>&lt;</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{n\to \infty }\operatorname {tr} [K_{n}R_{n}^{-1}]&lt;\infty ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fc1d1379312a0e78525fce2f2e4404c8069abd48" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:21.127ex; height:4.176ex;" alt="{\displaystyle \lim _{n\to \infty }\operatorname {tr} [K_{n}R_{n}^{-1}]&lt;\infty ,}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ea2b988ea630d2c5571afe47efa3d3b251708acb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.192ex; height:2.509ex;" alt="{\displaystyle K_{n}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/08a51eb87e8de827a6df940f756f9ab254cb336b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.982ex; height:2.509ex;" alt="{\displaystyle R_{n}}"></span> are the covariance matrices of all possible pairs of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> points, implies <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Pr[f\in {\mathcal {H}}(R)]=1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">[</mo> <mi>f</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">H</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>R</mi> <mo stretchy="false">)</mo> <mo stretchy="false">]</mo> <mo>=</mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Pr[f\in {\mathcal {H}}(R)]=1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8c967b1fdbe5cdad6c678a7022bbfdd6a17901bb" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.352ex; height:2.843ex;" alt="{\displaystyle \Pr[f\in {\mathcal {H}}(R)]=1.}"></span> </p><p>Moreover, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{n\to \infty }\operatorname {tr} [K_{n}R_{n}^{-1}]=\infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msubsup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> <mo stretchy="false">]</mo> <mo>=</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{n\to \infty }\operatorname {tr} [K_{n}R_{n}^{-1}]=\infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e133d11ae8a4dc2825314c86ec4c86df1aabb0fe" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:20.48ex; height:4.176ex;" alt="{\displaystyle \lim _{n\to \infty }\operatorname {tr} [K_{n}R_{n}^{-1}]=\infty }"></span> implies <sup id="cite_ref-Driscoll1973_20-0" class="reference"><a href="#cite_note-Driscoll1973-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Pr[f\in {\mathcal {H}}(R)]=0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">[</mo> <mi>f</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">H</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>R</mi> <mo stretchy="false">)</mo> <mo stretchy="false">]</mo> <mo>=</mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Pr[f\in {\mathcal {H}}(R)]=0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3b6ef001cb269a0cbb38ff83d802da1ad908639" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.352ex; height:2.843ex;" alt="{\displaystyle \Pr[f\in {\mathcal {H}}(R)]=0.}"></span> </p><p>This has significant implications when <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K=R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>=</mo> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K=R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ea7355622b7fb4c4d7da41caadef8491a7e31a65" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.928ex; height:2.176ex;" alt="{\displaystyle K=R}"></span>, as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{n\to \infty }\operatorname {tr} [R_{n}R_{n}^{-1}]=\lim _{n\to \infty }\operatorname {tr} [I]=\lim _{n\to \infty }n=\infty .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msubsup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> <mo stretchy="false">]</mo> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <mi>I</mi> <mo stretchy="false">]</mo> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <mi>n</mi> <mo>=</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{n\to \infty }\operatorname {tr} [R_{n}R_{n}^{-1}]=\lim _{n\to \infty }\operatorname {tr} [I]=\lim _{n\to \infty }n=\infty .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ecb16aa9321bb328f2529628314558edb19b482" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:42.11ex; height:4.176ex;" alt="{\displaystyle \lim _{n\to \infty }\operatorname {tr} [R_{n}R_{n}^{-1}]=\lim _{n\to \infty }\operatorname {tr} [I]=\lim _{n\to \infty }n=\infty .}"></span> </p><p>As such, almost all sample paths of a mean-zero Gaussian process with positive definite kernel <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span> will lie outside of the Hilbert space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {H}}(K)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">H</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>K</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {H}}(K)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4e73491f29de05a6871398855b198e9f4e41c16a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.839ex; height:2.843ex;" alt="{\displaystyle {\mathcal {H}}(K)}"></span>. </p> <div class="mw-heading mw-heading2"><h2 id="Linearly_constrained_Gaussian_processes">Linearly constrained Gaussian processes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Gaussian_process&amp;action=edit&amp;section=11" title="Edit section: Linearly constrained Gaussian processes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For many applications of interest some pre-existing knowledge about the system at hand is already given. Consider e.g. the case where the output of the Gaussian process corresponds to a magnetic field; here, the real magnetic field is bound by Maxwell's equations and a way to incorporate this constraint into the Gaussian process formalism would be desirable as this would likely improve the accuracy of the algorithm. </p><p>A method on how to incorporate linear constraints into Gaussian processes already exists:<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup> </p><p>Consider the (vector valued) output function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span> which is known to obey the linear constraint (i.e. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {F}}_{X}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {F}}_{X}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e9f147f366acb0ddbcd7fbe40341dcd5c9c3e509" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.303ex; height:2.509ex;" alt="{\displaystyle {\mathcal {F}}_{X}}"></span> is a linear operator) <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {F}}_{X}(f(x))=0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {F}}_{X}(f(x))=0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af00cccb7f18e87fd7d1683d63054f90c1792d99" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.438ex; height:2.843ex;" alt="{\displaystyle {\mathcal {F}}_{X}(f(x))=0.}"></span> Then the constraint <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {F}}_{X}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {F}}_{X}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e9f147f366acb0ddbcd7fbe40341dcd5c9c3e509" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.303ex; height:2.509ex;" alt="{\displaystyle {\mathcal {F}}_{X}}"></span> can be fulfilled by choosing <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)={\mathcal {G}}_{X}(g(x))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">G</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)={\mathcal {G}}_{X}(g(x))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c58153c4aa02fbd88de1ab54f67b336f2bc10587" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.596ex; height:2.843ex;" alt="{\displaystyle f(x)={\mathcal {G}}_{X}(g(x))}"></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(x)\sim {\mathcal {GP}}(\mu _{g},K_{g})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x223C;<!-- ∼ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">G</mi> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(x)\sim {\mathcal {GP}}(\mu _{g},K_{g})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b90c66f0cb3c9e6d854fdbd28be69f351e37eaa0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:18.71ex; height:3.009ex;" alt="{\displaystyle g(x)\sim {\mathcal {GP}}(\mu _{g},K_{g})}"></span> is modelled as a Gaussian process, and finding <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {G}}_{X}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">G</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {G}}_{X}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/28b6069c3515ef4b7013faa3f0107a1527078a86" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.015ex; height:2.509ex;" alt="{\displaystyle {\mathcal {G}}_{X}}"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {F}}_{X}({\mathcal {G}}_{X}(g))=0\qquad \forall g.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">G</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> <mspace width="2em" /> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>g</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {F}}_{X}({\mathcal {G}}_{X}(g))=0\qquad \forall g.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dbd70a1a6501701878576606b8ae00118e52abc4" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.015ex; height:2.843ex;" alt="{\displaystyle {\mathcal {F}}_{X}({\mathcal {G}}_{X}(g))=0\qquad \forall g.}"></span> Given <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {G}}_{X}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">G</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {G}}_{X}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/28b6069c3515ef4b7013faa3f0107a1527078a86" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.015ex; height:2.509ex;" alt="{\displaystyle {\mathcal {G}}_{X}}"></span> and using the fact that Gaussian processes are closed under linear transformations, the Gaussian process for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> obeying constraint <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {F}}_{X}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {F}}_{X}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e9f147f366acb0ddbcd7fbe40341dcd5c9c3e509" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.303ex; height:2.509ex;" alt="{\displaystyle {\mathcal {F}}_{X}}"></span> becomes <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)={\mathcal {G}}_{X}g\sim {\mathcal {GP}}({\mathcal {G}}_{X}\mu _{g},{\mathcal {G}}_{X}K_{g}{\mathcal {G}}_{X'}^{\mathsf {T}}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">G</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi>g</mi> <mo>&#x223C;<!-- ∼ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">G</mi> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">G</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">G</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">G</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>X</mi> <mo>&#x2032;</mo> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> </msubsup> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)={\mathcal {G}}_{X}g\sim {\mathcal {GP}}({\mathcal {G}}_{X}\mu _{g},{\mathcal {G}}_{X}K_{g}{\mathcal {G}}_{X'}^{\mathsf {T}}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d2b4a0a30db13678af8105b2af520bce1598545e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:36.339ex; height:3.343ex;" alt="{\displaystyle f(x)={\mathcal {G}}_{X}g\sim {\mathcal {GP}}({\mathcal {G}}_{X}\mu _{g},{\mathcal {G}}_{X}K_{g}{\mathcal {G}}_{X&#039;}^{\mathsf {T}}).}"></span> Hence, linear constraints can be encoded into the mean and covariance function of a Gaussian process. </p> <div class="mw-heading mw-heading2"><h2 id="Applications">Applications</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Gaussian_process&amp;action=edit&amp;section=12" title="Edit section: Applications"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Regressions_sine_demo.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a7/Regressions_sine_demo.svg/220px-Regressions_sine_demo.svg.png" decoding="async" width="220" height="110" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a7/Regressions_sine_demo.svg/330px-Regressions_sine_demo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/a7/Regressions_sine_demo.svg/440px-Regressions_sine_demo.svg.png 2x" data-file-width="900" data-file-height="450" /></a><figcaption>An example of Gaussian Process Regression (prediction) compared with other regression models.<sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup></figcaption></figure> <p>A Gaussian process can be used as a <a href="/wiki/Prior_probability_distribution" class="mw-redirect" title="Prior probability distribution">prior probability distribution</a> over <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">functions</a> in <a href="/wiki/Bayesian_inference" title="Bayesian inference">Bayesian inference</a>.<sup id="cite_ref-gpml_7-3" class="reference"><a href="#cite_note-gpml-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup> Given any set of <i>N</i> points in the desired domain of your functions, take a <a href="/wiki/Multivariate_Gaussian" class="mw-redirect" title="Multivariate Gaussian">multivariate Gaussian</a> whose covariance <a href="/wiki/Matrix_(mathematics)" title="Matrix (mathematics)">matrix</a> parameter is the <a href="/wiki/Gram_matrix" title="Gram matrix">Gram matrix</a> of your <i>N</i> points with some desired <a href="/wiki/Stochastic_kernel" class="mw-redirect" title="Stochastic kernel">kernel</a>, and <a href="/wiki/Sampling_(mathematics)" class="mw-redirect" title="Sampling (mathematics)">sample</a> from that Gaussian. For solution of the multi-output prediction problem, Gaussian process regression for vector-valued function was developed. In this method, a 'big' covariance is constructed, which describes the correlations between all the input and output variables taken in <i>N</i> points in the desired domain.<sup id="cite_ref-Alvares2012_24-0" class="reference"><a href="#cite_note-Alvares2012-24"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> This approach was elaborated in detail for the matrix-valued Gaussian processes and generalised to processes with 'heavier tails' like <a href="/wiki/Student%27s_t-distribution#Student&#39;s_t-process" title="Student&#39;s t-distribution">Student-t processes</a>.<sup id="cite_ref-Zexun2020_25-0" class="reference"><a href="#cite_note-Zexun2020-25"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup> </p><p>Inference of continuous values with a Gaussian process prior is known as Gaussian process regression, or <a href="/wiki/Kriging" title="Kriging">kriging</a>; extending Gaussian process regression to <a href="/wiki/Kernel_methods_for_vector_output" title="Kernel methods for vector output">multiple target variables</a> is known as <i>cokriging</i>.<sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup> Gaussian processes are thus useful as a powerful non-linear multivariate <a href="/wiki/Interpolation" title="Interpolation">interpolation</a> tool. Kriging is also used to extend Gaussian process in the case of mixed integer inputs.<sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup> </p><p>Gaussian processes are also commonly used to tackle numerical analysis problems such as numerical integration, solving differential equations, or optimisation in the field of <a href="/wiki/Probabilistic_numerics" title="Probabilistic numerics">probabilistic numerics</a>. </p><p>Gaussian processes can also be used in the context of mixture of experts models, for example.<sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-29" class="reference"><a href="#cite_note-29"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup> The underlying rationale of such a learning framework consists in the assumption that a given mapping cannot be well captured by a single Gaussian process model. Instead, the observation space is divided into subsets, each of which is characterized by a different mapping function; each of these is learned via a different Gaussian process component in the postulated mixture. </p><p>In the natural sciences, Gaussian processes have found use as probabilistic models of astronomical time series and as predictors of molecular properties.<sup id="cite_ref-30" class="reference"><a href="#cite_note-30"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Gaussian_process_prediction,_or_Kriging"><span id="Gaussian_process_prediction.2C_or_Kriging"></span>Gaussian process prediction, or Kriging</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Gaussian_process&amp;action=edit&amp;section=13" title="Edit section: Gaussian process prediction, or Kriging"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Kriging" title="Kriging">Kriging</a></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Gaussian_Process_Regression.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/7f/Gaussian_Process_Regression.png/220px-Gaussian_Process_Regression.png" decoding="async" width="220" height="73" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/7f/Gaussian_Process_Regression.png/330px-Gaussian_Process_Regression.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/7f/Gaussian_Process_Regression.png/440px-Gaussian_Process_Regression.png 2x" data-file-width="1200" data-file-height="400" /></a><figcaption>Gaussian Process Regression (prediction) with a squared exponential kernel. Left plot are draws from the prior function distribution. Middle are draws from the posterior. Right is mean prediction with one standard deviation shaded.</figcaption></figure> <p>When concerned with a general Gaussian process regression problem (Kriging), it is assumed that for a Gaussian process <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> observed at coordinates <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>, the vector of values <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span>&#8288;</span> is just one sample from a multivariate Gaussian distribution of dimension equal to number of observed coordinates <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>&#8288;</span>. Therefore, under the assumption of a zero-mean distribution, <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x')\sim N(0,K(\theta ,x,x'))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">)</mo> <mo>&#x223C;<!-- ∼ --></mo> <mi>N</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mi>K</mi> <mo stretchy="false">(</mo> <mi>&#x03B8;<!-- θ --></mi> <mo>,</mo> <mi>x</mi> <mo>,</mo> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x')\sim N(0,K(\theta ,x,x'))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f20d94836fb7e73a988886a1ed29408c7eb4e48f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.648ex; height:3.009ex;" alt="{\displaystyle f(x&#039;)\sim N(0,K(\theta ,x,x&#039;))}"></span>&#8288;</span>, where <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K(\theta ,x,x')}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo stretchy="false">(</mo> <mi>&#x03B8;<!-- θ --></mi> <mo>,</mo> <mi>x</mi> <mo>,</mo> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K(\theta ,x,x')}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/255a8225aa2fbac168f17167a83de7faef815029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.378ex; height:3.009ex;" alt="{\displaystyle K(\theta ,x,x&#039;)}"></span>&#8288;</span> is the covariance matrix between all possible pairs <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x,x')}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x,x')}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/036af2b69d3a6cdd3e5f0231b0bdbd7b388f80be" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.187ex; height:3.009ex;" alt="{\displaystyle (x,x&#039;)}"></span>&#8288;</span> for a given set of hyperparameters <i>θ</i>.<sup id="cite_ref-gpml_7-4" class="reference"><a href="#cite_note-gpml-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> As such the log marginal likelihood is: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \log p(f(x')\mid \theta ,x)=-{\frac {1}{2}}\left(f(x)^{\mathsf {T}}K(\theta ,x,x')^{-1}f(x')+\log \det(K(\theta ,x,x'))+n\log 2\pi \right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>log</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>p</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">)</mo> <mo>&#x2223;<!-- ∣ --></mo> <mi>&#x03B8;<!-- θ --></mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> </msup> <mi>K</mi> <mo stretchy="false">(</mo> <mi>&#x03B8;<!-- θ --></mi> <mo>,</mo> <mi>x</mi> <mo>,</mo> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>f</mi> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">)</mo> <mo>+</mo> <mi>log</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo movablelimits="true" form="prefix">det</mo> <mo stretchy="false">(</mo> <mi>K</mi> <mo stretchy="false">(</mo> <mi>&#x03B8;<!-- θ --></mi> <mo>,</mo> <mi>x</mi> <mo>,</mo> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>+</mo> <mi>n</mi> <mi>log</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \log p(f(x')\mid \theta ,x)=-{\frac {1}{2}}\left(f(x)^{\mathsf {T}}K(\theta ,x,x')^{-1}f(x')+\log \det(K(\theta ,x,x'))+n\log 2\pi \right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9301791066d9b5d9aec25e87a2c8eaf70c9927be" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:81.926ex; height:5.176ex;" alt="{\displaystyle \log p(f(x&#039;)\mid \theta ,x)=-{\frac {1}{2}}\left(f(x)^{\mathsf {T}}K(\theta ,x,x&#039;)^{-1}f(x&#039;)+\log \det(K(\theta ,x,x&#039;))+n\log 2\pi \right)}"></span> </p><p>and maximizing this marginal likelihood towards <span class="texhtml mvar" style="font-style:italic;">θ</span> provides the complete specification of the Gaussian process <span class="texhtml"><i>f</i></span>. One can briefly note at this point that the first term corresponds to a penalty term for a model's failure to fit observed values and the second term to a penalty term that increases proportionally to a model's complexity. Having specified <span class="texhtml mvar" style="font-style:italic;">θ</span>, making predictions about unobserved values <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x^{*})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x^{*})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2c95e0b2fb6edd57d74bf0590657f2d9bdf4a2b6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.472ex; height:2.843ex;" alt="{\displaystyle f(x^{*})}"></span>&#8288;</span> at coordinates <span class="texhtml"><i>x</i>*</span> is then only a matter of drawing samples from the predictive distribution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p(y^{*}\mid x^{*},f(x),x)=N(y^{*}\mid A,B)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo stretchy="false">(</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>&#x2223;<!-- ∣ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>,</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>N</mi> <mo stretchy="false">(</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>&#x2223;<!-- ∣ --></mo> <mi>A</mi> <mo>,</mo> <mi>B</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p(y^{*}\mid x^{*},f(x),x)=N(y^{*}\mid A,B)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4624bce5da04e9136625e1bea0c9f9388979c059" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:33.083ex; height:2.843ex;" alt="{\displaystyle p(y^{*}\mid x^{*},f(x),x)=N(y^{*}\mid A,B)}"></span> where the posterior mean estimate <span class="texhtml mvar" style="font-style:italic;">A</span> is defined as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A=K(\theta ,x^{*},x)K(\theta ,x,x')^{-1}f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <mi>K</mi> <mo stretchy="false">(</mo> <mi>&#x03B8;<!-- θ --></mi> <mo>,</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>K</mi> <mo stretchy="false">(</mo> <mi>&#x03B8;<!-- θ --></mi> <mo>,</mo> <mi>x</mi> <mo>,</mo> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A=K(\theta ,x^{*},x)K(\theta ,x,x')^{-1}f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88613cc5f0e85d5fe3a99d72598958e36bc91fd4" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:32.717ex; height:3.176ex;" alt="{\displaystyle A=K(\theta ,x^{*},x)K(\theta ,x,x&#039;)^{-1}f(x)}"></span> and the posterior variance estimate <i>B</i> is defined as: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B=K(\theta ,x^{*},x^{*})-K(\theta ,x^{*},x)K(\theta ,x,x')^{-1}K(\theta ,x^{*},x)^{\mathsf {T}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mo>=</mo> <mi>K</mi> <mo stretchy="false">(</mo> <mi>&#x03B8;<!-- θ --></mi> <mo>,</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>,</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>K</mi> <mo stretchy="false">(</mo> <mi>&#x03B8;<!-- θ --></mi> <mo>,</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>K</mi> <mo stretchy="false">(</mo> <mi>&#x03B8;<!-- θ --></mi> <mo>,</mo> <mi>x</mi> <mo>,</mo> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>K</mi> <mo stretchy="false">(</mo> <mi>&#x03B8;<!-- θ --></mi> <mo>,</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>,</mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B=K(\theta ,x^{*},x^{*})-K(\theta ,x^{*},x)K(\theta ,x,x')^{-1}K(\theta ,x^{*},x)^{\mathsf {T}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8d1334db2bac68486c3b167dde41250dcf6079e6" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:55.061ex; height:3.176ex;" alt="{\displaystyle B=K(\theta ,x^{*},x^{*})-K(\theta ,x^{*},x)K(\theta ,x,x&#039;)^{-1}K(\theta ,x^{*},x)^{\mathsf {T}}}"></span> where <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K(\theta ,x^{*},x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo stretchy="false">(</mo> <mi>&#x03B8;<!-- θ --></mi> <mo>,</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K(\theta ,x^{*},x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ea5a68976b5c0bb4324da990c1f271bde3ab8a4f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.747ex; height:2.843ex;" alt="{\displaystyle K(\theta ,x^{*},x)}"></span>&#8288;</span> is the covariance between the new coordinate of estimation <i>x</i>* and all other observed coordinates <i>x</i> for a given hyperparameter vector <span class="texhtml mvar" style="font-style:italic;">θ</span>, <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K(\theta ,x,x')}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo stretchy="false">(</mo> <mi>&#x03B8;<!-- θ --></mi> <mo>,</mo> <mi>x</mi> <mo>,</mo> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K(\theta ,x,x')}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/255a8225aa2fbac168f17167a83de7faef815029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.378ex; height:3.009ex;" alt="{\displaystyle K(\theta ,x,x&#039;)}"></span>&#8288;</span> and <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span>&#8288;</span> are defined as before and <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K(\theta ,x^{*},x^{*})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo stretchy="false">(</mo> <mi>&#x03B8;<!-- θ --></mi> <mo>,</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>,</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K(\theta ,x^{*},x^{*})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/20faf014be8eeb61379d9739bfbe76ef370580d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.801ex; height:2.843ex;" alt="{\displaystyle K(\theta ,x^{*},x^{*})}"></span>&#8288;</span> is the variance at point <span class="texhtml"><i>x</i>*</span> as dictated by <span class="texhtml mvar" style="font-style:italic;">θ</span>. It is important to note that practically the posterior mean estimate of <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x^{*})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x^{*})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2c95e0b2fb6edd57d74bf0590657f2d9bdf4a2b6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.472ex; height:2.843ex;" alt="{\displaystyle f(x^{*})}"></span>&#8288;</span> (the "point estimate") is just a linear combination of the observations <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span>&#8288;</span>; in a similar manner the variance of <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x^{*})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x^{*})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2c95e0b2fb6edd57d74bf0590657f2d9bdf4a2b6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.472ex; height:2.843ex;" alt="{\displaystyle f(x^{*})}"></span>&#8288;</span> is actually independent of the observations <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span>&#8288;</span>. A known bottleneck in Gaussian process prediction is that the computational complexity of inference and likelihood evaluation is cubic in the number of points |<i>x</i>|, and as such can become unfeasible for larger data sets.<sup id="cite_ref-brml_6-2" class="reference"><a href="#cite_note-brml-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> Works on sparse Gaussian processes, that usually are based on the idea of building a <i>representative set</i> for the given process <i>f</i>, try to circumvent this issue.<sup id="cite_ref-smolaSparse_31-0" class="reference"><a href="#cite_note-smolaSparse-31"><span class="cite-bracket">&#91;</span>31<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-CsatoSparse_32-0" class="reference"><a href="#cite_note-CsatoSparse-32"><span class="cite-bracket">&#91;</span>32<span class="cite-bracket">&#93;</span></a></sup> The <a href="/wiki/Kriging" title="Kriging">kriging</a> method can be used in the latent level of a <a href="/wiki/Nonlinear_mixed-effects_model" title="Nonlinear mixed-effects model">nonlinear mixed-effects model</a> for a spatial functional prediction: this technique is called the latent kriging.<sup id="cite_ref-33" class="reference"><a href="#cite_note-33"><span class="cite-bracket">&#91;</span>33<span class="cite-bracket">&#93;</span></a></sup> </p><p>Often, the covariance has the form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle K(\theta ,x,x')={\frac {1}{\sigma ^{2}}}{\tilde {K}}(\theta ,x,x')}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>K</mi> <mo stretchy="false">(</mo> <mi>&#x03B8;<!-- θ --></mi> <mo>,</mo> <mi>x</mi> <mo>,</mo> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>K</mi> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03B8;<!-- θ --></mi> <mo>,</mo> <mi>x</mi> <mo>,</mo> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle K(\theta ,x,x')={\frac {1}{\sigma ^{2}}}{\tilde {K}}(\theta ,x,x')}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1905d3b07cbb54be557eedc563a1bcc71c85e3c7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:26.462ex; height:3.843ex;" alt="{\textstyle K(\theta ,x,x&#039;)={\frac {1}{\sigma ^{2}}}{\tilde {K}}(\theta ,x,x&#039;)}"></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/53a5c55e536acf250c1d3e0f754be5692b843ef5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.385ex; height:2.676ex;" alt="{\displaystyle \sigma ^{2}}"></span> is a scaling parameter. Examples are the Matérn class covariance functions. If this scaling parameter <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/53a5c55e536acf250c1d3e0f754be5692b843ef5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.385ex; height:2.676ex;" alt="{\displaystyle \sigma ^{2}}"></span> is either known or unknown (i.e. must be marginalized), then the posterior probability, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p(\theta \mid D)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo stretchy="false">(</mo> <mi>&#x03B8;<!-- θ --></mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>D</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p(\theta \mid D)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f62205460e829fbc7c843567352a69df9e15b0d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:8.02ex; height:2.843ex;" alt="{\displaystyle p(\theta \mid D)}"></span>, i.e. the probability for the hyperparameters <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B8;<!-- θ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e5ab2664b422d53eb0c7df3b87e1360d75ad9af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:2.176ex;" alt="{\displaystyle \theta }"></span> given a set of data pairs <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34a0c600395e5d4345287e21fb26efd386990e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.924ex; height:2.176ex;" alt="{\displaystyle D}"></span> of observations of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span>, admits an analytical expression.<sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">&#91;</span>34<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Bayesian_neural_networks_as_Gaussian_processes">Bayesian neural networks as Gaussian processes</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Gaussian_process&amp;action=edit&amp;section=14" title="Edit section: Bayesian neural networks as Gaussian processes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Neural_network_Gaussian_process" title="Neural network Gaussian process">Neural network Gaussian process</a></div> <p>Bayesian neural networks are a particular type of <a href="/wiki/Bayesian_network" title="Bayesian network">Bayesian network</a> that results from treating <a href="/wiki/Deep_learning" title="Deep learning">deep learning</a> and <a href="/wiki/Artificial_neural_network" class="mw-redirect" title="Artificial neural network">artificial neural network</a> models probabilistically, and assigning a <a href="/wiki/Prior_probability" title="Prior probability">prior distribution</a> to their <a href="/wiki/Statistical_parameter" title="Statistical parameter">parameters</a>. Computation in artificial neural networks is usually organized into sequential layers of <a href="/wiki/Artificial_neuron" title="Artificial neuron">artificial neurons</a>. The number of neurons in a layer is called the layer width. As layer width grows large, many Bayesian neural networks reduce to a Gaussian process with a <a href="/wiki/Closed-form_expression" title="Closed-form expression">closed form</a> compositional kernel. This Gaussian process is called the Neural Network Gaussian Process (NNGP).<sup id="cite_ref-gpml_7-5" class="reference"><a href="#cite_note-gpml-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-novak2020_35-0" class="reference"><a href="#cite_note-novak2020-35"><span class="cite-bracket">&#91;</span>35<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-36" class="reference"><a href="#cite_note-36"><span class="cite-bracket">&#91;</span>36<span class="cite-bracket">&#93;</span></a></sup> It allows predictions from Bayesian neural networks to be more efficiently evaluated, and provides an analytic tool to understand <a href="/wiki/Deep_learning" title="Deep learning">deep learning</a> models. </p> <div class="mw-heading mw-heading2"><h2 id="Computational_issues">Computational issues</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Gaussian_process&amp;action=edit&amp;section=15" title="Edit section: Computational issues"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Gaussian_process_approximations" title="Gaussian process approximations">Gaussian process approximations</a></div> <p>In practical applications, Gaussian process models are often evaluated on a grid leading to multivariate normal distributions. Using these models for prediction or parameter estimation using maximum likelihood requires evaluating a multivariate Gaussian density, which involves calculating the determinant and the inverse of the covariance matrix. Both of these operations have cubic computational complexity which means that even for grids of modest sizes, both operations can have a prohibitive computational cost. This drawback led to the development of multiple <a href="/wiki/Gaussian_process_approximations" title="Gaussian process approximations">approximation methods</a>. </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Gaussian_process&amp;action=edit&amp;section=16" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Bayes_linear_statistics" title="Bayes linear statistics">Bayes linear statistics</a></li> <li><a href="/wiki/Bayesian_interpretation_of_regularization" class="mw-redirect" title="Bayesian interpretation of regularization">Bayesian interpretation of regularization</a></li> <li><a href="/wiki/Kriging" title="Kriging">Kriging</a></li> <li><a href="/wiki/Gaussian_free_field" title="Gaussian free field">Gaussian free field</a></li> <li><a href="/wiki/Gauss%E2%80%93Markov_process" title="Gauss–Markov process">Gauss–Markov process</a></li> <li><a href="/wiki/Gradient-enhanced_kriging" title="Gradient-enhanced kriging">Gradient-enhanced kriging</a> (GEK)</li> <li><a href="/wiki/Student%27s_t-distribution#Student&#39;s_t-process" title="Student&#39;s t-distribution">Student's t-process</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Gaussian_process&amp;action=edit&amp;section=17" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-DrMacKayGPNN-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-DrMacKayGPNN_1-0">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFMacKay2003" class="citation book cs1"><a href="/wiki/David_J.C._MacKay" class="mw-redirect" title="David J.C. MacKay">MacKay, David J.C.</a> (2003). <a rel="nofollow" class="external text" href="http://www.inference.phy.cam.ac.uk/itprnn/book.pdf"><i>Information Theory, Inference, and Learning Algorithms</i></a> <span class="cs1-format">(PDF)</span>. <a href="/wiki/Cambridge_University_Press" title="Cambridge University Press">Cambridge University Press</a>. p.&#160;540. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780521642989" title="Special:BookSources/9780521642989"><bdi>9780521642989</bdi></a>. <q>The probability distribution of a function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y(\mathbf {x} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y(\mathbf {x} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e201c979a89326a9395458a9c866d1f19e661d2b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.376ex; height:2.843ex;" alt="{\displaystyle y(\mathbf {x} )}"></span> is a Gaussian processes if for any finite selection of points <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} ^{(1)},\mathbf {x} ^{(2)},\ldots ,\mathbf {x} ^{(N)}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo>,</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>N</mi> <mo stretchy="false">)</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} ^{(1)},\mathbf {x} ^{(2)},\ldots ,\mathbf {x} ^{(N)}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e38102a9ec4c59bf335fb2aaaf86c36baa0b0bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:18.083ex; height:3.176ex;" alt="{\displaystyle \mathbf {x} ^{(1)},\mathbf {x} ^{(2)},\ldots ,\mathbf {x} ^{(N)}}"></span>, the density <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(y(\mathbf {x} ^{(1)}),y(\mathbf {x} ^{(2)}),\ldots ,y(\mathbf {x} ^{(N)}))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">)</mo> <mo>,</mo> <mi>y</mi> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">)</mo> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mi>y</mi> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>N</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(y(\mathbf {x} ^{(1)}),y(\mathbf {x} ^{(2)}),\ldots ,y(\mathbf {x} ^{(N)}))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7f8a42d63df0bf48f965ca7eb40c56d5186bf780" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:30.532ex; height:3.343ex;" alt="{\displaystyle P(y(\mathbf {x} ^{(1)}),y(\mathbf {x} ^{(2)}),\ldots ,y(\mathbf {x} ^{(N)}))}"></span> is a Gaussian</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Information+Theory%2C+Inference%2C+and+Learning+Algorithms&amp;rft.pages=540&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2003&amp;rft.isbn=9780521642989&amp;rft.aulast=MacKay&amp;rft.aufirst=David+J.C.&amp;rft_id=http%3A%2F%2Fwww.inference.phy.cam.ac.uk%2Fitprnn%2Fbook.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGaussian+process" class="Z3988"></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDudley1989" class="citation book cs1">Dudley, R.M. (1989). <i>Real Analysis and Probability</i>. Wadsworth and Brooks/Cole. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-534-10050-3" title="Special:BookSources/0-534-10050-3"><bdi>0-534-10050-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Real+Analysis+and+Probability&amp;rft.pub=Wadsworth+and+Brooks%2FCole&amp;rft.date=1989&amp;rft.isbn=0-534-10050-3&amp;rft.aulast=Dudley&amp;rft.aufirst=R.M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGaussian+process" class="Z3988"></span></span> </li> <li id="cite_note-Lapidoth2017-3"><span class="mw-cite-backlink">^ <a href="#cite_ref-Lapidoth2017_3-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Lapidoth2017_3-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAmos_Lapidoth2017" class="citation book cs1">Amos Lapidoth (8 February 2017). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=6oTuDQAAQBAJ&amp;q=independence"><i>A Foundation in Digital Communication</i></a>. Cambridge University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-107-17732-1" title="Special:BookSources/978-1-107-17732-1"><bdi>978-1-107-17732-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+Foundation+in+Digital+Communication&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2017-02-08&amp;rft.isbn=978-1-107-17732-1&amp;rft.au=Amos+Lapidoth&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D6oTuDQAAQBAJ%26q%3Dindependence&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGaussian+process" class="Z3988"></span></span> </li> <li id="cite_note-KacSiegert1947-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-KacSiegert1947_4-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKacSiegert1947" class="citation journal cs1">Kac, M.; Siegert, A.J.F (1947). <a rel="nofollow" class="external text" href="https://doi.org/10.1214%2Faoms%2F1177730391">"An Explicit Representation of a Stationary Gaussian Process"</a>. <i>The Annals of Mathematical Statistics</i>. <b>18</b> (3): 438–442. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1214%2Faoms%2F1177730391">10.1214/aoms/1177730391</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Annals+of+Mathematical+Statistics&amp;rft.atitle=An+Explicit+Representation+of+a+Stationary+Gaussian+Process&amp;rft.volume=18&amp;rft.issue=3&amp;rft.pages=438-442&amp;rft.date=1947&amp;rft_id=info%3Adoi%2F10.1214%2Faoms%2F1177730391&amp;rft.aulast=Kac&amp;rft.aufirst=M.&amp;rft.au=Siegert%2C+A.J.F&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1214%252Faoms%252F1177730391&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGaussian+process" class="Z3988"></span></span> </li> <li id="cite_note-prml-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-prml_5-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBishop2006" class="citation book cs1">Bishop, C.M. (2006). <i>Pattern Recognition and Machine Learning</i>. <a href="/wiki/Springer_Science%2BBusiness_Media" title="Springer Science+Business Media">Springer</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-31073-2" title="Special:BookSources/978-0-387-31073-2"><bdi>978-0-387-31073-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Pattern+Recognition+and+Machine+Learning&amp;rft.pub=Springer&amp;rft.date=2006&amp;rft.isbn=978-0-387-31073-2&amp;rft.aulast=Bishop&amp;rft.aufirst=C.M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGaussian+process" class="Z3988"></span></span> </li> <li id="cite_note-brml-6"><span class="mw-cite-backlink">^ <a href="#cite_ref-brml_6-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-brml_6-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-brml_6-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBarber2012" class="citation book cs1">Barber, David (2012). <a rel="nofollow" class="external text" href="http://web4.cs.ucl.ac.uk/staff/D.Barber/pmwiki/pmwiki.php?n=Brml.HomePage"><i>Bayesian Reasoning and Machine Learning</i></a>. <a href="/wiki/Cambridge_University_Press" title="Cambridge University Press">Cambridge University Press</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-521-51814-7" title="Special:BookSources/978-0-521-51814-7"><bdi>978-0-521-51814-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Bayesian+Reasoning+and+Machine+Learning&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2012&amp;rft.isbn=978-0-521-51814-7&amp;rft.aulast=Barber&amp;rft.aufirst=David&amp;rft_id=http%3A%2F%2Fweb4.cs.ucl.ac.uk%2Fstaff%2FD.Barber%2Fpmwiki%2Fpmwiki.php%3Fn%3DBrml.HomePage&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGaussian+process" class="Z3988"></span></span> </li> <li id="cite_note-gpml-7"><span class="mw-cite-backlink">^ <a href="#cite_ref-gpml_7-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-gpml_7-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-gpml_7-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-gpml_7-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-gpml_7-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-gpml_7-5"><sup><i><b>f</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRasmussenWilliams,_C.K.I2006" class="citation book cs1">Rasmussen, C.E.; Williams, C.K.I (2006). <a rel="nofollow" class="external text" href="http://www.gaussianprocess.org/gpml/"><i>Gaussian Processes for Machine Learning</i></a>. <a href="/wiki/MIT_Press" title="MIT Press">MIT Press</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-262-18253-9" title="Special:BookSources/978-0-262-18253-9"><bdi>978-0-262-18253-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Gaussian+Processes+for+Machine+Learning&amp;rft.pub=MIT+Press&amp;rft.date=2006&amp;rft.isbn=978-0-262-18253-9&amp;rft.aulast=Rasmussen&amp;rft.aufirst=C.E.&amp;rft.au=Williams%2C+C.K.I&amp;rft_id=http%3A%2F%2Fwww.gaussianprocess.org%2Fgpml%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGaussian+process" class="Z3988"></span></span> </li> <li id="cite_note-PRP-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-PRP_8-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGrimmettDavid_Stirzaker2001" class="citation book cs1">Grimmett, Geoffrey; David Stirzaker (2001). <i>Probability and Random Processes</i>. <a href="/wiki/Oxford_University_Press" title="Oxford University Press">Oxford University Press</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0198572220" title="Special:BookSources/978-0198572220"><bdi>978-0198572220</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Probability+and+Random+Processes&amp;rft.pub=Oxford+University+Press&amp;rft.date=2001&amp;rft.isbn=978-0198572220&amp;rft.aulast=Grimmett&amp;rft.aufirst=Geoffrey&amp;rft.au=David+Stirzaker&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGaussian+process" class="Z3988"></span></span> </li> <li id="cite_note-seegerGPML-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-seegerGPML_9-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSeeger2004" class="citation journal cs1">Seeger, Matthias (2004). "Gaussian Processes for Machine Learning". <i>International Journal of Neural Systems</i>. <b>14</b> (2): 69–104. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.71.1079">10.1.1.71.1079</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1142%2Fs0129065704001899">10.1142/s0129065704001899</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/15112367">15112367</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:52807317">52807317</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=International+Journal+of+Neural+Systems&amp;rft.atitle=Gaussian+Processes+for+Machine+Learning&amp;rft.volume=14&amp;rft.issue=2&amp;rft.pages=69-104&amp;rft.date=2004&amp;rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.71.1079%23id-name%3DCiteSeerX&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A52807317%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F15112367&amp;rft_id=info%3Adoi%2F10.1142%2Fs0129065704001899&amp;rft.aulast=Seeger&amp;rft.aufirst=Matthias&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGaussian+process" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDudley1975" class="citation book cs1"><a href="/wiki/Richard_M._Dudley" title="Richard M. Dudley">Dudley, R. M.</a> (1975). <a rel="nofollow" class="external text" href="https://www.mathunion.org/fileadmin/ICM/Proceedings/ICM1974.2/ICM1974.2.ocr.pdf">"The Gaussian process and how to approach it"</a> <span class="cs1-format">(PDF)</span>. <i>Proceedings of the International Congress of Mathematicians</i>. Vol.&#160;2. pp.&#160;143–146.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=The+Gaussian+process+and+how+to+approach+it&amp;rft.btitle=Proceedings+of+the+International+Congress+of+Mathematicians&amp;rft.pages=143-146&amp;rft.date=1975&amp;rft.aulast=Dudley&amp;rft.aufirst=R.+M.&amp;rft_id=https%3A%2F%2Fwww.mathunion.org%2Ffileadmin%2FICM%2FProceedings%2FICM1974.2%2FICM1974.2.ocr.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGaussian+process" class="Z3988"></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDudley2010" class="citation book cs1"><a href="/wiki/Richard_M._Dudley" title="Richard M. Dudley">Dudley, R. M.</a> (2010). <a rel="nofollow" class="external text" href="http://projecteuclid.org/euclid.aop/1176997026">"Sample Functions of the Gaussian Process"</a>. <i>Selected Works of R.M. Dudley</i>. Vol.&#160;1. pp.&#160;66–103. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-1-4419-5821-1_13">10.1007/978-1-4419-5821-1_13</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4419-5820-4" title="Special:BookSources/978-1-4419-5820-4"><bdi>978-1-4419-5820-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Sample+Functions+of+the+Gaussian+Process&amp;rft.btitle=Selected+Works+of+R.M.+Dudley&amp;rft.pages=66-103&amp;rft.date=2010&amp;rft_id=info%3Adoi%2F10.1007%2F978-1-4419-5821-1_13&amp;rft.isbn=978-1-4419-5820-4&amp;rft.aulast=Dudley&amp;rft.aufirst=R.+M.&amp;rft_id=http%3A%2F%2Fprojecteuclid.org%2Feuclid.aop%2F1176997026&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGaussian+process" class="Z3988"></span> <span class="cs1-visible-error citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_book" title="Template:Cite book">cite book</a>}}</code>: </span><span class="cs1-visible-error citation-comment"><code class="cs1-code">&#124;journal=</code> ignored (<a href="/wiki/Help:CS1_errors#periodical_ignored" title="Help:CS1 errors">help</a>)</span></span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTalagrand2014" class="citation book cs1"><a href="/wiki/Michel_Talagrand" title="Michel Talagrand">Talagrand, Michel</a> (2014). <a rel="nofollow" class="external text" href="https://www.springer.com/gp/book/9783642540745"><i>Upper and lower bounds for stochastic processes: modern methods and classical problems</i></a>. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics. Springer, Heidelberg. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-642-54074-5" title="Special:BookSources/978-3-642-54074-5"><bdi>978-3-642-54074-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Upper+and+lower+bounds+for+stochastic+processes%3A+modern+methods+and+classical+problems&amp;rft.series=Ergebnisse+der+Mathematik+und+ihrer+Grenzgebiete.+3.+Folge+%2F+A+Series+of+Modern+Surveys+in+Mathematics&amp;rft.pub=Springer%2C+Heidelberg&amp;rft.date=2014&amp;rft.isbn=978-3-642-54074-5&amp;rft.aulast=Talagrand&amp;rft.aufirst=Michel&amp;rft_id=https%3A%2F%2Fwww.springer.com%2Fgp%2Fbook%2F9783642540745&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGaussian+process" class="Z3988"></span></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLedoux1996" class="citation cs2">Ledoux, Michel (1996), "Isoperimetry and Gaussian analysis", in Dobrushin, Roland; Groeneboom, Piet; Ledoux, Michel (eds.), <i>Lectures on Probability Theory and Statistics: Ecole d'Eté de Probabilités de Saint-Flour XXIV–1994</i>, Lecture Notes in Mathematics, vol.&#160;1648, Berlin: Springer, pp.&#160;165–294, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBFb0095676">10.1007/BFb0095676</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-540-62055-6" title="Special:BookSources/978-3-540-62055-6"><bdi>978-3-540-62055-6</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1600888">1600888</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Isoperimetry+and+Gaussian+analysis&amp;rft.btitle=Lectures+on+Probability+Theory+and+Statistics%3A+Ecole+d%27Et%C3%A9+de+Probabilit%C3%A9s+de+Saint-Flour+XXIV%E2%80%931994&amp;rft.place=Berlin&amp;rft.series=Lecture+Notes+in+Mathematics&amp;rft.pages=165-294&amp;rft.pub=Springer&amp;rft.date=1996&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1600888%23id-name%3DMR&amp;rft_id=info%3Adoi%2F10.1007%2FBFb0095676&amp;rft.isbn=978-3-540-62055-6&amp;rft.aulast=Ledoux&amp;rft.aufirst=Michel&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGaussian+process" class="Z3988"></span></span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAdler1990" class="citation book cs1">Adler, Robert J. (1990). <i>An Introduction to Continuity, Extrema, and Related Topics for General Gaussian Processes</i>. Vol.&#160;12. Hayward, California: Institute of Mathematical Statistics. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-940600-17-X" title="Special:BookSources/0-940600-17-X"><bdi>0-940600-17-X</bdi></a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/4355563">4355563</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1088478">1088478</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=An+Introduction+to+Continuity%2C+Extrema%2C+and+Related+Topics+for+General+Gaussian+Processes&amp;rft.place=Hayward%2C+California&amp;rft.pub=Institute+of+Mathematical+Statistics&amp;rft.date=1990&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1088478%23id-name%3DMR&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F4355563%23id-name%3DJSTOR&amp;rft.isbn=0-940600-17-X&amp;rft.aulast=Adler&amp;rft.aufirst=Robert+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGaussian+process" class="Z3988"></span> <span class="cs1-visible-error citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_book" title="Template:Cite book">cite book</a>}}</code>: </span><span class="cs1-visible-error citation-comment"><code class="cs1-code">&#124;journal=</code> ignored (<a href="/wiki/Help:CS1_errors#periodical_ignored" title="Help:CS1 errors">help</a>)</span></span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBerman1992" class="citation journal cs1">Berman, Simeon M. (1992). "Review of: Adler 1990 'An introduction to continuity...'<span class="cs1-kern-right"></span>". <i>Mathematical Reviews</i>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1088478">1088478</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Mathematical+Reviews&amp;rft.atitle=Review+of%3A+Adler+1990+%27An+introduction+to+continuity...%27&amp;rft.date=1992&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1088478%23id-name%3DMR&amp;rft.aulast=Berman&amp;rft.aufirst=Simeon+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGaussian+process" class="Z3988"></span></span> </li> <li id="cite_note-Dudley67-16"><span class="mw-cite-backlink">^ <a href="#cite_ref-Dudley67_16-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Dudley67_16-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDudley1967" class="citation journal cs1"><a href="/wiki/Richard_M._Dudley" title="Richard M. Dudley">Dudley, R. M.</a> (1967). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0022-1236%2867%2990017-1">"The sizes of compact subsets of Hilbert space and continuity of Gaussian processes"</a>. <i>Journal of Functional Analysis</i>. <b>1</b> (3): 290–330. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0022-1236%2867%2990017-1">10.1016/0022-1236(67)90017-1</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Functional+Analysis&amp;rft.atitle=The+sizes+of+compact+subsets+of+Hilbert+space+and+continuity+of+Gaussian+processes&amp;rft.volume=1&amp;rft.issue=3&amp;rft.pages=290-330&amp;rft.date=1967&amp;rft_id=info%3Adoi%2F10.1016%2F0022-1236%2867%2990017-1&amp;rft.aulast=Dudley&amp;rft.aufirst=R.+M.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252F0022-1236%252867%252990017-1&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGaussian+process" class="Z3988"></span></span> </li> <li id="cite_note-MarcusShepp72-17"><span class="mw-cite-backlink">^ <a href="#cite_ref-MarcusShepp72_17-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-MarcusShepp72_17-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMarcusShepp1972" class="citation book cs1">Marcus, M.B.; <a href="/wiki/Lawrence_Shepp" title="Lawrence Shepp">Shepp, Lawrence A.</a> (1972). <a rel="nofollow" class="external text" href="https://projecteuclid.org/euclid.bsmsp/1200514231">"Sample behavior of Gaussian processes"</a>. <i>Proceedings of the sixth Berkeley symposium on mathematical statistics and probability, vol. II: probability theory</i>. Vol.&#160;6. Univ. California, Berkeley. pp.&#160;423–441.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Sample+behavior+of+Gaussian+processes&amp;rft.btitle=Proceedings+of+the+sixth+Berkeley+symposium+on+mathematical+statistics+and+probability%2C+vol.+II%3A+probability+theory&amp;rft.pages=423-441&amp;rft.pub=Univ.+California%2C+Berkeley&amp;rft.date=1972&amp;rft.aulast=Marcus&amp;rft.aufirst=M.B.&amp;rft.au=Shepp%2C+Lawrence+A.&amp;rft_id=https%3A%2F%2Fprojecteuclid.org%2Feuclid.bsmsp%2F1200514231&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGaussian+process" class="Z3988"></span></span> </li> <li id="cite_note-MarcusShepp70-18"><span class="mw-cite-backlink">^ <a href="#cite_ref-MarcusShepp70_18-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-MarcusShepp70_18-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMarcusShepp1970" class="citation journal cs1">Marcus, Michael B.; <a href="/wiki/Lawrence_Shepp" title="Lawrence Shepp">Shepp, Lawrence A.</a> (1970). <a rel="nofollow" class="external text" href="https://doi.org/10.1090%2Fs0002-9947-1970-0264749-1">"Continuity of Gaussian processes"</a>. <i><a href="/wiki/Transactions_of_the_American_Mathematical_Society" title="Transactions of the American Mathematical Society">Transactions of the American Mathematical Society</a></i>. <b>151</b> (2): 377–391. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1090%2Fs0002-9947-1970-0264749-1">10.1090/s0002-9947-1970-0264749-1</a></span>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/1995502">1995502</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Transactions+of+the+American+Mathematical+Society&amp;rft.atitle=Continuity+of+Gaussian+processes&amp;rft.volume=151&amp;rft.issue=2&amp;rft.pages=377-391&amp;rft.date=1970&amp;rft_id=info%3Adoi%2F10.1090%2Fs0002-9947-1970-0264749-1&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F1995502%23id-name%3DJSTOR&amp;rft.aulast=Marcus&amp;rft.aufirst=Michael+B.&amp;rft.au=Shepp%2C+Lawrence+A.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1090%252Fs0002-9947-1970-0264749-1&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGaussian+process" class="Z3988"></span></span> </li> <li id="cite_note-Viitasaari2014-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-Viitasaari2014_19-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAzmoodehSottinenViitasaariYazigi2014" class="citation journal cs1">Azmoodeh, Ehsan; Sottinen, Tommi; Viitasaari, Lauri; Yazigi, Adil (2014). "Necessary and sufficient conditions for Hölder continuity of Gaussian processes". <i>Statistics &amp; Probability Letters</i>. <b>94</b>: 230–235. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1403.2215">1403.2215</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.spl.2014.07.030">10.1016/j.spl.2014.07.030</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Statistics+%26+Probability+Letters&amp;rft.atitle=Necessary+and+sufficient+conditions+for+H%C3%B6lder+continuity+of+Gaussian+processes&amp;rft.volume=94&amp;rft.pages=230-235&amp;rft.date=2014&amp;rft_id=info%3Aarxiv%2F1403.2215&amp;rft_id=info%3Adoi%2F10.1016%2Fj.spl.2014.07.030&amp;rft.aulast=Azmoodeh&amp;rft.aufirst=Ehsan&amp;rft.au=Sottinen%2C+Tommi&amp;rft.au=Viitasaari%2C+Lauri&amp;rft.au=Yazigi%2C+Adil&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGaussian+process" class="Z3988"></span></span> </li> <li id="cite_note-Driscoll1973-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-Driscoll1973_20-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDriscoll1973" class="citation journal cs1">Driscoll, Michael F. (1973). <a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF00534894">"The reproducing kernel Hilbert space structure of the sample paths of a Gaussian process"</a>. <i>Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete</i>. <b>26</b> (4): 309–316. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF00534894">10.1007/BF00534894</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0044-3719">0044-3719</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:123348980">123348980</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Zeitschrift+f%C3%BCr+Wahrscheinlichkeitstheorie+und+Verwandte+Gebiete&amp;rft.atitle=The+reproducing+kernel+Hilbert+space+structure+of+the+sample+paths+of+a+Gaussian+process&amp;rft.volume=26&amp;rft.issue=4&amp;rft.pages=309-316&amp;rft.date=1973&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A123348980%23id-name%3DS2CID&amp;rft.issn=0044-3719&amp;rft_id=info%3Adoi%2F10.1007%2FBF00534894&amp;rft.aulast=Driscoll&amp;rft.aufirst=Michael+F.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1007%252FBF00534894&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGaussian+process" class="Z3988"></span></span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJidlingWahlströmWillsSchön2017" class="citation arxiv cs1">Jidling, Carl; Wahlström, Niklas; Wills, Adrian; Schön, Thomas B. (2017-09-19). "Linearly constrained Gaussian processes". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1703.00787">1703.00787</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/stat.ML">stat.ML</a>].</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=Linearly+constrained+Gaussian+processes&amp;rft.date=2017-09-19&amp;rft_id=info%3Aarxiv%2F1703.00787&amp;rft.aulast=Jidling&amp;rft.aufirst=Carl&amp;rft.au=Wahlstr%C3%B6m%2C+Niklas&amp;rft.au=Wills%2C+Adrian&amp;rft.au=Sch%C3%B6n%2C+Thomas+B.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGaussian+process" class="Z3988"></span></span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text">The documentation for <a href="/wiki/Scikit-learn" title="Scikit-learn">scikit-learn</a> also has similar <a rel="nofollow" class="external text" href="http://scikit-learn.org/stable/auto_examples/gaussian_process/plot_compare_gpr_krr.html">examples</a>.</span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLiuPrincipe,_J.C.Haykin,_S.2010" class="citation book cs1">Liu, W.; Principe, J.C.; Haykin, S. (2010). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160304042652/http://www.cnel.ufl.edu/~weifeng/publication.htm"><i>Kernel Adaptive Filtering: A Comprehensive Introduction</i></a>. <a href="/wiki/John_Wiley_%26_Sons" class="mw-redirect" title="John Wiley &amp; Sons">John Wiley</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-470-44753-6" title="Special:BookSources/978-0-470-44753-6"><bdi>978-0-470-44753-6</bdi></a>. Archived from <a rel="nofollow" class="external text" href="http://www.cnel.ufl.edu/~weifeng/publication.htm">the original</a> on 2016-03-04<span class="reference-accessdate">. Retrieved <span class="nowrap">2010-03-26</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Kernel+Adaptive+Filtering%3A+A+Comprehensive+Introduction&amp;rft.pub=John+Wiley&amp;rft.date=2010&amp;rft.isbn=978-0-470-44753-6&amp;rft.aulast=Liu&amp;rft.aufirst=W.&amp;rft.au=Principe%2C+J.C.&amp;rft.au=Haykin%2C+S.&amp;rft_id=http%3A%2F%2Fwww.cnel.ufl.edu%2F~weifeng%2Fpublication.htm&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGaussian+process" class="Z3988"></span></span> </li> <li id="cite_note-Alvares2012-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-Alvares2012_24-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFÁlvarezRosascoLawrence2012" class="citation journal cs1">Álvarez, Mauricio A.; Rosasco, Lorenzo; Lawrence, Neil D. (2012). <a rel="nofollow" class="external text" href="http://eprints.whiterose.ac.uk/114503/1/1106.6251v2.pdf">"Kernels for vector-valued functions: A review"</a> <span class="cs1-format">(PDF)</span>. <i>Foundations and Trends in Machine Learning</i>. <b>4</b> (3): 195–266. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1561%2F2200000036">10.1561/2200000036</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:456491">456491</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Foundations+and+Trends+in+Machine+Learning&amp;rft.atitle=Kernels+for+vector-valued+functions%3A+A+review&amp;rft.volume=4&amp;rft.issue=3&amp;rft.pages=195-266&amp;rft.date=2012&amp;rft_id=info%3Adoi%2F10.1561%2F2200000036&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A456491%23id-name%3DS2CID&amp;rft.aulast=%C3%81lvarez&amp;rft.aufirst=Mauricio+A.&amp;rft.au=Rosasco%2C+Lorenzo&amp;rft.au=Lawrence%2C+Neil+D.&amp;rft_id=http%3A%2F%2Feprints.whiterose.ac.uk%2F114503%2F1%2F1106.6251v2.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGaussian+process" class="Z3988"></span></span> </li> <li id="cite_note-Zexun2020-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-Zexun2020_25-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChenWangGorban2019" class="citation journal cs1">Chen, Zexun; Wang, Bo; Gorban, Alexander N. (2019). <a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs00521-019-04687-8">"Multivariate Gaussian and Student-t process regression for multi-output prediction"</a>. <i>Neural Computing and Applications</i>. <b>32</b> (8): 3005–3028. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1703.04455">1703.04455</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs00521-019-04687-8">10.1007/s00521-019-04687-8</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Neural+Computing+and+Applications&amp;rft.atitle=Multivariate+Gaussian+and+Student-t+process+regression+for+multi-output+prediction&amp;rft.volume=32&amp;rft.issue=8&amp;rft.pages=3005-3028&amp;rft.date=2019&amp;rft_id=info%3Aarxiv%2F1703.04455&amp;rft_id=info%3Adoi%2F10.1007%2Fs00521-019-04687-8&amp;rft.aulast=Chen&amp;rft.aufirst=Zexun&amp;rft.au=Wang%2C+Bo&amp;rft.au=Gorban%2C+Alexander+N.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1007%252Fs00521-019-04687-8&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGaussian+process" class="Z3988"></span></span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStein1999" class="citation book cs1">Stein, M.L. (1999). <i>Interpolation of Spatial Data: Some Theory for Kriging</i>. <a href="/wiki/Springer_Science%2BBusiness_Media" title="Springer Science+Business Media">Springer</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Interpolation+of+Spatial+Data%3A+Some+Theory+for+Kriging&amp;rft.pub=Springer&amp;rft.date=1999&amp;rft.aulast=Stein&amp;rft.aufirst=M.L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGaussian+process" class="Z3988"></span></span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSavesDiouaneBartoliLefebvre2023" class="citation journal cs1">Saves, Paul; Diouane, Youssef; Bartoli, Nathalie; Lefebvre, Thierry; Morlier, Joseph (2023). "A mixed-categorical correlation kernel for Gaussian process". <i>Neurocomputing</i>. <b>550</b>: 126472. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2211.08262">2211.08262</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.neucom.2023.126472">10.1016/j.neucom.2023.126472</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Neurocomputing&amp;rft.atitle=A+mixed-categorical+correlation+kernel+for+Gaussian+process&amp;rft.volume=550&amp;rft.pages=126472&amp;rft.date=2023&amp;rft_id=info%3Aarxiv%2F2211.08262&amp;rft_id=info%3Adoi%2F10.1016%2Fj.neucom.2023.126472&amp;rft.aulast=Saves&amp;rft.aufirst=Paul&amp;rft.au=Diouane%2C+Youssef&amp;rft.au=Bartoli%2C+Nathalie&amp;rft.au=Lefebvre%2C+Thierry&amp;rft.au=Morlier%2C+Joseph&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGaussian+process" class="Z3988"></span></span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPlataniosChatzis2014" class="citation journal cs1">Platanios, Emmanouil A.; Chatzis, Sotirios P. (2014). "Gaussian Process-Mixture Conditional Heteroscedasticity". <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i>. <b>36</b> (5): 888–900. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FTPAMI.2013.183">10.1109/TPAMI.2013.183</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/26353224">26353224</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:10424638">10424638</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=IEEE+Transactions+on+Pattern+Analysis+and+Machine+Intelligence&amp;rft.atitle=Gaussian+Process-Mixture+Conditional+Heteroscedasticity&amp;rft.volume=36&amp;rft.issue=5&amp;rft.pages=888-900&amp;rft.date=2014&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A10424638%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F26353224&amp;rft_id=info%3Adoi%2F10.1109%2FTPAMI.2013.183&amp;rft.aulast=Platanios&amp;rft.aufirst=Emmanouil+A.&amp;rft.au=Chatzis%2C+Sotirios+P.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGaussian+process" class="Z3988"></span></span> </li> <li id="cite_note-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-29">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChatzis2013" class="citation journal cs1">Chatzis, Sotirios P. (2013). "A latent variable Gaussian process model with Pitman–Yor process priors for multiclass classification". <i>Neurocomputing</i>. <b>120</b>: 482–489. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.neucom.2013.04.029">10.1016/j.neucom.2013.04.029</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Neurocomputing&amp;rft.atitle=A+latent+variable+Gaussian+process+model+with+Pitman%E2%80%93Yor+process+priors+for+multiclass+classification&amp;rft.volume=120&amp;rft.pages=482-489&amp;rft.date=2013&amp;rft_id=info%3Adoi%2F10.1016%2Fj.neucom.2013.04.029&amp;rft.aulast=Chatzis&amp;rft.aufirst=Sotirios+P.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGaussian+process" class="Z3988"></span></span> </li> <li id="cite_note-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-30">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGriffiths2022" class="citation thesis cs1">Griffiths, Ryan-Rhys (2022). <i>Applications of Gaussian Processes at Extreme Lengthscales: From Molecules to Black Holes</i> (PhD thesis). University of Cambridge. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2303.14291">2303.14291</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.17863%2FCAM.93643">10.17863/CAM.93643</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adissertation&amp;rft.title=Applications+of+Gaussian+Processes+at+Extreme+Lengthscales%3A+From+Molecules+to+Black+Holes&amp;rft.degree=PhD&amp;rft.inst=University+of+Cambridge&amp;rft.date=2022&amp;rft_id=info%3Aarxiv%2F2303.14291&amp;rft_id=info%3Adoi%2F10.17863%2FCAM.93643&amp;rft.aulast=Griffiths&amp;rft.aufirst=Ryan-Rhys&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGaussian+process" class="Z3988"></span></span> </li> <li id="cite_note-smolaSparse-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-smolaSparse_31-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSmolaSchoellkopf2000" class="citation journal cs1">Smola, A.J.; Schoellkopf, B. (2000). "Sparse greedy matrix approximation for machine learning". <i>Proceedings of the Seventeenth International Conference on Machine Learning</i>: 911–918. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.43.3153">10.1.1.43.3153</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Proceedings+of+the+Seventeenth+International+Conference+on+Machine+Learning&amp;rft.atitle=Sparse+greedy+matrix+approximation+for+machine+learning&amp;rft.pages=911-918&amp;rft.date=2000&amp;rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.43.3153%23id-name%3DCiteSeerX&amp;rft.aulast=Smola&amp;rft.aufirst=A.J.&amp;rft.au=Schoellkopf%2C+B.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGaussian+process" class="Z3988"></span></span> </li> <li id="cite_note-CsatoSparse-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-CsatoSparse_32-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCsatoOpper2002" class="citation journal cs1">Csato, L.; Opper, M. (2002). "Sparse on-line Gaussian processes". <i>Neural Computation</i>. <b>14</b> (3): 641–668. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.335.9713">10.1.1.335.9713</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1162%2F089976602317250933">10.1162/089976602317250933</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/11860686">11860686</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:11375333">11375333</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Neural+Computation&amp;rft.atitle=Sparse+on-line+Gaussian+processes&amp;rft.volume=14&amp;rft.issue=3&amp;rft.pages=641-668&amp;rft.date=2002&amp;rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.335.9713%23id-name%3DCiteSeerX&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A11375333%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F11860686&amp;rft_id=info%3Adoi%2F10.1162%2F089976602317250933&amp;rft.aulast=Csato&amp;rft.aufirst=L.&amp;rft.au=Opper%2C+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGaussian+process" class="Z3988"></span></span> </li> <li id="cite_note-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-33">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLeeMallick2021" class="citation journal cs1">Lee, Se Yoon; Mallick, Bani (2021). <a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs13571-020-00245-8">"Bayesian Hierarchical Modeling: Application Towards Production Results in the Eagle Ford Shale of South Texas"</a>. <i>Sankhya B</i>. <b>84</b>: 1–43. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs13571-020-00245-8">10.1007/s13571-020-00245-8</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Sankhya+B&amp;rft.atitle=Bayesian+Hierarchical+Modeling%3A+Application+Towards+Production+Results+in+the+Eagle+Ford+Shale+of+South+Texas&amp;rft.volume=84&amp;rft.pages=1-43&amp;rft.date=2021&amp;rft_id=info%3Adoi%2F10.1007%2Fs13571-020-00245-8&amp;rft.aulast=Lee&amp;rft.aufirst=Se+Yoon&amp;rft.au=Mallick%2C+Bani&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1007%252Fs13571-020-00245-8&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGaussian+process" class="Z3988"></span></span> </li> <li id="cite_note-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-34">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRanftlMelitoBadeliReinbacher-Köstinger2019" class="citation journal cs1">Ranftl, Sascha; Melito, Gian Marco; Badeli, Vahid; Reinbacher-Köstinger, Alice; Ellermann, Katrin; von der Linden, Wolfgang (2019-12-31). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516489">"Bayesian Uncertainty Quantification with Multi-Fidelity Data and Gaussian Processes for Impedance Cardiography of Aortic Dissection"</a>. <i>Entropy</i>. <b>22</b> (1): 58. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2019Entrp..22...58R">2019Entrp..22...58R</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3390%2Fe22010058">10.3390/e22010058</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1099-4300">1099-4300</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516489">7516489</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/33285833">33285833</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Entropy&amp;rft.atitle=Bayesian+Uncertainty+Quantification+with+Multi-Fidelity+Data+and+Gaussian+Processes+for+Impedance+Cardiography+of+Aortic+Dissection&amp;rft.volume=22&amp;rft.issue=1&amp;rft.pages=58&amp;rft.date=2019-12-31&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC7516489%23id-name%3DPMC&amp;rft_id=info%3Abibcode%2F2019Entrp..22...58R&amp;rft_id=info%3Apmid%2F33285833&amp;rft_id=info%3Adoi%2F10.3390%2Fe22010058&amp;rft.issn=1099-4300&amp;rft.aulast=Ranftl&amp;rft.aufirst=Sascha&amp;rft.au=Melito%2C+Gian+Marco&amp;rft.au=Badeli%2C+Vahid&amp;rft.au=Reinbacher-K%C3%B6stinger%2C+Alice&amp;rft.au=Ellermann%2C+Katrin&amp;rft.au=von+der+Linden%2C+Wolfgang&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC7516489&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGaussian+process" class="Z3988"></span></span> </li> <li id="cite_note-novak2020-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-novak2020_35-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNovakXiaoHronLee2020" class="citation journal cs1">Novak, Roman; Xiao, Lechao; Hron, Jiri; Lee, Jaehoon; Alemi, Alexander A.; Sohl-Dickstein, Jascha; Schoenholz, Samuel S. (2020). "Neural Tangents: Fast and Easy Infinite Neural Networks in Python". <i>International Conference on Learning Representations</i>. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1912.02803">1912.02803</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=International+Conference+on+Learning+Representations&amp;rft.atitle=Neural+Tangents%3A+Fast+and+Easy+Infinite+Neural+Networks+in+Python&amp;rft.date=2020&amp;rft_id=info%3Aarxiv%2F1912.02803&amp;rft.aulast=Novak&amp;rft.aufirst=Roman&amp;rft.au=Xiao%2C+Lechao&amp;rft.au=Hron%2C+Jiri&amp;rft.au=Lee%2C+Jaehoon&amp;rft.au=Alemi%2C+Alexander+A.&amp;rft.au=Sohl-Dickstein%2C+Jascha&amp;rft.au=Schoenholz%2C+Samuel+S.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGaussian+process" class="Z3988"></span></span> </li> <li id="cite_note-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-36">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNeal2012" class="citation book cs1">Neal, Radford M. (2012). <i>Bayesian Learning for Neural Networks</i>. Springer Science and Business Media.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Bayesian+Learning+for+Neural+Networks&amp;rft.pub=Springer+Science+and+Business+Media&amp;rft.date=2012&amp;rft.aulast=Neal&amp;rft.aufirst=Radford+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGaussian+process" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Gaussian_process&amp;action=edit&amp;section=18" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r1237033735">@media print{body.ns-0 .mw-parser-output .sistersitebox{display:none!important}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}</style><div class="side-box side-box-right plainlinks sistersitebox"><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikibooks-logo-en-noslogan.svg/40px-Wikibooks-logo-en-noslogan.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikibooks-logo-en-noslogan.svg/60px-Wikibooks-logo-en-noslogan.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikibooks-logo-en-noslogan.svg/80px-Wikibooks-logo-en-noslogan.svg.png 2x" data-file-width="400" data-file-height="400" /></span></span></div> <div class="side-box-text plainlist">Wikibooks has a book on the topic of: <i><b><a href="https://en.wikibooks.org/wiki/Gaussian_process" class="extiw" title="wikibooks:Gaussian process">Gaussian process</a></b></i></div></div> </div> <div class="mw-heading mw-heading3"><h3 id="Literature">Literature</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Gaussian_process&amp;action=edit&amp;section=19" title="Edit section: Literature"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a rel="nofollow" class="external text" href="https://gaussianprocess.org">The Gaussian Processes Web Site, including the text of Rasmussen and Williams' Gaussian Processes for Machine Learning</a></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEbden2015" class="citation arxiv cs1">Ebden, Mark (2015). "Gaussian Processes: A Quick Introduction". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1505.02965">1505.02965</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/math.ST">math.ST</a>].</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=Gaussian+Processes%3A+A+Quick+Introduction&amp;rft.date=2015&amp;rft_id=info%3Aarxiv%2F1505.02965&amp;rft.aulast=Ebden&amp;rft.aufirst=Mark&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGaussian+process" class="Z3988"></span></li> <li><a rel="nofollow" class="external text" href="http://publications.nr.no/917_Rapport.pdf">A Review of Gaussian Random Fields and Correlation Functions</a></li> <li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20180826005000/https://pdfs.semanticscholar.org/c9f2/1b84149991f4d547b3f0f625f710750ad8d9.pdf">Efficient Reinforcement Learning using Gaussian Processes</a></li></ul> <div class="mw-heading mw-heading3"><h3 id="Software">Software</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Gaussian_process&amp;action=edit&amp;section=20" title="Edit section: Software"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Comparison_of_Gaussian_process_software" title="Comparison of Gaussian process software">Comparison of Gaussian process software</a></div> <ul><li><a rel="nofollow" class="external text" href="http://www.gaussianprocess.org/gpml/code/matlab/doc/">GPML: A comprehensive Matlab toolbox for GP regression and classification</a></li> <li><a rel="nofollow" class="external text" href="http://sourceforge.net/projects/kriging">STK: a Small (Matlab/Octave) Toolbox for Kriging and GP modeling</a></li> <li><a rel="nofollow" class="external text" href="http://www.uqlab.com/">Kriging module in UQLab framework (Matlab)</a></li> <li><a rel="nofollow" class="external text" href="http://codes.arizona.edu/toolbox/">CODES Toolbox: implementations of Kriging, variational kriging and multi-fidelity models (Matlab)</a></li> <li><a rel="nofollow" class="external text" href="http://au.mathworks.com/matlabcentral/fileexchange/38880:">Matlab/Octave function for stationary Gaussian fields</a></li> <li><a rel="nofollow" class="external text" href="https://github.com/Yelp/MOE">Yelp MOE – A black box optimization engine using Gaussian process learning</a></li> <li><a rel="nofollow" class="external text" href="http://www.sumo.intec.ugent.be/ooDACE">ooDACE</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20200809021046/http://sumo.intec.ugent.be/ooDACE">Archived</a> 2020-08-09 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a> – A flexible object-oriented Kriging Matlab toolbox.</li> <li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20141009045756/http://becs.aalto.fi/en/research/bayes/gpstuff/">GPstuff – Gaussian process toolbox for Matlab and Octave</a></li> <li><a rel="nofollow" class="external text" href="https://github.com/SheffieldML/GPy">GPy – A Gaussian processes framework in Python</a></li> <li><a rel="nofollow" class="external text" href="https://github.com/GeoStat-Framework/GSTools">GSTools - A geostatistical toolbox, including Gaussian process regression, written in Python</a></li> <li><a rel="nofollow" class="external text" href="http://www.tmpl.fi/gp/">Interactive Gaussian process regression demo</a></li> <li><a rel="nofollow" class="external text" href="https://github.com/ChristophJud/GPR">Basic Gaussian process library written in C++11</a></li> <li><a rel="nofollow" class="external text" href="http://scikit-learn.org">scikit-learn</a> – A machine learning library for Python which includes Gaussian process regression and classification</li> <li><a rel="nofollow" class="external autonumber" href="https://github.com/modsim/KriKit">[1]</a> - The Kriging toolKit (KriKit) is developed at the Institute of Bio- and Geosciences 1 (IBG-1) of Forschungszentrum Jülich (FZJ)</li></ul> <div class="mw-heading mw-heading3"><h3 id="Video_tutorials">Video tutorials</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Gaussian_process&amp;action=edit&amp;section=21" title="Edit section: Video tutorials"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a rel="nofollow" class="external text" href="http://videolectures.net/gpip06_mackay_gpb">Gaussian Process Basics by David MacKay</a></li> <li><a rel="nofollow" class="external text" href="http://videolectures.net/epsrcws08_rasmussen_lgp">Learning with Gaussian Processes by Carl Edward Rasmussen</a></li> <li><a rel="nofollow" class="external text" href="http://videolectures.net/mlss07_rasmussen_bigp">Bayesian inference and Gaussian processes by Carl Edward Rasmussen</a></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Stochastic_processes" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Stochastic_processes" title="Template:Stochastic processes"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Stochastic_processes" title="Template talk:Stochastic processes"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Stochastic_processes" title="Special:EditPage/Template:Stochastic processes"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Stochastic_processes" style="font-size:114%;margin:0 4em"><a href="/wiki/Stochastic_process" title="Stochastic process">Stochastic processes</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Discrete-time_stochastic_process" class="mw-redirect" title="Discrete-time stochastic process">Discrete time</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bernoulli_process" title="Bernoulli process">Bernoulli process</a></li> <li><a href="/wiki/Branching_process" title="Branching process">Branching process</a></li> <li><a href="/wiki/Chinese_restaurant_process" title="Chinese restaurant process">Chinese restaurant process</a></li> <li><a href="/wiki/Galton%E2%80%93Watson_process" title="Galton–Watson process">Galton–Watson process</a></li> <li><a href="/wiki/Independent_and_identically_distributed_random_variables" title="Independent and identically distributed random variables">Independent and identically distributed random variables</a></li> <li><a href="/wiki/Markov_chain" title="Markov chain">Markov chain</a></li> <li><a href="/wiki/Moran_process" title="Moran process">Moran process</a></li> <li><a href="/wiki/Random_walk" title="Random walk">Random walk</a> <ul><li><a href="/wiki/Loop-erased_random_walk" title="Loop-erased random walk">Loop-erased</a></li> <li><a href="/wiki/Self-avoiding_walk" title="Self-avoiding walk">Self-avoiding</a></li> <li><a href="/wiki/Biased_random_walk_on_a_graph" title="Biased random walk on a graph"> Biased</a></li> <li><a href="/wiki/Maximal_entropy_random_walk" title="Maximal entropy random walk">Maximal entropy</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Continuous-time_stochastic_process" title="Continuous-time stochastic process">Continuous time</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Additive_process" title="Additive process">Additive process</a></li> <li><a href="/wiki/Bessel_process" title="Bessel process">Bessel process</a></li> <li><a href="/wiki/Birth%E2%80%93death_process" title="Birth–death process">Birth–death process</a> <ul><li><a href="/wiki/Birth_process" title="Birth process">pure birth</a></li></ul></li> <li><a href="/wiki/Wiener_process" title="Wiener process">Brownian motion</a> <ul><li><a href="/wiki/Brownian_bridge" title="Brownian bridge">Bridge</a></li> <li><a href="/wiki/Brownian_excursion" title="Brownian excursion">Excursion</a></li> <li><a href="/wiki/Fractional_Brownian_motion" title="Fractional Brownian motion">Fractional</a></li> <li><a href="/wiki/Geometric_Brownian_motion" title="Geometric Brownian motion">Geometric</a></li> <li><a href="/wiki/Brownian_meander" title="Brownian meander">Meander</a></li></ul></li> <li><a href="/wiki/Cauchy_process" title="Cauchy process">Cauchy process</a></li> <li><a href="/wiki/Contact_process_(mathematics)" title="Contact process (mathematics)">Contact process</a></li> <li><a href="/wiki/Continuous-time_random_walk" title="Continuous-time random walk">Continuous-time random walk</a></li> <li><a href="/wiki/Cox_process" title="Cox process">Cox process</a></li> <li><a href="/wiki/Diffusion_process" title="Diffusion process">Diffusion process</a></li> <li><a href="/wiki/Dyson_Brownian_motion" title="Dyson Brownian motion">Dyson Brownian motion</a></li> <li><a href="/wiki/Empirical_process" title="Empirical process">Empirical process</a></li> <li><a href="/wiki/Feller_process" title="Feller process">Feller process</a></li> <li><a href="/wiki/Fleming%E2%80%93Viot_process" title="Fleming–Viot process">Fleming–Viot process</a></li> <li><a href="/wiki/Gamma_process" title="Gamma process">Gamma process</a></li> <li><a href="/wiki/Geometric_process" title="Geometric process">Geometric process</a></li> <li><a href="/wiki/Hawkes_process" title="Hawkes process">Hawkes process</a></li> <li><a href="/wiki/Hunt_process" title="Hunt process">Hunt process</a></li> <li><a href="/wiki/Interacting_particle_system" title="Interacting particle system">Interacting particle systems</a></li> <li><a href="/wiki/It%C3%B4_diffusion" title="Itô diffusion">Itô diffusion</a></li> <li><a href="/wiki/It%C3%B4_process" class="mw-redirect" title="Itô process">Itô process</a></li> <li><a href="/wiki/Jump_diffusion" title="Jump diffusion">Jump diffusion</a></li> <li><a href="/wiki/Jump_process" title="Jump process">Jump process</a></li> <li><a href="/wiki/L%C3%A9vy_process" title="Lévy process">Lévy process</a></li> <li><a href="/wiki/Local_time_(mathematics)" title="Local time (mathematics)">Local time</a></li> <li><a href="/wiki/Markov_additive_process" title="Markov additive process">Markov additive process</a></li> <li><a href="/wiki/McKean%E2%80%93Vlasov_process" title="McKean–Vlasov process">McKean–Vlasov process</a></li> <li><a href="/wiki/Ornstein%E2%80%93Uhlenbeck_process" title="Ornstein–Uhlenbeck process">Ornstein–Uhlenbeck process</a></li> <li><a href="/wiki/Poisson_point_process" title="Poisson point process">Poisson process</a> <ul><li><a href="/wiki/Compound_Poisson_process" title="Compound Poisson process">Compound</a></li> <li><a href="/wiki/Non-homogeneous_Poisson_process" class="mw-redirect" title="Non-homogeneous Poisson process">Non-homogeneous</a></li></ul></li> <li><a href="/wiki/Schramm%E2%80%93Loewner_evolution" title="Schramm–Loewner evolution">Schramm–Loewner evolution</a></li> <li><a href="/wiki/Semimartingale" title="Semimartingale">Semimartingale</a></li> <li><a href="/wiki/Sigma-martingale" title="Sigma-martingale">Sigma-martingale</a></li> <li><a href="/wiki/Stable_process" title="Stable process">Stable process</a></li> <li><a href="/wiki/Superprocess" title="Superprocess">Superprocess</a></li> <li><a href="/wiki/Telegraph_process" title="Telegraph process">Telegraph process</a></li> <li><a href="/wiki/Variance_gamma_process" title="Variance gamma process">Variance gamma process</a></li> <li><a href="/wiki/Wiener_process" title="Wiener process">Wiener process</a></li> <li><a href="/wiki/Wiener_sausage" title="Wiener sausage">Wiener sausage</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Both</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Branching_process" title="Branching process">Branching process</a></li> <li><a class="mw-selflink selflink">Gaussian process</a></li> <li><a href="/wiki/Hidden_Markov_model" title="Hidden Markov model">Hidden Markov model (HMM)</a></li> <li><a href="/wiki/Markov_process" class="mw-redirect" title="Markov process">Markov process</a></li> <li><a href="/wiki/Martingale_(probability_theory)" title="Martingale (probability theory)">Martingale</a> <ul><li><a href="/wiki/Martingale_difference_sequence" title="Martingale difference sequence">Differences</a></li> <li><a href="/wiki/Local_martingale" title="Local martingale">Local</a></li> <li><a href="/wiki/Submartingale" class="mw-redirect" title="Submartingale">Sub-</a></li> <li><a href="/wiki/Supermartingale" class="mw-redirect" title="Supermartingale">Super-</a></li></ul></li> <li><a href="/wiki/Random_dynamical_system" title="Random dynamical system">Random dynamical system</a></li> <li><a href="/wiki/Regenerative_process" title="Regenerative process">Regenerative process</a></li> <li><a href="/wiki/Renewal_process" class="mw-redirect" title="Renewal process">Renewal process</a></li> <li><a href="/wiki/Stochastic_chains_with_memory_of_variable_length" title="Stochastic chains with memory of variable length">Stochastic chains with memory of variable length</a></li> <li><a href="/wiki/White_noise" title="White noise">White noise</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Fields and other</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Dirichlet_process" title="Dirichlet process">Dirichlet process</a></li> <li><a href="/wiki/Gaussian_random_field" title="Gaussian random field">Gaussian random field</a></li> <li><a href="/wiki/Gibbs_measure" title="Gibbs measure">Gibbs measure</a></li> <li><a href="/wiki/Hopfield_model" class="mw-redirect" title="Hopfield model">Hopfield model</a></li> <li><a href="/wiki/Ising_model" title="Ising model">Ising model</a> <ul><li><a href="/wiki/Potts_model" title="Potts model">Potts model</a></li> <li><a href="/wiki/Boolean_network" title="Boolean network">Boolean network</a></li></ul></li> <li><a href="/wiki/Markov_random_field" title="Markov random field">Markov random field</a></li> <li><a href="/wiki/Percolation_theory" title="Percolation theory">Percolation</a></li> <li><a href="/wiki/Pitman%E2%80%93Yor_process" title="Pitman–Yor process">Pitman–Yor process</a></li> <li><a href="/wiki/Point_process" title="Point process">Point process</a> <ul><li><a href="/wiki/Point_process#Cox_point_process" title="Point process">Cox</a></li> <li><a href="/wiki/Poisson_point_process" title="Poisson point process">Poisson</a></li></ul></li> <li><a href="/wiki/Random_field" title="Random field">Random field</a></li> <li><a href="/wiki/Random_graph" title="Random graph">Random graph</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Time_series" title="Time series">Time series models</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Autoregressive_conditional_heteroskedasticity" title="Autoregressive conditional heteroskedasticity">Autoregressive conditional heteroskedasticity (ARCH) model</a></li> <li><a href="/wiki/Autoregressive_integrated_moving_average" title="Autoregressive integrated moving average">Autoregressive integrated moving average (ARIMA) model</a></li> <li><a href="/wiki/Autoregressive_model" title="Autoregressive model">Autoregressive (AR) model</a></li> <li><a href="/wiki/Autoregressive%E2%80%93moving-average_model" class="mw-redirect" title="Autoregressive–moving-average model">Autoregressive–moving-average (ARMA) model</a></li> <li><a href="/wiki/Autoregressive_conditional_heteroskedasticity" title="Autoregressive conditional heteroskedasticity">Generalized autoregressive conditional heteroskedasticity (GARCH) model</a></li> <li><a href="/wiki/Moving-average_model" title="Moving-average model">Moving-average (MA) model</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Asset_pricing_model" class="mw-redirect" title="Asset pricing model">Financial models</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Binomial_options_pricing_model" title="Binomial options pricing model">Binomial options pricing model</a></li> <li><a href="/wiki/Black%E2%80%93Derman%E2%80%93Toy_model" title="Black–Derman–Toy model">Black–Derman–Toy</a></li> <li><a href="/wiki/Black%E2%80%93Karasinski_model" title="Black–Karasinski model">Black–Karasinski</a></li> <li><a href="/wiki/Black%E2%80%93Scholes_model" title="Black–Scholes model">Black–Scholes</a></li> <li><a href="/wiki/Chan%E2%80%93Karolyi%E2%80%93Longstaff%E2%80%93Sanders_process" title="Chan–Karolyi–Longstaff–Sanders process">Chan–Karolyi–Longstaff–Sanders (CKLS)</a></li> <li><a href="/wiki/Chen_model" title="Chen model">Chen</a></li> <li><a href="/wiki/Constant_elasticity_of_variance_model" title="Constant elasticity of variance model">Constant elasticity of variance (CEV)</a></li> <li><a href="/wiki/Cox%E2%80%93Ingersoll%E2%80%93Ross_model" title="Cox–Ingersoll–Ross model">Cox–Ingersoll–Ross (CIR)</a></li> <li><a href="/wiki/Garman%E2%80%93Kohlhagen_model" class="mw-redirect" title="Garman–Kohlhagen model">Garman–Kohlhagen</a></li> <li><a href="/wiki/Heath%E2%80%93Jarrow%E2%80%93Morton_framework" title="Heath–Jarrow–Morton framework">Heath–Jarrow–Morton (HJM)</a></li> <li><a href="/wiki/Heston_model" title="Heston model">Heston</a></li> <li><a href="/wiki/Ho%E2%80%93Lee_model" title="Ho–Lee model">Ho–Lee</a></li> <li><a href="/wiki/Hull%E2%80%93White_model" title="Hull–White model">Hull–White</a></li> <li><a href="/wiki/Korn%E2%80%93Kreer%E2%80%93Lenssen_model" title="Korn–Kreer–Lenssen model">Korn-Kreer-Lenssen</a></li> <li><a href="/wiki/LIBOR_market_model" title="LIBOR market model">LIBOR market</a></li> <li><a href="/wiki/Rendleman%E2%80%93Bartter_model" title="Rendleman–Bartter model">Rendleman–Bartter</a></li> <li><a href="/wiki/SABR_volatility_model" title="SABR volatility model">SABR volatility</a></li> <li><a href="/wiki/Vasicek_model" title="Vasicek model">Vašíček</a></li> <li><a href="/wiki/Wilkie_investment_model" title="Wilkie investment model">Wilkie</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Actuarial_mathematics" class="mw-redirect" title="Actuarial mathematics">Actuarial models</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/B%C3%BChlmann_model" title="Bühlmann model">Bühlmann</a></li> <li><a href="/wiki/Cram%C3%A9r%E2%80%93Lundberg_model" class="mw-redirect" title="Cramér–Lundberg model">Cramér–Lundberg</a></li> <li><a href="/wiki/Risk_process" class="mw-redirect" title="Risk process">Risk process</a></li> <li><a href="/wiki/Sparre%E2%80%93Anderson_model" class="mw-redirect" title="Sparre–Anderson model">Sparre–Anderson</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Queueing_model" class="mw-redirect" title="Queueing model">Queueing models</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bulk_queue" title="Bulk queue">Bulk</a></li> <li><a href="/wiki/Fluid_queue" title="Fluid queue">Fluid</a></li> <li><a href="/wiki/G-network" title="G-network">Generalized queueing network</a></li> <li><a href="/wiki/M/G/1_queue" title="M/G/1 queue">M/G/1</a></li> <li><a href="/wiki/M/M/1_queue" title="M/M/1 queue">M/M/1</a></li> <li><a href="/wiki/M/M/c_queue" title="M/M/c queue">M/M/c</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Properties</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/C%C3%A0dl%C3%A0g" title="Càdlàg">Càdlàg paths</a></li> <li><a href="/wiki/Continuous_stochastic_process" title="Continuous stochastic process">Continuous</a></li> <li><a href="/wiki/Sample-continuous_process" title="Sample-continuous process">Continuous paths</a></li> <li><a href="/wiki/Ergodicity" title="Ergodicity">Ergodic</a></li> <li><a href="/wiki/Exchangeable_random_variables" title="Exchangeable random variables">Exchangeable</a></li> <li><a href="/wiki/Feller-continuous_process" title="Feller-continuous process">Feller-continuous</a></li> <li><a href="/wiki/Gauss%E2%80%93Markov_process" title="Gauss–Markov process">Gauss–Markov</a></li> <li><a href="/wiki/Markov_property" title="Markov property">Markov</a></li> <li><a href="/wiki/Mixing_(mathematics)" title="Mixing (mathematics)">Mixing</a></li> <li><a href="/wiki/Piecewise-deterministic_Markov_process" title="Piecewise-deterministic Markov process">Piecewise-deterministic</a></li> <li><a href="/wiki/Predictable_process" title="Predictable process">Predictable</a></li> <li><a href="/wiki/Progressively_measurable_process" title="Progressively measurable process">Progressively measurable</a></li> <li><a href="/wiki/Self-similar_process" title="Self-similar process">Self-similar</a></li> <li><a href="/wiki/Stationary_process" title="Stationary process">Stationary</a></li> <li><a href="/wiki/Time_reversibility" title="Time reversibility">Time-reversible</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Limit theorems</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Central_limit_theorem" title="Central limit theorem">Central limit theorem</a></li> <li><a href="/wiki/Donsker%27s_theorem" title="Donsker&#39;s theorem">Donsker's theorem</a></li> <li><a href="/wiki/Doob%27s_martingale_convergence_theorems" title="Doob&#39;s martingale convergence theorems">Doob's martingale convergence theorems</a></li> <li><a href="/wiki/Ergodic_theorem" class="mw-redirect" title="Ergodic theorem">Ergodic theorem</a></li> <li><a href="/wiki/Fisher%E2%80%93Tippett%E2%80%93Gnedenko_theorem" title="Fisher–Tippett–Gnedenko theorem">Fisher–Tippett–Gnedenko theorem</a></li> <li><a href="/wiki/Large_deviation_principle" class="mw-redirect" title="Large deviation principle">Large deviation principle</a></li> <li><a href="/wiki/Law_of_large_numbers" title="Law of large numbers">Law of large numbers (weak/strong)</a></li> <li><a href="/wiki/Law_of_the_iterated_logarithm" title="Law of the iterated logarithm">Law of the iterated logarithm</a></li> <li><a href="/wiki/Maximal_ergodic_theorem" title="Maximal ergodic theorem">Maximal ergodic theorem</a></li> <li><a href="/wiki/Sanov%27s_theorem" title="Sanov&#39;s theorem">Sanov's theorem</a></li> <li><a href="/wiki/Zero%E2%80%93one_law" title="Zero–one law">Zero–one laws</a> (<a href="/wiki/Blumenthal%27s_zero%E2%80%93one_law" title="Blumenthal&#39;s zero–one law">Blumenthal</a>, <a href="/wiki/Borel%E2%80%93Cantelli_lemma" title="Borel–Cantelli lemma">Borel–Cantelli</a>, <a href="/wiki/Engelbert%E2%80%93Schmidt_zero%E2%80%93one_law" title="Engelbert–Schmidt zero–one law">Engelbert–Schmidt</a>, <a href="/wiki/Hewitt%E2%80%93Savage_zero%E2%80%93one_law" title="Hewitt–Savage zero–one law">Hewitt–Savage</a>, <a href="/wiki/Kolmogorov%27s_zero%E2%80%93one_law" title="Kolmogorov&#39;s zero–one law"> Kolmogorov</a>, <a href="/wiki/L%C3%A9vy%27s_zero%E2%80%93one_law" class="mw-redirect" title="Lévy&#39;s zero–one law">Lévy</a>)</li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/List_of_inequalities#Probability_theory_and_statistics" title="List of inequalities">Inequalities</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Burkholder%E2%80%93Davis%E2%80%93Gundy_inequalities" class="mw-redirect" title="Burkholder–Davis–Gundy inequalities">Burkholder–Davis–Gundy</a></li> <li><a href="/wiki/Doob%27s_martingale_inequality" title="Doob&#39;s martingale inequality">Doob's martingale</a></li> <li><a href="/wiki/Doob%27s_upcrossing_inequality" class="mw-redirect" title="Doob&#39;s upcrossing inequality">Doob's upcrossing</a></li> <li><a href="/wiki/Kunita%E2%80%93Watanabe_inequality" title="Kunita–Watanabe inequality">Kunita–Watanabe</a></li> <li><a href="/wiki/Marcinkiewicz%E2%80%93Zygmund_inequality" title="Marcinkiewicz–Zygmund inequality">Marcinkiewicz–Zygmund</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Tools</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cameron%E2%80%93Martin_formula" class="mw-redirect" title="Cameron–Martin formula">Cameron–Martin formula</a></li> <li><a href="/wiki/Convergence_of_random_variables" title="Convergence of random variables">Convergence of random variables</a></li> <li><a href="/wiki/Dol%C3%A9ans-Dade_exponential" title="Doléans-Dade exponential">Doléans-Dade exponential</a></li> <li><a href="/wiki/Doob_decomposition_theorem" title="Doob decomposition theorem">Doob decomposition theorem</a></li> <li><a href="/wiki/Doob%E2%80%93Meyer_decomposition_theorem" title="Doob–Meyer decomposition theorem">Doob–Meyer decomposition theorem</a></li> <li><a href="/wiki/Doob%27s_optional_stopping_theorem" class="mw-redirect" title="Doob&#39;s optional stopping theorem">Doob's optional stopping theorem</a></li> <li><a href="/wiki/Dynkin%27s_formula" title="Dynkin&#39;s formula">Dynkin's formula</a></li> <li><a href="/wiki/Feynman%E2%80%93Kac_formula" title="Feynman–Kac formula">Feynman–Kac formula</a></li> <li><a href="/wiki/Filtration_(probability_theory)" title="Filtration (probability theory)">Filtration</a></li> <li><a href="/wiki/Girsanov_theorem" title="Girsanov theorem">Girsanov theorem</a></li> <li><a href="/wiki/Infinitesimal_generator_(stochastic_processes)" title="Infinitesimal generator (stochastic processes)">Infinitesimal generator</a></li> <li><a href="/wiki/It%C3%B4_integral" class="mw-redirect" title="Itô integral">Itô integral</a></li> <li><a href="/wiki/It%C3%B4%27s_lemma" title="Itô&#39;s lemma">Itô's lemma</a></li> <li><a href="/wiki/Karhunen%E2%80%93Lo%C3%A8ve_theorem" class="mw-redirect" title="Karhunen–Loève theorem">Karhunen–Loève theorem</a></li> <li><a href="/wiki/Kolmogorov_continuity_theorem" title="Kolmogorov continuity theorem">Kolmogorov continuity theorem</a></li> <li><a href="/wiki/Kolmogorov_extension_theorem" title="Kolmogorov extension theorem">Kolmogorov extension theorem</a></li> <li><a href="/wiki/L%C3%A9vy%E2%80%93Prokhorov_metric" title="Lévy–Prokhorov metric">Lévy–Prokhorov metric</a></li> <li><a href="/wiki/Malliavin_calculus" title="Malliavin calculus">Malliavin calculus</a></li> <li><a href="/wiki/Martingale_representation_theorem" title="Martingale representation theorem">Martingale representation theorem</a></li> <li><a href="/wiki/Optional_stopping_theorem" title="Optional stopping theorem">Optional stopping theorem</a></li> <li><a href="/wiki/Prokhorov%27s_theorem" title="Prokhorov&#39;s theorem">Prokhorov's theorem</a></li> <li><a href="/wiki/Quadratic_variation" title="Quadratic variation">Quadratic variation</a></li> <li><a href="/wiki/Reflection_principle_(Wiener_process)" title="Reflection principle (Wiener process)">Reflection principle</a></li> <li><a href="/wiki/Skorokhod_integral" title="Skorokhod integral">Skorokhod integral</a></li> <li><a href="/wiki/Skorokhod%27s_representation_theorem" title="Skorokhod&#39;s representation theorem">Skorokhod's representation theorem</a></li> <li><a href="/wiki/Skorokhod_space" class="mw-redirect" title="Skorokhod space">Skorokhod space</a></li> <li><a href="/wiki/Snell_envelope" title="Snell envelope">Snell envelope</a></li> <li><a href="/wiki/Stochastic_differential_equation" title="Stochastic differential equation">Stochastic differential equation</a> <ul><li><a href="/wiki/Tanaka_equation" title="Tanaka equation">Tanaka</a></li></ul></li> <li><a href="/wiki/Stopping_time" title="Stopping time">Stopping time</a></li> <li><a href="/wiki/Stratonovich_integral" title="Stratonovich integral">Stratonovich integral</a></li> <li><a href="/wiki/Uniform_integrability" title="Uniform integrability">Uniform integrability</a></li> <li><a href="/wiki/Usual_hypotheses" class="mw-redirect" title="Usual hypotheses">Usual hypotheses</a></li> <li><a href="/wiki/Wiener_space" class="mw-redirect" title="Wiener space">Wiener space</a> <ul><li><a href="/wiki/Classical_Wiener_space" title="Classical Wiener space">Classical</a></li> <li><a href="/wiki/Abstract_Wiener_space" title="Abstract Wiener space">Abstract</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Disciplines</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Actuarial_mathematics" class="mw-redirect" title="Actuarial mathematics">Actuarial mathematics</a></li> <li><a href="/wiki/Stochastic_control" title="Stochastic control">Control theory</a></li> <li><a href="/wiki/Econometrics" title="Econometrics">Econometrics</a></li> <li><a href="/wiki/Ergodic_theory" title="Ergodic theory">Ergodic theory</a></li> <li><a href="/wiki/Extreme_value_theory" title="Extreme value theory">Extreme value theory (EVT)</a></li> <li><a href="/wiki/Large_deviations_theory" title="Large deviations theory">Large deviations theory</a></li> <li><a href="/wiki/Mathematical_finance" title="Mathematical finance">Mathematical finance</a></li> <li><a href="/wiki/Mathematical_statistics" title="Mathematical statistics">Mathematical statistics</a></li> <li><a href="/wiki/Probability_theory" title="Probability theory">Probability theory</a></li> <li><a href="/wiki/Queueing_theory" title="Queueing theory">Queueing theory</a></li> <li><a href="/wiki/Renewal_theory" title="Renewal theory">Renewal theory</a></li> <li><a href="/wiki/Ruin_theory" title="Ruin theory">Ruin theory</a></li> <li><a href="/wiki/Signal_processing" title="Signal processing">Signal processing</a></li> <li><a href="/wiki/Statistics" title="Statistics">Statistics</a></li> <li><a href="/wiki/Stochastic_analysis" class="mw-redirect" title="Stochastic analysis">Stochastic analysis</a></li> <li><a href="/wiki/Time_series_analysis" class="mw-redirect" title="Time series analysis">Time series analysis</a></li> <li><a href="/wiki/Machine_learning" title="Machine learning">Machine learning</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow hlist" colspan="2"><div> <ul><li><a href="/wiki/List_of_stochastic_processes_topics" title="List of stochastic processes topics">List of topics</a></li> <li><a href="/wiki/Category:Stochastic_processes" title="Category:Stochastic processes">Category</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"><style data-mw-deduplicate="TemplateStyles:r1038841319">.mw-parser-output .tooltip-dotted{border-bottom:1px dotted;cursor:help}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"></div><div role="navigation" class="navbox authority-control" aria-label="Navbox" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a>: National <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q1496376#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/sh85053558">United States</a></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Processus gaussiens"><a rel="nofollow" class="external text" href="https://catalogue.bnf.fr/ark:/12148/cb119469389">France</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Processus gaussiens"><a rel="nofollow" class="external text" href="https://data.bnf.fr/ark:/12148/cb119469389">BnF data</a></span></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://id.ndl.go.jp/auth/ndlna/01180243">Japan</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="http://olduli.nli.org.il/F/?func=find-b&amp;local_base=NLX10&amp;find_code=UID&amp;request=987007560462305171">Israel</a></span></li></ul></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.eqiad.main‐5dc468848‐f845p Cached time: 20241122140616 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.888 seconds Real time usage: 1.199 seconds Preprocessor visited node count: 7186/1000000 Post‐expand include size: 134413/2097152 bytes Template argument size: 3742/2097152 bytes Highest expansion depth: 16/100 Expensive parser function count: 7/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 160361/5000000 bytes Lua time usage: 0.445/10.000 seconds Lua memory usage: 5929094/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 816.327 1 -total 38.27% 312.412 1 Template:Reflist 19.22% 156.871 15 Template:Cite_book 13.80% 112.686 1 Template:Short_description 13.12% 107.115 13 Template:Rp 12.08% 98.623 13 Template:R/superscript 11.27% 92.033 17 Template:Cite_journal 10.83% 88.383 1 Template:Stochastic_processes 10.42% 85.037 1 Template:Navbox 7.41% 60.490 2 Template:Pagetype --> <!-- Saved in parser cache with key enwiki:pcache:idhash:302944-0!canonical and timestamp 20241122140616 and revision id 1250257913. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Gaussian_process&amp;oldid=1250257913">https://en.wikipedia.org/w/index.php?title=Gaussian_process&amp;oldid=1250257913</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Stochastic_processes" title="Category:Stochastic processes">Stochastic processes</a></li><li><a href="/wiki/Category:Kernel_methods_for_machine_learning" title="Category:Kernel methods for machine learning">Kernel methods for machine learning</a></li><li><a href="/wiki/Category:Nonparametric_Bayesian_statistics" title="Category:Nonparametric Bayesian statistics">Nonparametric Bayesian statistics</a></li><li><a href="/wiki/Category:Normal_distribution" title="Category:Normal distribution">Normal distribution</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:CS1_errors:_periodical_ignored" title="Category:CS1 errors: periodical ignored">CS1 errors: periodical ignored</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Webarchive_template_wayback_links" title="Category:Webarchive template wayback links">Webarchive template wayback links</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 9 October 2024, at 10:30<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Gaussian_process&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-828bf","wgBackendResponseTime":185,"wgPageParseReport":{"limitreport":{"cputime":"0.888","walltime":"1.199","ppvisitednodes":{"value":7186,"limit":1000000},"postexpandincludesize":{"value":134413,"limit":2097152},"templateargumentsize":{"value":3742,"limit":2097152},"expansiondepth":{"value":16,"limit":100},"expensivefunctioncount":{"value":7,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":160361,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 816.327 1 -total"," 38.27% 312.412 1 Template:Reflist"," 19.22% 156.871 15 Template:Cite_book"," 13.80% 112.686 1 Template:Short_description"," 13.12% 107.115 13 Template:Rp"," 12.08% 98.623 13 Template:R/superscript"," 11.27% 92.033 17 Template:Cite_journal"," 10.83% 88.383 1 Template:Stochastic_processes"," 10.42% 85.037 1 Template:Navbox"," 7.41% 60.490 2 Template:Pagetype"]},"scribunto":{"limitreport-timeusage":{"value":"0.445","limit":"10.000"},"limitreport-memusage":{"value":5929094,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-5dc468848-f845p","timestamp":"20241122140616","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Gaussian process","url":"https:\/\/en.wikipedia.org\/wiki\/Gaussian_process","sameAs":"http:\/\/www.wikidata.org\/entity\/Q1496376","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q1496376","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2003-08-23T11:26:42Z","dateModified":"2024-10-09T10:30:11Z","headline":"stochastic process such that every finite collection of random variables has a multivariate normal distribution"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10