CINXE.COM
On Decomposition of Maximal Prefix Codes
<?xml version="1.0" encoding="UTF-8"?> <article key="pdf/10013756" mdate="2024-08-12 00:00:00"> <author>Nikolai Krainiukov and Boris Melnikov</author> <title>On Decomposition of Maximal Prefix Codes</title> <pages>92 - 95</pages> <year>2024</year> <volume>18</volume> <number>8</number> <journal>International Journal of Mathematical and Computational Sciences</journal> <ee>https://publications.waset.org/pdf/10013756</ee> <url>https://publications.waset.org/vol/212</url> <publisher>World Academy of Science, Engineering and Technology</publisher> <abstract>We study the properties of maximal prefix codes. The codes have many applications in computer science, theory of formal languages, data processing and data classification. Our approaches to study use finite state automata (socalled flower automata) for the representation of prefix codes. An important task is the decomposition of prefix codes into prime prefix codes (factors). We discuss properties of such prefix code decompositions. A linear time algorithm is designed to find the prime decomposition. We used the GAP computer algebra system, which allows us to perform algebraic operations for free semigroups, monoids and automata.</abstract> <index>Open Science Index 212, 2024</index> </article>