CINXE.COM
Existential graph - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Existential graph - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"bf41612a-f199-4b6c-a740-a4e8401f68a8","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Existential_graph","wgTitle":"Existential graph","wgCurRevisionId":1252106426,"wgRevisionId":1252106426,"wgArticleId":2235037,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description is different from Wikidata","Webarchive template wayback links","Logic","Logical calculi","Philosophical logic","History of logic","History of mathematics","Charles Sanders Peirce","Logical diagrams"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Existential_graph","wgRelevantArticleId":2235037,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true, "wgRestrictionEdit":[],"wgRestrictionMove":[],"wgRedirectedFrom":"Entitative_graph","wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":20000,"wgInternalRedirectTargetUrl":"/wiki/Existential_graph","wgRelatedArticlesCompat":[],"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q1383836","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"], "GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["mediawiki.action.view.redirect","ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher", "ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.5"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/5/58/Charles_Sanders_Peirce.jpg"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1609"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/5/58/Charles_Sanders_Peirce.jpg"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="1073"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="858"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Existential graph - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Existential_graph"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Existential_graph&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Existential_graph"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Existential_graph rootpage-Existential_graph skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Existential+graph" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Existential+graph" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Existential+graph" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Existential+graph" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Background" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Background"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Background</span> </div> </a> <ul id="toc-Background-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-The_graphs" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#The_graphs"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>The graphs</span> </div> </a> <button aria-controls="toc-The_graphs-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle The graphs subsection</span> </button> <ul id="toc-The_graphs-sublist" class="vector-toc-list"> <li id="toc-Alpha" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Alpha"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Alpha</span> </div> </a> <ul id="toc-Alpha-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Beta" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Beta"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Beta</span> </div> </a> <ul id="toc-Beta-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notation_of_betagraphs" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Notation_of_betagraphs"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>Notation of betagraphs</span> </div> </a> <ul id="toc-Notation_of_betagraphs-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Gamma" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Gamma"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4</span> <span>Gamma</span> </div> </a> <ul id="toc-Gamma-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Peirce's_role" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Peirce's_role"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Peirce's role</span> </div> </a> <ul id="toc-Peirce's_role-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Further_reading" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Further_reading"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Further reading</span> </div> </a> <button aria-controls="toc-Further_reading-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Further reading subsection</span> </button> <ul id="toc-Further_reading-sublist" class="vector-toc-list"> <li id="toc-Primary_literature" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Primary_literature"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Primary literature</span> </div> </a> <ul id="toc-Primary_literature-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Secondary_literature" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Secondary_literature"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>Secondary literature</span> </div> </a> <ul id="toc-Secondary_literature-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Existential graph</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 6 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-6" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">6 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%A7%D9%84%D8%B1%D8%B3%D9%85_%D8%A7%D9%84%D8%A8%D9%8A%D8%A7%D9%86%D9%8A_%D8%A7%D9%84%D9%88%D8%AC%D9%88%D8%AF%D9%8A" title="الرسم البياني الوجودي – Arabic" lang="ar" hreflang="ar" data-title="الرسم البياني الوجودي" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-de badge-Q17437796 badge-featuredarticle mw-list-item" title="featured article badge"><a href="https://de.wikipedia.org/wiki/Existential_Graphs" title="Existential Graphs – German" lang="de" hreflang="de" data-title="Existential Graphs" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Gr%C3%A1ficos_existenciales" title="Gráficos existenciales – Spanish" lang="es" hreflang="es" data-title="Gráficos existenciales" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Grafo_esistenziale" title="Grafo esistenziale – Italian" lang="it" hreflang="it" data-title="Grafo esistenziale" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E5%AD%98%E5%9C%A8%E3%82%B0%E3%83%A9%E3%83%95" title="存在グラフ – Japanese" lang="ja" hreflang="ja" data-title="存在グラフ" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%AD%98%E5%9C%A8%E5%9B%BE" title="存在图 – Chinese" lang="zh" hreflang="zh" data-title="存在图" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1383836#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Existential_graph" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Existential_graph" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Existential_graph"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Existential_graph&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Existential_graph&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Existential_graph"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Existential_graph&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Existential_graph&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Existential_graph" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Existential_graph" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Existential_graph&oldid=1252106426" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Existential_graph&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Existential_graph&id=1252106426&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FExistential_graph"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FExistential_graph"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Existential_graph&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Existential_graph&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Existential_graphs" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1383836" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"><span class="mw-redirectedfrom">(Redirected from <a href="/w/index.php?title=Entitative_graph&redirect=no" class="mw-redirect" title="Entitative graph">Entitative graph</a>)</span></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Type of diagrammatic notation for propositional logic</div> <style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1246091330">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:640px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}body.skin--responsive .mw-parser-output .sidebar a>img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media print{body.ns-0 .mw-parser-output .sidebar{display:none!important}}</style><table class="sidebar sidebar-collapse nomobile nowraplinks hlist"><tbody><tr><td class="sidebar-pretitle">Part of <a href="/wiki/Category:Charles_Sanders_Peirce" title="Category:Charles Sanders Peirce">a series</a> on</td></tr><tr><th class="sidebar-title-with-pretitle"><a href="/wiki/Charles_Sanders_Peirce" title="Charles Sanders Peirce">Charles Sanders Peirce</a></th></tr><tr><td class="sidebar-image"><span typeof="mw:File"><a href="/wiki/File:Charles_Sanders_Peirce.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/58/Charles_Sanders_Peirce.jpg/250px-Charles_Sanders_Peirce.jpg" decoding="async" width="250" height="335" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/58/Charles_Sanders_Peirce.jpg/375px-Charles_Sanders_Peirce.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/5/58/Charles_Sanders_Peirce.jpg 2x" data-file-width="434" data-file-height="582" /></a></span></td></tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Charles_Sanders_Peirce_bibliography" title="Charles Sanders Peirce bibliography">Bibliography</a></li></ul></td> </tr><tr><th class="sidebar-heading"> <a href="/wiki/Pragmatism" title="Pragmatism">Pragmatism</a> in epistemology</th></tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Abductive_reasoning" title="Abductive reasoning">Abductive reasoning</a></li> <li><a href="/wiki/Fallibilism" title="Fallibilism">Fallibilism</a></li> <li><a href="/wiki/Pragmaticism" title="Pragmaticism">Pragmaticism</a> <ul><li><a href="/wiki/Pragmatic_maxim" title="Pragmatic maxim">as maxim</a></li> <li><a href="/wiki/Pragmatic_theory_of_truth" title="Pragmatic theory of truth">as theory of truth</a></li></ul></li> <li><a href="/wiki/Community_of_inquiry" title="Community of inquiry">Community of inquiry</a></li></ul></td> </tr><tr><th class="sidebar-heading"> Logic</th></tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Continuous_predicate" title="Continuous predicate">Continuous predicate</a></li> <li><a href="/wiki/Peirce%27s_law" title="Peirce's law">Peirce's law</a></li> <li><a href="/wiki/Entitative_graph" class="mw-redirect" title="Entitative graph">Entitative graph in Qualitative logic</a></li> <li><a class="mw-selflink selflink">Existential graph</a></li> <li><a href="/wiki/Functional_completeness" title="Functional completeness">Functional completeness</a></li> <li><a href="/wiki/Logic_gate" title="Logic gate">Logic gate</a></li> <li><a href="/wiki/Logic_of_information" title="Logic of information">Logic of information</a></li> <li><a href="/wiki/Logical_graph" class="mw-redirect" title="Logical graph">Logical graph</a></li> <li><a href="/wiki/Logical_NOR" title="Logical NOR">Logical NOR</a></li> <li><a href="/wiki/Second-order_logic" title="Second-order logic">Second-order logic</a></li> <li><a href="/wiki/Trikonic" title="Trikonic">Trikonic</a></li> <li><a href="/wiki/Type-token_distinction" class="mw-redirect" title="Type-token distinction">Type-token distinction</a></li></ul></td> </tr><tr><th class="sidebar-heading"> <a href="/wiki/Semiotic_theory_of_Charles_Sanders_Peirce" title="Semiotic theory of Charles Sanders Peirce">Semiotic theory</a></th></tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Indexicality" title="Indexicality">Indexicality</a></li> <li><a href="/wiki/Interpretant" title="Interpretant">Interpretant</a></li> <li><a href="/wiki/Semiosis" title="Semiosis">Semiosis</a></li> <li><a href="/wiki/Sign_relation" title="Sign relation">Sign relation</a></li> <li><a href="/wiki/Universal_rhetoric" title="Universal rhetoric">Universal rhetoric</a></li></ul></td> </tr><tr><th class="sidebar-heading"> Miscellaneous contributions</th></tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Agapism" title="Agapism">Agapism</a></li> <li><a href="/wiki/Bell_triangle" title="Bell triangle">Bell triangle</a></li> <li><a href="/wiki/Categories_(Peirce)" title="Categories (Peirce)">Categories</a></li> <li><i><a href="/wiki/Phaneron" title="Phaneron">Phaneron</a></i></li> <li><a href="/wiki/Synechism" title="Synechism">Synechism</a></li> <li><a href="/wiki/Tychism" title="Tychism">Tychism</a></li> <li><a href="/wiki/Classification_of_the_sciences_(Peirce)" title="Classification of the sciences (Peirce)">Classification of sciences</a></li> <li><a href="/wiki/Listing_number" title="Listing number">Listing number</a></li> <li><a href="/wiki/Peirce_quincuncial_projection" title="Peirce quincuncial projection">Quincuncial projection</a></li></ul></td> </tr><tr><th class="sidebar-heading"> Biographical</th></tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Joseph_Morton_Ransdell" title="Joseph Morton Ransdell">Joseph Morton Ransdell</a></li> <li><a href="/wiki/Allan_Marquand" title="Allan Marquand">Allan Marquand</a></li> <li><a href="/wiki/Juliette_Peirce" title="Juliette Peirce">Juliette Peirce</a></li> <li><a href="/wiki/Charles_Santiago_Sanders_Peirce" title="Charles Santiago Sanders Peirce">Charles Santiago Sanders Peirce</a></li> <li><a href="/wiki/Roberta_Kevelson" title="Roberta Kevelson">Roberta Kevelson</a></li> <li><a href="/wiki/Christine_Ladd-Franklin" title="Christine Ladd-Franklin">Christine Ladd-Franklin</a></li> <li><a href="/wiki/Victoria,_Lady_Welby" title="Victoria, Lady Welby">Victoria, Lady Welby</a></li> <li><a href="/wiki/The_Metaphysical_Club" title="The Metaphysical Club">The Metaphysical Club</a> <ul><li><a href="/wiki/The_Metaphysical_Club:_A_Story_of_Ideas_in_America" title="The Metaphysical Club: A Story of Ideas in America">book</a></li></ul></li> <li><i><a href="/wiki/Peirce_Geodetic_Monument" title="Peirce Geodetic Monument">Peirce Geodetic Monument</a></i></li></ul></td> </tr><tr><td class="sidebar-navbar"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:C._S._Peirce_articles" title="Template:C. S. Peirce articles"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:C._S._Peirce_articles" title="Template talk:C. S. Peirce articles"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:C._S._Peirce_articles" title="Special:EditPage/Template:C. S. Peirce articles"><abbr title="Edit this template">e</abbr></a></li></ul></div></td></tr></tbody></table> <p>An <b>existential graph</b> is a type of <a href="/wiki/Diagram" title="Diagram">diagrammatic</a> or visual notation for logical expressions, created by <a href="/wiki/Charles_Sanders_Peirce" title="Charles Sanders Peirce">Charles Sanders Peirce</a>, who wrote on graphical logic as early as 1882,<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> and continued to develop the method until his death in 1914. They include both a separate graphical notation for logical statements and a logical calculus, a formal system of rules of inference that can be used to derive theorems. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Background">Background</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Existential_graph&action=edit&section=1" title="Edit section: Background"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Peirce found the algebraic notation (i.e. symbolic notation) of logic, especially that of predicate logic,<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> which was still very new during his lifetime and which he himself played a major role in developing, to be philosophically unsatisfactory, because the symbols had their meaning by mere convention. In contrast, he strove for a style of writing in which the signs literally carry their meaning within them<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> – in the terminology of his theory of signs: a system of iconic signs that resemble or resemble the represented objects and relations.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> </p><p>Thus, the development of an iconic, graphic and – as he intended – intuitive and easy-to-learn logical system was a project that Peirce worked on throughout his life. After at least one aborted approach – the "Entitative Graphs" – the closed system of "Existential Graphs" finally emerged from 1896 onwards. Although considered by their creator to be a clearly superior and more intuitive system, as a mode of writing and as a calculus, they had no major influence on the history of logic. This has been attributed to the fact(s) that, for one, Peirce published little on this topic, and that the published texts were not written in a very understandable way;<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> and, for two, that the linear formula notation in the hands of experts is actually the less complex tool.<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> Hence, the existential graphs received little attention<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> or were seen as unwieldy.<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> From 1963 onwards, works by Don D. Roberts and J. Jay Zeman, in which Peirce's graphic systems were systematically examined and presented, led to a better understanding; even so, they have today found practical use within only one modern application—the conceptual graphs introduced by John F. Sowa in 1976, which are used in computer science to represent knowledge. However, existential graphs are increasingly reappearing as a subject of research in connection with a growing interest in graphical logic,<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> which is also expressed in attempts to replace the rules of inference given by Peirce with more intuitive ones.<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup> </p><p>The overall system of existential graphs is composed of three subsystems that build on each other, the alpha graphs, the beta graphs and the gamma graphs. The alpha graphs are a purely propositional logical system. Building on this, the beta graphs are a first order logical calculus. The gamma graphs, which have not yet been fully researched and were not completed by Peirce, are understood as a further development of the alpha and beta graphs. When interpreted appropriately, the gamma graphs cover higher-level predicate logic as well as modal logic. As late as 1903, Peirce began a new approach, the "Tinctured Existential Graphs," with which he wanted to replace the previous systems of alpha, beta and gamma graphs and combine their expressiveness and performance in a single new system. Like the gamma graphs, the "Tinctured Existential Graphs" remained unfinished. </p><p>As calculi, the alpha, beta and gamma graphs are sound (i.e., all expressions derived as graphs are semantically valid). The alpha and beta graphs are also complete (i.e., all propositional or predicate-logically semantically valid expressions can be derived as alpha or beta graphs). <sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="The_graphs">The graphs</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Existential_graph&action=edit&section=2" title="Edit section: The graphs"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Peirce proposed three systems of existential graphs: </p> <ul><li><i>alpha</i>, <a href="/wiki/Isomorphism" title="Isomorphism">isomorphic</a> to <a href="/wiki/Propositional_logic" class="mw-redirect" title="Propositional logic">propositional logic</a> and the <a href="/wiki/Two-element_Boolean_algebra" title="Two-element Boolean algebra">two-element Boolean algebra</a>;</li> <li><i>beta</i>, isomorphic to <a href="/wiki/First-order_logic" title="First-order logic">first-order logic</a> with identity, with all formulas closed;</li> <li><i>gamma</i>, (nearly) isomorphic to <a href="/wiki/Normal_modal_logic" title="Normal modal logic">normal modal logic</a>.</li></ul> <p><i>Alpha</i> nests in <i>beta</i> and <i>gamma</i>. <i>Beta</i> does not nest in <i>gamma</i>, quantified modal logic being more general than put forth by Peirce. </p> <div class="mw-heading mw-heading3"><h3 id="Alpha">Alpha</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Existential_graph&action=edit&section=3" title="Edit section: Alpha"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:PeirceAlphaGraphs.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/29/PeirceAlphaGraphs.svg/300px-PeirceAlphaGraphs.svg.png" decoding="async" width="300" height="269" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/29/PeirceAlphaGraphs.svg/450px-PeirceAlphaGraphs.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/29/PeirceAlphaGraphs.svg/600px-PeirceAlphaGraphs.svg.png 2x" data-file-width="272" data-file-height="244" /></a><figcaption>Alpha graphs</figcaption></figure> <p>The <a href="/wiki/Syntax" title="Syntax">syntax</a> is: </p> <ul><li>The blank page;</li> <li>Single letters or phrases written anywhere on the page;</li> <li>Any graph may be enclosed by a <a href="/wiki/Simple_closed_curve" class="mw-redirect" title="Simple closed curve">simple closed curve</a> called a <i>cut</i> or <i>sep</i>. A cut can be empty. Cuts can nest and concatenate at will, but must never intersect.</li></ul> <p>Any well-formed part of a graph is a <b>subgraph</b>. </p><p>The <a href="/wiki/Semantics" title="Semantics">semantics</a> are: </p> <ul><li>The blank page denotes <b>Truth</b>;</li> <li>Letters, phrases, subgraphs, and entire graphs may be <b>True</b> or <b>False</b>;</li> <li>To enclose a subgraph with a cut is equivalent to logical <a href="/wiki/Negation" title="Negation">negation</a> or Boolean <a href="/wiki/Complement_(order_theory)" class="mw-redirect" title="Complement (order theory)">complementation</a>. Hence an empty cut denotes <b>False</b>;</li> <li>All subgraphs within a given cut are tacitly <a href="/wiki/Conjunction_(logic)" class="mw-redirect" title="Conjunction (logic)">conjoined</a>.</li></ul> <p>Hence the <i>alpha</i> graphs are a minimalist notation for <a href="/wiki/Sentential_logic" class="mw-redirect" title="Sentential logic">sentential logic</a>, grounded in the expressive adequacy of <b>And</b> and <b>Not</b>. The <i>alpha</i> graphs constitute a radical simplification of the <a href="/wiki/Two-element_Boolean_algebra" title="Two-element Boolean algebra">two-element Boolean algebra</a> and the <a href="/wiki/Connective_(logic)" class="mw-redirect" title="Connective (logic)">truth functors</a>. </p><p>The <i>depth</i> of an object is the number of cuts that enclose it. </p><p><i>Rules of inference</i>: </p> <ul><li>Insertion - Any subgraph may be inserted into an odd numbered depth. The surrounding white page is depth 1. Depth 2 are the black letters and lines that encircle elements. Depth 3 is entering the next white area in an enclosed element.</li> <li>Erasure - Any subgraph in an even numbered depth may be erased.</li></ul> <p><i>Rules of equivalence</i>: </p> <ul><li>Double cut - A pair of cuts with nothing between them may be drawn around any subgraph. Likewise two nested cuts with nothing between them may be erased. This rule is equivalent to Boolean involution and <a href="/wiki/Double_negation" title="Double negation">double negation</a> elimination.</li> <li>Iteration/Deiteration – To understand this rule, it is best to view a graph as a <a href="/wiki/Tree_structure" title="Tree structure">tree structure</a> having <a href="/wiki/Node_(computer_science)" title="Node (computer science)">nodes</a> and <a href="/wiki/Tree_structure" title="Tree structure">ancestors</a>. Any subgraph <i>P</i> in node <i>n</i> may be copied into any node depending on <i>n</i>. Likewise, any subgraph <i>P</i> in node <i>n</i> may be erased if there exists a copy of <i>P</i> in some node ancestral to <i>n</i> (i.e., some node on which <i>n</i> depends). For an equivalent rule in an algebraic context, see <b>C2</b> in <i><a href="/wiki/Laws_of_Form" title="Laws of Form">Laws of Form</a></i>.</li></ul> <p>A proof manipulates a graph by a series of steps, with each step justified by one of the above rules. If a graph can be reduced by steps to the blank page or an empty cut, it is what is now called a <a href="/wiki/Tautology_(logic)" title="Tautology (logic)">tautology</a> (or the complement thereof, a contradiction). Graphs that cannot be simplified beyond a certain point are analogues of the <a href="/wiki/Satisfiable" class="mw-redirect" title="Satisfiable">satisfiable</a> <a href="/wiki/Formula" title="Formula">formulas</a> of <a href="/wiki/First-order_logic" title="First-order logic">first-order logic</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Beta">Beta</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Existential_graph&action=edit&section=4" title="Edit section: Beta"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Beta-existential-graph.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c0/Beta-existential-graph.png/220px-Beta-existential-graph.png" decoding="async" width="220" height="70" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c0/Beta-existential-graph.png/330px-Beta-existential-graph.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c0/Beta-existential-graph.png/440px-Beta-existential-graph.png 2x" data-file-width="1080" data-file-height="346" /></a><figcaption>Existential graph of the statement "There is something that is not a human"</figcaption></figure> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Existential_graphs.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a0/Existential_graphs.png/220px-Existential_graphs.png" decoding="async" width="220" height="164" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a0/Existential_graphs.png/330px-Existential_graphs.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/a0/Existential_graphs.png/440px-Existential_graphs.png 2x" data-file-width="694" data-file-height="518" /></a><figcaption>beta existential graphs</figcaption></figure> <p>In the case of betagraphs, the atomic expressions are no longer propositional letters (P, Q, R,...) or statements ("It rains," "Peirce died in poverty"), but predicates in the sense of predicate logic (see there for more details), possibly abbreviated to predicate letters (F, G, H,...). A predicate in the sense of predicate logic is a sequence of words with clearly defined spaces that becomes a propositional sentence if you insert a proper noun into each space. For example, the word sequence "_ x is a human" is a predicate because it gives rise to the declarative sentence "Peirce is a human" if you enter the proper name "Peirce" in the blank space. Likewise, the word sequence "_<sub>1</sub> is richer than _<sub>2</sub>" is a predicate, because it results in the statement "Socrates is richer than Plato" if the proper names "Socrates" or "Plato" are inserted into the spaces. </p> <div class="mw-heading mw-heading3"><h3 id="Notation_of_betagraphs">Notation of betagraphs</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Existential_graph&action=edit&section=5" title="Edit section: Notation of betagraphs"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div><p> The basic language device is the line of identity, a thickly drawn line of any form. The identity line docks onto the blank space of a predicate to show that the predicate applies to at least one individual. In order to express that the predicate "_ is a human being" applies to at least one individual – i.e. to say that there is (at least) one human being – one writes an identity line in the blank space of the predicate "_ is a human being:"</p><figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Existential_graph_3.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/5/51/Existential_graph_3.png" decoding="async" width="175" height="120" class="mw-file-element" data-file-width="175" data-file-height="120" /></a><figcaption>Existential graph of the statement "Some man eats a man"</figcaption></figure> <p>The beta graphs can be read as a system in which all formula are to be taken as closed, because all variables are implicitly quantified. If the "shallowest" part of a line of identity has even depth, the associated variable is tacitly <a href="/wiki/Existential_quantifier" class="mw-redirect" title="Existential quantifier">existentially</a> (<a href="/wiki/Universal_quantifier" class="mw-redirect" title="Universal quantifier">universally</a>) quantified. </p><p>Zeman (1964) was the first to note that the <i>beta</i> graphs are <a href="/wiki/Isomorphism" title="Isomorphism">isomorphic</a> to <a href="/wiki/First-order_logic" title="First-order logic">first-order logic</a> with <a href="/wiki/First-order_logic#Equality_and_its_axioms" title="First-order logic">equality</a> (also see Zeman 1967). However, the secondary literature, especially Roberts (1973) and Shin (2002), does not agree on how this is. Peirce's writings do not address this question, because first-order logic was first clearly articulated only after his death, in the 1928 first edition of <a href="/wiki/David_Hilbert" title="David Hilbert">David Hilbert</a> and <a href="/wiki/Wilhelm_Ackermann" title="Wilhelm Ackermann">Wilhelm Ackermann</a>'s <i><a href="/wiki/Principles_of_Mathematical_Logic" title="Principles of Mathematical Logic">Principles of Mathematical Logic</a></i>. </p> <div class="mw-heading mw-heading3"><h3 id="Gamma">Gamma</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Existential_graph&action=edit&section=6" title="Edit section: Gamma"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Add to the syntax of <i>alpha</i> a second kind of <a href="/wiki/Simple_closed_curve" class="mw-redirect" title="Simple closed curve">simple closed curve</a>, written using a dashed rather than a solid line. Peirce proposed rules for this second style of cut, which can be read as the primitive <a href="/wiki/Unary_operation" title="Unary operation">unary operator</a> of <a href="/wiki/Modal_logic" title="Modal logic">modal logic</a>. </p><p>Zeman (1964) was the first to note that the <i>gamma</i> graphs are equivalent to the well-known <a href="/wiki/Modal_logic" title="Modal logic">modal logics S4</a> and <a href="/wiki/S5_(modal_logic)" title="S5 (modal logic)">S5</a>. Hence the <i>gamma</i> graphs can be read as a peculiar form of <a href="/wiki/Normal_modal_logic" title="Normal modal logic">normal modal logic</a>. This finding of Zeman's has received little attention to this day, but is nonetheless included here as a point of interest. </p> <div class="mw-heading mw-heading2"><h2 id="Peirce's_role"><span id="Peirce.27s_role"></span>Peirce's role</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Existential_graph&action=edit&section=7" title="Edit section: Peirce's role"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The existential graphs are a curious offspring of <a href="/wiki/Charles_Sanders_Peirce" title="Charles Sanders Peirce">Peirce</a> the <a href="/wiki/Logic" title="Logic">logician</a>/mathematician with Peirce the founder of a major strand of <a href="/wiki/Semiotics" title="Semiotics">semiotics</a>. Peirce's graphical logic is but one of his many accomplishments in logic and mathematics. In a series of papers beginning in 1867, and culminating with his classic paper in the 1885 <i><a href="/wiki/American_Journal_of_Mathematics" title="American Journal of Mathematics">American Journal of Mathematics</a></i>, Peirce developed much of the <a href="/wiki/Two-element_Boolean_algebra" title="Two-element Boolean algebra">two-element Boolean algebra</a>, <a href="/wiki/Propositional_logic" class="mw-redirect" title="Propositional logic">propositional calculus</a>, <a href="/wiki/Quantification_(logic)" class="mw-redirect" title="Quantification (logic)">quantification</a> and the <a href="/wiki/First-order_logic" title="First-order logic">predicate calculus</a>, and some rudimentary <a href="/wiki/Set_theory" title="Set theory">set theory</a>. <a href="/wiki/Model_theory" title="Model theory">Model theorists</a> consider Peirce the first of their kind. He also extended <a href="/wiki/Augustus_De_Morgan" title="Augustus De Morgan">De Morgan</a>'s <a href="/wiki/Relation_algebra" title="Relation algebra">relation algebra</a>. He stopped short of <a href="/wiki/Metalogic" title="Metalogic">metalogic</a> (which eluded even <i><a href="/wiki/Principia_Mathematica" title="Principia Mathematica">Principia Mathematica</a></i>). </p><p>But Peirce's evolving <a href="/wiki/Semiotic" class="mw-redirect" title="Semiotic">semiotic</a> theory led him to doubt the value of logic formulated using conventional linear notation, and to prefer that logic and mathematics be notated in two (or even three) dimensions. His work went beyond <a href="/wiki/Euler_diagram" title="Euler diagram">Euler's diagrams</a> and <a href="/wiki/John_Venn" title="John Venn">Venn</a>'s 1880 <a href="/wiki/Venn_diagram" title="Venn diagram">revision</a> thereof. <a href="/wiki/Frege" class="mw-redirect" title="Frege">Frege</a>'s 1879 work <i><a href="/wiki/Begriffsschrift" title="Begriffsschrift">Begriffsschrift</a></i> also employed a two-dimensional notation for logic, but one very different from Peirce's. </p><p>Peirce's first published paper on graphical logic (reprinted in Vol. 3 of his <i>Collected Papers</i>) proposed a system dual (in effect) to the <i>alpha</i> existential graphs, called the <a href="/wiki/Entitative_graph" class="mw-redirect" title="Entitative graph">entitative graphs</a>. He very soon abandoned this formalism in favor of the existential graphs. In 1911 <a href="/wiki/Victoria,_Lady_Welby" title="Victoria, Lady Welby">Victoria, Lady Welby</a> showed the existential graphs to <a href="/wiki/C._K._Ogden" class="mw-redirect" title="C. K. Ogden">C. K. Ogden</a> who felt they could usefully be combined with Welby's thoughts in a "less abstruse form."<sup id="cite_ref-Petrilli_12-0" class="reference"><a href="#cite_note-Petrilli-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> Otherwise they attracted little attention during his life and were invariably denigrated or ignored after his death, until the PhD theses by Roberts (1964) and Zeman (1964). </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Existential_graph&action=edit&section=8" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Logical_NOR" title="Logical NOR">Nor operator</a></li> <li><a href="/wiki/Conceptual_graph" title="Conceptual graph">Conceptual graph</a></li> <li><a href="/wiki/Charles_Sanders_Peirce" title="Charles Sanders Peirce">Charles Sander Peirce</a></li> <li><a href="/wiki/Propositional_calculus" title="Propositional calculus">Propositional calculus</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Existential_graph&action=edit&section=9" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text">Peirce, C. S., "[On Junctures and Fractures in Logic]" (editors' title for MS 427 (the new numbering system), Fall–Winter 1882), and "Letter, Peirce to O. H. Mitchell" (L 294, 21 December 1882), <i><a href="/wiki/Charles_Sanders_Peirce_bibliography#W" title="Charles Sanders Peirce bibliography">Writings of Charles S. Peirce</a></i>, v. 4, "Junctures" on pp. 391–393 (Google <a rel="nofollow" class="external text" href="https://archive.org/details/writingsofcharle0002peir">preview</a>) and the letter on pp. 394–399 (Google <a rel="nofollow" class="external text" href="https://archive.org/details/writingsofcharle0002peir">preview</a>). See <a href="/wiki/John_F._Sowa" title="John F. Sowa">Sowa, John F.</a> (1997), "Matching Logical Structure to Linguistic Structure", <i>Studies in the Logic of Charles Sanders Peirce</i>, Nathan Houser, Don D. Roberts, and James Van Evra, editors, Bloomington and Indianapolis: Indiana University Press, pp. 418–444, see 420, 425, 426, 428.</span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFSmullyan1968" class="citation cs2">Smullyan, Raymond M. (1968), <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1007/978-3-642-86718-7_13">"Prenex Tableaux"</a>, <i>First-Order Logic</i>, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 117–121, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-642-86720-0" title="Special:BookSources/978-3-642-86720-0"><bdi>978-3-642-86720-0</bdi></a><span class="reference-accessdate">, retrieved <span class="nowrap">2024-07-10</span></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=First-Order+Logic&rft.atitle=Prenex+Tableaux&rft.pages=117-121&rft.date=1968&rft.isbn=978-3-642-86720-0&rft.aulast=Smullyan&rft.aufirst=Raymond+M.&rft_id=http%3A%2F%2Fdx.doi.org%2F10.1007%2F978-3-642-86718-7_13&rfr_id=info%3Asid%2Fen.wikipedia.org%3AExistential+graph" class="Z3988"></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text">"Peirce wants a sign which will not merely be conventionally understood [...], but which will "wear its meaning on its sleeve," so to speak" (Zeman 1964, page 21, quoted from the online edition)</span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text">"[algebraic formulas] are not ‚iconic‘ – that is, they do not resemble the objects or relationships they represent. Peirce took this to be a defect.“ (Roberts 1973, Seite 17)</span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text">"[Peirce's] graphical publications were few and not easy to understand, as he admitted himself." (Roberts 1973, page 12)</span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text">"[T]he syntax of Peirce's graphs lacks, at least in general, the combinatorial elegance and simplicity of linear notations" (Hammer 1998, page 502)</span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text">Roberts points out that even in the standard work on the history of logic, Kneale/Kneale: <i>The Development of Logic.</i> Clarendon Press. Oxford 1962, ISBN 0-19-824773-7, the logical diagrams of Peirce are not mentioned.</span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text">"One questions the efficacy of Peirce's diagrams [...]. Their basic machinery is too complex [...]." (Quine: Review of Collected Papers of Charles Sanders Peirce, Volume 4: The Simplest Mathematics, Isis 22, page 552, quoted in Roberts 1973, page 13)</span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text">"Aside from their historic interest, Peirce's graphical formalisms are of current interest. Sowa's system of conceptual graphs [...] is based on Peirce's work. [Other work] also indicates increasing interest in the logic of graphical reasoning." (Hammer 1998, page 489)</span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text">see, e.g., Sun-Joo Shin, "Reconstituting Beta Graphs into an Efficacious System," <i>Journal of Logic, Language and Information archive,</i> Volume 8, Issue 3, July 1999, 273–295.</span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text">The evidence for this was provided by J. Jay Zeman in his dissertation in 1964 (see bibliography); for alpha graphs, see also the work of White, 1984</span> </li> <li id="cite_note-Petrilli-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-Petrilli_12-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPetrilli2017" class="citation book cs1">Petrilli, Susan (2017). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Gqs0DwAAQBAJ&q=Ogden+Welby&pg=PT244"><i>Victoria Welby and the Science of Signs: Significs, Semiotics, Philosophy of Language</i></a>. Routledge. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-351-29598-7" title="Special:BookSources/978-1-351-29598-7"><bdi>978-1-351-29598-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Victoria+Welby+and+the+Science+of+Signs%3A+Significs%2C+Semiotics%2C+Philosophy+of+Language&rft.pub=Routledge&rft.date=2017&rft.isbn=978-1-351-29598-7&rft.aulast=Petrilli&rft.aufirst=Susan&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DGqs0DwAAQBAJ%26q%3DOgden%2BWelby%26pg%3DPT244&rfr_id=info%3Asid%2Fen.wikipedia.org%3AExistential+graph" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="Further_reading">Further reading</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Existential_graph&action=edit&section=10" title="Edit section: Further reading"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Primary_literature">Primary literature</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Existential_graph&action=edit&section=11" title="Edit section: Primary literature"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>1931–1935 & 1958. <i><a href="/wiki/Charles_Sanders_Peirce_bibliography#CP" title="Charles Sanders Peirce bibliography">The Collected Papers of Charles Sanders Peirce</a></i>. Volume 4, Book II: "Existential Graphs", consists of paragraphs 347–584. A discussion also begins in paragraph 617. <ul><li>Paragraphs 347–349 (II.1.1. "Logical Diagram")—Peirce's definition "Logical Diagram (or Graph)" in <a href="/wiki/James_Mark_Baldwin" title="James Mark Baldwin">Baldwin</a>'s <i>Dictionary of Philosophy and Psychology</i> (1902), <a rel="nofollow" class="external text" href="https://archive.org/details/beginningthirdr00randgoog/page/n58">v. 2, p. 28</a>. <i>Classics in the History of Psychology</i> <a rel="nofollow" class="external text" href="http://psychclassics.yorku.ca/Baldwin/Dictionary/defs/L4defs.htm#Logical%20Diagram">Eprint</a>.</li> <li>Paragraphs 350–371 (II.1.2. "Of Euler's Diagrams")—from "Graphs" (manuscript 479) c. 1903.</li> <li>Paragraphs 372–584 <a rel="nofollow" class="external text" href="https://web.archive.org/web/20050901083355/http://www.existentialgraphs.com/#table2">Eprint</a>.</li> <li>Paragraphs 372–393 (II.2. "Symbolic Logic")—Peirce's part of "Symbolic Logic" in Baldwin's <i>Dictionary of Philosophy and Psychology</i> (1902) <a rel="nofollow" class="external text" href="https://archive.org/details/beginningthirdr00randgoog/page/n671">v. 2, pp. 645</a>–650, beginning (near second column's top) with "If symbolic logic be defined...". Paragraph 393 (Baldwin's DPP2 p. 650) is by Peirce and <a href="/wiki/Christine_Ladd-Franklin" title="Christine Ladd-Franklin">Christine Ladd-Franklin</a> ("C.S.P., C.L.F.").</li> <li>Paragraphs 394–417 (II.3. "Existential Graphs")—from Peirce's pamphlet <i>A Syllabus of Certain Topics of Logic</i>, pp. 15–23, Alfred Mudge & Son, Boston (1903).</li> <li>Paragraphs 418–509 (II.4. "On Existential Graphs, Euler's Diagrams, and Logical Algebra")—from "Logical Tracts, No. 2" (manuscript 492), c. 1903.</li> <li>Paragraphs 510–529 (II.5. "The Gamma Part of Existential Graphs")—from "Lowell Lectures of 1903," Lecture IV (manuscript 467).</li> <li>Paragraphs 530–572 (II.6.)—"Prolegomena To an Apology For Pragmaticism" (1906), <i><a href="/wiki/The_Monist" title="The Monist">The Monist</a></i>, v. XVI, <a rel="nofollow" class="external text" href="https://books.google.com/books?id=3KoLAAAAIAAJ&pg=RA2-PA492">n. 4, pp. 492</a>-546. Corrections (1907) in <i>The Monist</i> v. XVII, <a rel="nofollow" class="external text" href="https://books.google.com/books?id=RqsLAAAAIAAJ&pg=PA160">p. 160</a>.</li> <li>Paragraphs 573–584 (II.7. "An Improvement on the Gamma Graphs")—from "For the National Academy of Science, 1906 April Meeting in Washington" (manuscript 490).</li> <li>Paragraphs 617–623 (at least) (in Book III, Ch. 2, §2, paragraphs 594–642)—from "Some Amazing Mazes: Explanation of Curiosity the First", <i>The Monist</i>, v. XVIII, 1908, <a rel="nofollow" class="external text" href="https://archive.org/details/bub_gb_CqsLAAAAIAAJ_2/page/n497">n. 3, pp. 416</a>-464, see starting <a rel="nofollow" class="external text" href="https://archive.org/details/bub_gb_CqsLAAAAIAAJ_2/page/n521">p. 440</a>.</li></ul></li> <li>1992. "Lecture Three: The Logic of Relatives", <i><a href="/wiki/Charles_Sanders_Peirce_bibliography#RLT" title="Charles Sanders Peirce bibliography">Reasoning and the Logic of Things</a></i>, pp. 146–164. Ketner, Kenneth Laine (editing and introduction), and <a href="/wiki/Hilary_Putnam" title="Hilary Putnam">Hilary Putnam</a> (commentary). <a href="/wiki/Harvard_University_Press" title="Harvard University Press">Harvard University Press</a>. Peirce's 1898 lectures in Cambridge, Massachusetts.</li> <li>1977, 2001. <i><a href="/wiki/Charles_Sanders_Peirce_bibliography#SS" title="Charles Sanders Peirce bibliography">Semiotic and Significs</a>: The Correspondence between C.S. Peirce and <a href="/wiki/Victoria_Lady_Welby" class="mw-redirect" title="Victoria Lady Welby">Victoria Lady Welby</a></i>. Hardwick, C.S., ed. Lubbock TX: Texas Tech University Press. 2nd edition 2001.</li> <li><a rel="nofollow" class="external text" href="http://www.jfsowa.com/peirce/ms514.htm">A transcription of Peirce's MS 514</a> (1909), edited with commentary by <a href="/wiki/John_Sowa" class="mw-redirect" title="John Sowa">John Sowa</a>.</li></ul> <p>Currently, the chronological critical edition of Peirce's works, the <i><a href="/wiki/Charles_Sanders_Peirce_bibliography#W" title="Charles Sanders Peirce bibliography">Writings</a></i>, extends only to 1892. Much of Peirce's work on <a href="/wiki/Logical_graph" class="mw-redirect" title="Logical graph">logical graphs</a> consists of manuscripts written after that date and still unpublished. Hence our understanding of Peirce's graphical logic is likely to change as the remaining 23 volumes of the chronological edition appear. </p> <div class="mw-heading mw-heading3"><h3 id="Secondary_literature">Secondary literature</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Existential_graph&action=edit&section=12" title="Edit section: Secondary literature"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>Hammer, Eric M. (1998), "Semantics for Existential Graphs," <i>Journal of Philosophical Logic 27</i>: 489–503.</li> <li>Ketner, Kenneth Laine <ul><li>(1981), "The Best Example of Semiosis and Its Use in Teaching Semiotics", <i>American Journal of Semiotics</i> v. I, n. 1–2, pp. 47–83. Article is an introduction to existential graphs.</li> <li>(1990), <i>Elements of Logic: An Introduction to Peirce's Existential Graphs</i>, Texas Tech University Press, Lubbock, TX, 99 pages, spiral-bound.</li></ul></li> <li>Queiroz, João & Stjernfelt, Frederik <ul><li>(2011), "Diagrammatical Reasoning and Peircean Logic Representation", <i>Semiotica</i> vol. 186 (1/4). (Special issue on Peirce's diagrammatic logic.) <a rel="nofollow" class="external autonumber" href="http://www.degruyter.com/view/j/semi.2011.2011.issue-186/issue-files/semi.2011.2011.issue-186.xml">[1]</a></li></ul></li> <li>Roberts, Don D. <ul><li>(1964), "Existential Graphs and Natural Deduction" in Moore, E. C., and Robin, R. S., eds., <i>Studies in the Philosophy of C. S. Peirce, 2nd series</i>. Amherst MA: <a href="/wiki/University_of_Massachusetts_Press" title="University of Massachusetts Press">University of Massachusetts Press</a>. The first publication to show any sympathy and understanding for Peirce's graphical logic.</li> <li>(1973). <i>The Existential Graphs of C.S. Peirce.</i> John Benjamins. An outgrowth of his 1963 thesis.</li></ul></li> <li><a href="/wiki/Sun-Joo_Shin" title="Sun-Joo Shin">Shin, Sun-Joo</a> (2002), <i>The Iconic Logic of Peirce's Graphs</i>. MIT Press.</li> <li><a href="/wiki/Fernando_Zalamea" title="Fernando Zalamea">Zalamea, Fernando</a>. <i>Peirce's Logic of Continuity.</i> Docent Press, Boston MA. 2012. ISBN 9 780983 700494. <ul><li>Part II: Peirce's Existential Graphs, pp. 76-162.</li></ul></li> <li>Zeman, J. J. <ul><li>(1964), <i><a rel="nofollow" class="external text" href="http://users.clas.ufl.edu/jzeman/">The Graphical Logic of C.S. Peirce.</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20180914015520/http://users.clas.ufl.edu/jzeman/">Archived</a> 2018-09-14 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a></i> Unpublished Ph.D. thesis submitted to the <a href="/wiki/University_of_Chicago" title="University of Chicago">University of Chicago</a>.</li> <li>(1967), "A System of Implicit Quantification," <i>Journal of Symbolic Logic 32</i>: 480–504.</li></ul></li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Existential_graph&action=edit&section=13" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Stanford_Encyclopedia_of_Philosophy" title="Stanford Encyclopedia of Philosophy">Stanford Encyclopedia of Philosophy</a>: <a rel="nofollow" class="external text" href="http://setis.library.usyd.edu.au/stanford/entries/peirce-logic/#SymIcoRep">Peirce's Logic</a> by <a href="/wiki/Sun-Joo_Shin" title="Sun-Joo Shin">Sun-Joo Shin</a> and Eric Hammer.</li> <li>Dau, Frithjof, <a rel="nofollow" class="external text" href="http://www.dr-dau.net/eg_readings.shtml">Peirce's Existential Graphs --- Readings and Links.</a> An annotated bibliography on the existential graphs.</li> <li>Gottschall, Christian, <a rel="nofollow" class="external text" href="http://logik.phl.univie.ac.at/~chris/gateway/formular-uk-peirce.html">Proof Builder</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20060212072303/http://logik.phl.univie.ac.at/~chris/gateway/formular-uk-peirce.html">Archived</a> 2006-02-12 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a> — Java applet for deriving Alpha graphs.</li> <li>Liu, Xin-Wen, "<a rel="nofollow" class="external text" href="https://web.archive.org/web/20081022205810/http://philosophy.cass.cn/facu/liuxinwen/01.htm">The literature of C.S. Peirce’s Existential Graphs</a>" (via Wayback Machine), Institute of Philosophy, Chinese Academy of Social Sciences, Beijing, PRC.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSowa" class="citation web cs1"><a href="/wiki/John_Sowa" class="mw-redirect" title="John Sowa">Sowa, John F.</a> <a rel="nofollow" class="external text" href="http://www.jfsowa.com/pubs/laws.htm">"Laws, Facts, and Contexts: Foundations for Multimodal Reasoning"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">2009-10-23</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Laws%2C+Facts%2C+and+Contexts%3A+Foundations+for+Multimodal+Reasoning&rft.aulast=Sowa&rft.aufirst=John+F.&rft_id=http%3A%2F%2Fwww.jfsowa.com%2Fpubs%2Flaws.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3AExistential+graph" class="Z3988"></span> (NB. Existential graphs and <a href="/wiki/Conceptual_graph" title="Conceptual graph">conceptual graphs</a>.)</li> <li>Van Heuveln, Bram, "<a rel="nofollow" class="external text" href="http://www.cogsci.rpi.edu/~heuveb/research/EG/index.html">Existential Graphs.</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20090829072353/http://www.cogsci.rpi.edu/~heuveb/research/EG/index.html">Archived</a> 2009-08-29 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>" Dept. of Cognitive Science, <a href="/wiki/Rensselaer_Polytechnic_Institute" title="Rensselaer Polytechnic Institute">Rensselaer Polytechnic Institute</a>. Alpha only.</li> <li>Zeman, Jay J., "<a rel="nofollow" class="external text" href="https://web.archive.org/web/20050901083355/http://www.existentialgraphs.com/">Existential Graphs</a>". With <a rel="nofollow" class="external text" href="https://web.archive.org/web/20050901083355/http://www.existentialgraphs.com/#table2">four online papers</a> by Peirce.</li></ul> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Diagrams_in_logic" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="3"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Diagrams_in_logic" title="Template:Diagrams in logic"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/w/index.php?title=Template_talk:Diagrams_in_logic&action=edit&redlink=1" class="new" title="Template talk:Diagrams in logic (page does not exist)"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Diagrams_in_logic" title="Special:EditPage/Template:Diagrams in logic"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Diagrams_in_logic" style="font-size:114%;margin:0 4em">Diagrams in logic</div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0;padding-left:2.0em;padding-right:2.0em;"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Venn_diagram" title="Venn diagram">Venn diagram</a></li> <li><a href="/wiki/Square_of_opposition" title="Square of opposition">Square of opposition</a></li> <li><a href="/wiki/Porphyrian_tree" title="Porphyrian tree">Porphyrian tree</a></li> <li><a href="/wiki/Karnaugh_map" title="Karnaugh map">Karnaugh map</a></li> <li><a href="/wiki/Binary_decision_diagram" title="Binary decision diagram">Binary decision diagram</a></li> <li><a href="/wiki/Propositional_directed_acyclic_graph" title="Propositional directed acyclic graph">Propositional directed acyclic graph</a></li> <li><a href="/wiki/Sentential_decision_diagram" title="Sentential decision diagram">Sentential decision diagram</a></li> <li><a href="/wiki/Truth_table" title="Truth table">Truth table</a></li> <li><a href="/wiki/Sequent_calculus" title="Sequent calculus">Sequent calculus</a></li> <li><a href="/wiki/Method_of_analytic_tableaux" title="Method of analytic tableaux">Method of analytic tableaux</a></li></ul> </div></td><td class="noviewer navbox-image" rowspan="1" style="width:1px;padding:0 0 0 2px"><div><span typeof="mw:File"><a href="/wiki/File:Venn_diagram_gr_la_ru.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e4/Venn_diagram_gr_la_ru.svg/50px-Venn_diagram_gr_la_ru.svg.png" decoding="async" width="50" height="48" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e4/Venn_diagram_gr_la_ru.svg/75px-Venn_diagram_gr_la_ru.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e4/Venn_diagram_gr_la_ru.svg/100px-Venn_diagram_gr_la_ru.svg.png 2x" data-file-width="1001" data-file-height="965" /></a></span></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.eqiad.canary‐76945775b4‐xhn6d Cached time: 20241128123745 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.309 seconds Real time usage: 0.403 seconds Preprocessor visited node count: 735/1000000 Post‐expand include size: 20369/2097152 bytes Template argument size: 654/2097152 bytes Highest expansion depth: 8/100 Expensive parser function count: 1/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 33447/5000000 bytes Lua time usage: 0.198/10.000 seconds Lua memory usage: 4264803/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 333.174 1 -total 30.87% 102.839 1 Template:Reflist 28.74% 95.759 1 Template:C._S._Peirce_articles 27.40% 91.301 1 Template:Sidebar_with_collapsible_lists 24.53% 81.739 1 Template:Citation 21.89% 72.937 1 Template:Short_description 12.99% 43.275 2 Template:Pagetype 11.20% 37.301 1 Template:Diagrams_in_logic 10.08% 33.588 1 Template:Navbox 5.02% 16.723 3 Template:Main_other --> <!-- Saved in parser cache with key enwiki:pcache:2235037:|#|:idhash:canonical and timestamp 20241128123745 and revision id 1252106426. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&useformat=desktop" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Existential_graph&oldid=1252106426">https://en.wikipedia.org/w/index.php?title=Existential_graph&oldid=1252106426</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Logic" title="Category:Logic">Logic</a></li><li><a href="/wiki/Category:Logical_calculi" title="Category:Logical calculi">Logical calculi</a></li><li><a href="/wiki/Category:Philosophical_logic" title="Category:Philosophical logic">Philosophical logic</a></li><li><a href="/wiki/Category:History_of_logic" title="Category:History of logic">History of logic</a></li><li><a href="/wiki/Category:History_of_mathematics" title="Category:History of mathematics">History of mathematics</a></li><li><a href="/wiki/Category:Charles_Sanders_Peirce" title="Category:Charles Sanders Peirce">Charles Sanders Peirce</a></li><li><a href="/wiki/Category:Logical_diagrams" title="Category:Logical diagrams">Logical diagrams</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Webarchive_template_wayback_links" title="Category:Webarchive template wayback links">Webarchive template wayback links</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 19 October 2024, at 20:29<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Existential_graph&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-5c59558b9d-j26fl","wgBackendResponseTime":161,"wgPageParseReport":{"limitreport":{"cputime":"0.309","walltime":"0.403","ppvisitednodes":{"value":735,"limit":1000000},"postexpandincludesize":{"value":20369,"limit":2097152},"templateargumentsize":{"value":654,"limit":2097152},"expansiondepth":{"value":8,"limit":100},"expensivefunctioncount":{"value":1,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":33447,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 333.174 1 -total"," 30.87% 102.839 1 Template:Reflist"," 28.74% 95.759 1 Template:C._S._Peirce_articles"," 27.40% 91.301 1 Template:Sidebar_with_collapsible_lists"," 24.53% 81.739 1 Template:Citation"," 21.89% 72.937 1 Template:Short_description"," 12.99% 43.275 2 Template:Pagetype"," 11.20% 37.301 1 Template:Diagrams_in_logic"," 10.08% 33.588 1 Template:Navbox"," 5.02% 16.723 3 Template:Main_other"]},"scribunto":{"limitreport-timeusage":{"value":"0.198","limit":"10.000"},"limitreport-memusage":{"value":4264803,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.canary-76945775b4-xhn6d","timestamp":"20241128123745","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Existential graph","url":"https:\/\/en.wikipedia.org\/wiki\/Existential_graph","sameAs":"http:\/\/www.wikidata.org\/entity\/Q1383836","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q1383836","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2005-07-14T20:37:29Z","dateModified":"2024-10-19T20:29:54Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/5\/58\/Charles_Sanders_Peirce.jpg","headline":"diagrammatic notation for logical expressions proposed by Peirce"}</script> </body> </html>