CINXE.COM

Best Online Statistics Courses and Programs | edX

<!DOCTYPE html><html lang="en"><head><meta charSet="utf-8"/><meta name="viewport" content="width=device-width, initial-scale=1"/><link rel="stylesheet" href="/_next/static/css/bed218a56490fce6.css" data-precedence="next"/><link rel="stylesheet" href="/_next/static/css/403d28282e775383.css" data-precedence="next"/><link rel="stylesheet" href="/_next/static/css/05177b9cba5d3efe.css" data-precedence="next"/><link rel="stylesheet" href="/_next/static/css/b4ab6e6f5f0f9ce2.css" data-precedence="next"/><link rel="stylesheet" href="/_next/static/css/f8b0d7642df77b70.css" data-precedence="next"/><link rel="preload" as="script" fetchPriority="low" href="/_next/static/chunks/webpack-26d6f45027cd47cc.js"/><script src="/_next/static/chunks/fd9d1056-948c3dc981481b0a.js" async=""></script><script src="/_next/static/chunks/2117-4878efafa67aefd1.js" async=""></script><script src="/_next/static/chunks/main-app-d020afa6a5def42e.js" async=""></script><script src="/_next/static/chunks/0e5ce63c-e4012ad3e28fdbed.js" async=""></script><script src="/_next/static/chunks/c233e9bd-865e5bc301f09aaf.js" async=""></script><script src="/_next/static/chunks/6290-14a62ddd57f81ba6.js" async=""></script><script src="/_next/static/chunks/9177-4f779ab065ca3298.js" async=""></script><script src="/_next/static/chunks/5878-e3c69aff2e273e23.js" async=""></script><script src="/_next/static/chunks/3069-556a3605b335d482.js" async=""></script><script src="/_next/static/chunks/4858-aef93864f4abb320.js" async=""></script><script src="/_next/static/chunks/8003-2972b8eea56e87df.js" async=""></script><script src="/_next/static/chunks/6686-f007b1e2101fda62.js" async=""></script><script src="/_next/static/chunks/9366-e6a7fb83e1c23555.js" async=""></script><script src="/_next/static/chunks/3397-dd13dd89c81e42c8.js" async=""></script><script src="/_next/static/chunks/554-025495b6bf8e1dac.js" async=""></script><script src="/_next/static/chunks/app/%5Blocale%5D/not-found-3aafa877300c524c.js" async=""></script><script src="/_next/static/chunks/a4634e51-1ae34582fa2bb120.js" async=""></script><script src="/_next/static/chunks/8890-cd2934b2aa3b89dc.js" async=""></script><script src="/_next/static/chunks/3402-f8625ce91eb27ea6.js" async=""></script><script src="/_next/static/chunks/8082-143f9f9fdf5b9192.js" async=""></script><script src="/_next/static/chunks/4980-d730333976453575.js" async=""></script><script src="/_next/static/chunks/32-bafec80821f44ed5.js" async=""></script><script src="/_next/static/chunks/2628-8d231bd404df8976.js" async=""></script><script src="/_next/static/chunks/121-00c8365f8c57a8cc.js" async=""></script><script src="/_next/static/chunks/3564-dbea25076659e35b.js" async=""></script><script src="/_next/static/chunks/5099-9a5433902d87437e.js" async=""></script><script src="/_next/static/chunks/app/%5Blocale%5D/learn/%5Bcategory%5D/page-176642ac87704917.js" async=""></script><script src="/_next/static/chunks/app/%5Blocale%5D/layout-bdcb92f3a05369b1.js" async=""></script><script src="/_next/static/chunks/app/%5Blocale%5D/error-3b41dcbdabbc3d14.js" async=""></script><link rel="preload" href="https://beam.edx.org/consent/fa169e97-be64-4cc1-bad3-9534590f9a30/OtAutoBlock.js" as="script"/><link rel="preload" href="https://beam.edx.org/scripttemplates/otSDKStub.js" as="script"/><link rel="preconnect" href="https://cdn.segment.com"/><link rel="preconnect" href="https://prospect-form-plugin.2u.com"/><title>Best Online Statistics Courses and Programs | edX</title><meta name="description" content="Explore free statistics courses and more to expand your analytical skills with edX."/><link rel="canonical" href="https://www.edx.org/learn/statistics"/><meta property="og:title" content="Best Online Statistics Courses and Programs | edX"/><meta property="og:description" content="Explore free statistics courses and more to expand your analytical skills with edX."/><meta property="og:url" content="https://www.edx.org/learn/statistics"/><meta property="og:site_name" content="edX"/><meta property="og:locale" content="EN_US"/><meta name="twitter:card" content="summary"/><meta name="twitter:creator" content="@edXOnline"/><meta name="twitter:title" content="Best Online Statistics Courses and Programs"/><meta name="twitter:description" content="Explore free statistics courses and more to expand your analytical skills with edX."/><link rel="icon" href="/favicon.ico" type="image/x-icon" sizes="16x16"/><meta name="next-size-adjust"/><script>(self.__next_s=self.__next_s||[]).push([0,{"children":"!(function () {\n var i = \"analytics\",\n analytics = (window[i] = window[i] || []);\n if (!analytics.initialize)\n if (analytics.invoked)\n window.console &&\n console.error &&\n console.error(\"Segment snippet included twice.\");\n else {\n analytics.invoked = !0;\n analytics.methods = [\n \"trackSubmit\",\n \"trackClick\",\n \"trackLink\",\n \"trackForm\",\n \"pageview\",\n \"identify\",\n \"reset\",\n \"group\",\n \"track\",\n \"ready\",\n \"alias\",\n \"debug\",\n \"page\",\n \"screen\",\n \"once\",\n \"off\",\n \"on\",\n \"addSourceMiddleware\",\n \"addIntegrationMiddleware\",\n \"setAnonymousId\",\n \"addDestinationMiddleware\",\n \"register\",\n ];\n analytics.factory = function (e) {\n return function () {\n if (window[i].initialized)\n return window[i][e].apply(window[i], arguments);\n var n = Array.prototype.slice.call(arguments);\n if (\n [\"track\", \"screen\", \"alias\", \"group\", \"page\", \"identify\"].indexOf(\n e\n ) > -1\n ) {\n var c = document.querySelector(\"link[rel='canonical']\");\n n.push({\n __t: \"bpc\",\n c: (c && c.getAttribute(\"href\")) || void 0,\n p: location.pathname,\n u: location.href,\n s: location.search,\n t: document.title,\n r: document.referrer,\n });\n }\n n.unshift(e);\n analytics.push(n);\n return analytics;\n };\n };\n for (var n = 0; n < analytics.methods.length; n++) {\n var key = analytics.methods[n];\n analytics[key] = analytics.factory(key);\n }\n analytics.load = function (key, n) {\n var t = document.createElement(\"script\");\n t.type = \"text/plain\";\n t.async = !0;\n t.id = \"segment-analytics\";\n t.setAttribute(\"data-global-segment-analytics-key\", i);\n t.setAttribute(\"class\", \"optanon-category-C0002-C0004\")\n t.src =\n \"https://cdn.segment.com/analytics.js/v1/\" +\n key +\n \"/analytics.min.js\";\n var r = document.getElementsByTagName(\"script\")[0];\n r.parentNode.insertBefore(t, r);\n analytics._loadOptions = n;\n };\n analytics._writeKey = \"lwt68hX0axsop9XVP6cbIDVPAqbleoeC\";\n analytics.SNIPPET_VERSION = \"5.2.0\";\n analytics.load(\"lwt68hX0axsop9XVP6cbIDVPAqbleoeC\");\n analytics.page()\n }\n})()","id":"script-segment"}])</script><style>.preampjs [data-preamp], .fusejs [data-fuse] { opacity: 0 !important}</style><script> !function(co,h,e,s,i,o,n){var d='documentElement';var a='className';h[d][a]+=' preampjs fusejs'; n.k=e;co._Cohesion=n;co._Preamp={k:s,start:new Date};co._Fuse={k:i};co._Tagular={k:o}; [e,s,i,o].map(function(x){co[x]=co[x]||function(){(co[x].q=co[x].q||[]).push([].slice.call(arguments))}}); var b=function(){var u=h[d][a];h[d][a]=u.replace(/ ?preampjs| ?fusejs/g,'')}; h.addEventListener('DOMContentLoaded',function(){co.setTimeout(b,3e3); co._Preamp.docReady=co._Fuse.docReady=!0});var z=h.createElement('script'); z.async=1;z.src='https://beam.edx.org/cohesion/cohesion-latest.min.js'; z.onerror=function(){var ce='error',f='function';for(var o of co[e].q||[])o[0]===ce&&typeof o[1]==f&&o[1]();co[e]=function(n,cb){n===ce&&typeof cb==f&&cb()};b()}; h.head.appendChild(z);} (window,document,'cohesion','preamp','fuse','tagular',{"domainAllowlist":["h97m1sqokqgvsbw1eiqol1oc6.js.wpenginepowered.com","www.h97m1sqokqgvsbw1eiqol1oc6.js.wpenginepowered.com","edx.org","www.edx.org"],"tagular":{"sourceKey":"src_2euJfAVNt6Z9kQz4e9t1SQBtm8x","writeKey":"wk_2euJfDkJVTtEVzsC8BPOb0g9dVj","apiHost":"https://beam.edx.org/v2/t","multiparty":true,"useBeacon":true,"cookieDomain":"edx.org"},"monarch":{"sourceId":"bdac7c16-924e-4180-bb35-5b2dfff6d308","endpoint":"https://beam.edx.org/monarch","token":"b43382aa-9f76-406c-a628-bf96086f1c28","autoRequest":{"enabled":false,"suppressPlacements":true,"timeout":2000}},"consent":{"onetrust":{"enabled":true,"optIn":true},"required":true,"domain":".edx.org"},"fuse":{"enabled":false},"cookieDomain":"edx.org"}); </script><script>(self.__next_s=self.__next_s||[]).push([0,{"children":"(function (w, d, s, l, i) {\n w[l] = w[l] || [];\n w[l].push({ \"gtm.start\": new Date().getTime(), event: \"gtm.js\" });\n var f = d.getElementsByTagName(s)[0],\n j = d.createElement(s),\n dl = l != \"dataLayer\" ? \"&l=\" + l : \"\";\n j.async = true;\n j.src = \"https://www.googletagmanager.com/gtm.js?id=\" + i + dl;\n f.parentNode.insertBefore(j, f);\n})(window, document, \"script\", \"dataLayer\", \"GTM-543ZGMK2\");\n","id":"script-gtm"}])</script><script src="/_next/static/chunks/polyfills-42372ed130431b0a.js" noModule=""></script></head><body class="__className_d65c78"><noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-543ZGMK2" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript><header class="contents mx-auto h-[76px] pointer-events-auto"><div class="hidden md:flex flex-col w-full border-b border-putty-400"><div class="relative h-[76px] flex justify-between items-center"><div class="flex items-center gap-6 w-full pl-2 sm:pl-4"><a href="/" class="min-w-12"><img alt="edX Online Homepage" title="edX" data-ot-ignore="true" loading="lazy" width="60" height="60" decoding="async" data-nimg="1" class="optanon-category-C0001" style="color:transparent" src="/trademark-logos/edx-logo-elm.svg"/></a><div class="flex items-center gap-2 w-full"><button class="inline-flex items-center justify-center whitespace-nowrap rounded-md text-center font-medium transition-colors focus-visible:outline-none focus-visible:ring-1 focus-visible:ring-ring disabled:pointer-events-none disabled:opacity-50 bg-primary text-primary-foreground shadow hover:bg-primary-hover hover:text-primary-hover-foreground border-2 border-primary h-auto lg:h-10 px-4 text-base">Learn<!-- --> <svg width="15" height="15" viewBox="0 0 15 15" fill="none" xmlns="http://www.w3.org/2000/svg" class="h-4 w-4 ml-2 font-bold"><path d="M3.13523 6.15803C3.3241 5.95657 3.64052 5.94637 3.84197 6.13523L7.5 9.56464L11.158 6.13523C11.3595 5.94637 11.6759 5.95657 11.8648 6.15803C12.0536 6.35949 12.0434 6.67591 11.842 6.86477L7.84197 10.6148C7.64964 10.7951 7.35036 10.7951 7.15803 10.6148L3.15803 6.86477C2.95657 6.67591 2.94637 6.35949 3.13523 6.15803Z" fill="currentColor" fill-rule="evenodd" clip-rule="evenodd"></path></svg></button><div class="relative min-h-12"><div><form class="flex overflow-hidden gap-2.5 md:flex-row md:gap-0"><div class="my-2 md:my-0 flex bg-white rounded min-h-12 md:w-72 border border-gray-dark"><input type="search" class="border-0 grow focus-visible:ring-0 focus-visible:ring-offset-0 [&amp;::-webkit-search-cancel-button]:hidden rounded w-[230px] h-[44px] shadow-none" placeholder="What do you want to learn?" value=""/><button class="mx-4" type="submit" role="button" aria-label="Search for courses, certificates and degrees"><svg width="24" height="24" viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg" role="img" focusable="false" aria-hidden="true"><path d="M15.5 14h-.79l-.28-.27A6.471 6.471 0 0 0 16 9.5 6.5 6.5 0 1 0 9.5 16c1.61 0 3.09-.59 4.23-1.57l.27.28v.79l5 4.99L20.49 19l-4.99-5Zm-6 0C7.01 14 5 11.99 5 9.5S7.01 5 9.5 5 14 7.01 14 9.5 11.99 14 9.5 14Z" fill="currentColor"></path></svg></button><button class="hidden"><svg width="24" height="24" viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg" role="img" focusable="false" aria-hidden="true"><path d="M19 6.41 17.59 5 12 10.59 6.41 5 5 6.41 10.59 12 5 17.59 6.41 19 12 13.41 17.59 19 19 17.59 13.41 12 19 6.41Z" fill="currentColor"></path></svg></button></div><button class="rounded-full text-white text-base no-underline hover:no-underline ml-0 md:ml-2 px-[1rem] py-[0.5625rem] border bg-primary border-primary hover:text-white hover:border-secondary hover:bg-secondary md:hidden" type="submit">Search</button></form></div><div class="hidden px-3 md:px-0 md:w-[504px] absolute z-50 "><div class="shadow-md rounded bg-white"><p class="text-sm font-bold ml-3 mb-0">Most popular programs</p><ul class="list-none !p-0 !m-0 text-xs"><li class="m-0 px-3 py-2 ProductSearch_searchListItem__5Bj11"><a href="/learn/computer-science/harvard-university-cs50-s-introduction-to-computer-science" class="no-underline flex items-center"><img alt="CS50&#x27;s Introduction to Computer Science" title="CS50&#x27;s Introduction to Computer Science" loading="lazy" width="36" height="36" decoding="async" data-nimg="1" class="object-cover overflow-clip my-0 mr-2 w-9 h-9" style="color:transparent" srcSet="/_next/image?url=https%3A%2F%2Fprod-discovery.edx-cdn.org%2Fcdn-cgi%2Fimage%2Fwidth%3Dauto%2Cheight%3Dauto%2Cquality%3D75%2Cformat%3Dwebp%2Fmedia%2Fcourse%2Fimage%2Fda1b2400-322b-459b-97b0-0c557f05d017-a3d1899c3344.small.png&amp;w=48&amp;q=75 1x, /_next/image?url=https%3A%2F%2Fprod-discovery.edx-cdn.org%2Fcdn-cgi%2Fimage%2Fwidth%3Dauto%2Cheight%3Dauto%2Cquality%3D75%2Cformat%3Dwebp%2Fmedia%2Fcourse%2Fimage%2Fda1b2400-322b-459b-97b0-0c557f05d017-a3d1899c3344.small.png&amp;w=96&amp;q=75 2x" src="/_next/image?url=https%3A%2F%2Fprod-discovery.edx-cdn.org%2Fcdn-cgi%2Fimage%2Fwidth%3Dauto%2Cheight%3Dauto%2Cquality%3D75%2Cformat%3Dwebp%2Fmedia%2Fcourse%2Fimage%2Fda1b2400-322b-459b-97b0-0c557f05d017-a3d1899c3344.small.png&amp;w=96&amp;q=75"/><div class="font-normal"><span class="text-sm lg:text-base block">CS50&#x27;s Introduction to Computer Science</span><span class="text-xs lg:text-sm block">HarvardX<!-- --> | <!-- -->Course</span></div></a></li><li class="m-0 px-3 py-2 ProductSearch_searchListItem__5Bj11"><a href="/executive-education/massachusetts-institute-of-technology-artificial-intelligence-implications-for-business-strategy" class="no-underline flex items-center"><img alt="Artificial Intelligence: Implications for Business Strategy" title="Artificial Intelligence: Implications for Business Strategy" loading="lazy" width="36" height="36" decoding="async" data-nimg="1" class="object-cover overflow-clip my-0 mr-2 w-9 h-9" style="color:transparent" srcSet="/_next/image?url=https%3A%2F%2Fprod-discovery.edx-cdn.org%2Fcdn-cgi%2Fimage%2Fwidth%3Dauto%2Cheight%3Dauto%2Cquality%3D75%2Cformat%3Dwebp%2Fmedia%2Fcourse%2Fimage%2F32ab61e5-44b4-4316-ad59-9f04fc876e0a-aeb25306d62b.small.jpg&amp;w=48&amp;q=75 1x, /_next/image?url=https%3A%2F%2Fprod-discovery.edx-cdn.org%2Fcdn-cgi%2Fimage%2Fwidth%3Dauto%2Cheight%3Dauto%2Cquality%3D75%2Cformat%3Dwebp%2Fmedia%2Fcourse%2Fimage%2F32ab61e5-44b4-4316-ad59-9f04fc876e0a-aeb25306d62b.small.jpg&amp;w=96&amp;q=75 2x" src="/_next/image?url=https%3A%2F%2Fprod-discovery.edx-cdn.org%2Fcdn-cgi%2Fimage%2Fwidth%3Dauto%2Cheight%3Dauto%2Cquality%3D75%2Cformat%3Dwebp%2Fmedia%2Fcourse%2Fimage%2F32ab61e5-44b4-4316-ad59-9f04fc876e0a-aeb25306d62b.small.jpg&amp;w=96&amp;q=75"/><div class="font-normal"><span class="text-sm lg:text-base block">Artificial Intelligence: Implications for Business Strategy</span><span class="text-xs lg:text-sm block">MIT Sloan School of Management<!-- --> | <!-- -->Executive Education</span></div></a></li><li class="m-0 px-3 py-2 ProductSearch_searchListItem__5Bj11"><a href="/masters/micromasters/mitx-supply-chain-management" class="no-underline flex items-center"><img alt="Supply Chain Management" title="Supply Chain Management" loading="lazy" width="36" height="36" decoding="async" data-nimg="1" class="object-cover overflow-clip my-0 mr-2 w-9 h-9" style="color:transparent" srcSet="/_next/image?url=https%3A%2F%2Fprod-discovery.edx-cdn.org%2Fcdn-cgi%2Fimage%2Fwidth%3Dauto%2Cheight%3Dauto%2Cquality%3D75%2Cformat%3Dwebp%2Fmedia%2Fprograms%2Fcard_images%2F2fc3236d-78a9-45a1-8c0c-fc290e74259e-f3b970b5cd3a.jpg&amp;w=48&amp;q=75 1x, /_next/image?url=https%3A%2F%2Fprod-discovery.edx-cdn.org%2Fcdn-cgi%2Fimage%2Fwidth%3Dauto%2Cheight%3Dauto%2Cquality%3D75%2Cformat%3Dwebp%2Fmedia%2Fprograms%2Fcard_images%2F2fc3236d-78a9-45a1-8c0c-fc290e74259e-f3b970b5cd3a.jpg&amp;w=96&amp;q=75 2x" src="/_next/image?url=https%3A%2F%2Fprod-discovery.edx-cdn.org%2Fcdn-cgi%2Fimage%2Fwidth%3Dauto%2Cheight%3Dauto%2Cquality%3D75%2Cformat%3Dwebp%2Fmedia%2Fprograms%2Fcard_images%2F2fc3236d-78a9-45a1-8c0c-fc290e74259e-f3b970b5cd3a.jpg&amp;w=96&amp;q=75"/><div class="font-normal"><span class="text-sm lg:text-base block">Supply Chain Management</span><span class="text-xs lg:text-sm block">MITx<!-- --> | <!-- -->MicroMasters</span></div></a></li><li class="m-0 px-3 py-2 ProductSearch_searchListItem__5Bj11"><a href="/certificates/professional-certificate/harvardx-computer-science-for-game-development" class="no-underline flex items-center"><img alt="Computer Science for Game Development" title="Computer Science for Game Development" loading="lazy" width="36" height="36" decoding="async" data-nimg="1" class="object-cover overflow-clip my-0 mr-2 w-9 h-9" style="color:transparent" srcSet="/_next/image?url=https%3A%2F%2Fprod-discovery.edx-cdn.org%2Fcdn-cgi%2Fimage%2Fwidth%3Dauto%2Cheight%3Dauto%2Cquality%3D75%2Cformat%3Dwebp%2Fmedia%2Fprograms%2Fcard_images%2F64b3c632-8610-4b17-9a48-9efee7fa3266-6a1e055774b4.jpg&amp;w=48&amp;q=75 1x, /_next/image?url=https%3A%2F%2Fprod-discovery.edx-cdn.org%2Fcdn-cgi%2Fimage%2Fwidth%3Dauto%2Cheight%3Dauto%2Cquality%3D75%2Cformat%3Dwebp%2Fmedia%2Fprograms%2Fcard_images%2F64b3c632-8610-4b17-9a48-9efee7fa3266-6a1e055774b4.jpg&amp;w=96&amp;q=75 2x" src="/_next/image?url=https%3A%2F%2Fprod-discovery.edx-cdn.org%2Fcdn-cgi%2Fimage%2Fwidth%3Dauto%2Cheight%3Dauto%2Cquality%3D75%2Cformat%3Dwebp%2Fmedia%2Fprograms%2Fcard_images%2F64b3c632-8610-4b17-9a48-9efee7fa3266-6a1e055774b4.jpg&amp;w=96&amp;q=75"/><div class="font-normal"><span class="text-sm lg:text-base block">Computer Science for Game Development</span><span class="text-xs lg:text-sm block">HarvardX<!-- --> | <!-- -->Professional Certificate</span></div></a></li></ul><p class="text-sm font-bold ml-3 mb-0">Trending now</p><ul class="list-none p-0 m-0"><li class="m-0 px-3 py-2 ProductSearch_searchListItem__5Bj11"><a href="/search?q=data science" class="no-underline flex items-center"><svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" viewBox="0 0 24 24" fill="none" role="img" focusable="false" aria-hidden="true"><path d="m16 6 2.29 2.29-4.88 4.88-4-4L2 16.59 3.41 18l6-6 4 4 6.3-6.29L22 12V6h-6z" fill="currentColor"></path></svg><span class="text-sm lg:text-base block ml-2">data science</span></a></li><li class="m-0 px-3 py-2 ProductSearch_searchListItem__5Bj11"><a href="/search?q=ai" class="no-underline flex items-center"><svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" viewBox="0 0 24 24" fill="none" role="img" focusable="false" aria-hidden="true"><path d="m16 6 2.29 2.29-4.88 4.88-4-4L2 16.59 3.41 18l6-6 4 4 6.3-6.29L22 12V6h-6z" fill="currentColor"></path></svg><span class="text-sm lg:text-base block ml-2">ai</span></a></li><li class="m-0 px-3 py-2 ProductSearch_searchListItem__5Bj11"><a href="/search?q=finance" class="no-underline flex items-center"><svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" viewBox="0 0 24 24" fill="none" role="img" focusable="false" aria-hidden="true"><path d="m16 6 2.29 2.29-4.88 4.88-4-4L2 16.59 3.41 18l6-6 4 4 6.3-6.29L22 12V6h-6z" fill="currentColor"></path></svg><span class="text-sm lg:text-base block ml-2">finance</span></a></li><li class="m-0 px-3 py-2 ProductSearch_searchListItem__5Bj11"><a href="/search?q=business" class="no-underline flex items-center"><svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" viewBox="0 0 24 24" fill="none" role="img" focusable="false" aria-hidden="true"><path d="m16 6 2.29 2.29-4.88 4.88-4-4L2 16.59 3.41 18l6-6 4 4 6.3-6.29L22 12V6h-6z" fill="currentColor"></path></svg><span class="text-sm lg:text-base block ml-2">business</span></a></li></ul></div><div class="hidden"><div class="bg-white rounded shadow-md overflow-hidden"><ul class="list-none p-0 my-0"></ul><div class="pl-3 py-2 bg-light"><a href="/search">View all results</a></div></div></div></div></div></div></div><div class="flex items-center pr-2 sm:pr-4"><a href="https://business.edx.org" class="inline-flex items-center justify-center whitespace-nowrap rounded-md text-sm text-center font-medium transition-colors focus-visible:outline-none focus-visible:ring-1 focus-visible:ring-ring disabled:pointer-events-none disabled:opacity-50 text-gray-dark hover:bg-putty-light hover:text-accent-foreground h-auto py-2 px-3">edX For Business</a></div></div></div><div class="hidden md:block absolute w-full z-40"></div><div class="grid grid-cols-3 md:hidden relative h-[76px] justify-center items-center border-b border-putty-400"><div class="pl-4"><button class="hover:bg-primary p-2 rounded-full hover:text-white" aria-label="Navigation menu"><svg width="20" height="20" viewBox="0 0 15 15" fill="none" xmlns="http://www.w3.org/2000/svg"><path d="M1.5 3C1.22386 3 1 3.22386 1 3.5C1 3.77614 1.22386 4 1.5 4H13.5C13.7761 4 14 3.77614 14 3.5C14 3.22386 13.7761 3 13.5 3H1.5ZM1 7.5C1 7.22386 1.22386 7 1.5 7H13.5C13.7761 7 14 7.22386 14 7.5C14 7.77614 13.7761 8 13.5 8H1.5C1.22386 8 1 7.77614 1 7.5ZM1 11.5C1 11.2239 1.22386 11 1.5 11H13.5C13.7761 11 14 11.2239 14 11.5C14 11.7761 13.7761 12 13.5 12H1.5C1.22386 12 1 11.7761 1 11.5Z" fill="currentColor" fill-rule="evenodd" clip-rule="evenodd"></path></svg></button></div><div class="flex justify-items-center justify-center"><a href="/"><img alt="edX Online" title="edX Online" loading="lazy" width="60" height="60" decoding="async" data-nimg="1" style="color:transparent" src="/trademark-logos/edx-logo-elm.svg"/></a></div><div class="pr-4 flex justify-items-end justify-end"><button class="hover:bg-primary p-2 rounded-full hover:text-white focus:border-gray-dark" aria-label="Search courses"><svg width="24" height="24" viewBox="0 0 15 15" fill="none" xmlns="http://www.w3.org/2000/svg"><path d="M10 6.5C10 8.433 8.433 10 6.5 10C4.567 10 3 8.433 3 6.5C3 4.567 4.567 3 6.5 3C8.433 3 10 4.567 10 6.5ZM9.30884 10.0159C8.53901 10.6318 7.56251 11 6.5 11C4.01472 11 2 8.98528 2 6.5C2 4.01472 4.01472 2 6.5 2C8.98528 2 11 4.01472 11 6.5C11 7.56251 10.6318 8.53901 10.0159 9.30884L12.8536 12.1464C13.0488 12.3417 13.0488 12.6583 12.8536 12.8536C12.6583 13.0488 12.3417 13.0488 12.1464 12.8536L9.30884 10.0159Z" fill="currentColor" fill-rule="evenodd" clip-rule="evenodd"></path></svg></button></div><div class="absolute top-full w-full z-40"></div></div></header><div style="min-height:50px"><script type="application/ld+json"> { "@context": "https://schema.org", "@type" : "Organization", "name" : "edX", "url" : "https://www.edx.org", "logo": "/images/logos/edx-logo-elm.svg", "sameAs" : [ "https://www.facebook.com/edX", "https://twitter.com/edXOnline", "https://www.linkedin.com/company/edx", "http://www.instagram.com/edxonline", "https://www.youtube.com/user/edxonline" ] } </script><script type="application/ld+json">{"@context":"https://schema.org","@type":"BreadcrumbList","itemListElement":[{"@type":"ListItem","position":1,"name":"Home","item":"https://www.edx.org/"},{"@type":"ListItem","position":2,"name":"Learn","item":"https://www.edx.org/learn"},{"@type":"ListItem","position":3,"name":"Statistics"}]}</script><script type="application/ld+json">[{"@context":"https://schema.org","@type":"WebSite","url":"https://www.edx.org/learn/statistics","name":"Best Online Statistics Courses and Programs","alternateName":"edX Online"}]</script><script type="application/ld+json">{"@context":"https://schema.org","@type":"ItemList","itemListElement":[{"@type":"ListItem","position":1,"url":"https://www.edx.org/learn/statistics/massachusetts-institute-of-technology-fundamentals-of-statistics"},{"@type":"ListItem","position":2,"url":"https://www.edx.org/learn/r-programming/harvard-university-statistics-and-r"},{"@type":"ListItem","position":3,"url":"https://www.edx.org/learn/statistics/the-london-school-of-economics-and-political-science-statistics-1-part-1-introductory-statistics-probability-and-estimation"},{"@type":"ListItem","position":4,"url":"https://www.edx.org/learn/python/ibm-introduction-to-statistics-for-data-science-using-python"},{"@type":"ListItem","position":5,"url":"https://www.edx.org/learn/probability/harvard-university-introduction-to-probability"},{"@type":"ListItem","position":6,"url":"https://www.edx.org/learn/statistics/delft-university-of-technology-statistics"},{"@type":"ListItem","position":7,"url":"https://www.edx.org/learn/python/stanford-university-statistical-learning-with-python"},{"@type":"ListItem","position":8,"url":"https://www.edx.org/learn/business-analytics/lehigh-university-statistics-fundamentals-for-business-analytics"},{"@type":"ListItem","position":9,"url":"https://www.edx.org/masters/micromasters/mitx-statistics-and-data-science-general-track"},{"@type":"ListItem","position":10,"url":"https://www.edx.org/learn/statistics/the-georgia-institute-of-technology-probability-and-statistics-i-a-gentle-introduction-to-probability"},{"@type":"ListItem","position":11,"url":"https://www.edx.org/learn/biostatistics/doane-university-biostatistics"},{"@type":"ListItem","position":12,"url":"https://www.edx.org/bachelors/microbachelors/lse-statistics-fundamentals"},{"@type":"ListItem","position":13,"url":"https://www.edx.org/learn/statistics/the-university-of-edinburgh-statistics-unlocking-the-world-of-data"},{"@type":"ListItem","position":14,"url":"https://www.edx.org/learn/statistics/the-london-school-of-economics-and-political-science-statistics-1-part-2-statistical-methods"},{"@type":"ListItem","position":15,"url":"https://www.edx.org/learn/statistics/the-london-school-of-economics-and-political-science-statistics-2-part-1-probability-and-distribution-theory"},{"@type":"ListItem","position":16,"url":"https://www.edx.org/masters/micromasters/mitx-statistics-and-data-science-methods-track"},{"@type":"ListItem","position":17,"url":"https://www.edx.org/learn/biostatistics/osaka-university-introduction-to-applied-biostatistics-statistics-for-medical-research"},{"@type":"ListItem","position":18,"url":"https://www.edx.org/learn/finance/massachusetts-institute-of-technology-mathematical-methods-for-quantitative-finance"},{"@type":"ListItem","position":19,"url":"https://www.edx.org/learn/statistics/edx-intro-course-spreadsheets-and-statistics"},{"@type":"ListItem","position":20,"url":"https://www.edx.org/learn/statistics/the-university-of-california-san-diego-probability-and-statistics-in-data-science-using-python"},{"@type":"ListItem","position":21,"url":"https://www.edx.org/bachelors/statistics-amu-sl"},{"@type":"ListItem","position":22,"url":"https://www.edx.org/learn/data-analysis/tecnologico-de-monterrey-introduction-to-data-science-and-basic-statistics-for-business"},{"@type":"ListItem","position":23,"url":"https://www.edx.org/learn/statistics/the-georgia-institute-of-technology-probability-and-statistics-ii-random-variables-great-expectations-to-bell-curves"},{"@type":"ListItem","position":24,"url":"https://www.edx.org/learn/international-business/the-international-monetary-fund-balance-of-payments-and-international-investment-position-statistics"},{"@type":"ListItem","position":25,"url":"https://www.edx.org/learn/statistics/the-georgia-institute-of-technology-probability-and-statistics-iii-a-gentle-introduction-to-statistics"},{"@type":"ListItem","position":26,"url":"https://www.edx.org/learn/government/the-international-monetary-fund-government-finance-statistics"},{"@type":"ListItem","position":27,"url":"https://www.edx.org/learn/r-programming/university-of-canterbury-introduction-to-bayesian-statistics-using-r"},{"@type":"ListItem","position":28,"url":"https://www.edx.org/learn/statistics/the-georgia-institute-of-technology-probability-and-statistics-iv-confidence-intervals-and-hypothesis-tests"},{"@type":"ListItem","position":29,"url":"https://www.edx.org/learn/macroeconomics/the-international-monetary-fund-compilation-basics-for-macroeconomic-statistics"},{"@type":"ListItem","position":30,"url":"https://www.edx.org/learn/statistics/the-international-monetary-fund-national-accounts-statistics"},{"@type":"ListItem","position":31,"url":"https://www.edx.org/learn/economics/the-international-monetary-fund-public-sector-debt-statistics"},{"@type":"ListItem","position":32,"url":"https://www.edx.org/learn/economics-finance/the-international-monetary-fund-producer-export-and-import-price-index-statistics"}]}</script><main id="page-id-1210"><article class="container prose mt-8 md:mt-auto"><div class="fullwidth pb-12 pt-20 md:pt-16 bg-cover bg-center bg-[url(/bg-images/learn-page-header.webp)]"><div class="mx-auto lg:container [&amp;&gt;*]:text-white"><nav aria-label="breadcrumb" class="not-prose mb-4"><ol class="list-none flex flex-wrap items-center gap-1.5 break-words text-base text-putty-dark sm:gap-2.5"><li class="inline-flex items-center gap-1.5 Breadcrumbs_breadcrumbs__0fm1_ text-primary-foreground capitalize"><a class="Breadcrumbs_breadcrumb_link__il5uK" href="/">Home</a></li><li aria-hidden="true" class="ml-0"><svg width="15" height="15" viewBox="0 0 15 15" fill="none" xmlns="http://www.w3.org/2000/svg" class="text-white font-bold w-4 h-4" style="stroke-width:1;stroke:white"><path d="M6.1584 3.13508C6.35985 2.94621 6.67627 2.95642 6.86514 3.15788L10.6151 7.15788C10.7954 7.3502 10.7954 7.64949 10.6151 7.84182L6.86514 11.8418C6.67627 12.0433 6.35985 12.0535 6.1584 11.8646C5.95694 11.6757 5.94673 11.3593 6.1356 11.1579L9.565 7.49985L6.1356 3.84182C5.94673 3.64036 5.95694 3.32394 6.1584 3.13508Z" fill="currentColor" fill-rule="evenodd" clip-rule="evenodd"></path></svg></li><li class="inline-flex items-center gap-1.5 Breadcrumbs_breadcrumbs__0fm1_ text-primary-foreground capitalize" aria-current="false"><a class="Breadcrumbs_breadcrumb_link__il5uK" href="/learn">learn</a></li><li aria-hidden="true" class="ml-0"><svg width="15" height="15" viewBox="0 0 15 15" fill="none" xmlns="http://www.w3.org/2000/svg" class="text-white font-bold w-4 h-4" style="stroke-width:1;stroke:white"><path d="M6.1584 3.13508C6.35985 2.94621 6.67627 2.95642 6.86514 3.15788L10.6151 7.15788C10.7954 7.3502 10.7954 7.64949 10.6151 7.84182L6.86514 11.8418C6.67627 12.0433 6.35985 12.0535 6.1584 11.8646C5.95694 11.6757 5.94673 11.3593 6.1356 11.1579L9.565 7.49985L6.1356 3.84182C5.94673 3.64036 5.95694 3.32394 6.1584 3.13508Z" fill="currentColor" fill-rule="evenodd" clip-rule="evenodd"></path></svg></li><li class="inline-flex items-center gap-1.5 Breadcrumbs_breadcrumbs__0fm1_ text-primary-foreground capitalize" aria-current="page"><span class="">statistics</span></li></ol></nav><h1 class="text-learn-hero-heading lg:text-learn-hero-heading-large lg:leading-learn-hero-line-height-large mb-6 font-extrabold tracking-tight">Learn statistics</h1><div class="break-words [&amp;&gt;ul&gt;li&gt;p]:text-white [&amp;&gt;*]:text-white text-xl line-clamp-2"><p class="mb-8">Learning the skills to uncover relationships between data sets can open the door to professional opportunities and inform decision-making for many different areas of our lives. Start learning statistics with online courses delivered through edX.</p></div></div></div><div class="fullwidth bg-secondary text-primary-foreground p-8 sticky top-0 z-50"><div class="container"><div class="lg:flex hidden text-sm items-center "><a aria-label="Create an account" href="https://authn.edx.org/register" target="_self" class="inline-flex items-center justify-center whitespace-nowrap text-sm text-center font-medium transition-colors focus-visible:outline-none focus-visible:ring-1 focus-visible:ring-ring disabled:pointer-events-none disabled:opacity-50 @apply border-[1px] rounded-full h-auto px-4 py-2 not-prose undefined"><span class="inline-flex gap-2 items-center justify-center break-words whitespace-normal">Create an account</span></a></div><div class="lg:hidden p-4 w-full"><button type="button" role="combobox" aria-controls="radix-:R2ijjttrkva:" aria-expanded="false" aria-autocomplete="none" dir="ltr" data-state="closed" class="flex h-9 w-full items-center justify-between whitespace-nowrap rounded border border-input bg-transparent px-3 py-2 text-sm shadow-sm ring-offset-background placeholder:text-putty-dark focus:outline-none focus:ring-1 focus:ring-ring disabled:cursor-not-allowed disabled:opacity-50 [&amp;&gt;span]:line-clamp-1 no-underline text-white hover:text-white"><span style="pointer-events:none"></span><svg width="15" height="15" viewBox="0 0 15 15" fill="none" xmlns="http://www.w3.org/2000/svg" class="h-4 w-4 opacity-50" aria-hidden="true"><path d="M4.93179 5.43179C4.75605 5.60753 4.75605 5.89245 4.93179 6.06819C5.10753 6.24392 5.39245 6.24392 5.56819 6.06819L7.49999 4.13638L9.43179 6.06819C9.60753 6.24392 9.89245 6.24392 10.0682 6.06819C10.2439 5.89245 10.2439 5.60753 10.0682 5.43179L7.81819 3.18179C7.73379 3.0974 7.61933 3.04999 7.49999 3.04999C7.38064 3.04999 7.26618 3.0974 7.18179 3.18179L4.93179 5.43179ZM10.0682 9.56819C10.2439 9.39245 10.2439 9.10753 10.0682 8.93179C9.89245 8.75606 9.60753 8.75606 9.43179 8.93179L7.49999 10.8636L5.56819 8.93179C5.39245 8.75606 5.10753 8.75606 4.93179 8.93179C4.75605 9.10753 4.75605 9.39245 4.93179 9.56819L7.18179 11.8182C7.35753 11.9939 7.64245 11.9939 7.81819 11.8182L10.0682 9.56819Z" fill="currentColor" fill-rule="evenodd" clip-rule="evenodd"></path></svg></button><select aria-hidden="true" tabindex="-1" style="position:absolute;border:0;width:1px;height:1px;padding:0;margin:-1px;overflow:hidden;clip:rect(0, 0, 0, 0);white-space:nowrap;word-wrap:normal"></select></div></div></div><div class="flex flex-wrap py-12"><div><img loading="lazy" decoding="async" class="hidden lg:block float-right ml-4 mb-4" src="https://images.cdn.edx.org/post1210-Statistics.png" alt="Statistics | Introduction Image Description" width="435" height="245"/><h2>What is statistics?</h2><p>Statistics is a branch of mathematics focused on the collection, analysis, and interpretation of data. Data sets can include full population data, surveys, smaller random samples, qualitative data, and much more. Statisticians can apply a number of data analysis techniques to better understand what the data means and how different data points or data sets relate to each other. For example, a pollster can conduct surveys on voter sentiment to determine which issues are likely driving voters to the polls. They can also use statistics to determine how closely their sample of voters reflects the larger population. </p></div></div><div class="fullwidth bg-putty-100"><div class="relative overflow-hidden py-3 bg-putty-light "><div class="container flex flex-col items-center justify-center text-center px-4 md:px-28 py-10 bg-putty-light"><h2 class="text-secondary font-extrabold scroll-m-20 tracking-tight text-3xl lg:text-5xl italic text-4xl lg:text-7xl font-black font-inter">Maximize Your Potential</h2><p class="md:px-24 py-3 text-base text-center ">Sign up for special offers, career resources, and recommendations that will help you grow, prepare, and advance in your career.</p><div class="flex gap-4 undefined"></div></div></div><a class="subnav-item -mt-1" name="Browse online Statistics courses" id="browse-online-statistics-courses"></a><div class="container py-3"><div dir="ltr" data-orientation="horizontal"><div data-state="active" data-orientation="horizontal" role="tabpanel" aria-labelledby="radix-:Rsjjttrkva:-trigger-Course" id="radix-:Rsjjttrkva:-content-Course" tabindex="0" class="mt-2 ring-offset-background focus-visible:outline-none focus-visible:ring-2 focus-visible:ring-ring focus-visible:ring-offset-2" style="animation-duration:0s"><h2 class="text-xl lg:text-3xl font-bold">Browse online <!-- -->Statistics<!-- --> <!-- -->Courses</h2><h4 class="font-normal my-4">Find new interests and advance your career opportunities</h4><div class="lg:grid lg:grid-cols-3 lg:gap-4 border-t-solid border-t-[1px] border-b-solid border-b-[1px] py-6 mb-6"><div class="flex"><div class="w-12 text-primary"><svg width="48" height="48" viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg" role="img" focusable="false" aria-hidden="true"><path d="m23 12-2.44-2.79.34-3.69-3.61-.82-1.89-3.2L12 2.96 8.6 1.5 6.71 4.69 3.1 5.5l.34 3.7L1 12l2.44 2.79-.34 3.7 3.61.82L8.6 22.5l3.4-1.47 3.4 1.46 1.89-3.19 3.61-.82-.34-3.69L23 12Zm-12.91 4.72-3.8-3.81 1.48-1.48 2.32 2.33 5.85-5.87 1.48 1.48-7.33 7.35Z" fill="currentColor"></path></svg></div><div class="px-3 text-primary"><h3 class="mt-0 text-base text-primary">Stand out in your field</h3><p class="text-sm">Use the knowledge and skills you have gained to drive impact at work and grow your career.</p></div></div><div class="flex"><div class="w-12 text-primary"><svg width="48" height="48" viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg" role="img" focusable="false" aria-hidden="true"><path d="M11.99 2C6.47 2 2 6.48 2 12s4.47 10 9.99 10C17.52 22 22 17.52 22 12S17.52 2 11.99 2zM12 20c-4.42 0-8-3.58-8-8s3.58-8 8-8 8 3.58 8 8-3.58 8-8 8zm.5-13H11v6l5.25 3.15.75-1.23-4.5-2.67z" fill="currentColor"></path></svg></div><div class="px-3 text-primary"><h3 class="mt-0 text-base text-primary">Learn at your own pace</h3><p class="text-sm">On your computer, tablet or phone, online courses make learning flexible to fit your busy life.</p></div></div><div class="flex"><div class="w-12 text-primary"><svg xmlns="http://www.w3.org/2000/svg" width="48" height="48" viewBox="0 0 24 24" fill="none" role="img" focusable="false" aria-hidden="true"><path d="m16 6 2.29 2.29-4.88 4.88-4-4L2 16.59 3.41 18l6-6 4 4 6.3-6.29L22 12V6h-6z" fill="currentColor"></path></svg></div><div class="px-3 text-primary"><h3 class="mt-0 text-base text-primary">Earn a valuable credential</h3><p class="text-sm">Showcase your key skills and valuable knowledge.</p></div></div></div></div><div data-state="inactive" data-orientation="horizontal" role="tabpanel" aria-labelledby="radix-:Rsjjttrkva:-trigger-Executive Education" hidden="" id="radix-:Rsjjttrkva:-content-Executive Education" tabindex="0" class="mt-2 ring-offset-background focus-visible:outline-none focus-visible:ring-2 focus-visible:ring-ring focus-visible:ring-offset-2"></div><div data-state="inactive" data-orientation="horizontal" role="tabpanel" aria-labelledby="radix-:Rsjjttrkva:-trigger-Masters" hidden="" id="radix-:Rsjjttrkva:-content-Masters" tabindex="0" class="mt-2 ring-offset-background focus-visible:outline-none focus-visible:ring-2 focus-visible:ring-ring focus-visible:ring-offset-2"></div><div data-state="inactive" data-orientation="horizontal" role="tabpanel" aria-labelledby="radix-:Rsjjttrkva:-trigger-Bachelors" hidden="" id="radix-:Rsjjttrkva:-content-Bachelors" tabindex="0" class="mt-2 ring-offset-background focus-visible:outline-none focus-visible:ring-2 focus-visible:ring-ring focus-visible:ring-offset-2"></div><div class="hidden lg:flex justify-center"><div role="tablist" aria-orientation="horizontal" class="inline-flex h-12 items-center justify-center rounded py-1 text-primary w-full shadow-lg rounded-t-xl max-w-[1128px]" tabindex="-1" data-orientation="horizontal" style="outline:none"><button type="button" role="tab" aria-selected="true" aria-controls="radix-:Rsjjttrkva:-content-Course" data-state="active" id="radix-:Rsjjttrkva:-trigger-Course" class="hover:bg-card-gray-hover inline-flex grow items-center justify-center whitespace-nowrap p-3 ring-offset-background transition-all focus-visible:outline-none focus-visible:ring-2 focus-visible:ring-ring focus-visible:ring-offset-2 disabled:pointer-events-none disabled:opacity-50 data-[state=active]:bg-secondary data-[state=active]:text-primary-foreground data-[state=active]:shadow data-[state=active]:hover:bg-secondary no-underline font-normal text-[16px] text-primary hover:text-primary data-[state=active]:font-bold bg-white rounded-none first:rounded-tl-xl last:rounded-tr-xl" tabindex="-1" data-orientation="horizontal" data-radix-collection-item="">Courses<!-- --> <!-- -->(322)</button><button type="button" role="tab" aria-selected="false" aria-controls="radix-:Rsjjttrkva:-content-Executive Education" data-state="inactive" id="radix-:Rsjjttrkva:-trigger-Executive Education" class="hover:bg-card-gray-hover inline-flex grow items-center justify-center whitespace-nowrap p-3 ring-offset-background transition-all focus-visible:outline-none focus-visible:ring-2 focus-visible:ring-ring focus-visible:ring-offset-2 disabled:pointer-events-none disabled:opacity-50 data-[state=active]:bg-secondary data-[state=active]:text-primary-foreground data-[state=active]:shadow data-[state=active]:hover:bg-secondary no-underline font-normal text-[16px] text-primary hover:text-primary data-[state=active]:font-bold bg-white rounded-none first:rounded-tl-xl last:rounded-tr-xl" tabindex="-1" data-orientation="horizontal" data-radix-collection-item="">Executive Education<!-- --> <!-- -->(10)</button><button type="button" role="tab" aria-selected="false" aria-controls="radix-:Rsjjttrkva:-content-Masters" data-state="inactive" id="radix-:Rsjjttrkva:-trigger-Masters" class="hover:bg-card-gray-hover inline-flex grow items-center justify-center whitespace-nowrap p-3 ring-offset-background transition-all focus-visible:outline-none focus-visible:ring-2 focus-visible:ring-ring focus-visible:ring-offset-2 disabled:pointer-events-none disabled:opacity-50 data-[state=active]:bg-secondary data-[state=active]:text-primary-foreground data-[state=active]:shadow data-[state=active]:hover:bg-secondary no-underline font-normal text-[16px] text-primary hover:text-primary data-[state=active]:font-bold bg-white rounded-none first:rounded-tl-xl last:rounded-tr-xl" tabindex="-1" data-orientation="horizontal" data-radix-collection-item="">Master&#x27;s Programs<!-- --> <!-- -->(10)</button><button type="button" role="tab" aria-selected="false" aria-controls="radix-:Rsjjttrkva:-content-Bachelors" data-state="inactive" id="radix-:Rsjjttrkva:-trigger-Bachelors" class="hover:bg-card-gray-hover inline-flex grow items-center justify-center whitespace-nowrap p-3 ring-offset-background transition-all focus-visible:outline-none focus-visible:ring-2 focus-visible:ring-ring focus-visible:ring-offset-2 disabled:pointer-events-none disabled:opacity-50 data-[state=active]:bg-secondary data-[state=active]:text-primary-foreground data-[state=active]:shadow data-[state=active]:hover:bg-secondary no-underline font-normal text-[16px] text-primary hover:text-primary data-[state=active]:font-bold bg-white rounded-none first:rounded-tl-xl last:rounded-tr-xl" tabindex="-1" data-orientation="horizontal" data-radix-collection-item="">Bachelor&#x27;s Programs<!-- --> <!-- -->(34)</button></div></div><div class="lg:hidden"><button type="button" role="combobox" aria-controls="radix-:Resjjttrkva:" aria-expanded="false" aria-autocomplete="none" dir="ltr" data-state="closed" class="h-9 w-full justify-between whitespace-nowrap rounded bg-transparent px-3 py-2 text-sm ring-offset-background placeholder:text-putty-dark focus:outline-none focus:ring-1 focus:ring-ring disabled:cursor-not-allowed disabled:opacity-50 [&amp;&gt;span]:line-clamp-1 flex items-center border-solid border-[1px] border-primary shadow-none text-primary no-underline"><svg width="24" height="24" viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg" role="img" focusable="false" aria-hidden="true"><path d="M3 17v2h6v-2H3ZM3 5v2h10V5H3Zm10 16v-2h8v-2h-8v-2h-2v6h2ZM7 9v2H3v2h4v2h2V9H7Zm14 4v-2H11v2h10Zm-6-4h2V7h4V5h-4V3h-2v6Z" fill="currentColor"></path></svg><span style="pointer-events:none"></span><svg width="15" height="15" viewBox="0 0 15 15" fill="none" xmlns="http://www.w3.org/2000/svg" class="h-4 w-4 opacity-50" aria-hidden="true"><path d="M4.93179 5.43179C4.75605 5.60753 4.75605 5.89245 4.93179 6.06819C5.10753 6.24392 5.39245 6.24392 5.56819 6.06819L7.49999 4.13638L9.43179 6.06819C9.60753 6.24392 9.89245 6.24392 10.0682 6.06819C10.2439 5.89245 10.2439 5.60753 10.0682 5.43179L7.81819 3.18179C7.73379 3.0974 7.61933 3.04999 7.49999 3.04999C7.38064 3.04999 7.26618 3.0974 7.18179 3.18179L4.93179 5.43179ZM10.0682 9.56819C10.2439 9.39245 10.2439 9.10753 10.0682 8.93179C9.89245 8.75606 9.60753 8.75606 9.43179 8.93179L7.49999 10.8636L5.56819 8.93179C5.39245 8.75606 5.10753 8.75606 4.93179 8.93179C4.75605 9.10753 4.75605 9.39245 4.93179 9.56819L7.18179 11.8182C7.35753 11.9939 7.64245 11.9939 7.81819 11.8182L10.0682 9.56819Z" fill="currentColor" fill-rule="evenodd" clip-rule="evenodd"></path></svg></button><select aria-hidden="true" tabindex="-1" style="position:absolute;border:0;width:1px;height:1px;padding:0;margin:-1px;overflow:hidden;clip:rect(0, 0, 0, 0);white-space:nowrap;word-wrap:normal"></select></div><div data-state="active" data-orientation="horizontal" role="tabpanel" aria-labelledby="radix-:Rsjjttrkva:-trigger-Course" id="radix-:Rsjjttrkva:-content-Course" tabindex="0" class="mt-2 ring-offset-background focus-visible:outline-none focus-visible:ring-2 focus-visible:ring-ring focus-visible:ring-offset-2 flex flex-col max-w-[1128px] mx-auto" style="animation-duration:0s"><h3 class="mb-4">Courses</h3><div class="hidden lg:block"><div class="gap-4 py-4 dynamic-grid flex-wrap undefined"></div></div><div class="lg:hidden"><div class="gap-4 py-4 flex overflow-x-scroll undefined"></div></div><div class="flex justify-center mx-auto mt-5"></div></div><div data-state="inactive" data-orientation="horizontal" role="tabpanel" aria-labelledby="radix-:Rsjjttrkva:-trigger-Executive Education" hidden="" id="radix-:Rsjjttrkva:-content-Executive Education" tabindex="0" class="mt-2 ring-offset-background focus-visible:outline-none focus-visible:ring-2 focus-visible:ring-ring focus-visible:ring-offset-2 flex flex-col max-w-[1128px] mx-auto"></div><div data-state="inactive" data-orientation="horizontal" role="tabpanel" aria-labelledby="radix-:Rsjjttrkva:-trigger-Masters" hidden="" id="radix-:Rsjjttrkva:-content-Masters" tabindex="0" class="mt-2 ring-offset-background focus-visible:outline-none focus-visible:ring-2 focus-visible:ring-ring focus-visible:ring-offset-2 flex flex-col max-w-[1128px] mx-auto"></div><div data-state="inactive" data-orientation="horizontal" role="tabpanel" aria-labelledby="radix-:Rsjjttrkva:-trigger-Bachelors" hidden="" id="radix-:Rsjjttrkva:-content-Bachelors" tabindex="0" class="mt-2 ring-offset-background focus-visible:outline-none focus-visible:ring-2 focus-visible:ring-ring focus-visible:ring-offset-2 flex flex-col max-w-[1128px] mx-auto"></div></div></div><div class="pt-0 pb-6 fullwidth bg-putty-100"><h3 class="mb-8 mt-0 text-2xl">Related Topics</h3><div class="flex gap-3 overflow-x-auto scroll-smooth not-prose"></div><div class="pt-4"></div></div><div class="flex flex-col gap-2 pb-10"><div class="Default_content__HO8we"><div id=""><h3>Statistics courses and certifications/curriculum</h3><p>A statistics course may cover data collection, p-values, statistical inference, Excel formulas, confidence intervals, random variables, distributions, and more. Earning verified certificates in statistics and other mathematics disciplines may also help you stand out from other applicants when applying for roles in which you’ll need to perform statistical analysis.</p><p>Individuals who perform statistical analysis as a core function of their jobs need to be skilled in problem-solving, critical thinking, analytics programming, and research. Regardless of industry, these skills can make you an attractive candidate for roles in this field.</p></div></div><a class="subnav-item -mt-1" name="Careers in statistics" id="careers-in-statistics"></a><div class="Default_content__HO8we"><div id=""><h2>Careers in statistics</h2><p>Governments, hospitals, banks, educational institutions, and countless other types of organizations rely on statistics for their general operations. For example, the U.S. Census Bureau specializes in the collection and analysis of data from U.S. households that helps to determine everything from the resources needed for underserved communities to the number of representatives each state has in Congress. Statistics have power; learning how to apply statistical analysis to data can be one way to harness that power to benefit any professional setting where you choose to work. </p></div></div></div><div class="fullwidth max-w-none py-12 md:py-16 not-prose bg-primary-gradient"><div class="container"><h2 class="text-4xl md:text-6xl my-5 text-white italic"><span class="text-primary-foreground">More opportunities</span> <!-- -->for you to learn</h2><p class="text-lg leading-9 text-white">We&#x27;ve added 500+ learning opportunities to create one of the world&#x27;s most comprehensive free-to-degree online learning platforms.</p><ul class="block md:grid md:grid-cols-2 md:gap-x-[100px] mx-auto lg:grid-cols-3"></ul></div></div></div></article></main></div><div class="bg-primary text-primary-foreground pt-16"><footer class="flex justify-between max-w-screen-xl mx-auto px-4 pb-4 "><div class="flex flex-col w-full"><div class="flex flex-wrap justify-between mb-6 w-full"><a href="/" class="mb-6"><img alt="edX homepage" title="edX homepage" data-ot-ignore="true" loading="lazy" width="127" height="67" decoding="async" data-nimg="1" class="optanon-category-C0001" style="color:transparent" src="/trademark-logos/edx-by-2u-white.svg"/></a><div><div class="mb-4 justify-center flex flex-row"><div class="mx-2 flex flex-col"><a href="https://www.facebook.com/edx/" target="_blank" role="button" aria-label="Visit our Facebook page"><div class="flex text-primary bg-white border border-solid border-primary h-12 w-12 items-center justify-center rounded-full"><svg width="32" height="32" viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg" role="img" focusable="false" aria-hidden="true"><path d="M14 13.5h2.5l1-4H14v-2c0-1.03 0-2 2-2h1.5V2.14c-.326-.043-1.557-.14-2.857-.14C11.928 2 10 3.657 10 6.7v2.8H7v4h3V22h4v-8.5z" fill="currentColor"></path></svg></div></a></div><div class="mx-2 flex flex-col"><a href="https://x.com/edXOnline" target="_blank" role="button" aria-label="Visit our X page"><div class="flex text-primary bg-white border border-solid border-primary h-12 w-12 items-center justify-center rounded-full"><svg width="48" height="48" viewBox="0 0 48 48" fill="none" xmlns="http://www.w3.org/2000/svg" role="img" focusable="false" aria-hidden="true"><path d="M21.2144 25.4036L12.2784 35.5671H14.3952L22.1576 26.7441L28.3528 35.5671H35.5L26.1296 22.2239L35.5 11.5671H33.3832L25.1912 20.8866L18.6472 11.5671H11.5M32.6192 34.0052H29.3672L14.3968 13.0523H17.6496" fill="currentColor"></path></svg></div></a></div><div class="mx-2 flex flex-col"><a href="https://www.linkedin.com/school/edx/" target="_blank" role="button" aria-label="Visit our LinkedIn page"><div class="flex text-primary bg-white border border-solid border-primary h-12 w-12 items-center justify-center rounded-full"><svg width="20" height="20" viewBox="0 0 20 20" fill="none" xmlns="http://www.w3.org/2000/svg" role="img" focusable="false" aria-hidden="true"><path fill-rule="evenodd" clip-rule="evenodd" d="M19.959 11.719v7.379h-4.278v-6.885c0-1.73-.619-2.91-2.167-2.91-1.182 0-1.886.796-2.195 1.565-.113.275-.142.658-.142 1.043v7.187h-4.28s.058-11.66 0-12.869h4.28v1.824l-.028.042h.028v-.042c.568-.875 1.583-2.126 3.856-2.126 2.815 0 4.926 1.84 4.926 5.792zM2.421.026C.958.026 0 .986 0 2.249c0 1.235.93 2.224 2.365 2.224h.028c1.493 0 2.42-.989 2.42-2.224C4.787.986 3.887.026 2.422.026zM.254 19.098h4.278V6.229H.254v12.869z" fill="currentColor"></path></svg></div></a></div><div class="mx-2 flex flex-col"><a href="https://www.reddit.com/r/edX/" target="_blank" role="button" aria-label="Visit our Reddit page"><div class="flex text-primary bg-white border border-solid border-primary h-12 w-12 items-center justify-center rounded-full"><svg width="40" height="40" viewBox="-2 -2 24 24" fill="none" xmlns="http://www.w3.org/2000/svg" role="img" focusable="false" aria-hidden="true"><path d="M18 10.1c0-1-.8-1.8-1.8-1.7-.4 0-.9.2-1.2.5-1.4-.9-3-1.5-4.7-1.5l.8-3.8 2.6.6c0 .7.6 1.2 1.3 1.2.7 0 1.2-.6 1.2-1.3 0-.7-.6-1.2-1.3-1.2-.5 0-.9.3-1.1.7L11 2.9h-.2c-.1 0-.1.1-.1.2l-1 4.3C8 7.4 6.4 7.9 5 8.9c-.7-.7-1.8-.7-2.5 0s-.7 1.8 0 2.5c.1.1.3.3.5.3v.5c0 2.7 3.1 4.9 7 4.9s7-2.2 7-4.9v-.5c.6-.3 1-.9 1-1.6zM6 11.4c0-.7.6-1.2 1.2-1.2.7 0 1.2.6 1.2 1.2s-.6 1.2-1.2 1.2c-.7 0-1.2-.5-1.2-1.2zm7 3.3c-.9.6-1.9 1-3 .9-1.1 0-2.1-.3-3-.9-.1-.1-.1-.3 0-.5.1-.1.3-.1.4 0 .7.5 1.6.8 2.5.7.9.1 1.8-.2 2.5-.7.1-.1.3-.1.5 0s.2.3.1.5zm-.3-2.1c-.7 0-1.2-.6-1.2-1.2s.6-1.2 1.2-1.2c.7 0 1.2.6 1.2 1.2.1.7-.5 1.2-1.2 1.2z" fill="currentColor"></path></svg></div></a></div></div></div></div><div class="my-6"><div class="flex flex-wrap md:flex-nowrap justify-between"><div class="mr-12 mb-6 grow"><span class="uppercase font-roboto text-[1rem] font-normal text-left pb-6">Browse Courses</span><ul class="my-6 list-none"><li class="mb-2 hover:underline text-[1rem]"><a class="text-white hover:text-white" href="/learn/artificial-intelligence">Learn AI</a></li><li class="mb-2 hover:underline text-[1rem]"><a class="text-white hover:text-white" href="/learn/chatgpt">Learn ChatGPT</a></li><li class="mb-2 hover:underline text-[1rem]"><a class="text-white hover:text-white" href="/learn/spanish">Learn Spanish</a></li><li class="mb-2 hover:underline text-[1rem]"><a class="text-white hover:text-white" href="/learn/python">Learn Python</a></li><li class="mb-2 hover:underline text-[1rem]"><a class="text-white hover:text-white" href="/learn/excel">Learn Excel</a></li><li class="mb-2 hover:underline text-[1rem]"><a class="text-white hover:text-white" href="/learn/software-engineering">Learn Software Engineering</a></li><li class="mb-2 hover:underline text-[1rem]"><a class="text-white hover:text-white" href="/learn/blockchain">Learn Blockchain</a></li><li class="mb-2 hover:underline text-[1rem]"><a class="text-white hover:text-white" href="/learn/computer-programming">Learn Computer Programming</a></li><li class="mb-2 hover:underline text-[1rem]"><a class="text-white hover:text-white" href="/learn/economics">Learn Economics</a></li><li class="mb-2 hover:underline text-[1rem]"><a class="text-white hover:text-white" href="/learn/architecture">Learn Architecture</a></li><li class="mb-2 hover:underline text-[1rem]"><a class="text-white hover:text-white" href="/learn/project-management">Learn Project Management</a></li><li class="mb-2 hover:underline text-[1rem]"><a class="text-white hover:text-white" href="/learn/business-administration">Learn Business Administration</a></li></ul><div class="flex flex-col text-[1rem]"><a href="/learn" class="hover:underline text-[1rem] text-white hover:text-white">see more Courses</a></div></div><div class="mr-12 mb-6 grow"><span class="uppercase font-roboto text-[1rem] font-normal text-left pb-6">step-by-step guides</span><ul class="my-6 list-none"><li class="mb-2 hover:underline text-[1rem]"><a class="text-white hover:text-white" href="/become/how-to-become-a-cybersecurity-analyst">Become a Cybersecurity Analyst</a></li><li class="mb-2 hover:underline text-[1rem]"><a class="text-white hover:text-white" href="/become/how-to-become-a-data-scientist">Become a Data Scientist</a></li><li class="mb-2 hover:underline text-[1rem]"><a class="text-white hover:text-white" href="/become/how-to-become-a-social-media-manager">Become a Social Media Manager</a></li><li class="mb-2 hover:underline text-[1rem]"><a class="text-white hover:text-white" href="/become/how-to-become-a-software-developer">Become a Software Developer</a></li><li class="mb-2 hover:underline text-[1rem]"><a class="text-white hover:text-white" href="/become/how-to-become-a-software-engineer-without-a-degree">Become a Software Engineer</a></li></ul><div class="flex flex-col text-[1rem]"><a href="/become" class="hover:underline text-[1rem] text-white hover:text-white">see more Guides</a></div></div><div class="mr-12 mb-6 grow"><span class="uppercase font-roboto text-[1rem] font-normal text-left pb-6">Complete your bachelor&#x27;s online</span><ul class="my-6 list-none"><li class="mb-2 hover:underline text-[1rem]"><a class="text-white hover:text-white" href="/bachelors/business">Bachelor&#x27;s in Business</a></li><li class="mb-2 hover:underline text-[1rem]"><a class="text-white hover:text-white" href="/bachelors/computer-data-sciences">Bachelor&#x27;s in Computer Science / Data Science</a></li><li class="mb-2 hover:underline text-[1rem]"><a class="text-white hover:text-white" href="/bachelors/health-social-services">Bachelor&#x27;s in Health and Nursing</a></li><li class="mb-2 hover:underline text-[1rem]"><a class="text-white hover:text-white" href="/bachelors/online-accounting-bachelor-degree">Bachelor&#x27;s in Accounting</a></li><li class="mb-2 hover:underline text-[1rem]"><a class="text-white hover:text-white" href="/bachelors/online-bachelors-degree-finance">Bachelor&#x27;s in Finance</a></li><li class="mb-2 hover:underline text-[1rem]"><a class="text-white hover:text-white" href="/bachelors/psychology">Bachelor&#x27;s in Psychology</a></li><li class="mb-2 hover:underline text-[1rem]"><a class="text-white hover:text-white" href="/bachelors/bachelors-in-public-health-online">Bachelor&#x27;s in Public Health</a></li><li class="mb-2 hover:underline text-[1rem]"><a class="text-white hover:text-white" href="/bachelors/social-work-bsw">Bachelor&#x27;s in Social Work</a></li></ul><div class="flex flex-col text-[1rem]"><a href="/bachelors" class="hover:underline text-[1rem] text-white hover:text-white">see more Undergraduate Degrees</a></div></div><div class="mr-12 mb-6 grow"><span class="uppercase font-roboto text-[1rem] font-normal text-left pb-6">Earn your online graduate degree</span><ul class="my-6 list-none"><li class="mb-2 hover:underline text-[1rem]"><a class="text-white hover:text-white" href="/masters/online-mba">Master&#x27;s in Business Administration</a></li><li class="mb-2 hover:underline text-[1rem]"><a class="text-white hover:text-white" href="/masters/masters-in-public-health-online">Master&#x27;s in Public Health</a></li><li class="mb-2 hover:underline text-[1rem]"><a class="text-white hover:text-white" href="/masters/online-msw-programs">Master&#x27;s in Social Work</a></li><li class="mb-2 hover:underline text-[1rem]"><a class="text-white hover:text-white" href="/masters/online-msn-programs">Master&#x27;s in Nursing</a></li><li class="mb-2 hover:underline text-[1rem]"><a class="text-white hover:text-white" href="/masters/online-masters-in-data-science">Master&#x27;s in Data Science</a></li><li class="mb-2 hover:underline text-[1rem]"><a class="text-white hover:text-white" href="/masters/online-masters-in-engineering">Master&#x27;s in Engineering</a></li><li class="mb-2 hover:underline text-[1rem]"><a class="text-white hover:text-white" href="/masters/online-slp-programs">Master&#x27;s in Speech Pathology</a></li><li class="mb-2 hover:underline text-[1rem]"><a class="text-white hover:text-white" href="/masters/online-slp-programs">Master&#x27;s in Counseling/Psychology</a></li><li class="mb-2 hover:underline text-[1rem]"><a class="text-white hover:text-white" href="/masters/healthcare">Master&#x27;s Degree in Healthcare</a></li><li class="mb-2 hover:underline text-[1rem]"><a class="text-white hover:text-white" href="/masters/masters-in-education-online">Master&#x27;s Degree in Education</a></li><li class="mb-2 hover:underline text-[1rem]"><a class="text-white hover:text-white" href="/masters/online-masters-in-artificial-intelligence">Master&#x27;s Degree in AI</a></li><li class="mb-2 hover:underline text-[1rem]"><a class="text-white hover:text-white" href="/masters/online-masters-in-computer-science">Master&#x27;s Degree in Computer Science</a></li></ul><div class="flex flex-col text-[1rem]"><a href="/masters" class="hover:underline text-[1rem] text-white hover:text-white">see more Graduate Degrees</a><a href="/doctorate" class="hover:underline text-[1rem] text-white hover:text-white">see more Doctorate Degrees</a></div></div></div><div class="my-4 border-t-[1px] border-solid border-primary-foreground"></div></div><div class="flex flex-wrap justify-between"><div class="mr-12 mb-6"><span class="text-base text-left pb-6 mt-0 font-bold">edx</span><ul class="my-6 list-none"><li class="mb-2 hover:underline text-base"><a class="text-white hover:text-white" href="https://business.edx.org/partner">Partner With Us</a></li><li class="mb-2 hover:underline text-base"><a class="text-white hover:text-white" href="/about-us">About</a></li><li class="mb-2 hover:underline text-base"><a class="text-white hover:text-white" href="https://business.edx.org/?_gl=1*y0gcxr*_gcl_au*NDExMDUyMjIxLjE3MTUxMDI2MjM.*_ga*MTQzNjQ4NzY3NC4xNzA3MzE1NzUx*_ga_D3KS4KMDT0*MTcyMTkxMjUxNC4xODEuMS4xNzIxOTE0NDczLjQ1LjAuMA..">edX For Business</a></li><li class="mb-2 hover:underline text-base"><a class="text-white hover:text-white" href="/affiliate-program">Affiliates</a></li><li class="mb-2 hover:underline text-base"><a class="text-white hover:text-white" href="http://open.edx.org/?_gl=1*lt6kx3*_gcl_au*NDExMDUyMjIxLjE3MTUxMDI2MjM.*_ga*MTQzNjQ4NzY3NC4xNzA3MzE1NzUx*_ga_D3KS4KMDT0*MTcyMTkxMjUxNC4xODEuMS4xNzIxOTE0NTQ5LjU5LjAuMA..">Open edX</a></li><li class="mb-2 hover:underline text-base"><a class="text-white hover:text-white" href="/advisory-groups">2U Advisory Council</a></li><li class="mb-2 hover:underline text-base"><a class="text-white hover:text-white" href="/careers">Careers</a></li><li class="mb-2 hover:underline text-base"><a class="text-white hover:text-white" href="https://press.edx.org/?_gl=1*8w80my*_gcl_au*NDExMDUyMjIxLjE3MTUxMDI2MjM.*_ga*MTQzNjQ4NzY3NC4xNzA3MzE1NzUx*_ga_D3KS4KMDT0*MTcyMTkxMjUxNC4xODEuMS4xNzIxOTE0NTgzLjI1LjAuMA..">News</a></li></ul></div><div class="mr-12 mb-6"><span class="text-base text-left pb-6 mt-0 font-bold">Connect</span><ul class="my-6 list-none"><li class="mb-2 hover:underline text-base"><a class="text-white hover:text-white" href="/resources">Idea Hub</a></li><li class="mb-2 hover:underline text-base"><a class="text-white hover:text-white" href="https://courses.edx.org/support/contact_us?_gl=1*13dq6q5*_gcl_au*NDExMDUyMjIxLjE3MTUxMDI2MjM.*_ga*MTQzNjQ4NzY3NC4xNzA3MzE1NzUx*_ga_D3KS4KMDT0*MTcyMTkxMjUxNC4xODEuMS4xNzIxOTE0NjYyLjYuMC4w">Contact Us</a></li><li class="mb-2 hover:underline text-base"><a class="text-white hover:text-white" href="https://support.edx.org/?_gl=1*1ej7jnc*_gcl_au*NDExMDUyMjIxLjE3MTUxMDI2MjM.*_ga*MTQzNjQ4NzY3NC4xNzA3MzE1NzUx*_ga_D3KS4KMDT0*MTcyMTkxMjUxNC4xODEuMS4xNzIxOTE1MDgxLjUuMC4w">Help Center</a></li><li class="mb-2 hover:underline text-base"><a class="text-white hover:text-white" href="/policy/security">Security</a></li><li class="mb-2 hover:underline text-base"><a class="text-white hover:text-white" href="/media-kit">Media Kit</a></li></ul></div><div class="mb-6 grow"><span class="text-base text-left pb-6 mt-0 font-bold">Legal</span><ul class="my-6 list-none"><li class="mb-2 hover:underline text-base"><a class="text-white hover:text-white" href="/edx-terms-service">Terms of Service &amp; Honor Code</a></li><li class="mb-2 hover:underline text-base"><a class="text-white hover:text-white" href="/edx-privacy-policy">Privacy Policy</a></li><li class="mb-2 hover:underline text-base"><a class="text-white hover:text-white" href="/edx-privacy-policy/cookies">Cookie Policy</a></li><li class="mb-2 hover:underline text-base"><a class="text-white hover:text-white" href="/accessibility">Accessibility Policy</a></li><li class="mb-2 hover:underline text-base"><a class="text-white hover:text-white" href="/trademarks">Trademark Policy</a></li><li class="mb-2 hover:underline text-base"><a class="text-white hover:text-white" href="/modern-slavery-statement">Modern Slavery Statement</a></li><li class="mb-2 hover:underline text-base"><a class="text-white hover:text-white" href="/sitemap">Sitemap</a></li><li class="mb-2 hover:underline text-base"><a class="text-white hover:text-white" href="#">Your Privacy Choices</a></li></ul></div><div class="mb-6 flex"><div class="min-w-64"><label for="languageSelector" class="text-base text-left mb-2 mt-0">Choose your language</label><div class="mt-4 flex items-center"><select id="languageSelector" class="text-secondary bg-white text-base border border-gray rounded py-2 px-4 mr-2 w-full focus:border-primary"><option value="en" selected="">English</option><option value="es">Spanish</option></select><button class="inline-flex items-center justify-center whitespace-nowrap rounded-md text-center font-medium transition-colors focus-visible:outline-none focus-visible:ring-1 focus-visible:ring-ring disabled:pointer-events-none disabled:opacity-50 bg-primary text-primary-foreground shadow hover:bg-primary-hover hover:text-primary-hover-foreground h-auto lg:h-10 px-4 text-base border-2 border-primary-foreground">Apply</button></div></div></div></div><div class="flex flex-wrap-reverse justify-between"><p class="text-primary-foreground text-[1rem]">© 2024 edX LLC. All rights reserved.<br/><span>| 深圳市恒宇博科技有限公司</span></p><div class="flex gap-1"><a href="https://itunes.apple.com/us/app/edx/id945480667?mt=8&amp;external_link=true" target="_blank" rel="noopener noreferrer"><img alt="Download on the App Store" title="Download on the App Store" data-ot-ignore="true" loading="lazy" width="120" height="40" decoding="async" data-nimg="1" class="optanon-category-C0001" style="color:transparent" srcSet="/_next/image?url=%2Fimages%2Fapple-store-badge-en.png&amp;w=128&amp;q=75 1x, /_next/image?url=%2Fimages%2Fapple-store-badge-en.png&amp;w=256&amp;q=75 2x" src="/_next/image?url=%2Fimages%2Fapple-store-badge-en.png&amp;w=256&amp;q=75"/></a><a href="https://play.google.com/store/apps/details?id=org.edx.mobile&amp;external_link=true" target="_blank" rel="noopener noreferrer"><img alt="Get it on Google Play" title="Get it on Google Play" data-ot-ignore="true" loading="lazy" width="135" height="40" decoding="async" data-nimg="1" class="optanon-category-C0001" style="color:transparent" srcSet="/_next/image?url=%2Fimages%2Fgoogle-play-badge-en.png&amp;w=256&amp;q=75 1x, /_next/image?url=%2Fimages%2Fgoogle-play-badge-en.png&amp;w=384&amp;q=75 2x" src="/_next/image?url=%2Fimages%2Fgoogle-play-badge-en.png&amp;w=384&amp;q=75"/></a></div></div></div></footer></div><script>(self.__next_s=self.__next_s||[]).push([0,{"children":"window.NREUM||(NREUM={});NREUM.info = {\"agent\":\"\",\"beacon\":\"bam.nr-data.net\",\"errorBeacon\":\"bam.nr-data.net\",\"licenseKey\":\"NRBR-29a7b8c10e12125c415\",\"applicationID\":\"574099970\",\"agentToken\":null,\"applicationTime\":8.479775,\"transactionName\":\"ZwNVMRNUC0QHVEMICl5JYAADcxdWC1JADhdbM0UMTnsATxJdRE4idTIYSjpZClQHW1I8SlwDVhcPGj5UB0NSBgpCH2o=\",\"queueTime\":0,\"ttGuid\":\"290c67a978297964\"}; (window.NREUM||(NREUM={})).init={privacy:{cookies_enabled:true},ajax:{deny_list:[\"bam.nr-data.net\"]},distributed_tracing:{enabled:true}};(window.NREUM||(NREUM={})).loader_config={agentID:\"594494951\",accountID:\"44163\",trustKey:\"78034\",xpid:\"UAIGV1VADQQEVFhbDgYH\",licenseKey:\"NRBR-29a7b8c10e12125c415\",applicationID:\"574099970\"};;/*! For license information please see nr-loader-spa-1.281.0.min.js.LICENSE.txt */\n(()=>{var e,t,r={8122:(e,t,r)=>{\"use strict\";r.d(t,{a:()=>i});var n=r(944);function i(e,t){try{if(!e||\"object\"!=typeof e)return(0,n.R)(3);if(!t||\"object\"!=typeof t)return(0,n.R)(4);const r=Object.create(Object.getPrototypeOf(t),Object.getOwnPropertyDescriptors(t)),o=0===Object.keys(r).length?e:r;for(let a in o)if(void 0!==e[a])try{if(null===e[a]){r[a]=null;continue}Array.isArray(e[a])&&Array.isArray(t[a])?r[a]=Array.from(new Set([...e[a],...t[a]])):\"object\"==typeof e[a]&&\"object\"==typeof t[a]?r[a]=i(e[a],t[a]):r[a]=e[a]}catch(e){(0,n.R)(1,e)}return r}catch(e){(0,n.R)(2,e)}}},2555:(e,t,r)=>{\"use strict\";r.d(t,{Vp:()=>c,fn:()=>s,x1:()=>u});var n=r(384),i=r(8122);const o={beacon:n.NT.beacon,errorBeacon:n.NT.errorBeacon,licenseKey:void 0,applicationID:void 0,sa:void 0,queueTime:void 0,applicationTime:void 0,ttGuid:void 0,user:void 0,account:void 0,product:void 0,extra:void 0,jsAttributes:{},userAttributes:void 0,atts:void 0,transactionName:void 0,tNamePlain:void 0},a={};function s(e){try{const t=c(e);return!!t.licenseKey&&!!t.errorBeacon&&!!t.applicationID}catch(e){return!1}}function c(e){if(!e)throw new Error(\"All info objects require an agent identifier!\");if(!a[e])throw new Error(\"Info for \".concat(e,\" was never set\"));return a[e]}function u(e,t){if(!e)throw new Error(\"All info objects require an agent identifier!\");a[e]=(0,i.a)(t,o);const r=(0,n.nY)(e);r&&(r.info=a[e])}},9417:(e,t,r)=>{\"use strict\";r.d(t,{D0:()=>p,gD:()=>m,xN:()=>g});var n=r(3333),i=r(993);const o=e=>{if(!e||\"string\"!=typeof e)return!1;try{document.createDocumentFragment().querySelector(e)}catch{return!1}return!0};var a=r(2614),s=r(944),c=r(384),u=r(8122);const d=\"[data-nr-mask]\",l=()=>{const e={feature_flags:[],experimental:{marks:!1,measures:!1,resources:!1},mask_selector:\"*\",block_selector:\"[data-nr-block]\",mask_input_options:{color:!1,date:!1,\"datetime-local\":!1,email:!1,month:!1,number:!1,range:!1,search:!1,tel:!1,text:!1,time:!1,url:!1,week:!1,textarea:!1,select:!1,password:!0}};return{ajax:{deny_list:void 0,block_internal:!0,enabled:!0,autoStart:!0},distributed_tracing:{enabled:void 0,exclude_newrelic_header:void 0,cors_use_newrelic_header:void 0,cors_use_tracecontext_headers:void 0,allowed_origins:void 0},get feature_flags(){return e.feature_flags},set feature_flags(t){e.feature_flags=t},generic_events:{enabled:!0,autoStart:!0},harvest:{interval:30},jserrors:{enabled:!0,autoStart:!0},logging:{enabled:!0,autoStart:!0,level:i.p_.INFO},metrics:{enabled:!0,autoStart:!0},obfuscate:void 0,page_action:{enabled:!0},page_view_event:{enabled:!0,autoStart:!0},page_view_timing:{enabled:!0,autoStart:!0},performance:{get capture_marks(){return e.feature_flags.includes(n.$v.MARKS)||e.experimental.marks},set capture_marks(t){e.experimental.marks=t},get capture_measures(){return e.feature_flags.includes(n.$v.MEASURES)||e.experimental.measures},set capture_measures(t){e.experimental.measures=t},capture_detail:!0,resources:{get enabled(){return e.feature_flags.includes(n.$v.RESOURCES)||e.experimental.resources},set enabled(t){e.experimental.resources=t},asset_types:[],first_party_domains:[],ignore_newrelic:!0}},privacy:{cookies_enabled:!0},proxy:{assets:void 0,beacon:void 0},session:{expiresMs:a.wk,inactiveMs:a.BB},session_replay:{autoStart:!0,enabled:!1,preload:!1,sampling_rate:10,error_sampling_rate:100,collect_fonts:!1,inline_images:!1,fix_stylesheets:!0,mask_all_inputs:!0,get mask_text_selector(){return e.mask_selector},set mask_text_selector(t){o(t)?e.mask_selector=\"\".concat(t,\",\").concat(d):\"\"===t||null===t?e.mask_selector=d:(0,s.R)(5,t)},get block_class(){return\"nr-block\"},get ignore_class(){return\"nr-ignore\"},get mask_text_class(){return\"nr-mask\"},get block_selector(){return e.block_selector},set block_selector(t){o(t)?e.block_selector+=\",\".concat(t):\"\"!==t&&(0,s.R)(6,t)},get mask_input_options(){return e.mask_input_options},set mask_input_options(t){t&&\"object\"==typeof t?e.mask_input_options={...t,password:!0}:(0,s.R)(7,t)}},session_trace:{enabled:!0,autoStart:!0},soft_navigations:{enabled:!0,autoStart:!0},spa:{enabled:!0,autoStart:!0},ssl:void 0,user_actions:{enabled:!0,elementAttributes:[\"id\",\"className\",\"tagName\",\"type\"]}}},f={},h=\"All configuration objects require an agent identifier!\";function p(e){if(!e)throw new Error(h);if(!f[e])throw new Error(\"Configuration for \".concat(e,\" was never set\"));return f[e]}function g(e,t){if(!e)throw new Error(h);f[e]=(0,u.a)(t,l());const r=(0,c.nY)(e);r&&(r.init=f[e])}function m(e,t){if(!e)throw new Error(h);var r=p(e);if(r){for(var n=t.split(\".\"),i=0;i<n.length-1;i++)if(\"object\"!=typeof(r=r[n[i]]))return;r=r[n[n.length-1]]}return r}},5603:(e,t,r)=>{\"use strict\";r.d(t,{a:()=>c,o:()=>s});var n=r(384),i=r(8122);const o={accountID:void 0,trustKey:void 0,agentID:void 0,licenseKey:void 0,applicationID:void 0,xpid:void 0},a={};function s(e){if(!e)throw new Error(\"All loader-config objects require an agent identifier!\");if(!a[e])throw new Error(\"LoaderConfig for \".concat(e,\" was never set\"));return a[e]}function c(e,t){if(!e)throw new Error(\"All loader-config objects require an agent identifier!\");a[e]=(0,i.a)(t,o);const r=(0,n.nY)(e);r&&(r.loader_config=a[e])}},3371:(e,t,r)=>{\"use strict\";r.d(t,{V:()=>f,f:()=>l});var n=r(8122),i=r(384),o=r(6154),a=r(9324);let s=0;const c={buildEnv:a.F3,distMethod:a.Xs,version:a.xv,originTime:o.WN},u={customTransaction:void 0,disabled:!1,isolatedBacklog:!1,loaderType:void 0,maxBytes:3e4,onerror:void 0,ptid:void 0,releaseIds:{},appMetadata:{},session:void 0,denyList:void 0,timeKeeper:void 0,obfuscator:void 0,harvester:void 0},d={};function l(e){if(!e)throw new Error(\"All runtime objects require an agent identifier!\");if(!d[e])throw new Error(\"Runtime for \".concat(e,\" was never set\"));return d[e]}function f(e,t){if(!e)throw new Error(\"All runtime objects require an agent identifier!\");d[e]={...(0,n.a)(t,u),...c},Object.hasOwnProperty.call(d[e],\"harvestCount\")||Object.defineProperty(d[e],\"harvestCount\",{get:()=>++s});const r=(0,i.nY)(e);r&&(r.runtime=d[e])}},9324:(e,t,r)=>{\"use strict\";r.d(t,{F3:()=>i,Xs:()=>o,Yq:()=>a,xv:()=>n});const n=\"1.281.0\",i=\"PROD\",o=\"CDN\",a=\"^2.0.0-alpha.17\"},6154:(e,t,r)=>{\"use strict\";r.d(t,{A4:()=>s,OF:()=>d,RI:()=>i,WN:()=>h,bv:()=>o,gm:()=>a,lR:()=>f,m:()=>u,mw:()=>c,sb:()=>l});var n=r(1863);const i=\"undefined\"!=typeof window&&!!window.document,o=\"undefined\"!=typeof WorkerGlobalScope&&(\"undefined\"!=typeof self&&self instanceof WorkerGlobalScope&&self.navigator instanceof WorkerNavigator||\"undefined\"!=typeof globalThis&&globalThis instanceof WorkerGlobalScope&&globalThis.navigator instanceof WorkerNavigator),a=i?window:\"undefined\"!=typeof WorkerGlobalScope&&(\"undefined\"!=typeof self&&self instanceof WorkerGlobalScope&&self||\"undefined\"!=typeof globalThis&&globalThis instanceof WorkerGlobalScope&&globalThis),s=\"complete\"===a?.document?.readyState,c=Boolean(\"hidden\"===a?.document?.visibilityState),u=\"\"+a?.location,d=/iPad|iPhone|iPod/.test(a.navigator?.userAgent),l=d&&\"undefined\"==typeof SharedWorker,f=(()=>{const e=a.navigator?.userAgent?.match(/Firefox[/\\s](\\d+\\.\\d+)/);return Array.isArray(e)&&e.length>=2?+e[1]:0})(),h=Date.now()-(0,n.t)()},7295:(e,t,r)=>{\"use strict\";r.d(t,{Xv:()=>a,gX:()=>i,iW:()=>o});var n=[];function i(e){if(!e||o(e))return!1;if(0===n.length)return!0;for(var t=0;t<n.length;t++){var r=n[t];if(\"*\"===r.hostname)return!1;if(s(r.hostname,e.hostname)&&c(r.pathname,e.pathname))return!1}return!0}function o(e){return void 0===e.hostname}function a(e){if(n=[],e&&e.length)for(var t=0;t<e.length;t++){let r=e[t];if(!r)continue;0===r.indexOf(\"http://\")?r=r.substring(7):0===r.indexOf(\"https://\")&&(r=r.substring(8));const i=r.indexOf(\"/\");let o,a;i>0?(o=r.substring(0,i),a=r.substring(i)):(o=r,a=\"\");let[s]=o.split(\":\");n.push({hostname:s,pathname:a})}}function s(e,t){return!(e.length>t.length)&&t.indexOf(e)===t.length-e.length}function c(e,t){return 0===e.indexOf(\"/\")&&(e=e.substring(1)),0===t.indexOf(\"/\")&&(t=t.substring(1)),\"\"===e||e===t}},1687:(e,t,r)=>{\"use strict\";r.d(t,{Ak:()=>c,Ze:()=>l,x3:()=>u});var n=r(7836),i=r(3606),o=r(860),a=r(2646);const s={};function c(e,t){const r={staged:!1,priority:o.P3[t]||0};d(e),s[e].get(t)||s[e].set(t,r)}function u(e,t){e&&s[e]&&(s[e].get(t)&&s[e].delete(t),h(e,t,!1),s[e].size&&f(e))}function d(e){if(!e)throw new Error(\"agentIdentifier required\");s[e]||(s[e]=new Map)}function l(e=\"\",t=\"feature\",r=!1){if(d(e),!e||!s[e].get(t)||r)return h(e,t);s[e].get(t).staged=!0,f(e)}function f(e){const t=Array.from(s[e]);t.every((([e,t])=>t.staged))&&(t.sort(((e,t)=>e[1].priority-t[1].priority)),t.forEach((([t])=>{s[e].delete(t),h(e,t)})))}function h(e,t,r=!0){const o=e?n.ee.get(e):n.ee,s=i.i.handlers;if(!o.aborted&&o.backlog&&s){if(r){const e=o.backlog[t],r=s[t];if(r){for(let t=0;e&&t<e.length;++t)p(e[t],r);Object.entries(r).forEach((([e,t])=>{Object.values(t||{}).forEach((t=>{t[0]?.on&&t[0]?.context()instanceof a.y&&t[0].on(e,t[1])}))}))}}o.isolatedBacklog||delete s[t],o.backlog[t]=null,o.emit(\"drain-\"+t,[])}}function p(e,t){var r=e[1];Object.values(t[r]||{}).forEach((t=>{var r=e[0];if(t[0]===r){var n=t[1],i=e[3],o=e[2];n.apply(i,o)}}))}},7836:(e,t,r)=>{\"use strict\";r.d(t,{P:()=>c,ee:()=>u});var n=r(384),i=r(8990),o=r(3371),a=r(2646),s=r(5607);const c=\"nr@context:\".concat(s.W),u=function e(t,r){var n={},s={},d={},l=!1;try{l=16===r.length&&(0,o.f)(r).isolatedBacklog}catch(e){}var f={on:p,addEventListener:p,removeEventListener:function(e,t){var r=n[e];if(!r)return;for(var i=0;i<r.length;i++)r[i]===t&&r.splice(i,1)},emit:function(e,r,n,i,o){!1!==o&&(o=!0);if(u.aborted&&!i)return;t&&o&&t.emit(e,r,n);for(var a=h(n),c=g(e),d=c.length,l=0;l<d;l++)c[l].apply(a,r);var p=v()[s[e]];p&&p.push([f,e,r,a]);return a},get:m,listeners:g,context:h,buffer:function(e,t){const r=v();if(t=t||\"feature\",f.aborted)return;Object.entries(e||{}).forEach((([e,n])=>{s[n]=t,t in r||(r[t]=[])}))},abort:function(){f._aborted=!0,Object.keys(f.backlog).forEach((e=>{delete f.backlog[e]}))},isBuffering:function(e){return!!v()[s[e]]},debugId:r,backlog:l?{}:t&&\"object\"==typeof t.backlog?t.backlog:{},isolatedBacklog:l};return Object.defineProperty(f,\"aborted\",{get:()=>{let e=f._aborted||!1;return e||(t&&(e=t.aborted),e)}}),f;function h(e){return e&&e instanceof a.y?e:e?(0,i.I)(e,c,(()=>new a.y(c))):new a.y(c)}function p(e,t){n[e]=g(e).concat(t)}function g(e){return n[e]||[]}function m(t){return d[t]=d[t]||e(f,t)}function v(){return f.backlog}}(void 0,\"globalEE\"),d=(0,n.Zm)();d.ee||(d.ee=u)},2646:(e,t,r)=>{\"use strict\";r.d(t,{y:()=>n});class n{constructor(e){this.contextId=e}}},9908:(e,t,r)=>{\"use strict\";r.d(t,{d:()=>n,p:()=>i});var n=r(7836).ee.get(\"handle\");function i(e,t,r,i,o){o?(o.buffer([e],i),o.emit(e,t,r)):(n.buffer([e],i),n.emit(e,t,r))}},3606:(e,t,r)=>{\"use strict\";r.d(t,{i:()=>o});var n=r(9908);o.on=a;var i=o.handlers={};function o(e,t,r,o){a(o||n.d,i,e,t,r)}function a(e,t,r,i,o){o||(o=\"feature\"),e||(e=n.d);var a=t[o]=t[o]||{};(a[r]=a[r]||[]).push([e,i])}},3878:(e,t,r)=>{\"use strict\";function n(e,t){return{capture:e,passive:!1,signal:t}}function i(e,t,r=!1,i){window.addEventListener(e,t,n(r,i))}function o(e,t,r=!1,i){document.addEventListener(e,t,n(r,i))}r.d(t,{DD:()=>o,jT:()=>n,sp:()=>i})},5607:(e,t,r)=>{\"use strict\";r.d(t,{W:()=>n});const n=(0,r(9566).bz)()},9566:(e,t,r)=>{\"use strict\";r.d(t,{LA:()=>s,ZF:()=>c,bz:()=>a,el:()=>u});var n=r(6154);const i=\"xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx\";function o(e,t){return e?15&e[t]:16*Math.random()|0}function a(){const e=n.gm?.crypto||n.gm?.msCrypto;let t,r=0;return e&&e.getRandomValues&&(t=e.getRandomValues(new Uint8Array(30))),i.split(\"\").map((e=>\"x\"===e?o(t,r++).toString(16):\"y\"===e?(3&o()|8).toString(16):e)).join(\"\")}function s(e){const t=n.gm?.crypto||n.gm?.msCrypto;let r,i=0;t&&t.getRandomValues&&(r=t.getRandomValues(new Uint8Array(e)));const a=[];for(var s=0;s<e;s++)a.push(o(r,i++).toString(16));return a.join(\"\")}function c(){return s(16)}function u(){return s(32)}},2614:(e,t,r)=>{\"use strict\";r.d(t,{BB:()=>a,H3:()=>n,g:()=>u,iL:()=>c,tS:()=>s,uh:()=>i,wk:()=>o});const n=\"NRBA\",i=\"SESSION\",o=144e5,a=18e5,s={STARTED:\"session-started\",PAUSE:\"session-pause\",RESET:\"session-reset\",RESUME:\"session-resume\",UPDATE:\"session-update\"},c={SAME_TAB:\"same-tab\",CROSS_TAB:\"cross-tab\"},u={OFF:0,FULL:1,ERROR:2}},1863:(e,t,r)=>{\"use strict\";function n(){return Math.floor(performance.now())}r.d(t,{t:()=>n})},7485:(e,t,r)=>{\"use strict\";r.d(t,{D:()=>i});var n=r(6154);function i(e){if(0===(e||\"\").indexOf(\"data:\"))return{protocol:\"data\"};try{const t=new URL(e,location.href),r={port:t.port,hostname:t.hostname,pathname:t.pathname,search:t.search,protocol:t.protocol.slice(0,t.protocol.indexOf(\":\")),sameOrigin:t.protocol===n.gm?.location?.protocol&&t.host===n.gm?.location?.host};return r.port&&\"\"!==r.port||(\"http:\"===t.protocol&&(r.port=\"80\"),\"https:\"===t.protocol&&(r.port=\"443\")),r.pathname&&\"\"!==r.pathname?r.pathname.startsWith(\"/\")||(r.pathname=\"/\".concat(r.pathname)):r.pathname=\"/\",r}catch(e){return{}}}},944:(e,t,r)=>{\"use strict\";function n(e,t){\"function\"==typeof console.debug&&console.debug(\"New Relic Warning: https://github.com/newrelic/newrelic-browser-agent/blob/main/docs/warning-codes.md#\".concat(e),t)}r.d(t,{R:()=>n})},5284:(e,t,r)=>{\"use strict\";r.d(t,{t:()=>c,B:()=>s});var n=r(7836),i=r(6154);const o=\"newrelic\";const a=new Set,s={};function c(e,t){const r=n.ee.get(t);s[t]??={},e&&\"object\"==typeof e&&(a.has(t)||(r.emit(\"rumresp\",[e]),s[t]=e,a.add(t),function(e={}){try{i.gm.dispatchEvent(new CustomEvent(o,{detail:e}))}catch(e){}}({loaded:!0})))}},8990:(e,t,r)=>{\"use strict\";r.d(t,{I:()=>i});var n=Object.prototype.hasOwnProperty;function i(e,t,r){if(n.call(e,t))return e[t];var i=r();if(Object.defineProperty&&Object.keys)try{return Object.defineProperty(e,t,{value:i,writable:!0,enumerable:!1}),i}catch(e){}return e[t]=i,i}},6389:(e,t,r)=>{\"use strict\";function n(e,t=500,r={}){const n=r?.leading||!1;let i;return(...r)=>{n&&void 0===i&&(e.apply(this,r),i=setTimeout((()=>{i=clearTimeout(i)}),t)),n||(clearTimeout(i),i=setTimeout((()=>{e.apply(this,r)}),t))}}function i(e){let t=!1;return(...r)=>{t||(t=!0,e.apply(this,r))}}r.d(t,{J:()=>i,s:()=>n})},3304:(e,t,r)=>{\"use strict\";r.d(t,{A:()=>o});var n=r(7836);const i=()=>{const e=new WeakSet;return(t,r)=>{if(\"object\"==typeof r&&null!==r){if(e.has(r))return;e.add(r)}return r}};function o(e){try{return JSON.stringify(e,i())??\"\"}catch(e){try{n.ee.emit(\"internal-error\",[e])}catch(e){}return\"\"}}},5289:(e,t,r)=>{\"use strict\";r.d(t,{GG:()=>o,sB:()=>a});var n=r(3878);function i(){return\"undefined\"==typeof document||\"complete\"===document.readyState}function o(e,t){if(i())return e();(0,n.sp)(\"load\",e,t)}function a(e){if(i())return e();(0,n.DD)(\"DOMContentLoaded\",e)}},384:(e,t,r)=>{\"use strict\";r.d(t,{NT:()=>o,US:()=>d,Zm:()=>a,bQ:()=>c,dV:()=>s,nY:()=>u,pV:()=>l});var n=r(6154),i=r(1863);const o={beacon:\"bam.nr-data.net\",errorBeacon:\"bam.nr-data.net\"};function a(){return n.gm.NREUM||(n.gm.NREUM={}),void 0===n.gm.newrelic&&(n.gm.newrelic=n.gm.NREUM),n.gm.NREUM}function s(){let e=a();return e.o||(e.o={ST:n.gm.setTimeout,SI:n.gm.setImmediate,CT:n.gm.clearTimeout,XHR:n.gm.XMLHttpRequest,REQ:n.gm.Request,EV:n.gm.Event,PR:n.gm.Promise,MO:n.gm.MutationObserver,FETCH:n.gm.fetch,WS:n.gm.WebSocket}),e}function c(e,t){let r=a();r.initializedAgents??={},t.initializedAt={ms:(0,i.t)(),date:new Date},r.initializedAgents[e]=t}function u(e){let t=a();return t.initializedAgents?.[e]}function d(e,t){a()[e]=t}function l(){return function(){let e=a();const t=e.info||{};e.info={beacon:o.beacon,errorBeacon:o.errorBeacon,...t}}(),function(){let e=a();const t=e.init||{};e.init={...t}}(),s(),function(){let e=a();const t=e.loader_config||{};e.loader_config={...t}}(),a()}},2843:(e,t,r)=>{\"use strict\";r.d(t,{u:()=>i});var n=r(3878);function i(e,t=!1,r,i){(0,n.DD)(\"visibilitychange\",(function(){if(t)return void(\"hidden\"===document.visibilityState&&e());e(document.visibilityState)}),r,i)}},8139:(e,t,r)=>{\"use strict\";r.d(t,{u:()=>f});var n=r(7836),i=r(3434),o=r(8990),a=r(6154);const s={},c=a.gm.XMLHttpRequest,u=\"addEventListener\",d=\"removeEventListener\",l=\"nr@wrapped:\".concat(n.P);function f(e){var t=function(e){return(e||n.ee).get(\"events\")}(e);if(s[t.debugId]++)return t;s[t.debugId]=1;var r=(0,i.YM)(t,!0);function f(e){r.inPlace(e,[u,d],\"-\",p)}function p(e,t){return e[1]}return\"getPrototypeOf\"in Object&&(a.RI&&h(document,f),c&&h(c.prototype,f),h(a.gm,f)),t.on(u+\"-start\",(function(e,t){var n=e[1];if(null!==n&&(\"function\"==typeof n||\"object\"==typeof n)){var i=(0,o.I)(n,l,(function(){var e={object:function(){if(\"function\"!=typeof n.handleEvent)return;return n.handleEvent.apply(n,arguments)},function:n}[typeof n];return e?r(e,\"fn-\",null,e.name||\"anonymous\"):n}));this.wrapped=e[1]=i}})),t.on(d+\"-start\",(function(e){e[1]=this.wrapped||e[1]})),t}function h(e,t,...r){let n=e;for(;\"object\"==typeof n&&!Object.prototype.hasOwnProperty.call(n,u);)n=Object.getPrototypeOf(n);n&&t(n,...r)}},3434:(e,t,r)=>{\"use strict\";r.d(t,{Jt:()=>o,YM:()=>c});var n=r(7836),i=r(5607);const o=\"nr@original:\".concat(i.W);var a=Object.prototype.hasOwnProperty,s=!1;function c(e,t){return e||(e=n.ee),r.inPlace=function(e,t,n,i,o){n||(n=\"\");const a=\"-\"===n.charAt(0);for(let s=0;s<t.length;s++){const c=t[s],u=e[c];d(u)||(e[c]=r(u,a?c+n:n,i,c,o))}},r.flag=o,r;function r(t,r,n,s,c){return d(t)?t:(r||(r=\"\"),nrWrapper[o]=t,function(e,t,r){if(Object.defineProperty&&Object.keys)try{return Object.keys(e).forEach((function(r){Object.defineProperty(t,r,{get:function(){return e[r]},set:function(t){return e[r]=t,t}})})),t}catch(e){u([e],r)}for(var n in e)a.call(e,n)&&(t[n]=e[n])}(t,nrWrapper,e),nrWrapper);function nrWrapper(){var o,a,d,l;try{a=this,o=[...arguments],d=\"function\"==typeof n?n(o,a):n||{}}catch(t){u([t,\"\",[o,a,s],d],e)}i(r+\"start\",[o,a,s],d,c);try{return l=t.apply(a,o)}catch(e){throw i(r+\"err\",[o,a,e],d,c),e}finally{i(r+\"end\",[o,a,l],d,c)}}}function i(r,n,i,o){if(!s||t){var a=s;s=!0;try{e.emit(r,n,i,t,o)}catch(t){u([t,r,n,i],e)}s=a}}}function u(e,t){t||(t=n.ee);try{t.emit(\"internal-error\",e)}catch(e){}}function d(e){return!(e&&\"function\"==typeof e&&e.apply&&!e[o])}},9300:(e,t,r)=>{\"use strict\";r.d(t,{T:()=>n});const n=r(860).K7.ajax},3333:(e,t,r)=>{\"use strict\";r.d(t,{$v:()=>u,TZ:()=>n,Zp:()=>i,kd:()=>c,mq:()=>s,nf:()=>a,qN:()=>o});const n=r(860).K7.genericEvents,i=[\"auxclick\",\"click\",\"copy\",\"keydown\",\"paste\",\"scrollend\"],o=[\"focus\",\"blur\"],a=4,s=1e3,c=[\"PageAction\",\"UserAction\",\"BrowserPerformance\"],u={MARKS:\"experimental.marks\",MEASURES:\"experimental.measures\",RESOURCES:\"experimental.resources\"}},6774:(e,t,r)=>{\"use strict\";r.d(t,{T:()=>n});const n=r(860).K7.jserrors},993:(e,t,r)=>{\"use strict\";r.d(t,{ET:()=>o,TZ:()=>a,p_:()=>i});var n=r(860);const i={ERROR:\"ERROR\",WARN:\"WARN\",INFO:\"INFO\",DEBUG:\"DEBUG\",TRACE:\"TRACE\"},o=\"log\",a=n.K7.logging},3785:(e,t,r)=>{\"use strict\";r.d(t,{R:()=>c,b:()=>u});var n=r(9908),i=r(1863),o=r(860),a=r(3969),s=r(993);function c(e,t,r={},c=s.p_.INFO){(0,n.p)(a.xV,[\"API/logging/\".concat(c.toLowerCase(),\"/called\")],void 0,o.K7.metrics,e),(0,n.p)(s.ET,[(0,i.t)(),t,r,c],void 0,o.K7.logging,e)}function u(e){return\"string\"==typeof e&&Object.values(s.p_).some((t=>t===e.toUpperCase().trim()))}},3969:(e,t,r)=>{\"use strict\";r.d(t,{TZ:()=>n,XG:()=>s,rs:()=>i,xV:()=>a,z_:()=>o});const n=r(860).K7.metrics,i=\"sm\",o=\"cm\",a=\"storeSupportabilityMetrics\",s=\"storeEventMetrics\"},6630:(e,t,r)=>{\"use strict\";r.d(t,{T:()=>n});const n=r(860).K7.pageViewEvent},782:(e,t,r)=>{\"use strict\";r.d(t,{T:()=>n});const n=r(860).K7.pageViewTiming},6344:(e,t,r)=>{\"use strict\";r.d(t,{BB:()=>d,G4:()=>o,Qb:()=>l,TZ:()=>i,Ug:()=>a,_s:()=>s,bc:()=>u,yP:()=>c});var n=r(2614);const i=r(860).K7.sessionReplay,o={RECORD:\"recordReplay\",PAUSE:\"pauseReplay\",REPLAY_RUNNING:\"replayRunning\",ERROR_DURING_REPLAY:\"errorDuringReplay\"},a=.12,s={DomContentLoaded:0,Load:1,FullSnapshot:2,IncrementalSnapshot:3,Meta:4,Custom:5},c={[n.g.ERROR]:15e3,[n.g.FULL]:3e5,[n.g.OFF]:0},u={RESET:{message:\"Session was reset\",sm:\"Reset\"},IMPORT:{message:\"Recorder failed to import\",sm:\"Import\"},TOO_MANY:{message:\"429: Too Many Requests\",sm:\"Too-Many\"},TOO_BIG:{message:\"Payload was too large\",sm:\"Too-Big\"},CROSS_TAB:{message:\"Session Entity was set to OFF on another tab\",sm:\"Cross-Tab\"},ENTITLEMENTS:{message:\"Session Replay is not allowed and will not be started\",sm:\"Entitlement\"}},d=5e3,l={API:\"api\"}},5270:(e,t,r)=>{\"use strict\";r.d(t,{Aw:()=>c,CT:()=>u,SR:()=>s});var n=r(384),i=r(9417),o=r(7767),a=r(6154);function s(e){return!!(0,n.dV)().o.MO&&(0,o.V)(e)&&!0===(0,i.gD)(e,\"session_trace.enabled\")}function c(e){return!0===(0,i.gD)(e,\"session_replay.preload\")&&s(e)}function u(e,t){const r=t.correctAbsoluteTimestamp(e);return{originalTimestamp:e,correctedTimestamp:r,timestampDiff:e-r,originTime:a.WN,correctedOriginTime:t.correctedOriginTime,originTimeDiff:Math.floor(a.WN-t.correctedOriginTime)}}},3738:(e,t,r)=>{\"use strict\";r.d(t,{He:()=>i,Kp:()=>s,Lc:()=>u,Rz:()=>d,TZ:()=>n,bD:()=>o,d3:()=>a,jx:()=>l,uP:()=>c});const n=r(860).K7.sessionTrace,i=\"bstResource\",o=\"resource\",a=\"-start\",s=\"-end\",c=\"fn\"+a,u=\"fn\"+s,d=\"pushState\",l=1e3},3962:(e,t,r)=>{\"use strict\";r.d(t,{AM:()=>o,O2:()=>c,Qu:()=>u,TZ:()=>s,ih:()=>d,pP:()=>a,tC:()=>i});var n=r(860);const i=[\"click\",\"keydown\",\"submit\",\"popstate\"],o=\"api\",a=\"initialPageLoad\",s=n.K7.softNav,c={INITIAL_PAGE_LOAD:\"\",ROUTE_CHANGE:1,UNSPECIFIED:2},u={INTERACTION:1,AJAX:2,CUSTOM_END:3,CUSTOM_TRACER:4},d={IP:\"in progress\",FIN:\"finished\",CAN:\"cancelled\"}},7378:(e,t,r)=>{\"use strict\";r.d(t,{$p:()=>x,BR:()=>b,Kp:()=>R,L3:()=>y,Lc:()=>c,NC:()=>o,SG:()=>d,TZ:()=>i,U6:()=>p,UT:()=>m,d3:()=>w,dT:()=>f,e5:()=>T,gx:()=>v,l9:()=>l,oW:()=>h,op:()=>g,rw:()=>u,tH:()=>A,uP:()=>s,wW:()=>E,xq:()=>a});var n=r(384);const i=r(860).K7.spa,o=[\"click\",\"submit\",\"keypress\",\"keydown\",\"keyup\",\"change\"],a=999,s=\"fn-start\",c=\"fn-end\",u=\"cb-start\",d=\"api-ixn-\",l=\"remaining\",f=\"interaction\",h=\"spaNode\",p=\"jsonpNode\",g=\"fetch-start\",m=\"fetch-done\",v=\"fetch-body-\",b=\"jsonp-end\",y=(0,n.dV)().o.ST,w=\"-start\",R=\"-end\",x=\"-body\",E=\"cb\"+R,T=\"jsTime\",A=\"fetch\"},4234:(e,t,r)=>{\"use strict\";r.d(t,{W:()=>o});var n=r(7836),i=r(1687);class o{constructor(e,t){this.agentIdentifier=e,this.ee=n.ee.get(e),this.featureName=t,this.blocked=!1}deregisterDrain(){(0,i.x3)(this.agentIdentifier,this.featureName)}}},7767:(e,t,r)=>{\"use strict\";r.d(t,{V:()=>o});var n=r(9417),i=r(6154);const o=e=>i.RI&&!0===(0,n.gD)(e,\"privacy.cookies_enabled\")},425:(e,t,r)=>{\"use strict\";r.d(t,{j:()=>j});var n=r(860),i=r(2555),o=r(3371),a=r(9908),s=r(7836),c=r(1687),u=r(5289),d=r(6154),l=r(944),f=r(3969),h=r(384),p=r(6344);const g=[\"setErrorHandler\",\"finished\",\"addToTrace\",\"addRelease\",\"recordCustomEvent\",\"addPageAction\",\"setCurrentRouteName\",\"setPageViewName\",\"setCustomAttribute\",\"interaction\",\"noticeError\",\"setUserId\",\"setApplicationVersion\",\"start\",p.G4.RECORD,p.G4.PAUSE,\"log\",\"wrapLogger\"],m=[\"setErrorHandler\",\"finished\",\"addToTrace\",\"addRelease\"];var v=r(1863),b=r(2614),y=r(993),w=r(3785),R=r(2646),x=r(3434);const E=new Map;function T(e,t,r,n){if(\"object\"!=typeof t||!t||\"string\"!=typeof r||!r||\"function\"!=typeof t[r])return(0,l.R)(29);const i=function(e){return(e||s.ee).get(\"logger\")}(e),o=(0,x.YM)(i),a=new R.y(s.P);a.level=n.level,a.customAttributes=n.customAttributes;const c=t[r]?.[x.Jt]||t[r];return E.set(c,a),o.inPlace(t,[r],\"wrap-logger-\",(()=>E.get(c))),i}function A(){const e=(0,h.pV)();g.forEach((t=>{e[t]=(...r)=>function(t,...r){let n=[];return Object.values(e.initializedAgents).forEach((e=>{e&&e.api?e.exposed&&e.api[t]&&n.push(e.api[t](...r)):(0,l.R)(38,t)})),n.length>1?n:n[0]}(t,...r)}))}const S={};var N=r(9417),_=r(5603),O=r(5284);const I=e=>{const t=e.startsWith(\"http\");e+=\"/\",r.p=t?e:\"https://\"+e};let P=!1;function j(e,t={},g,R){let{init:x,info:E,loader_config:j,runtime:C={},exposed:k=!0}=t;C.loaderType=g;const L=(0,h.pV)();E||(x=L.init,E=L.info,j=L.loader_config),(0,N.xN)(e.agentIdentifier,x||{}),(0,_.a)(e.agentIdentifier,j||{}),E.jsAttributes??={},d.bv&&(E.jsAttributes.isWorker=!0),(0,i.x1)(e.agentIdentifier,E);const H=(0,N.D0)(e.agentIdentifier),M=[E.beacon,E.errorBeacon];P||(H.proxy.assets&&(I(H.proxy.assets),M.push(H.proxy.assets)),H.proxy.beacon&&M.push(H.proxy.beacon),A(),(0,h.US)(\"activatedFeatures\",O.B),e.runSoftNavOverSpa&&=!0===H.soft_navigations.enabled&&H.feature_flags.includes(\"soft_nav\")),C.denyList=[...H.ajax.deny_list||[],...H.ajax.block_internal?M:[]],C.ptid=e.agentIdentifier,(0,o.V)(e.agentIdentifier,C),e.ee=s.ee.get(e.agentIdentifier),void 0===e.api&&(e.api=function(e,t,h=!1){t||(0,c.Ak)(e,\"api\");const g={};var R=s.ee.get(e),x=R.get(\"tracer\");S[e]=b.g.OFF,R.on(p.G4.REPLAY_RUNNING,(t=>{S[e]=t}));var E=\"api-\",A=E+\"ixn-\";function N(t,r,n,o){const a=(0,i.Vp)(e);return null===r?delete a.jsAttributes[t]:(0,i.x1)(e,{...a,jsAttributes:{...a.jsAttributes,[t]:r}}),I(E,n,!0,o||null===r?\"session\":void 0)(t,r)}function _(){}g.log=function(e,{customAttributes:t={},level:r=y.p_.INFO}={}){(0,a.p)(f.xV,[\"API/log/called\"],void 0,n.K7.metrics,R),(0,w.R)(R,e,t,r)},g.wrapLogger=(e,t,{customAttributes:r={},level:i=y.p_.INFO}={})=>{(0,a.p)(f.xV,[\"API/wrapLogger/called\"],void 0,n.K7.metrics,R),T(R,e,t,{customAttributes:r,level:i})},m.forEach((e=>{g[e]=I(E,e,!0,\"api\")})),g.addPageAction=I(E,\"addPageAction\",!0,n.K7.genericEvents),g.recordCustomEvent=I(E,\"recordCustomEvent\",!0,n.K7.genericEvents),g.setPageViewName=function(t,r){if(\"string\"==typeof t)return\"/\"!==t.charAt(0)&&(t=\"/\"+t),(0,o.f)(e).customTransaction=(r||\"http://custom.transaction\")+t,I(E,\"setPageViewName\",!0)()},g.setCustomAttribute=function(e,t,r=!1){if(\"string\"==typeof e){if([\"string\",\"number\",\"boolean\"].includes(typeof t)||null===t)return N(e,t,\"setCustomAttribute\",r);(0,l.R)(40,typeof t)}else(0,l.R)(39,typeof e)},g.setUserId=function(e){if(\"string\"==typeof e||null===e)return N(\"enduser.id\",e,\"setUserId\",!0);(0,l.R)(41,typeof e)},g.setApplicationVersion=function(e){if(\"string\"==typeof e||null===e)return N(\"application.version\",e,\"setApplicationVersion\",!1);(0,l.R)(42,typeof e)},g.start=()=>{try{(0,a.p)(f.xV,[\"API/start/called\"],void 0,n.K7.metrics,R),R.emit(\"manual-start-all\")}catch(e){(0,l.R)(23,e)}},g[p.G4.RECORD]=function(){(0,a.p)(f.xV,[\"API/recordReplay/called\"],void 0,n.K7.metrics,R),(0,a.p)(p.G4.RECORD,[],void 0,n.K7.sessionReplay,R)},g[p.G4.PAUSE]=function(){(0,a.p)(f.xV,[\"API/pauseReplay/called\"],void 0,n.K7.metrics,R),(0,a.p)(p.G4.PAUSE,[],void 0,n.K7.sessionReplay,R)},g.interaction=function(e){return(new _).get(\"object\"==typeof e?e:{})};const O=_.prototype={createTracer:function(e,t){var r={},i=this,o=\"function\"==typeof t;return(0,a.p)(f.xV,[\"API/createTracer/called\"],void 0,n.K7.metrics,R),h||(0,a.p)(A+\"tracer\",[(0,v.t)(),e,r],i,n.K7.spa,R),function(){if(x.emit((o?\"\":\"no-\")+\"fn-start\",[(0,v.t)(),i,o],r),o)try{return t.apply(this,arguments)}catch(e){const t=\"string\"==typeof e?new Error(e):e;throw x.emit(\"fn-err\",[arguments,this,t],r),t}finally{x.emit(\"fn-end\",[(0,v.t)()],r)}}}};function I(e,t,r,i){return function(){return(0,a.p)(f.xV,[\"API/\"+t+\"/called\"],void 0,n.K7.metrics,R),i&&(0,a.p)(e+t,[r?(0,v.t)():performance.now(),...arguments],r?null:this,i,R),r?void 0:this}}function P(){r.e(478).then(r.bind(r,8778)).then((({setAPI:t})=>{t(e),(0,c.Ze)(e,\"api\")})).catch((e=>{(0,l.R)(27,e),R.abort()}))}return[\"actionText\",\"setName\",\"setAttribute\",\"save\",\"ignore\",\"onEnd\",\"getContext\",\"end\",\"get\"].forEach((e=>{O[e]=I(A,e,void 0,h?n.K7.softNav:n.K7.spa)})),g.setCurrentRouteName=h?I(A,\"routeName\",void 0,n.K7.softNav):I(E,\"routeName\",!0,n.K7.spa),g.noticeError=function(t,r){\"string\"==typeof t&&(t=new Error(t)),(0,a.p)(f.xV,[\"API/noticeError/called\"],void 0,n.K7.metrics,R),(0,a.p)(\"err\",[t,(0,v.t)(),!1,r,!!S[e]],void 0,n.K7.jserrors,R)},d.RI?(0,u.GG)((()=>P()),!0):P(),g}(e.agentIdentifier,R,e.runSoftNavOverSpa)),void 0===e.exposed&&(e.exposed=k),P=!0}},8374:(e,t,r)=>{r.nc=(()=>{try{return document?.currentScript?.nonce}catch(e){}return\"\"})()},860:(e,t,r)=>{\"use strict\";r.d(t,{$J:()=>u,K7:()=>s,P3:()=>c,XX:()=>i,qY:()=>n,v4:()=>a});const n=\"events\",i=\"jserrors\",o=\"browser/blobs\",a=\"rum\",s={ajax:\"ajax\",genericEvents:\"generic_events\",jserrors:i,logging:\"logging\",metrics:\"metrics\",pageAction:\"page_action\",pageViewEvent:\"page_view_event\",pageViewTiming:\"page_view_timing\",sessionReplay:\"session_replay\",sessionTrace:\"session_trace\",softNav:\"soft_navigations\",spa:\"spa\"},c={[s.pageViewEvent]:1,[s.pageViewTiming]:2,[s.metrics]:3,[s.jserrors]:4,[s.spa]:5,[s.ajax]:6,[s.sessionTrace]:7,[s.softNav]:8,[s.sessionReplay]:9,[s.logging]:10,[s.genericEvents]:11},u={[s.pageViewEvent]:a,[s.pageViewTiming]:n,[s.ajax]:n,[s.spa]:n,[s.softNav]:n,[s.metrics]:i,[s.jserrors]:i,[s.sessionTrace]:o,[s.sessionReplay]:o,[s.logging]:\"browser/logs\",[s.genericEvents]:\"ins\"}}},n={};function i(e){var t=n[e];if(void 0!==t)return t.exports;var o=n[e]={exports:{}};return r[e](o,o.exports,i),o.exports}i.m=r,i.d=(e,t)=>{for(var r in t)i.o(t,r)&&!i.o(e,r)&&Object.defineProperty(e,r,{enumerable:!0,get:t[r]})},i.f={},i.e=e=>Promise.all(Object.keys(i.f).reduce(((t,r)=>(i.f[r](e,t),t)),[])),i.u=e=>({212:\"nr-spa-compressor\",249:\"nr-spa-recorder\",478:\"nr-spa\"}[e]+\"-1.281.0.min.js\"),i.o=(e,t)=>Object.prototype.hasOwnProperty.call(e,t),e={},t=\"NRBA-1.281.0.PROD:\",i.l=(r,n,o,a)=>{if(e[r])e[r].push(n);else{var s,c;if(void 0!==o)for(var u=document.getElementsByTagName(\"script\"),d=0;d<u.length;d++){var l=u[d];if(l.getAttribute(\"src\")==r||l.getAttribute(\"data-webpack\")==t+o){s=l;break}}if(!s){c=!0;var f={478:\"sha512-jmvAlmjCn64ans8tLueqHRlBI/iWekylsDWb94A77CG0ukSriVDvgD3dThx+XjUSBBBMYhFn8B1a18fViyBPEQ==\",249:\"sha512-ICY/ZrcytM/86t5KFy+9OAWVYmNNJy10EBtxoSUGjQWuZx53p/eLo+L8HfrGjvHuRHRnutqLTGSnvNttffJkaA==\",212:\"sha512-pQSn+X/RfBOvx/49HvlghaiXMLhhDQXTi13n1N2XMpDquWJgs9U0pbqE3RbAnYC9nsdaTu/RVGvneEPv1fpCxA==\"};(s=document.createElement(\"script\")).charset=\"utf-8\",s.timeout=120,i.nc&&s.setAttribute(\"nonce\",i.nc),s.setAttribute(\"data-webpack\",t+o),s.src=r,0!==s.src.indexOf(window.location.origin+\"/\")&&(s.crossOrigin=\"anonymous\"),f[a]&&(s.integrity=f[a])}e[r]=[n];var h=(t,n)=>{s.onerror=s.onload=null,clearTimeout(p);var i=e[r];if(delete e[r],s.parentNode&&s.parentNode.removeChild(s),i&&i.forEach((e=>e(n))),t)return t(n)},p=setTimeout(h.bind(null,void 0,{type:\"timeout\",target:s}),12e4);s.onerror=h.bind(null,s.onerror),s.onload=h.bind(null,s.onload),c&&document.head.appendChild(s)}},i.r=e=>{\"undefined\"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(e,Symbol.toStringTag,{value:\"Module\"}),Object.defineProperty(e,\"__esModule\",{value:!0})},i.p=\"https://js-agent.newrelic.com/\",(()=>{var e={38:0,788:0};i.f.j=(t,r)=>{var n=i.o(e,t)?e[t]:void 0;if(0!==n)if(n)r.push(n[2]);else{var o=new Promise(((r,i)=>n=e[t]=[r,i]));r.push(n[2]=o);var a=i.p+i.u(t),s=new Error;i.l(a,(r=>{if(i.o(e,t)&&(0!==(n=e[t])&&(e[t]=void 0),n)){var o=r&&(\"load\"===r.type?\"missing\":r.type),a=r&&r.target&&r.target.src;s.message=\"Loading chunk \"+t+\" failed.\\n(\"+o+\": \"+a+\")\",s.name=\"ChunkLoadError\",s.type=o,s.request=a,n[1](s)}}),\"chunk-\"+t,t)}};var t=(t,r)=>{var n,o,[a,s,c]=r,u=0;if(a.some((t=>0!==e[t]))){for(n in s)i.o(s,n)&&(i.m[n]=s[n]);if(c)c(i)}for(t&&t(r);u<a.length;u++)o=a[u],i.o(e,o)&&e[o]&&e[o][0](),e[o]=0},r=self[\"webpackChunk:NRBA-1.281.0.PROD\"]=self[\"webpackChunk:NRBA-1.281.0.PROD\"]||[];r.forEach(t.bind(null,0)),r.push=t.bind(null,r.push.bind(r))})(),(()=>{\"use strict\";i(8374);var e=i(944),t=i(6344),r=i(9566);class n{agentIdentifier;constructor(){this.agentIdentifier=(0,r.LA)(16)}#e(t,...r){if(\"function\"==typeof this.api?.[t])return this.api[t](...r);(0,e.R)(35,t)}addPageAction(e,t){return this.#e(\"addPageAction\",e,t)}recordCustomEvent(e,t){return this.#e(\"recordCustomEvent\",e,t)}setPageViewName(e,t){return this.#e(\"setPageViewName\",e,t)}setCustomAttribute(e,t,r){return this.#e(\"setCustomAttribute\",e,t,r)}noticeError(e,t){return this.#e(\"noticeError\",e,t)}setUserId(e){return this.#e(\"setUserId\",e)}setApplicationVersion(e){return this.#e(\"setApplicationVersion\",e)}setErrorHandler(e){return this.#e(\"setErrorHandler\",e)}addRelease(e,t){return this.#e(\"addRelease\",e,t)}log(e,t){return this.#e(\"log\",e,t)}}class o extends n{#e(t,...r){if(\"function\"==typeof this.api?.[t])return this.api[t](...r);(0,e.R)(35,t)}start(){return this.#e(\"start\")}finished(e){return this.#e(\"finished\",e)}recordReplay(){return this.#e(t.G4.RECORD)}pauseReplay(){return this.#e(t.G4.PAUSE)}addToTrace(e){return this.#e(\"addToTrace\",e)}setCurrentRouteName(e){return this.#e(\"setCurrentRouteName\",e)}interaction(){return this.#e(\"interaction\")}wrapLogger(e,t,r){return this.#e(\"wrapLogger\",e,t,r)}}var a=i(860),s=i(9417);const c=Object.values(a.K7);function u(e){const t={};return c.forEach((r=>{t[r]=function(e,t){return!0===(0,s.gD)(t,\"\".concat(e,\".enabled\"))}(r,e)})),t}var d=i(425);var l=i(1687),f=i(4234),h=i(5289),p=i(6154),g=i(5270),m=i(7767),v=i(6389);class b extends f.W{constructor(e,t,r=!0){super(e.agentIdentifier,t),this.auto=r,this.abortHandler=void 0,this.featAggregate=void 0,this.onAggregateImported=void 0,!1===e.init[this.featureName].autoStart&&(this.auto=!1),this.auto?(0,l.Ak)(e.agentIdentifier,t):this.ee.on(\"manual-start-all\",(0,v.J)((()=>{(0,l.Ak)(e.agentIdentifier,this.featureName),this.auto=!0,this.importAggregator(e)})))}importAggregator(t,r={}){if(this.featAggregate||!this.auto)return;let n;this.onAggregateImported=new Promise((e=>{n=e}));const o=async()=>{let o;try{if((0,m.V)(this.agentIdentifier)){const{setupAgentSession:e}=await i.e(478).then(i.bind(i,6526));o=e(t)}}catch(t){(0,e.R)(20,t),this.ee.emit(\"internal-error\",[t]),this.featureName===a.K7.sessionReplay&&this.abortHandler?.()}try{if(!this.#t(this.featureName,o))return(0,l.Ze)(this.agentIdentifier,this.featureName),void n(!1);const{lazyFeatureLoader:e}=await i.e(478).then(i.bind(i,6103)),{Aggregate:a}=await e(this.featureName,\"aggregate\");this.featAggregate=new a(t,r),t.runtime.harvester.initializedAggregates.push(this.featAggregate),n(!0)}catch(t){(0,e.R)(34,t),this.abortHandler?.(),(0,l.Ze)(this.agentIdentifier,this.featureName,!0),n(!1),this.ee&&this.ee.abort()}};p.RI?(0,h.GG)((()=>o()),!0):o()}#t(e,t){switch(e){case a.K7.sessionReplay:return(0,g.SR)(this.agentIdentifier)&&!!t;case a.K7.sessionTrace:return!!t;default:return!0}}}var y=i(6630);class w extends b{static featureName=y.T;constructor(e,t=!0){super(e,y.T,t),this.importAggregator(e)}}var R=i(384);var x=i(9908),E=i(2843),T=i(3878),A=i(782),S=i(1863);class N extends b{static featureName=A.T;constructor(e,t=!0){super(e,A.T,t),p.RI&&((0,E.u)((()=>(0,x.p)(\"docHidden\",[(0,S.t)()],void 0,A.T,this.ee)),!0),(0,T.sp)(\"pagehide\",(()=>(0,x.p)(\"winPagehide\",[(0,S.t)()],void 0,A.T,this.ee))),this.importAggregator(e))}}var _=i(3969);class O extends b{static featureName=_.TZ;constructor(e,t=!0){super(e,_.TZ,t),this.importAggregator(e)}}var I=i(6774),P=i(3304);class j{constructor(e,t,r,n,i){this.name=\"UncaughtError\",this.message=\"string\"==typeof e?e:(0,P.A)(e),this.sourceURL=t,this.line=r,this.column=n,this.__newrelic=i}}function C(e){return H(e)?e:new j(void 0!==e?.message?e.message:e,e?.filename||e?.sourceURL,e?.lineno||e?.line,e?.colno||e?.col,e?.__newrelic)}function k(e){const t=\"Unhandled Promise Rejection\";if(!e?.reason)return;if(H(e.reason))try{return e.reason.message=t+\": \"+e.reason.message,C(e.reason)}catch(t){return C(e.reason)}const r=C(e.reason);return r.message=t+\": \"+r?.message,r}function L(e){if(e.error instanceof SyntaxError&&!/:\\d+$/.test(e.error.stack?.trim())){const t=new j(e.message,e.filename,e.lineno,e.colno,e.error.__newrelic);return t.name=SyntaxError.name,t}return H(e.error)?e.error:C(e)}function H(e){return e instanceof Error&&!!e.stack}class M extends b{static featureName=I.T;#r=!1;constructor(e,r=!0){super(e,I.T,r);try{this.removeOnAbort=new AbortController}catch(e){}this.ee.on(\"internal-error\",((e,t)=>{this.abortHandler&&(0,x.p)(\"ierr\",[C(e),(0,S.t)(),!0,{},this.#r,t],void 0,this.featureName,this.ee)})),this.ee.on(t.G4.REPLAY_RUNNING,(e=>{this.#r=e})),p.gm.addEventListener(\"unhandledrejection\",(e=>{this.abortHandler&&(0,x.p)(\"err\",[k(e),(0,S.t)(),!1,{unhandledPromiseRejection:1},this.#r],void 0,this.featureName,this.ee)}),(0,T.jT)(!1,this.removeOnAbort?.signal)),p.gm.addEventListener(\"error\",(e=>{this.abortHandler&&(0,x.p)(\"err\",[L(e),(0,S.t)(),!1,{},this.#r],void 0,this.featureName,this.ee)}),(0,T.jT)(!1,this.removeOnAbort?.signal)),this.abortHandler=this.#n,this.importAggregator(e)}#n(){this.removeOnAbort?.abort(),this.abortHandler=void 0}}var D=i(8990);let K=1;const U=\"nr@id\";function V(e){const t=typeof e;return!e||\"object\"!==t&&\"function\"!==t?-1:e===p.gm?0:(0,D.I)(e,U,(function(){return K++}))}function G(e){if(\"string\"==typeof e&&e.length)return e.length;if(\"object\"==typeof e){if(\"undefined\"!=typeof ArrayBuffer&&e instanceof ArrayBuffer&&e.byteLength)return e.byteLength;if(\"undefined\"!=typeof Blob&&e instanceof Blob&&e.size)return e.size;if(!(\"undefined\"!=typeof FormData&&e instanceof FormData))try{return(0,P.A)(e).length}catch(e){return}}}var F=i(8139),B=i(7836),W=i(3434);const z={},q=[\"open\",\"send\"];function Z(t){var r=t||B.ee;const n=function(e){return(e||B.ee).get(\"xhr\")}(r);if(void 0===p.gm.XMLHttpRequest)return n;if(z[n.debugId]++)return n;z[n.debugId]=1,(0,F.u)(r);var i=(0,W.YM)(n),o=p.gm.XMLHttpRequest,a=p.gm.MutationObserver,s=p.gm.Promise,c=p.gm.setInterval,u=\"readystatechange\",d=[\"onload\",\"onerror\",\"onabort\",\"onloadstart\",\"onloadend\",\"onprogress\",\"ontimeout\"],l=[],f=p.gm.XMLHttpRequest=function(t){const r=new o(t),a=n.context(r);try{n.emit(\"new-xhr\",[r],a),r.addEventListener(u,(s=a,function(){var e=this;e.readyState>3&&!s.resolved&&(s.resolved=!0,n.emit(\"xhr-resolved\",[],e)),i.inPlace(e,d,\"fn-\",y)}),(0,T.jT)(!1))}catch(t){(0,e.R)(15,t);try{n.emit(\"internal-error\",[t])}catch(e){}}var s;return r};function h(e,t){i.inPlace(t,[\"onreadystatechange\"],\"fn-\",y)}if(function(e,t){for(var r in e)t[r]=e[r]}(o,f),f.prototype=o.prototype,i.inPlace(f.prototype,q,\"-xhr-\",y),n.on(\"send-xhr-start\",(function(e,t){h(e,t),function(e){l.push(e),a&&(g?g.then(b):c?c(b):(m=-m,v.data=m))}(t)})),n.on(\"open-xhr-start\",h),a){var g=s&&s.resolve();if(!c&&!s){var m=1,v=document.createTextNode(m);new a(b).observe(v,{characterData:!0})}}else r.on(\"fn-end\",(function(e){e[0]&&e[0].type===u||b()}));function b(){for(var e=0;e<l.length;e++)h(0,l[e]);l.length&&(l=[])}function y(e,t){return t}return n}var Y=\"fetch-\",X=Y+\"body-\",J=[\"arrayBuffer\",\"blob\",\"json\",\"text\",\"formData\"],Q=p.gm.Request,ee=p.gm.Response,te=\"prototype\";const re={};function ne(e){const t=function(e){return(e||B.ee).get(\"fetch\")}(e);if(!(Q&&ee&&p.gm.fetch))return t;if(re[t.debugId]++)return t;function r(e,r,n){var i=e[r];\"function\"==typeof i&&(e[r]=function(){var e,r=[...arguments],o={};t.emit(n+\"before-start\",[r],o),o[B.P]&&o[B.P].dt&&(e=o[B.P].dt);var a=i.apply(this,r);return t.emit(n+\"start\",[r,e],a),a.then((function(e){return t.emit(n+\"end\",[null,e],a),e}),(function(e){throw t.emit(n+\"end\",[e],a),e}))})}return re[t.debugId]=1,J.forEach((e=>{r(Q[te],e,X),r(ee[te],e,X)})),r(p.gm,\"fetch\",Y),t.on(Y+\"end\",(function(e,r){var n=this;if(r){var i=r.headers.get(\"content-length\");null!==i&&(n.rxSize=i),t.emit(Y+\"done\",[null,r],n)}else t.emit(Y+\"done\",[e],n)})),t}var ie=i(7485),oe=i(5603);class ae{constructor(e){this.agentIdentifier=e}generateTracePayload(e){if(!this.shouldGenerateTrace(e))return null;var t=(0,oe.o)(this.agentIdentifier);if(!t)return null;var n=(t.accountID||\"\").toString()||null,i=(t.agentID||\"\").toString()||null,o=(t.trustKey||\"\").toString()||null;if(!n||!i)return null;var a=(0,r.ZF)(),s=(0,r.el)(),c=Date.now(),u={spanId:a,traceId:s,timestamp:c};return(e.sameOrigin||this.isAllowedOrigin(e)&&this.useTraceContextHeadersForCors())&&(u.traceContextParentHeader=this.generateTraceContextParentHeader(a,s),u.traceContextStateHeader=this.generateTraceContextStateHeader(a,c,n,i,o)),(e.sameOrigin&&!this.excludeNewrelicHeader()||!e.sameOrigin&&this.isAllowedOrigin(e)&&this.useNewrelicHeaderForCors())&&(u.newrelicHeader=this.generateTraceHeader(a,s,c,n,i,o)),u}generateTraceContextParentHeader(e,t){return\"00-\"+t+\"-\"+e+\"-01\"}generateTraceContextStateHeader(e,t,r,n,i){return i+\"@nr=0-1-\"+r+\"-\"+n+\"-\"+e+\"----\"+t}generateTraceHeader(e,t,r,n,i,o){if(!(\"function\"==typeof p.gm?.btoa))return null;var a={v:[0,1],d:{ty:\"Browser\",ac:n,ap:i,id:e,tr:t,ti:r}};return o&&n!==o&&(a.d.tk=o),btoa((0,P.A)(a))}shouldGenerateTrace(e){return this.isDtEnabled()&&this.isAllowedOrigin(e)}isAllowedOrigin(e){var t=!1,r={};if((0,s.gD)(this.agentIdentifier,\"distributed_tracing\")&&(r=(0,s.D0)(this.agentIdentifier).distributed_tracing),e.sameOrigin)t=!0;else if(r.allowed_origins instanceof Array)for(var n=0;n<r.allowed_origins.length;n++){var i=(0,ie.D)(r.allowed_origins[n]);if(e.hostname===i.hostname&&e.protocol===i.protocol&&e.port===i.port){t=!0;break}}return t}isDtEnabled(){var e=(0,s.gD)(this.agentIdentifier,\"distributed_tracing\");return!!e&&!!e.enabled}excludeNewrelicHeader(){var e=(0,s.gD)(this.agentIdentifier,\"distributed_tracing\");return!!e&&!!e.exclude_newrelic_header}useNewrelicHeaderForCors(){var e=(0,s.gD)(this.agentIdentifier,\"distributed_tracing\");return!!e&&!1!==e.cors_use_newrelic_header}useTraceContextHeadersForCors(){var e=(0,s.gD)(this.agentIdentifier,\"distributed_tracing\");return!!e&&!!e.cors_use_tracecontext_headers}}var se=i(9300),ce=i(7295),ue=[\"load\",\"error\",\"abort\",\"timeout\"],de=ue.length,le=(0,R.dV)().o.REQ,fe=(0,R.dV)().o.XHR;class he extends b{static featureName=se.T;constructor(e,t=!0){super(e,se.T,t),this.dt=new ae(e.agentIdentifier),this.handler=(e,t,r,n)=>(0,x.p)(e,t,r,n,this.ee);try{const e={xmlhttprequest:\"xhr\",fetch:\"fetch\",beacon:\"beacon\"};p.gm?.performance?.getEntriesByType(\"resource\").forEach((t=>{if(t.initiatorType in e&&0!==t.responseStatus){const r={status:t.responseStatus},n={rxSize:t.transferSize,duration:Math.floor(t.duration),cbTime:0};pe(r,t.name),this.handler(\"xhr\",[r,n,t.startTime,t.responseEnd,e[t.initiatorType]],void 0,a.K7.ajax)}}))}catch(e){}ne(this.ee),Z(this.ee),function(e,t,r,n){function i(e){var t=this;t.totalCbs=0,t.called=0,t.cbTime=0,t.end=R,t.ended=!1,t.xhrGuids={},t.lastSize=null,t.loadCaptureCalled=!1,t.params=this.params||{},t.metrics=this.metrics||{},e.addEventListener(\"load\",(function(r){E(t,e)}),(0,T.jT)(!1)),p.lR||e.addEventListener(\"progress\",(function(e){t.lastSize=e.loaded}),(0,T.jT)(!1))}function o(e){this.params={method:e[0]},pe(this,e[1]),this.metrics={}}function s(t,r){e.loader_config.xpid&&this.sameOrigin&&r.setRequestHeader(\"X-NewRelic-ID\",e.loader_config.xpid);var i=n.generateTracePayload(this.parsedOrigin);if(i){var o=!1;i.newrelicHeader&&(r.setRequestHeader(\"newrelic\",i.newrelicHeader),o=!0),i.traceContextParentHeader&&(r.setRequestHeader(\"traceparent\",i.traceContextParentHeader),i.traceContextStateHeader&&r.setRequestHeader(\"tracestate\",i.traceContextStateHeader),o=!0),o&&(this.dt=i)}}function c(e,r){var n=this.metrics,i=e[0],o=this;if(n&&i){var a=G(i);a&&(n.txSize=a)}this.startTime=(0,S.t)(),this.body=i,this.listener=function(e){try{\"abort\"!==e.type||o.loadCaptureCalled||(o.params.aborted=!0),(\"load\"!==e.type||o.called===o.totalCbs&&(o.onloadCalled||\"function\"!=typeof r.onload)&&\"function\"==typeof o.end)&&o.end(r)}catch(e){try{t.emit(\"internal-error\",[e])}catch(e){}}};for(var s=0;s<de;s++)r.addEventListener(ue[s],this.listener,(0,T.jT)(!1))}function u(e,t,r){this.cbTime+=e,t?this.onloadCalled=!0:this.called+=1,this.called!==this.totalCbs||!this.onloadCalled&&\"function\"==typeof r.onload||\"function\"!=typeof this.end||this.end(r)}function d(e,t){var r=\"\"+V(e)+!!t;this.xhrGuids&&!this.xhrGuids[r]&&(this.xhrGuids[r]=!0,this.totalCbs+=1)}function l(e,t){var r=\"\"+V(e)+!!t;this.xhrGuids&&this.xhrGuids[r]&&(delete this.xhrGuids[r],this.totalCbs-=1)}function f(){this.endTime=(0,S.t)()}function h(e,r){r instanceof fe&&\"load\"===e[0]&&t.emit(\"xhr-load-added\",[e[1],e[2]],r)}function g(e,r){r instanceof fe&&\"load\"===e[0]&&t.emit(\"xhr-load-removed\",[e[1],e[2]],r)}function m(e,t,r){t instanceof fe&&(\"onload\"===r&&(this.onload=!0),(\"load\"===(e[0]&&e[0].type)||this.onload)&&(this.xhrCbStart=(0,S.t)()))}function v(e,r){this.xhrCbStart&&t.emit(\"xhr-cb-time\",[(0,S.t)()-this.xhrCbStart,this.onload,r],r)}function b(e){var t,r=e[1]||{};if(\"string\"==typeof e[0]?0===(t=e[0]).length&&p.RI&&(t=\"\"+p.gm.location.href):e[0]&&e[0].url?t=e[0].url:p.gm?.URL&&e[0]&&e[0]instanceof URL?t=e[0].href:\"function\"==typeof e[0].toString&&(t=e[0].toString()),\"string\"==typeof t&&0!==t.length){t&&(this.parsedOrigin=(0,ie.D)(t),this.sameOrigin=this.parsedOrigin.sameOrigin);var i=n.generateTracePayload(this.parsedOrigin);if(i&&(i.newrelicHeader||i.traceContextParentHeader))if(e[0]&&e[0].headers)s(e[0].headers,i)&&(this.dt=i);else{var o={};for(var a in r)o[a]=r[a];o.headers=new Headers(r.headers||{}),s(o.headers,i)&&(this.dt=i),e.length>1?e[1]=o:e.push(o)}}function s(e,t){var r=!1;return t.newrelicHeader&&(e.set(\"newrelic\",t.newrelicHeader),r=!0),t.traceContextParentHeader&&(e.set(\"traceparent\",t.traceContextParentHeader),t.traceContextStateHeader&&e.set(\"tracestate\",t.traceContextStateHeader),r=!0),r}}function y(e,t){this.params={},this.metrics={},this.startTime=(0,S.t)(),this.dt=t,e.length>=1&&(this.target=e[0]),e.length>=2&&(this.opts=e[1]);var r,n=this.opts||{},i=this.target;\"string\"==typeof i?r=i:\"object\"==typeof i&&i instanceof le?r=i.url:p.gm?.URL&&\"object\"==typeof i&&i instanceof URL&&(r=i.href),pe(this,r);var o=(\"\"+(i&&i instanceof le&&i.method||n.method||\"GET\")).toUpperCase();this.params.method=o,this.body=n.body,this.txSize=G(n.body)||0}function w(e,t){if(this.endTime=(0,S.t)(),this.params||(this.params={}),(0,ce.iW)(this.params))return;let n;this.params.status=t?t.status:0,\"string\"==typeof this.rxSize&&this.rxSize.length>0&&(n=+this.rxSize);const i={txSize:this.txSize,rxSize:n,duration:(0,S.t)()-this.startTime};r(\"xhr\",[this.params,i,this.startTime,this.endTime,\"fetch\"],this,a.K7.ajax)}function R(e){const t=this.params,n=this.metrics;if(!this.ended){this.ended=!0;for(let t=0;t<de;t++)e.removeEventListener(ue[t],this.listener,!1);t.aborted||(0,ce.iW)(t)||(n.duration=(0,S.t)()-this.startTime,this.loadCaptureCalled||4!==e.readyState?null==t.status&&(t.status=0):E(this,e),n.cbTime=this.cbTime,r(\"xhr\",[t,n,this.startTime,this.endTime,\"xhr\"],this,a.K7.ajax))}}function E(e,r){e.params.status=r.status;var n=function(e,t){var r=e.responseType;return\"json\"===r&&null!==t?t:\"arraybuffer\"===r||\"blob\"===r||\"json\"===r?G(e.response):\"text\"===r||\"\"===r||void 0===r?G(e.responseText):void 0}(r,e.lastSize);if(n&&(e.metrics.rxSize=n),e.sameOrigin){var i=r.getResponseHeader(\"X-NewRelic-App-Data\");i&&((0,x.p)(_.rs,[\"Ajax/CrossApplicationTracing/Header/Seen\"],void 0,a.K7.metrics,t),e.params.cat=i.split(\", \").pop())}e.loadCaptureCalled=!0}t.on(\"new-xhr\",i),t.on(\"open-xhr-start\",o),t.on(\"open-xhr-end\",s),t.on(\"send-xhr-start\",c),t.on(\"xhr-cb-time\",u),t.on(\"xhr-load-added\",d),t.on(\"xhr-load-removed\",l),t.on(\"xhr-resolved\",f),t.on(\"addEventListener-end\",h),t.on(\"removeEventListener-end\",g),t.on(\"fn-end\",v),t.on(\"fetch-before-start\",b),t.on(\"fetch-start\",y),t.on(\"fn-start\",m),t.on(\"fetch-done\",w)}(e,this.ee,this.handler,this.dt),this.importAggregator(e)}}function pe(e,t){var r=(0,ie.D)(t),n=e.params||e;n.hostname=r.hostname,n.port=r.port,n.protocol=r.protocol,n.host=r.hostname+\":\"+r.port,n.pathname=r.pathname,e.parsedOrigin=r,e.sameOrigin=r.sameOrigin}const ge={},me=[\"pushState\",\"replaceState\"];function ve(e){const t=function(e){return(e||B.ee).get(\"history\")}(e);return!p.RI||ge[t.debugId]++||(ge[t.debugId]=1,(0,W.YM)(t).inPlace(window.history,me,\"-\")),t}var be=i(3738);const{He:ye,bD:we,d3:Re,Kp:xe,TZ:Ee,Lc:Te,uP:Ae,Rz:Se}=be;class Ne extends b{static featureName=Ee;constructor(e,t=!0){super(e,Ee,t);if(!(0,m.V)(this.agentIdentifier))return void this.deregisterDrain();const r=this.ee;let n;ve(r),this.eventsEE=(0,F.u)(r),this.eventsEE.on(Ae,(function(e,t){this.bstStart=(0,S.t)()})),this.eventsEE.on(Te,(function(e,t){(0,x.p)(\"bst\",[e[0],t,this.bstStart,(0,S.t)()],void 0,a.K7.sessionTrace,r)})),r.on(Se+Re,(function(e){this.time=(0,S.t)(),this.startPath=location.pathname+location.hash})),r.on(Se+xe,(function(e){(0,x.p)(\"bstHist\",[location.pathname+location.hash,this.startPath,this.time],void 0,a.K7.sessionTrace,r)}));try{n=new PerformanceObserver((e=>{const t=e.getEntries();(0,x.p)(ye,[t],void 0,a.K7.sessionTrace,r)})),n.observe({type:we,buffered:!0})}catch(e){}this.importAggregator(e,{resourceObserver:n})}}var _e=i(2614);class Oe extends b{static featureName=t.TZ;#i;#o;constructor(e,r=!0){let n;super(e,t.TZ,r),this.replayRunning=!1,this.#o=e;try{n=JSON.parse(localStorage.getItem(\"\".concat(_e.H3,\"_\").concat(_e.uh)))}catch(e){}(0,g.SR)(e.agentIdentifier)&&this.ee.on(t.G4.RECORD,(()=>this.#a())),this.#s(n)?(this.#i=n?.sessionReplayMode,this.#c()):this.importAggregator(e),this.ee.on(\"err\",(e=>{this.replayRunning&&(this.errorNoticed=!0,(0,x.p)(t.G4.ERROR_DURING_REPLAY,[e],void 0,this.featureName,this.ee))})),this.ee.on(t.G4.REPLAY_RUNNING,(e=>{this.replayRunning=e}))}#s(e){return e&&(e.sessionReplayMode===_e.g.FULL||e.sessionReplayMode===_e.g.ERROR)||(0,g.Aw)(this.agentIdentifier)}#u=!1;async#c(e){if(!this.#u){this.#u=!0;try{const{Recorder:t}=await Promise.all([i.e(478),i.e(249)]).then(i.bind(i,8589));this.recorder??=new t({mode:this.#i,agentIdentifier:this.agentIdentifier,trigger:e,ee:this.ee,agentRef:this.#o}),this.recorder.startRecording(),this.abortHandler=this.recorder.stopRecording}catch(e){}this.importAggregator(this.#o,{recorder:this.recorder,errorNoticed:this.errorNoticed})}}#a(){this.featAggregate?this.featAggregate.mode!==_e.g.FULL&&this.featAggregate.initializeRecording(_e.g.FULL,!0):(this.#i=_e.g.FULL,this.#c(t.Qb.API),this.recorder&&this.recorder.parent.mode!==_e.g.FULL&&(this.recorder.parent.mode=_e.g.FULL,this.recorder.stopRecording(),this.recorder.startRecording(),this.abortHandler=this.recorder.stopRecording))}}var Ie=i(3962);class Pe extends b{static featureName=Ie.TZ;constructor(e,t=!0){if(super(e,Ie.TZ,t),!p.RI||!(0,R.dV)().o.MO)return;const r=ve(this.ee);Ie.tC.forEach((e=>{(0,T.sp)(e,(e=>{a(e)}),!0)}));const n=()=>(0,x.p)(\"newURL\",[(0,S.t)(),\"\"+window.location],void 0,this.featureName,this.ee);r.on(\"pushState-end\",n),r.on(\"replaceState-end\",n);try{this.removeOnAbort=new AbortController}catch(e){}(0,T.sp)(\"popstate\",(e=>(0,x.p)(\"newURL\",[e.timeStamp,\"\"+window.location],void 0,this.featureName,this.ee)),!0,this.removeOnAbort?.signal);let i=!1;const o=new((0,R.dV)().o.MO)(((e,t)=>{i||(i=!0,requestAnimationFrame((()=>{(0,x.p)(\"newDom\",[(0,S.t)()],void 0,this.featureName,this.ee),i=!1})))})),a=(0,v.s)((e=>{(0,x.p)(\"newUIEvent\",[e],void 0,this.featureName,this.ee),o.observe(document.body,{attributes:!0,childList:!0,subtree:!0,characterData:!0})}),100,{leading:!0});this.abortHandler=function(){this.removeOnAbort?.abort(),o.disconnect(),this.abortHandler=void 0},this.importAggregator(e,{domObserver:o})}}var je=i(7378);const Ce={},ke=[\"appendChild\",\"insertBefore\",\"replaceChild\"];function Le(e){const t=function(e){return(e||B.ee).get(\"jsonp\")}(e);if(!p.RI||Ce[t.debugId])return t;Ce[t.debugId]=!0;var r=(0,W.YM)(t),n=/[?&](?:callback|cb)=([^&#]+)/,i=/(.*)\\.([^.]+)/,o=/^(\\w+)(\\.|$)(.*)$/;function a(e,t){if(!e)return t;const r=e.match(o),n=r[1];return a(r[3],t[n])}return r.inPlace(Node.prototype,ke,\"dom-\"),t.on(\"dom-start\",(function(e){!function(e){if(!e||\"string\"!=typeof e.nodeName||\"script\"!==e.nodeName.toLowerCase())return;if(\"function\"!=typeof e.addEventListener)return;var o=(s=e.src,c=s.match(n),c?c[1]:null);var s,c;if(!o)return;var u=function(e){var t=e.match(i);if(t&&t.length>=3)return{key:t[2],parent:a(t[1],window)};return{key:e,parent:window}}(o);if(\"function\"!=typeof u.parent[u.key])return;var d={};function l(){t.emit(\"jsonp-end\",[],d),e.removeEventListener(\"load\",l,(0,T.jT)(!1)),e.removeEventListener(\"error\",f,(0,T.jT)(!1))}function f(){t.emit(\"jsonp-error\",[],d),t.emit(\"jsonp-end\",[],d),e.removeEventListener(\"load\",l,(0,T.jT)(!1)),e.removeEventListener(\"error\",f,(0,T.jT)(!1))}r.inPlace(u.parent,[u.key],\"cb-\",d),e.addEventListener(\"load\",l,(0,T.jT)(!1)),e.addEventListener(\"error\",f,(0,T.jT)(!1)),t.emit(\"new-jsonp\",[e.src],d)}(e[0])})),t}const He={};function Me(e){const t=function(e){return(e||B.ee).get(\"promise\")}(e);if(He[t.debugId])return t;He[t.debugId]=!0;var r=t.context,n=(0,W.YM)(t),i=p.gm.Promise;return i&&function(){function e(r){var o=t.context(),a=n(r,\"executor-\",o,null,!1);const s=Reflect.construct(i,[a],e);return t.context(s).getCtx=function(){return o},s}p.gm.Promise=e,Object.defineProperty(e,\"name\",{value:\"Promise\"}),e.toString=function(){return i.toString()},Object.setPrototypeOf(e,i),[\"all\",\"race\"].forEach((function(r){const n=i[r];e[r]=function(e){let i=!1;[...e||[]].forEach((e=>{this.resolve(e).then(a(\"all\"===r),a(!1))}));const o=n.apply(this,arguments);return o;function a(e){return function(){t.emit(\"propagate\",[null,!i],o,!1,!1),i=i||!e}}}})),[\"resolve\",\"reject\"].forEach((function(r){const n=i[r];e[r]=function(e){const r=n.apply(this,arguments);return e!==r&&t.emit(\"propagate\",[e,!0],r,!1,!1),r}})),e.prototype=i.prototype;const o=i.prototype.then;i.prototype.then=function(...e){var i=this,a=r(i);a.promise=i,e[0]=n(e[0],\"cb-\",a,null,!1),e[1]=n(e[1],\"cb-\",a,null,!1);const s=o.apply(this,e);return a.nextPromise=s,t.emit(\"propagate\",[i,!0],s,!1,!1),s},i.prototype.then[W.Jt]=o,t.on(\"executor-start\",(function(e){e[0]=n(e[0],\"resolve-\",this,null,!1),e[1]=n(e[1],\"resolve-\",this,null,!1)})),t.on(\"executor-err\",(function(e,t,r){e[1](r)})),t.on(\"cb-end\",(function(e,r,n){t.emit(\"propagate\",[n,!0],this.nextPromise,!1,!1)})),t.on(\"propagate\",(function(e,r,n){this.getCtx&&!r||(this.getCtx=function(){if(e instanceof Promise)var r=t.context(e);return r&&r.getCtx?r.getCtx():this})}))}(),t}const De={},Ke=\"setTimeout\",Ue=\"setInterval\",Ve=\"clearTimeout\",Ge=\"-start\",Fe=[Ke,\"setImmediate\",Ue,Ve,\"clearImmediate\"];function Be(e){const t=function(e){return(e||B.ee).get(\"timer\")}(e);if(De[t.debugId]++)return t;De[t.debugId]=1;var r=(0,W.YM)(t);return r.inPlace(p.gm,Fe.slice(0,2),Ke+\"-\"),r.inPlace(p.gm,Fe.slice(2,3),Ue+\"-\"),r.inPlace(p.gm,Fe.slice(3),Ve+\"-\"),t.on(Ue+Ge,(function(e,t,n){e[0]=r(e[0],\"fn-\",null,n)})),t.on(Ke+Ge,(function(e,t,n){this.method=n,this.timerDuration=isNaN(e[1])?0:+e[1],e[0]=r(e[0],\"fn-\",this,n)})),t}const We={};function ze(e){const t=function(e){return(e||B.ee).get(\"mutation\")}(e);if(!p.RI||We[t.debugId])return t;We[t.debugId]=!0;var r=(0,W.YM)(t),n=p.gm.MutationObserver;return n&&(window.MutationObserver=function(e){return this instanceof n?new n(r(e,\"fn-\")):n.apply(this,arguments)},MutationObserver.prototype=n.prototype),t}const{TZ:qe,d3:Ze,Kp:Ye,$p:Xe,wW:$e,e5:Je,tH:Qe,uP:et,rw:tt,Lc:rt}=je;class nt extends b{static featureName=qe;constructor(e,t=!0){if(super(e,qe,t),!p.RI)return;try{this.removeOnAbort=new AbortController}catch(e){}let r,n=0;const i=this.ee.get(\"tracer\"),o=Le(this.ee),a=Me(this.ee),s=Be(this.ee),c=Z(this.ee),u=this.ee.get(\"events\"),d=ne(this.ee),l=ve(this.ee),f=ze(this.ee);function h(e,t){l.emit(\"newURL\",[\"\"+window.location,t])}function g(){n++,r=window.location.hash,this[et]=(0,S.t)()}function m(){n--,window.location.hash!==r&&h(0,!0);var e=(0,S.t)();this[Je]=~~this[Je]+e-this[et],this[rt]=e}function v(e,t){e.on(t,(function(){this[t]=(0,S.t)()}))}this.ee.on(et,g),a.on(tt,g),o.on(tt,g),this.ee.on(rt,m),a.on($e,m),o.on($e,m),this.ee.on(\"fn-err\",((...t)=>{t[2]?.__newrelic?.[e.agentIdentifier]||(0,x.p)(\"function-err\",[...t],void 0,this.featureName,this.ee)})),this.ee.buffer([et,rt,\"xhr-resolved\"],this.featureName),u.buffer([et],this.featureName),s.buffer([\"setTimeout\"+Ye,\"clearTimeout\"+Ze,et],this.featureName),c.buffer([et,\"new-xhr\",\"send-xhr\"+Ze],this.featureName),d.buffer([Qe+Ze,Qe+\"-done\",Qe+Xe+Ze,Qe+Xe+Ye],this.featureName),l.buffer([\"newURL\"],this.featureName),f.buffer([et],this.featureName),a.buffer([\"propagate\",tt,$e,\"executor-err\",\"resolve\"+Ze],this.featureName),i.buffer([et,\"no-\"+et],this.featureName),o.buffer([\"new-jsonp\",\"cb-start\",\"jsonp-error\",\"jsonp-end\"],this.featureName),v(d,Qe+Ze),v(d,Qe+\"-done\"),v(o,\"new-jsonp\"),v(o,\"jsonp-end\"),v(o,\"cb-start\"),l.on(\"pushState-end\",h),l.on(\"replaceState-end\",h),window.addEventListener(\"hashchange\",h,(0,T.jT)(!0,this.removeOnAbort?.signal)),window.addEventListener(\"load\",h,(0,T.jT)(!0,this.removeOnAbort?.signal)),window.addEventListener(\"popstate\",(function(){h(0,n>1)}),(0,T.jT)(!0,this.removeOnAbort?.signal)),this.abortHandler=this.#n,this.importAggregator(e)}#n(){this.removeOnAbort?.abort(),this.abortHandler=void 0}}var it=i(3333);class ot extends b{static featureName=it.TZ;constructor(e,t=!0){super(e,it.TZ,t);const r=[e.init.page_action.enabled,e.init.performance.capture_marks,e.init.performance.capture_measures,e.init.user_actions.enabled,e.init.performance.resources.enabled];if(p.RI&&(e.init.user_actions.enabled&&(it.Zp.forEach((e=>(0,T.sp)(e,(e=>(0,x.p)(\"ua\",[e],void 0,this.featureName,this.ee)),!0))),it.qN.forEach((e=>{const t=(0,v.s)((e=>{(0,x.p)(\"ua\",[e],void 0,this.featureName,this.ee)}),500,{leading:!0});(0,T.sp)(e,t)}))),e.init.performance.resources.enabled&&p.gm.PerformanceObserver?.supportedEntryTypes.includes(\"resource\"))){new PerformanceObserver((e=>{e.getEntries().forEach((e=>{(0,x.p)(\"browserPerformance.resource\",[e],void 0,this.featureName,this.ee)}))})).observe({type:\"resource\",buffered:!0})}r.some((e=>e))?this.importAggregator(e):this.deregisterDrain()}}var at=i(993),st=i(3785);class ct extends b{static featureName=at.TZ;constructor(e,t=!0){super(e,at.TZ,t);const r=this.ee;this.ee.on(\"wrap-logger-end\",(function([e]){const{level:t,customAttributes:n}=this;(0,st.R)(r,e,n,t)})),this.importAggregator(e)}}new class extends o{constructor(t){super(),p.gm?(this.features={},(0,R.bQ)(this.agentIdentifier,this),this.desiredFeatures=new Set(t.features||[]),this.desiredFeatures.add(w),this.runSoftNavOverSpa=[...this.desiredFeatures].some((e=>e.featureName===a.K7.softNav)),(0,d.j)(this,t,t.loaderType||\"agent\"),this.run()):(0,e.R)(21)}get config(){return{info:this.info,init:this.init,loader_config:this.loader_config,runtime:this.runtime}}run(){try{const t=u(this.agentIdentifier),r=[...this.desiredFeatures];r.sort(((e,t)=>a.P3[e.featureName]-a.P3[t.featureName])),r.forEach((r=>{if(!t[r.featureName]&&r.featureName!==a.K7.pageViewEvent)return;if(this.runSoftNavOverSpa&&r.featureName===a.K7.spa)return;if(!this.runSoftNavOverSpa&&r.featureName===a.K7.softNav)return;const n=function(e){switch(e){case a.K7.ajax:return[a.K7.jserrors];case a.K7.sessionTrace:return[a.K7.ajax,a.K7.pageViewEvent];case a.K7.sessionReplay:return[a.K7.sessionTrace];case a.K7.pageViewTiming:return[a.K7.pageViewEvent];default:return[]}}(r.featureName).filter((e=>!(e in this.features)));n.length>0&&(0,e.R)(36,{targetFeature:r.featureName,missingDependencies:n}),this.features[r.featureName]=new r(this)}))}catch(t){(0,e.R)(22,t);for(const e in this.features)this.features[e].abortHandler?.();const r=(0,R.Zm)();delete r.initializedAgents[this.agentIdentifier]?.api,delete r.initializedAgents[this.agentIdentifier]?.features,delete this.sharedAggregator;return r.ee.get(this.agentIdentifier).abort(),!1}}}({features:[he,w,N,Ne,Oe,O,M,ot,ct,Pe,nt],loaderType:\"spa\"})})()})();","id":"nr-browser-agent"}])</script><script src="/_next/static/chunks/webpack-26d6f45027cd47cc.js" async=""></script><script>(self.__next_f=self.__next_f||[]).push([0]);self.__next_f.push([2,null])</script><script>self.__next_f.push([1,"1:HL[\"/_next/static/media/a34f9d1faa5f3315-s.p.woff2\",\"font\",{\"crossOrigin\":\"\",\"type\":\"font/woff2\"}]\n2:HL[\"/_next/static/css/bed218a56490fce6.css\",\"style\"]\n3:HL[\"/_next/static/css/403d28282e775383.css\",\"style\"]\n4:HL[\"/_next/static/css/05177b9cba5d3efe.css\",\"style\"]\n5:HL[\"/_next/static/css/b4ab6e6f5f0f9ce2.css\",\"style\"]\n6:HL[\"/_next/static/css/f8b0d7642df77b70.css\",\"style\"]\n"])</script><script>self.__next_f.push([1,"7:I[12846,[],\"\"]\na:I[4707,[],\"\"]\nd:I[36423,[],\"\"]\n10:I[61060,[],\"\"]\nb:[\"locale\",\"en\",\"d\"]\nc:[\"category\",\"statistics\",\"d\"]\n11:[]\n"])</script><script>self.__next_f.push([1,"0:[\"$\",\"$L7\",null,{\"buildId\":\"_1bA7Gu23y8_4we-ChtX5\",\"assetPrefix\":\"\",\"urlParts\":[\"\",\"learn\",\"statistics\"],\"initialTree\":[\"\",{\"children\":[[\"locale\",\"en\",\"d\"],{\"children\":[\"learn\",{\"children\":[[\"category\",\"statistics\",\"d\"],{\"children\":[\"__PAGE__\",{}]}]}]},\"$undefined\",\"$undefined\",true]}],\"initialSeedData\":[\"\",{\"children\":[[\"locale\",\"en\",\"d\"],{\"children\":[\"learn\",{\"children\":[[\"category\",\"statistics\",\"d\"],{\"children\":[\"__PAGE__\",{},[[\"$L8\",\"$L9\",[[\"$\",\"link\",\"0\",{\"rel\":\"stylesheet\",\"href\":\"/_next/static/css/05177b9cba5d3efe.css\",\"precedence\":\"next\",\"crossOrigin\":\"$undefined\"}],[\"$\",\"link\",\"1\",{\"rel\":\"stylesheet\",\"href\":\"/_next/static/css/b4ab6e6f5f0f9ce2.css\",\"precedence\":\"next\",\"crossOrigin\":\"$undefined\"}],[\"$\",\"link\",\"2\",{\"rel\":\"stylesheet\",\"href\":\"/_next/static/css/f8b0d7642df77b70.css\",\"precedence\":\"next\",\"crossOrigin\":\"$undefined\"}]]],null],null]},[null,[\"$\",\"$La\",null,{\"parallelRouterKey\":\"children\",\"segmentPath\":[\"children\",\"$b\",\"children\",\"learn\",\"children\",\"$c\",\"children\"],\"error\":\"$undefined\",\"errorStyles\":\"$undefined\",\"errorScripts\":\"$undefined\",\"template\":[\"$\",\"$Ld\",null,{}],\"templateStyles\":\"$undefined\",\"templateScripts\":\"$undefined\",\"notFound\":\"$undefined\",\"notFoundStyles\":\"$undefined\"}]],null]},[null,[\"$\",\"$La\",null,{\"parallelRouterKey\":\"children\",\"segmentPath\":[\"children\",\"$b\",\"children\",\"learn\",\"children\"],\"error\":\"$undefined\",\"errorStyles\":\"$undefined\",\"errorScripts\":\"$undefined\",\"template\":[\"$\",\"$Ld\",null,{}],\"templateStyles\":\"$undefined\",\"templateScripts\":\"$undefined\",\"notFound\":\"$undefined\",\"notFoundStyles\":\"$undefined\"}]],null]},[[[[\"$\",\"link\",\"0\",{\"rel\":\"stylesheet\",\"href\":\"/_next/static/css/bed218a56490fce6.css\",\"precedence\":\"next\",\"crossOrigin\":\"$undefined\"}],[\"$\",\"link\",\"1\",{\"rel\":\"stylesheet\",\"href\":\"/_next/static/css/403d28282e775383.css\",\"precedence\":\"next\",\"crossOrigin\":\"$undefined\"}]],\"$Le\"],null],null]},[null,[\"$\",\"$La\",null,{\"parallelRouterKey\":\"children\",\"segmentPath\":[\"children\"],\"error\":\"$undefined\",\"errorStyles\":\"$undefined\",\"errorScripts\":\"$undefined\",\"template\":[\"$\",\"$Ld\",null,{}],\"templateStyles\":\"$undefined\",\"templateScripts\":\"$undefined\",\"notFound\":[[\"$\",\"title\",null,{\"children\":\"404: This page could not be found.\"}],[\"$\",\"div\",null,{\"style\":{\"fontFamily\":\"system-ui,\\\"Segoe UI\\\",Roboto,Helvetica,Arial,sans-serif,\\\"Apple Color Emoji\\\",\\\"Segoe UI Emoji\\\"\",\"height\":\"100vh\",\"textAlign\":\"center\",\"display\":\"flex\",\"flexDirection\":\"column\",\"alignItems\":\"center\",\"justifyContent\":\"center\"},\"children\":[\"$\",\"div\",null,{\"children\":[[\"$\",\"style\",null,{\"dangerouslySetInnerHTML\":{\"__html\":\"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}\"}}],[\"$\",\"h1\",null,{\"className\":\"next-error-h1\",\"style\":{\"display\":\"inline-block\",\"margin\":\"0 20px 0 0\",\"padding\":\"0 23px 0 0\",\"fontSize\":24,\"fontWeight\":500,\"verticalAlign\":\"top\",\"lineHeight\":\"49px\"},\"children\":\"404\"}],[\"$\",\"div\",null,{\"style\":{\"display\":\"inline-block\"},\"children\":[\"$\",\"h2\",null,{\"style\":{\"fontSize\":14,\"fontWeight\":400,\"lineHeight\":\"49px\",\"margin\":0},\"children\":\"This page could not be found.\"}]}]]}]}]],\"notFoundStyles\":[]}]],null],\"couldBeIntercepted\":false,\"initialHead\":[null,\"$Lf\"],\"globalErrorComponent\":\"$10\",\"missingSlots\":\"$W11\"}]\n"])</script><script>self.__next_f.push([1,"12:I[88003,[\"8310\",\"static/chunks/0e5ce63c-e4012ad3e28fdbed.js\",\"5571\",\"static/chunks/c233e9bd-865e5bc301f09aaf.js\",\"6290\",\"static/chunks/6290-14a62ddd57f81ba6.js\",\"9177\",\"static/chunks/9177-4f779ab065ca3298.js\",\"5878\",\"static/chunks/5878-e3c69aff2e273e23.js\",\"3069\",\"static/chunks/3069-556a3605b335d482.js\",\"4858\",\"static/chunks/4858-aef93864f4abb320.js\",\"8003\",\"static/chunks/8003-2972b8eea56e87df.js\",\"6686\",\"static/chunks/6686-f007b1e2101fda62.js\",\"9366\",\"static/chunks/9366-e6a7fb83e1c23555.js\",\"3397\",\"static/chunks/3397-dd13dd89c81e42c8.js\",\"554\",\"static/chunks/554-025495b6bf8e1dac.js\",\"6082\",\"static/chunks/app/%5Blocale%5D/not-found-3aafa877300c524c.js\"],\"\"]\n15:I[37002,[\"8310\",\"static/chunks/0e5ce63c-e4012ad3e28fdbed.js\",\"5571\",\"static/chunks/c233e9bd-865e5bc301f09aaf.js\",\"2404\",\"static/chunks/a4634e51-1ae34582fa2bb120.js\",\"6290\",\"static/chunks/6290-14a62ddd57f81ba6.js\",\"9177\",\"static/chunks/9177-4f779ab065ca3298.js\",\"5878\",\"static/chunks/5878-e3c69aff2e273e23.js\",\"3069\",\"static/chunks/3069-556a3605b335d482.js\",\"4858\",\"static/chunks/4858-aef93864f4abb320.js\",\"8890\",\"static/chunks/8890-cd2934b2aa3b89dc.js\",\"3402\",\"static/chunks/3402-f8625ce91eb27ea6.js\",\"8082\",\"static/chunks/8082-143f9f9fdf5b9192.js\",\"4980\",\"static/chunks/4980-d730333976453575.js\",\"32\",\"static/chunks/32-bafec80821f44ed5.js\",\"6686\",\"static/chunks/6686-f007b1e2101fda62.js\",\"9366\",\"static/chunks/9366-e6a7fb83e1c23555.js\",\"3397\",\"static/chunks/3397-dd13dd89c81e42c8.js\",\"2628\",\"static/chunks/2628-8d231bd404df8976.js\",\"554\",\"static/chunks/554-025495b6bf8e1dac.js\",\"121\",\"static/chunks/121-00c8365f8c57a8cc.js\",\"3564\",\"static/chunks/3564-dbea25076659e35b.js\",\"5099\",\"static/chunks/5099-9a5433902d87437e.js\",\"6928\",\"static/chunks/app/%5Blocale%5D/learn/%5Bcategory%5D/page-176642ac87704917.js\"],\"default\"]\n16:I[5127,[\"8310\",\"static/chunks/0e5ce63c-e4012ad3e28fdbed.js\",\"5571\",\"static/chunks/c233e9bd-865e5bc301f09aaf.js\",\"2404\",\"static/chunks/a4634e51-1ae34582fa2bb120.js\",\"6290\",\"static/chunks/6290-14a62ddd57f81ba6.js\",\"9177\",\"static/chunks/9177-4f779ab065ca329"])</script><script>self.__next_f.push([1,"8.js\",\"5878\",\"static/chunks/5878-e3c69aff2e273e23.js\",\"3069\",\"static/chunks/3069-556a3605b335d482.js\",\"4858\",\"static/chunks/4858-aef93864f4abb320.js\",\"8890\",\"static/chunks/8890-cd2934b2aa3b89dc.js\",\"3402\",\"static/chunks/3402-f8625ce91eb27ea6.js\",\"8082\",\"static/chunks/8082-143f9f9fdf5b9192.js\",\"4980\",\"static/chunks/4980-d730333976453575.js\",\"32\",\"static/chunks/32-bafec80821f44ed5.js\",\"6686\",\"static/chunks/6686-f007b1e2101fda62.js\",\"9366\",\"static/chunks/9366-e6a7fb83e1c23555.js\",\"3397\",\"static/chunks/3397-dd13dd89c81e42c8.js\",\"2628\",\"static/chunks/2628-8d231bd404df8976.js\",\"554\",\"static/chunks/554-025495b6bf8e1dac.js\",\"121\",\"static/chunks/121-00c8365f8c57a8cc.js\",\"3564\",\"static/chunks/3564-dbea25076659e35b.js\",\"5099\",\"static/chunks/5099-9a5433902d87437e.js\",\"6928\",\"static/chunks/app/%5Blocale%5D/learn/%5Bcategory%5D/page-176642ac87704917.js\"],\"ClientOnly\"]\n17:I[12126,[\"6290\",\"static/chunks/6290-14a62ddd57f81ba6.js\",\"9177\",\"static/chunks/9177-4f779ab065ca3298.js\",\"8003\",\"static/chunks/8003-2972b8eea56e87df.js\",\"6686\",\"static/chunks/6686-f007b1e2101fda62.js\",\"1203\",\"static/chunks/app/%5Blocale%5D/layout-bdcb92f3a05369b1.js\"],\"CohesionReady\"]\n18:I[33890,[\"8310\",\"static/chunks/0e5ce63c-e4012ad3e28fdbed.js\",\"5571\",\"static/chunks/c233e9bd-865e5bc301f09aaf.js\",\"2404\",\"static/chunks/a4634e51-1ae34582fa2bb120.js\",\"6290\",\"static/chunks/6290-14a62ddd57f81ba6.js\",\"9177\",\"static/chunks/9177-4f779ab065ca3298.js\",\"5878\",\"static/chunks/5878-e3c69aff2e273e23.js\",\"3069\",\"static/chunks/3069-556a3605b335d482.js\",\"4858\",\"static/chunks/4858-aef93864f4abb320.js\",\"8890\",\"static/chunks/8890-cd2934b2aa3b89dc.js\",\"3402\",\"static/chunks/3402-f8625ce91eb27ea6.js\",\"8082\",\"static/chunks/8082-143f9f9fdf5b9192.js\",\"4980\",\"static/chunks/4980-d730333976453575.js\",\"32\",\"static/chunks/32-bafec80821f44ed5.js\",\"6686\",\"static/chunks/6686-f007b1e2101fda62.js\",\"9366\",\"static/chunks/9366-e6a7fb83e1c23555.js\",\"3397\",\"static/chunks/3397-dd13dd89c81e42c8.js\",\"2628\",\"static/chunks/2628-8d231bd404df8976.js\",\"554\",\"static/chunks/554-025495b6bf8e1dac.js\",\"121\",\"sta"])</script><script>self.__next_f.push([1,"tic/chunks/121-00c8365f8c57a8cc.js\",\"3564\",\"static/chunks/3564-dbea25076659e35b.js\",\"5099\",\"static/chunks/5099-9a5433902d87437e.js\",\"6928\",\"static/chunks/app/%5Blocale%5D/learn/%5Bcategory%5D/page-176642ac87704917.js\"],\"CohesionProvider\"]\n19:I[67344,[\"6290\",\"static/chunks/6290-14a62ddd57f81ba6.js\",\"9177\",\"static/chunks/9177-4f779ab065ca3298.js\",\"8003\",\"static/chunks/8003-2972b8eea56e87df.js\",\"6686\",\"static/chunks/6686-f007b1e2101fda62.js\",\"1203\",\"static/chunks/app/%5Blocale%5D/layout-bdcb92f3a05369b1.js\"],\"MonarchRuleProvider\"]\n13:T9fa,"])</script><script>self.__next_f.push([1,"!(function () {\n var i = \"analytics\",\n analytics = (window[i] = window[i] || []);\n if (!analytics.initialize)\n if (analytics.invoked)\n window.console \u0026\u0026\n console.error \u0026\u0026\n console.error(\"Segment snippet included twice.\");\n else {\n analytics.invoked = !0;\n analytics.methods = [\n \"trackSubmit\",\n \"trackClick\",\n \"trackLink\",\n \"trackForm\",\n \"pageview\",\n \"identify\",\n \"reset\",\n \"group\",\n \"track\",\n \"ready\",\n \"alias\",\n \"debug\",\n \"page\",\n \"screen\",\n \"once\",\n \"off\",\n \"on\",\n \"addSourceMiddleware\",\n \"addIntegrationMiddleware\",\n \"setAnonymousId\",\n \"addDestinationMiddleware\",\n \"register\",\n ];\n analytics.factory = function (e) {\n return function () {\n if (window[i].initialized)\n return window[i][e].apply(window[i], arguments);\n var n = Array.prototype.slice.call(arguments);\n if (\n [\"track\", \"screen\", \"alias\", \"group\", \"page\", \"identify\"].indexOf(\n e\n ) \u003e -1\n ) {\n var c = document.querySelector(\"link[rel='canonical']\");\n n.push({\n __t: \"bpc\",\n c: (c \u0026\u0026 c.getAttribute(\"href\")) || void 0,\n p: location.pathname,\n u: location.href,\n s: location.search,\n t: document.title,\n r: document.referrer,\n });\n }\n n.unshift(e);\n analytics.push(n);\n return analytics;\n };\n };\n for (var n = 0; n \u003c analytics.methods.length; n++) {\n var key = analytics.methods[n];\n analytics[key] = analytics.factory(key);\n }\n analytics.load = function (key, n) {\n var t = document.createElement(\"script\");\n t.type = \"text/plain\";\n t.async = !0;\n t.id = \"segment-analytics\";\n t.setAttribute(\"data-global-segment-analytics-key\", i);\n t.setAttribute(\"class\", \"optanon-category-C0002-C0004\")\n t.src =\n \"https://cdn.segment.com/analytics.js/v1/\" +\n key +\n \"/analytics.min.js\";\n var r = document.getElementsByTagName(\"script\")[0];\n r.parentNode.insertBefore(t, r);\n analytics._loadOptions = n;\n };\n analytics._writeKey = \"lwt68hX0axsop9XVP6cbIDVPAqbleoeC\";\n analytics.SNIPPET_VERSION = \"5.2.0\";\n analytics.load(\"lwt68hX0axsop9XVP6cbIDVPAqbleoeC\");\n analytics.page()\n }\n})()"])</script><script>self.__next_f.push([1,"14:T68d,\n !function(co,h,e,s,i,o,n){var d='documentElement';var a='className';h[d][a]+=' preampjs fusejs';\n n.k=e;co._Cohesion=n;co._Preamp={k:s,start:new Date};co._Fuse={k:i};co._Tagular={k:o};\n [e,s,i,o].map(function(x){co[x]=co[x]||function(){(co[x].q=co[x].q||[]).push([].slice.call(arguments))}});\n var b=function(){var u=h[d][a];h[d][a]=u.replace(/ ?preampjs| ?fusejs/g,'')};\n h.addEventListener('DOMContentLoaded',function(){co.setTimeout(b,3e3);\n co._Preamp.docReady=co._Fuse.docReady=!0});var z=h.createElement('script');\n z.async=1;z.src='https://beam.edx.org/cohesion/cohesion-latest.min.js';\n z.onerror=function(){var ce='error',f='function';for(var o of co[e].q||[])o[0]===ce\u0026\u0026typeof o[1]==f\u0026\u0026o[1]();co[e]=function(n,cb){n===ce\u0026\u0026typeof cb==f\u0026\u0026cb()};b()};\n h.head.appendChild(z);}\n (window,document,'cohesion','preamp','fuse','tagular',{\"domainAllowlist\":[\"h97m1sqokqgvsbw1eiqol1oc6.js.wpenginepowered.com\",\"www.h97m1sqokqgvsbw1eiqol1oc6.js.wpenginepowered.com\",\"edx.org\",\"www.edx.org\"],\"tagular\":{\"sourceKey\":\"src_2euJfAVNt6Z9kQz4e9t1SQBtm8x\",\"writeKey\":\"wk_2euJfDkJVTtEVzsC8BPOb0g9dVj\",\"apiHost\":\"https://beam.edx.org/v2/t\",\"multiparty\":true,\"useBeacon\":true,\"cookieDomain\":\"edx.org\"},\"monarch\":{\"sourceId\":\"bdac7c16-924e-4180-bb35-5b2dfff6d308\",\"endpoint\":\"https://beam.edx.org/monarch\",\"token\":\"b43382aa-9f76-406c-a628-bf96086f1c28\",\"autoRequest\":{\"enabled\":false,\"suppressPlacements\":true,\"timeout\":2000}},\"consent\":{\"onetrust\":{\"enabled\":true,\"optIn\":true},\"required\":true,\"domain\":\".edx.org\"},\"fuse\":{\"enabled\":false},\"cookieDomain\":\"edx.org\"});\n 1b:Te966,"])</script><script>self.__next_f.push([1,"window.NREUM||(NREUM={});NREUM.info = {\"agent\":\"\",\"beacon\":\"bam.nr-data.net\",\"errorBeacon\":\"bam.nr-data.net\",\"licenseKey\":\"NRBR-29a7b8c10e12125c415\",\"applicationID\":\"574099970\",\"agentToken\":null,\"applicationTime\":8.479775,\"transactionName\":\"ZwNVMRNUC0QHVEMICl5JYAADcxdWC1JADhdbM0UMTnsATxJdRE4idTIYSjpZClQHW1I8SlwDVhcPGj5UB0NSBgpCH2o=\",\"queueTime\":0,\"ttGuid\":\"290c67a978297964\"}; (window.NREUM||(NREUM={})).init={privacy:{cookies_enabled:true},ajax:{deny_list:[\"bam.nr-data.net\"]},distributed_tracing:{enabled:true}};(window.NREUM||(NREUM={})).loader_config={agentID:\"594494951\",accountID:\"44163\",trustKey:\"78034\",xpid:\"UAIGV1VADQQEVFhbDgYH\",licenseKey:\"NRBR-29a7b8c10e12125c415\",applicationID:\"574099970\"};;/*! For license information please see nr-loader-spa-1.281.0.min.js.LICENSE.txt */\n(()=\u003e{var e,t,r={8122:(e,t,r)=\u003e{\"use strict\";r.d(t,{a:()=\u003ei});var n=r(944);function i(e,t){try{if(!e||\"object\"!=typeof e)return(0,n.R)(3);if(!t||\"object\"!=typeof t)return(0,n.R)(4);const r=Object.create(Object.getPrototypeOf(t),Object.getOwnPropertyDescriptors(t)),o=0===Object.keys(r).length?e:r;for(let a in o)if(void 0!==e[a])try{if(null===e[a]){r[a]=null;continue}Array.isArray(e[a])\u0026\u0026Array.isArray(t[a])?r[a]=Array.from(new Set([...e[a],...t[a]])):\"object\"==typeof e[a]\u0026\u0026\"object\"==typeof t[a]?r[a]=i(e[a],t[a]):r[a]=e[a]}catch(e){(0,n.R)(1,e)}return r}catch(e){(0,n.R)(2,e)}}},2555:(e,t,r)=\u003e{\"use strict\";r.d(t,{Vp:()=\u003ec,fn:()=\u003es,x1:()=\u003eu});var n=r(384),i=r(8122);const o={beacon:n.NT.beacon,errorBeacon:n.NT.errorBeacon,licenseKey:void 0,applicationID:void 0,sa:void 0,queueTime:void 0,applicationTime:void 0,ttGuid:void 0,user:void 0,account:void 0,product:void 0,extra:void 0,jsAttributes:{},userAttributes:void 0,atts:void 0,transactionName:void 0,tNamePlain:void 0},a={};function s(e){try{const t=c(e);return!!t.licenseKey\u0026\u0026!!t.errorBeacon\u0026\u0026!!t.applicationID}catch(e){return!1}}function c(e){if(!e)throw new Error(\"All info objects require an agent identifier!\");if(!a[e])throw new Error(\"Info for \".concat(e,\" was never set\"));return a[e]}function u(e,t){if(!e)throw new Error(\"All info objects require an agent identifier!\");a[e]=(0,i.a)(t,o);const r=(0,n.nY)(e);r\u0026\u0026(r.info=a[e])}},9417:(e,t,r)=\u003e{\"use strict\";r.d(t,{D0:()=\u003ep,gD:()=\u003em,xN:()=\u003eg});var n=r(3333),i=r(993);const o=e=\u003e{if(!e||\"string\"!=typeof e)return!1;try{document.createDocumentFragment().querySelector(e)}catch{return!1}return!0};var a=r(2614),s=r(944),c=r(384),u=r(8122);const d=\"[data-nr-mask]\",l=()=\u003e{const e={feature_flags:[],experimental:{marks:!1,measures:!1,resources:!1},mask_selector:\"*\",block_selector:\"[data-nr-block]\",mask_input_options:{color:!1,date:!1,\"datetime-local\":!1,email:!1,month:!1,number:!1,range:!1,search:!1,tel:!1,text:!1,time:!1,url:!1,week:!1,textarea:!1,select:!1,password:!0}};return{ajax:{deny_list:void 0,block_internal:!0,enabled:!0,autoStart:!0},distributed_tracing:{enabled:void 0,exclude_newrelic_header:void 0,cors_use_newrelic_header:void 0,cors_use_tracecontext_headers:void 0,allowed_origins:void 0},get feature_flags(){return e.feature_flags},set feature_flags(t){e.feature_flags=t},generic_events:{enabled:!0,autoStart:!0},harvest:{interval:30},jserrors:{enabled:!0,autoStart:!0},logging:{enabled:!0,autoStart:!0,level:i.p_.INFO},metrics:{enabled:!0,autoStart:!0},obfuscate:void 0,page_action:{enabled:!0},page_view_event:{enabled:!0,autoStart:!0},page_view_timing:{enabled:!0,autoStart:!0},performance:{get capture_marks(){return e.feature_flags.includes(n.$v.MARKS)||e.experimental.marks},set capture_marks(t){e.experimental.marks=t},get capture_measures(){return e.feature_flags.includes(n.$v.MEASURES)||e.experimental.measures},set capture_measures(t){e.experimental.measures=t},capture_detail:!0,resources:{get enabled(){return e.feature_flags.includes(n.$v.RESOURCES)||e.experimental.resources},set enabled(t){e.experimental.resources=t},asset_types:[],first_party_domains:[],ignore_newrelic:!0}},privacy:{cookies_enabled:!0},proxy:{assets:void 0,beacon:void 0},session:{expiresMs:a.wk,inactiveMs:a.BB},session_replay:{autoStart:!0,enabled:!1,preload:!1,sampling_rate:10,error_sampling_rate:100,collect_fonts:!1,inline_images:!1,fix_stylesheets:!0,mask_all_inputs:!0,get mask_text_selector(){return e.mask_selector},set mask_text_selector(t){o(t)?e.mask_selector=\"\".concat(t,\",\").concat(d):\"\"===t||null===t?e.mask_selector=d:(0,s.R)(5,t)},get block_class(){return\"nr-block\"},get ignore_class(){return\"nr-ignore\"},get mask_text_class(){return\"nr-mask\"},get block_selector(){return e.block_selector},set block_selector(t){o(t)?e.block_selector+=\",\".concat(t):\"\"!==t\u0026\u0026(0,s.R)(6,t)},get mask_input_options(){return e.mask_input_options},set mask_input_options(t){t\u0026\u0026\"object\"==typeof t?e.mask_input_options={...t,password:!0}:(0,s.R)(7,t)}},session_trace:{enabled:!0,autoStart:!0},soft_navigations:{enabled:!0,autoStart:!0},spa:{enabled:!0,autoStart:!0},ssl:void 0,user_actions:{enabled:!0,elementAttributes:[\"id\",\"className\",\"tagName\",\"type\"]}}},f={},h=\"All configuration objects require an agent identifier!\";function p(e){if(!e)throw new Error(h);if(!f[e])throw new Error(\"Configuration for \".concat(e,\" was never set\"));return f[e]}function g(e,t){if(!e)throw new Error(h);f[e]=(0,u.a)(t,l());const r=(0,c.nY)(e);r\u0026\u0026(r.init=f[e])}function m(e,t){if(!e)throw new Error(h);var r=p(e);if(r){for(var n=t.split(\".\"),i=0;i\u003cn.length-1;i++)if(\"object\"!=typeof(r=r[n[i]]))return;r=r[n[n.length-1]]}return r}},5603:(e,t,r)=\u003e{\"use strict\";r.d(t,{a:()=\u003ec,o:()=\u003es});var n=r(384),i=r(8122);const o={accountID:void 0,trustKey:void 0,agentID:void 0,licenseKey:void 0,applicationID:void 0,xpid:void 0},a={};function s(e){if(!e)throw new Error(\"All loader-config objects require an agent identifier!\");if(!a[e])throw new Error(\"LoaderConfig for \".concat(e,\" was never set\"));return a[e]}function c(e,t){if(!e)throw new Error(\"All loader-config objects require an agent identifier!\");a[e]=(0,i.a)(t,o);const r=(0,n.nY)(e);r\u0026\u0026(r.loader_config=a[e])}},3371:(e,t,r)=\u003e{\"use strict\";r.d(t,{V:()=\u003ef,f:()=\u003el});var n=r(8122),i=r(384),o=r(6154),a=r(9324);let s=0;const c={buildEnv:a.F3,distMethod:a.Xs,version:a.xv,originTime:o.WN},u={customTransaction:void 0,disabled:!1,isolatedBacklog:!1,loaderType:void 0,maxBytes:3e4,onerror:void 0,ptid:void 0,releaseIds:{},appMetadata:{},session:void 0,denyList:void 0,timeKeeper:void 0,obfuscator:void 0,harvester:void 0},d={};function l(e){if(!e)throw new Error(\"All runtime objects require an agent identifier!\");if(!d[e])throw new Error(\"Runtime for \".concat(e,\" was never set\"));return d[e]}function f(e,t){if(!e)throw new Error(\"All runtime objects require an agent identifier!\");d[e]={...(0,n.a)(t,u),...c},Object.hasOwnProperty.call(d[e],\"harvestCount\")||Object.defineProperty(d[e],\"harvestCount\",{get:()=\u003e++s});const r=(0,i.nY)(e);r\u0026\u0026(r.runtime=d[e])}},9324:(e,t,r)=\u003e{\"use strict\";r.d(t,{F3:()=\u003ei,Xs:()=\u003eo,Yq:()=\u003ea,xv:()=\u003en});const n=\"1.281.0\",i=\"PROD\",o=\"CDN\",a=\"^2.0.0-alpha.17\"},6154:(e,t,r)=\u003e{\"use strict\";r.d(t,{A4:()=\u003es,OF:()=\u003ed,RI:()=\u003ei,WN:()=\u003eh,bv:()=\u003eo,gm:()=\u003ea,lR:()=\u003ef,m:()=\u003eu,mw:()=\u003ec,sb:()=\u003el});var n=r(1863);const i=\"undefined\"!=typeof window\u0026\u0026!!window.document,o=\"undefined\"!=typeof WorkerGlobalScope\u0026\u0026(\"undefined\"!=typeof self\u0026\u0026self instanceof WorkerGlobalScope\u0026\u0026self.navigator instanceof WorkerNavigator||\"undefined\"!=typeof globalThis\u0026\u0026globalThis instanceof WorkerGlobalScope\u0026\u0026globalThis.navigator instanceof WorkerNavigator),a=i?window:\"undefined\"!=typeof WorkerGlobalScope\u0026\u0026(\"undefined\"!=typeof self\u0026\u0026self instanceof WorkerGlobalScope\u0026\u0026self||\"undefined\"!=typeof globalThis\u0026\u0026globalThis instanceof WorkerGlobalScope\u0026\u0026globalThis),s=\"complete\"===a?.document?.readyState,c=Boolean(\"hidden\"===a?.document?.visibilityState),u=\"\"+a?.location,d=/iPad|iPhone|iPod/.test(a.navigator?.userAgent),l=d\u0026\u0026\"undefined\"==typeof SharedWorker,f=(()=\u003e{const e=a.navigator?.userAgent?.match(/Firefox[/\\s](\\d+\\.\\d+)/);return Array.isArray(e)\u0026\u0026e.length\u003e=2?+e[1]:0})(),h=Date.now()-(0,n.t)()},7295:(e,t,r)=\u003e{\"use strict\";r.d(t,{Xv:()=\u003ea,gX:()=\u003ei,iW:()=\u003eo});var n=[];function i(e){if(!e||o(e))return!1;if(0===n.length)return!0;for(var t=0;t\u003cn.length;t++){var r=n[t];if(\"*\"===r.hostname)return!1;if(s(r.hostname,e.hostname)\u0026\u0026c(r.pathname,e.pathname))return!1}return!0}function o(e){return void 0===e.hostname}function a(e){if(n=[],e\u0026\u0026e.length)for(var t=0;t\u003ce.length;t++){let r=e[t];if(!r)continue;0===r.indexOf(\"http://\")?r=r.substring(7):0===r.indexOf(\"https://\")\u0026\u0026(r=r.substring(8));const i=r.indexOf(\"/\");let o,a;i\u003e0?(o=r.substring(0,i),a=r.substring(i)):(o=r,a=\"\");let[s]=o.split(\":\");n.push({hostname:s,pathname:a})}}function s(e,t){return!(e.length\u003et.length)\u0026\u0026t.indexOf(e)===t.length-e.length}function c(e,t){return 0===e.indexOf(\"/\")\u0026\u0026(e=e.substring(1)),0===t.indexOf(\"/\")\u0026\u0026(t=t.substring(1)),\"\"===e||e===t}},1687:(e,t,r)=\u003e{\"use strict\";r.d(t,{Ak:()=\u003ec,Ze:()=\u003el,x3:()=\u003eu});var n=r(7836),i=r(3606),o=r(860),a=r(2646);const s={};function c(e,t){const r={staged:!1,priority:o.P3[t]||0};d(e),s[e].get(t)||s[e].set(t,r)}function u(e,t){e\u0026\u0026s[e]\u0026\u0026(s[e].get(t)\u0026\u0026s[e].delete(t),h(e,t,!1),s[e].size\u0026\u0026f(e))}function d(e){if(!e)throw new Error(\"agentIdentifier required\");s[e]||(s[e]=new Map)}function l(e=\"\",t=\"feature\",r=!1){if(d(e),!e||!s[e].get(t)||r)return h(e,t);s[e].get(t).staged=!0,f(e)}function f(e){const t=Array.from(s[e]);t.every((([e,t])=\u003et.staged))\u0026\u0026(t.sort(((e,t)=\u003ee[1].priority-t[1].priority)),t.forEach((([t])=\u003e{s[e].delete(t),h(e,t)})))}function h(e,t,r=!0){const o=e?n.ee.get(e):n.ee,s=i.i.handlers;if(!o.aborted\u0026\u0026o.backlog\u0026\u0026s){if(r){const e=o.backlog[t],r=s[t];if(r){for(let t=0;e\u0026\u0026t\u003ce.length;++t)p(e[t],r);Object.entries(r).forEach((([e,t])=\u003e{Object.values(t||{}).forEach((t=\u003e{t[0]?.on\u0026\u0026t[0]?.context()instanceof a.y\u0026\u0026t[0].on(e,t[1])}))}))}}o.isolatedBacklog||delete s[t],o.backlog[t]=null,o.emit(\"drain-\"+t,[])}}function p(e,t){var r=e[1];Object.values(t[r]||{}).forEach((t=\u003e{var r=e[0];if(t[0]===r){var n=t[1],i=e[3],o=e[2];n.apply(i,o)}}))}},7836:(e,t,r)=\u003e{\"use strict\";r.d(t,{P:()=\u003ec,ee:()=\u003eu});var n=r(384),i=r(8990),o=r(3371),a=r(2646),s=r(5607);const c=\"nr@context:\".concat(s.W),u=function e(t,r){var n={},s={},d={},l=!1;try{l=16===r.length\u0026\u0026(0,o.f)(r).isolatedBacklog}catch(e){}var f={on:p,addEventListener:p,removeEventListener:function(e,t){var r=n[e];if(!r)return;for(var i=0;i\u003cr.length;i++)r[i]===t\u0026\u0026r.splice(i,1)},emit:function(e,r,n,i,o){!1!==o\u0026\u0026(o=!0);if(u.aborted\u0026\u0026!i)return;t\u0026\u0026o\u0026\u0026t.emit(e,r,n);for(var a=h(n),c=g(e),d=c.length,l=0;l\u003cd;l++)c[l].apply(a,r);var p=v()[s[e]];p\u0026\u0026p.push([f,e,r,a]);return a},get:m,listeners:g,context:h,buffer:function(e,t){const r=v();if(t=t||\"feature\",f.aborted)return;Object.entries(e||{}).forEach((([e,n])=\u003e{s[n]=t,t in r||(r[t]=[])}))},abort:function(){f._aborted=!0,Object.keys(f.backlog).forEach((e=\u003e{delete f.backlog[e]}))},isBuffering:function(e){return!!v()[s[e]]},debugId:r,backlog:l?{}:t\u0026\u0026\"object\"==typeof t.backlog?t.backlog:{},isolatedBacklog:l};return Object.defineProperty(f,\"aborted\",{get:()=\u003e{let e=f._aborted||!1;return e||(t\u0026\u0026(e=t.aborted),e)}}),f;function h(e){return e\u0026\u0026e instanceof a.y?e:e?(0,i.I)(e,c,(()=\u003enew a.y(c))):new a.y(c)}function p(e,t){n[e]=g(e).concat(t)}function g(e){return n[e]||[]}function m(t){return d[t]=d[t]||e(f,t)}function v(){return f.backlog}}(void 0,\"globalEE\"),d=(0,n.Zm)();d.ee||(d.ee=u)},2646:(e,t,r)=\u003e{\"use strict\";r.d(t,{y:()=\u003en});class n{constructor(e){this.contextId=e}}},9908:(e,t,r)=\u003e{\"use strict\";r.d(t,{d:()=\u003en,p:()=\u003ei});var n=r(7836).ee.get(\"handle\");function i(e,t,r,i,o){o?(o.buffer([e],i),o.emit(e,t,r)):(n.buffer([e],i),n.emit(e,t,r))}},3606:(e,t,r)=\u003e{\"use strict\";r.d(t,{i:()=\u003eo});var n=r(9908);o.on=a;var i=o.handlers={};function o(e,t,r,o){a(o||n.d,i,e,t,r)}function a(e,t,r,i,o){o||(o=\"feature\"),e||(e=n.d);var a=t[o]=t[o]||{};(a[r]=a[r]||[]).push([e,i])}},3878:(e,t,r)=\u003e{\"use strict\";function n(e,t){return{capture:e,passive:!1,signal:t}}function i(e,t,r=!1,i){window.addEventListener(e,t,n(r,i))}function o(e,t,r=!1,i){document.addEventListener(e,t,n(r,i))}r.d(t,{DD:()=\u003eo,jT:()=\u003en,sp:()=\u003ei})},5607:(e,t,r)=\u003e{\"use strict\";r.d(t,{W:()=\u003en});const n=(0,r(9566).bz)()},9566:(e,t,r)=\u003e{\"use strict\";r.d(t,{LA:()=\u003es,ZF:()=\u003ec,bz:()=\u003ea,el:()=\u003eu});var n=r(6154);const i=\"xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx\";function o(e,t){return e?15\u0026e[t]:16*Math.random()|0}function a(){const e=n.gm?.crypto||n.gm?.msCrypto;let t,r=0;return e\u0026\u0026e.getRandomValues\u0026\u0026(t=e.getRandomValues(new Uint8Array(30))),i.split(\"\").map((e=\u003e\"x\"===e?o(t,r++).toString(16):\"y\"===e?(3\u0026o()|8).toString(16):e)).join(\"\")}function s(e){const t=n.gm?.crypto||n.gm?.msCrypto;let r,i=0;t\u0026\u0026t.getRandomValues\u0026\u0026(r=t.getRandomValues(new Uint8Array(e)));const a=[];for(var s=0;s\u003ce;s++)a.push(o(r,i++).toString(16));return a.join(\"\")}function c(){return s(16)}function u(){return s(32)}},2614:(e,t,r)=\u003e{\"use strict\";r.d(t,{BB:()=\u003ea,H3:()=\u003en,g:()=\u003eu,iL:()=\u003ec,tS:()=\u003es,uh:()=\u003ei,wk:()=\u003eo});const n=\"NRBA\",i=\"SESSION\",o=144e5,a=18e5,s={STARTED:\"session-started\",PAUSE:\"session-pause\",RESET:\"session-reset\",RESUME:\"session-resume\",UPDATE:\"session-update\"},c={SAME_TAB:\"same-tab\",CROSS_TAB:\"cross-tab\"},u={OFF:0,FULL:1,ERROR:2}},1863:(e,t,r)=\u003e{\"use strict\";function n(){return Math.floor(performance.now())}r.d(t,{t:()=\u003en})},7485:(e,t,r)=\u003e{\"use strict\";r.d(t,{D:()=\u003ei});var n=r(6154);function i(e){if(0===(e||\"\").indexOf(\"data:\"))return{protocol:\"data\"};try{const t=new URL(e,location.href),r={port:t.port,hostname:t.hostname,pathname:t.pathname,search:t.search,protocol:t.protocol.slice(0,t.protocol.indexOf(\":\")),sameOrigin:t.protocol===n.gm?.location?.protocol\u0026\u0026t.host===n.gm?.location?.host};return r.port\u0026\u0026\"\"!==r.port||(\"http:\"===t.protocol\u0026\u0026(r.port=\"80\"),\"https:\"===t.protocol\u0026\u0026(r.port=\"443\")),r.pathname\u0026\u0026\"\"!==r.pathname?r.pathname.startsWith(\"/\")||(r.pathname=\"/\".concat(r.pathname)):r.pathname=\"/\",r}catch(e){return{}}}},944:(e,t,r)=\u003e{\"use strict\";function n(e,t){\"function\"==typeof console.debug\u0026\u0026console.debug(\"New Relic Warning: https://github.com/newrelic/newrelic-browser-agent/blob/main/docs/warning-codes.md#\".concat(e),t)}r.d(t,{R:()=\u003en})},5284:(e,t,r)=\u003e{\"use strict\";r.d(t,{t:()=\u003ec,B:()=\u003es});var n=r(7836),i=r(6154);const o=\"newrelic\";const a=new Set,s={};function c(e,t){const r=n.ee.get(t);s[t]??={},e\u0026\u0026\"object\"==typeof e\u0026\u0026(a.has(t)||(r.emit(\"rumresp\",[e]),s[t]=e,a.add(t),function(e={}){try{i.gm.dispatchEvent(new CustomEvent(o,{detail:e}))}catch(e){}}({loaded:!0})))}},8990:(e,t,r)=\u003e{\"use strict\";r.d(t,{I:()=\u003ei});var n=Object.prototype.hasOwnProperty;function i(e,t,r){if(n.call(e,t))return e[t];var i=r();if(Object.defineProperty\u0026\u0026Object.keys)try{return Object.defineProperty(e,t,{value:i,writable:!0,enumerable:!1}),i}catch(e){}return e[t]=i,i}},6389:(e,t,r)=\u003e{\"use strict\";function n(e,t=500,r={}){const n=r?.leading||!1;let i;return(...r)=\u003e{n\u0026\u0026void 0===i\u0026\u0026(e.apply(this,r),i=setTimeout((()=\u003e{i=clearTimeout(i)}),t)),n||(clearTimeout(i),i=setTimeout((()=\u003e{e.apply(this,r)}),t))}}function i(e){let t=!1;return(...r)=\u003e{t||(t=!0,e.apply(this,r))}}r.d(t,{J:()=\u003ei,s:()=\u003en})},3304:(e,t,r)=\u003e{\"use strict\";r.d(t,{A:()=\u003eo});var n=r(7836);const i=()=\u003e{const e=new WeakSet;return(t,r)=\u003e{if(\"object\"==typeof r\u0026\u0026null!==r){if(e.has(r))return;e.add(r)}return r}};function o(e){try{return JSON.stringify(e,i())??\"\"}catch(e){try{n.ee.emit(\"internal-error\",[e])}catch(e){}return\"\"}}},5289:(e,t,r)=\u003e{\"use strict\";r.d(t,{GG:()=\u003eo,sB:()=\u003ea});var n=r(3878);function i(){return\"undefined\"==typeof document||\"complete\"===document.readyState}function o(e,t){if(i())return e();(0,n.sp)(\"load\",e,t)}function a(e){if(i())return e();(0,n.DD)(\"DOMContentLoaded\",e)}},384:(e,t,r)=\u003e{\"use strict\";r.d(t,{NT:()=\u003eo,US:()=\u003ed,Zm:()=\u003ea,bQ:()=\u003ec,dV:()=\u003es,nY:()=\u003eu,pV:()=\u003el});var n=r(6154),i=r(1863);const o={beacon:\"bam.nr-data.net\",errorBeacon:\"bam.nr-data.net\"};function a(){return n.gm.NREUM||(n.gm.NREUM={}),void 0===n.gm.newrelic\u0026\u0026(n.gm.newrelic=n.gm.NREUM),n.gm.NREUM}function s(){let e=a();return e.o||(e.o={ST:n.gm.setTimeout,SI:n.gm.setImmediate,CT:n.gm.clearTimeout,XHR:n.gm.XMLHttpRequest,REQ:n.gm.Request,EV:n.gm.Event,PR:n.gm.Promise,MO:n.gm.MutationObserver,FETCH:n.gm.fetch,WS:n.gm.WebSocket}),e}function c(e,t){let r=a();r.initializedAgents??={},t.initializedAt={ms:(0,i.t)(),date:new Date},r.initializedAgents[e]=t}function u(e){let t=a();return t.initializedAgents?.[e]}function d(e,t){a()[e]=t}function l(){return function(){let e=a();const t=e.info||{};e.info={beacon:o.beacon,errorBeacon:o.errorBeacon,...t}}(),function(){let e=a();const t=e.init||{};e.init={...t}}(),s(),function(){let e=a();const t=e.loader_config||{};e.loader_config={...t}}(),a()}},2843:(e,t,r)=\u003e{\"use strict\";r.d(t,{u:()=\u003ei});var n=r(3878);function i(e,t=!1,r,i){(0,n.DD)(\"visibilitychange\",(function(){if(t)return void(\"hidden\"===document.visibilityState\u0026\u0026e());e(document.visibilityState)}),r,i)}},8139:(e,t,r)=\u003e{\"use strict\";r.d(t,{u:()=\u003ef});var n=r(7836),i=r(3434),o=r(8990),a=r(6154);const s={},c=a.gm.XMLHttpRequest,u=\"addEventListener\",d=\"removeEventListener\",l=\"nr@wrapped:\".concat(n.P);function f(e){var t=function(e){return(e||n.ee).get(\"events\")}(e);if(s[t.debugId]++)return t;s[t.debugId]=1;var r=(0,i.YM)(t,!0);function f(e){r.inPlace(e,[u,d],\"-\",p)}function p(e,t){return e[1]}return\"getPrototypeOf\"in Object\u0026\u0026(a.RI\u0026\u0026h(document,f),c\u0026\u0026h(c.prototype,f),h(a.gm,f)),t.on(u+\"-start\",(function(e,t){var n=e[1];if(null!==n\u0026\u0026(\"function\"==typeof n||\"object\"==typeof n)){var i=(0,o.I)(n,l,(function(){var e={object:function(){if(\"function\"!=typeof n.handleEvent)return;return n.handleEvent.apply(n,arguments)},function:n}[typeof n];return e?r(e,\"fn-\",null,e.name||\"anonymous\"):n}));this.wrapped=e[1]=i}})),t.on(d+\"-start\",(function(e){e[1]=this.wrapped||e[1]})),t}function h(e,t,...r){let n=e;for(;\"object\"==typeof n\u0026\u0026!Object.prototype.hasOwnProperty.call(n,u);)n=Object.getPrototypeOf(n);n\u0026\u0026t(n,...r)}},3434:(e,t,r)=\u003e{\"use strict\";r.d(t,{Jt:()=\u003eo,YM:()=\u003ec});var n=r(7836),i=r(5607);const o=\"nr@original:\".concat(i.W);var a=Object.prototype.hasOwnProperty,s=!1;function c(e,t){return e||(e=n.ee),r.inPlace=function(e,t,n,i,o){n||(n=\"\");const a=\"-\"===n.charAt(0);for(let s=0;s\u003ct.length;s++){const c=t[s],u=e[c];d(u)||(e[c]=r(u,a?c+n:n,i,c,o))}},r.flag=o,r;function r(t,r,n,s,c){return d(t)?t:(r||(r=\"\"),nrWrapper[o]=t,function(e,t,r){if(Object.defineProperty\u0026\u0026Object.keys)try{return Object.keys(e).forEach((function(r){Object.defineProperty(t,r,{get:function(){return e[r]},set:function(t){return e[r]=t,t}})})),t}catch(e){u([e],r)}for(var n in e)a.call(e,n)\u0026\u0026(t[n]=e[n])}(t,nrWrapper,e),nrWrapper);function nrWrapper(){var o,a,d,l;try{a=this,o=[...arguments],d=\"function\"==typeof n?n(o,a):n||{}}catch(t){u([t,\"\",[o,a,s],d],e)}i(r+\"start\",[o,a,s],d,c);try{return l=t.apply(a,o)}catch(e){throw i(r+\"err\",[o,a,e],d,c),e}finally{i(r+\"end\",[o,a,l],d,c)}}}function i(r,n,i,o){if(!s||t){var a=s;s=!0;try{e.emit(r,n,i,t,o)}catch(t){u([t,r,n,i],e)}s=a}}}function u(e,t){t||(t=n.ee);try{t.emit(\"internal-error\",e)}catch(e){}}function d(e){return!(e\u0026\u0026\"function\"==typeof e\u0026\u0026e.apply\u0026\u0026!e[o])}},9300:(e,t,r)=\u003e{\"use strict\";r.d(t,{T:()=\u003en});const n=r(860).K7.ajax},3333:(e,t,r)=\u003e{\"use strict\";r.d(t,{$v:()=\u003eu,TZ:()=\u003en,Zp:()=\u003ei,kd:()=\u003ec,mq:()=\u003es,nf:()=\u003ea,qN:()=\u003eo});const n=r(860).K7.genericEvents,i=[\"auxclick\",\"click\",\"copy\",\"keydown\",\"paste\",\"scrollend\"],o=[\"focus\",\"blur\"],a=4,s=1e3,c=[\"PageAction\",\"UserAction\",\"BrowserPerformance\"],u={MARKS:\"experimental.marks\",MEASURES:\"experimental.measures\",RESOURCES:\"experimental.resources\"}},6774:(e,t,r)=\u003e{\"use strict\";r.d(t,{T:()=\u003en});const n=r(860).K7.jserrors},993:(e,t,r)=\u003e{\"use strict\";r.d(t,{ET:()=\u003eo,TZ:()=\u003ea,p_:()=\u003ei});var n=r(860);const i={ERROR:\"ERROR\",WARN:\"WARN\",INFO:\"INFO\",DEBUG:\"DEBUG\",TRACE:\"TRACE\"},o=\"log\",a=n.K7.logging},3785:(e,t,r)=\u003e{\"use strict\";r.d(t,{R:()=\u003ec,b:()=\u003eu});var n=r(9908),i=r(1863),o=r(860),a=r(3969),s=r(993);function c(e,t,r={},c=s.p_.INFO){(0,n.p)(a.xV,[\"API/logging/\".concat(c.toLowerCase(),\"/called\")],void 0,o.K7.metrics,e),(0,n.p)(s.ET,[(0,i.t)(),t,r,c],void 0,o.K7.logging,e)}function u(e){return\"string\"==typeof e\u0026\u0026Object.values(s.p_).some((t=\u003et===e.toUpperCase().trim()))}},3969:(e,t,r)=\u003e{\"use strict\";r.d(t,{TZ:()=\u003en,XG:()=\u003es,rs:()=\u003ei,xV:()=\u003ea,z_:()=\u003eo});const n=r(860).K7.metrics,i=\"sm\",o=\"cm\",a=\"storeSupportabilityMetrics\",s=\"storeEventMetrics\"},6630:(e,t,r)=\u003e{\"use strict\";r.d(t,{T:()=\u003en});const n=r(860).K7.pageViewEvent},782:(e,t,r)=\u003e{\"use strict\";r.d(t,{T:()=\u003en});const n=r(860).K7.pageViewTiming},6344:(e,t,r)=\u003e{\"use strict\";r.d(t,{BB:()=\u003ed,G4:()=\u003eo,Qb:()=\u003el,TZ:()=\u003ei,Ug:()=\u003ea,_s:()=\u003es,bc:()=\u003eu,yP:()=\u003ec});var n=r(2614);const i=r(860).K7.sessionReplay,o={RECORD:\"recordReplay\",PAUSE:\"pauseReplay\",REPLAY_RUNNING:\"replayRunning\",ERROR_DURING_REPLAY:\"errorDuringReplay\"},a=.12,s={DomContentLoaded:0,Load:1,FullSnapshot:2,IncrementalSnapshot:3,Meta:4,Custom:5},c={[n.g.ERROR]:15e3,[n.g.FULL]:3e5,[n.g.OFF]:0},u={RESET:{message:\"Session was reset\",sm:\"Reset\"},IMPORT:{message:\"Recorder failed to import\",sm:\"Import\"},TOO_MANY:{message:\"429: Too Many Requests\",sm:\"Too-Many\"},TOO_BIG:{message:\"Payload was too large\",sm:\"Too-Big\"},CROSS_TAB:{message:\"Session Entity was set to OFF on another tab\",sm:\"Cross-Tab\"},ENTITLEMENTS:{message:\"Session Replay is not allowed and will not be started\",sm:\"Entitlement\"}},d=5e3,l={API:\"api\"}},5270:(e,t,r)=\u003e{\"use strict\";r.d(t,{Aw:()=\u003ec,CT:()=\u003eu,SR:()=\u003es});var n=r(384),i=r(9417),o=r(7767),a=r(6154);function s(e){return!!(0,n.dV)().o.MO\u0026\u0026(0,o.V)(e)\u0026\u0026!0===(0,i.gD)(e,\"session_trace.enabled\")}function c(e){return!0===(0,i.gD)(e,\"session_replay.preload\")\u0026\u0026s(e)}function u(e,t){const r=t.correctAbsoluteTimestamp(e);return{originalTimestamp:e,correctedTimestamp:r,timestampDiff:e-r,originTime:a.WN,correctedOriginTime:t.correctedOriginTime,originTimeDiff:Math.floor(a.WN-t.correctedOriginTime)}}},3738:(e,t,r)=\u003e{\"use strict\";r.d(t,{He:()=\u003ei,Kp:()=\u003es,Lc:()=\u003eu,Rz:()=\u003ed,TZ:()=\u003en,bD:()=\u003eo,d3:()=\u003ea,jx:()=\u003el,uP:()=\u003ec});const n=r(860).K7.sessionTrace,i=\"bstResource\",o=\"resource\",a=\"-start\",s=\"-end\",c=\"fn\"+a,u=\"fn\"+s,d=\"pushState\",l=1e3},3962:(e,t,r)=\u003e{\"use strict\";r.d(t,{AM:()=\u003eo,O2:()=\u003ec,Qu:()=\u003eu,TZ:()=\u003es,ih:()=\u003ed,pP:()=\u003ea,tC:()=\u003ei});var n=r(860);const i=[\"click\",\"keydown\",\"submit\",\"popstate\"],o=\"api\",a=\"initialPageLoad\",s=n.K7.softNav,c={INITIAL_PAGE_LOAD:\"\",ROUTE_CHANGE:1,UNSPECIFIED:2},u={INTERACTION:1,AJAX:2,CUSTOM_END:3,CUSTOM_TRACER:4},d={IP:\"in progress\",FIN:\"finished\",CAN:\"cancelled\"}},7378:(e,t,r)=\u003e{\"use strict\";r.d(t,{$p:()=\u003ex,BR:()=\u003eb,Kp:()=\u003eR,L3:()=\u003ey,Lc:()=\u003ec,NC:()=\u003eo,SG:()=\u003ed,TZ:()=\u003ei,U6:()=\u003ep,UT:()=\u003em,d3:()=\u003ew,dT:()=\u003ef,e5:()=\u003eT,gx:()=\u003ev,l9:()=\u003el,oW:()=\u003eh,op:()=\u003eg,rw:()=\u003eu,tH:()=\u003eA,uP:()=\u003es,wW:()=\u003eE,xq:()=\u003ea});var n=r(384);const i=r(860).K7.spa,o=[\"click\",\"submit\",\"keypress\",\"keydown\",\"keyup\",\"change\"],a=999,s=\"fn-start\",c=\"fn-end\",u=\"cb-start\",d=\"api-ixn-\",l=\"remaining\",f=\"interaction\",h=\"spaNode\",p=\"jsonpNode\",g=\"fetch-start\",m=\"fetch-done\",v=\"fetch-body-\",b=\"jsonp-end\",y=(0,n.dV)().o.ST,w=\"-start\",R=\"-end\",x=\"-body\",E=\"cb\"+R,T=\"jsTime\",A=\"fetch\"},4234:(e,t,r)=\u003e{\"use strict\";r.d(t,{W:()=\u003eo});var n=r(7836),i=r(1687);class o{constructor(e,t){this.agentIdentifier=e,this.ee=n.ee.get(e),this.featureName=t,this.blocked=!1}deregisterDrain(){(0,i.x3)(this.agentIdentifier,this.featureName)}}},7767:(e,t,r)=\u003e{\"use strict\";r.d(t,{V:()=\u003eo});var n=r(9417),i=r(6154);const o=e=\u003ei.RI\u0026\u0026!0===(0,n.gD)(e,\"privacy.cookies_enabled\")},425:(e,t,r)=\u003e{\"use strict\";r.d(t,{j:()=\u003ej});var n=r(860),i=r(2555),o=r(3371),a=r(9908),s=r(7836),c=r(1687),u=r(5289),d=r(6154),l=r(944),f=r(3969),h=r(384),p=r(6344);const g=[\"setErrorHandler\",\"finished\",\"addToTrace\",\"addRelease\",\"recordCustomEvent\",\"addPageAction\",\"setCurrentRouteName\",\"setPageViewName\",\"setCustomAttribute\",\"interaction\",\"noticeError\",\"setUserId\",\"setApplicationVersion\",\"start\",p.G4.RECORD,p.G4.PAUSE,\"log\",\"wrapLogger\"],m=[\"setErrorHandler\",\"finished\",\"addToTrace\",\"addRelease\"];var v=r(1863),b=r(2614),y=r(993),w=r(3785),R=r(2646),x=r(3434);const E=new Map;function T(e,t,r,n){if(\"object\"!=typeof t||!t||\"string\"!=typeof r||!r||\"function\"!=typeof t[r])return(0,l.R)(29);const i=function(e){return(e||s.ee).get(\"logger\")}(e),o=(0,x.YM)(i),a=new R.y(s.P);a.level=n.level,a.customAttributes=n.customAttributes;const c=t[r]?.[x.Jt]||t[r];return E.set(c,a),o.inPlace(t,[r],\"wrap-logger-\",(()=\u003eE.get(c))),i}function A(){const e=(0,h.pV)();g.forEach((t=\u003e{e[t]=(...r)=\u003efunction(t,...r){let n=[];return Object.values(e.initializedAgents).forEach((e=\u003e{e\u0026\u0026e.api?e.exposed\u0026\u0026e.api[t]\u0026\u0026n.push(e.api[t](...r)):(0,l.R)(38,t)})),n.length\u003e1?n:n[0]}(t,...r)}))}const S={};var N=r(9417),_=r(5603),O=r(5284);const I=e=\u003e{const t=e.startsWith(\"http\");e+=\"/\",r.p=t?e:\"https://\"+e};let P=!1;function j(e,t={},g,R){let{init:x,info:E,loader_config:j,runtime:C={},exposed:k=!0}=t;C.loaderType=g;const L=(0,h.pV)();E||(x=L.init,E=L.info,j=L.loader_config),(0,N.xN)(e.agentIdentifier,x||{}),(0,_.a)(e.agentIdentifier,j||{}),E.jsAttributes??={},d.bv\u0026\u0026(E.jsAttributes.isWorker=!0),(0,i.x1)(e.agentIdentifier,E);const H=(0,N.D0)(e.agentIdentifier),M=[E.beacon,E.errorBeacon];P||(H.proxy.assets\u0026\u0026(I(H.proxy.assets),M.push(H.proxy.assets)),H.proxy.beacon\u0026\u0026M.push(H.proxy.beacon),A(),(0,h.US)(\"activatedFeatures\",O.B),e.runSoftNavOverSpa\u0026\u0026=!0===H.soft_navigations.enabled\u0026\u0026H.feature_flags.includes(\"soft_nav\")),C.denyList=[...H.ajax.deny_list||[],...H.ajax.block_internal?M:[]],C.ptid=e.agentIdentifier,(0,o.V)(e.agentIdentifier,C),e.ee=s.ee.get(e.agentIdentifier),void 0===e.api\u0026\u0026(e.api=function(e,t,h=!1){t||(0,c.Ak)(e,\"api\");const g={};var R=s.ee.get(e),x=R.get(\"tracer\");S[e]=b.g.OFF,R.on(p.G4.REPLAY_RUNNING,(t=\u003e{S[e]=t}));var E=\"api-\",A=E+\"ixn-\";function N(t,r,n,o){const a=(0,i.Vp)(e);return null===r?delete a.jsAttributes[t]:(0,i.x1)(e,{...a,jsAttributes:{...a.jsAttributes,[t]:r}}),I(E,n,!0,o||null===r?\"session\":void 0)(t,r)}function _(){}g.log=function(e,{customAttributes:t={},level:r=y.p_.INFO}={}){(0,a.p)(f.xV,[\"API/log/called\"],void 0,n.K7.metrics,R),(0,w.R)(R,e,t,r)},g.wrapLogger=(e,t,{customAttributes:r={},level:i=y.p_.INFO}={})=\u003e{(0,a.p)(f.xV,[\"API/wrapLogger/called\"],void 0,n.K7.metrics,R),T(R,e,t,{customAttributes:r,level:i})},m.forEach((e=\u003e{g[e]=I(E,e,!0,\"api\")})),g.addPageAction=I(E,\"addPageAction\",!0,n.K7.genericEvents),g.recordCustomEvent=I(E,\"recordCustomEvent\",!0,n.K7.genericEvents),g.setPageViewName=function(t,r){if(\"string\"==typeof t)return\"/\"!==t.charAt(0)\u0026\u0026(t=\"/\"+t),(0,o.f)(e).customTransaction=(r||\"http://custom.transaction\")+t,I(E,\"setPageViewName\",!0)()},g.setCustomAttribute=function(e,t,r=!1){if(\"string\"==typeof e){if([\"string\",\"number\",\"boolean\"].includes(typeof t)||null===t)return N(e,t,\"setCustomAttribute\",r);(0,l.R)(40,typeof t)}else(0,l.R)(39,typeof e)},g.setUserId=function(e){if(\"string\"==typeof e||null===e)return N(\"enduser.id\",e,\"setUserId\",!0);(0,l.R)(41,typeof e)},g.setApplicationVersion=function(e){if(\"string\"==typeof e||null===e)return N(\"application.version\",e,\"setApplicationVersion\",!1);(0,l.R)(42,typeof e)},g.start=()=\u003e{try{(0,a.p)(f.xV,[\"API/start/called\"],void 0,n.K7.metrics,R),R.emit(\"manual-start-all\")}catch(e){(0,l.R)(23,e)}},g[p.G4.RECORD]=function(){(0,a.p)(f.xV,[\"API/recordReplay/called\"],void 0,n.K7.metrics,R),(0,a.p)(p.G4.RECORD,[],void 0,n.K7.sessionReplay,R)},g[p.G4.PAUSE]=function(){(0,a.p)(f.xV,[\"API/pauseReplay/called\"],void 0,n.K7.metrics,R),(0,a.p)(p.G4.PAUSE,[],void 0,n.K7.sessionReplay,R)},g.interaction=function(e){return(new _).get(\"object\"==typeof e?e:{})};const O=_.prototype={createTracer:function(e,t){var r={},i=this,o=\"function\"==typeof t;return(0,a.p)(f.xV,[\"API/createTracer/called\"],void 0,n.K7.metrics,R),h||(0,a.p)(A+\"tracer\",[(0,v.t)(),e,r],i,n.K7.spa,R),function(){if(x.emit((o?\"\":\"no-\")+\"fn-start\",[(0,v.t)(),i,o],r),o)try{return t.apply(this,arguments)}catch(e){const t=\"string\"==typeof e?new Error(e):e;throw x.emit(\"fn-err\",[arguments,this,t],r),t}finally{x.emit(\"fn-end\",[(0,v.t)()],r)}}}};function I(e,t,r,i){return function(){return(0,a.p)(f.xV,[\"API/\"+t+\"/called\"],void 0,n.K7.metrics,R),i\u0026\u0026(0,a.p)(e+t,[r?(0,v.t)():performance.now(),...arguments],r?null:this,i,R),r?void 0:this}}function P(){r.e(478).then(r.bind(r,8778)).then((({setAPI:t})=\u003e{t(e),(0,c.Ze)(e,\"api\")})).catch((e=\u003e{(0,l.R)(27,e),R.abort()}))}return[\"actionText\",\"setName\",\"setAttribute\",\"save\",\"ignore\",\"onEnd\",\"getContext\",\"end\",\"get\"].forEach((e=\u003e{O[e]=I(A,e,void 0,h?n.K7.softNav:n.K7.spa)})),g.setCurrentRouteName=h?I(A,\"routeName\",void 0,n.K7.softNav):I(E,\"routeName\",!0,n.K7.spa),g.noticeError=function(t,r){\"string\"==typeof t\u0026\u0026(t=new Error(t)),(0,a.p)(f.xV,[\"API/noticeError/called\"],void 0,n.K7.metrics,R),(0,a.p)(\"err\",[t,(0,v.t)(),!1,r,!!S[e]],void 0,n.K7.jserrors,R)},d.RI?(0,u.GG)((()=\u003eP()),!0):P(),g}(e.agentIdentifier,R,e.runSoftNavOverSpa)),void 0===e.exposed\u0026\u0026(e.exposed=k),P=!0}},8374:(e,t,r)=\u003e{r.nc=(()=\u003e{try{return document?.currentScript?.nonce}catch(e){}return\"\"})()},860:(e,t,r)=\u003e{\"use strict\";r.d(t,{$J:()=\u003eu,K7:()=\u003es,P3:()=\u003ec,XX:()=\u003ei,qY:()=\u003en,v4:()=\u003ea});const n=\"events\",i=\"jserrors\",o=\"browser/blobs\",a=\"rum\",s={ajax:\"ajax\",genericEvents:\"generic_events\",jserrors:i,logging:\"logging\",metrics:\"metrics\",pageAction:\"page_action\",pageViewEvent:\"page_view_event\",pageViewTiming:\"page_view_timing\",sessionReplay:\"session_replay\",sessionTrace:\"session_trace\",softNav:\"soft_navigations\",spa:\"spa\"},c={[s.pageViewEvent]:1,[s.pageViewTiming]:2,[s.metrics]:3,[s.jserrors]:4,[s.spa]:5,[s.ajax]:6,[s.sessionTrace]:7,[s.softNav]:8,[s.sessionReplay]:9,[s.logging]:10,[s.genericEvents]:11},u={[s.pageViewEvent]:a,[s.pageViewTiming]:n,[s.ajax]:n,[s.spa]:n,[s.softNav]:n,[s.metrics]:i,[s.jserrors]:i,[s.sessionTrace]:o,[s.sessionReplay]:o,[s.logging]:\"browser/logs\",[s.genericEvents]:\"ins\"}}},n={};function i(e){var t=n[e];if(void 0!==t)return t.exports;var o=n[e]={exports:{}};return r[e](o,o.exports,i),o.exports}i.m=r,i.d=(e,t)=\u003e{for(var r in t)i.o(t,r)\u0026\u0026!i.o(e,r)\u0026\u0026Object.defineProperty(e,r,{enumerable:!0,get:t[r]})},i.f={},i.e=e=\u003ePromise.all(Object.keys(i.f).reduce(((t,r)=\u003e(i.f[r](e,t),t)),[])),i.u=e=\u003e({212:\"nr-spa-compressor\",249:\"nr-spa-recorder\",478:\"nr-spa\"}[e]+\"-1.281.0.min.js\"),i.o=(e,t)=\u003eObject.prototype.hasOwnProperty.call(e,t),e={},t=\"NRBA-1.281.0.PROD:\",i.l=(r,n,o,a)=\u003e{if(e[r])e[r].push(n);else{var s,c;if(void 0!==o)for(var u=document.getElementsByTagName(\"script\"),d=0;d\u003cu.length;d++){var l=u[d];if(l.getAttribute(\"src\")==r||l.getAttribute(\"data-webpack\")==t+o){s=l;break}}if(!s){c=!0;var f={478:\"sha512-jmvAlmjCn64ans8tLueqHRlBI/iWekylsDWb94A77CG0ukSriVDvgD3dThx+XjUSBBBMYhFn8B1a18fViyBPEQ==\",249:\"sha512-ICY/ZrcytM/86t5KFy+9OAWVYmNNJy10EBtxoSUGjQWuZx53p/eLo+L8HfrGjvHuRHRnutqLTGSnvNttffJkaA==\",212:\"sha512-pQSn+X/RfBOvx/49HvlghaiXMLhhDQXTi13n1N2XMpDquWJgs9U0pbqE3RbAnYC9nsdaTu/RVGvneEPv1fpCxA==\"};(s=document.createElement(\"script\")).charset=\"utf-8\",s.timeout=120,i.nc\u0026\u0026s.setAttribute(\"nonce\",i.nc),s.setAttribute(\"data-webpack\",t+o),s.src=r,0!==s.src.indexOf(window.location.origin+\"/\")\u0026\u0026(s.crossOrigin=\"anonymous\"),f[a]\u0026\u0026(s.integrity=f[a])}e[r]=[n];var h=(t,n)=\u003e{s.onerror=s.onload=null,clearTimeout(p);var i=e[r];if(delete e[r],s.parentNode\u0026\u0026s.parentNode.removeChild(s),i\u0026\u0026i.forEach((e=\u003ee(n))),t)return t(n)},p=setTimeout(h.bind(null,void 0,{type:\"timeout\",target:s}),12e4);s.onerror=h.bind(null,s.onerror),s.onload=h.bind(null,s.onload),c\u0026\u0026document.head.appendChild(s)}},i.r=e=\u003e{\"undefined\"!=typeof Symbol\u0026\u0026Symbol.toStringTag\u0026\u0026Object.defineProperty(e,Symbol.toStringTag,{value:\"Module\"}),Object.defineProperty(e,\"__esModule\",{value:!0})},i.p=\"https://js-agent.newrelic.com/\",(()=\u003e{var e={38:0,788:0};i.f.j=(t,r)=\u003e{var n=i.o(e,t)?e[t]:void 0;if(0!==n)if(n)r.push(n[2]);else{var o=new Promise(((r,i)=\u003en=e[t]=[r,i]));r.push(n[2]=o);var a=i.p+i.u(t),s=new Error;i.l(a,(r=\u003e{if(i.o(e,t)\u0026\u0026(0!==(n=e[t])\u0026\u0026(e[t]=void 0),n)){var o=r\u0026\u0026(\"load\"===r.type?\"missing\":r.type),a=r\u0026\u0026r.target\u0026\u0026r.target.src;s.message=\"Loading chunk \"+t+\" failed.\\n(\"+o+\": \"+a+\")\",s.name=\"ChunkLoadError\",s.type=o,s.request=a,n[1](s)}}),\"chunk-\"+t,t)}};var t=(t,r)=\u003e{var n,o,[a,s,c]=r,u=0;if(a.some((t=\u003e0!==e[t]))){for(n in s)i.o(s,n)\u0026\u0026(i.m[n]=s[n]);if(c)c(i)}for(t\u0026\u0026t(r);u\u003ca.length;u++)o=a[u],i.o(e,o)\u0026\u0026e[o]\u0026\u0026e[o][0](),e[o]=0},r=self[\"webpackChunk:NRBA-1.281.0.PROD\"]=self[\"webpackChunk:NRBA-1.281.0.PROD\"]||[];r.forEach(t.bind(null,0)),r.push=t.bind(null,r.push.bind(r))})(),(()=\u003e{\"use strict\";i(8374);var e=i(944),t=i(6344),r=i(9566);class n{agentIdentifier;constructor(){this.agentIdentifier=(0,r.LA)(16)}#e(t,...r){if(\"function\"==typeof this.api?.[t])return this.api[t](...r);(0,e.R)(35,t)}addPageAction(e,t){return this.#e(\"addPageAction\",e,t)}recordCustomEvent(e,t){return this.#e(\"recordCustomEvent\",e,t)}setPageViewName(e,t){return this.#e(\"setPageViewName\",e,t)}setCustomAttribute(e,t,r){return this.#e(\"setCustomAttribute\",e,t,r)}noticeError(e,t){return this.#e(\"noticeError\",e,t)}setUserId(e){return this.#e(\"setUserId\",e)}setApplicationVersion(e){return this.#e(\"setApplicationVersion\",e)}setErrorHandler(e){return this.#e(\"setErrorHandler\",e)}addRelease(e,t){return this.#e(\"addRelease\",e,t)}log(e,t){return this.#e(\"log\",e,t)}}class o extends n{#e(t,...r){if(\"function\"==typeof this.api?.[t])return this.api[t](...r);(0,e.R)(35,t)}start(){return this.#e(\"start\")}finished(e){return this.#e(\"finished\",e)}recordReplay(){return this.#e(t.G4.RECORD)}pauseReplay(){return this.#e(t.G4.PAUSE)}addToTrace(e){return this.#e(\"addToTrace\",e)}setCurrentRouteName(e){return this.#e(\"setCurrentRouteName\",e)}interaction(){return this.#e(\"interaction\")}wrapLogger(e,t,r){return this.#e(\"wrapLogger\",e,t,r)}}var a=i(860),s=i(9417);const c=Object.values(a.K7);function u(e){const t={};return c.forEach((r=\u003e{t[r]=function(e,t){return!0===(0,s.gD)(t,\"\".concat(e,\".enabled\"))}(r,e)})),t}var d=i(425);var l=i(1687),f=i(4234),h=i(5289),p=i(6154),g=i(5270),m=i(7767),v=i(6389);class b extends f.W{constructor(e,t,r=!0){super(e.agentIdentifier,t),this.auto=r,this.abortHandler=void 0,this.featAggregate=void 0,this.onAggregateImported=void 0,!1===e.init[this.featureName].autoStart\u0026\u0026(this.auto=!1),this.auto?(0,l.Ak)(e.agentIdentifier,t):this.ee.on(\"manual-start-all\",(0,v.J)((()=\u003e{(0,l.Ak)(e.agentIdentifier,this.featureName),this.auto=!0,this.importAggregator(e)})))}importAggregator(t,r={}){if(this.featAggregate||!this.auto)return;let n;this.onAggregateImported=new Promise((e=\u003e{n=e}));const o=async()=\u003e{let o;try{if((0,m.V)(this.agentIdentifier)){const{setupAgentSession:e}=await i.e(478).then(i.bind(i,6526));o=e(t)}}catch(t){(0,e.R)(20,t),this.ee.emit(\"internal-error\",[t]),this.featureName===a.K7.sessionReplay\u0026\u0026this.abortHandler?.()}try{if(!this.#t(this.featureName,o))return(0,l.Ze)(this.agentIdentifier,this.featureName),void n(!1);const{lazyFeatureLoader:e}=await i.e(478).then(i.bind(i,6103)),{Aggregate:a}=await e(this.featureName,\"aggregate\");this.featAggregate=new a(t,r),t.runtime.harvester.initializedAggregates.push(this.featAggregate),n(!0)}catch(t){(0,e.R)(34,t),this.abortHandler?.(),(0,l.Ze)(this.agentIdentifier,this.featureName,!0),n(!1),this.ee\u0026\u0026this.ee.abort()}};p.RI?(0,h.GG)((()=\u003eo()),!0):o()}#t(e,t){switch(e){case a.K7.sessionReplay:return(0,g.SR)(this.agentIdentifier)\u0026\u0026!!t;case a.K7.sessionTrace:return!!t;default:return!0}}}var y=i(6630);class w extends b{static featureName=y.T;constructor(e,t=!0){super(e,y.T,t),this.importAggregator(e)}}var R=i(384);var x=i(9908),E=i(2843),T=i(3878),A=i(782),S=i(1863);class N extends b{static featureName=A.T;constructor(e,t=!0){super(e,A.T,t),p.RI\u0026\u0026((0,E.u)((()=\u003e(0,x.p)(\"docHidden\",[(0,S.t)()],void 0,A.T,this.ee)),!0),(0,T.sp)(\"pagehide\",(()=\u003e(0,x.p)(\"winPagehide\",[(0,S.t)()],void 0,A.T,this.ee))),this.importAggregator(e))}}var _=i(3969);class O extends b{static featureName=_.TZ;constructor(e,t=!0){super(e,_.TZ,t),this.importAggregator(e)}}var I=i(6774),P=i(3304);class j{constructor(e,t,r,n,i){this.name=\"UncaughtError\",this.message=\"string\"==typeof e?e:(0,P.A)(e),this.sourceURL=t,this.line=r,this.column=n,this.__newrelic=i}}function C(e){return H(e)?e:new j(void 0!==e?.message?e.message:e,e?.filename||e?.sourceURL,e?.lineno||e?.line,e?.colno||e?.col,e?.__newrelic)}function k(e){const t=\"Unhandled Promise Rejection\";if(!e?.reason)return;if(H(e.reason))try{return e.reason.message=t+\": \"+e.reason.message,C(e.reason)}catch(t){return C(e.reason)}const r=C(e.reason);return r.message=t+\": \"+r?.message,r}function L(e){if(e.error instanceof SyntaxError\u0026\u0026!/:\\d+$/.test(e.error.stack?.trim())){const t=new j(e.message,e.filename,e.lineno,e.colno,e.error.__newrelic);return t.name=SyntaxError.name,t}return H(e.error)?e.error:C(e)}function H(e){return e instanceof Error\u0026\u0026!!e.stack}class M extends b{static featureName=I.T;#r=!1;constructor(e,r=!0){super(e,I.T,r);try{this.removeOnAbort=new AbortController}catch(e){}this.ee.on(\"internal-error\",((e,t)=\u003e{this.abortHandler\u0026\u0026(0,x.p)(\"ierr\",[C(e),(0,S.t)(),!0,{},this.#r,t],void 0,this.featureName,this.ee)})),this.ee.on(t.G4.REPLAY_RUNNING,(e=\u003e{this.#r=e})),p.gm.addEventListener(\"unhandledrejection\",(e=\u003e{this.abortHandler\u0026\u0026(0,x.p)(\"err\",[k(e),(0,S.t)(),!1,{unhandledPromiseRejection:1},this.#r],void 0,this.featureName,this.ee)}),(0,T.jT)(!1,this.removeOnAbort?.signal)),p.gm.addEventListener(\"error\",(e=\u003e{this.abortHandler\u0026\u0026(0,x.p)(\"err\",[L(e),(0,S.t)(),!1,{},this.#r],void 0,this.featureName,this.ee)}),(0,T.jT)(!1,this.removeOnAbort?.signal)),this.abortHandler=this.#n,this.importAggregator(e)}#n(){this.removeOnAbort?.abort(),this.abortHandler=void 0}}var D=i(8990);let K=1;const U=\"nr@id\";function V(e){const t=typeof e;return!e||\"object\"!==t\u0026\u0026\"function\"!==t?-1:e===p.gm?0:(0,D.I)(e,U,(function(){return K++}))}function G(e){if(\"string\"==typeof e\u0026\u0026e.length)return e.length;if(\"object\"==typeof e){if(\"undefined\"!=typeof ArrayBuffer\u0026\u0026e instanceof ArrayBuffer\u0026\u0026e.byteLength)return e.byteLength;if(\"undefined\"!=typeof Blob\u0026\u0026e instanceof Blob\u0026\u0026e.size)return e.size;if(!(\"undefined\"!=typeof FormData\u0026\u0026e instanceof FormData))try{return(0,P.A)(e).length}catch(e){return}}}var F=i(8139),B=i(7836),W=i(3434);const z={},q=[\"open\",\"send\"];function Z(t){var r=t||B.ee;const n=function(e){return(e||B.ee).get(\"xhr\")}(r);if(void 0===p.gm.XMLHttpRequest)return n;if(z[n.debugId]++)return n;z[n.debugId]=1,(0,F.u)(r);var i=(0,W.YM)(n),o=p.gm.XMLHttpRequest,a=p.gm.MutationObserver,s=p.gm.Promise,c=p.gm.setInterval,u=\"readystatechange\",d=[\"onload\",\"onerror\",\"onabort\",\"onloadstart\",\"onloadend\",\"onprogress\",\"ontimeout\"],l=[],f=p.gm.XMLHttpRequest=function(t){const r=new o(t),a=n.context(r);try{n.emit(\"new-xhr\",[r],a),r.addEventListener(u,(s=a,function(){var e=this;e.readyState\u003e3\u0026\u0026!s.resolved\u0026\u0026(s.resolved=!0,n.emit(\"xhr-resolved\",[],e)),i.inPlace(e,d,\"fn-\",y)}),(0,T.jT)(!1))}catch(t){(0,e.R)(15,t);try{n.emit(\"internal-error\",[t])}catch(e){}}var s;return r};function h(e,t){i.inPlace(t,[\"onreadystatechange\"],\"fn-\",y)}if(function(e,t){for(var r in e)t[r]=e[r]}(o,f),f.prototype=o.prototype,i.inPlace(f.prototype,q,\"-xhr-\",y),n.on(\"send-xhr-start\",(function(e,t){h(e,t),function(e){l.push(e),a\u0026\u0026(g?g.then(b):c?c(b):(m=-m,v.data=m))}(t)})),n.on(\"open-xhr-start\",h),a){var g=s\u0026\u0026s.resolve();if(!c\u0026\u0026!s){var m=1,v=document.createTextNode(m);new a(b).observe(v,{characterData:!0})}}else r.on(\"fn-end\",(function(e){e[0]\u0026\u0026e[0].type===u||b()}));function b(){for(var e=0;e\u003cl.length;e++)h(0,l[e]);l.length\u0026\u0026(l=[])}function y(e,t){return t}return n}var Y=\"fetch-\",X=Y+\"body-\",J=[\"arrayBuffer\",\"blob\",\"json\",\"text\",\"formData\"],Q=p.gm.Request,ee=p.gm.Response,te=\"prototype\";const re={};function ne(e){const t=function(e){return(e||B.ee).get(\"fetch\")}(e);if(!(Q\u0026\u0026ee\u0026\u0026p.gm.fetch))return t;if(re[t.debugId]++)return t;function r(e,r,n){var i=e[r];\"function\"==typeof i\u0026\u0026(e[r]=function(){var e,r=[...arguments],o={};t.emit(n+\"before-start\",[r],o),o[B.P]\u0026\u0026o[B.P].dt\u0026\u0026(e=o[B.P].dt);var a=i.apply(this,r);return t.emit(n+\"start\",[r,e],a),a.then((function(e){return t.emit(n+\"end\",[null,e],a),e}),(function(e){throw t.emit(n+\"end\",[e],a),e}))})}return re[t.debugId]=1,J.forEach((e=\u003e{r(Q[te],e,X),r(ee[te],e,X)})),r(p.gm,\"fetch\",Y),t.on(Y+\"end\",(function(e,r){var n=this;if(r){var i=r.headers.get(\"content-length\");null!==i\u0026\u0026(n.rxSize=i),t.emit(Y+\"done\",[null,r],n)}else t.emit(Y+\"done\",[e],n)})),t}var ie=i(7485),oe=i(5603);class ae{constructor(e){this.agentIdentifier=e}generateTracePayload(e){if(!this.shouldGenerateTrace(e))return null;var t=(0,oe.o)(this.agentIdentifier);if(!t)return null;var n=(t.accountID||\"\").toString()||null,i=(t.agentID||\"\").toString()||null,o=(t.trustKey||\"\").toString()||null;if(!n||!i)return null;var a=(0,r.ZF)(),s=(0,r.el)(),c=Date.now(),u={spanId:a,traceId:s,timestamp:c};return(e.sameOrigin||this.isAllowedOrigin(e)\u0026\u0026this.useTraceContextHeadersForCors())\u0026\u0026(u.traceContextParentHeader=this.generateTraceContextParentHeader(a,s),u.traceContextStateHeader=this.generateTraceContextStateHeader(a,c,n,i,o)),(e.sameOrigin\u0026\u0026!this.excludeNewrelicHeader()||!e.sameOrigin\u0026\u0026this.isAllowedOrigin(e)\u0026\u0026this.useNewrelicHeaderForCors())\u0026\u0026(u.newrelicHeader=this.generateTraceHeader(a,s,c,n,i,o)),u}generateTraceContextParentHeader(e,t){return\"00-\"+t+\"-\"+e+\"-01\"}generateTraceContextStateHeader(e,t,r,n,i){return i+\"@nr=0-1-\"+r+\"-\"+n+\"-\"+e+\"----\"+t}generateTraceHeader(e,t,r,n,i,o){if(!(\"function\"==typeof p.gm?.btoa))return null;var a={v:[0,1],d:{ty:\"Browser\",ac:n,ap:i,id:e,tr:t,ti:r}};return o\u0026\u0026n!==o\u0026\u0026(a.d.tk=o),btoa((0,P.A)(a))}shouldGenerateTrace(e){return this.isDtEnabled()\u0026\u0026this.isAllowedOrigin(e)}isAllowedOrigin(e){var t=!1,r={};if((0,s.gD)(this.agentIdentifier,\"distributed_tracing\")\u0026\u0026(r=(0,s.D0)(this.agentIdentifier).distributed_tracing),e.sameOrigin)t=!0;else if(r.allowed_origins instanceof Array)for(var n=0;n\u003cr.allowed_origins.length;n++){var i=(0,ie.D)(r.allowed_origins[n]);if(e.hostname===i.hostname\u0026\u0026e.protocol===i.protocol\u0026\u0026e.port===i.port){t=!0;break}}return t}isDtEnabled(){var e=(0,s.gD)(this.agentIdentifier,\"distributed_tracing\");return!!e\u0026\u0026!!e.enabled}excludeNewrelicHeader(){var e=(0,s.gD)(this.agentIdentifier,\"distributed_tracing\");return!!e\u0026\u0026!!e.exclude_newrelic_header}useNewrelicHeaderForCors(){var e=(0,s.gD)(this.agentIdentifier,\"distributed_tracing\");return!!e\u0026\u0026!1!==e.cors_use_newrelic_header}useTraceContextHeadersForCors(){var e=(0,s.gD)(this.agentIdentifier,\"distributed_tracing\");return!!e\u0026\u0026!!e.cors_use_tracecontext_headers}}var se=i(9300),ce=i(7295),ue=[\"load\",\"error\",\"abort\",\"timeout\"],de=ue.length,le=(0,R.dV)().o.REQ,fe=(0,R.dV)().o.XHR;class he extends b{static featureName=se.T;constructor(e,t=!0){super(e,se.T,t),this.dt=new ae(e.agentIdentifier),this.handler=(e,t,r,n)=\u003e(0,x.p)(e,t,r,n,this.ee);try{const e={xmlhttprequest:\"xhr\",fetch:\"fetch\",beacon:\"beacon\"};p.gm?.performance?.getEntriesByType(\"resource\").forEach((t=\u003e{if(t.initiatorType in e\u0026\u00260!==t.responseStatus){const r={status:t.responseStatus},n={rxSize:t.transferSize,duration:Math.floor(t.duration),cbTime:0};pe(r,t.name),this.handler(\"xhr\",[r,n,t.startTime,t.responseEnd,e[t.initiatorType]],void 0,a.K7.ajax)}}))}catch(e){}ne(this.ee),Z(this.ee),function(e,t,r,n){function i(e){var t=this;t.totalCbs=0,t.called=0,t.cbTime=0,t.end=R,t.ended=!1,t.xhrGuids={},t.lastSize=null,t.loadCaptureCalled=!1,t.params=this.params||{},t.metrics=this.metrics||{},e.addEventListener(\"load\",(function(r){E(t,e)}),(0,T.jT)(!1)),p.lR||e.addEventListener(\"progress\",(function(e){t.lastSize=e.loaded}),(0,T.jT)(!1))}function o(e){this.params={method:e[0]},pe(this,e[1]),this.metrics={}}function s(t,r){e.loader_config.xpid\u0026\u0026this.sameOrigin\u0026\u0026r.setRequestHeader(\"X-NewRelic-ID\",e.loader_config.xpid);var i=n.generateTracePayload(this.parsedOrigin);if(i){var o=!1;i.newrelicHeader\u0026\u0026(r.setRequestHeader(\"newrelic\",i.newrelicHeader),o=!0),i.traceContextParentHeader\u0026\u0026(r.setRequestHeader(\"traceparent\",i.traceContextParentHeader),i.traceContextStateHeader\u0026\u0026r.setRequestHeader(\"tracestate\",i.traceContextStateHeader),o=!0),o\u0026\u0026(this.dt=i)}}function c(e,r){var n=this.metrics,i=e[0],o=this;if(n\u0026\u0026i){var a=G(i);a\u0026\u0026(n.txSize=a)}this.startTime=(0,S.t)(),this.body=i,this.listener=function(e){try{\"abort\"!==e.type||o.loadCaptureCalled||(o.params.aborted=!0),(\"load\"!==e.type||o.called===o.totalCbs\u0026\u0026(o.onloadCalled||\"function\"!=typeof r.onload)\u0026\u0026\"function\"==typeof o.end)\u0026\u0026o.end(r)}catch(e){try{t.emit(\"internal-error\",[e])}catch(e){}}};for(var s=0;s\u003cde;s++)r.addEventListener(ue[s],this.listener,(0,T.jT)(!1))}function u(e,t,r){this.cbTime+=e,t?this.onloadCalled=!0:this.called+=1,this.called!==this.totalCbs||!this.onloadCalled\u0026\u0026\"function\"==typeof r.onload||\"function\"!=typeof this.end||this.end(r)}function d(e,t){var r=\"\"+V(e)+!!t;this.xhrGuids\u0026\u0026!this.xhrGuids[r]\u0026\u0026(this.xhrGuids[r]=!0,this.totalCbs+=1)}function l(e,t){var r=\"\"+V(e)+!!t;this.xhrGuids\u0026\u0026this.xhrGuids[r]\u0026\u0026(delete this.xhrGuids[r],this.totalCbs-=1)}function f(){this.endTime=(0,S.t)()}function h(e,r){r instanceof fe\u0026\u0026\"load\"===e[0]\u0026\u0026t.emit(\"xhr-load-added\",[e[1],e[2]],r)}function g(e,r){r instanceof fe\u0026\u0026\"load\"===e[0]\u0026\u0026t.emit(\"xhr-load-removed\",[e[1],e[2]],r)}function m(e,t,r){t instanceof fe\u0026\u0026(\"onload\"===r\u0026\u0026(this.onload=!0),(\"load\"===(e[0]\u0026\u0026e[0].type)||this.onload)\u0026\u0026(this.xhrCbStart=(0,S.t)()))}function v(e,r){this.xhrCbStart\u0026\u0026t.emit(\"xhr-cb-time\",[(0,S.t)()-this.xhrCbStart,this.onload,r],r)}function b(e){var t,r=e[1]||{};if(\"string\"==typeof e[0]?0===(t=e[0]).length\u0026\u0026p.RI\u0026\u0026(t=\"\"+p.gm.location.href):e[0]\u0026\u0026e[0].url?t=e[0].url:p.gm?.URL\u0026\u0026e[0]\u0026\u0026e[0]instanceof URL?t=e[0].href:\"function\"==typeof e[0].toString\u0026\u0026(t=e[0].toString()),\"string\"==typeof t\u0026\u00260!==t.length){t\u0026\u0026(this.parsedOrigin=(0,ie.D)(t),this.sameOrigin=this.parsedOrigin.sameOrigin);var i=n.generateTracePayload(this.parsedOrigin);if(i\u0026\u0026(i.newrelicHeader||i.traceContextParentHeader))if(e[0]\u0026\u0026e[0].headers)s(e[0].headers,i)\u0026\u0026(this.dt=i);else{var o={};for(var a in r)o[a]=r[a];o.headers=new Headers(r.headers||{}),s(o.headers,i)\u0026\u0026(this.dt=i),e.length\u003e1?e[1]=o:e.push(o)}}function s(e,t){var r=!1;return t.newrelicHeader\u0026\u0026(e.set(\"newrelic\",t.newrelicHeader),r=!0),t.traceContextParentHeader\u0026\u0026(e.set(\"traceparent\",t.traceContextParentHeader),t.traceContextStateHeader\u0026\u0026e.set(\"tracestate\",t.traceContextStateHeader),r=!0),r}}function y(e,t){this.params={},this.metrics={},this.startTime=(0,S.t)(),this.dt=t,e.length\u003e=1\u0026\u0026(this.target=e[0]),e.length\u003e=2\u0026\u0026(this.opts=e[1]);var r,n=this.opts||{},i=this.target;\"string\"==typeof i?r=i:\"object\"==typeof i\u0026\u0026i instanceof le?r=i.url:p.gm?.URL\u0026\u0026\"object\"==typeof i\u0026\u0026i instanceof URL\u0026\u0026(r=i.href),pe(this,r);var o=(\"\"+(i\u0026\u0026i instanceof le\u0026\u0026i.method||n.method||\"GET\")).toUpperCase();this.params.method=o,this.body=n.body,this.txSize=G(n.body)||0}function w(e,t){if(this.endTime=(0,S.t)(),this.params||(this.params={}),(0,ce.iW)(this.params))return;let n;this.params.status=t?t.status:0,\"string\"==typeof this.rxSize\u0026\u0026this.rxSize.length\u003e0\u0026\u0026(n=+this.rxSize);const i={txSize:this.txSize,rxSize:n,duration:(0,S.t)()-this.startTime};r(\"xhr\",[this.params,i,this.startTime,this.endTime,\"fetch\"],this,a.K7.ajax)}function R(e){const t=this.params,n=this.metrics;if(!this.ended){this.ended=!0;for(let t=0;t\u003cde;t++)e.removeEventListener(ue[t],this.listener,!1);t.aborted||(0,ce.iW)(t)||(n.duration=(0,S.t)()-this.startTime,this.loadCaptureCalled||4!==e.readyState?null==t.status\u0026\u0026(t.status=0):E(this,e),n.cbTime=this.cbTime,r(\"xhr\",[t,n,this.startTime,this.endTime,\"xhr\"],this,a.K7.ajax))}}function E(e,r){e.params.status=r.status;var n=function(e,t){var r=e.responseType;return\"json\"===r\u0026\u0026null!==t?t:\"arraybuffer\"===r||\"blob\"===r||\"json\"===r?G(e.response):\"text\"===r||\"\"===r||void 0===r?G(e.responseText):void 0}(r,e.lastSize);if(n\u0026\u0026(e.metrics.rxSize=n),e.sameOrigin){var i=r.getResponseHeader(\"X-NewRelic-App-Data\");i\u0026\u0026((0,x.p)(_.rs,[\"Ajax/CrossApplicationTracing/Header/Seen\"],void 0,a.K7.metrics,t),e.params.cat=i.split(\", \").pop())}e.loadCaptureCalled=!0}t.on(\"new-xhr\",i),t.on(\"open-xhr-start\",o),t.on(\"open-xhr-end\",s),t.on(\"send-xhr-start\",c),t.on(\"xhr-cb-time\",u),t.on(\"xhr-load-added\",d),t.on(\"xhr-load-removed\",l),t.on(\"xhr-resolved\",f),t.on(\"addEventListener-end\",h),t.on(\"removeEventListener-end\",g),t.on(\"fn-end\",v),t.on(\"fetch-before-start\",b),t.on(\"fetch-start\",y),t.on(\"fn-start\",m),t.on(\"fetch-done\",w)}(e,this.ee,this.handler,this.dt),this.importAggregator(e)}}function pe(e,t){var r=(0,ie.D)(t),n=e.params||e;n.hostname=r.hostname,n.port=r.port,n.protocol=r.protocol,n.host=r.hostname+\":\"+r.port,n.pathname=r.pathname,e.parsedOrigin=r,e.sameOrigin=r.sameOrigin}const ge={},me=[\"pushState\",\"replaceState\"];function ve(e){const t=function(e){return(e||B.ee).get(\"history\")}(e);return!p.RI||ge[t.debugId]++||(ge[t.debugId]=1,(0,W.YM)(t).inPlace(window.history,me,\"-\")),t}var be=i(3738);const{He:ye,bD:we,d3:Re,Kp:xe,TZ:Ee,Lc:Te,uP:Ae,Rz:Se}=be;class Ne extends b{static featureName=Ee;constructor(e,t=!0){super(e,Ee,t);if(!(0,m.V)(this.agentIdentifier))return void this.deregisterDrain();const r=this.ee;let n;ve(r),this.eventsEE=(0,F.u)(r),this.eventsEE.on(Ae,(function(e,t){this.bstStart=(0,S.t)()})),this.eventsEE.on(Te,(function(e,t){(0,x.p)(\"bst\",[e[0],t,this.bstStart,(0,S.t)()],void 0,a.K7.sessionTrace,r)})),r.on(Se+Re,(function(e){this.time=(0,S.t)(),this.startPath=location.pathname+location.hash})),r.on(Se+xe,(function(e){(0,x.p)(\"bstHist\",[location.pathname+location.hash,this.startPath,this.time],void 0,a.K7.sessionTrace,r)}));try{n=new PerformanceObserver((e=\u003e{const t=e.getEntries();(0,x.p)(ye,[t],void 0,a.K7.sessionTrace,r)})),n.observe({type:we,buffered:!0})}catch(e){}this.importAggregator(e,{resourceObserver:n})}}var _e=i(2614);class Oe extends b{static featureName=t.TZ;#i;#o;constructor(e,r=!0){let n;super(e,t.TZ,r),this.replayRunning=!1,this.#o=e;try{n=JSON.parse(localStorage.getItem(\"\".concat(_e.H3,\"_\").concat(_e.uh)))}catch(e){}(0,g.SR)(e.agentIdentifier)\u0026\u0026this.ee.on(t.G4.RECORD,(()=\u003ethis.#a())),this.#s(n)?(this.#i=n?.sessionReplayMode,this.#c()):this.importAggregator(e),this.ee.on(\"err\",(e=\u003e{this.replayRunning\u0026\u0026(this.errorNoticed=!0,(0,x.p)(t.G4.ERROR_DURING_REPLAY,[e],void 0,this.featureName,this.ee))})),this.ee.on(t.G4.REPLAY_RUNNING,(e=\u003e{this.replayRunning=e}))}#s(e){return e\u0026\u0026(e.sessionReplayMode===_e.g.FULL||e.sessionReplayMode===_e.g.ERROR)||(0,g.Aw)(this.agentIdentifier)}#u=!1;async#c(e){if(!this.#u){this.#u=!0;try{const{Recorder:t}=await Promise.all([i.e(478),i.e(249)]).then(i.bind(i,8589));this.recorder??=new t({mode:this.#i,agentIdentifier:this.agentIdentifier,trigger:e,ee:this.ee,agentRef:this.#o}),this.recorder.startRecording(),this.abortHandler=this.recorder.stopRecording}catch(e){}this.importAggregator(this.#o,{recorder:this.recorder,errorNoticed:this.errorNoticed})}}#a(){this.featAggregate?this.featAggregate.mode!==_e.g.FULL\u0026\u0026this.featAggregate.initializeRecording(_e.g.FULL,!0):(this.#i=_e.g.FULL,this.#c(t.Qb.API),this.recorder\u0026\u0026this.recorder.parent.mode!==_e.g.FULL\u0026\u0026(this.recorder.parent.mode=_e.g.FULL,this.recorder.stopRecording(),this.recorder.startRecording(),this.abortHandler=this.recorder.stopRecording))}}var Ie=i(3962);class Pe extends b{static featureName=Ie.TZ;constructor(e,t=!0){if(super(e,Ie.TZ,t),!p.RI||!(0,R.dV)().o.MO)return;const r=ve(this.ee);Ie.tC.forEach((e=\u003e{(0,T.sp)(e,(e=\u003e{a(e)}),!0)}));const n=()=\u003e(0,x.p)(\"newURL\",[(0,S.t)(),\"\"+window.location],void 0,this.featureName,this.ee);r.on(\"pushState-end\",n),r.on(\"replaceState-end\",n);try{this.removeOnAbort=new AbortController}catch(e){}(0,T.sp)(\"popstate\",(e=\u003e(0,x.p)(\"newURL\",[e.timeStamp,\"\"+window.location],void 0,this.featureName,this.ee)),!0,this.removeOnAbort?.signal);let i=!1;const o=new((0,R.dV)().o.MO)(((e,t)=\u003e{i||(i=!0,requestAnimationFrame((()=\u003e{(0,x.p)(\"newDom\",[(0,S.t)()],void 0,this.featureName,this.ee),i=!1})))})),a=(0,v.s)((e=\u003e{(0,x.p)(\"newUIEvent\",[e],void 0,this.featureName,this.ee),o.observe(document.body,{attributes:!0,childList:!0,subtree:!0,characterData:!0})}),100,{leading:!0});this.abortHandler=function(){this.removeOnAbort?.abort(),o.disconnect(),this.abortHandler=void 0},this.importAggregator(e,{domObserver:o})}}var je=i(7378);const Ce={},ke=[\"appendChild\",\"insertBefore\",\"replaceChild\"];function Le(e){const t=function(e){return(e||B.ee).get(\"jsonp\")}(e);if(!p.RI||Ce[t.debugId])return t;Ce[t.debugId]=!0;var r=(0,W.YM)(t),n=/[?\u0026](?:callback|cb)=([^\u0026#]+)/,i=/(.*)\\.([^.]+)/,o=/^(\\w+)(\\.|$)(.*)$/;function a(e,t){if(!e)return t;const r=e.match(o),n=r[1];return a(r[3],t[n])}return r.inPlace(Node.prototype,ke,\"dom-\"),t.on(\"dom-start\",(function(e){!function(e){if(!e||\"string\"!=typeof e.nodeName||\"script\"!==e.nodeName.toLowerCase())return;if(\"function\"!=typeof e.addEventListener)return;var o=(s=e.src,c=s.match(n),c?c[1]:null);var s,c;if(!o)return;var u=function(e){var t=e.match(i);if(t\u0026\u0026t.length\u003e=3)return{key:t[2],parent:a(t[1],window)};return{key:e,parent:window}}(o);if(\"function\"!=typeof u.parent[u.key])return;var d={};function l(){t.emit(\"jsonp-end\",[],d),e.removeEventListener(\"load\",l,(0,T.jT)(!1)),e.removeEventListener(\"error\",f,(0,T.jT)(!1))}function f(){t.emit(\"jsonp-error\",[],d),t.emit(\"jsonp-end\",[],d),e.removeEventListener(\"load\",l,(0,T.jT)(!1)),e.removeEventListener(\"error\",f,(0,T.jT)(!1))}r.inPlace(u.parent,[u.key],\"cb-\",d),e.addEventListener(\"load\",l,(0,T.jT)(!1)),e.addEventListener(\"error\",f,(0,T.jT)(!1)),t.emit(\"new-jsonp\",[e.src],d)}(e[0])})),t}const He={};function Me(e){const t=function(e){return(e||B.ee).get(\"promise\")}(e);if(He[t.debugId])return t;He[t.debugId]=!0;var r=t.context,n=(0,W.YM)(t),i=p.gm.Promise;return i\u0026\u0026function(){function e(r){var o=t.context(),a=n(r,\"executor-\",o,null,!1);const s=Reflect.construct(i,[a],e);return t.context(s).getCtx=function(){return o},s}p.gm.Promise=e,Object.defineProperty(e,\"name\",{value:\"Promise\"}),e.toString=function(){return i.toString()},Object.setPrototypeOf(e,i),[\"all\",\"race\"].forEach((function(r){const n=i[r];e[r]=function(e){let i=!1;[...e||[]].forEach((e=\u003e{this.resolve(e).then(a(\"all\"===r),a(!1))}));const o=n.apply(this,arguments);return o;function a(e){return function(){t.emit(\"propagate\",[null,!i],o,!1,!1),i=i||!e}}}})),[\"resolve\",\"reject\"].forEach((function(r){const n=i[r];e[r]=function(e){const r=n.apply(this,arguments);return e!==r\u0026\u0026t.emit(\"propagate\",[e,!0],r,!1,!1),r}})),e.prototype=i.prototype;const o=i.prototype.then;i.prototype.then=function(...e){var i=this,a=r(i);a.promise=i,e[0]=n(e[0],\"cb-\",a,null,!1),e[1]=n(e[1],\"cb-\",a,null,!1);const s=o.apply(this,e);return a.nextPromise=s,t.emit(\"propagate\",[i,!0],s,!1,!1),s},i.prototype.then[W.Jt]=o,t.on(\"executor-start\",(function(e){e[0]=n(e[0],\"resolve-\",this,null,!1),e[1]=n(e[1],\"resolve-\",this,null,!1)})),t.on(\"executor-err\",(function(e,t,r){e[1](r)})),t.on(\"cb-end\",(function(e,r,n){t.emit(\"propagate\",[n,!0],this.nextPromise,!1,!1)})),t.on(\"propagate\",(function(e,r,n){this.getCtx\u0026\u0026!r||(this.getCtx=function(){if(e instanceof Promise)var r=t.context(e);return r\u0026\u0026r.getCtx?r.getCtx():this})}))}(),t}const De={},Ke=\"setTimeout\",Ue=\"setInterval\",Ve=\"clearTimeout\",Ge=\"-start\",Fe=[Ke,\"setImmediate\",Ue,Ve,\"clearImmediate\"];function Be(e){const t=function(e){return(e||B.ee).get(\"timer\")}(e);if(De[t.debugId]++)return t;De[t.debugId]=1;var r=(0,W.YM)(t);return r.inPlace(p.gm,Fe.slice(0,2),Ke+\"-\"),r.inPlace(p.gm,Fe.slice(2,3),Ue+\"-\"),r.inPlace(p.gm,Fe.slice(3),Ve+\"-\"),t.on(Ue+Ge,(function(e,t,n){e[0]=r(e[0],\"fn-\",null,n)})),t.on(Ke+Ge,(function(e,t,n){this.method=n,this.timerDuration=isNaN(e[1])?0:+e[1],e[0]=r(e[0],\"fn-\",this,n)})),t}const We={};function ze(e){const t=function(e){return(e||B.ee).get(\"mutation\")}(e);if(!p.RI||We[t.debugId])return t;We[t.debugId]=!0;var r=(0,W.YM)(t),n=p.gm.MutationObserver;return n\u0026\u0026(window.MutationObserver=function(e){return this instanceof n?new n(r(e,\"fn-\")):n.apply(this,arguments)},MutationObserver.prototype=n.prototype),t}const{TZ:qe,d3:Ze,Kp:Ye,$p:Xe,wW:$e,e5:Je,tH:Qe,uP:et,rw:tt,Lc:rt}=je;class nt extends b{static featureName=qe;constructor(e,t=!0){if(super(e,qe,t),!p.RI)return;try{this.removeOnAbort=new AbortController}catch(e){}let r,n=0;const i=this.ee.get(\"tracer\"),o=Le(this.ee),a=Me(this.ee),s=Be(this.ee),c=Z(this.ee),u=this.ee.get(\"events\"),d=ne(this.ee),l=ve(this.ee),f=ze(this.ee);function h(e,t){l.emit(\"newURL\",[\"\"+window.location,t])}function g(){n++,r=window.location.hash,this[et]=(0,S.t)()}function m(){n--,window.location.hash!==r\u0026\u0026h(0,!0);var e=(0,S.t)();this[Je]=~~this[Je]+e-this[et],this[rt]=e}function v(e,t){e.on(t,(function(){this[t]=(0,S.t)()}))}this.ee.on(et,g),a.on(tt,g),o.on(tt,g),this.ee.on(rt,m),a.on($e,m),o.on($e,m),this.ee.on(\"fn-err\",((...t)=\u003e{t[2]?.__newrelic?.[e.agentIdentifier]||(0,x.p)(\"function-err\",[...t],void 0,this.featureName,this.ee)})),this.ee.buffer([et,rt,\"xhr-resolved\"],this.featureName),u.buffer([et],this.featureName),s.buffer([\"setTimeout\"+Ye,\"clearTimeout\"+Ze,et],this.featureName),c.buffer([et,\"new-xhr\",\"send-xhr\"+Ze],this.featureName),d.buffer([Qe+Ze,Qe+\"-done\",Qe+Xe+Ze,Qe+Xe+Ye],this.featureName),l.buffer([\"newURL\"],this.featureName),f.buffer([et],this.featureName),a.buffer([\"propagate\",tt,$e,\"executor-err\",\"resolve\"+Ze],this.featureName),i.buffer([et,\"no-\"+et],this.featureName),o.buffer([\"new-jsonp\",\"cb-start\",\"jsonp-error\",\"jsonp-end\"],this.featureName),v(d,Qe+Ze),v(d,Qe+\"-done\"),v(o,\"new-jsonp\"),v(o,\"jsonp-end\"),v(o,\"cb-start\"),l.on(\"pushState-end\",h),l.on(\"replaceState-end\",h),window.addEventListener(\"hashchange\",h,(0,T.jT)(!0,this.removeOnAbort?.signal)),window.addEventListener(\"load\",h,(0,T.jT)(!0,this.removeOnAbort?.signal)),window.addEventListener(\"popstate\",(function(){h(0,n\u003e1)}),(0,T.jT)(!0,this.removeOnAbort?.signal)),this.abortHandler=this.#n,this.importAggregator(e)}#n(){this.removeOnAbort?.abort(),this.abortHandler=void 0}}var it=i(3333);class ot extends b{static featureName=it.TZ;constructor(e,t=!0){super(e,it.TZ,t);const r=[e.init.page_action.enabled,e.init.performance.capture_marks,e.init.performance.capture_measures,e.init.user_actions.enabled,e.init.performance.resources.enabled];if(p.RI\u0026\u0026(e.init.user_actions.enabled\u0026\u0026(it.Zp.forEach((e=\u003e(0,T.sp)(e,(e=\u003e(0,x.p)(\"ua\",[e],void 0,this.featureName,this.ee)),!0))),it.qN.forEach((e=\u003e{const t=(0,v.s)((e=\u003e{(0,x.p)(\"ua\",[e],void 0,this.featureName,this.ee)}),500,{leading:!0});(0,T.sp)(e,t)}))),e.init.performance.resources.enabled\u0026\u0026p.gm.PerformanceObserver?.supportedEntryTypes.includes(\"resource\"))){new PerformanceObserver((e=\u003e{e.getEntries().forEach((e=\u003e{(0,x.p)(\"browserPerformance.resource\",[e],void 0,this.featureName,this.ee)}))})).observe({type:\"resource\",buffered:!0})}r.some((e=\u003ee))?this.importAggregator(e):this.deregisterDrain()}}var at=i(993),st=i(3785);class ct extends b{static featureName=at.TZ;constructor(e,t=!0){super(e,at.TZ,t);const r=this.ee;this.ee.on(\"wrap-logger-end\",(function([e]){const{level:t,customAttributes:n}=this;(0,st.R)(r,e,n,t)})),this.importAggregator(e)}}new class extends o{constructor(t){super(),p.gm?(this.features={},(0,R.bQ)(this.agentIdentifier,this),this.desiredFeatures=new Set(t.features||[]),this.desiredFeatures.add(w),this.runSoftNavOverSpa=[...this.desiredFeatures].some((e=\u003ee.featureName===a.K7.softNav)),(0,d.j)(this,t,t.loaderType||\"agent\"),this.run()):(0,e.R)(21)}get config(){return{info:this.info,init:this.init,loader_config:this.loader_config,runtime:this.runtime}}run(){try{const t=u(this.agentIdentifier),r=[...this.desiredFeatures];r.sort(((e,t)=\u003ea.P3[e.featureName]-a.P3[t.featureName])),r.forEach((r=\u003e{if(!t[r.featureName]\u0026\u0026r.featureName!==a.K7.pageViewEvent)return;if(this.runSoftNavOverSpa\u0026\u0026r.featureName===a.K7.spa)return;if(!this.runSoftNavOverSpa\u0026\u0026r.featureName===a.K7.softNav)return;const n=function(e){switch(e){case a.K7.ajax:return[a.K7.jserrors];case a.K7.sessionTrace:return[a.K7.ajax,a.K7.pageViewEvent];case a.K7.sessionReplay:return[a.K7.sessionTrace];case a.K7.pageViewTiming:return[a.K7.pageViewEvent];default:return[]}}(r.featureName).filter((e=\u003e!(e in this.features)));n.length\u003e0\u0026\u0026(0,e.R)(36,{targetFeature:r.featureName,missingDependencies:n}),this.features[r.featureName]=new r(this)}))}catch(t){(0,e.R)(22,t);for(const e in this.features)this.features[e].abortHandler?.();const r=(0,R.Zm)();delete r.initializedAgents[this.agentIdentifier]?.api,delete r.initializedAgents[this.agentIdentifier]?.features,delete this.sharedAggregator;return r.ee.get(this.agentIdentifier).abort(),!1}}}({features:[he,w,N,Ne,Oe,O,M,ot,ct,Pe,nt],loaderType:\"spa\"})})()})();"])</script><script>self.__next_f.push([1,"e:[\"$\",\"html\",null,{\"lang\":\"en\",\"suppressHydrationWarning\":true,\"children\":[[\"$\",\"head\",null,{\"children\":[[\"$\",\"link\",null,{\"rel\":\"preconnect\",\"href\":\"https://cdn.segment.com\"}],[\"$\",\"link\",null,{\"rel\":\"preconnect\",\"href\":\"https://prospect-form-plugin.2u.com\"}],[\"$\",\"$L12\",null,{\"type\":\"text/javascript\",\"src\":\"https://beam.edx.org/consent/fa169e97-be64-4cc1-bad3-9534590f9a30/OtAutoBlock.js\"}],[\"$\",\"$L12\",null,{\"src\":\"https://beam.edx.org/scripttemplates/otSDKStub.js\",\"type\":\"text/javascript\",\"data-domain-script\":\"fa169e97-be64-4cc1-bad3-9534590f9a30\"}],[\"$\",\"$L12\",null,{\"id\":\"ot-loader\",\"type\":\"text/javascript\",\"dangerouslySetInnerHTML\":{\"__html\":\"\\n function OptanonWrapper() {\\n function loadSegmentIfConsented() {\\n let activeGroups = window.OnetrustActiveGroups || \\\"\\\";\\n let requiredCategories = [\\\"C0002\\\", \\\"C0004\\\"];\\n let hasConsent = requiredCategories.every((cat) =\u003e\\n activeGroups.includes(\\\",\\\" + cat + \\\",\\\"),\\n );\\n let script = document.getElementById(\\\"segment-analytics\\\")\\n if (hasConsent \u0026\u0026 script \u0026\u0026 script.type === \\\"text/plain\\\") {\\n script.type = \\\"text/javascript\\\";\\n }\\n if (!hasConsent \u0026\u0026 script \u0026\u0026 script.type !== \\\"text/plain\\\") {\\n script.type = \\\"text/plain\\\"; // Prevent execution\\n }\\n }\\n loadSegmentIfConsented();\\n OneTrust.OnConsentChanged(loadSegmentIfConsented);\\n }\\n \"},\"strategy\":\"afterInteractive\"}],[\"$\",\"$L12\",null,{\"id\":\"script-segment\",\"dangerouslySetInnerHTML\":{\"__html\":\"$13\"},\"strategy\":\"beforeInteractive\"}],[[\"$\",\"style\",null,{\"children\":\".preampjs [data-preamp], .fusejs [data-fuse] { opacity: 0 !important}\"}],[\"$\",\"script\",null,{\"dangerouslySetInnerHTML\":{\"__html\":\"$14\"}}]],[\"$\",\"$L12\",null,{\"id\":\"script-gtm\",\"dangerouslySetInnerHTML\":{\"__html\":\"(function (w, d, s, l, i) {\\n w[l] = w[l] || [];\\n w[l].push({ \\\"gtm.start\\\": new Date().getTime(), event: \\\"gtm.js\\\" });\\n var f = d.getElementsByTagName(s)[0],\\n j = d.createElement(s),\\n dl = l != \\\"dataLayer\\\" ? \\\"\u0026l=\\\" + l : \\\"\\\";\\n j.async = true;\\n j.src = \\\"https://www.googletagmanager.com/gtm.js?id=\\\" + i + dl;\\n f.parentNode.insertBefore(j, f);\\n})(window, document, \\\"script\\\", \\\"dataLayer\\\", \\\"GTM-543ZGMK2\\\");\\n\"},\"strategy\":\"beforeInteractive\"}],[\"$\",\"$L15\",null,{\"pagetype\":\"other\"}]]}],[\"$\",\"body\",null,{\"className\":\"__className_d65c78\",\"children\":[[\"$\",\"noscript\",null,{\"dangerouslySetInnerHTML\":{\"__html\":\"\u003ciframe src=\\\"https://www.googletagmanager.com/ns.html?id=GTM-543ZGMK2\\\" height=\\\"0\\\" width=\\\"0\\\"\\n style=\\\"display:none;visibility:hidden\\\"\u003e\u003c/iframe\u003e\"}}],[\"$\",\"$L16\",null,{\"children\":[\"$\",\"$L17\",null,{}]}],[\"$\",\"$L18\",null,{\"children\":[\"$\",\"$L19\",null,{\"children\":\"$L1a\"}]}],[\"$\",\"$L12\",null,{\"id\":\"nr-browser-agent\",\"strategy\":\"beforeInteractive\",\"dangerouslySetInnerHTML\":{\"__html\":\"$1b\"}}]]}]]}]\n"])</script><script>self.__next_f.push([1,"1c:I[10575,[\"6290\",\"static/chunks/6290-14a62ddd57f81ba6.js\",\"9177\",\"static/chunks/9177-4f779ab065ca3298.js\",\"8003\",\"static/chunks/8003-2972b8eea56e87df.js\",\"6686\",\"static/chunks/6686-f007b1e2101fda62.js\",\"1203\",\"static/chunks/app/%5Blocale%5D/layout-bdcb92f3a05369b1.js\"],\"default\"]\n1d:I[99653,[\"8310\",\"static/chunks/0e5ce63c-e4012ad3e28fdbed.js\",\"5571\",\"static/chunks/c233e9bd-865e5bc301f09aaf.js\",\"6290\",\"static/chunks/6290-14a62ddd57f81ba6.js\",\"9177\",\"static/chunks/9177-4f779ab065ca3298.js\",\"5878\",\"static/chunks/5878-e3c69aff2e273e23.js\",\"3069\",\"static/chunks/3069-556a3605b335d482.js\",\"4858\",\"static/chunks/4858-aef93864f4abb320.js\",\"8003\",\"static/chunks/8003-2972b8eea56e87df.js\",\"6686\",\"static/chunks/6686-f007b1e2101fda62.js\",\"9366\",\"static/chunks/9366-e6a7fb83e1c23555.js\",\"3397\",\"static/chunks/3397-dd13dd89c81e42c8.js\",\"6816\",\"static/chunks/app/%5Blocale%5D/error-3b41dcbdabbc3d14.js\"],\"default\"]\n1a:[\"$\",\"$L1c\",null,{\"locale\":\"en\",\"now\":\"$D2025-02-20T21:15:01.878Z\",\"timeZone\":\"UTC\",\"messages\":{\"Upgrade\":{\"title\":\"Update to access this page\",\"description\":\"For the best experience it is recommended that you update to the latest version of this app now. Please update now to access the full experience.\",\"ctaHeader\":\"Choose an option:\"},\"LocaleSwitcher\":{\"label\":\"Change language\",\"en\":\"English\",\"es\":\"Spanish\"}},\"children\":[\"$\",\"$La\",null,{\"parallelRouterKey\":\"children\",\"segmentPath\":[\"children\",\"$b\",\"children\"],\"error\":\"$1d\",\"errorStyles\":[[\"$\",\"link\",\"0\",{\"rel\":\"stylesheet\",\"href\":\"/_next/static/css/05177b9cba5d3efe.css\",\"precedence\":\"next\",\"crossOrigin\":\"$undefined\"}]],\"errorScripts\":[],\"template\":[\"$\",\"$Ld\",null,{}],\"templateStyles\":\"$undefined\",\"templateScripts\":\"$undefined\",\"notFound\":\"$L1e\",\"notFoundStyles\":[[\"$\",\"link\",\"0\",{\"rel\":\"stylesheet\",\"href\":\"/_next/static/css/05177b9cba5d3efe.css\",\"precedence\":\"next\",\"crossOrigin\":\"$undefined\"}]]}]}]\n"])</script><script>self.__next_f.push([1,"1f:I[50207,[\"8310\",\"static/chunks/0e5ce63c-e4012ad3e28fdbed.js\",\"5571\",\"static/chunks/c233e9bd-865e5bc301f09aaf.js\",\"2404\",\"static/chunks/a4634e51-1ae34582fa2bb120.js\",\"6290\",\"static/chunks/6290-14a62ddd57f81ba6.js\",\"9177\",\"static/chunks/9177-4f779ab065ca3298.js\",\"5878\",\"static/chunks/5878-e3c69aff2e273e23.js\",\"3069\",\"static/chunks/3069-556a3605b335d482.js\",\"4858\",\"static/chunks/4858-aef93864f4abb320.js\",\"8890\",\"static/chunks/8890-cd2934b2aa3b89dc.js\",\"3402\",\"static/chunks/3402-f8625ce91eb27ea6.js\",\"8082\",\"static/chunks/8082-143f9f9fdf5b9192.js\",\"4980\",\"static/chunks/4980-d730333976453575.js\",\"32\",\"static/chunks/32-bafec80821f44ed5.js\",\"6686\",\"static/chunks/6686-f007b1e2101fda62.js\",\"9366\",\"static/chunks/9366-e6a7fb83e1c23555.js\",\"3397\",\"static/chunks/3397-dd13dd89c81e42c8.js\",\"2628\",\"static/chunks/2628-8d231bd404df8976.js\",\"554\",\"static/chunks/554-025495b6bf8e1dac.js\",\"121\",\"static/chunks/121-00c8365f8c57a8cc.js\",\"3564\",\"static/chunks/3564-dbea25076659e35b.js\",\"5099\",\"static/chunks/5099-9a5433902d87437e.js\",\"6928\",\"static/chunks/app/%5Blocale%5D/learn/%5Bcategory%5D/page-176642ac87704917.js\"],\"default\"]\n20:I[72067,[\"8310\",\"static/chunks/0e5ce63c-e4012ad3e28fdbed.js\",\"5571\",\"static/chunks/c233e9bd-865e5bc301f09aaf.js\",\"2404\",\"static/chunks/a4634e51-1ae34582fa2bb120.js\",\"6290\",\"static/chunks/6290-14a62ddd57f81ba6.js\",\"9177\",\"static/chunks/9177-4f779ab065ca3298.js\",\"5878\",\"static/chunks/5878-e3c69aff2e273e23.js\",\"3069\",\"static/chunks/3069-556a3605b335d482.js\",\"4858\",\"static/chunks/4858-aef93864f4abb320.js\",\"8890\",\"static/chunks/8890-cd2934b2aa3b89dc.js\",\"3402\",\"static/chunks/3402-f8625ce91eb27ea6.js\",\"8082\",\"static/chunks/8082-143f9f9fdf5b9192.js\",\"4980\",\"static/chunks/4980-d730333976453575.js\",\"32\",\"static/chunks/32-bafec80821f44ed5.js\",\"6686\",\"static/chunks/6686-f007b1e2101fda62.js\",\"9366\",\"static/chunks/9366-e6a7fb83e1c23555.js\",\"3397\",\"static/chunks/3397-dd13dd89c81e42c8.js\",\"2628\",\"static/chunks/2628-8d231bd404df8976.js\",\"554\",\"static/chunks/554-025495b6bf8e1dac.js\",\"121\",\"static/chunks/121-00c8365f8c57a8cc.js"])</script><script>self.__next_f.push([1,"\",\"3564\",\"static/chunks/3564-dbea25076659e35b.js\",\"5099\",\"static/chunks/5099-9a5433902d87437e.js\",\"6928\",\"static/chunks/app/%5Blocale%5D/learn/%5Bcategory%5D/page-176642ac87704917.js\"],\"default\"]\n22:I[65878,[\"8310\",\"static/chunks/0e5ce63c-e4012ad3e28fdbed.js\",\"5571\",\"static/chunks/c233e9bd-865e5bc301f09aaf.js\",\"2404\",\"static/chunks/a4634e51-1ae34582fa2bb120.js\",\"6290\",\"static/chunks/6290-14a62ddd57f81ba6.js\",\"9177\",\"static/chunks/9177-4f779ab065ca3298.js\",\"5878\",\"static/chunks/5878-e3c69aff2e273e23.js\",\"3069\",\"static/chunks/3069-556a3605b335d482.js\",\"4858\",\"static/chunks/4858-aef93864f4abb320.js\",\"8890\",\"static/chunks/8890-cd2934b2aa3b89dc.js\",\"3402\",\"static/chunks/3402-f8625ce91eb27ea6.js\",\"8082\",\"static/chunks/8082-143f9f9fdf5b9192.js\",\"4980\",\"static/chunks/4980-d730333976453575.js\",\"32\",\"static/chunks/32-bafec80821f44ed5.js\",\"6686\",\"static/chunks/6686-f007b1e2101fda62.js\",\"9366\",\"static/chunks/9366-e6a7fb83e1c23555.js\",\"3397\",\"static/chunks/3397-dd13dd89c81e42c8.js\",\"2628\",\"static/chunks/2628-8d231bd404df8976.js\",\"554\",\"static/chunks/554-025495b6bf8e1dac.js\",\"121\",\"static/chunks/121-00c8365f8c57a8cc.js\",\"3564\",\"static/chunks/3564-dbea25076659e35b.js\",\"5099\",\"static/chunks/5099-9a5433902d87437e.js\",\"6928\",\"static/chunks/app/%5Blocale%5D/learn/%5Bcategory%5D/page-176642ac87704917.js\"],\"Image\"]\n23:I[93885,[\"8310\",\"static/chunks/0e5ce63c-e4012ad3e28fdbed.js\",\"5571\",\"static/chunks/c233e9bd-865e5bc301f09aaf.js\",\"2404\",\"static/chunks/a4634e51-1ae34582fa2bb120.js\",\"6290\",\"static/chunks/6290-14a62ddd57f81ba6.js\",\"9177\",\"static/chunks/9177-4f779ab065ca3298.js\",\"5878\",\"static/chunks/5878-e3c69aff2e273e23.js\",\"3069\",\"static/chunks/3069-556a3605b335d482.js\",\"4858\",\"static/chunks/4858-aef93864f4abb320.js\",\"8890\",\"static/chunks/8890-cd2934b2aa3b89dc.js\",\"3402\",\"static/chunks/3402-f8625ce91eb27ea6.js\",\"8082\",\"static/chunks/8082-143f9f9fdf5b9192.js\",\"4980\",\"static/chunks/4980-d730333976453575.js\",\"32\",\"static/chunks/32-bafec80821f44ed5.js\",\"6686\",\"static/chunks/6686-f007b1e2101fda62.js\",\"9366\",\"static/chunks/9366-e6a7fb83e1c23"])</script><script>self.__next_f.push([1,"555.js\",\"3397\",\"static/chunks/3397-dd13dd89c81e42c8.js\",\"2628\",\"static/chunks/2628-8d231bd404df8976.js\",\"554\",\"static/chunks/554-025495b6bf8e1dac.js\",\"121\",\"static/chunks/121-00c8365f8c57a8cc.js\",\"3564\",\"static/chunks/3564-dbea25076659e35b.js\",\"5099\",\"static/chunks/5099-9a5433902d87437e.js\",\"6928\",\"static/chunks/app/%5Blocale%5D/learn/%5Bcategory%5D/page-176642ac87704917.js\"],\"default\"]\n"])</script><script>self.__next_f.push([1,"1e:[[\"$\",\"$L1f\",null,{\"searchParams\":\"$undefined\",\"postId\":\"$undefined\",\"cmsUrl\":\"https://cms.edx.org\"}],[\"$\",\"$L20\",null,{\"course\":\"$undefined\",\"navigation\":{\"header\":{\"logo\":{\"url\":\"/trademark-logos/edx-logo-elm.svg\",\"altText\":\"edX Online\",\"title\":\"edX Online\"},\"search\":{\"placeholder\":\"What do you want to learn?\"},\"navButton\":{\"label\":\"Learn\"},\"cta\":{\"signIn\":{\"label\":\"Sign In\",\"url\":\"https://authn.edx.org/login\"},\"register\":{\"label\":\"Register for free\",\"url\":\"https://authn.edx.org/register\"},\"business\":{\"label\":\"edX For Business\",\"url\":\"https://business.edx.org\"}}},\"sections\":[{\"title\":\"By goal\",\"items\":[{\"label\":\"Take a course\",\"hero\":{\"title\":\"Courses\",\"cta\":{\"viewAll\":{\"label\":\"View all courses\",\"url\":\"/search?tab=course\u0026page=1\"},\"learnMore\":{\"label\":\"View all courses with certificates\",\"url\":\"/courses?q=free+online+courses\"}},\"ctaPosition\":\"left\"},\"productSummaries\":[{\"title\":\"Browse by topic\",\"links\":[{\"url\":\"/courses?q=free+ai+courses\",\"label\":\"AI courses\",\"isExternal\":false},{\"url\":\"/courses?q=free+cybersecurity+courses\",\"label\":\"Cybersecurity courses\",\"isExternal\":false},{\"url\":\"/courses?q=free+data+science+course\",\"label\":\"Data science courses\",\"isExternal\":false},{\"url\":\"/courses?q=free+data+analytics+courses\",\"label\":\"Analytics courses\",\"isExternal\":false},{\"url\":\"/courses?q=free+excel+courses\",\"label\":\"Excel courses\",\"isExternal\":false},{\"url\":\"/courses?q=free+programming+courses\",\"label\":\"Programming courses\",\"isExternal\":false},{\"url\":\"/courses?q=free+sql+courses\",\"label\":\"SQL courses\",\"isExternal\":false},{\"url\":\"/courses?q=free+finance+courses\",\"label\":\"Finance courses\",\"isExternal\":false},{\"url\":\"/courses?q=free+digital+marketing+course\",\"label\":\"Digital marketing courses\",\"isExternal\":false},{\"url\":\"/courses?q=free+computer+science+courses\",\"label\":\"Computer science courses\",\"isExternal\":false},{\"url\":\"/courses?q=free+computer+science+courses\",\"label\":\"Coding courses\",\"isExternal\":false},{\"url\":\"/courses?q=free+leadership+courses\",\"label\":\"Leadership courses\",\"isExternal\":false},{\"url\":\"/courses?q=free+accounting+courses\",\"label\":\"Accounting courses\",\"isExternal\":false},{\"url\":\"/courses?q=google+free+courses\",\"label\":\"Google courses\",\"isExternal\":false}]},{\"title\":\"Browse by skill\",\"links\":[{\"url\":\"/courses?q=ai+in+healthcare+course\",\"label\":\"AI in healthcare courses\",\"isExternal\":false},{\"url\":\"/courses?q=python+data+science+course\",\"label\":\"Python data science courses\",\"isExternal\":false},{\"url\":\"/courses?q=ai+for+business+course\",\"label\":\"AI for business courses\",\"isExternal\":false},{\"url\":\"/courses?q=hr+analytics+course\",\"label\":\"HR analytics courses\",\"isExternal\":false},{\"url\":\"/courses?q=python+machine+learning+course\",\"label\":\"Python machine learning courses\",\"isExternal\":false},{\"url\":\"/courses?q=ai+marketing+course\",\"label\":\"AI marketing courses\",\"isExternal\":false},{\"url\":\"/courses?q=business+marketing+course\",\"label\":\"Business marketing courses\",\"isExternal\":false},{\"url\":\"/courses?q=ai+and+machine+learning+courses\",\"label\":\"AI and machine learning courses\",\"isExternal\":false},{\"url\":\"/courses?q=business+management+course\",\"label\":\"Business management courses\",\"isExternal\":false},{\"url\":\"/courses?q=html+css+course\",\"label\":\"HTML css courses\",\"isExternal\":false}]},{\"title\":\"Browse by difficulty\",\"links\":[{\"url\":\"/courses?q=excel+courses+for+beginners\",\"label\":\"Excel courses for beginners\",\"isExternal\":false},{\"url\":\"/courses?q=excel+advanced+courses\",\"label\":\"Advanced Excel courses\",\"isExternal\":false},{\"url\":\"/courses?q=python+course+for+beginners\",\"label\":\"Python courses for beginners\",\"isExternal\":false},{\"url\":\"/courses?q=accounting+courses+for+beginners\",\"label\":\"Accounting courses for beginners\",\"isExternal\":false},{\"url\":\"/courses?q=ai+courses+for+beginners\",\"label\":\"AI courses for beginners\",\"isExternal\":false},{\"url\":\"/courses?q=data+analytics+courses+for+beginners\",\"label\":\"Data analytics courses for beginners\",\"isExternal\":false},{\"url\":\"/courses?q=cybersecurity+courses+for+beginners\",\"label\":\"Cybersecurity courses for beginners\",\"isExternal\":false},{\"url\":\"/courses?q=hr+courses+for+beginners\",\"label\":\"HR courses for beginners\",\"isExternal\":false},{\"url\":\"/courses?q=finance+courses+for+beginners\",\"label\":\"Finance courses for beginners\",\"isExternal\":false},{\"url\":\"/courses?q=coding+courses+for+beginners\",\"label\":\"Coding courses for beginners\",\"isExternal\":false},{\"url\":\"/courses?q=it+courses+for+beginners\",\"label\":\"IT courses for beginners\",\"isExternal\":false},{\"url\":\"/courses?q=bookkeeping+courses+for+beginners\",\"label\":\"Bookkeeping courses for beginners\",\"isExternal\":false},{\"url\":\"/courses?q=computer+programming+courses+for+beginners\",\"label\":\"Computer programming courses for beginners\",\"isExternal\":false},{\"url\":\"/courses?q=project+management+courses+for+beginners\",\"label\":\"Project management courses for beginners\",\"isExternal\":false},{\"url\":\"/courses?q=trading+courses+for+beginners\",\"label\":\"Trading courses for beginners\",\"isExternal\":false}]},{\"title\":\"Browse by partner\",\"links\":[{\"url\":\"/courses?q=google+ai+course\",\"label\":\"Google AI courses\",\"isExternal\":false},{\"url\":\"/courses?q=mit+ai+course\",\"label\":\"MIT AI courses\",\"isExternal\":false},{\"url\":\"/courses?q=harvard+ai+course\",\"label\":\"Harvard AI courses\",\"isExternal\":false},{\"url\":\"/courses?q=ibm+data+science+course\",\"label\":\"IBM data science courses\",\"isExternal\":false},{\"url\":\"/courses?q=google+python+course\",\"label\":\"Google python courses\",\"isExternal\":false}]}]},{\"label\":\"Earn a certificate\",\"hero\":{\"title\":\"Certificates\",\"subTitle\":\"Self-paced, instructor-led courses and programs that build career-ready skills and elevate your resume.\",\"cta\":{\"viewAll\":{\"label\":\"View all certificates\",\"url\":\"/search?tab=professional-certificate\u0026page=1\"},\"learnMore\":{\"label\":\"Learn more about certificates\",\"url\":\"/certificates\"}},\"ctaPosition\":\"left\"},\"productSummaries\":[{\"title\":\"Professional Certificates\",\"description\":\"A select series of courses in high-demand fields to build your professional skill set.\",\"features\":[\"Instructor-led or self paced\",\"8-16 weeks\"],\"links\":[{\"label\":\"Browse all Professional Certificates\",\"url\":\"/search?tab=professional-certificate\",\"isExternal\":false},{\"label\":\"Browse all XSeries certificates\",\"url\":\"/search?tab=xseries\",\"isExternal\":false}]},{\"title\":\"Executive Education\",\"description\":\"Cohort-based certificate programs in career-critical skills. Aimed at building your professional development to advance or change your career.\",\"features\":[\"Instructor-led\",\"2-12 weeks\"],\"links\":[{\"label\":\"Browse all Executive Education\",\"url\":\"/search?tab=executive-education\",\"isExternal\":false}]}],\"productLists\":[{\"title\":\"Trending certificates\",\"products\":[{\"id\":\"7461d083-bf2e-55bb-af0a-79b2e389a2b8\",\"title\":\"Oxford Executive Leadership Programme\",\"url\":\"/executive-education/university-of-oxford-executive-leadership-programme\",\"owner\":{\"key\":\"OxfordX\",\"name\":\"University of Oxford\",\"logo\":{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/2b628454-1c1f-4a61-978a-7bec1e588918-f65474eb5fac.png\"}}},{\"id\":\"2933d0bd-43ed-52f0-95f6-12241e257a62\",\"title\":\"Nutrition Science\",\"url\":\"/executive-education/stanford-university-nutrition-science\",\"owner\":{\"key\":\"StanfordOnline\",\"name\":\"Stanford University\",\"logo\":{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/f53a7458-c79b-4524-97cf-28241114230e-e47d44123c3b.png\"}}},{\"id\":\"60387e50-0bb8-58cb-be7c-28aff4fd201d\",\"title\":\"Sustainable Finance\",\"url\":\"/executive-education/university-of-cambridge-sustainable-finance\",\"owner\":{\"key\":\"UniversityofCambridge\",\"name\":\"University of Cambridge\",\"logo\":{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/a7e2febc-e366-4b23-9fc3-5659cf53d452-7e24533c111d.png\"}}},{\"id\":\"87ef0a37-88f5-4843-888c-166fc9d1644a\",\"title\":\"Agile Project Management\",\"url\":\"/certificates/professional-certificate/umd-usmx-agile-project-management\",\"owner\":{\"key\":\"USMx\",\"name\":\"University System of Maryland\",\"logo\":{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/b9dc96da-b3fc-45a6-b6b7-b8e12eb79335-bc0488f1a5f8.png\"}}},{\"id\":\"8c5c1af9-761b-49b4-9f52-f6f48856d906\",\"title\":\"Computer Science for Artificial Intelligence\",\"url\":\"/certificates/professional-certificate/harvardx-computer-science-for-artifical-intelligence\",\"owner\":{\"key\":\"HarvardX\",\"name\":\"Harvard University\",\"logo\":{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/44022f13-20df-4666-9111-cede3e5dc5b6-2cc39992c67a.png\"}}},{\"id\":\"e78d61bc-aa9d-417f-b244-fed28f5737b6\",\"title\":\"Data Analyst\",\"url\":\"/certificates/professional-certificate/ibm-data-analyst\",\"owner\":{\"key\":\"IBM\",\"name\":\"IBM\",\"logo\":{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/87b07564-d569-4cfd-bee6-8b0a407acb73-dc33e4b5f353.png\"}}},{\"id\":\"b9629ec9-af4e-4ea3-9a14-268209a06a76\",\"title\":\"Introduction to Kubernetes and Cloud Native Technologies\",\"url\":\"/certificates/professional-certificate/linuxfoundationx-introduction-to-kubernetes-and-cloud-native-technologies\",\"owner\":{\"key\":\"LinuxFoundationX\",\"name\":\"The Linux Foundation\",\"logo\":{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/4d254841-5cc9-4174-a28d-5b4f823c0122-51c34231df61.png\"}}}]}],\"linkList\":{\"title\":\"Popular topics\",\"links\":[{\"label\":\"Data Science Certificates\",\"url\":\"/certificates/data-science-certificate\",\"isExternal\":false},{\"label\":\"Business Certificates\",\"url\":\"/certificates/business-certificate \",\"isExternal\":false},{\"label\":\"Data Analytics Certificates\",\"url\":\"/certificates/data-analytics-certificate\",\"isExternal\":false},{\"label\":\"Artificial Intelligence (AI) Certificates\",\"url\":\"/certificates/ai-certificates\",\"isExternal\":null},{\"label\":\"Machine Learning Certificates\",\"url\":\"/certificates/machine-learning-certificates\",\"isExternal\":false},{\"label\":\"Python Certificates\",\"url\":\"/certificates/python-certificate\",\"isExternal\":false},{\"label\":\"Project Management Certificates\",\"url\":\"/certificates/project-management-certificate\",\"isExternal\":false},{\"label\":\"Digital Marketing Certificates\",\"url\":\"/certificates/digital-marketing-certificates\",\"isExternal\":false},{\"label\":\"IT Certificates\",\"url\":\"/certificates/it-certificates\",\"isExternal\":false},{\"label\":\"Sustainability Executive Education Programs\",\"url\":\"/executive-education/sustainability\",\"isExternal\":false},{\"label\":\"Data Science Executive Education Programs\",\"url\":\"/executive-education/data-science\",\"isExternal\":false},{\"label\":\"Management Executive Education Programs\",\"url\":\"/executive-education/management\",\"isExternal\":false},{\"label\":\"Data Analytics Executive Education Programs\",\"url\":\"/executive-education/data-analytics\",\"isExternal\":false},{\"label\":\"Product Management Executive Education Programs\",\"url\":\"/executive-education/product-management\",\"isExternal\":false},{\"label\":\"Economics Executive Education Programs\",\"url\":\"/executive-education/economics\",\"isExternal\":false},{\"label\":\"Strategy Executive Education Programs\",\"url\":\"/executive-education/strategy\",\"isExternal\":false},{\"label\":\"Finance Executive Education Programs\",\"url\":\"/executive-education/finance\",\"isExternal\":false},{\"label\":\"Leadership Executive Education Programs\",\"url\":\"/executive-education/leadership\",\"isExternal\":false},{\"label\":\"FinTech Executive Education Programs\",\"url\":\"/executive-education/fintech\",\"isExternal\":false},{\"label\":\"Real Estate Executive Education Programs\",\"url\":\"/executive-education/real-estate\",\"isExternal\":false},{\"label\":\"Blockchain Executive Education Programs\",\"url\":\"/executive-education/blockchain\",\"isExternal\":false},{\"label\":\"Healthcare Executive Education Programs\",\"url\":\"/executive-education/healthcare\",\"isExternal\":false},{\"label\":\"Artificial Intelligence (AI) Executive Education Programs\",\"url\":\"/executive-education/artificial-intelligence\",\"isExternal\":false},{\"label\":\"Marketing Executive Education Programs\",\"url\":\"/executive-education/marketing\",\"isExternal\":false},{\"label\":\"Project Management Executive Education Programs\",\"url\":\"/executive-education/project-management\",\"isExternal\":false},{\"label\":\"Digital Marketing Executive Education Programs\",\"url\":\"/executive-education/digital-marketing\",\"isExternal\":false},{\"label\":\"Operations Management Executive Education Programs\",\"url\":\"/executive-education/operations-management\",\"isExternal\":false},{\"label\":\"Design Executive Education Programs\",\"url\":\"/executive-education/design\",\"isExternal\":false},{\"label\":\"Supply Chain Executive Education Programs\",\"url\":\"/executive-education/supply-chain\",\"isExternal\":false},{\"label\":\"Information Technology Executive Education Programs\",\"url\":\"/executive-education/information-technology\",\"isExternal\":false},{\"label\":\"Cybersecurity Executive Education Programs\",\"url\":\"/executive-education/cybersecurity\",\"isExternal\":false},{\"label\":\"Innovation Executive Education Programs\",\"url\":\"/executive-education/innovation\",\"isExternal\":false},{\"label\":\"Negotiation Executive Education Programs\",\"url\":\"/executive-education/negotiation\",\"isExternal\":false},{\"label\":\"Entrepreneurship Executive Education Programs\",\"url\":\"/executive-education/entrepreneurship\",\"isExternal\":false},{\"label\":\"Law Executive Education Programs\",\"url\":\"/executive-education/law\",\"isExternal\":false},{\"label\":\"Programas de Educación Ejecutiva en Transformación Digital\",\"url\":\"/executive-education/digital-transformation\",\"isExternal\":false},{\"label\":\"Human Resources Executive Education Programs\",\"url\":\"/executive-education/human-resources\",\"isExternal\":false},{\"label\":\"Talent Management Executive Education Programs\",\"url\":\"/executive-education/talent-management\",\"isExternal\":false},{\"label\":\"Sales Executive Education Programs\",\"url\":\"/executive-education/sales\",\"isExternal\":false},{\"label\":\"Accounting Executive Education Programs\",\"url\":\"/executive-education/accounting\",\"isExternal\":false},{\"label\":\"Change Management Executive Education Programs\",\"url\":\"/executive-education/change-management\",\"isExternal\":false},{\"label\":\"Risk Management Executive Education Programs\",\"url\":\"/executive-education/risk-management\",\"isExternal\":false},{\"label\":\"International Relations Executive Education Programs\",\"url\":\"/executive-education/international-relations\",\"isExternal\":false},{\"label\":\"Women's Executive Leadership Programs\",\"url\":\"/executive-education/womens-executive-leadership-program\",\"isExternal\":false}]}},{\"label\":\"Earn a degree\",\"hero\":{\"title\":\"Degrees\",\"subTitle\":\"Degree programs from top institutions around the world to enable your career transformation and advancement.\",\"cta\":{\"viewAll\":{\"label\":\"View all Degrees\",\"url\":\"/search?tab=degree-program\u0026page=1\"}},\"ctaPosition\":\"right\"},\"productSummaries\":[{\"title\":\"Master's \u0026 Doctoral\",\"description\":\"Online degree programs from top institutions taught by expert faculty.\",\"features\":[\"Instructor-led, graduate level classes\",\"1-3 years\"],\"links\":[{\"label\":\"Browse all Master's Degrees\",\"url\":\"/masters\"},{\"label\":\"Browse all Doctorate degrees\",\"url\":\"/doctorate\"}]},{\"title\":\"Bachelor's\",\"description\":\"Online undergraduate degree programs from top institutions taught by expert faculty.\",\"features\":[\"Instructor-led, online classes\",\"2-6 years\"],\"links\":[{\"label\":\"Browse all Bachelor's degrees\",\"url\":\"/bachelors\"}]},{\"title\":\"Paths to degrees\",\"description\":\"A series of graduate-level programs from top institutions, uniquely designed to advance your career by providing a deep level of learning in a specific discipline.\",\"features\":[\"Instructor-led, online classes\",\"2 - 6 months\"],\"links\":[{\"label\":\"Browse all MicroMasters® pathways\",\"url\":\"/masters/micromasters\"},{\"label\":\"Browse all MicroBachelors® pathways\",\"url\":\"/bachelors/microbachelors\"}]}],\"productLists\":[{\"title\":\"Trending degrees\",\"products\":[{\"id\":\"85f981c8-4e1b-4cc4-b3cc-cd2bd741b405\",\"title\":\"Master of Arts in Psychology\",\"url\":\"/masters/psychology/pepperdine-master-of-arts-in-psychology\",\"owner\":{\"key\":\"Pepperdine\",\"name\":\"Pepperdine University\",\"logo\":{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/9028c889-8b76-4d81-a7ec-622c024550ef-820f45a8df63.png\"}}},{\"id\":\"273b170f-af05-4036-9f51-d865910959e2\",\"title\":\"Master of Social Work\",\"url\":\"/masters/online-msw-programs/denver-master-of-social-work\",\"owner\":{\"key\":\"UniversityofDenver\",\"name\":\"University of Denver\",\"logo\":{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/ed4b14c6-ee2c-4a78-a97b-e73bad0485af-27577f044447.png\"}}},{\"id\":\"c106927f-09cc-4b9a-9f8c-c757db45d92a\",\"title\":\"Bachelor of Science in Economics and Management\",\"url\":\"/bachelors/universityoflondon-bachelor-of-science-in-economics-and-management\",\"owner\":{\"key\":\"UniversityofLondon\",\"name\":\"University of London\",\"logo\":{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/5427ee88-6dba-46ff-8ed8-87b71e3234da-0af1465ab67e.png\"}}},{\"id\":\"4a8c1f85-f7bb-4ba9-b102-b5864c921fa1\",\"title\":\"Master of Public Health\",\"url\":\"/masters/masters-in-public-health-online/unc-master-of-public-health\",\"owner\":{\"key\":\"UNC-CH\",\"name\":\"The University of North Carolina at Chapel Hill\",\"logo\":{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/283be432-c4de-4818-83c5-bd77a2de49d6-2a29798bfd41.png\"}}},{\"id\":\"a50e509c-44ae-4e85-9e12-85af6052c613\",\"title\":\"Doctor of Education in Leadership and Learning in Organizations\",\"url\":\"/doctorate/online-edd-programs/vanderbilt-doctor-of-education-in-leadership-and-learning-in-organizations\",\"owner\":{\"key\":\"Vanderbilt\",\"name\":\"Vanderbilt University\",\"logo\":{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/de684a48-2ebc-4596-b466-98ea2cc948b4-864155e2641e.png\"}}},{\"id\":\"35ec5b30-d213-4778-ab2a-ae2783c86502\",\"title\":\"Master of Science Strategic Marketing\",\"url\":\"/masters/surrey-master-of-science-strategic-marketing\",\"owner\":{\"key\":\"UOS\",\"name\":\"University of Surrey\",\"logo\":{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/fab95b1f-000b-45fe-97a9-89b449974728-7da9db5b85f8.png\"}}}]}],\"linkList\":{\"title\":\"Trending Topics\",\"links\":[{\"label\":\"Master's in Business Administration (MBA)\",\"url\":\"/masters/online-mba\"},{\"label\":\"Master's in Social Work (MSW)\",\"url\":\"/masters/online-msw-programs\"},{\"label\":\"Master's in Psychology\",\"url\":\"/masters/psychology\"},{\"label\":\"Master's in Clinical Psychology\",\"url\":\"/masters/psychology/online-masters-in-clinical-psychology\"},{\"label\":\"Master's in Marriage and Family Therapy (MFT)\",\"url\":\"/masters/psychology/online-mft-programs\"},{\"label\":\"Master's in Applied Behavior Analysis (ABA)\",\"url\":\"/masters/psychology/online-aba-programs\"},{\"label\":\"Master's in Licensed Professional Counseling (LPC)\",\"url\":\"/masters/psychology/online-lpc-programs\"},{\"label\":\"Master of Data Science (MDS)\",\"url\":\"/masters/online-masters-in-data-science\"},{\"label\":\"Master's in Artificial Intelligence\",\"url\":\"/masters/online-masters-in-artificial-intelligence\"},{\"label\":\"Master's in Architecture (M.Arch)\",\"url\":\"/masters/online-masters-in-architecture\"},{\"label\":\"Master's in Speech Language Pathology (SLP)\",\"url\":\"/masters/online-slp-programs\"},{\"label\":\"Master's in Public Health (MPH)\",\"url\":\"/masters/masters-in-public-health-online\"},{\"label\":\"Master's in Education\",\"url\":\"/masters/masters-in-education-online\"},{\"label\":\"Master's in Educational Leadership\",\"url\":\"/masters/masters-in-education-online/online-masters-in-educational-leadership\"},{\"label\":\"Master's in Teaching (MAT)\",\"url\":\"/masters/online-mat-programs\"},{\"label\":\"Master's in Nursing (MSN)\",\"url\":\"/masters/online-msn-programs\"},{\"label\":\"Family Nurse Practitioner (FNP)\",\"url\":\"/masters/online-msn-programs/online-fnp-programs\"},{\"label\":\"Psychiatric Mental Health Nurse Practitioner (PMHNP)\",\"url\":\"/masters/online-msn-programs/online-pmhnp-programs\"},{\"label\":\"Acute Care Nurse Practitioner (ACNP)\",\"url\":\"/masters/online-msn-programs/online-acute-care-nurse-practitioner-programs\"},{\"label\":\"Master of Laws (LLM)\",\"url\":\"/masters/online-llm-programs\"},{\"label\":\"Master of Legal Studies\",\"url\":\"/masters/online-master-of-legal-studies\"},{\"label\":\"Master's in Counseling\",\"url\":\"/masters/counseling\"},{\"label\":\"Master's in School Counseling\",\"url\":\"/masters/counseling/online-masters-in-school-counseling\"},{\"label\":\"Master's in Mental Health Counseling\",\"url\":\"/masters/counseling/online-masters-in-mental-health-counseling\"},{\"label\":\"Master's in Counseling \u0026 Psychology\",\"url\":\"/masters/counseling-psychology\"},{\"label\":\"Master of Engineering (MEng)\",\"url\":\"/masters/online-masters-in-engineering\"},{\"label\":\"Master's in Computer Engineering\",\"url\":\"/masters/online-masters-in-engineering/online-computer-engineering-masters\"},{\"label\":\"Master's in Cybersecurity\",\"url\":\"/masters/online-masters-in-cybersecurity\"},{\"label\":\"Master's in Information Technology (IT)\",\"url\":\"/masters/online-masters-in-information-technology\"},{\"label\":\"Master's in Information Systems\",\"url\":\"/masters/masters-in-information-systems-online\"},{\"label\":\"Master's in Computer Science\",\"url\":\"/masters/online-masters-in-computer-science\"},{\"label\":\"Master of Library and Information Science (MLIS)\",\"url\":\"/masters/online-mlis-programs\"},{\"label\":\"Master's in International Relations\",\"url\":\"/masters/online-masters-in-international-relations\"},{\"label\":\"Master's in Communication\",\"url\":\"/masters/online-masters-in-communication\"},{\"label\":\"Master's in Design\",\"url\":\"/masters/online-masters-in-design\"},{\"label\":\"Master's in Health Administration (MHA)\",\"url\":\"/masters/online-mha\"},{\"label\":\"Master's in Business\",\"url\":\"/masters/online-masters-in-business\"},{\"label\":\"Master of Accounting\",\"url\":\"/masters/online-masters-in-accounting\"},{\"label\":\"Master's in Entrepreneurship\",\"url\":\"/masters/masters-in-entrepreneurship-online\"},{\"label\":\"Master's in Leadership\",\"url\":\"/masters/masters-in-leadership-online\"},{\"label\":\"Master's in Human Resources\",\"url\":\"/masters/online-masters-in-human-resources\"},{\"label\":\"Master's in Supply Chain Management\",\"url\":\"/masters/online-masters-in-supply-chain-management\"},{\"label\":\"Master's in Public Administration (MPA)\",\"url\":\"/masters/masters-in-public-administration-online\"},{\"label\":\"Master's in Analytics\",\"url\":\"/masters/online-masters-in-analytics\"},{\"label\":\"Maestría en Analítica de Negocios\",\"url\":\"/masters/online-masters-in-analytics/online-masters-in-business-analytics\"},{\"label\":\"Master's in Data Analytics\",\"url\":\"/masters/online-masters-in-analytics/online-masters-in-data-analytics\"},{\"label\":\"Master's in Project Management (MPM)\",\"url\":\"/masters/masters-in-project-management-online\"},{\"label\":\"Maestría en Cuidado de la Salud\",\"url\":\"/masters/healthcare\"},{\"label\":\"Master's in Nutrition\",\"url\":\"/masters/online-masters-in-nutrition\"},{\"label\":\"Licenciatura en Trabajo Social (BSW)\",\"url\":\"/bachelors/social-work-bsw\"},{\"label\":\"Bachelor of Psychology\",\"url\":\"/bachelors/psychology\"},{\"label\":\"Bachelor of Computer Science in Data Science\",\"url\":\"/bachelors/computer-data-sciences\"},{\"label\":\"Bachelor of Public Health\",\"url\":\"/bachelors/bachelors-in-public-health-online\"},{\"label\":\"Bachelor of Accounting\",\"url\":\"/bachelors/online-accounting-bachelor-degree\"},{\"label\":\"Bachelor of Finance\",\"url\":\"/bachelors/online-bachelors-degree-finance\"},{\"label\":\"Bachelor of Health and Social Service\",\"url\":\"/bachelors/health-social-services\"},{\"label\":\"Bachelor's in Business\",\"url\":\"/bachelors/business\"},{\"label\":\"Doctorate in Social Work (DSW)\",\"url\":\"/doctorate/social-work\"},{\"label\":\"Doctor of Public Health (DrPH)\",\"url\":\"/doctorate/online-drph-programs\"},{\"label\":\"Doctor of Education (EdD)\",\"url\":\"/doctorate/online-edd-programs\"},{\"label\":\"Doctor of Nursing Practice (DNP)\",\"url\":\"/doctorate/online-dnp-programs\"},{\"label\":\"Doctor of Physical Therapy (DPT)\",\"url\":\"/doctorate/online-dpt-programs\"},{\"label\":\"Doctor of Pharmacy (PharmD)\",\"url\":\"/doctorate/online-pharmd-programs\"}]}}]},{\"title\":\"By topic\",\"items\":[{\"label\":\"Artificial Intelligence\",\"hero\":{\"title\":\"Artificial Intelligence\",\"subTitle\":\"Artificial Intelligence (AI) is a unique field of study that combines computer science, robust datasets, and the ability of machines to simulate human intelligence to advance problem-solving techniques and tasks.\",\"cta\":{\"viewAll\":{\"label\":\"View all Artificial Intelligence courses\",\"url\":\"/search?tab=course\u0026skills.skill=Artificial+Intelligence\"},\"learnMore\":{\"label\":\"Learn more about Artificial Intelligence\",\"url\":\"/learn/artificial-intelligence\"}},\"ctaPosition\":\"left\"},\"linkList\":{\"title\":\"Related Topics\",\"links\":[{\"label\":\"ChatGPT\",\"url\":\"/learn/chatgpt\"},{\"label\":\"Machine Learning\",\"url\":\"/learn/machine-learning\"},{\"label\":\"Computer Science\",\"url\":\"/learn/computer-science\"},{\"label\":\"Electronics\",\"url\":\"/learn/electronics\"},{\"label\":\"Automation\",\"url\":\"/learn/automation\"},{\"label\":\"Augmented Reality\",\"url\":\"/learn/augmented-reality\"},{\"label\":\"Internet of Things\",\"url\":\"/learn/iot-internet-of-things\"},{\"label\":\"Software Engineering\",\"url\":\"/learn/software-engineering\"},{\"label\":\"Data Mining\",\"url\":\"/learn/data-mining\"},{\"label\":\"Robotics\",\"url\":\"/learn/robotics\"},{\"label\":\"Deep Learning\",\"url\":\"/learn/deep-learning\"},{\"label\":\"Computer Engineering\",\"url\":\"/learn/computer-engineering\"},{\"label\":\"Algorithms\",\"url\":\"/learn/algorithms\"},{\"label\":\"Natural Language Processing\",\"url\":\"/learn/natural-language-processing\"},{\"label\":\"Computer Programming\",\"url\":\"/learn/computer-programming\"},{\"label\":\"Computer Vision\",\"url\":\"/learn/computer-vision\"},{\"label\":\"Robotic Process Automation\",\"url\":\"/learn/robotic-process-automation\"},{\"label\":\"Computer Networking\",\"url\":\"/learn/computer-networking\"},{\"label\":\"Mathematical Modeling\",\"url\":\"/learn/mathematical-modeling\"},{\"label\":\"Autonomous Robotics\",\"url\":\"/learn/autonomous-robotics\"}]},\"productLists\":[{\"title\":\"Courses\",\"products\":[{\"id\":\"d62627c6-2b97-5ffc-b862-2f2c4bab95cf\",\"title\":\"Large Language Models: Application through Production\",\"url\":\"/learn/computer-science/databricks-large-language-models-application-through-production\",\"owner\":{\"key\":\"Databricks\",\"name\":\"Databricks\",\"logo\":{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/f396c277-2a09-46ec-b76f-32fedc4a82cc-59e1dca89c96.png\"}}},{\"id\":\"b58fc9b9-5426-56e6-9cdc-f1f872b3e816\",\"title\":\"CS50's Introduction to Artificial Intelligence with Python\",\"url\":\"/learn/artificial-intelligence/harvard-university-cs50-s-introduction-to-artificial-intelligence-with-python\",\"owner\":{\"key\":\"HarvardX\",\"name\":\"Harvard University\",\"logo\":{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/44022f13-20df-4666-9111-cede3e5dc5b6-2cc39992c67a.png\"}}},{\"id\":\"df35235c-d8a5-5d87-992a-51e960aa2bb5\",\"title\":\"AI for Everyone: Master the Basics\",\"url\":\"/learn/artificial-intelligence/ibm-ai-for-everyone-master-the-basics\",\"owner\":{\"key\":\"IBM\",\"name\":\"IBM\",\"logo\":{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/87b07564-d569-4cfd-bee6-8b0a407acb73-dc33e4b5f353.png\"}}}],\"cta\":{\"label\":\"View all Artificial Intelligence courses\",\"url\":\"/search?q=artificial+intelligence\u0026tab=course\"}},{\"title\":\"Certificates\",\"products\":[{\"id\":\"09a238fc-8b5a-5d83-8c74-2f002c3ba841\",\"title\":\"Artificial Intelligence in Health Care\",\"url\":\"/executive-education/massachusetts-institute-of-technology-artificial-intelligence-in-health-care\",\"owner\":{\"key\":\"MITx\",\"name\":\"Massachusetts Institute of Technology\",\"logo\":{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/2a73d2ce-c34a-4e08-8223-83bca9d2f01d-74256c21f26d.png\"}}},{\"id\":\"e7388b02-2261-507f-a84e-f5a0f5d47c49\",\"title\":\"Artificial Intelligence: Implications for Business Strategy\",\"url\":\"/executive-education/massachusetts-institute-of-technology-artificial-intelligence-implications-for-business-strategy\",\"owner\":{\"key\":\"MITx\",\"name\":\"Massachusetts Institute of Technology\",\"logo\":{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/2a73d2ce-c34a-4e08-8223-83bca9d2f01d-74256c21f26d.png\"}}},{\"id\":\"396aac5e-d950-5f87-95ca-8184399edd50\",\"title\":\"Oxford Artificial Intelligence Programme\",\"url\":\"/executive-education/university-of-oxford-artificial-intelligence-programme\",\"owner\":{\"key\":\"OxfordX\",\"name\":\"University of Oxford\",\"logo\":{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/2b628454-1c1f-4a61-978a-7bec1e588918-f65474eb5fac.png\"}}}],\"cta\":{\"label\":\"View all Artificial Intelligence Certificates\",\"url\":\"/certificates/ai-certificates\"}},{\"title\":\"Degrees\",\"products\":[{\"id\":\"ea953e86-de57-4512-8503-a89f00f1b2b1\",\"title\":\"Master of Science in Computer Science\",\"url\":\"/masters/online-masters-in-computer-science/syracuse-master-of-science-in-computer-science\",\"owner\":{\"key\":\"SyracuseUniversity\",\"name\":\"Syracuse University\",\"logo\":{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/6ec06cd6-4355-44bd-822a-2094d743b7a4-7ed01c537f21.png\"}}},{\"id\":\"89f39d1a-bb23-4944-b6e0-b51fe25ce932\",\"title\":\"Master of Science in Artificial Intelligence (MSAI)\",\"url\":\"/masters/online-masters-in-artificial-intelligence/online-master-artificial-intelligence-utaustinx\",\"owner\":{\"key\":\"UTAustinX\",\"name\":\"The University of Texas at Austin\",\"logo\":{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/9d38ad58-87fb-4a89-9f23-c8df318112e3-aec8e9e98a5f.png\"}}},{\"id\":\"ee60cf8f-3b6c-476f-94c1-1a16c8f50c48\",\"title\":\"Master of Science in Artificial Intelligence\",\"url\":\"/masters/maryville-university-master-of-science-in-artificial-intelligence\",\"owner\":{\"key\":\"Maryville\",\"name\":\"Maryville University\",\"logo\":{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/8e585adc-f870-4e8f-abe8-e67da192d49c-33b63ce3ca64.png\"}}}],\"cta\":{\"label\":\"View all Masters in Artificial Intelligence\",\"url\":\"/masters/online-masters-in-artificial-intelligence\"}}]},{\"label\":\"Data Science\",\"hero\":{\"title\":\"Data Science\",\"subTitle\":\"Data Science is an interdisciplinary field which utilizes scientific methods, algorithms, and data insights to extract meaning and drive informed decision-making across industries.\",\"cta\":{\"viewAll\":{\"label\":\"View all Data Science courses\",\"url\":\"/search?tab=course\u0026skills.skill=Data+Science\"}},\"ctaPosition\":\"right\"},\"linkList\":{\"title\":\"Related Topics\",\"links\":[{\"label\":\"Power BI\",\"url\":\"/learn/power-bi\"},{\"label\":\"SQL\",\"url\":\"/learn/sql\"},{\"label\":\"Analytics\",\"url\":\"/learn/analytics\"},{\"label\":\"MySQL\",\"url\":\"/learn/mysql\"},{\"label\":\"Coding\",\"url\":\"/learn/coding\"},{\"label\":\"PostgreSQL\",\"url\":\"/learn/postgresql\"},{\"label\":\"Big Data\",\"url\":\"/learn/big-data\"},{\"label\":\"Cloud Computing\",\"url\":\"/learn/cloud-computing\"},{\"label\":\"Syntax\",\"url\":\"/learn/syntax\"},{\"label\":\"Statistics\",\"url\":\"/learn/statistics\"},{\"label\":\"TensorFlow\",\"url\":\"/learn/tensorflow\"},{\"label\":\"Probability\",\"url\":\"/learn/probability\"},{\"label\":\"Regression\",\"url\":\"/learn/regression\"},{\"label\":\"Inference\",\"url\":\"/learn/inference\"},{\"label\":\"PyTorch\",\"url\":\"/learn/pytorch\"},{\"label\":\"Grafana\",\"url\":\"/learn/grafana\"},{\"label\":\"Business Intelligence\",\"url\":\"/learn/business-intelligence\"},{\"label\":\"Data Warehouse\",\"url\":\"/learn/data-warehouse\"},{\"label\":\"Data Structures\",\"url\":\"/learn/data-structures\"},{\"label\":\"Data Visualization\",\"url\":\"/learn/data-visualization\"}]},\"productLists\":[{\"title\":\"Courses\",\"products\":[{\"id\":\"ad547f78-ac97-510f-9470-c9c0e6c9d348\",\"title\":\"Introduction to Analytics Modeling\",\"url\":\"/learn/data-analysis/the-georgia-institute-of-technology-introduction-to-analytics-modeling\",\"owner\":{\"key\":\"GTx\",\"name\":\"The Georgia Institute of Technology\",\"logo\":{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/8537d31f-01b4-40fd-b652-e17b38eefe41-4c6537c07d54.png\"}}},{\"id\":\"a926dd9d-d01b-5a7e-9905-c472ed4a388c\",\"title\":\"Data Science: R Basics\",\"url\":\"/learn/r-programming/harvard-university-data-science-r-basics\",\"owner\":{\"key\":\"HarvardX\",\"name\":\"Harvard University\",\"logo\":{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/44022f13-20df-4666-9111-cede3e5dc5b6-2cc39992c67a.png\"}}},{\"id\":\"2205130f-9a8c-5988-aa70-ec37c470c2b0\",\"title\":\"Probability - The Science of Uncertainty and Data\",\"url\":\"/learn/probability/massachusetts-institute-of-technology-probability-the-science-of-uncertainty-and-data\",\"owner\":{\"key\":\"MITx\",\"name\":\"Massachusetts Institute of Technology\",\"logo\":{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/2a73d2ce-c34a-4e08-8223-83bca9d2f01d-74256c21f26d.png\"}}}],\"cta\":{\"label\":\"View all Data Science courses\",\"url\":\"/search?q=data+science\u0026tab=course\"}},{\"title\":\"Certificates\",\"products\":[{\"id\":\"3c32e3e0-b6fe-4ee4-bd4f-210c6339e074\",\"title\":\"Data Science\",\"url\":\"/certificates/professional-certificate/harvardx-data-science\",\"owner\":{\"key\":\"HarvardX\",\"name\":\"Harvard University\",\"logo\":{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/44022f13-20df-4666-9111-cede3e5dc5b6-2cc39992c67a.png\"}}},{\"id\":\"b5598690-9bd8-4d21-b7f3-dc741b50473f\",\"title\":\"IBM Data Science\",\"url\":\"/certificates/professional-certificate/ibm-data-science\",\"owner\":{\"key\":\"IBM\",\"name\":\"IBM\",\"logo\":{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/87b07564-d569-4cfd-bee6-8b0a407acb73-dc33e4b5f353.png\"}}},{\"id\":\"673ea595-1439-4a34-ad71-cc5c995c6fc6\",\"title\":\"Learning Python for Data Science\",\"url\":\"/certificates/professional-certificate/harvardx-learning-python-for-data-science\",\"owner\":{\"key\":\"HarvardX\",\"name\":\"Harvard University\",\"logo\":{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/44022f13-20df-4666-9111-cede3e5dc5b6-2cc39992c67a.png\"}}}],\"cta\":{\"label\":\"View all Data Science certificates\",\"url\":\"/certificates/data-science-certificate\"}},{\"title\":\"Degrees\",\"products\":[{\"id\":\"721f524b-da8f-4923-83b4-a18de44fdc43\",\"title\":\"Master's Degree in Data Science\",\"url\":\"/masters/online-masters-in-data-science/online-master-data-science-utaustinx\",\"owner\":{\"key\":\"UTAustinX\",\"name\":\"The University of Texas at Austin\",\"logo\":{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/9d38ad58-87fb-4a89-9f23-c8df318112e3-aec8e9e98a5f.png\"}}},{\"id\":\"58331700-1a02-4abe-a858-4ebe83200d15\",\"title\":\"Master of Information and Data Science\",\"url\":\"/masters/online-masters-in-data-science/ucb-master-of-information-and-data-science\",\"owner\":{\"key\":\"BerkeleyX\",\"name\":\"University of California, Berkeley\",\"logo\":{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/54bc81cb-b736-4505-aa51-dd2b18c61d84-2082c7ba1024.png\"}}},{\"id\":\"70adbe06-2ef5-446e-97cf-7d26520a9697\",\"title\":\"Master of Applied Data Science\",\"url\":\"/masters/online-masters-in-data-science/unc-master-of-applied-data-science\",\"owner\":{\"key\":\"UNC-CH\",\"name\":\"The University of North Carolina at Chapel Hill\",\"logo\":{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/283be432-c4de-4818-83c5-bd77a2de49d6-2a29798bfd41.png\"}}}],\"cta\":{\"label\":\"View all Data Science degrees\",\"url\":\"/masters/online-masters-in-data-science\"}}]},{\"label\":\"Finance\",\"hero\":{\"title\":\"Finance\",\"subTitle\":\"Navigate the complex field of Finance, including money management, investments, and financial planning. Gain insights into market analysis and strategic decision-making, allowing for growth and profitability.\",\"cta\":{\"viewAll\":{\"label\":\"View all Finance courses\",\"url\":\"/search?skills.skill=Finance\"},\"learnMore\":{\"label\":\"Learn more about Finance\",\"url\":\"/learn/finance\"}},\"ctaPosition\":\"left\"},\"linkList\":{\"title\":\"Related Topics\",\"links\":[{\"label\":\"Bitcoin\",\"url\":\"/learn/bitcoin\"},{\"label\":\"Investing\",\"url\":\"/learn/investing\"},{\"label\":\"Cryptocurrency\",\"url\":\"/learn/cryptocurrency\"},{\"label\":\"Blockchain\",\"url\":\"/learn/blockchain\"},{\"label\":\"Trading\",\"url\":\"/learn/trading\"},{\"label\":\"Fintech\",\"url\":\"/learn/fintech\"},{\"label\":\"Stocks\",\"url\":\"/learn/stocks\"},{\"label\":\"Banking\",\"url\":\"/learn/banking\"},{\"label\":\"Risk Management\",\"url\":\"/learn/risk-management\"},{\"label\":\"Venture Capital\",\"url\":\"/learn/venture-capital\"},{\"label\":\"Taxes\",\"url\":\"/learn/taxes\"},{\"label\":\"Investment Banking\",\"url\":\"/learn/investment-banking\"},{\"label\":\"Financial Management\",\"url\":\"/learn/financial-management\"},{\"label\":\"Cryptography\",\"url\":\"/learn/cryptography\"},{\"label\":\"Circular Economy\",\"url\":\"/learn/circular-economy\"},{\"label\":\"Macroeconomics\",\"url\":\"/learn/macroeconomics\"},{\"label\":\"Financial Accounting\",\"url\":\"/learn/financial-accounting\"},{\"label\":\"Financial Literacy\",\"url\":\"/learn/financial-literacy\"},{\"label\":\"Personal Finance\",\"url\":\"/learn/personal-finance\"},{\"label\":\"Corporate Finance\",\"url\":\"/learn/corporate-finance\"}]},\"productLists\":[{\"title\":\"Courses\",\"products\":[{\"id\":\"c211d581-03d2-5c31-b34f-a988be4cc3a4\",\"title\":\"Introduction to Corporate Finance\",\"url\":\"/learn/corporate-finance/columbia-university-introduction-to-corporate-finance\",\"owner\":{\"key\":\"ColumbiaX\",\"name\":\"Columbia University\",\"logo\":{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/3d8fc08e-339f-467a-a6c0-2b956ca5d6a0-797c0c6ddbc6.png\"}}},{\"id\":\"7eb35c18-ca39-552e-9241-ed3cab2f937e\",\"title\":\"Foundations of Modern Finance I\",\"url\":\"/learn/finance/massachusetts-institute-of-technology-foundations-of-modern-finance-i\",\"owner\":{\"key\":\"MITx\",\"name\":\"Massachusetts Institute of Technology\",\"logo\":{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/2a73d2ce-c34a-4e08-8223-83bca9d2f01d-74256c21f26d.png\"}}},{\"id\":\"feb03847-e53c-501a-b1cf-ebe2ccc23f4c\",\"title\":\"Foundations of Finance\",\"url\":\"/learn/finance/university-of-cambridge-foundations-of-finance\",\"owner\":{\"key\":\"UniversityofCambridge\",\"name\":\"University of Cambridge\",\"logo\":{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/a7e2febc-e366-4b23-9fc3-5659cf53d452-fbcc652f58e1.png\"}}}],\"cta\":{\"label\":\"View all Finance courses\",\"url\":\"/search?q=finance\u0026tab=course\"}},{\"title\":\"Certificates\",\"products\":[{\"id\":\"4666a4d2-1337-5324-85bf-059350078d5b\",\"title\":\"FinTech\",\"url\":\"/executive-education/harvard-university-fintech\",\"owner\":{\"key\":\"HarvardX\",\"name\":\"Harvard University\",\"logo\":{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/44022f13-20df-4666-9111-cede3e5dc5b6-2cc39992c67a.png\"}}},{\"id\":\"e590608c-e3f8-5731-8b22-ce1b4b589b23\",\"title\":\"MBA Essentials\",\"url\":\"/executive-education/the-london-school-of-economics-and-political-science-mba-essentials\",\"owner\":{\"key\":\"LSE\",\"name\":\"The London School of Economics and Political Science\",\"logo\":{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/07141c7d-a86e-4f48-bb5b-1eef0958b465-b644124b89ef.png\"}}},{\"id\":\"1859f52c-3fc0-43fe-a8a1-13660c77e9c3\",\"title\":\"Corporate Finance\",\"url\":\"/certificates/professional-certificate/columbiax-corporate-finance\",\"owner\":{\"key\":\"ColumbiaX\",\"name\":\"Columbia University\",\"logo\":{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/3d8fc08e-339f-467a-a6c0-2b956ca5d6a0-797c0c6ddbc6.png\"}}}],\"cta\":{\"label\":\"View all Finance certificates\",\"url\":\"/search?q=finance\u0026tab=program\u0026program_type=Professional+Certificate\"}},{\"title\":\"Graduate Degrees\",\"products\":[{\"id\":\"d85a67b7-2f8b-4f4a-8900-e4dd15cf64c8\",\"title\":\"Master of Science in Professional Accounting\",\"url\":\"/masters/online-masters-in-accounting/syracuse-master-of-science-in-professional-accounting\",\"owner\":{\"key\":\"SyracuseUniversity\",\"name\":\"Syracuse University\",\"logo\":{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/6ec06cd6-4355-44bd-822a-2094d743b7a4-7ed01c537f21.png\"}}},{\"id\":\"74f633a8-2eaa-4202-9e31-79f6868934b0\",\"title\":\"Master of Management\",\"url\":\"/masters/ucdavis-master-of-management\",\"owner\":{\"key\":\"UCDavis\",\"name\":\"University of California, Davis\",\"logo\":{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/3a33451f-9a20-41f0-9cd1-5f3624a0940e-be0782e0ed48.png\"}}},{\"id\":\"518b3b7e-f773-4b11-8427-4343b53cd1ae\",\"title\":\"Master of Science in Accounting\",\"url\":\"/masters/maryville-university-master-of-science-in-accounting\",\"owner\":{\"key\":\"Maryville\",\"name\":\"Maryville University\",\"logo\":{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/8e585adc-f870-4e8f-abe8-e67da192d49c-33b63ce3ca64.png\"}}}],\"cta\":{\"label\":\"View all Finance degrees\",\"url\":\"/search?q=finance+degree\u0026tab=program\"}},{\"title\":\"Undergraduate Degrees\",\"products\":[{\"id\":\"f9414209-c0ac-4572-bb46-2dde155f3a22\",\"title\":\"Bachelor of Science in Economics and Finance\",\"url\":\"/bachelors/universityoflondon-bachelor-of-science-in-economics-and-finance\",\"owner\":{\"key\":\"UniversityofLondon\",\"name\":\"University of London\",\"logo\":{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/5427ee88-6dba-46ff-8ed8-87b71e3234da-0af1465ab67e.png\"}}},{\"id\":\"5e15f5aa-8a0a-4362-833d-1c9875e1ebad\",\"title\":\"Bachelor of Science in Accounting and Finance\",\"url\":\"/bachelors/universityoflondon-bachelor-of-science-in-accounting-and-finance\",\"owner\":{\"key\":\"UniversityofLondon\",\"name\":\"University of London\",\"logo\":{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/5427ee88-6dba-46ff-8ed8-87b71e3234da-0af1465ab67e.png\"}}},{\"id\":\"da3a0dc4-f697-48fd-bc7d-44c208608dd5\",\"title\":\"Bachelor of Science in Finance\",\"url\":\"/bachelors/maryville-university-bachelor-of-science-in-finance\",\"owner\":{\"key\":\"Maryville\",\"name\":\"Maryville University\",\"logo\":{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/8e585adc-f870-4e8f-abe8-e67da192d49c-33b63ce3ca64.png\"}}}],\"cta\":{\"label\":\"View all Finance degrees\",\"url\":\"/search?q=finance+degree\u0026tab=program\"}}]},{\"label\":\"Business Administration\",\"hero\":{\"title\":\"Business Administration\",\"subTitle\":\"Business Administration is the key to lead and manage operations, organize resources, and direct a team to achieve organizational goals with efficiency and effectiveness.\",\"cta\":{\"viewAll\":{\"label\":\"View all Business Administration Courses\",\"url\":\"/search?tab=course\u0026subject=Business+%26+Management\"},\"learnMore\":{\"label\":\"Learn more about Business Administration\",\"url\":\"/learn/business-administration\"}},\"ctaPosition\":\"left\"},\"linkList\":{\"title\":\"Related Topics\",\"links\":[{\"label\":\"Excel\",\"url\":\"/learn/excel\"},{\"label\":\"Marketing\",\"url\":\"/learn/marketing\"},{\"label\":\"Digital Marketing\",\"url\":\"/learn/digital-marketing\"},{\"label\":\"Entrepreneurship\",\"url\":\"/learn/entrepreneurship\"},{\"label\":\"Success\",\"url\":\"/learn/success\"},{\"label\":\"CEO\",\"url\":\"/learn/ceo\"},{\"label\":\"Management\",\"url\":\"/learn/management\"},{\"label\":\"Sales\",\"url\":\"/learn/sales\"},{\"label\":\"Accounting\",\"url\":\"/learn/accounting\"},{\"label\":\"Leadership\",\"url\":\"/learn/leadership\"},{\"label\":\"Innovation\",\"url\":\"/learn/innovation\"},{\"label\":\"Procurement\",\"url\":\"/learn/procurement\"},{\"label\":\"Scrum\",\"url\":\"/learn/scrum\"},{\"label\":\"Zapier\",\"url\":\"/learn/zapier\"},{\"label\":\"Ecommerce\",\"url\":\"/learn/ecommerce\"},{\"label\":\"Project Management\",\"url\":\"/learn/project-management\"},{\"label\":\"Agile\",\"url\":\"/learn/agile\"},{\"label\":\"ServiceNow\",\"url\":\"/learn/servicenow\"},{\"label\":\"Business Plan\",\"url\":\"/learn/business-plan\"},{\"label\":\"Retail\",\"url\":\"/learn/retail\"}]},\"productLists\":[{\"title\":\"Courses\",\"products\":[{\"id\":\"6eca70a5-ef9e-5ac5-a960-16b5c619f367\",\"title\":\"Exercising Leadership: Foundational Principles\",\"url\":\"/learn/leadership/harvard-university-exercising-leadership-foundational-principles\",\"owner\":{\"key\":\"HarvardX\",\"name\":\"Harvard University\",\"logo\":{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/44022f13-20df-4666-9111-cede3e5dc5b6-2cc39992c67a.png\"}}},{\"id\":\"03a0222e-f392-5beb-9bb5-ab4c25f37018\",\"title\":\"Financial Accounting\",\"url\":\"/learn/financial-accounting/massachusetts-institute-of-technology-financial-accounting\",\"owner\":{\"key\":\"MITx\",\"name\":\"Massachusetts Institute of Technology\",\"logo\":{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/2a73d2ce-c34a-4e08-8223-83bca9d2f01d-74256c21f26d.png\"}}},{\"id\":\"92f758de-cddd-591e-a750-6b3e9ec47c0f\",\"title\":\"Supply Chain Fundamentals\",\"url\":\"/learn/supply-chain-design/massachusetts-institute-of-technology-supply-chain-fundamentals\",\"owner\":{\"key\":\"MITx\",\"name\":\"Massachusetts Institute of Technology\",\"logo\":{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/2a73d2ce-c34a-4e08-8223-83bca9d2f01d-74256c21f26d.png\"}}}],\"cta\":{\"label\":\"View all Business Administration courses\",\"url\":\"/search?tab=course\u0026subject=Business+%26+Management\"}},{\"title\":\"Certificates\",\"products\":[{\"id\":\"e590608c-e3f8-5731-8b22-ce1b4b589b23\",\"title\":\"MBA Essentials\",\"url\":\"/executive-education/the-london-school-of-economics-and-political-science-mba-essentials\",\"owner\":{\"key\":\"LSE\",\"name\":\"The London School of Economics and Political Science\",\"logo\":{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/07141c7d-a86e-4f48-bb5b-1eef0958b465-b644124b89ef.png\"}}},{\"id\":\"ae9513fa-9c85-5826-948f-826244d04618\",\"title\":\"Oxford Executive Strategy Programme\",\"url\":\"/executive-education/university-of-oxford-executive-strategy-programme\",\"owner\":{\"key\":\"OxfordX\",\"name\":\"University of Oxford\",\"logo\":{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/2b628454-1c1f-4a61-978a-7bec1e588918-f65474eb5fac.png\"}}},{\"id\":\"ed0e908c-0aa2-5c72-b640-5f28f4147f16\",\"title\":\"Business Sustainability Management\",\"url\":\"/executive-education/university-of-cambridge-business-sustainability-management\",\"owner\":{\"key\":\"UniversityofCambridge\",\"name\":\"University of Cambridge\",\"logo\":{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/a7e2febc-e366-4b23-9fc3-5659cf53d452-fbcc652f58e1.png\"}}}],\"cta\":{\"label\":\"View all Business Administration certificates\",\"url\":\"/certificates/business-certificate\"}},{\"title\":\"Degrees\",\"products\":[{\"id\":\"fe32d1c5-5e22-4f5a-8a92-71ef3d654d96\",\"title\":\"Master of Business Administration\",\"url\":\"/masters/online-mba/ucd-master-of-business-administration\",\"owner\":{\"key\":\"UCDavis\",\"name\":\"University of California, Davis\",\"logo\":{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/3a33451f-9a20-41f0-9cd1-5f3624a0940e-be0782e0ed48.png\"}}},{\"id\":\"1be98dfc-6b32-4f4c-8beb-02a2b1ef9183\",\"title\":\"Master of Business Administration\",\"url\":\"/masters/online-mba/unc-master-of-business-administration\",\"owner\":{\"key\":\"UNC-CH\",\"name\":\"The University of North Carolina at Chapel Hill\",\"logo\":{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/283be432-c4de-4818-83c5-bd77a2de49d6-2a29798bfd41.png\"}}}],\"cta\":{\"label\":\"View all Business Administration degrees\",\"url\":\"/search?learning_type=MicroMasters\u0026learning_type=Executive+Education\u0026learning_type=Masters\u0026learning_type=MicroBachelors\u0026learning_type=Bachelors\u0026subject=Business+%26+Management\"}}]},{\"label\":\"Cybersecurity\",\"hero\":{\"title\":\"Cybersecurity\",\"subTitle\":\"Cybersecurity is a subset of information technology (IT) focused on protecting digital systems and information. Cybersecurity specialists play key roles in the protection of IT systems against unauthorized access to data systems, centers and other systems.\",\"cta\":{\"viewAll\":{\"label\":\"View all Cybersecurity Courses\",\"url\":\"/search?tab=course\u0026skills.skill=Cyber+Security\"},\"learnMore\":{\"label\":\"Learn more about Cybersecurity\",\"url\":\"/learn/cybersecurity\"}},\"ctaPosition\":\"left\"},\"linkList\":{\"title\":\"Related Topics\",\"links\":[{\"label\":\"Information Security\",\"url\":\"/learn/information-security\"},{\"label\":\"Computer Security\",\"url\":\"/learn/computer-security\"},{\"label\":\"Cloud Computing\",\"url\":\"/learn/cloud-computing\"},{\"label\":\"Encryption\",\"url\":\"/learn/encryption\"},{\"label\":\"Security Administration\",\"url\":\"/learn/security-administration\"},{\"label\":\"Security Software\",\"url\":\"/learn/security-software\"},{\"label\":\"Vulnerability Management\",\"url\":\"/learn/vulnerability-management\"},{\"label\":\"Information Technology\",\"url\":\"/learn/information-technology\"},{\"label\":\"Data Encryption\",\"url\":\"/learn/data-encryption\"},{\"label\":\"SaaS\",\"url\":\"/learn/software-as-a-service\"},{\"label\":\"User Experience (UX)\",\"url\":\"/learn/user-experience-ux\"},{\"label\":\"Cybersecurity\",\"url\":\"/learn/cybersecurity\"},{\"label\":\"UX Design\",\"url\":\"/learn/ux-design\"},{\"label\":\"Network Security\",\"url\":\"/learn/network-security\"},{\"label\":\"Security Testing\",\"url\":\"/learn/security-testing\"},{\"label\":\"Data Management\",\"url\":\"/learn/data-management\"},{\"label\":\"Technical Analysis\",\"url\":\"/learn/technical-analysis\"},{\"label\":\"Encryption Software\",\"url\":\"https://www.edx.org/learn/encryption-software\"}]},\"productLists\":[{\"title\":\"Courses\",\"products\":[{\"id\":\"1457154d-7332-535d-8f8a-6175288a53d0\",\"title\":\"CS50's Introduction to Cybersecurity\",\"url\":\"/learn/cybersecurity/harvard-university-cs50-s-introduction-to-cybersecurity\",\"owner\":{\"key\":\"HarvardX\",\"name\":\"Harvard University\",\"logo\":{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/44022f13-20df-4666-9111-cede3e5dc5b6-2cc39992c67a.png\"}}},{\"id\":\"c082bec2-3ddc-5e34-b0da-dd64190dbb41\",\"title\":\"Cybersecurity Fundamentals\",\"url\":\"/learn/cybersecurity/rochester-institute-of-technology-cybersecurity-fundamentals\",\"owner\":{\"key\":\"RITx\",\"name\":\"Rochester Institute of Technology\",\"logo\":{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/de3e9ff0-477d-4496-8cfa-a98f902e5830-71b79f0ac34a.png\"}}},{\"id\":\"40667c7b-c4ce-5284-8c44-fbb76f64cc18\",\"title\":\"Introduction to Cybersecurity\",\"url\":\"/learn/cybersecurity/university-of-washington-introduction-to-cybersecurity\",\"owner\":{\"key\":\"UWashingtonX\",\"name\":\"University of Washington\",\"logo\":{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/a7530503-bd7f-49c4-afbe-22824a191282-25b122e47f8d.png\"}}}],\"cta\":{\"label\":\"View all Cybersecurity courses\",\"url\":\"/search?q=cybersecurity\u0026tab=course\"}},{\"title\":\"Certificates\",\"products\":[{\"id\":\"ffc2c233-cf68-53ad-b784-71e8aa535988\",\"title\":\"Cybersecurity: Managing Risk in the Information Age\",\"url\":\"/executive-education/harvard-university-cybersecurity-managing-risk-in-the-information-age\",\"owner\":{\"key\":\"HarvardX\",\"name\":\"Harvard University\",\"logo\":{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/44022f13-20df-4666-9111-cede3e5dc5b6-2cc39992c67a.png\"}}},{\"id\":\"ec5c1256-cb38-5693-84e3-484e41ac32d4\",\"title\":\"Fundamentals of Cybersecurity\",\"url\":\"/executive-education/university-of-cape-town-fundamentals-of-cybersecurity\",\"owner\":{\"key\":\"UCT\",\"name\":\"University of Cape Town\",\"logo\":{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/c5b82171-94d3-40eb-befd-ade27c3d028a-7302375e32bd.png\"}}},{\"id\":\"f32b3450-2bc6-4704-905c-4ec08316f8b3\",\"title\":\"Cybersecurity Analyst\",\"url\":\"/certificates/professional-certificate/ibm-cybersecurity-analyst\",\"owner\":{\"key\":\"IBM\",\"name\":\"IBM\",\"logo\":{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/87b07564-d569-4cfd-bee6-8b0a407acb73-dc33e4b5f353.png\"}}}],\"cta\":{\"label\":\"View all Cybersecurity certificates\",\"url\":\"/search?q=cybersecurity\u0026tab=program\u0026program_type=Professional+Certificate\"}},{\"title\":\"Degrees\",\"products\":[{\"id\":\"780e11a3-0b47-424f-8a03-3f0a9072c5ec\",\"title\":\"Master of Science in Cybersecurity\",\"url\":\"/masters/online-masters-in-cybersecurity/syracuse-master-of-science-in-cybersecurity\",\"owner\":{\"key\":\"SyracuseUniversity\",\"name\":\"Syracuse University\",\"logo\":{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/6ec06cd6-4355-44bd-822a-2094d743b7a4-7ed01c537f21.png\"}}},{\"id\":\"de971614-e9f1-4dc5-9081-5dec52d5ac4e\",\"title\":\"Master of Science in Cybersecurity\",\"url\":\"/masters/maryville-university-master-of-science-in-cybersecurity\",\"owner\":{\"key\":\"Maryville\",\"name\":\"Maryville University\",\"logo\":{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/8e585adc-f870-4e8f-abe8-e67da192d49c-33b63ce3ca64.png\"}}},{\"id\":\"e86df75d-27f4-4a80-a2d0-8c14c4edf63f\",\"title\":\"Bachelor of Science in Cybersecurity\",\"url\":\"/bachelors/maryville-university-bachelor-of-science-in-cybersecurity\",\"owner\":{\"key\":\"Maryville\",\"name\":\"Maryville University\",\"logo\":{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/8e585adc-f870-4e8f-abe8-e67da192d49c-33b63ce3ca64.png\"}}}],\"cta\":{\"label\":\"View all Cybersecurity degrees\",\"url\":\"/masters/online-masters-in-cybersecurity\"}}]},{\"label\":\"Computer Science\",\"hero\":{\"title\":\"Computer Science\",\"subTitle\":\"Computer Science focuses on the design, development, and testing of software. It uses technology to problem solve by applying algorithms and coding to operating systems, artificial intelligence, machine learning, and informatics in nearly every industry. \",\"cta\":{\"viewAll\":{\"label\":\"View all Computer Science Courses\",\"url\":\"/search?tab=course\u0026skills.skill=Computer+Science\"},\"learnMore\":{\"label\":\"Learn more about Computer Science\",\"url\":\"/learn/computer-science\"}},\"ctaPosition\":\"left\"},\"linkList\":{\"title\":\"Related Topics\",\"links\":[{\"label\":\"Decoding\",\"url\":\"/learn/decoding\"},{\"label\":\"Information Technology\",\"url\":\"/learn/information-technology\"},{\"label\":\"Software Development\",\"url\":\"/learn/software-development\"},{\"label\":\"Numba\",\"url\":\"/learn/numba\"},{\"label\":\"YAML\",\"url\":\"/learn/yaml\"},{\"label\":\"Machine Learning\",\"url\":\"/learn/machine-learning\"},{\"label\":\"GParted\",\"url\":\"/learn/gparted\"},{\"label\":\"Finance\",\"url\":\"/learn/finance\"},{\"label\":\"CakePHP\",\"url\":\"/learn/cakephp\"},{\"label\":\"Artificial Intelligence\",\"url\":\"/learn/artificial-intelligence\"}]},\"productLists\":[{\"title\":\"Courses\",\"products\":[{\"id\":\"201c5f46-3c12-5905-94fd-d52cc0c9a229\",\"title\":\"CS50's Introduction to Computer Science\",\"url\":\"/learn/computer-science/harvard-university-cs50-s-introduction-to-computer-science\",\"owner\":{\"key\":\"HarvardX\",\"name\":\"Harvard University\",\"logo\":{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/44022f13-20df-4666-9111-cede3e5dc5b6-2cc39992c67a.png\"}}},{\"id\":\"93e0e6f4-2df6-595b-823a-f8deb034df3b\",\"title\":\"Introduction to Computer Science and Programming Using Python\",\"url\":\"/learn/computer-science/massachusetts-institute-of-technology-introduction-to-computer-science-and-programming-using-python\",\"owner\":{\"key\":\"MITx\",\"name\":\"Massachusetts Institute of Technology\",\"logo\":{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/2a73d2ce-c34a-4e08-8223-83bca9d2f01d-74256c21f26d.png\"}}},{\"id\":\"dc5d95bd-1c8b-5dd0-b247-d3ae969a1a5e\",\"title\":\"Computer Science 101\",\"url\":\"/learn/computer-science/stanford-university-computer-science-101\",\"owner\":{\"key\":\"StanfordOnline\",\"name\":\"Stanford University\",\"logo\":{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/f53a7458-c79b-4524-97cf-28241114230e-e47d44123c3b.png\"}}}],\"cta\":{\"label\":\"View all Computer Science courses\",\"url\":\"/search?q=computer+science\u0026tab=course\"}},{\"title\":\"Certificates\",\"products\":[{\"id\":\"e7388b02-2261-507f-a84e-f5a0f5d47c49\",\"title\":\"Artificial Intelligence: Implications for Business Strategy\",\"url\":\"/executive-education/massachusetts-institute-of-technology-artificial-intelligence-implications-for-business-strategy\",\"owner\":{\"key\":\"MITx\",\"name\":\"Massachusetts Institute of Technology\",\"logo\":{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/2a73d2ce-c34a-4e08-8223-83bca9d2f01d-74256c21f26d.png\"}}},{\"id\":\"f9b3b50c-f470-5b6b-948f-02ee04e2db13\",\"title\":\"Machine Learning in Business\",\"url\":\"/executive-education/massachusetts-institute-of-technology-machine-learning-in-business\",\"owner\":{\"key\":\"MITx\",\"name\":\"Massachusetts Institute of Technology\",\"logo\":{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/2a73d2ce-c34a-4e08-8223-83bca9d2f01d-74256c21f26d.png\"}}},{\"id\":\"8c5c1af9-761b-49b4-9f52-f6f48856d906\",\"title\":\"Computer Science for Artificial Intelligence\",\"url\":\"/certificates/professional-certificate/harvardx-computer-science-for-artifical-intelligence\",\"owner\":{\"key\":\"HarvardX\",\"name\":\"Harvard University\",\"logo\":{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/44022f13-20df-4666-9111-cede3e5dc5b6-2cc39992c67a.png\"}}}],\"cta\":{\"label\":\"View all Computer Science certificates\",\"url\":\"/search?q=computer+science\u0026tab=program\u0026program_type=Professional+Certificate\"}},{\"title\":\"Degrees\",\"products\":[{\"id\":\"fa22a987-489d-411a-81fa-c0ca4bc58652\",\"title\":\"Master's Degree in Computer Science\",\"url\":\"/masters/online-masters-in-computer-science/online-master-science-computer-science-utaustinx\",\"owner\":{\"key\":\"UTAustinX\",\"name\":\"The University of Texas at Austin\",\"logo\":{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/9d38ad58-87fb-4a89-9f23-c8df318112e3-aec8e9e98a5f.png\"}}},{\"id\":\"ea953e86-de57-4512-8503-a89f00f1b2b1\",\"title\":\"Master of Science in Computer Science\",\"url\":\"/masters/online-masters-in-computer-science/syracuse-master-of-science-in-computer-science\",\"owner\":{\"key\":\"SyracuseUniversity\",\"name\":\"Syracuse University\",\"logo\":{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/6ec06cd6-4355-44bd-822a-2094d743b7a4-7ed01c537f21.png\"}}},{\"id\":\"c3abf25d-a907-4e3c-b940-802d5e1744bd\",\"title\":\"Bachelor of Science in Computer Science\",\"url\":\"/bachelors/maryville-university-bachelor-of-science-in-computer-science\",\"owner\":{\"key\":\"Maryville\",\"name\":\"Maryville University\",\"logo\":{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/8e585adc-f870-4e8f-abe8-e67da192d49c-33b63ce3ca64.png\"}}}],\"cta\":{\"label\":\"View all Computer Science degrees\",\"url\":\"/masters/online-masters-in-computer-science\"}}]},{\"label\":\"View all topics\",\"hero\":{\"title\":\"Popular topics\",\"cta\":{\"viewAll\":{\"label\":\"View all topics\",\"url\":\"/learn\"}},\"ctaPosition\":\"left\"},\"linkLists\":[{\"title\":\"Computer Programming\",\"url\":\"/learn/computer-programming\",\"links\":[{\"label\":\"Python\",\"url\":\"/learn/python\"},{\"label\":\"JavaScript\",\"url\":\"/learn/javascript\"},{\"label\":\"C\",\"url\":\"/learn/c-programming\"},{\"label\":\"Algorithms\",\"url\":\"/learn/algorithms\"},{\"label\":\"Linux\",\"url\":\"/learn/linux\"}]},{\"title\":\"Data Analysis\",\"url\":\"/learn/data-analysis\",\"links\":[{\"label\":\"Machine Learning\",\"url\":\"/learn/machine-learning\"},{\"label\":\"SQL\",\"url\":\"/learn/sql\"},{\"label\":\"Statistics\",\"url\":\"/learn/statistics\"},{\"label\":\"R\",\"url\":\"/learn/r-programming\"},{\"label\":\"Excel\",\"url\":\"/learn/excel\"}]},{\"title\":\"Economics\",\"url\":\"/learn/economics\",\"links\":[{\"label\":\"Trading\",\"url\":\"/learn/trading\"},{\"label\":\"Investing\",\"url\":\"/learn/investing\"},{\"label\":\"Stocks\",\"url\":\"/learn/stocks\"},{\"label\":\"Blockchain\",\"url\":\"/learn/blockchain\"},{\"label\":\"Cryptocurrency\",\"url\":\"/learn/cryptocurrency\"}]},{\"title\":\"Biology\",\"url\":\"/learn/biology\",\"links\":[{\"label\":\"STEM\",\"url\":\"/learn/stem\"},{\"label\":\"Genetics\",\"url\":\"/learn/genetics\"},{\"label\":\"Neuroscience\",\"url\":\"/learn/neuroscience\"},{\"label\":\"Nutrition\",\"url\":\"/learn/nutrition\"},{\"label\":\"Human Anatomy\",\"url\":\"/learn/human-anatomy\"}]},{\"title\":\"Physics\",\"url\":\"/learn/physics\",\"links\":[{\"label\":\"Dynamics\",\"url\":\"/learn/dynamics\"},{\"label\":\"Nature\",\"url\":\"/learn/nature\"},{\"label\":\"Planets\",\"url\":\"/learn/planets\"},{\"label\":\"Architecture\",\"url\":\"/learn/architecture\"},{\"label\":\"Mechanics\",\"url\":\"/learn/mechanics\"}]},{\"title\":\"Language\",\"url\":\"/learn/language\",\"links\":[{\"label\":\"Writing\",\"url\":\"/learn/writing\"},{\"label\":\"Spanish\",\"url\":\"/learn/spanish\"},{\"label\":\"English\",\"url\":\"/learn/english\"},{\"label\":\"Italian\",\"url\":\"/learn/italian\"},{\"label\":\"Japanese\",\"url\":\"/learn/japanese\"}]},{\"title\":\"Social Science\",\"url\":\"/learn/social-science\",\"links\":[{\"label\":\"Psychology\",\"url\":\"/learn/psychology\"},{\"label\":\"Education\",\"url\":\"/learn/education\"},{\"label\":\"Politics\",\"url\":\"/learn/politics\"},{\"label\":\"Behavioral Psychology\",\"url\":\"/learn/behavioral-psychology\"},{\"label\":\"Government\",\"url\":\"/learn/government\"}]},{\"title\":\"Math\",\"url\":\"/learn/math\",\"links\":[{\"label\":\"Probability\",\"url\":\"/learn/probability\"},{\"label\":\"Algebra\",\"url\":\"/learn/algebra\"},{\"label\":\"Calculus\",\"url\":\"/learn/calculus\"},{\"label\":\"Logic\",\"url\":\"/learn/logic\"},{\"label\":\"Geometry\",\"url\":\"/learn/geometry\"}]},{\"title\":\"Humanities\",\"url\":\"/learn/humanities\",\"links\":[{\"label\":\"Music\",\"url\":\"/learn/music-arts\"},{\"label\":\"Art\",\"url\":\"/learn/art\"},{\"label\":\"Philosophy\",\"url\":\"/learn/philosophy\"},{\"label\":\"Geography\",\"url\":\"/learn/geography\"},{\"label\":\"History\",\"url\":\"/learn/history\"}]}]}]},{\"items\":[{\"label\":\"Career resources\",\"hero\":{\"title\":\"Career resources\",\"subTitle\":\"Find resources that help you make progress towards your next career goal.\",\"cta\":{\"viewAll\":{\"label\":\"Access the Career Resource Center\",\"url\":\"https://careers.edx.org/\"}},\"ctaPosition\":\"left\"},\"productResources\":[{\"title\":\"Access career tips\",\"description\":\"Explore career articles in our Idea Hub\",\"links\":[{\"label\":\"Hybrid Jobs: A 4-Minute Primer on Fast-Growing, Lucrative Career Paths\",\"url\":\"/resources/hybrid-jobs-a-4-minute-primer-on-fast-growing-lucrative-career-paths\"},{\"label\":\"How to Write an Effective CV – 5 Steps From the Experts\",\"url\":\"/resources/how-to-write-an-effective-cv-5-steps-experts\"},{\"label\":\"The Employability Skills Checklist\",\"url\":\"/resources/the-employability-skills-checklist\"},{\"label\":\"Computer science careers: Why computer science is for everyone\",\"url\":\"https://www.edx.org/resources/computer-science-careers\"},{\"label\":\"Building a career in data science and analytics\",\"url\":\"https://www.edx.org/resources/data-science-analytics-career-guide\"}],\"cta\":{\"label\":\"Go to Idea Hub\",\"url\":\"https://www.edx.org/resources\"}},{\"title\":\"How to guides\",\"description\":\"Find the next steps to start your new career\",\"links\":[{\"label\":\"How to Become a Software Developer\",\"url\":\"https://www.edx.org/become/how-to-become-a-software-developer\"},{\"label\":\"How to Become a Data Scientist\",\"url\":\"https://www.edx.org/become/how-to-become-a-data-scientist\"},{\"label\":\"How to Become a Software Engineer\",\"url\":\"https://www.edx.org/become/how-to-become-a-software-engineer-without-a-degree\"},{\"label\":\"How to Become a Social Media Manager\",\"url\":\"https://www.edx.org/become/how-to-become-a-social-media-manager\"},{\"label\":\"How to Become a Cybersecurity Analyst\",\"url\":\"https://www.edx.org/become/how-to-become-a-cybersecurity-analyst\"}],\"cta\":{\"label\":\"View all guides\",\"url\":\"https://www.edx.org/become\"}},{\"title\":\"Career paths\",\"description\":\"Gain insights to chart your own career journey.\",\"links\":null,\"cta\":{\"label\":\"Discover career paths\",\"url\":\"https://careers.edx.org/browse-by-industry\"}},{\"title\":\"Guides \u0026 templates\",\"description\":\"Use our career guides and templates to propel your career forward.\",\"links\":null,\"cta\":{\"label\":\"Access guides \u0026 templates\",\"url\":\"https://careers.edx.org/guides-and-templates\"}},{\"title\":\"Skills Quiz\",\"description\":\"Find the right skills to learn for your dream job.\",\"links\":null,\"cta\":{\"label\":\"Take the quiz\",\"url\":\"https://skills.edx.org\"}}]},{\"label\":\"Schools \u0026 Partners\",\"url\":\"/schools-partners\"}]},{\"title\":\"Still unsure?\",\"subTitle\":\"Try a course.\",\"items\":[{\"cta\":{\"label\":\"Find online courses\",\"url\":\"/courses?q=free+online+courses\"}}]}]},\"activeBanner\":{\"backgroundColor\":\"blue\",\"backgroundColorEs\":\"blue\",\"content\":[],\"contentEs\":[],\"campaignId\":\"\",\"campaignIdEs\":\"\"}}],[\"$\",\"div\",null,{\"style\":{\"minHeight\":50},\"children\":[[\"$\",\"$L12\",null,{\"src\":\"/scripts/newrelic\"}],[\"$\",\"main\",null,{\"children\":[\"$\",\"article\",null,{\"className\":\"container prose\",\"children\":[[\"$\",\"div\",null,{\"className\":\"max-w-3xl mx-auto py-14\",\"children\":[[\"$\",\"span\",null,{\"children\":\"Error code: 404\"}],[\"$\",\"h1\",null,{\"className\":\"pt-0\",\"children\":\"We can't seem to find the page you're looking for.\"}],[\"$\",\"h3\",null,{\"className\":\"font-normal \",\"children\":\"Here are some helpful links instead:\"}],[\"$\",\"ul\",null,{\"className\":\"list-none pl-0\",\"children\":[[\"$\",\"li\",null,{\"className\":\"pl-0\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-primary hover:text-primary underline\",\"href\":\"/\",\"children\":\"Home\"}]}],[\"$\",\"li\",null,{\"className\":\"pl-0\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-primary hover:text-primary underline\",\"href\":\"/search\",\"children\":\"Search courses and programs\"}]}],[\"$\",\"li\",null,{\"className\":\"pl-0\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-primary hover:text-primary underline\",\"href\":\"https://authn.edx.org/login\",\"children\":\"Create account\"}]}]]}]]}],\"$L21\"]}]}]]}],[\"$\",\"div\",null,{\"className\":\"bg-primary text-primary-foreground pt-16\",\"children\":[\"$\",\"footer\",null,{\"className\":\"flex justify-between max-w-screen-xl mx-auto px-4 pb-4 \",\"children\":[\"$\",\"div\",null,{\"className\":\"flex flex-col w-full\",\"children\":[[\"$\",\"div\",null,{\"className\":\"flex flex-wrap justify-between mb-6 w-full\",\"children\":[[\"$\",\"a\",null,{\"href\":\"/\",\"className\":\"mb-6\",\"children\":[\"$\",\"$L22\",null,{\"src\":\"/trademark-logos/edx-by-2u-white.svg\",\"alt\":\"edX homepage\",\"title\":\"edX homepage\",\"width\":127,\"height\":67,\"className\":\"optanon-category-C0001\",\"data-ot-ignore\":true}]}],[\"$\",\"div\",null,{\"children\":[\"$\",\"div\",null,{\"className\":\"mb-4 justify-center flex flex-row\",\"children\":[[\"$\",\"div\",\"0\",{\"className\":\"mx-2 flex flex-col\",\"children\":[\"$\",\"a\",null,{\"href\":\"https://www.facebook.com/edx/\",\"target\":\"_blank\",\"role\":\"button\",\"aria-label\":\"Visit our Facebook page\",\"children\":[\"$\",\"div\",null,{\"className\":\"flex text-primary bg-white border border-solid border-primary h-12 w-12 items-center justify-center rounded-full\",\"children\":[\"$\",\"svg\",null,{\"width\":\"32\",\"height\":\"32\",\"viewBox\":\"0 0 24 24\",\"fill\":\"none\",\"xmlns\":\"http://www.w3.org/2000/svg\",\"role\":\"img\",\"focusable\":false,\"aria-hidden\":true,\"children\":[\"$\",\"path\",null,{\"d\":\"M14 13.5h2.5l1-4H14v-2c0-1.03 0-2 2-2h1.5V2.14c-.326-.043-1.557-.14-2.857-.14C11.928 2 10 3.657 10 6.7v2.8H7v4h3V22h4v-8.5z\",\"fill\":\"currentColor\"}]}]}]}]}],[\"$\",\"div\",\"1\",{\"className\":\"mx-2 flex flex-col\",\"children\":[\"$\",\"a\",null,{\"href\":\"https://x.com/edXOnline\",\"target\":\"_blank\",\"role\":\"button\",\"aria-label\":\"Visit our X page\",\"children\":[\"$\",\"div\",null,{\"className\":\"flex text-primary bg-white border border-solid border-primary h-12 w-12 items-center justify-center rounded-full\",\"children\":[\"$\",\"svg\",null,{\"width\":\"48\",\"height\":\"48\",\"viewBox\":\"0 0 48 48\",\"fill\":\"none\",\"xmlns\":\"http://www.w3.org/2000/svg\",\"role\":\"img\",\"focusable\":false,\"aria-hidden\":true,\"children\":[\"$\",\"path\",null,{\"d\":\"M21.2144 25.4036L12.2784 35.5671H14.3952L22.1576 26.7441L28.3528 35.5671H35.5L26.1296 22.2239L35.5 11.5671H33.3832L25.1912 20.8866L18.6472 11.5671H11.5M32.6192 34.0052H29.3672L14.3968 13.0523H17.6496\",\"fill\":\"currentColor\"}]}]}]}]}],[\"$\",\"div\",\"2\",{\"className\":\"mx-2 flex flex-col\",\"children\":[\"$\",\"a\",null,{\"href\":\"https://www.linkedin.com/school/edx/\",\"target\":\"_blank\",\"role\":\"button\",\"aria-label\":\"Visit our LinkedIn page\",\"children\":[\"$\",\"div\",null,{\"className\":\"flex text-primary bg-white border border-solid border-primary h-12 w-12 items-center justify-center rounded-full\",\"children\":[\"$\",\"svg\",null,{\"width\":\"20\",\"height\":\"20\",\"viewBox\":\"0 0 20 20\",\"fill\":\"none\",\"xmlns\":\"http://www.w3.org/2000/svg\",\"role\":\"img\",\"focusable\":false,\"aria-hidden\":true,\"children\":[\"$\",\"path\",null,{\"fill-rule\":\"evenodd\",\"clip-rule\":\"evenodd\",\"d\":\"M19.959 11.719v7.379h-4.278v-6.885c0-1.73-.619-2.91-2.167-2.91-1.182 0-1.886.796-2.195 1.565-.113.275-.142.658-.142 1.043v7.187h-4.28s.058-11.66 0-12.869h4.28v1.824l-.028.042h.028v-.042c.568-.875 1.583-2.126 3.856-2.126 2.815 0 4.926 1.84 4.926 5.792zM2.421.026C.958.026 0 .986 0 2.249c0 1.235.93 2.224 2.365 2.224h.028c1.493 0 2.42-.989 2.42-2.224C4.787.986 3.887.026 2.422.026zM.254 19.098h4.278V6.229H.254v12.869z\",\"fill\":\"currentColor\"}]}]}]}]}],[\"$\",\"div\",\"3\",{\"className\":\"mx-2 flex flex-col\",\"children\":[\"$\",\"a\",null,{\"href\":\"https://www.reddit.com/r/edX/\",\"target\":\"_blank\",\"role\":\"button\",\"aria-label\":\"Visit our Reddit page\",\"children\":[\"$\",\"div\",null,{\"className\":\"flex text-primary bg-white border border-solid border-primary h-12 w-12 items-center justify-center rounded-full\",\"children\":[\"$\",\"svg\",null,{\"width\":\"40\",\"height\":\"40\",\"viewBox\":\"-2 -2 24 24\",\"fill\":\"none\",\"xmlns\":\"http://www.w3.org/2000/svg\",\"role\":\"img\",\"focusable\":false,\"aria-hidden\":true,\"children\":[\"$\",\"path\",null,{\"d\":\"M18 10.1c0-1-.8-1.8-1.8-1.7-.4 0-.9.2-1.2.5-1.4-.9-3-1.5-4.7-1.5l.8-3.8 2.6.6c0 .7.6 1.2 1.3 1.2.7 0 1.2-.6 1.2-1.3 0-.7-.6-1.2-1.3-1.2-.5 0-.9.3-1.1.7L11 2.9h-.2c-.1 0-.1.1-.1.2l-1 4.3C8 7.4 6.4 7.9 5 8.9c-.7-.7-1.8-.7-2.5 0s-.7 1.8 0 2.5c.1.1.3.3.5.3v.5c0 2.7 3.1 4.9 7 4.9s7-2.2 7-4.9v-.5c.6-.3 1-.9 1-1.6zM6 11.4c0-.7.6-1.2 1.2-1.2.7 0 1.2.6 1.2 1.2s-.6 1.2-1.2 1.2c-.7 0-1.2-.5-1.2-1.2zm7 3.3c-.9.6-1.9 1-3 .9-1.1 0-2.1-.3-3-.9-.1-.1-.1-.3 0-.5.1-.1.3-.1.4 0 .7.5 1.6.8 2.5.7.9.1 1.8-.2 2.5-.7.1-.1.3-.1.5 0s.2.3.1.5zm-.3-2.1c-.7 0-1.2-.6-1.2-1.2s.6-1.2 1.2-1.2c.7 0 1.2.6 1.2 1.2.1.7-.5 1.2-1.2 1.2z\",\"fill\":\"currentColor\"}]}]}]}]}]]}]}]]}],false,[\"$\",\"div\",null,{\"className\":\"my-6\",\"children\":[[\"$\",\"div\",null,{\"className\":\"flex flex-wrap md:flex-nowrap justify-between\",\"children\":[[\"$\",\"div\",null,{\"className\":\"mr-12 mb-6 grow\",\"children\":[[\"$\",\"span\",null,{\"className\":\"uppercase font-roboto text-[1rem] font-normal text-left pb-6\",\"children\":\"Browse Courses\"}],[\"$\",\"ul\",null,{\"className\":\"my-6 list-none\",\"children\":[[\"$\",\"li\",\"Learn AI\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/learn/artificial-intelligence\",\"children\":\"Learn AI\"}]}],[\"$\",\"li\",\"Learn ChatGPT\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/learn/chatgpt\",\"children\":\"Learn ChatGPT\"}]}],[\"$\",\"li\",\"Learn Spanish\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/learn/spanish\",\"children\":\"Learn Spanish\"}]}],[\"$\",\"li\",\"Learn Python\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/learn/python\",\"children\":\"Learn Python\"}]}],[\"$\",\"li\",\"Learn Excel\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/learn/excel\",\"children\":\"Learn Excel\"}]}],[\"$\",\"li\",\"Learn Software Engineering\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/learn/software-engineering\",\"children\":\"Learn Software Engineering\"}]}],[\"$\",\"li\",\"Learn Blockchain\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/learn/blockchain\",\"children\":\"Learn Blockchain\"}]}],[\"$\",\"li\",\"Learn Computer Programming\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/learn/computer-programming\",\"children\":\"Learn Computer Programming\"}]}],[\"$\",\"li\",\"Learn Economics\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/learn/economics\",\"children\":\"Learn Economics\"}]}],[\"$\",\"li\",\"Learn Architecture\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/learn/architecture\",\"children\":\"Learn Architecture\"}]}],[\"$\",\"li\",\"Learn Project Management\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/learn/project-management\",\"children\":\"Learn Project Management\"}]}],[\"$\",\"li\",\"Learn Business Administration\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/learn/business-administration\",\"children\":\"Learn Business Administration\"}]}]]}],[\"$\",\"div\",null,{\"className\":\"flex flex-col text-[1rem]\",\"children\":[[\"$\",\"a\",\"see more Courses\",{\"href\":\"/learn\",\"className\":\"hover:underline text-[1rem] text-white hover:text-white\",\"children\":\"see more Courses\"}]]}]]}],[\"$\",\"div\",null,{\"className\":\"mr-12 mb-6 grow\",\"children\":[[\"$\",\"span\",null,{\"className\":\"uppercase font-roboto text-[1rem] font-normal text-left pb-6\",\"children\":\"step-by-step guides\"}],[\"$\",\"ul\",null,{\"className\":\"my-6 list-none\",\"children\":[[\"$\",\"li\",\"Become a Cybersecurity Analyst\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/become/how-to-become-a-cybersecurity-analyst\",\"children\":\"Become a Cybersecurity Analyst\"}]}],[\"$\",\"li\",\"Become a Data Scientist\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/become/how-to-become-a-data-scientist\",\"children\":\"Become a Data Scientist\"}]}],[\"$\",\"li\",\"Become a Social Media Manager\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/become/how-to-become-a-social-media-manager\",\"children\":\"Become a Social Media Manager\"}]}],[\"$\",\"li\",\"Become a Software Developer\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/become/how-to-become-a-software-developer\",\"children\":\"Become a Software Developer\"}]}],[\"$\",\"li\",\"Become a Software Engineer\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/become/how-to-become-a-software-engineer-without-a-degree\",\"children\":\"Become a Software Engineer\"}]}]]}],[\"$\",\"div\",null,{\"className\":\"flex flex-col text-[1rem]\",\"children\":[[\"$\",\"a\",\"see more Guides\",{\"href\":\"/become\",\"className\":\"hover:underline text-[1rem] text-white hover:text-white\",\"children\":\"see more Guides\"}]]}]]}],[\"$\",\"div\",null,{\"className\":\"mr-12 mb-6 grow\",\"children\":[[\"$\",\"span\",null,{\"className\":\"uppercase font-roboto text-[1rem] font-normal text-left pb-6\",\"children\":\"Complete your bachelor's online\"}],[\"$\",\"ul\",null,{\"className\":\"my-6 list-none\",\"children\":[[\"$\",\"li\",\"Bachelor's in Business\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/bachelors/business\",\"children\":\"Bachelor's in Business\"}]}],[\"$\",\"li\",\"Bachelor's in Computer Science / Data Science\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/bachelors/computer-data-sciences\",\"children\":\"Bachelor's in Computer Science / Data Science\"}]}],[\"$\",\"li\",\"Bachelor's in Health and Nursing\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/bachelors/health-social-services\",\"children\":\"Bachelor's in Health and Nursing\"}]}],[\"$\",\"li\",\"Bachelor's in Accounting\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/bachelors/online-accounting-bachelor-degree\",\"children\":\"Bachelor's in Accounting\"}]}],[\"$\",\"li\",\"Bachelor's in Finance\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/bachelors/online-bachelors-degree-finance\",\"children\":\"Bachelor's in Finance\"}]}],[\"$\",\"li\",\"Bachelor's in Psychology\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/bachelors/psychology\",\"children\":\"Bachelor's in Psychology\"}]}],[\"$\",\"li\",\"Bachelor's in Public Health\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/bachelors/bachelors-in-public-health-online\",\"children\":\"Bachelor's in Public Health\"}]}],[\"$\",\"li\",\"Bachelor's in Social Work\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/bachelors/social-work-bsw\",\"children\":\"Bachelor's in Social Work\"}]}]]}],[\"$\",\"div\",null,{\"className\":\"flex flex-col text-[1rem]\",\"children\":[[\"$\",\"a\",\"see more Undergraduate Degrees\",{\"href\":\"/bachelors\",\"className\":\"hover:underline text-[1rem] text-white hover:text-white\",\"children\":\"see more Undergraduate Degrees\"}]]}]]}],[\"$\",\"div\",null,{\"className\":\"mr-12 mb-6 grow\",\"children\":[[\"$\",\"span\",null,{\"className\":\"uppercase font-roboto text-[1rem] font-normal text-left pb-6\",\"children\":\"Earn your online graduate degree\"}],[\"$\",\"ul\",null,{\"className\":\"my-6 list-none\",\"children\":[[\"$\",\"li\",\"Master's in Business Administration\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/masters/online-mba\",\"children\":\"Master's in Business Administration\"}]}],[\"$\",\"li\",\"Master's in Public Health\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/masters/masters-in-public-health-online\",\"children\":\"Master's in Public Health\"}]}],[\"$\",\"li\",\"Master's in Social Work\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/masters/online-msw-programs\",\"children\":\"Master's in Social Work\"}]}],[\"$\",\"li\",\"Master's in Nursing\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/masters/online-msn-programs\",\"children\":\"Master's in Nursing\"}]}],[\"$\",\"li\",\"Master's in Data Science\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/masters/online-masters-in-data-science\",\"children\":\"Master's in Data Science\"}]}],[\"$\",\"li\",\"Master's in Engineering\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/masters/online-masters-in-engineering\",\"children\":\"Master's in Engineering\"}]}],[\"$\",\"li\",\"Master's in Speech Pathology\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/masters/online-slp-programs\",\"children\":\"Master's in Speech Pathology\"}]}],[\"$\",\"li\",\"Master's in Counseling/Psychology\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/masters/online-slp-programs\",\"children\":\"Master's in Counseling/Psychology\"}]}],[\"$\",\"li\",\"Master's Degree in Healthcare\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/masters/healthcare\",\"children\":\"Master's Degree in Healthcare\"}]}],[\"$\",\"li\",\"Master's Degree in Education\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/masters/masters-in-education-online\",\"children\":\"Master's Degree in Education\"}]}],[\"$\",\"li\",\"Master's Degree in AI\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/masters/online-masters-in-artificial-intelligence\",\"children\":\"Master's Degree in AI\"}]}],[\"$\",\"li\",\"Master's Degree in Computer Science\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/masters/online-masters-in-computer-science\",\"children\":\"Master's Degree in Computer Science\"}]}]]}],[\"$\",\"div\",null,{\"className\":\"flex flex-col text-[1rem]\",\"children\":[[\"$\",\"a\",\"see more Graduate Degrees\",{\"href\":\"/masters\",\"className\":\"hover:underline text-[1rem] text-white hover:text-white\",\"children\":\"see more Graduate Degrees\"}],[\"$\",\"a\",\"see more Doctorate Degrees\",{\"href\":\"/doctorate\",\"className\":\"hover:underline text-[1rem] text-white hover:text-white\",\"children\":\"see more Doctorate Degrees\"}]]}]]}]]}],[\"$\",\"div\",null,{\"className\":\"my-4 border-t-[1px] border-solid border-primary-foreground\"}]]}],[\"$\",\"$L23\",null,{\"links\":{\"edx\":{\"title\":\"edx\",\"links\":[{\"label\":\"Partner With Us\",\"url\":\"https://business.edx.org/partner\"},{\"label\":\"About\",\"url\":\"/about-us\"},{\"label\":\"edX For Business\",\"url\":\"https://business.edx.org/?_gl=1*y0gcxr*_gcl_au*NDExMDUyMjIxLjE3MTUxMDI2MjM.*_ga*MTQzNjQ4NzY3NC4xNzA3MzE1NzUx*_ga_D3KS4KMDT0*MTcyMTkxMjUxNC4xODEuMS4xNzIxOTE0NDczLjQ1LjAuMA..\"},{\"label\":\"Affiliates\",\"url\":\"/affiliate-program\"},{\"label\":\"Open edX\",\"url\":\"http://open.edx.org/?_gl=1*lt6kx3*_gcl_au*NDExMDUyMjIxLjE3MTUxMDI2MjM.*_ga*MTQzNjQ4NzY3NC4xNzA3MzE1NzUx*_ga_D3KS4KMDT0*MTcyMTkxMjUxNC4xODEuMS4xNzIxOTE0NTQ5LjU5LjAuMA..\"},{\"label\":\"2U Advisory Council\",\"url\":\"/advisory-groups\"},{\"label\":\"Careers\",\"url\":\"/careers\"},{\"label\":\"News\",\"url\":\"https://press.edx.org/?_gl=1*8w80my*_gcl_au*NDExMDUyMjIxLjE3MTUxMDI2MjM.*_ga*MTQzNjQ4NzY3NC4xNzA3MzE1NzUx*_ga_D3KS4KMDT0*MTcyMTkxMjUxNC4xODEuMS4xNzIxOTE0NTgzLjI1LjAuMA..\"}]},\"connect\":{\"title\":\"Connect\",\"links\":[{\"label\":\"Idea Hub\",\"url\":\"/resources\"},{\"label\":\"Contact Us\",\"url\":\"https://courses.edx.org/support/contact_us?_gl=1*13dq6q5*_gcl_au*NDExMDUyMjIxLjE3MTUxMDI2MjM.*_ga*MTQzNjQ4NzY3NC4xNzA3MzE1NzUx*_ga_D3KS4KMDT0*MTcyMTkxMjUxNC4xODEuMS4xNzIxOTE0NjYyLjYuMC4w\"},{\"label\":\"Help Center\",\"url\":\"https://support.edx.org/?_gl=1*1ej7jnc*_gcl_au*NDExMDUyMjIxLjE3MTUxMDI2MjM.*_ga*MTQzNjQ4NzY3NC4xNzA3MzE1NzUx*_ga_D3KS4KMDT0*MTcyMTkxMjUxNC4xODEuMS4xNzIxOTE1MDgxLjUuMC4w\"},{\"label\":\"Security\",\"url\":\"/policy/security\"},{\"label\":\"Media Kit\",\"url\":\"/media-kit\"}]},\"legal\":{\"title\":\"Legal\",\"links\":[{\"label\":\"Terms of Service \u0026 Honor Code\",\"url\":\"/edx-terms-service\"},{\"label\":\"Privacy Policy\",\"url\":\"/edx-privacy-policy\"},{\"label\":\"Cookie Policy\",\"url\":\"/edx-privacy-policy/cookies\"},{\"label\":\"Accessibility Policy\",\"url\":\"/accessibility\"},{\"label\":\"Trademark Policy\",\"url\":\"/trademarks\"},{\"label\":\"Modern Slavery Statement\",\"url\":\"/modern-slavery-statement\"},{\"label\":\"Sitemap\",\"url\":\"/sitemap\"},{\"label\":\"Your Privacy Choices\",\"url\":\"#\"}]}}}],[\"$\",\"div\",null,{\"className\":\"flex flex-wrap-reverse justify-between\",\"children\":[[\"$\",\"p\",null,{\"className\":\"text-primary-foreground text-[1rem]\",\"children\":[\"© 2024 edX LLC. All rights reserved.\",[\"$\",\"br\",null,{}],[\"$\",\"span\",null,{\"children\":\"| 深圳市恒宇博科技有限公司\"}]]}],[\"$\",\"div\",null,{\"className\":\"flex gap-1\",\"children\":[[\"$\",\"a\",null,{\"href\":\"https://itunes.apple.com/us/app/edx/id945480667?mt=8\u0026external_link=true\",\"target\":\"_blank\",\"rel\":\"noopener noreferrer\",\"children\":[\"$\",\"$L22\",null,{\"src\":\"/images/apple-store-badge-en.png\",\"alt\":\"Download on the App Store\",\"title\":\"Download on the App Store\",\"width\":120,\"height\":40,\"data-ot-ignore\":true,\"className\":\"optanon-category-C0001\"}]}],[\"$\",\"a\",null,{\"href\":\"https://play.google.com/store/apps/details?id=org.edx.mobile\u0026external_link=true\",\"target\":\"_blank\",\"rel\":\"noopener noreferrer\",\"children\":[\"$\",\"$L22\",null,{\"src\":\"/images/google-play-badge-en.png\",\"alt\":\"Get it on Google Play\",\"title\":\"Get it on Google Play\",\"width\":135,\"height\":40,\"data-ot-ignore\":true,\"className\":\"optanon-category-C0001\"}]}]]}]]}]]}]}]}]]\n"])</script><script>self.__next_f.push([1,"24:I[80554,[\"8310\",\"static/chunks/0e5ce63c-e4012ad3e28fdbed.js\",\"5571\",\"static/chunks/c233e9bd-865e5bc301f09aaf.js\",\"2404\",\"static/chunks/a4634e51-1ae34582fa2bb120.js\",\"6290\",\"static/chunks/6290-14a62ddd57f81ba6.js\",\"9177\",\"static/chunks/9177-4f779ab065ca3298.js\",\"5878\",\"static/chunks/5878-e3c69aff2e273e23.js\",\"3069\",\"static/chunks/3069-556a3605b335d482.js\",\"4858\",\"static/chunks/4858-aef93864f4abb320.js\",\"8890\",\"static/chunks/8890-cd2934b2aa3b89dc.js\",\"3402\",\"static/chunks/3402-f8625ce91eb27ea6.js\",\"8082\",\"static/chunks/8082-143f9f9fdf5b9192.js\",\"4980\",\"static/chunks/4980-d730333976453575.js\",\"32\",\"static/chunks/32-bafec80821f44ed5.js\",\"6686\",\"static/chunks/6686-f007b1e2101fda62.js\",\"9366\",\"static/chunks/9366-e6a7fb83e1c23555.js\",\"3397\",\"static/chunks/3397-dd13dd89c81e42c8.js\",\"2628\",\"static/chunks/2628-8d231bd404df8976.js\",\"554\",\"static/chunks/554-025495b6bf8e1dac.js\",\"121\",\"static/chunks/121-00c8365f8c57a8cc.js\",\"3564\",\"static/chunks/3564-dbea25076659e35b.js\",\"5099\",\"static/chunks/5099-9a5433902d87437e.js\",\"6928\",\"static/chunks/app/%5Blocale%5D/learn/%5Bcategory%5D/page-176642ac87704917.js\"],\"default\"]\n25:T55f,\u003cp\u003eThis course harnesses science-backed techniques applicable across different learning platforms, equipping you with the strategies you need to thrive as an online learner.\u003c/p\u003e\n\u003cp\u003eIn this course, you will:\u003c/p\u003e\n\u003cp\u003eReflect on your Identity as a Learner: Learn about the history and benefits of learning online and reflect on how embarking on this new journey of learning online fits into your broader narrative as a lifelong learner. \u003c/p\u003e\n\u003cp\u003eDevelop Digital Literacy Skills: Acquire essential skills for navigating and utilizing online learning technologies effectively, including familiarity with Learning Management Systems and the unique features of the edX platform.\u003c/p\u003e\n\u003cp\u003eEnhance Metacognitive Skills: Learn to develop awareness of your own learning behaviors and thought processes, a key aspect of successful online learning.\u003c/p\u003e\n\u003cp\u003eApply Effective Study Strategies: Master a range of study strategies based on c"])</script><script>self.__next_f.push([1,"urrent research, covering awareness, balance, community engagement, and dedication to learning.\u003c/p\u003e\n\u003cp\u003eLeverage Community Resources: Understand how to effectively utilize peer interactions and community resources to enhance your learning experience.\u003c/p\u003e\n\u003cp\u003eImprove Time Management: Cultivate strong time management skills tailored for online learning, including techniques like the Pomodoro method and understanding your chronotype for optimal learning.\u003c/p\u003e26:T55f,\u003cp\u003eThis course harnesses science-backed techniques applicable across different learning platforms, equipping you with the strategies you need to thrive as an online learner.\u003c/p\u003e\n\u003cp\u003eIn this course, you will:\u003c/p\u003e\n\u003cp\u003eReflect on your Identity as a Learner: Learn about the history and benefits of learning online and reflect on how embarking on this new journey of learning online fits into your broader narrative as a lifelong learner. \u003c/p\u003e\n\u003cp\u003eDevelop Digital Literacy Skills: Acquire essential skills for navigating and utilizing online learning technologies effectively, including familiarity with Learning Management Systems and the unique features of the edX platform.\u003c/p\u003e\n\u003cp\u003eEnhance Metacognitive Skills: Learn to develop awareness of your own learning behaviors and thought processes, a key aspect of successful online learning.\u003c/p\u003e\n\u003cp\u003eApply Effective Study Strategies: Master a range of study strategies based on current research, covering awareness, balance, community engagement, and dedication to learning.\u003c/p\u003e\n\u003cp\u003eLeverage Community Resources: Understand how to effectively utilize peer interactions and community resources to enhance your learning experience.\u003c/p\u003e\n\u003cp\u003eImprove Time Management: Cultivate strong time management skills tailored for online learning, including techniques like the Pomodoro method and understanding your chronotype for optimal learning.\u003c/p\u003e27:T68d,\u003cp\u003eThis is an introductory-level course in supervised learning, with a focus on regression and classification methods. The syllabus includes: linear and polynomial regression, logistic regression and "])</script><script>self.__next_f.push([1,"linear discriminant analysis; cross-validation and the bootstrap, model selection and regularization methods (ridge and lasso); nonlinear models, splines and generalized additive models; tree-based methods, random forests and boosting; support-vector machines; neural networks and deep learning; survival models; multiple testing. Some unsupervised learning methods are discussed: principal components and clustering (k-means and hierarchical).\u003c/p\u003e\n\u003cp\u003eThis is not a math-heavy class, so we try and describe the methods without heavy reliance on formulas and complex mathematics. We focus on what we consider to be the important elements of modern data science. Computing is done in R. There are lectures devoted to R, giving tutorials from the ground up, and progressing with more detailed sessions that implement the techniques in each chapter. We also offer a separate version of the course called \u003ca href=\"https://www.edx.org/learn/data-analysis-statistics/stanford-university-statistical-learning-with-python\" rel=\"noopener\" target=\"_blank\"\u003eStatistical Learning with Python\u003c/a\u003e – the chapter lectures are the same, but the lab lectures and computing are done using Python.\u003c/p\u003e\n\u003cp\u003eThe lectures cover all the material in An Introduction to Statistical Learning, with Applications in R (second addition) by James, Witten, Hastie and Tibshirani (Springer, 2021). The pdf for this book is available for free on the \u003ca href=\"https://www.statlearning.com/\"\u003ebook website\u003c/a\u003e.\u003c/p\u003e28:T68d,\u003cp\u003eThis is an introductory-level course in supervised learning, with a focus on regression and classification methods. The syllabus includes: linear and polynomial regression, logistic regression and linear discriminant analysis; cross-validation and the bootstrap, model selection and regularization methods (ridge and lasso); nonlinear models, splines and generalized additive models; tree-based methods, random forests and boosting; support-vector machines; neural networks and deep learning; survival models; multiple testing. Some unsupervised learning metho"])</script><script>self.__next_f.push([1,"ds are discussed: principal components and clustering (k-means and hierarchical).\u003c/p\u003e\n\u003cp\u003eThis is not a math-heavy class, so we try and describe the methods without heavy reliance on formulas and complex mathematics. We focus on what we consider to be the important elements of modern data science. Computing is done in R. There are lectures devoted to R, giving tutorials from the ground up, and progressing with more detailed sessions that implement the techniques in each chapter. We also offer a separate version of the course called \u003ca href=\"https://www.edx.org/learn/data-analysis-statistics/stanford-university-statistical-learning-with-python\" rel=\"noopener\" target=\"_blank\"\u003eStatistical Learning with Python\u003c/a\u003e – the chapter lectures are the same, but the lab lectures and computing are done using Python.\u003c/p\u003e\n\u003cp\u003eThe lectures cover all the material in An Introduction to Statistical Learning, with Applications in R (second addition) by James, Witten, Hastie and Tibshirani (Springer, 2021). The pdf for this book is available for free on the \u003ca href=\"https://www.statlearning.com/\"\u003ebook website\u003c/a\u003e.\u003c/p\u003e"])</script><script>self.__next_f.push([1,"21:[\"$\",\"$L24\",null,{\"title\":\"Popular courses\",\"ctaUrl\":\"/search?tab=course\",\"ctaLabel\":\"View all courses\",\"products\":[{\"productUuid\":\"0e575a39-da1e-4e33-bb3b-e96cc6ffc58e\",\"productName\":\"How to Learn Online\",\"productSlug\":\"learn/how-to-learn/edx-how-to-learn-online\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/cdn-cgi/image/width=auto,height=auto,quality=75,format=webp/media/course/image/0e575a39-da1e-4e33-bb3b-e96cc6ffc58e-403e4a4aaada.png\",\"productType\":\"Course\",\"attributes\":[\"Education \u0026 Teacher Training\"],\"partnerName\":\"edX\",\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/cdn-cgi/image/width=auto,height=auto,quality=75,format=webp/organization/logos/4f8cb2c9-589b-4d1e-88c1-b01a02db3a9c-42611123eb6a.png\",\"fullDescription\":\"$25\",\"shortDescription\":\"\u003cp\u003eThis course will prepare you with strategies to be a successful online learner. The edX learning team has curated powerful, science-backed techniques which you can start using right away on any learning platform.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eHistory, benefits, and foundational concepts of online learning\u003c/li\u003e\\n\u003cli\u003eHow to leverage your prior educational experiences for success learning online\u003c/li\u003e\\n\u003cli\u003eTechnology fundamentals for online learning, including building your digital confidence, using an LMS (Learning Management System), and making the most of online accessibility features\u003c/li\u003e\\n\u003cli\u003eStudy strategies for online learning, anchored in the ABCDs: Awareness, Balance, Community, and Dedication\u003c/li\u003e\\n\u003cli\u003eTime management skills to help integrate learning into your busy life\u003c/li\u003e\\n\u003c/ul\u003e\",\"courseCount\":null,\"objectID\":\"6237215000\",\"_highlightResult\":{\"productUuid\":{\"value\":\"0e575a39-da1e-4e33-bb3b-e96cc6ffc58e\",\"matchLevel\":\"none\",\"matchedWords\":[]},\"productName\":{\"value\":\"How to Learn Online\",\"matchLevel\":\"none\",\"matchedWords\":[]},\"productSlug\":{\"value\":\"learn/how-to-learn/edx-how-to-learn-online\",\"matchLevel\":\"none\",\"matchedWords\":[]},\"productImageUrl\":{\"value\":\"https://prod-discovery.edx-cdn.org/cdn-cgi/image/width=auto,height=auto,quality=75,format=webp/media/course/image/0e575a39-da1e-4e33-bb3b-e96cc6ffc58e-403e4a4aaada.png\",\"matchLevel\":\"none\",\"matchedWords\":[]},\"productType\":{\"value\":\"Course\",\"matchLevel\":\"none\",\"matchedWords\":[]},\"attributes\":[{\"value\":\"Education \u0026 Teacher Training\",\"matchLevel\":\"none\",\"matchedWords\":[]}],\"partnerName\":{\"value\":\"edX\",\"matchLevel\":\"none\",\"matchedWords\":[]},\"partnerLogoUrl\":{\"value\":\"https://prod-discovery.edx-cdn.org/cdn-cgi/image/width=auto,height=auto,quality=75,format=webp/organization/logos/4f8cb2c9-589b-4d1e-88c1-b01a02db3a9c-42611123eb6a.png\",\"matchLevel\":\"none\",\"matchedWords\":[]},\"fullDescription\":{\"value\":\"$26\",\"matchLevel\":\"none\",\"matchedWords\":[]},\"shortDescription\":{\"value\":\"\u003cp\u003eThis course will prepare you with strategies to be a successful online learner. The edX learning team has curated powerful, science-backed techniques which you can start using right away on any learning platform.\u003c/p\u003e\",\"matchLevel\":\"none\",\"matchedWords\":[]},\"productOverview\":{\"value\":\"\u003cul\u003e\\n\u003cli\u003eHistory, benefits, and foundational concepts of online learning\u003c/li\u003e\\n\u003cli\u003eHow to leverage your prior educational experiences for success learning online\u003c/li\u003e\\n\u003cli\u003eTechnology fundamentals for online learning, including building your digital confidence, using an LMS (Learning Management System), and making the most of online accessibility features\u003c/li\u003e\\n\u003cli\u003eStudy strategies for online learning, anchored in the ABCDs: Awareness, Balance, Community, and Dedication\u003c/li\u003e\\n\u003cli\u003eTime management skills to help integrate learning into your busy life\u003c/li\u003e\\n\u003c/ul\u003e\",\"matchLevel\":\"none\",\"matchedWords\":[]}}},{\"productUuid\":\"3a31db71-de8f-45f1-ae65-11981ed9d680\",\"productName\":\"CS50's Introduction to Artificial Intelligence with Python\",\"productSlug\":\"learn/artificial-intelligence/harvard-university-cs50-s-introduction-to-artificial-intelligence-with-python\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/cdn-cgi/image/width=auto,height=auto,quality=75,format=webp/media/course/image/3a31db71-de8f-45f1-ae65-11981ed9d680-b801bb328333.png\",\"productType\":\"Course\",\"attributes\":[\"Computer Science\"],\"partnerName\":\"Harvard University\",\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/cdn-cgi/image/width=auto,height=auto,quality=75,format=webp/organization/logos/44022f13-20df-4666-9111-cede3e5dc5b6-2cc39992c67a.png\",\"fullDescription\":\"\u003cp\u003eThis course explores the concepts and algorithms at the foundation of modern artificial intelligence, diving into the ideas that give rise to technologies like game-playing engines, handwriting recognition, and machine translation. Through hands-on projects, students gain exposure to the theory behind graph search algorithms, classification, optimization, machine learning, large language models, and other topics in artificial intelligence as they incorporate them into their own Python programs. By course’s end, students emerge with experience in libraries for machine learning as well as knowledge of artificial intelligence principles that enable them to design intelligent systems of their own.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eLearn to use machine learning in Python in this introductory course on artificial intelligence.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003egraph search algorithms\u003c/li\u003e\\n\u003cli\u003eadversarial search\u003c/li\u003e\\n\u003cli\u003eknowledge representation\u003c/li\u003e\\n\u003cli\u003elogical inference\u003c/li\u003e\\n\u003cli\u003eprobability theory\u003c/li\u003e\\n\u003cli\u003eBayesian networks\u003c/li\u003e\\n\u003cli\u003eMarkov models\u003c/li\u003e\\n\u003cli\u003econstraint satisfaction\u003c/li\u003e\\n\u003cli\u003emachine learning\u003c/li\u003e\\n\u003cli\u003ereinforcement learning\u003c/li\u003e\\n\u003cli\u003eneural networks\u003c/li\u003e\\n\u003cli\u003enatural language processing\u003c/li\u003e\\n\u003c/ul\u003e\",\"courseCount\":null,\"objectID\":\"6236686000\",\"_highlightResult\":{\"productUuid\":{\"value\":\"3a31db71-de8f-45f1-ae65-11981ed9d680\",\"matchLevel\":\"none\",\"matchedWords\":[]},\"productName\":{\"value\":\"CS50's Introduction to Artificial Intelligence with Python\",\"matchLevel\":\"none\",\"matchedWords\":[]},\"productSlug\":{\"value\":\"learn/artificial-intelligence/harvard-university-cs50-s-introduction-to-artificial-intelligence-with-python\",\"matchLevel\":\"none\",\"matchedWords\":[]},\"productImageUrl\":{\"value\":\"https://prod-discovery.edx-cdn.org/cdn-cgi/image/width=auto,height=auto,quality=75,format=webp/media/course/image/3a31db71-de8f-45f1-ae65-11981ed9d680-b801bb328333.png\",\"matchLevel\":\"none\",\"matchedWords\":[]},\"productType\":{\"value\":\"Course\",\"matchLevel\":\"none\",\"matchedWords\":[]},\"attributes\":[{\"value\":\"Computer Science\",\"matchLevel\":\"none\",\"matchedWords\":[]}],\"partnerName\":{\"value\":\"Harvard University\",\"matchLevel\":\"none\",\"matchedWords\":[]},\"partnerLogoUrl\":{\"value\":\"https://prod-discovery.edx-cdn.org/cdn-cgi/image/width=auto,height=auto,quality=75,format=webp/organization/logos/44022f13-20df-4666-9111-cede3e5dc5b6-2cc39992c67a.png\",\"matchLevel\":\"none\",\"matchedWords\":[]},\"fullDescription\":{\"value\":\"\u003cp\u003eThis course explores the concepts and algorithms at the foundation of modern artificial intelligence, diving into the ideas that give rise to technologies like game-playing engines, handwriting recognition, and machine translation. Through hands-on projects, students gain exposure to the theory behind graph search algorithms, classification, optimization, machine learning, large language models, and other topics in artificial intelligence as they incorporate them into their own Python programs. By course’s end, students emerge with experience in libraries for machine learning as well as knowledge of artificial intelligence principles that enable them to design intelligent systems of their own.\u003c/p\u003e\",\"matchLevel\":\"none\",\"matchedWords\":[]},\"shortDescription\":{\"value\":\"\u003cp\u003eLearn to use machine learning in Python in this introductory course on artificial intelligence.\u003c/p\u003e\",\"matchLevel\":\"none\",\"matchedWords\":[]},\"productOverview\":{\"value\":\"\u003cul\u003e\\n\u003cli\u003egraph search algorithms\u003c/li\u003e\\n\u003cli\u003eadversarial search\u003c/li\u003e\\n\u003cli\u003eknowledge representation\u003c/li\u003e\\n\u003cli\u003elogical inference\u003c/li\u003e\\n\u003cli\u003eprobability theory\u003c/li\u003e\\n\u003cli\u003eBayesian networks\u003c/li\u003e\\n\u003cli\u003eMarkov models\u003c/li\u003e\\n\u003cli\u003econstraint satisfaction\u003c/li\u003e\\n\u003cli\u003emachine learning\u003c/li\u003e\\n\u003cli\u003ereinforcement learning\u003c/li\u003e\\n\u003cli\u003eneural networks\u003c/li\u003e\\n\u003cli\u003enatural language processing\u003c/li\u003e\\n\u003c/ul\u003e\",\"matchLevel\":\"none\",\"matchedWords\":[]}}},{\"productUuid\":\"ef2fc3ac-b0bc-4004-bd30-d610832d0cdd\",\"productName\":\"Statistical Learning with R\",\"productSlug\":\"learn/statistics/stanford-university-statistical-learning\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/cdn-cgi/image/width=auto,height=auto,quality=75,format=webp/media/course/image/ef2fc3ac-b0bc-4004-bd30-d610832d0cdd-b971c6b5f47b.png\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\"],\"partnerName\":\"Stanford University\",\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/cdn-cgi/image/width=auto,height=auto,quality=75,format=webp/organization/logos/f53a7458-c79b-4524-97cf-28241114230e-e47d44123c3b.png\",\"fullDescription\":\"$27\",\"shortDescription\":\"\u003cp\u003eLearn some of the main tools used in statistical modeling and data science. We cover both traditional as well as exciting new methods, and how to use them in R. \u003cem\u003eCourse material updated in 2021 for second edition of the course textbook.\u003c/em\u003e\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eOverview of statistical learning\u003c/li\u003e\\n\u003cli\u003eLinear regression\u003c/li\u003e\\n\u003cli\u003eClassification\u003c/li\u003e\\n\u003cli\u003eResampling methods\u003c/li\u003e\\n\u003cli\u003eLinear model selection and regularization\u003c/li\u003e\\n\u003cli\u003eMoving beyond linearity\u003c/li\u003e\\n\u003cli\u003eTree-based methods\u003c/li\u003e\\n\u003cli\u003eSupport vector machines\u003c/li\u003e\\n\u003cli\u003eDeep learning\u003c/li\u003e\\n\u003cli\u003eSurvival modeling\u003c/li\u003e\\n\u003cli\u003eUnsupervised learning\u003c/li\u003e\\n\u003cli\u003eMultiple testing\u003c/li\u003e\\n\u003c/ul\u003e\",\"courseCount\":null,\"objectID\":\"6240748000\",\"_highlightResult\":{\"productUuid\":{\"value\":\"ef2fc3ac-b0bc-4004-bd30-d610832d0cdd\",\"matchLevel\":\"none\",\"matchedWords\":[]},\"productName\":{\"value\":\"Statistical Learning with R\",\"matchLevel\":\"none\",\"matchedWords\":[]},\"productSlug\":{\"value\":\"learn/statistics/stanford-university-statistical-learning\",\"matchLevel\":\"none\",\"matchedWords\":[]},\"productImageUrl\":{\"value\":\"https://prod-discovery.edx-cdn.org/cdn-cgi/image/width=auto,height=auto,quality=75,format=webp/media/course/image/ef2fc3ac-b0bc-4004-bd30-d610832d0cdd-b971c6b5f47b.png\",\"matchLevel\":\"none\",\"matchedWords\":[]},\"productType\":{\"value\":\"Course\",\"matchLevel\":\"none\",\"matchedWords\":[]},\"attributes\":[{\"value\":\"Data Analysis \u0026 Statistics\",\"matchLevel\":\"none\",\"matchedWords\":[]}],\"partnerName\":{\"value\":\"Stanford University\",\"matchLevel\":\"none\",\"matchedWords\":[]},\"partnerLogoUrl\":{\"value\":\"https://prod-discovery.edx-cdn.org/cdn-cgi/image/width=auto,height=auto,quality=75,format=webp/organization/logos/f53a7458-c79b-4524-97cf-28241114230e-e47d44123c3b.png\",\"matchLevel\":\"none\",\"matchedWords\":[]},\"fullDescription\":{\"value\":\"$28\",\"matchLevel\":\"none\",\"matchedWords\":[]},\"shortDescription\":{\"value\":\"\u003cp\u003eLearn some of the main tools used in statistical modeling and data science. We cover both traditional as well as exciting new methods, and how to use them in R. \u003cem\u003eCourse material updated in 2021 for second edition of the course textbook.\u003c/em\u003e\u003c/p\u003e\",\"matchLevel\":\"none\",\"matchedWords\":[]},\"productOverview\":{\"value\":\"\u003cul\u003e\\n\u003cli\u003eOverview of statistical learning\u003c/li\u003e\\n\u003cli\u003eLinear regression\u003c/li\u003e\\n\u003cli\u003eClassification\u003c/li\u003e\\n\u003cli\u003eResampling methods\u003c/li\u003e\\n\u003cli\u003eLinear model selection and regularization\u003c/li\u003e\\n\u003cli\u003eMoving beyond linearity\u003c/li\u003e\\n\u003cli\u003eTree-based methods\u003c/li\u003e\\n\u003cli\u003eSupport vector machines\u003c/li\u003e\\n\u003cli\u003eDeep learning\u003c/li\u003e\\n\u003cli\u003eSurvival modeling\u003c/li\u003e\\n\u003cli\u003eUnsupervised learning\u003c/li\u003e\\n\u003cli\u003eMultiple testing\u003c/li\u003e\\n\u003c/ul\u003e\",\"matchLevel\":\"none\",\"matchedWords\":[]}}},{\"productUuid\":\"a01716cf-27f7-4f6d-b6fb-88394a3523c1\",\"productName\":\"Graphic Design Essentials\",\"productSlug\":\"learn/graphic-design/lci-education-graphic-design-essentials\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/cdn-cgi/image/width=auto,height=auto,quality=75,format=webp/media/course/image/a01716cf-27f7-4f6d-b6fb-88394a3523c1-bd4ca99a6788.png\",\"productType\":\"Course\",\"attributes\":[\"Communication\"],\"partnerName\":\"LCI Education\",\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/cdn-cgi/image/width=auto,height=auto,quality=75,format=webp/organization/logos/896c0232-66fb-4b55-8fc1-2c75ba76db4c-05c9ce243e9b.png\",\"fullDescription\":\"\u003cp\u003e\u003cspan lang=\\\"EN-CA\\\"\u003eThis \u003c/span\u003e\u003cspan lang=\\\"EN-CA\\\"\u003eonline \u003c/span\u003e\u003cspan lang=\\\"EN-CA\\\"\u003ecourse from LaSalle College Vancouver will introduce you\u003c/span\u003e to the basics of design, graphic and visual communication, image making, typography and the overall creative process, starting from the client mandate to the final presentations.\u003cspan lang=\\\"EN-CA\\\"\u003e\u003c/span\u003e\u003c/p\u003e\\n\u003cp\u003eUpon completion, \u003cspan lang=\\\"EN-CA\\\"\u003e you will be able to apply the rules of visual language and visual composition to create a meaningful visual design.\u003c/span\u003e\u003cspan lang=\\\"EN\\\"\u003e\u003c/span\u003e\u003c/p\u003e\\n\u003cp\u003eThis \u003cspan lang=\\\"EN\\\"\u003eshort \u003c/span\u003e\u003cspan lang=\\\"EN\\\"\u003ecourse is for anyone looking to build or switch towards a rewarding Graphic Design career. \u003c/span\u003e\u003cspan lang=\\\"EN-US\\\"\u003e\u003c/span\u003e\u003c/p\u003e\\n\u003cp\u003eLaSalle\u003cspan lang=\\\"EN-US\\\"\u003e College's graduates have been recognized by the Association of Registered Graphic Designers (RGD), a testament to the excellence we bring to the field of graphic arts.\u003c/span\u003e\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eAcquire the essential skills to become a working Graphic Designer from the basics of color theory to presenting a project to a client.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003e\\n\u003cp\u003e\u003cspan lang=\\\"EN-CA\\\"\u003eApply the rules of visual language and visual composition to create a meaningful visual design.\u003c/span\u003e\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003e\u003cspan lang=\\\"EN-CA\\\"\u003eUse visual language, understand composition, create presentations and communication plans, \u003c/span\u003einterpret and design a visual composition. \u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003e\u003cspan lang=\\\"EN-CA\\\"\u003eAnalyze a client mandate and develop \u003c/span\u003eideas\u003c/p\u003e\\n\u003c/li\u003e\\n\u003c/ul\u003e\",\"courseCount\":null,\"objectID\":\"6239232000\",\"_highlightResult\":{\"productUuid\":{\"value\":\"a01716cf-27f7-4f6d-b6fb-88394a3523c1\",\"matchLevel\":\"none\",\"matchedWords\":[]},\"productName\":{\"value\":\"Graphic Design Essentials\",\"matchLevel\":\"none\",\"matchedWords\":[]},\"productSlug\":{\"value\":\"learn/graphic-design/lci-education-graphic-design-essentials\",\"matchLevel\":\"none\",\"matchedWords\":[]},\"productImageUrl\":{\"value\":\"https://prod-discovery.edx-cdn.org/cdn-cgi/image/width=auto,height=auto,quality=75,format=webp/media/course/image/a01716cf-27f7-4f6d-b6fb-88394a3523c1-bd4ca99a6788.png\",\"matchLevel\":\"none\",\"matchedWords\":[]},\"productType\":{\"value\":\"Course\",\"matchLevel\":\"none\",\"matchedWords\":[]},\"attributes\":[{\"value\":\"Communication\",\"matchLevel\":\"none\",\"matchedWords\":[]}],\"partnerName\":{\"value\":\"LCI Education\",\"matchLevel\":\"none\",\"matchedWords\":[]},\"partnerLogoUrl\":{\"value\":\"https://prod-discovery.edx-cdn.org/cdn-cgi/image/width=auto,height=auto,quality=75,format=webp/organization/logos/896c0232-66fb-4b55-8fc1-2c75ba76db4c-05c9ce243e9b.png\",\"matchLevel\":\"none\",\"matchedWords\":[]},\"fullDescription\":{\"value\":\"\u003cp\u003e\u003cspan lang=\\\"EN-CA\\\"\u003eThis \u003c/span\u003e\u003cspan lang=\\\"EN-CA\\\"\u003eonline \u003c/span\u003e\u003cspan lang=\\\"EN-CA\\\"\u003ecourse from LaSalle College Vancouver will introduce you\u003c/span\u003e to the basics of design, graphic and visual communication, image making, typography and the overall creative process, starting from the client mandate to the final presentations.\u003cspan lang=\\\"EN-CA\\\"\u003e\u003c/span\u003e\u003c/p\u003e\\n\u003cp\u003eUpon completion, \u003cspan lang=\\\"EN-CA\\\"\u003e you will be able to apply the rules of visual language and visual composition to create a meaningful visual design.\u003c/span\u003e\u003cspan lang=\\\"EN\\\"\u003e\u003c/span\u003e\u003c/p\u003e\\n\u003cp\u003eThis \u003cspan lang=\\\"EN\\\"\u003eshort \u003c/span\u003e\u003cspan lang=\\\"EN\\\"\u003ecourse is for anyone looking to build or switch towards a rewarding Graphic Design career. \u003c/span\u003e\u003cspan lang=\\\"EN-US\\\"\u003e\u003c/span\u003e\u003c/p\u003e\\n\u003cp\u003eLaSalle\u003cspan lang=\\\"EN-US\\\"\u003e College's graduates have been recognized by the Association of Registered Graphic Designers (RGD), a testament to the excellence we bring to the field of graphic arts.\u003c/span\u003e\u003c/p\u003e\",\"matchLevel\":\"none\",\"matchedWords\":[]},\"shortDescription\":{\"value\":\"\u003cp\u003eAcquire the essential skills to become a working Graphic Designer from the basics of color theory to presenting a project to a client.\u003c/p\u003e\",\"matchLevel\":\"none\",\"matchedWords\":[]},\"productOverview\":{\"value\":\"\u003cul\u003e\\n\u003cli\u003e\\n\u003cp\u003e\u003cspan lang=\\\"EN-CA\\\"\u003eApply the rules of visual language and visual composition to create a meaningful visual design.\u003c/span\u003e\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003e\u003cspan lang=\\\"EN-CA\\\"\u003eUse visual language, understand composition, create presentations and communication plans, \u003c/span\u003einterpret and design a visual composition. \u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003e\u003cspan lang=\\\"EN-CA\\\"\u003eAnalyze a client mandate and develop \u003c/span\u003eideas\u003c/p\u003e\\n\u003c/li\u003e\\n\u003c/ul\u003e\",\"matchLevel\":\"none\",\"matchedWords\":[]}}}]}]\n"])</script><script>self.__next_f.push([1,"f:[[\"$\",\"meta\",\"0\",{\"name\":\"viewport\",\"content\":\"width=device-width, initial-scale=1\"}],[\"$\",\"meta\",\"1\",{\"charSet\":\"utf-8\"}],[\"$\",\"title\",\"2\",{\"children\":\"Best Online Statistics Courses and Programs | edX\"}],[\"$\",\"meta\",\"3\",{\"name\":\"description\",\"content\":\"Explore free statistics courses and more to expand your analytical skills with edX.\"}],[\"$\",\"link\",\"4\",{\"rel\":\"canonical\",\"href\":\"https://www.edx.org/learn/statistics\"}],[\"$\",\"meta\",\"5\",{\"property\":\"og:title\",\"content\":\"Best Online Statistics Courses and Programs | edX\"}],[\"$\",\"meta\",\"6\",{\"property\":\"og:description\",\"content\":\"Explore free statistics courses and more to expand your analytical skills with edX.\"}],[\"$\",\"meta\",\"7\",{\"property\":\"og:url\",\"content\":\"https://www.edx.org/learn/statistics\"}],[\"$\",\"meta\",\"8\",{\"property\":\"og:site_name\",\"content\":\"edX\"}],[\"$\",\"meta\",\"9\",{\"property\":\"og:locale\",\"content\":\"EN_US\"}],[\"$\",\"meta\",\"10\",{\"name\":\"twitter:card\",\"content\":\"summary\"}],[\"$\",\"meta\",\"11\",{\"name\":\"twitter:creator\",\"content\":\"@edXOnline\"}],[\"$\",\"meta\",\"12\",{\"name\":\"twitter:title\",\"content\":\"Best Online Statistics Courses and Programs\"}],[\"$\",\"meta\",\"13\",{\"name\":\"twitter:description\",\"content\":\"Explore free statistics courses and more to expand your analytical skills with edX.\"}],[\"$\",\"link\",\"14\",{\"rel\":\"icon\",\"href\":\"/favicon.ico\",\"type\":\"image/x-icon\",\"sizes\":\"16x16\"}],[\"$\",\"meta\",\"15\",{\"name\":\"next-size-adjust\"}]]\n8:null\n"])</script><script>self.__next_f.push([1,"312:I[10217,[\"8310\",\"static/chunks/0e5ce63c-e4012ad3e28fdbed.js\",\"5571\",\"static/chunks/c233e9bd-865e5bc301f09aaf.js\",\"2404\",\"static/chunks/a4634e51-1ae34582fa2bb120.js\",\"6290\",\"static/chunks/6290-14a62ddd57f81ba6.js\",\"9177\",\"static/chunks/9177-4f779ab065ca3298.js\",\"5878\",\"static/chunks/5878-e3c69aff2e273e23.js\",\"3069\",\"static/chunks/3069-556a3605b335d482.js\",\"4858\",\"static/chunks/4858-aef93864f4abb320.js\",\"8890\",\"static/chunks/8890-cd2934b2aa3b89dc.js\",\"3402\",\"static/chunks/3402-f8625ce91eb27ea6.js\",\"8082\",\"static/chunks/8082-143f9f9fdf5b9192.js\",\"4980\",\"static/chunks/4980-d730333976453575.js\",\"32\",\"static/chunks/32-bafec80821f44ed5.js\",\"6686\",\"static/chunks/6686-f007b1e2101fda62.js\",\"9366\",\"static/chunks/9366-e6a7fb83e1c23555.js\",\"3397\",\"static/chunks/3397-dd13dd89c81e42c8.js\",\"2628\",\"static/chunks/2628-8d231bd404df8976.js\",\"554\",\"static/chunks/554-025495b6bf8e1dac.js\",\"121\",\"static/chunks/121-00c8365f8c57a8cc.js\",\"3564\",\"static/chunks/3564-dbea25076659e35b.js\",\"5099\",\"static/chunks/5099-9a5433902d87437e.js\",\"6928\",\"static/chunks/app/%5Blocale%5D/learn/%5Bcategory%5D/page-176642ac87704917.js\"],\"default\"]\n313:I[75121,[\"8310\",\"static/chunks/0e5ce63c-e4012ad3e28fdbed.js\",\"5571\",\"static/chunks/c233e9bd-865e5bc301f09aaf.js\",\"2404\",\"static/chunks/a4634e51-1ae34582fa2bb120.js\",\"6290\",\"static/chunks/6290-14a62ddd57f81ba6.js\",\"9177\",\"static/chunks/9177-4f779ab065ca3298.js\",\"5878\",\"static/chunks/5878-e3c69aff2e273e23.js\",\"3069\",\"static/chunks/3069-556a3605b335d482.js\",\"4858\",\"static/chunks/4858-aef93864f4abb320.js\",\"8890\",\"static/chunks/8890-cd2934b2aa3b89dc.js\",\"3402\",\"static/chunks/3402-f8625ce91eb27ea6.js\",\"8082\",\"static/chunks/8082-143f9f9fdf5b9192.js\",\"4980\",\"static/chunks/4980-d730333976453575.js\",\"32\",\"static/chunks/32-bafec80821f44ed5.js\",\"6686\",\"static/chunks/6686-f007b1e2101fda62.js\",\"9366\",\"static/chunks/9366-e6a7fb83e1c23555.js\",\"3397\",\"static/chunks/3397-dd13dd89c81e42c8.js\",\"2628\",\"static/chunks/2628-8d231bd404df8976.js\",\"554\",\"static/chunks/554-025495b6bf8e1dac.js\",\"121\",\"static/chunks/121-00c8365f8c57a8cc."])</script><script>self.__next_f.push([1,"js\",\"3564\",\"static/chunks/3564-dbea25076659e35b.js\",\"5099\",\"static/chunks/5099-9a5433902d87437e.js\",\"6928\",\"static/chunks/app/%5Blocale%5D/learn/%5Bcategory%5D/page-176642ac87704917.js\"],\"default\"]\n315:I[27270,[\"8310\",\"static/chunks/0e5ce63c-e4012ad3e28fdbed.js\",\"5571\",\"static/chunks/c233e9bd-865e5bc301f09aaf.js\",\"2404\",\"static/chunks/a4634e51-1ae34582fa2bb120.js\",\"6290\",\"static/chunks/6290-14a62ddd57f81ba6.js\",\"9177\",\"static/chunks/9177-4f779ab065ca3298.js\",\"5878\",\"static/chunks/5878-e3c69aff2e273e23.js\",\"3069\",\"static/chunks/3069-556a3605b335d482.js\",\"4858\",\"static/chunks/4858-aef93864f4abb320.js\",\"8890\",\"static/chunks/8890-cd2934b2aa3b89dc.js\",\"3402\",\"static/chunks/3402-f8625ce91eb27ea6.js\",\"8082\",\"static/chunks/8082-143f9f9fdf5b9192.js\",\"4980\",\"static/chunks/4980-d730333976453575.js\",\"32\",\"static/chunks/32-bafec80821f44ed5.js\",\"6686\",\"static/chunks/6686-f007b1e2101fda62.js\",\"9366\",\"static/chunks/9366-e6a7fb83e1c23555.js\",\"3397\",\"static/chunks/3397-dd13dd89c81e42c8.js\",\"2628\",\"static/chunks/2628-8d231bd404df8976.js\",\"554\",\"static/chunks/554-025495b6bf8e1dac.js\",\"121\",\"static/chunks/121-00c8365f8c57a8cc.js\",\"3564\",\"static/chunks/3564-dbea25076659e35b.js\",\"5099\",\"static/chunks/5099-9a5433902d87437e.js\",\"6928\",\"static/chunks/app/%5Blocale%5D/learn/%5Bcategory%5D/page-176642ac87704917.js\"],\"default\"]\n316:I[86276,[\"8310\",\"static/chunks/0e5ce63c-e4012ad3e28fdbed.js\",\"5571\",\"static/chunks/c233e9bd-865e5bc301f09aaf.js\",\"2404\",\"static/chunks/a4634e51-1ae34582fa2bb120.js\",\"6290\",\"static/chunks/6290-14a62ddd57f81ba6.js\",\"9177\",\"static/chunks/9177-4f779ab065ca3298.js\",\"5878\",\"static/chunks/5878-e3c69aff2e273e23.js\",\"3069\",\"static/chunks/3069-556a3605b335d482.js\",\"4858\",\"static/chunks/4858-aef93864f4abb320.js\",\"8890\",\"static/chunks/8890-cd2934b2aa3b89dc.js\",\"3402\",\"static/chunks/3402-f8625ce91eb27ea6.js\",\"8082\",\"static/chunks/8082-143f9f9fdf5b9192.js\",\"4980\",\"static/chunks/4980-d730333976453575.js\",\"32\",\"static/chunks/32-bafec80821f44ed5.js\",\"6686\",\"static/chunks/6686-f007b1e2101fda62.js\",\"9366\",\"static/chunks/9366-e6a7fb8"])</script><script>self.__next_f.push([1,"3e1c23555.js\",\"3397\",\"static/chunks/3397-dd13dd89c81e42c8.js\",\"2628\",\"static/chunks/2628-8d231bd404df8976.js\",\"554\",\"static/chunks/554-025495b6bf8e1dac.js\",\"121\",\"static/chunks/121-00c8365f8c57a8cc.js\",\"3564\",\"static/chunks/3564-dbea25076659e35b.js\",\"5099\",\"static/chunks/5099-9a5433902d87437e.js\",\"6928\",\"static/chunks/app/%5Blocale%5D/learn/%5Bcategory%5D/page-176642ac87704917.js\"],\"default\"]\n317:I[87508,[\"8310\",\"static/chunks/0e5ce63c-e4012ad3e28fdbed.js\",\"5571\",\"static/chunks/c233e9bd-865e5bc301f09aaf.js\",\"2404\",\"static/chunks/a4634e51-1ae34582fa2bb120.js\",\"6290\",\"static/chunks/6290-14a62ddd57f81ba6.js\",\"9177\",\"static/chunks/9177-4f779ab065ca3298.js\",\"5878\",\"static/chunks/5878-e3c69aff2e273e23.js\",\"3069\",\"static/chunks/3069-556a3605b335d482.js\",\"4858\",\"static/chunks/4858-aef93864f4abb320.js\",\"8890\",\"static/chunks/8890-cd2934b2aa3b89dc.js\",\"3402\",\"static/chunks/3402-f8625ce91eb27ea6.js\",\"8082\",\"static/chunks/8082-143f9f9fdf5b9192.js\",\"4980\",\"static/chunks/4980-d730333976453575.js\",\"32\",\"static/chunks/32-bafec80821f44ed5.js\",\"6686\",\"static/chunks/6686-f007b1e2101fda62.js\",\"9366\",\"static/chunks/9366-e6a7fb83e1c23555.js\",\"3397\",\"static/chunks/3397-dd13dd89c81e42c8.js\",\"2628\",\"static/chunks/2628-8d231bd404df8976.js\",\"554\",\"static/chunks/554-025495b6bf8e1dac.js\",\"121\",\"static/chunks/121-00c8365f8c57a8cc.js\",\"3564\",\"static/chunks/3564-dbea25076659e35b.js\",\"5099\",\"static/chunks/5099-9a5433902d87437e.js\",\"6928\",\"static/chunks/app/%5Blocale%5D/learn/%5Bcategory%5D/page-176642ac87704917.js\"],\"default\"]\n2b:{\"url\":\"/trademark-logos/edx-logo-elm.svg\",\"altText\":\"edX Online\",\"title\":\"edX Online\"}\n2c:{\"placeholder\":\"What do you want to learn?\"}\n2d:{\"label\":\"Learn\"}\n2f:{\"label\":\"Sign In\",\"url\":\"https://authn.edx.org/login\"}\n30:{\"label\":\"Register for free\",\"url\":\"https://authn.edx.org/register\"}\n31:{\"label\":\"edX For Business\",\"url\":\"https://business.edx.org\"}\n2e:{\"signIn\":\"$2f\",\"register\":\"$30\",\"business\":\"$31\"}\n2a:{\"logo\":\"$2b\",\"search\":\"$2c\",\"navButton\":\"$2d\",\"cta\":\"$2e\"}\n38:{\"label\":\"View all courses\",\"url\":\"/search?tab=course"])</script><script>self.__next_f.push([1,"\u0026page=1\"}\n39:{\"label\":\"View all courses with certificates\",\"url\":\"/courses?q=free+online+courses\"}\n37:{\"viewAll\":\"$38\",\"learnMore\":\"$39\"}\n36:{\"title\":\"Courses\",\"cta\":\"$37\",\"ctaPosition\":\"left\"}\n3d:{\"url\":\"/courses?q=free+ai+courses\",\"label\":\"AI courses\",\"isExternal\":false}\n3e:{\"url\":\"/courses?q=free+cybersecurity+courses\",\"label\":\"Cybersecurity courses\",\"isExternal\":false}\n3f:{\"url\":\"/courses?q=free+data+science+course\",\"label\":\"Data science courses\",\"isExternal\":false}\n40:{\"url\":\"/courses?q=free+data+analytics+courses\",\"label\":\"Analytics courses\",\"isExternal\":false}\n41:{\"url\":\"/courses?q=free+excel+courses\",\"label\":\"Excel courses\",\"isExternal\":false}\n42:{\"url\":\"/courses?q=free+programming+courses\",\"label\":\"Programming courses\",\"isExternal\":false}\n43:{\"url\":\"/courses?q=free+sql+courses\",\"label\":\"SQL courses\",\"isExternal\":false}\n44:{\"url\":\"/courses?q=free+finance+courses\",\"label\":\"Finance courses\",\"isExternal\":false}\n45:{\"url\":\"/courses?q=free+digital+marketing+course\",\"label\":\"Digital marketing courses\",\"isExternal\":false}\n46:{\"url\":\"/courses?q=free+computer+science+courses\",\"label\":\"Computer science courses\",\"isExternal\":false}\n47:{\"url\":\"/courses?q=free+computer+science+courses\",\"label\":\"Coding courses\",\"isExternal\":false}\n48:{\"url\":\"/courses?q=free+leadership+courses\",\"label\":\"Leadership courses\",\"isExternal\":false}\n49:{\"url\":\"/courses?q=free+accounting+courses\",\"label\":\"Accounting courses\",\"isExternal\":false}\n4a:{\"url\":\"/courses?q=google+free+courses\",\"label\":\"Google courses\",\"isExternal\":false}\n3c:[\"$3d\",\"$3e\",\"$3f\",\"$40\",\"$41\",\"$42\",\"$43\",\"$44\",\"$45\",\"$46\",\"$47\",\"$48\",\"$49\",\"$4a\"]\n3b:{\"title\":\"Browse by topic\",\"links\":\"$3c\"}\n4d:{\"url\":\"/courses?q=ai+in+healthcare+course\",\"label\":\"AI in healthcare courses\",\"isExternal\":false}\n4e:{\"url\":\"/courses?q=python+data+science+course\",\"label\":\"Python data science courses\",\"isExternal\":false}\n4f:{\"url\":\"/courses?q=ai+for+business+course\",\"label\":\"AI for business courses\",\"isExternal\":false}\n50:{\"url\":\"/courses?q=hr+analytics+course\",\"label\":\"HR analytics courses\",\"isEx"])</script><script>self.__next_f.push([1,"ternal\":false}\n51:{\"url\":\"/courses?q=python+machine+learning+course\",\"label\":\"Python machine learning courses\",\"isExternal\":false}\n52:{\"url\":\"/courses?q=ai+marketing+course\",\"label\":\"AI marketing courses\",\"isExternal\":false}\n53:{\"url\":\"/courses?q=business+marketing+course\",\"label\":\"Business marketing courses\",\"isExternal\":false}\n54:{\"url\":\"/courses?q=ai+and+machine+learning+courses\",\"label\":\"AI and machine learning courses\",\"isExternal\":false}\n55:{\"url\":\"/courses?q=business+management+course\",\"label\":\"Business management courses\",\"isExternal\":false}\n56:{\"url\":\"/courses?q=html+css+course\",\"label\":\"HTML css courses\",\"isExternal\":false}\n4c:[\"$4d\",\"$4e\",\"$4f\",\"$50\",\"$51\",\"$52\",\"$53\",\"$54\",\"$55\",\"$56\"]\n4b:{\"title\":\"Browse by skill\",\"links\":\"$4c\"}\n59:{\"url\":\"/courses?q=excel+courses+for+beginners\",\"label\":\"Excel courses for beginners\",\"isExternal\":false}\n5a:{\"url\":\"/courses?q=excel+advanced+courses\",\"label\":\"Advanced Excel courses\",\"isExternal\":false}\n5b:{\"url\":\"/courses?q=python+course+for+beginners\",\"label\":\"Python courses for beginners\",\"isExternal\":false}\n5c:{\"url\":\"/courses?q=accounting+courses+for+beginners\",\"label\":\"Accounting courses for beginners\",\"isExternal\":false}\n5d:{\"url\":\"/courses?q=ai+courses+for+beginners\",\"label\":\"AI courses for beginners\",\"isExternal\":false}\n5e:{\"url\":\"/courses?q=data+analytics+courses+for+beginners\",\"label\":\"Data analytics courses for beginners\",\"isExternal\":false}\n5f:{\"url\":\"/courses?q=cybersecurity+courses+for+beginners\",\"label\":\"Cybersecurity courses for beginners\",\"isExternal\":false}\n60:{\"url\":\"/courses?q=hr+courses+for+beginners\",\"label\":\"HR courses for beginners\",\"isExternal\":false}\n61:{\"url\":\"/courses?q=finance+courses+for+beginners\",\"label\":\"Finance courses for beginners\",\"isExternal\":false}\n62:{\"url\":\"/courses?q=coding+courses+for+beginners\",\"label\":\"Coding courses for beginners\",\"isExternal\":false}\n63:{\"url\":\"/courses?q=it+courses+for+beginners\",\"label\":\"IT courses for beginners\",\"isExternal\":false}\n64:{\"url\":\"/courses?q=bookkeeping+courses+for+beginners\",\"label\":\"Bookkeep"])</script><script>self.__next_f.push([1,"ing courses for beginners\",\"isExternal\":false}\n65:{\"url\":\"/courses?q=computer+programming+courses+for+beginners\",\"label\":\"Computer programming courses for beginners\",\"isExternal\":false}\n66:{\"url\":\"/courses?q=project+management+courses+for+beginners\",\"label\":\"Project management courses for beginners\",\"isExternal\":false}\n67:{\"url\":\"/courses?q=trading+courses+for+beginners\",\"label\":\"Trading courses for beginners\",\"isExternal\":false}\n58:[\"$59\",\"$5a\",\"$5b\",\"$5c\",\"$5d\",\"$5e\",\"$5f\",\"$60\",\"$61\",\"$62\",\"$63\",\"$64\",\"$65\",\"$66\",\"$67\"]\n57:{\"title\":\"Browse by difficulty\",\"links\":\"$58\"}\n6a:{\"url\":\"/courses?q=google+ai+course\",\"label\":\"Google AI courses\",\"isExternal\":false}\n6b:{\"url\":\"/courses?q=mit+ai+course\",\"label\":\"MIT AI courses\",\"isExternal\":false}\n6c:{\"url\":\"/courses?q=harvard+ai+course\",\"label\":\"Harvard AI courses\",\"isExternal\":false}\n6d:{\"url\":\"/courses?q=ibm+data+science+course\",\"label\":\"IBM data science courses\",\"isExternal\":false}\n6e:{\"url\":\"/courses?q=google+python+course\",\"label\":\"Google python courses\",\"isExternal\":false}\n69:[\"$6a\",\"$6b\",\"$6c\",\"$6d\",\"$6e\"]\n68:{\"title\":\"Browse by partner\",\"links\":\"$69\"}\n3a:[\"$3b\",\"$4b\",\"$57\",\"$68\"]\n35:{\"label\":\"Take a course\",\"hero\":\"$36\",\"productSummaries\":\"$3a\"}\n72:{\"label\":\"View all certificates\",\"url\":\"/search?tab=professional-certificate\u0026page=1\"}\n73:{\"label\":\"Learn more about certificates\",\"url\":\"/certificates\"}\n71:{\"viewAll\":\"$72\",\"learnMore\":\"$73\"}\n70:{\"title\":\"Certificates\",\"subTitle\":\"Self-paced, instructor-led courses and programs that build career-ready skills and elevate your resume.\",\"cta\":\"$71\",\"ctaPosition\":\"left\"}\n76:[\"Instructor-led or self paced\",\"8-16 weeks\"]\n78:{\"label\":\"Browse all Professional Certificates\",\"url\":\"/search?tab=professional-certificate\",\"isExternal\":false}\n79:{\"label\":\"Browse all XSeries certificates\",\"url\":\"/search?tab=xseries\",\"isExternal\":false}\n77:[\"$78\",\"$79\"]\n75:{\"title\":\"Professional Certificates\",\"description\":\"A select series of courses in high-demand fields to build your professional skill set.\",\"features\":\"$76\",\"links\":\"$77\"}\n7b:[\"Inst"])</script><script>self.__next_f.push([1,"ructor-led\",\"2-12 weeks\"]\n7d:{\"label\":\"Browse all Executive Education\",\"url\":\"/search?tab=executive-education\",\"isExternal\":false}\n7c:[\"$7d\"]\n7a:{\"title\":\"Executive Education\",\"description\":\"Cohort-based certificate programs in career-critical skills. Aimed at building your professional development to advance or change your career.\",\"features\":\"$7b\",\"links\":\"$7c\"}\n74:[\"$75\",\"$7a\"]\n83:{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/2b628454-1c1f-4a61-978a-7bec1e588918-f65474eb5fac.png\"}\n82:{\"key\":\"OxfordX\",\"name\":\"University of Oxford\",\"logo\":\"$83\"}\n81:{\"id\":\"7461d083-bf2e-55bb-af0a-79b2e389a2b8\",\"title\":\"Oxford Executive Leadership Programme\",\"url\":\"/executive-education/university-of-oxford-executive-leadership-programme\",\"owner\":\"$82\"}\n86:{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/f53a7458-c79b-4524-97cf-28241114230e-e47d44123c3b.png\"}\n85:{\"key\":\"StanfordOnline\",\"name\":\"Stanford University\",\"logo\":\"$86\"}\n84:{\"id\":\"2933d0bd-43ed-52f0-95f6-12241e257a62\",\"title\":\"Nutrition Science\",\"url\":\"/executive-education/stanford-university-nutrition-science\",\"owner\":\"$85\"}\n89:{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/a7e2febc-e366-4b23-9fc3-5659cf53d452-7e24533c111d.png\"}\n88:{\"key\":\"UniversityofCambridge\",\"name\":\"University of Cambridge\",\"logo\":\"$89\"}\n87:{\"id\":\"60387e50-0bb8-58cb-be7c-28aff4fd201d\",\"title\":\"Sustainable Finance\",\"url\":\"/executive-education/university-of-cambridge-sustainable-finance\",\"owner\":\"$88\"}\n8c:{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/b9dc96da-b3fc-45a6-b6b7-b8e12eb79335-bc0488f1a5f8.png\"}\n8b:{\"key\":\"USMx\",\"name\":\"University System of Maryland\",\"logo\":\"$8c\"}\n8a:{\"id\":\"87ef0a37-88f5-4843-888c-166fc9d1644a\",\"title\":\"Agile Project Management\",\"url\":\"/certificates/professional-certificate/umd-usmx-agile-project-management\",\"owner\":\"$8b\"}\n8f:{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/44022f13-20df-4666-9111-cede3e5dc5b6-2cc39992c67a.png\"}\n8e:{\"key\":\"HarvardX\",\"name\":\"Harvard University\",\"logo\":\"$8f\"}\n8d:{\"id\":\"8c5c1a"])</script><script>self.__next_f.push([1,"f9-761b-49b4-9f52-f6f48856d906\",\"title\":\"Computer Science for Artificial Intelligence\",\"url\":\"/certificates/professional-certificate/harvardx-computer-science-for-artifical-intelligence\",\"owner\":\"$8e\"}\n92:{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/87b07564-d569-4cfd-bee6-8b0a407acb73-dc33e4b5f353.png\"}\n91:{\"key\":\"IBM\",\"name\":\"IBM\",\"logo\":\"$92\"}\n90:{\"id\":\"e78d61bc-aa9d-417f-b244-fed28f5737b6\",\"title\":\"Data Analyst\",\"url\":\"/certificates/professional-certificate/ibm-data-analyst\",\"owner\":\"$91\"}\n95:{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/4d254841-5cc9-4174-a28d-5b4f823c0122-51c34231df61.png\"}\n94:{\"key\":\"LinuxFoundationX\",\"name\":\"The Linux Foundation\",\"logo\":\"$95\"}\n93:{\"id\":\"b9629ec9-af4e-4ea3-9a14-268209a06a76\",\"title\":\"Introduction to Kubernetes and Cloud Native Technologies\",\"url\":\"/certificates/professional-certificate/linuxfoundationx-introduction-to-kubernetes-and-cloud-native-technologies\",\"owner\":\"$94\"}\n80:[\"$81\",\"$84\",\"$87\",\"$8a\",\"$8d\",\"$90\",\"$93\"]\n7f:{\"title\":\"Trending certificates\",\"products\":\"$80\"}\n7e:[\"$7f\"]\n98:{\"label\":\"Data Science Certificates\",\"url\":\"/certificates/data-science-certificate\",\"isExternal\":false}\n99:{\"label\":\"Business Certificates\",\"url\":\"/certificates/business-certificate \",\"isExternal\":false}\n9a:{\"label\":\"Data Analytics Certificates\",\"url\":\"/certificates/data-analytics-certificate\",\"isExternal\":false}\n9b:{\"label\":\"Artificial Intelligence (AI) Certificates\",\"url\":\"/certificates/ai-certificates\",\"isExternal\":null}\n9c:{\"label\":\"Machine Learning Certificates\",\"url\":\"/certificates/machine-learning-certificates\",\"isExternal\":false}\n9d:{\"label\":\"Python Certificates\",\"url\":\"/certificates/python-certificate\",\"isExternal\":false}\n9e:{\"label\":\"Project Management Certificates\",\"url\":\"/certificates/project-management-certificate\",\"isExternal\":false}\n9f:{\"label\":\"Digital Marketing Certificates\",\"url\":\"/certificates/digital-marketing-certificates\",\"isExternal\":false}\na0:{\"label\":\"IT Certificates\",\"url\":\"/certificates/it-certificates\",\"isExternal\":false}\na1:{\"lab"])</script><script>self.__next_f.push([1,"el\":\"Sustainability Executive Education Programs\",\"url\":\"/executive-education/sustainability\",\"isExternal\":false}\na2:{\"label\":\"Data Science Executive Education Programs\",\"url\":\"/executive-education/data-science\",\"isExternal\":false}\na3:{\"label\":\"Management Executive Education Programs\",\"url\":\"/executive-education/management\",\"isExternal\":false}\na4:{\"label\":\"Data Analytics Executive Education Programs\",\"url\":\"/executive-education/data-analytics\",\"isExternal\":false}\na5:{\"label\":\"Product Management Executive Education Programs\",\"url\":\"/executive-education/product-management\",\"isExternal\":false}\na6:{\"label\":\"Economics Executive Education Programs\",\"url\":\"/executive-education/economics\",\"isExternal\":false}\na7:{\"label\":\"Strategy Executive Education Programs\",\"url\":\"/executive-education/strategy\",\"isExternal\":false}\na8:{\"label\":\"Finance Executive Education Programs\",\"url\":\"/executive-education/finance\",\"isExternal\":false}\na9:{\"label\":\"Leadership Executive Education Programs\",\"url\":\"/executive-education/leadership\",\"isExternal\":false}\naa:{\"label\":\"FinTech Executive Education Programs\",\"url\":\"/executive-education/fintech\",\"isExternal\":false}\nab:{\"label\":\"Real Estate Executive Education Programs\",\"url\":\"/executive-education/real-estate\",\"isExternal\":false}\nac:{\"label\":\"Blockchain Executive Education Programs\",\"url\":\"/executive-education/blockchain\",\"isExternal\":false}\nad:{\"label\":\"Healthcare Executive Education Programs\",\"url\":\"/executive-education/healthcare\",\"isExternal\":false}\nae:{\"label\":\"Artificial Intelligence (AI) Executive Education Programs\",\"url\":\"/executive-education/artificial-intelligence\",\"isExternal\":false}\naf:{\"label\":\"Marketing Executive Education Programs\",\"url\":\"/executive-education/marketing\",\"isExternal\":false}\nb0:{\"label\":\"Project Management Executive Education Programs\",\"url\":\"/executive-education/project-management\",\"isExternal\":false}\nb1:{\"label\":\"Digital Marketing Executive Education Programs\",\"url\":\"/executive-education/digital-marketing\",\"isExternal\":false}\nb2:{\"label\":\"Operations Management Exec"])</script><script>self.__next_f.push([1,"utive Education Programs\",\"url\":\"/executive-education/operations-management\",\"isExternal\":false}\nb3:{\"label\":\"Design Executive Education Programs\",\"url\":\"/executive-education/design\",\"isExternal\":false}\nb4:{\"label\":\"Supply Chain Executive Education Programs\",\"url\":\"/executive-education/supply-chain\",\"isExternal\":false}\nb5:{\"label\":\"Information Technology Executive Education Programs\",\"url\":\"/executive-education/information-technology\",\"isExternal\":false}\nb6:{\"label\":\"Cybersecurity Executive Education Programs\",\"url\":\"/executive-education/cybersecurity\",\"isExternal\":false}\nb7:{\"label\":\"Innovation Executive Education Programs\",\"url\":\"/executive-education/innovation\",\"isExternal\":false}\nb8:{\"label\":\"Negotiation Executive Education Programs\",\"url\":\"/executive-education/negotiation\",\"isExternal\":false}\nb9:{\"label\":\"Entrepreneurship Executive Education Programs\",\"url\":\"/executive-education/entrepreneurship\",\"isExternal\":false}\nba:{\"label\":\"Law Executive Education Programs\",\"url\":\"/executive-education/law\",\"isExternal\":false}\nbb:{\"label\":\"Programas de Educación Ejecutiva en Transformación Digital\",\"url\":\"/executive-education/digital-transformation\",\"isExternal\":false}\nbc:{\"label\":\"Human Resources Executive Education Programs\",\"url\":\"/executive-education/human-resources\",\"isExternal\":false}\nbd:{\"label\":\"Talent Management Executive Education Programs\",\"url\":\"/executive-education/talent-management\",\"isExternal\":false}\nbe:{\"label\":\"Sales Executive Education Programs\",\"url\":\"/executive-education/sales\",\"isExternal\":false}\nbf:{\"label\":\"Accounting Executive Education Programs\",\"url\":\"/executive-education/accounting\",\"isExternal\":false}\nc0:{\"label\":\"Change Management Executive Education Programs\",\"url\":\"/executive-education/change-management\",\"isExternal\":false}\nc1:{\"label\":\"Risk Management Executive Education Programs\",\"url\":\"/executive-education/risk-management\",\"isExternal\":false}\nc2:{\"label\":\"International Relations Executive Education Programs\",\"url\":\"/executive-education/international-relations\",\"isExternal\":false}\nc3:{"])</script><script>self.__next_f.push([1,"\"label\":\"Women's Executive Leadership Programs\",\"url\":\"/executive-education/womens-executive-leadership-program\",\"isExternal\":false}\n97:[\"$98\",\"$99\",\"$9a\",\"$9b\",\"$9c\",\"$9d\",\"$9e\",\"$9f\",\"$a0\",\"$a1\",\"$a2\",\"$a3\",\"$a4\",\"$a5\",\"$a6\",\"$a7\",\"$a8\",\"$a9\",\"$aa\",\"$ab\",\"$ac\",\"$ad\",\"$ae\",\"$af\",\"$b0\",\"$b1\",\"$b2\",\"$b3\",\"$b4\",\"$b5\",\"$b6\",\"$b7\",\"$b8\",\"$b9\",\"$ba\",\"$bb\",\"$bc\",\"$bd\",\"$be\",\"$bf\",\"$c0\",\"$c1\",\"$c2\",\"$c3\"]\n96:{\"title\":\"Popular topics\",\"links\":\"$97\"}\n6f:{\"label\":\"Earn a certificate\",\"hero\":\"$70\",\"productSummaries\":\"$74\",\"productLists\":\"$7e\",\"linkList\":\"$96\"}\nc7:{\"label\":\"View all Degrees\",\"url\":\"/search?tab=degree-program\u0026page=1\"}\nc6:{\"viewAll\":\"$c7\"}\nc5:{\"title\":\"Degrees\",\"subTitle\":\"Degree programs from top institutions around the world to enable your career transformation and advancement.\",\"cta\":\"$c6\",\"ctaPosition\":\"right\"}\nca:[\"Instructor-led, graduate level classes\",\"1-3 years\"]\ncc:{\"label\":\"Browse all Master's Degrees\",\"url\":\"/masters\"}\ncd:{\"label\":\"Browse all Doctorate degrees\",\"url\":\"/doctorate\"}\ncb:[\"$cc\",\"$cd\"]\nc9:{\"title\":\"Master's \u0026 Doctoral\",\"description\":\"Online degree programs from top institutions taught by expert faculty.\",\"features\":\"$ca\",\"links\":\"$cb\"}\ncf:[\"Instructor-led, online classes\",\"2-6 years\"]\nd1:{\"label\":\"Browse all Bachelor's degrees\",\"url\":\"/bachelors\"}\nd0:[\"$d1\"]\nce:{\"title\":\"Bachelor's\",\"description\":\"Online undergraduate degree programs from top institutions taught by expert faculty.\",\"features\":\"$cf\",\"links\":\"$d0\"}\nd3:[\"Instructor-led, online classes\",\"2 - 6 months\"]\nd5:{\"label\":\"Browse all MicroMasters® pathways\",\"url\":\"/masters/micromasters\"}\nd6:{\"label\":\"Browse all MicroBachelors® pathways\",\"url\":\"/bachelors/microbachelors\"}\nd4:[\"$d5\",\"$d6\"]\nd2:{\"title\":\"Paths to degrees\",\"description\":\"A series of graduate-level programs from top institutions, uniquely designed to advance your career by providing a deep level of learning in a specific discipline.\",\"features\":\"$d3\",\"links\":\"$d4\"}\nc8:[\"$c9\",\"$ce\",\"$d2\"]\ndc:{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/9028c889-8b76-4d8"])</script><script>self.__next_f.push([1,"1-a7ec-622c024550ef-820f45a8df63.png\"}\ndb:{\"key\":\"Pepperdine\",\"name\":\"Pepperdine University\",\"logo\":\"$dc\"}\nda:{\"id\":\"85f981c8-4e1b-4cc4-b3cc-cd2bd741b405\",\"title\":\"Master of Arts in Psychology\",\"url\":\"/masters/psychology/pepperdine-master-of-arts-in-psychology\",\"owner\":\"$db\"}\ndf:{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/ed4b14c6-ee2c-4a78-a97b-e73bad0485af-27577f044447.png\"}\nde:{\"key\":\"UniversityofDenver\",\"name\":\"University of Denver\",\"logo\":\"$df\"}\ndd:{\"id\":\"273b170f-af05-4036-9f51-d865910959e2\",\"title\":\"Master of Social Work\",\"url\":\"/masters/online-msw-programs/denver-master-of-social-work\",\"owner\":\"$de\"}\ne2:{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/5427ee88-6dba-46ff-8ed8-87b71e3234da-0af1465ab67e.png\"}\ne1:{\"key\":\"UniversityofLondon\",\"name\":\"University of London\",\"logo\":\"$e2\"}\ne0:{\"id\":\"c106927f-09cc-4b9a-9f8c-c757db45d92a\",\"title\":\"Bachelor of Science in Economics and Management\",\"url\":\"/bachelors/universityoflondon-bachelor-of-science-in-economics-and-management\",\"owner\":\"$e1\"}\ne5:{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/283be432-c4de-4818-83c5-bd77a2de49d6-2a29798bfd41.png\"}\ne4:{\"key\":\"UNC-CH\",\"name\":\"The University of North Carolina at Chapel Hill\",\"logo\":\"$e5\"}\ne3:{\"id\":\"4a8c1f85-f7bb-4ba9-b102-b5864c921fa1\",\"title\":\"Master of Public Health\",\"url\":\"/masters/masters-in-public-health-online/unc-master-of-public-health\",\"owner\":\"$e4\"}\ne8:{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/de684a48-2ebc-4596-b466-98ea2cc948b4-864155e2641e.png\"}\ne7:{\"key\":\"Vanderbilt\",\"name\":\"Vanderbilt University\",\"logo\":\"$e8\"}\ne6:{\"id\":\"a50e509c-44ae-4e85-9e12-85af6052c613\",\"title\":\"Doctor of Education in Leadership and Learning in Organizations\",\"url\":\"/doctorate/online-edd-programs/vanderbilt-doctor-of-education-in-leadership-and-learning-in-organizations\",\"owner\":\"$e7\"}\neb:{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/fab95b1f-000b-45fe-97a9-89b449974728-7da9db5b85f8.png\"}\nea:{\"key\":\"UOS\",\"name\":\"University of Surrey\",\"logo\":\"$eb\"}\ne9:{\""])</script><script>self.__next_f.push([1,"id\":\"35ec5b30-d213-4778-ab2a-ae2783c86502\",\"title\":\"Master of Science Strategic Marketing\",\"url\":\"/masters/surrey-master-of-science-strategic-marketing\",\"owner\":\"$ea\"}\nd9:[\"$da\",\"$dd\",\"$e0\",\"$e3\",\"$e6\",\"$e9\"]\nd8:{\"title\":\"Trending degrees\",\"products\":\"$d9\"}\nd7:[\"$d8\"]\nee:{\"label\":\"Master's in Business Administration (MBA)\",\"url\":\"/masters/online-mba\"}\nef:{\"label\":\"Master's in Social Work (MSW)\",\"url\":\"/masters/online-msw-programs\"}\nf0:{\"label\":\"Master's in Psychology\",\"url\":\"/masters/psychology\"}\nf1:{\"label\":\"Master's in Clinical Psychology\",\"url\":\"/masters/psychology/online-masters-in-clinical-psychology\"}\nf2:{\"label\":\"Master's in Marriage and Family Therapy (MFT)\",\"url\":\"/masters/psychology/online-mft-programs\"}\nf3:{\"label\":\"Master's in Applied Behavior Analysis (ABA)\",\"url\":\"/masters/psychology/online-aba-programs\"}\nf4:{\"label\":\"Master's in Licensed Professional Counseling (LPC)\",\"url\":\"/masters/psychology/online-lpc-programs\"}\nf5:{\"label\":\"Master of Data Science (MDS)\",\"url\":\"/masters/online-masters-in-data-science\"}\nf6:{\"label\":\"Master's in Artificial Intelligence\",\"url\":\"/masters/online-masters-in-artificial-intelligence\"}\nf7:{\"label\":\"Master's in Architecture (M.Arch)\",\"url\":\"/masters/online-masters-in-architecture\"}\nf8:{\"label\":\"Master's in Speech Language Pathology (SLP)\",\"url\":\"/masters/online-slp-programs\"}\nf9:{\"label\":\"Master's in Public Health (MPH)\",\"url\":\"/masters/masters-in-public-health-online\"}\nfa:{\"label\":\"Master's in Education\",\"url\":\"/masters/masters-in-education-online\"}\nfb:{\"label\":\"Master's in Educational Leadership\",\"url\":\"/masters/masters-in-education-online/online-masters-in-educational-leadership\"}\nfc:{\"label\":\"Master's in Teaching (MAT)\",\"url\":\"/masters/online-mat-programs\"}\nfd:{\"label\":\"Master's in Nursing (MSN)\",\"url\":\"/masters/online-msn-programs\"}\nfe:{\"label\":\"Family Nurse Practitioner (FNP)\",\"url\":\"/masters/online-msn-programs/online-fnp-programs\"}\nff:{\"label\":\"Psychiatric Mental Health Nurse Practitioner (PMHNP)\",\"url\":\"/masters/online-msn-programs/online-pmhnp-programs\"}\n100:{\""])</script><script>self.__next_f.push([1,"label\":\"Acute Care Nurse Practitioner (ACNP)\",\"url\":\"/masters/online-msn-programs/online-acute-care-nurse-practitioner-programs\"}\n101:{\"label\":\"Master of Laws (LLM)\",\"url\":\"/masters/online-llm-programs\"}\n102:{\"label\":\"Master of Legal Studies\",\"url\":\"/masters/online-master-of-legal-studies\"}\n103:{\"label\":\"Master's in Counseling\",\"url\":\"/masters/counseling\"}\n104:{\"label\":\"Master's in School Counseling\",\"url\":\"/masters/counseling/online-masters-in-school-counseling\"}\n105:{\"label\":\"Master's in Mental Health Counseling\",\"url\":\"/masters/counseling/online-masters-in-mental-health-counseling\"}\n106:{\"label\":\"Master's in Counseling \u0026 Psychology\",\"url\":\"/masters/counseling-psychology\"}\n107:{\"label\":\"Master of Engineering (MEng)\",\"url\":\"/masters/online-masters-in-engineering\"}\n108:{\"label\":\"Master's in Computer Engineering\",\"url\":\"/masters/online-masters-in-engineering/online-computer-engineering-masters\"}\n109:{\"label\":\"Master's in Cybersecurity\",\"url\":\"/masters/online-masters-in-cybersecurity\"}\n10a:{\"label\":\"Master's in Information Technology (IT)\",\"url\":\"/masters/online-masters-in-information-technology\"}\n10b:{\"label\":\"Master's in Information Systems\",\"url\":\"/masters/masters-in-information-systems-online\"}\n10c:{\"label\":\"Master's in Computer Science\",\"url\":\"/masters/online-masters-in-computer-science\"}\n10d:{\"label\":\"Master of Library and Information Science (MLIS)\",\"url\":\"/masters/online-mlis-programs\"}\n10e:{\"label\":\"Master's in International Relations\",\"url\":\"/masters/online-masters-in-international-relations\"}\n10f:{\"label\":\"Master's in Communication\",\"url\":\"/masters/online-masters-in-communication\"}\n110:{\"label\":\"Master's in Design\",\"url\":\"/masters/online-masters-in-design\"}\n111:{\"label\":\"Master's in Health Administration (MHA)\",\"url\":\"/masters/online-mha\"}\n112:{\"label\":\"Master's in Business\",\"url\":\"/masters/online-masters-in-business\"}\n113:{\"label\":\"Master of Accounting\",\"url\":\"/masters/online-masters-in-accounting\"}\n114:{\"label\":\"Master's in Entrepreneurship\",\"url\":\"/masters/masters-in-entrepreneurship-online\"}\n115:{\"la"])</script><script>self.__next_f.push([1,"bel\":\"Master's in Leadership\",\"url\":\"/masters/masters-in-leadership-online\"}\n116:{\"label\":\"Master's in Human Resources\",\"url\":\"/masters/online-masters-in-human-resources\"}\n117:{\"label\":\"Master's in Supply Chain Management\",\"url\":\"/masters/online-masters-in-supply-chain-management\"}\n118:{\"label\":\"Master's in Public Administration (MPA)\",\"url\":\"/masters/masters-in-public-administration-online\"}\n119:{\"label\":\"Master's in Analytics\",\"url\":\"/masters/online-masters-in-analytics\"}\n11a:{\"label\":\"Maestría en Analítica de Negocios\",\"url\":\"/masters/online-masters-in-analytics/online-masters-in-business-analytics\"}\n11b:{\"label\":\"Master's in Data Analytics\",\"url\":\"/masters/online-masters-in-analytics/online-masters-in-data-analytics\"}\n11c:{\"label\":\"Master's in Project Management (MPM)\",\"url\":\"/masters/masters-in-project-management-online\"}\n11d:{\"label\":\"Maestría en Cuidado de la Salud\",\"url\":\"/masters/healthcare\"}\n11e:{\"label\":\"Master's in Nutrition\",\"url\":\"/masters/online-masters-in-nutrition\"}\n11f:{\"label\":\"Licenciatura en Trabajo Social (BSW)\",\"url\":\"/bachelors/social-work-bsw\"}\n120:{\"label\":\"Bachelor of Psychology\",\"url\":\"/bachelors/psychology\"}\n121:{\"label\":\"Bachelor of Computer Science in Data Science\",\"url\":\"/bachelors/computer-data-sciences\"}\n122:{\"label\":\"Bachelor of Public Health\",\"url\":\"/bachelors/bachelors-in-public-health-online\"}\n123:{\"label\":\"Bachelor of Accounting\",\"url\":\"/bachelors/online-accounting-bachelor-degree\"}\n124:{\"label\":\"Bachelor of Finance\",\"url\":\"/bachelors/online-bachelors-degree-finance\"}\n125:{\"label\":\"Bachelor of Health and Social Service\",\"url\":\"/bachelors/health-social-services\"}\n126:{\"label\":\"Bachelor's in Business\",\"url\":\"/bachelors/business\"}\n127:{\"label\":\"Doctorate in Social Work (DSW)\",\"url\":\"/doctorate/social-work\"}\n128:{\"label\":\"Doctor of Public Health (DrPH)\",\"url\":\"/doctorate/online-drph-programs\"}\n129:{\"label\":\"Doctor of Education (EdD)\",\"url\":\"/doctorate/online-edd-programs\"}\n12a:{\"label\":\"Doctor of Nursing Practice (DNP)\",\"url\":\"/doctorate/online-dnp-programs\"}\n12b:{\"label\":\"Do"])</script><script>self.__next_f.push([1,"ctor of Physical Therapy (DPT)\",\"url\":\"/doctorate/online-dpt-programs\"}\n12c:{\"label\":\"Doctor of Pharmacy (PharmD)\",\"url\":\"/doctorate/online-pharmd-programs\"}\ned:[\"$ee\",\"$ef\",\"$f0\",\"$f1\",\"$f2\",\"$f3\",\"$f4\",\"$f5\",\"$f6\",\"$f7\",\"$f8\",\"$f9\",\"$fa\",\"$fb\",\"$fc\",\"$fd\",\"$fe\",\"$ff\",\"$100\",\"$101\",\"$102\",\"$103\",\"$104\",\"$105\",\"$106\",\"$107\",\"$108\",\"$109\",\"$10a\",\"$10b\",\"$10c\",\"$10d\",\"$10e\",\"$10f\",\"$110\",\"$111\",\"$112\",\"$113\",\"$114\",\"$115\",\"$116\",\"$117\",\"$118\",\"$119\",\"$11a\",\"$11b\",\"$11c\",\"$11d\",\"$11e\",\"$11f\",\"$120\",\"$121\",\"$122\",\"$123\",\"$124\",\"$125\",\"$126\",\"$127\",\"$128\",\"$129\",\"$12a\",\"$12b\",\"$12c\"]\nec:{\"title\":\"Trending Topics\",\"links\":\"$ed\"}\nc4:{\"label\":\"Earn a degree\",\"hero\":\"$c5\",\"productSummaries\":\"$c8\",\"productLists\":\"$d7\",\"linkList\":\"$ec\"}\n34:[\"$35\",\"$6f\",\"$c4\"]\n33:{\"title\":\"By goal\",\"items\":\"$34\"}\n132:{\"label\":\"View all Artificial Intelligence courses\",\"url\":\"/search?tab=course\u0026skills.skill=Artificial+Intelligence\"}\n133:{\"label\":\"Learn more about Artificial Intelligence\",\"url\":\"/learn/artificial-intelligence\"}\n131:{\"viewAll\":\"$132\",\"learnMore\":\"$133\"}\n130:{\"title\":\"Artificial Intelligence\",\"subTitle\":\"Artificial Intelligence (AI) is a unique field of study that combines computer science, robust datasets, and the ability of machines to simulate human intelligence to advance problem-solving techniques and tasks.\",\"cta\":\"$131\",\"ctaPosition\":\"left\"}\n136:{\"label\":\"ChatGPT\",\"url\":\"/learn/chatgpt\"}\n137:{\"label\":\"Machine Learning\",\"url\":\"/learn/machine-learning\"}\n138:{\"label\":\"Computer Science\",\"url\":\"/learn/computer-science\"}\n139:{\"label\":\"Electronics\",\"url\":\"/learn/electronics\"}\n13a:{\"label\":\"Automation\",\"url\":\"/learn/automation\"}\n13b:{\"label\":\"Augmented Reality\",\"url\":\"/learn/augmented-reality\"}\n13c:{\"label\":\"Internet of Things\",\"url\":\"/learn/iot-internet-of-things\"}\n13d:{\"label\":\"Software Engineering\",\"url\":\"/learn/software-engineering\"}\n13e:{\"label\":\"Data Mining\",\"url\":\"/learn/data-mining\"}\n13f:{\"label\":\"Robotics\",\"url\":\"/learn/robotics\"}\n140:{\"label\":\"Deep Learning\",\"url\":\"/learn/deep-learning\"}\n141:{\"label\":\"Computer Engineeri"])</script><script>self.__next_f.push([1,"ng\",\"url\":\"/learn/computer-engineering\"}\n142:{\"label\":\"Algorithms\",\"url\":\"/learn/algorithms\"}\n143:{\"label\":\"Natural Language Processing\",\"url\":\"/learn/natural-language-processing\"}\n144:{\"label\":\"Computer Programming\",\"url\":\"/learn/computer-programming\"}\n145:{\"label\":\"Computer Vision\",\"url\":\"/learn/computer-vision\"}\n146:{\"label\":\"Robotic Process Automation\",\"url\":\"/learn/robotic-process-automation\"}\n147:{\"label\":\"Computer Networking\",\"url\":\"/learn/computer-networking\"}\n148:{\"label\":\"Mathematical Modeling\",\"url\":\"/learn/mathematical-modeling\"}\n149:{\"label\":\"Autonomous Robotics\",\"url\":\"/learn/autonomous-robotics\"}\n135:[\"$136\",\"$137\",\"$138\",\"$139\",\"$13a\",\"$13b\",\"$13c\",\"$13d\",\"$13e\",\"$13f\",\"$140\",\"$141\",\"$142\",\"$143\",\"$144\",\"$145\",\"$146\",\"$147\",\"$148\",\"$149\"]\n134:{\"title\":\"Related Topics\",\"links\":\"$135\"}\n14f:{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/f396c277-2a09-46ec-b76f-32fedc4a82cc-59e1dca89c96.png\"}\n14e:{\"key\":\"Databricks\",\"name\":\"Databricks\",\"logo\":\"$14f\"}\n14d:{\"id\":\"d62627c6-2b97-5ffc-b862-2f2c4bab95cf\",\"title\":\"Large Language Models: Application through Production\",\"url\":\"/learn/computer-science/databricks-large-language-models-application-through-production\",\"owner\":\"$14e\"}\n152:{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/44022f13-20df-4666-9111-cede3e5dc5b6-2cc39992c67a.png\"}\n151:{\"key\":\"HarvardX\",\"name\":\"Harvard University\",\"logo\":\"$152\"}\n150:{\"id\":\"b58fc9b9-5426-56e6-9cdc-f1f872b3e816\",\"title\":\"CS50's Introduction to Artificial Intelligence with Python\",\"url\":\"/learn/artificial-intelligence/harvard-university-cs50-s-introduction-to-artificial-intelligence-with-python\",\"owner\":\"$151\"}\n155:{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/87b07564-d569-4cfd-bee6-8b0a407acb73-dc33e4b5f353.png\"}\n154:{\"key\":\"IBM\",\"name\":\"IBM\",\"logo\":\"$155\"}\n153:{\"id\":\"df35235c-d8a5-5d87-992a-51e960aa2bb5\",\"title\":\"AI for Everyone: Master the Basics\",\"url\":\"/learn/artificial-intelligence/ibm-ai-for-everyone-master-the-basics\",\"owner\":\"$154\"}\n14c:[\"$14d\",\"$150\",\"$153\"]\n156:{\"label\""])</script><script>self.__next_f.push([1,":\"View all Artificial Intelligence courses\",\"url\":\"/search?q=artificial+intelligence\u0026tab=course\"}\n14b:{\"title\":\"Courses\",\"products\":\"$14c\",\"cta\":\"$156\"}\n15b:{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/2a73d2ce-c34a-4e08-8223-83bca9d2f01d-74256c21f26d.png\"}\n15a:{\"key\":\"MITx\",\"name\":\"Massachusetts Institute of Technology\",\"logo\":\"$15b\"}\n159:{\"id\":\"09a238fc-8b5a-5d83-8c74-2f002c3ba841\",\"title\":\"Artificial Intelligence in Health Care\",\"url\":\"/executive-education/massachusetts-institute-of-technology-artificial-intelligence-in-health-care\",\"owner\":\"$15a\"}\n15e:{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/2a73d2ce-c34a-4e08-8223-83bca9d2f01d-74256c21f26d.png\"}\n15d:{\"key\":\"MITx\",\"name\":\"Massachusetts Institute of Technology\",\"logo\":\"$15e\"}\n15c:{\"id\":\"e7388b02-2261-507f-a84e-f5a0f5d47c49\",\"title\":\"Artificial Intelligence: Implications for Business Strategy\",\"url\":\"/executive-education/massachusetts-institute-of-technology-artificial-intelligence-implications-for-business-strategy\",\"owner\":\"$15d\"}\n161:{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/2b628454-1c1f-4a61-978a-7bec1e588918-f65474eb5fac.png\"}\n160:{\"key\":\"OxfordX\",\"name\":\"University of Oxford\",\"logo\":\"$161\"}\n15f:{\"id\":\"396aac5e-d950-5f87-95ca-8184399edd50\",\"title\":\"Oxford Artificial Intelligence Programme\",\"url\":\"/executive-education/university-of-oxford-artificial-intelligence-programme\",\"owner\":\"$160\"}\n158:[\"$159\",\"$15c\",\"$15f\"]\n162:{\"label\":\"View all Artificial Intelligence Certificates\",\"url\":\"/certificates/ai-certificates\"}\n157:{\"title\":\"Certificates\",\"products\":\"$158\",\"cta\":\"$162\"}\n167:{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/6ec06cd6-4355-44bd-822a-2094d743b7a4-7ed01c537f21.png\"}\n166:{\"key\":\"SyracuseUniversity\",\"name\":\"Syracuse University\",\"logo\":\"$167\"}\n165:{\"id\":\"ea953e86-de57-4512-8503-a89f00f1b2b1\",\"title\":\"Master of Science in Computer Science\",\"url\":\"/masters/online-masters-in-computer-science/syracuse-master-of-science-in-computer-science\",\"owner\":\"$166\"}\n16a:{\"url\":\"https://prod-"])</script><script>self.__next_f.push([1,"discovery.edx-cdn.org/organization/logos/9d38ad58-87fb-4a89-9f23-c8df318112e3-aec8e9e98a5f.png\"}\n169:{\"key\":\"UTAustinX\",\"name\":\"The University of Texas at Austin\",\"logo\":\"$16a\"}\n168:{\"id\":\"89f39d1a-bb23-4944-b6e0-b51fe25ce932\",\"title\":\"Master of Science in Artificial Intelligence (MSAI)\",\"url\":\"/masters/online-masters-in-artificial-intelligence/online-master-artificial-intelligence-utaustinx\",\"owner\":\"$169\"}\n16d:{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/8e585adc-f870-4e8f-abe8-e67da192d49c-33b63ce3ca64.png\"}\n16c:{\"key\":\"Maryville\",\"name\":\"Maryville University\",\"logo\":\"$16d\"}\n16b:{\"id\":\"ee60cf8f-3b6c-476f-94c1-1a16c8f50c48\",\"title\":\"Master of Science in Artificial Intelligence\",\"url\":\"/masters/maryville-university-master-of-science-in-artificial-intelligence\",\"owner\":\"$16c\"}\n164:[\"$165\",\"$168\",\"$16b\"]\n16e:{\"label\":\"View all Masters in Artificial Intelligence\",\"url\":\"/masters/online-masters-in-artificial-intelligence\"}\n163:{\"title\":\"Degrees\",\"products\":\"$164\",\"cta\":\"$16e\"}\n14a:[\"$14b\",\"$157\",\"$163\"]\n12f:{\"label\":\"Artificial Intelligence\",\"hero\":\"$130\",\"linkList\":\"$134\",\"productLists\":\"$14a\"}\n172:{\"label\":\"View all Data Science courses\",\"url\":\"/search?tab=course\u0026skills.skill=Data+Science\"}\n171:{\"viewAll\":\"$172\"}\n170:{\"title\":\"Data Science\",\"subTitle\":\"Data Science is an interdisciplinary field which utilizes scientific methods, algorithms, and data insights to extract meaning and drive informed decision-making across industries.\",\"cta\":\"$171\",\"ctaPosition\":\"right\"}\n175:{\"label\":\"Power BI\",\"url\":\"/learn/power-bi\"}\n176:{\"label\":\"SQL\",\"url\":\"/learn/sql\"}\n177:{\"label\":\"Analytics\",\"url\":\"/learn/analytics\"}\n178:{\"label\":\"MySQL\",\"url\":\"/learn/mysql\"}\n179:{\"label\":\"Coding\",\"url\":\"/learn/coding\"}\n17a:{\"label\":\"PostgreSQL\",\"url\":\"/learn/postgresql\"}\n17b:{\"label\":\"Big Data\",\"url\":\"/learn/big-data\"}\n17c:{\"label\":\"Cloud Computing\",\"url\":\"/learn/cloud-computing\"}\n17d:{\"label\":\"Syntax\",\"url\":\"/learn/syntax\"}\n17e:{\"label\":\"Statistics\",\"url\":\"/learn/statistics\"}\n17f:{\"label\":\"TensorFlow\",\"url\":\"/learn/tensorflow\""])</script><script>self.__next_f.push([1,"}\n180:{\"label\":\"Probability\",\"url\":\"/learn/probability\"}\n181:{\"label\":\"Regression\",\"url\":\"/learn/regression\"}\n182:{\"label\":\"Inference\",\"url\":\"/learn/inference\"}\n183:{\"label\":\"PyTorch\",\"url\":\"/learn/pytorch\"}\n184:{\"label\":\"Grafana\",\"url\":\"/learn/grafana\"}\n185:{\"label\":\"Business Intelligence\",\"url\":\"/learn/business-intelligence\"}\n186:{\"label\":\"Data Warehouse\",\"url\":\"/learn/data-warehouse\"}\n187:{\"label\":\"Data Structures\",\"url\":\"/learn/data-structures\"}\n188:{\"label\":\"Data Visualization\",\"url\":\"/learn/data-visualization\"}\n174:[\"$175\",\"$176\",\"$177\",\"$178\",\"$179\",\"$17a\",\"$17b\",\"$17c\",\"$17d\",\"$17e\",\"$17f\",\"$180\",\"$181\",\"$182\",\"$183\",\"$184\",\"$185\",\"$186\",\"$187\",\"$188\"]\n173:{\"title\":\"Related Topics\",\"links\":\"$174\"}\n18e:{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/8537d31f-01b4-40fd-b652-e17b38eefe41-4c6537c07d54.png\"}\n18d:{\"key\":\"GTx\",\"name\":\"The Georgia Institute of Technology\",\"logo\":\"$18e\"}\n18c:{\"id\":\"ad547f78-ac97-510f-9470-c9c0e6c9d348\",\"title\":\"Introduction to Analytics Modeling\",\"url\":\"/learn/data-analysis/the-georgia-institute-of-technology-introduction-to-analytics-modeling\",\"owner\":\"$18d\"}\n191:{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/44022f13-20df-4666-9111-cede3e5dc5b6-2cc39992c67a.png\"}\n190:{\"key\":\"HarvardX\",\"name\":\"Harvard University\",\"logo\":\"$191\"}\n18f:{\"id\":\"a926dd9d-d01b-5a7e-9905-c472ed4a388c\",\"title\":\"Data Science: R Basics\",\"url\":\"/learn/r-programming/harvard-university-data-science-r-basics\",\"owner\":\"$190\"}\n194:{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/2a73d2ce-c34a-4e08-8223-83bca9d2f01d-74256c21f26d.png\"}\n193:{\"key\":\"MITx\",\"name\":\"Massachusetts Institute of Technology\",\"logo\":\"$194\"}\n192:{\"id\":\"2205130f-9a8c-5988-aa70-ec37c470c2b0\",\"title\":\"Probability - The Science of Uncertainty and Data\",\"url\":\"/learn/probability/massachusetts-institute-of-technology-probability-the-science-of-uncertainty-and-data\",\"owner\":\"$193\"}\n18b:[\"$18c\",\"$18f\",\"$192\"]\n195:{\"label\":\"View all Data Science courses\",\"url\":\"/search?q=data+science\u0026tab=course\"}\n18a:{\"title\":\""])</script><script>self.__next_f.push([1,"Courses\",\"products\":\"$18b\",\"cta\":\"$195\"}\n19a:{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/44022f13-20df-4666-9111-cede3e5dc5b6-2cc39992c67a.png\"}\n199:{\"key\":\"HarvardX\",\"name\":\"Harvard University\",\"logo\":\"$19a\"}\n198:{\"id\":\"3c32e3e0-b6fe-4ee4-bd4f-210c6339e074\",\"title\":\"Data Science\",\"url\":\"/certificates/professional-certificate/harvardx-data-science\",\"owner\":\"$199\"}\n19d:{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/87b07564-d569-4cfd-bee6-8b0a407acb73-dc33e4b5f353.png\"}\n19c:{\"key\":\"IBM\",\"name\":\"IBM\",\"logo\":\"$19d\"}\n19b:{\"id\":\"b5598690-9bd8-4d21-b7f3-dc741b50473f\",\"title\":\"IBM Data Science\",\"url\":\"/certificates/professional-certificate/ibm-data-science\",\"owner\":\"$19c\"}\n1a0:{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/44022f13-20df-4666-9111-cede3e5dc5b6-2cc39992c67a.png\"}\n19f:{\"key\":\"HarvardX\",\"name\":\"Harvard University\",\"logo\":\"$1a0\"}\n19e:{\"id\":\"673ea595-1439-4a34-ad71-cc5c995c6fc6\",\"title\":\"Learning Python for Data Science\",\"url\":\"/certificates/professional-certificate/harvardx-learning-python-for-data-science\",\"owner\":\"$19f\"}\n197:[\"$198\",\"$19b\",\"$19e\"]\n1a1:{\"label\":\"View all Data Science certificates\",\"url\":\"/certificates/data-science-certificate\"}\n196:{\"title\":\"Certificates\",\"products\":\"$197\",\"cta\":\"$1a1\"}\n1a6:{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/9d38ad58-87fb-4a89-9f23-c8df318112e3-aec8e9e98a5f.png\"}\n1a5:{\"key\":\"UTAustinX\",\"name\":\"The University of Texas at Austin\",\"logo\":\"$1a6\"}\n1a4:{\"id\":\"721f524b-da8f-4923-83b4-a18de44fdc43\",\"title\":\"Master's Degree in Data Science\",\"url\":\"/masters/online-masters-in-data-science/online-master-data-science-utaustinx\",\"owner\":\"$1a5\"}\n1a9:{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/54bc81cb-b736-4505-aa51-dd2b18c61d84-2082c7ba1024.png\"}\n1a8:{\"key\":\"BerkeleyX\",\"name\":\"University of California, Berkeley\",\"logo\":\"$1a9\"}\n1a7:{\"id\":\"58331700-1a02-4abe-a858-4ebe83200d15\",\"title\":\"Master of Information and Data Science\",\"url\":\"/masters/online-masters-in-data-science/ucb-master-of-information-"])</script><script>self.__next_f.push([1,"and-data-science\",\"owner\":\"$1a8\"}\n1ac:{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/283be432-c4de-4818-83c5-bd77a2de49d6-2a29798bfd41.png\"}\n1ab:{\"key\":\"UNC-CH\",\"name\":\"The University of North Carolina at Chapel Hill\",\"logo\":\"$1ac\"}\n1aa:{\"id\":\"70adbe06-2ef5-446e-97cf-7d26520a9697\",\"title\":\"Master of Applied Data Science\",\"url\":\"/masters/online-masters-in-data-science/unc-master-of-applied-data-science\",\"owner\":\"$1ab\"}\n1a3:[\"$1a4\",\"$1a7\",\"$1aa\"]\n1ad:{\"label\":\"View all Data Science degrees\",\"url\":\"/masters/online-masters-in-data-science\"}\n1a2:{\"title\":\"Degrees\",\"products\":\"$1a3\",\"cta\":\"$1ad\"}\n189:[\"$18a\",\"$196\",\"$1a2\"]\n16f:{\"label\":\"Data Science\",\"hero\":\"$170\",\"linkList\":\"$173\",\"productLists\":\"$189\"}\n1b1:{\"label\":\"View all Finance courses\",\"url\":\"/search?skills.skill=Finance\"}\n1b2:{\"label\":\"Learn more about Finance\",\"url\":\"/learn/finance\"}\n1b0:{\"viewAll\":\"$1b1\",\"learnMore\":\"$1b2\"}\n1af:{\"title\":\"Finance\",\"subTitle\":\"Navigate the complex field of Finance, including money management, investments, and financial planning. Gain insights into market analysis and strategic decision-making, allowing for growth and profitability.\",\"cta\":\"$1b0\",\"ctaPosition\":\"left\"}\n1b5:{\"label\":\"Bitcoin\",\"url\":\"/learn/bitcoin\"}\n1b6:{\"label\":\"Investing\",\"url\":\"/learn/investing\"}\n1b7:{\"label\":\"Cryptocurrency\",\"url\":\"/learn/cryptocurrency\"}\n1b8:{\"label\":\"Blockchain\",\"url\":\"/learn/blockchain\"}\n1b9:{\"label\":\"Trading\",\"url\":\"/learn/trading\"}\n1ba:{\"label\":\"Fintech\",\"url\":\"/learn/fintech\"}\n1bb:{\"label\":\"Stocks\",\"url\":\"/learn/stocks\"}\n1bc:{\"label\":\"Banking\",\"url\":\"/learn/banking\"}\n1bd:{\"label\":\"Risk Management\",\"url\":\"/learn/risk-management\"}\n1be:{\"label\":\"Venture Capital\",\"url\":\"/learn/venture-capital\"}\n1bf:{\"label\":\"Taxes\",\"url\":\"/learn/taxes\"}\n1c0:{\"label\":\"Investment Banking\",\"url\":\"/learn/investment-banking\"}\n1c1:{\"label\":\"Financial Management\",\"url\":\"/learn/financial-management\"}\n1c2:{\"label\":\"Cryptography\",\"url\":\"/learn/cryptography\"}\n1c3:{\"label\":\"Circular Economy\",\"url\":\"/learn/circular-economy\"}\n1c4:{\"label\":\"Macroeconomics\","])</script><script>self.__next_f.push([1,"\"url\":\"/learn/macroeconomics\"}\n1c5:{\"label\":\"Financial Accounting\",\"url\":\"/learn/financial-accounting\"}\n1c6:{\"label\":\"Financial Literacy\",\"url\":\"/learn/financial-literacy\"}\n1c7:{\"label\":\"Personal Finance\",\"url\":\"/learn/personal-finance\"}\n1c8:{\"label\":\"Corporate Finance\",\"url\":\"/learn/corporate-finance\"}\n1b4:[\"$1b5\",\"$1b6\",\"$1b7\",\"$1b8\",\"$1b9\",\"$1ba\",\"$1bb\",\"$1bc\",\"$1bd\",\"$1be\",\"$1bf\",\"$1c0\",\"$1c1\",\"$1c2\",\"$1c3\",\"$1c4\",\"$1c5\",\"$1c6\",\"$1c7\",\"$1c8\"]\n1b3:{\"title\":\"Related Topics\",\"links\":\"$1b4\"}\n1ce:{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/3d8fc08e-339f-467a-a6c0-2b956ca5d6a0-797c0c6ddbc6.png\"}\n1cd:{\"key\":\"ColumbiaX\",\"name\":\"Columbia University\",\"logo\":\"$1ce\"}\n1cc:{\"id\":\"c211d581-03d2-5c31-b34f-a988be4cc3a4\",\"title\":\"Introduction to Corporate Finance\",\"url\":\"/learn/corporate-finance/columbia-university-introduction-to-corporate-finance\",\"owner\":\"$1cd\"}\n1d1:{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/2a73d2ce-c34a-4e08-8223-83bca9d2f01d-74256c21f26d.png\"}\n1d0:{\"key\":\"MITx\",\"name\":\"Massachusetts Institute of Technology\",\"logo\":\"$1d1\"}\n1cf:{\"id\":\"7eb35c18-ca39-552e-9241-ed3cab2f937e\",\"title\":\"Foundations of Modern Finance I\",\"url\":\"/learn/finance/massachusetts-institute-of-technology-foundations-of-modern-finance-i\",\"owner\":\"$1d0\"}\n1d4:{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/a7e2febc-e366-4b23-9fc3-5659cf53d452-fbcc652f58e1.png\"}\n1d3:{\"key\":\"UniversityofCambridge\",\"name\":\"University of Cambridge\",\"logo\":\"$1d4\"}\n1d2:{\"id\":\"feb03847-e53c-501a-b1cf-ebe2ccc23f4c\",\"title\":\"Foundations of Finance\",\"url\":\"/learn/finance/university-of-cambridge-foundations-of-finance\",\"owner\":\"$1d3\"}\n1cb:[\"$1cc\",\"$1cf\",\"$1d2\"]\n1d5:{\"label\":\"View all Finance courses\",\"url\":\"/search?q=finance\u0026tab=course\"}\n1ca:{\"title\":\"Courses\",\"products\":\"$1cb\",\"cta\":\"$1d5\"}\n1da:{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/44022f13-20df-4666-9111-cede3e5dc5b6-2cc39992c67a.png\"}\n1d9:{\"key\":\"HarvardX\",\"name\":\"Harvard University\",\"logo\":\"$1da\"}\n1d8:{\"id\":\"4666a4d2-1337-5324-85bf-059350078"])</script><script>self.__next_f.push([1,"d5b\",\"title\":\"FinTech\",\"url\":\"/executive-education/harvard-university-fintech\",\"owner\":\"$1d9\"}\n1dd:{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/07141c7d-a86e-4f48-bb5b-1eef0958b465-b644124b89ef.png\"}\n1dc:{\"key\":\"LSE\",\"name\":\"The London School of Economics and Political Science\",\"logo\":\"$1dd\"}\n1db:{\"id\":\"e590608c-e3f8-5731-8b22-ce1b4b589b23\",\"title\":\"MBA Essentials\",\"url\":\"/executive-education/the-london-school-of-economics-and-political-science-mba-essentials\",\"owner\":\"$1dc\"}\n1e0:{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/3d8fc08e-339f-467a-a6c0-2b956ca5d6a0-797c0c6ddbc6.png\"}\n1df:{\"key\":\"ColumbiaX\",\"name\":\"Columbia University\",\"logo\":\"$1e0\"}\n1de:{\"id\":\"1859f52c-3fc0-43fe-a8a1-13660c77e9c3\",\"title\":\"Corporate Finance\",\"url\":\"/certificates/professional-certificate/columbiax-corporate-finance\",\"owner\":\"$1df\"}\n1d7:[\"$1d8\",\"$1db\",\"$1de\"]\n1e1:{\"label\":\"View all Finance certificates\",\"url\":\"/search?q=finance\u0026tab=program\u0026program_type=Professional+Certificate\"}\n1d6:{\"title\":\"Certificates\",\"products\":\"$1d7\",\"cta\":\"$1e1\"}\n1e6:{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/6ec06cd6-4355-44bd-822a-2094d743b7a4-7ed01c537f21.png\"}\n1e5:{\"key\":\"SyracuseUniversity\",\"name\":\"Syracuse University\",\"logo\":\"$1e6\"}\n1e4:{\"id\":\"d85a67b7-2f8b-4f4a-8900-e4dd15cf64c8\",\"title\":\"Master of Science in Professional Accounting\",\"url\":\"/masters/online-masters-in-accounting/syracuse-master-of-science-in-professional-accounting\",\"owner\":\"$1e5\"}\n1e9:{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/3a33451f-9a20-41f0-9cd1-5f3624a0940e-be0782e0ed48.png\"}\n1e8:{\"key\":\"UCDavis\",\"name\":\"University of California, Davis\",\"logo\":\"$1e9\"}\n1e7:{\"id\":\"74f633a8-2eaa-4202-9e31-79f6868934b0\",\"title\":\"Master of Management\",\"url\":\"/masters/ucdavis-master-of-management\",\"owner\":\"$1e8\"}\n1ec:{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/8e585adc-f870-4e8f-abe8-e67da192d49c-33b63ce3ca64.png\"}\n1eb:{\"key\":\"Maryville\",\"name\":\"Maryville University\",\"logo\":\"$1ec\"}\n1ea:{\"id\":\"518b3b7e-f773-4b11-8427-"])</script><script>self.__next_f.push([1,"4343b53cd1ae\",\"title\":\"Master of Science in Accounting\",\"url\":\"/masters/maryville-university-master-of-science-in-accounting\",\"owner\":\"$1eb\"}\n1e3:[\"$1e4\",\"$1e7\",\"$1ea\"]\n1ed:{\"label\":\"View all Finance degrees\",\"url\":\"/search?q=finance+degree\u0026tab=program\"}\n1e2:{\"title\":\"Graduate Degrees\",\"products\":\"$1e3\",\"cta\":\"$1ed\"}\n1f2:{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/5427ee88-6dba-46ff-8ed8-87b71e3234da-0af1465ab67e.png\"}\n1f1:{\"key\":\"UniversityofLondon\",\"name\":\"University of London\",\"logo\":\"$1f2\"}\n1f0:{\"id\":\"f9414209-c0ac-4572-bb46-2dde155f3a22\",\"title\":\"Bachelor of Science in Economics and Finance\",\"url\":\"/bachelors/universityoflondon-bachelor-of-science-in-economics-and-finance\",\"owner\":\"$1f1\"}\n1f5:{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/5427ee88-6dba-46ff-8ed8-87b71e3234da-0af1465ab67e.png\"}\n1f4:{\"key\":\"UniversityofLondon\",\"name\":\"University of London\",\"logo\":\"$1f5\"}\n1f3:{\"id\":\"5e15f5aa-8a0a-4362-833d-1c9875e1ebad\",\"title\":\"Bachelor of Science in Accounting and Finance\",\"url\":\"/bachelors/universityoflondon-bachelor-of-science-in-accounting-and-finance\",\"owner\":\"$1f4\"}\n1f8:{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/8e585adc-f870-4e8f-abe8-e67da192d49c-33b63ce3ca64.png\"}\n1f7:{\"key\":\"Maryville\",\"name\":\"Maryville University\",\"logo\":\"$1f8\"}\n1f6:{\"id\":\"da3a0dc4-f697-48fd-bc7d-44c208608dd5\",\"title\":\"Bachelor of Science in Finance\",\"url\":\"/bachelors/maryville-university-bachelor-of-science-in-finance\",\"owner\":\"$1f7\"}\n1ef:[\"$1f0\",\"$1f3\",\"$1f6\"]\n1f9:{\"label\":\"View all Finance degrees\",\"url\":\"/search?q=finance+degree\u0026tab=program\"}\n1ee:{\"title\":\"Undergraduate Degrees\",\"products\":\"$1ef\",\"cta\":\"$1f9\"}\n1c9:[\"$1ca\",\"$1d6\",\"$1e2\",\"$1ee\"]\n1ae:{\"label\":\"Finance\",\"hero\":\"$1af\",\"linkList\":\"$1b3\",\"productLists\":\"$1c9\"}\n1fd:{\"label\":\"View all Business Administration Courses\",\"url\":\"/search?tab=course\u0026subject=Business+%26+Management\"}\n1fe:{\"label\":\"Learn more about Business Administration\",\"url\":\"/learn/business-administration\"}\n1fc:{\"viewAll\":\"$1fd\",\"learnMore\":\"$1fe\"}\n1fb:{\"ti"])</script><script>self.__next_f.push([1,"tle\":\"Business Administration\",\"subTitle\":\"Business Administration is the key to lead and manage operations, organize resources, and direct a team to achieve organizational goals with efficiency and effectiveness.\",\"cta\":\"$1fc\",\"ctaPosition\":\"left\"}\n201:{\"label\":\"Excel\",\"url\":\"/learn/excel\"}\n202:{\"label\":\"Marketing\",\"url\":\"/learn/marketing\"}\n203:{\"label\":\"Digital Marketing\",\"url\":\"/learn/digital-marketing\"}\n204:{\"label\":\"Entrepreneurship\",\"url\":\"/learn/entrepreneurship\"}\n205:{\"label\":\"Success\",\"url\":\"/learn/success\"}\n206:{\"label\":\"CEO\",\"url\":\"/learn/ceo\"}\n207:{\"label\":\"Management\",\"url\":\"/learn/management\"}\n208:{\"label\":\"Sales\",\"url\":\"/learn/sales\"}\n209:{\"label\":\"Accounting\",\"url\":\"/learn/accounting\"}\n20a:{\"label\":\"Leadership\",\"url\":\"/learn/leadership\"}\n20b:{\"label\":\"Innovation\",\"url\":\"/learn/innovation\"}\n20c:{\"label\":\"Procurement\",\"url\":\"/learn/procurement\"}\n20d:{\"label\":\"Scrum\",\"url\":\"/learn/scrum\"}\n20e:{\"label\":\"Zapier\",\"url\":\"/learn/zapier\"}\n20f:{\"label\":\"Ecommerce\",\"url\":\"/learn/ecommerce\"}\n210:{\"label\":\"Project Management\",\"url\":\"/learn/project-management\"}\n211:{\"label\":\"Agile\",\"url\":\"/learn/agile\"}\n212:{\"label\":\"ServiceNow\",\"url\":\"/learn/servicenow\"}\n213:{\"label\":\"Business Plan\",\"url\":\"/learn/business-plan\"}\n214:{\"label\":\"Retail\",\"url\":\"/learn/retail\"}\n200:[\"$201\",\"$202\",\"$203\",\"$204\",\"$205\",\"$206\",\"$207\",\"$208\",\"$209\",\"$20a\",\"$20b\",\"$20c\",\"$20d\",\"$20e\",\"$20f\",\"$210\",\"$211\",\"$212\",\"$213\",\"$214\"]\n1ff:{\"title\":\"Related Topics\",\"links\":\"$200\"}\n21a:{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/44022f13-20df-4666-9111-cede3e5dc5b6-2cc39992c67a.png\"}\n219:{\"key\":\"HarvardX\",\"name\":\"Harvard University\",\"logo\":\"$21a\"}\n218:{\"id\":\"6eca70a5-ef9e-5ac5-a960-16b5c619f367\",\"title\":\"Exercising Leadership: Foundational Principles\",\"url\":\"/learn/leadership/harvard-university-exercising-leadership-foundational-principles\",\"owner\":\"$219\"}\n21d:{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/2a73d2ce-c34a-4e08-8223-83bca9d2f01d-74256c21f26d.png\"}\n21c:{\"key\":\"MITx\",\"name\":\"Massachusetts Institute of T"])</script><script>self.__next_f.push([1,"echnology\",\"logo\":\"$21d\"}\n21b:{\"id\":\"03a0222e-f392-5beb-9bb5-ab4c25f37018\",\"title\":\"Financial Accounting\",\"url\":\"/learn/financial-accounting/massachusetts-institute-of-technology-financial-accounting\",\"owner\":\"$21c\"}\n220:{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/2a73d2ce-c34a-4e08-8223-83bca9d2f01d-74256c21f26d.png\"}\n21f:{\"key\":\"MITx\",\"name\":\"Massachusetts Institute of Technology\",\"logo\":\"$220\"}\n21e:{\"id\":\"92f758de-cddd-591e-a750-6b3e9ec47c0f\",\"title\":\"Supply Chain Fundamentals\",\"url\":\"/learn/supply-chain-design/massachusetts-institute-of-technology-supply-chain-fundamentals\",\"owner\":\"$21f\"}\n217:[\"$218\",\"$21b\",\"$21e\"]\n221:{\"label\":\"View all Business Administration courses\",\"url\":\"/search?tab=course\u0026subject=Business+%26+Management\"}\n216:{\"title\":\"Courses\",\"products\":\"$217\",\"cta\":\"$221\"}\n226:{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/07141c7d-a86e-4f48-bb5b-1eef0958b465-b644124b89ef.png\"}\n225:{\"key\":\"LSE\",\"name\":\"The London School of Economics and Political Science\",\"logo\":\"$226\"}\n224:{\"id\":\"e590608c-e3f8-5731-8b22-ce1b4b589b23\",\"title\":\"MBA Essentials\",\"url\":\"/executive-education/the-london-school-of-economics-and-political-science-mba-essentials\",\"owner\":\"$225\"}\n229:{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/2b628454-1c1f-4a61-978a-7bec1e588918-f65474eb5fac.png\"}\n228:{\"key\":\"OxfordX\",\"name\":\"University of Oxford\",\"logo\":\"$229\"}\n227:{\"id\":\"ae9513fa-9c85-5826-948f-826244d04618\",\"title\":\"Oxford Executive Strategy Programme\",\"url\":\"/executive-education/university-of-oxford-executive-strategy-programme\",\"owner\":\"$228\"}\n22c:{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/a7e2febc-e366-4b23-9fc3-5659cf53d452-fbcc652f58e1.png\"}\n22b:{\"key\":\"UniversityofCambridge\",\"name\":\"University of Cambridge\",\"logo\":\"$22c\"}\n22a:{\"id\":\"ed0e908c-0aa2-5c72-b640-5f28f4147f16\",\"title\":\"Business Sustainability Management\",\"url\":\"/executive-education/university-of-cambridge-business-sustainability-management\",\"owner\":\"$22b\"}\n223:[\"$224\",\"$227\",\"$22a\"]\n22d:{\"label\":\"View a"])</script><script>self.__next_f.push([1,"ll Business Administration certificates\",\"url\":\"/certificates/business-certificate\"}\n222:{\"title\":\"Certificates\",\"products\":\"$223\",\"cta\":\"$22d\"}\n232:{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/3a33451f-9a20-41f0-9cd1-5f3624a0940e-be0782e0ed48.png\"}\n231:{\"key\":\"UCDavis\",\"name\":\"University of California, Davis\",\"logo\":\"$232\"}\n230:{\"id\":\"fe32d1c5-5e22-4f5a-8a92-71ef3d654d96\",\"title\":\"Master of Business Administration\",\"url\":\"/masters/online-mba/ucd-master-of-business-administration\",\"owner\":\"$231\"}\n235:{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/283be432-c4de-4818-83c5-bd77a2de49d6-2a29798bfd41.png\"}\n234:{\"key\":\"UNC-CH\",\"name\":\"The University of North Carolina at Chapel Hill\",\"logo\":\"$235\"}\n233:{\"id\":\"1be98dfc-6b32-4f4c-8beb-02a2b1ef9183\",\"title\":\"Master of Business Administration\",\"url\":\"/masters/online-mba/unc-master-of-business-administration\",\"owner\":\"$234\"}\n22f:[\"$230\",\"$233\"]\n236:{\"label\":\"View all Business Administration degrees\",\"url\":\"/search?learning_type=MicroMasters\u0026learning_type=Executive+Education\u0026learning_type=Masters\u0026learning_type=MicroBachelors\u0026learning_type=Bachelors\u0026subject=Business+%26+Management\"}\n22e:{\"title\":\"Degrees\",\"products\":\"$22f\",\"cta\":\"$236\"}\n215:[\"$216\",\"$222\",\"$22e\"]\n1fa:{\"label\":\"Business Administration\",\"hero\":\"$1fb\",\"linkList\":\"$1ff\",\"productLists\":\"$215\"}\n23a:{\"label\":\"View all Cybersecurity Courses\",\"url\":\"/search?tab=course\u0026skills.skill=Cyber+Security\"}\n23b:{\"label\":\"Learn more about Cybersecurity\",\"url\":\"/learn/cybersecurity\"}\n239:{\"viewAll\":\"$23a\",\"learnMore\":\"$23b\"}\n238:{\"title\":\"Cybersecurity\",\"subTitle\":\"Cybersecurity is a subset of information technology (IT) focused on protecting digital systems and information. Cybersecurity specialists play key roles in the protection of IT systems against unauthorized access to data systems, centers and other systems.\",\"cta\":\"$239\",\"ctaPosition\":\"left\"}\n23e:{\"label\":\"Information Security\",\"url\":\"/learn/information-security\"}\n23f:{\"label\":\"Computer Security\",\"url\":\"/learn/computer-security\"}\n240:{\"lab"])</script><script>self.__next_f.push([1,"el\":\"Cloud Computing\",\"url\":\"/learn/cloud-computing\"}\n241:{\"label\":\"Encryption\",\"url\":\"/learn/encryption\"}\n242:{\"label\":\"Security Administration\",\"url\":\"/learn/security-administration\"}\n243:{\"label\":\"Security Software\",\"url\":\"/learn/security-software\"}\n244:{\"label\":\"Vulnerability Management\",\"url\":\"/learn/vulnerability-management\"}\n245:{\"label\":\"Information Technology\",\"url\":\"/learn/information-technology\"}\n246:{\"label\":\"Data Encryption\",\"url\":\"/learn/data-encryption\"}\n247:{\"label\":\"SaaS\",\"url\":\"/learn/software-as-a-service\"}\n248:{\"label\":\"User Experience (UX)\",\"url\":\"/learn/user-experience-ux\"}\n249:{\"label\":\"Cybersecurity\",\"url\":\"/learn/cybersecurity\"}\n24a:{\"label\":\"UX Design\",\"url\":\"/learn/ux-design\"}\n24b:{\"label\":\"Network Security\",\"url\":\"/learn/network-security\"}\n24c:{\"label\":\"Security Testing\",\"url\":\"/learn/security-testing\"}\n24d:{\"label\":\"Data Management\",\"url\":\"/learn/data-management\"}\n24e:{\"label\":\"Technical Analysis\",\"url\":\"/learn/technical-analysis\"}\n24f:{\"label\":\"Encryption Software\",\"url\":\"https://www.edx.org/learn/encryption-software\"}\n23d:[\"$23e\",\"$23f\",\"$240\",\"$241\",\"$242\",\"$243\",\"$244\",\"$245\",\"$246\",\"$247\",\"$248\",\"$249\",\"$24a\",\"$24b\",\"$24c\",\"$24d\",\"$24e\",\"$24f\"]\n23c:{\"title\":\"Related Topics\",\"links\":\"$23d\"}\n255:{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/44022f13-20df-4666-9111-cede3e5dc5b6-2cc39992c67a.png\"}\n254:{\"key\":\"HarvardX\",\"name\":\"Harvard University\",\"logo\":\"$255\"}\n253:{\"id\":\"1457154d-7332-535d-8f8a-6175288a53d0\",\"title\":\"CS50's Introduction to Cybersecurity\",\"url\":\"/learn/cybersecurity/harvard-university-cs50-s-introduction-to-cybersecurity\",\"owner\":\"$254\"}\n258:{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/de3e9ff0-477d-4496-8cfa-a98f902e5830-71b79f0ac34a.png\"}\n257:{\"key\":\"RITx\",\"name\":\"Rochester Institute of Technology\",\"logo\":\"$258\"}\n256:{\"id\":\"c082bec2-3ddc-5e34-b0da-dd64190dbb41\",\"title\":\"Cybersecurity Fundamentals\",\"url\":\"/learn/cybersecurity/rochester-institute-of-technology-cybersecurity-fundamentals\",\"owner\":\"$257\"}\n25b:{\"url\":\"https://prod-discov"])</script><script>self.__next_f.push([1,"ery.edx-cdn.org/organization/logos/a7530503-bd7f-49c4-afbe-22824a191282-25b122e47f8d.png\"}\n25a:{\"key\":\"UWashingtonX\",\"name\":\"University of Washington\",\"logo\":\"$25b\"}\n259:{\"id\":\"40667c7b-c4ce-5284-8c44-fbb76f64cc18\",\"title\":\"Introduction to Cybersecurity\",\"url\":\"/learn/cybersecurity/university-of-washington-introduction-to-cybersecurity\",\"owner\":\"$25a\"}\n252:[\"$253\",\"$256\",\"$259\"]\n25c:{\"label\":\"View all Cybersecurity courses\",\"url\":\"/search?q=cybersecurity\u0026tab=course\"}\n251:{\"title\":\"Courses\",\"products\":\"$252\",\"cta\":\"$25c\"}\n261:{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/44022f13-20df-4666-9111-cede3e5dc5b6-2cc39992c67a.png\"}\n260:{\"key\":\"HarvardX\",\"name\":\"Harvard University\",\"logo\":\"$261\"}\n25f:{\"id\":\"ffc2c233-cf68-53ad-b784-71e8aa535988\",\"title\":\"Cybersecurity: Managing Risk in the Information Age\",\"url\":\"/executive-education/harvard-university-cybersecurity-managing-risk-in-the-information-age\",\"owner\":\"$260\"}\n264:{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/c5b82171-94d3-40eb-befd-ade27c3d028a-7302375e32bd.png\"}\n263:{\"key\":\"UCT\",\"name\":\"University of Cape Town\",\"logo\":\"$264\"}\n262:{\"id\":\"ec5c1256-cb38-5693-84e3-484e41ac32d4\",\"title\":\"Fundamentals of Cybersecurity\",\"url\":\"/executive-education/university-of-cape-town-fundamentals-of-cybersecurity\",\"owner\":\"$263\"}\n267:{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/87b07564-d569-4cfd-bee6-8b0a407acb73-dc33e4b5f353.png\"}\n266:{\"key\":\"IBM\",\"name\":\"IBM\",\"logo\":\"$267\"}\n265:{\"id\":\"f32b3450-2bc6-4704-905c-4ec08316f8b3\",\"title\":\"Cybersecurity Analyst\",\"url\":\"/certificates/professional-certificate/ibm-cybersecurity-analyst\",\"owner\":\"$266\"}\n25e:[\"$25f\",\"$262\",\"$265\"]\n268:{\"label\":\"View all Cybersecurity certificates\",\"url\":\"/search?q=cybersecurity\u0026tab=program\u0026program_type=Professional+Certificate\"}\n25d:{\"title\":\"Certificates\",\"products\":\"$25e\",\"cta\":\"$268\"}\n26d:{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/6ec06cd6-4355-44bd-822a-2094d743b7a4-7ed01c537f21.png\"}\n26c:{\"key\":\"SyracuseUniversity\",\"name\":\"Syracuse Univ"])</script><script>self.__next_f.push([1,"ersity\",\"logo\":\"$26d\"}\n26b:{\"id\":\"780e11a3-0b47-424f-8a03-3f0a9072c5ec\",\"title\":\"Master of Science in Cybersecurity\",\"url\":\"/masters/online-masters-in-cybersecurity/syracuse-master-of-science-in-cybersecurity\",\"owner\":\"$26c\"}\n270:{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/8e585adc-f870-4e8f-abe8-e67da192d49c-33b63ce3ca64.png\"}\n26f:{\"key\":\"Maryville\",\"name\":\"Maryville University\",\"logo\":\"$270\"}\n26e:{\"id\":\"de971614-e9f1-4dc5-9081-5dec52d5ac4e\",\"title\":\"Master of Science in Cybersecurity\",\"url\":\"/masters/maryville-university-master-of-science-in-cybersecurity\",\"owner\":\"$26f\"}\n273:{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/8e585adc-f870-4e8f-abe8-e67da192d49c-33b63ce3ca64.png\"}\n272:{\"key\":\"Maryville\",\"name\":\"Maryville University\",\"logo\":\"$273\"}\n271:{\"id\":\"e86df75d-27f4-4a80-a2d0-8c14c4edf63f\",\"title\":\"Bachelor of Science in Cybersecurity\",\"url\":\"/bachelors/maryville-university-bachelor-of-science-in-cybersecurity\",\"owner\":\"$272\"}\n26a:[\"$26b\",\"$26e\",\"$271\"]\n274:{\"label\":\"View all Cybersecurity degrees\",\"url\":\"/masters/online-masters-in-cybersecurity\"}\n269:{\"title\":\"Degrees\",\"products\":\"$26a\",\"cta\":\"$274\"}\n250:[\"$251\",\"$25d\",\"$269\"]\n237:{\"label\":\"Cybersecurity\",\"hero\":\"$238\",\"linkList\":\"$23c\",\"productLists\":\"$250\"}\n278:{\"label\":\"View all Computer Science Courses\",\"url\":\"/search?tab=course\u0026skills.skill=Computer+Science\"}\n279:{\"label\":\"Learn more about Computer Science\",\"url\":\"/learn/computer-science\"}\n277:{\"viewAll\":\"$278\",\"learnMore\":\"$279\"}\n276:{\"title\":\"Computer Science\",\"subTitle\":\"Computer Science focuses on the design, development, and testing of software. It uses technology to problem solve by applying algorithms and coding to operating systems, artificial intelligence, machine learning, and informatics in nearly every industry. \",\"cta\":\"$277\",\"ctaPosition\":\"left\"}\n27c:{\"label\":\"Decoding\",\"url\":\"/learn/decoding\"}\n27d:{\"label\":\"Information Technology\",\"url\":\"/learn/information-technology\"}\n27e:{\"label\":\"Software Development\",\"url\":\"/learn/software-development\"}\n27f:{\"label\":\"N"])</script><script>self.__next_f.push([1,"umba\",\"url\":\"/learn/numba\"}\n280:{\"label\":\"YAML\",\"url\":\"/learn/yaml\"}\n281:{\"label\":\"Machine Learning\",\"url\":\"/learn/machine-learning\"}\n282:{\"label\":\"GParted\",\"url\":\"/learn/gparted\"}\n283:{\"label\":\"Finance\",\"url\":\"/learn/finance\"}\n284:{\"label\":\"CakePHP\",\"url\":\"/learn/cakephp\"}\n285:{\"label\":\"Artificial Intelligence\",\"url\":\"/learn/artificial-intelligence\"}\n27b:[\"$27c\",\"$27d\",\"$27e\",\"$27f\",\"$280\",\"$281\",\"$282\",\"$283\",\"$284\",\"$285\"]\n27a:{\"title\":\"Related Topics\",\"links\":\"$27b\"}\n28b:{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/44022f13-20df-4666-9111-cede3e5dc5b6-2cc39992c67a.png\"}\n28a:{\"key\":\"HarvardX\",\"name\":\"Harvard University\",\"logo\":\"$28b\"}\n289:{\"id\":\"201c5f46-3c12-5905-94fd-d52cc0c9a229\",\"title\":\"CS50's Introduction to Computer Science\",\"url\":\"/learn/computer-science/harvard-university-cs50-s-introduction-to-computer-science\",\"owner\":\"$28a\"}\n28e:{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/2a73d2ce-c34a-4e08-8223-83bca9d2f01d-74256c21f26d.png\"}\n28d:{\"key\":\"MITx\",\"name\":\"Massachusetts Institute of Technology\",\"logo\":\"$28e\"}\n28c:{\"id\":\"93e0e6f4-2df6-595b-823a-f8deb034df3b\",\"title\":\"Introduction to Computer Science and Programming Using Python\",\"url\":\"/learn/computer-science/massachusetts-institute-of-technology-introduction-to-computer-science-and-programming-using-python\",\"owner\":\"$28d\"}\n291:{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/f53a7458-c79b-4524-97cf-28241114230e-e47d44123c3b.png\"}\n290:{\"key\":\"StanfordOnline\",\"name\":\"Stanford University\",\"logo\":\"$291\"}\n28f:{\"id\":\"dc5d95bd-1c8b-5dd0-b247-d3ae969a1a5e\",\"title\":\"Computer Science 101\",\"url\":\"/learn/computer-science/stanford-university-computer-science-101\",\"owner\":\"$290\"}\n288:[\"$289\",\"$28c\",\"$28f\"]\n292:{\"label\":\"View all Computer Science courses\",\"url\":\"/search?q=computer+science\u0026tab=course\"}\n287:{\"title\":\"Courses\",\"products\":\"$288\",\"cta\":\"$292\"}\n297:{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/2a73d2ce-c34a-4e08-8223-83bca9d2f01d-74256c21f26d.png\"}\n296:{\"key\":\"MITx\",\"name\":\"Massachusetts Insti"])</script><script>self.__next_f.push([1,"tute of Technology\",\"logo\":\"$297\"}\n295:{\"id\":\"e7388b02-2261-507f-a84e-f5a0f5d47c49\",\"title\":\"Artificial Intelligence: Implications for Business Strategy\",\"url\":\"/executive-education/massachusetts-institute-of-technology-artificial-intelligence-implications-for-business-strategy\",\"owner\":\"$296\"}\n29a:{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/2a73d2ce-c34a-4e08-8223-83bca9d2f01d-74256c21f26d.png\"}\n299:{\"key\":\"MITx\",\"name\":\"Massachusetts Institute of Technology\",\"logo\":\"$29a\"}\n298:{\"id\":\"f9b3b50c-f470-5b6b-948f-02ee04e2db13\",\"title\":\"Machine Learning in Business\",\"url\":\"/executive-education/massachusetts-institute-of-technology-machine-learning-in-business\",\"owner\":\"$299\"}\n29d:{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/44022f13-20df-4666-9111-cede3e5dc5b6-2cc39992c67a.png\"}\n29c:{\"key\":\"HarvardX\",\"name\":\"Harvard University\",\"logo\":\"$29d\"}\n29b:{\"id\":\"8c5c1af9-761b-49b4-9f52-f6f48856d906\",\"title\":\"Computer Science for Artificial Intelligence\",\"url\":\"/certificates/professional-certificate/harvardx-computer-science-for-artifical-intelligence\",\"owner\":\"$29c\"}\n294:[\"$295\",\"$298\",\"$29b\"]\n29e:{\"label\":\"View all Computer Science certificates\",\"url\":\"/search?q=computer+science\u0026tab=program\u0026program_type=Professional+Certificate\"}\n293:{\"title\":\"Certificates\",\"products\":\"$294\",\"cta\":\"$29e\"}\n2a3:{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/9d38ad58-87fb-4a89-9f23-c8df318112e3-aec8e9e98a5f.png\"}\n2a2:{\"key\":\"UTAustinX\",\"name\":\"The University of Texas at Austin\",\"logo\":\"$2a3\"}\n2a1:{\"id\":\"fa22a987-489d-411a-81fa-c0ca4bc58652\",\"title\":\"Master's Degree in Computer Science\",\"url\":\"/masters/online-masters-in-computer-science/online-master-science-computer-science-utaustinx\",\"owner\":\"$2a2\"}\n2a6:{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/6ec06cd6-4355-44bd-822a-2094d743b7a4-7ed01c537f21.png\"}\n2a5:{\"key\":\"SyracuseUniversity\",\"name\":\"Syracuse University\",\"logo\":\"$2a6\"}\n2a4:{\"id\":\"ea953e86-de57-4512-8503-a89f00f1b2b1\",\"title\":\"Master of Science in Computer Science\",\"url\":"])</script><script>self.__next_f.push([1,"\"/masters/online-masters-in-computer-science/syracuse-master-of-science-in-computer-science\",\"owner\":\"$2a5\"}\n2a9:{\"url\":\"https://prod-discovery.edx-cdn.org/organization/logos/8e585adc-f870-4e8f-abe8-e67da192d49c-33b63ce3ca64.png\"}\n2a8:{\"key\":\"Maryville\",\"name\":\"Maryville University\",\"logo\":\"$2a9\"}\n2a7:{\"id\":\"c3abf25d-a907-4e3c-b940-802d5e1744bd\",\"title\":\"Bachelor of Science in Computer Science\",\"url\":\"/bachelors/maryville-university-bachelor-of-science-in-computer-science\",\"owner\":\"$2a8\"}\n2a0:[\"$2a1\",\"$2a4\",\"$2a7\"]\n2aa:{\"label\":\"View all Computer Science degrees\",\"url\":\"/masters/online-masters-in-computer-science\"}\n29f:{\"title\":\"Degrees\",\"products\":\"$2a0\",\"cta\":\"$2aa\"}\n286:[\"$287\",\"$293\",\"$29f\"]\n275:{\"label\":\"Computer Science\",\"hero\":\"$276\",\"linkList\":\"$27a\",\"productLists\":\"$286\"}\n2ae:{\"label\":\"View all topics\",\"url\":\"/learn\"}\n2ad:{\"viewAll\":\"$2ae\"}\n2ac:{\"title\":\"Popular topics\",\"cta\":\"$2ad\",\"ctaPosition\":\"left\"}\n2b2:{\"label\":\"Python\",\"url\":\"/learn/python\"}\n2b3:{\"label\":\"JavaScript\",\"url\":\"/learn/javascript\"}\n2b4:{\"label\":\"C\",\"url\":\"/learn/c-programming\"}\n2b5:{\"label\":\"Algorithms\",\"url\":\"/learn/algorithms\"}\n2b6:{\"label\":\"Linux\",\"url\":\"/learn/linux\"}\n2b1:[\"$2b2\",\"$2b3\",\"$2b4\",\"$2b5\",\"$2b6\"]\n2b0:{\"title\":\"Computer Programming\",\"url\":\"/learn/computer-programming\",\"links\":\"$2b1\"}\n2b9:{\"label\":\"Machine Learning\",\"url\":\"/learn/machine-learning\"}\n2ba:{\"label\":\"SQL\",\"url\":\"/learn/sql\"}\n2bb:{\"label\":\"Statistics\",\"url\":\"/learn/statistics\"}\n2bc:{\"label\":\"R\",\"url\":\"/learn/r-programming\"}\n2bd:{\"label\":\"Excel\",\"url\":\"/learn/excel\"}\n2b8:[\"$2b9\",\"$2ba\",\"$2bb\",\"$2bc\",\"$2bd\"]\n2b7:{\"title\":\"Data Analysis\",\"url\":\"/learn/data-analysis\",\"links\":\"$2b8\"}\n2c0:{\"label\":\"Trading\",\"url\":\"/learn/trading\"}\n2c1:{\"label\":\"Investing\",\"url\":\"/learn/investing\"}\n2c2:{\"label\":\"Stocks\",\"url\":\"/learn/stocks\"}\n2c3:{\"label\":\"Blockchain\",\"url\":\"/learn/blockchain\"}\n2c4:{\"label\":\"Cryptocurrency\",\"url\":\"/learn/cryptocurrency\"}\n2bf:[\"$2c0\",\"$2c1\",\"$2c2\",\"$2c3\",\"$2c4\"]\n2be:{\"title\":\"Economics\",\"url\":\"/learn/economics\",\"links\":\"$2bf\"}\n2c7:{\"label\":\"STEM\",\"url\""])</script><script>self.__next_f.push([1,":\"/learn/stem\"}\n2c8:{\"label\":\"Genetics\",\"url\":\"/learn/genetics\"}\n2c9:{\"label\":\"Neuroscience\",\"url\":\"/learn/neuroscience\"}\n2ca:{\"label\":\"Nutrition\",\"url\":\"/learn/nutrition\"}\n2cb:{\"label\":\"Human Anatomy\",\"url\":\"/learn/human-anatomy\"}\n2c6:[\"$2c7\",\"$2c8\",\"$2c9\",\"$2ca\",\"$2cb\"]\n2c5:{\"title\":\"Biology\",\"url\":\"/learn/biology\",\"links\":\"$2c6\"}\n2ce:{\"label\":\"Dynamics\",\"url\":\"/learn/dynamics\"}\n2cf:{\"label\":\"Nature\",\"url\":\"/learn/nature\"}\n2d0:{\"label\":\"Planets\",\"url\":\"/learn/planets\"}\n2d1:{\"label\":\"Architecture\",\"url\":\"/learn/architecture\"}\n2d2:{\"label\":\"Mechanics\",\"url\":\"/learn/mechanics\"}\n2cd:[\"$2ce\",\"$2cf\",\"$2d0\",\"$2d1\",\"$2d2\"]\n2cc:{\"title\":\"Physics\",\"url\":\"/learn/physics\",\"links\":\"$2cd\"}\n2d5:{\"label\":\"Writing\",\"url\":\"/learn/writing\"}\n2d6:{\"label\":\"Spanish\",\"url\":\"/learn/spanish\"}\n2d7:{\"label\":\"English\",\"url\":\"/learn/english\"}\n2d8:{\"label\":\"Italian\",\"url\":\"/learn/italian\"}\n2d9:{\"label\":\"Japanese\",\"url\":\"/learn/japanese\"}\n2d4:[\"$2d5\",\"$2d6\",\"$2d7\",\"$2d8\",\"$2d9\"]\n2d3:{\"title\":\"Language\",\"url\":\"/learn/language\",\"links\":\"$2d4\"}\n2dc:{\"label\":\"Psychology\",\"url\":\"/learn/psychology\"}\n2dd:{\"label\":\"Education\",\"url\":\"/learn/education\"}\n2de:{\"label\":\"Politics\",\"url\":\"/learn/politics\"}\n2df:{\"label\":\"Behavioral Psychology\",\"url\":\"/learn/behavioral-psychology\"}\n2e0:{\"label\":\"Government\",\"url\":\"/learn/government\"}\n2db:[\"$2dc\",\"$2dd\",\"$2de\",\"$2df\",\"$2e0\"]\n2da:{\"title\":\"Social Science\",\"url\":\"/learn/social-science\",\"links\":\"$2db\"}\n2e3:{\"label\":\"Probability\",\"url\":\"/learn/probability\"}\n2e4:{\"label\":\"Algebra\",\"url\":\"/learn/algebra\"}\n2e5:{\"label\":\"Calculus\",\"url\":\"/learn/calculus\"}\n2e6:{\"label\":\"Logic\",\"url\":\"/learn/logic\"}\n2e7:{\"label\":\"Geometry\",\"url\":\"/learn/geometry\"}\n2e2:[\"$2e3\",\"$2e4\",\"$2e5\",\"$2e6\",\"$2e7\"]\n2e1:{\"title\":\"Math\",\"url\":\"/learn/math\",\"links\":\"$2e2\"}\n2ea:{\"label\":\"Music\",\"url\":\"/learn/music-arts\"}\n2eb:{\"label\":\"Art\",\"url\":\"/learn/art\"}\n2ec:{\"label\":\"Philosophy\",\"url\":\"/learn/philosophy\"}\n2ed:{\"label\":\"Geography\",\"url\":\"/learn/geography\"}\n2ee:{\"label\":\"History\",\"url\":\"/learn/history\"}\n2e9:[\"$2ea\",\"$2eb\",\"$2ec\",\"$2ed\",\"$2ee\"]\n2e"])</script><script>self.__next_f.push([1,"8:{\"title\":\"Humanities\",\"url\":\"/learn/humanities\",\"links\":\"$2e9\"}\n2af:[\"$2b0\",\"$2b7\",\"$2be\",\"$2c5\",\"$2cc\",\"$2d3\",\"$2da\",\"$2e1\",\"$2e8\"]\n2ab:{\"label\":\"View all topics\",\"hero\":\"$2ac\",\"linkLists\":\"$2af\"}\n12e:[\"$12f\",\"$16f\",\"$1ae\",\"$1fa\",\"$237\",\"$275\",\"$2ab\"]\n12d:{\"title\":\"By topic\",\"items\":\"$12e\"}\n2f4:{\"label\":\"Access the Career Resource Center\",\"url\":\"https://careers.edx.org/\"}\n2f3:{\"viewAll\":\"$2f4\"}\n2f2:{\"title\":\"Career resources\",\"subTitle\":\"Find resources that help you make progress towards your next career goal.\",\"cta\":\"$2f3\",\"ctaPosition\":\"left\"}\n2f8:{\"label\":\"Hybrid Jobs: A 4-Minute Primer on Fast-Growing, Lucrative Career Paths\",\"url\":\"/resources/hybrid-jobs-a-4-minute-primer-on-fast-growing-lucrative-career-paths\"}\n2f9:{\"label\":\"How to Write an Effective CV – 5 Steps From the Experts\",\"url\":\"/resources/how-to-write-an-effective-cv-5-steps-experts\"}\n2fa:{\"label\":\"The Employability Skills Checklist\",\"url\":\"/resources/the-employability-skills-checklist\"}\n2fb:{\"label\":\"Computer science careers: Why computer science is for everyone\",\"url\":\"https://www.edx.org/resources/computer-science-careers\"}\n2fc:{\"label\":\"Building a career in data science and analytics\",\"url\":\"https://www.edx.org/resources/data-science-analytics-career-guide\"}\n2f7:[\"$2f8\",\"$2f9\",\"$2fa\",\"$2fb\",\"$2fc\"]\n2fd:{\"label\":\"Go to Idea Hub\",\"url\":\"https://www.edx.org/resources\"}\n2f6:{\"title\":\"Access career tips\",\"description\":\"Explore career articles in our Idea Hub\",\"links\":\"$2f7\",\"cta\":\"$2fd\"}\n300:{\"label\":\"How to Become a Software Developer\",\"url\":\"https://www.edx.org/become/how-to-become-a-software-developer\"}\n301:{\"label\":\"How to Become a Data Scientist\",\"url\":\"https://www.edx.org/become/how-to-become-a-data-scientist\"}\n302:{\"label\":\"How to Become a Software Engineer\",\"url\":\"https://www.edx.org/become/how-to-become-a-software-engineer-without-a-degree\"}\n303:{\"label\":\"How to Become a Social Media Manager\",\"url\":\"https://www.edx.org/become/how-to-become-a-social-media-manager\"}\n304:{\"label\":\"How to Become a Cybersecurity Analyst\",\"url\":\"https://www"])</script><script>self.__next_f.push([1,".edx.org/become/how-to-become-a-cybersecurity-analyst\"}\n2ff:[\"$300\",\"$301\",\"$302\",\"$303\",\"$304\"]\n305:{\"label\":\"View all guides\",\"url\":\"https://www.edx.org/become\"}\n2fe:{\"title\":\"How to guides\",\"description\":\"Find the next steps to start your new career\",\"links\":\"$2ff\",\"cta\":\"$305\"}\n307:{\"label\":\"Discover career paths\",\"url\":\"https://careers.edx.org/browse-by-industry\"}\n306:{\"title\":\"Career paths\",\"description\":\"Gain insights to chart your own career journey.\",\"links\":null,\"cta\":\"$307\"}\n309:{\"label\":\"Access guides \u0026 templates\",\"url\":\"https://careers.edx.org/guides-and-templates\"}\n308:{\"title\":\"Guides \u0026 templates\",\"description\":\"Use our career guides and templates to propel your career forward.\",\"links\":null,\"cta\":\"$309\"}\n30b:{\"label\":\"Take the quiz\",\"url\":\"https://skills.edx.org\"}\n30a:{\"title\":\"Skills Quiz\",\"description\":\"Find the right skills to learn for your dream job.\",\"links\":null,\"cta\":\"$30b\"}\n2f5:[\"$2f6\",\"$2fe\",\"$306\",\"$308\",\"$30a\"]\n2f1:{\"label\":\"Career resources\",\"hero\":\"$2f2\",\"productResources\":\"$2f5\"}\n30c:{\"label\":\"Schools \u0026 Partners\",\"url\":\"/schools-partners\"}\n2f0:[\"$2f1\",\"$30c\"]\n2ef:{\"items\":\"$2f0\"}\n310:{\"label\":\"Find online courses\",\"url\":\"/courses?q=free+online+courses\"}\n30f:{\"cta\":\"$310\"}\n30e:[\"$30f\"]\n30d:{\"title\":\"Still unsure?\",\"subTitle\":\"Try a course.\",\"items\":\"$30e\"}\n32:[\"$33\",\"$12d\",\"$2ef\",\"$30d\"]\n29:{\"header\":\"$2a\",\"sections\":\"$32\"}\n311:T1352,"])</script><script>self.__next_f.push([1,"{\"@context\":\"https://schema.org\",\"@type\":\"ItemList\",\"itemListElement\":[{\"@type\":\"ListItem\",\"position\":1,\"url\":\"https://www.edx.org/learn/statistics/massachusetts-institute-of-technology-fundamentals-of-statistics\"},{\"@type\":\"ListItem\",\"position\":2,\"url\":\"https://www.edx.org/learn/r-programming/harvard-university-statistics-and-r\"},{\"@type\":\"ListItem\",\"position\":3,\"url\":\"https://www.edx.org/learn/statistics/the-london-school-of-economics-and-political-science-statistics-1-part-1-introductory-statistics-probability-and-estimation\"},{\"@type\":\"ListItem\",\"position\":4,\"url\":\"https://www.edx.org/learn/python/ibm-introduction-to-statistics-for-data-science-using-python\"},{\"@type\":\"ListItem\",\"position\":5,\"url\":\"https://www.edx.org/learn/probability/harvard-university-introduction-to-probability\"},{\"@type\":\"ListItem\",\"position\":6,\"url\":\"https://www.edx.org/learn/statistics/delft-university-of-technology-statistics\"},{\"@type\":\"ListItem\",\"position\":7,\"url\":\"https://www.edx.org/learn/python/stanford-university-statistical-learning-with-python\"},{\"@type\":\"ListItem\",\"position\":8,\"url\":\"https://www.edx.org/learn/business-analytics/lehigh-university-statistics-fundamentals-for-business-analytics\"},{\"@type\":\"ListItem\",\"position\":9,\"url\":\"https://www.edx.org/masters/micromasters/mitx-statistics-and-data-science-general-track\"},{\"@type\":\"ListItem\",\"position\":10,\"url\":\"https://www.edx.org/learn/statistics/the-georgia-institute-of-technology-probability-and-statistics-i-a-gentle-introduction-to-probability\"},{\"@type\":\"ListItem\",\"position\":11,\"url\":\"https://www.edx.org/learn/biostatistics/doane-university-biostatistics\"},{\"@type\":\"ListItem\",\"position\":12,\"url\":\"https://www.edx.org/bachelors/microbachelors/lse-statistics-fundamentals\"},{\"@type\":\"ListItem\",\"position\":13,\"url\":\"https://www.edx.org/learn/statistics/the-university-of-edinburgh-statistics-unlocking-the-world-of-data\"},{\"@type\":\"ListItem\",\"position\":14,\"url\":\"https://www.edx.org/learn/statistics/the-london-school-of-economics-and-political-science-statistics-1-part-2-statistical-methods\"},{\"@type\":\"ListItem\",\"position\":15,\"url\":\"https://www.edx.org/learn/statistics/the-london-school-of-economics-and-political-science-statistics-2-part-1-probability-and-distribution-theory\"},{\"@type\":\"ListItem\",\"position\":16,\"url\":\"https://www.edx.org/masters/micromasters/mitx-statistics-and-data-science-methods-track\"},{\"@type\":\"ListItem\",\"position\":17,\"url\":\"https://www.edx.org/learn/biostatistics/osaka-university-introduction-to-applied-biostatistics-statistics-for-medical-research\"},{\"@type\":\"ListItem\",\"position\":18,\"url\":\"https://www.edx.org/learn/finance/massachusetts-institute-of-technology-mathematical-methods-for-quantitative-finance\"},{\"@type\":\"ListItem\",\"position\":19,\"url\":\"https://www.edx.org/learn/statistics/edx-intro-course-spreadsheets-and-statistics\"},{\"@type\":\"ListItem\",\"position\":20,\"url\":\"https://www.edx.org/learn/statistics/the-university-of-california-san-diego-probability-and-statistics-in-data-science-using-python\"},{\"@type\":\"ListItem\",\"position\":21,\"url\":\"https://www.edx.org/bachelors/statistics-amu-sl\"},{\"@type\":\"ListItem\",\"position\":22,\"url\":\"https://www.edx.org/learn/data-analysis/tecnologico-de-monterrey-introduction-to-data-science-and-basic-statistics-for-business\"},{\"@type\":\"ListItem\",\"position\":23,\"url\":\"https://www.edx.org/learn/statistics/the-georgia-institute-of-technology-probability-and-statistics-ii-random-variables-great-expectations-to-bell-curves\"},{\"@type\":\"ListItem\",\"position\":24,\"url\":\"https://www.edx.org/learn/international-business/the-international-monetary-fund-balance-of-payments-and-international-investment-position-statistics\"},{\"@type\":\"ListItem\",\"position\":25,\"url\":\"https://www.edx.org/learn/statistics/the-georgia-institute-of-technology-probability-and-statistics-iii-a-gentle-introduction-to-statistics\"},{\"@type\":\"ListItem\",\"position\":26,\"url\":\"https://www.edx.org/learn/government/the-international-monetary-fund-government-finance-statistics\"},{\"@type\":\"ListItem\",\"position\":27,\"url\":\"https://www.edx.org/learn/r-programming/university-of-canterbury-introduction-to-bayesian-statistics-using-r\"},{\"@type\":\"ListItem\",\"position\":28,\"url\":\"https://www.edx.org/learn/statistics/the-georgia-institute-of-technology-probability-and-statistics-iv-confidence-intervals-and-hypothesis-tests\"},{\"@type\":\"ListItem\",\"position\":29,\"url\":\"https://www.edx.org/learn/macroeconomics/the-international-monetary-fund-compilation-basics-for-macroeconomic-statistics\"},{\"@type\":\"ListItem\",\"position\":30,\"url\":\"https://www.edx.org/learn/statistics/the-international-monetary-fund-national-accounts-statistics\"},{\"@type\":\"ListItem\",\"position\":31,\"url\":\"https://www.edx.org/learn/economics/the-international-monetary-fund-public-sector-debt-statistics\"},{\"@type\":\"ListItem\",\"position\":32,\"url\":\"https://www.edx.org/learn/economics-finance/the-international-monetary-fund-producer-export-and-import-price-index-statistics\"}]}"])</script><script>self.__next_f.push([1,"31b:{\"label\":\"Partner With Us\",\"url\":\"https://business.edx.org/partner\"}\n31c:{\"label\":\"About\",\"url\":\"/about-us\"}\n31d:{\"label\":\"edX For Business\",\"url\":\"https://business.edx.org/?_gl=1*y0gcxr*_gcl_au*NDExMDUyMjIxLjE3MTUxMDI2MjM.*_ga*MTQzNjQ4NzY3NC4xNzA3MzE1NzUx*_ga_D3KS4KMDT0*MTcyMTkxMjUxNC4xODEuMS4xNzIxOTE0NDczLjQ1LjAuMA..\"}\n31e:{\"label\":\"Affiliates\",\"url\":\"/affiliate-program\"}\n31f:{\"label\":\"Open edX\",\"url\":\"http://open.edx.org/?_gl=1*lt6kx3*_gcl_au*NDExMDUyMjIxLjE3MTUxMDI2MjM.*_ga*MTQzNjQ4NzY3NC4xNzA3MzE1NzUx*_ga_D3KS4KMDT0*MTcyMTkxMjUxNC4xODEuMS4xNzIxOTE0NTQ5LjU5LjAuMA..\"}\n320:{\"label\":\"2U Advisory Council\",\"url\":\"/advisory-groups\"}\n321:{\"label\":\"Careers\",\"url\":\"/careers\"}\n322:{\"label\":\"News\",\"url\":\"https://press.edx.org/?_gl=1*8w80my*_gcl_au*NDExMDUyMjIxLjE3MTUxMDI2MjM.*_ga*MTQzNjQ4NzY3NC4xNzA3MzE1NzUx*_ga_D3KS4KMDT0*MTcyMTkxMjUxNC4xODEuMS4xNzIxOTE0NTgzLjI1LjAuMA..\"}\n31a:[\"$31b\",\"$31c\",\"$31d\",\"$31e\",\"$31f\",\"$320\",\"$321\",\"$322\"]\n319:{\"title\":\"edx\",\"links\":\"$31a\"}\n325:{\"label\":\"Idea Hub\",\"url\":\"/resources\"}\n326:{\"label\":\"Contact Us\",\"url\":\"https://courses.edx.org/support/contact_us?_gl=1*13dq6q5*_gcl_au*NDExMDUyMjIxLjE3MTUxMDI2MjM.*_ga*MTQzNjQ4NzY3NC4xNzA3MzE1NzUx*_ga_D3KS4KMDT0*MTcyMTkxMjUxNC4xODEuMS4xNzIxOTE0NjYyLjYuMC4w\"}\n327:{\"label\":\"Help Center\",\"url\":\"https://support.edx.org/?_gl=1*1ej7jnc*_gcl_au*NDExMDUyMjIxLjE3MTUxMDI2MjM.*_ga*MTQzNjQ4NzY3NC4xNzA3MzE1NzUx*_ga_D3KS4KMDT0*MTcyMTkxMjUxNC4xODEuMS4xNzIxOTE1MDgxLjUuMC4w\"}\n328:{\"label\":\"Security\",\"url\":\"/policy/security\"}\n329:{\"label\":\"Media Kit\",\"url\":\"/media-kit\"}\n324:[\"$325\",\"$326\",\"$327\",\"$328\",\"$329\"]\n323:{\"title\":\"Connect\",\"links\":\"$324\"}\n32c:{\"label\":\"Terms of Service \u0026 Honor Code\",\"url\":\"/edx-terms-service\"}\n32d:{\"label\":\"Privacy Policy\",\"url\":\"/edx-privacy-policy\"}\n32e:{\"label\":\"Cookie Policy\",\"url\":\"/edx-privacy-policy/cookies\"}\n32f:{\"label\":\"Accessibility Policy\",\"url\":\"/accessibility\"}\n330:{\"label\":\"Trademark Policy\",\"url\":\"/trademarks\"}\n331:{\"label\":\"Modern Slavery Statement\",\"url\":\"/modern-slavery-statement\"}\n332:{\"label\":\"Sitemap\",\"url\":\"/sitem"])</script><script>self.__next_f.push([1,"ap\"}\n333:{\"label\":\"Your Privacy Choices\",\"url\":\"#\"}\n32b:[\"$32c\",\"$32d\",\"$32e\",\"$32f\",\"$330\",\"$331\",\"$332\",\"$333\"]\n32a:{\"title\":\"Legal\",\"links\":\"$32b\"}\n318:{\"edx\":\"$319\",\"connect\":\"$323\",\"legal\":\"$32a\"}\n"])</script><script>self.__next_f.push([1,"9:[[\"$\",\"$L1f\",null,{\"searchParams\":{},\"postId\":1210,\"cmsUrl\":\"https://cms.edx.org\"}],[\"$\",\"$L20\",null,{\"course\":\"$undefined\",\"navigation\":\"$29\",\"activeBanner\":{\"backgroundColor\":\"blue\",\"backgroundColorEs\":\"blue\",\"content\":[],\"contentEs\":[],\"campaignId\":\"\",\"campaignIdEs\":\"\"}}],[\"$\",\"div\",null,{\"style\":{\"minHeight\":50},\"children\":[[[\"$\",\"script\",\"0\",{\"type\":\"application/ld+json\",\"dangerouslySetInnerHTML\":{\"__html\":\"\\n {\\n \\\"@context\\\": \\\"https://schema.org\\\",\\n \\\"@type\\\" : \\\"Organization\\\",\\n \\\"name\\\" : \\\"edX\\\",\\n \\\"url\\\" : \\\"https://www.edx.org\\\",\\n \\\"logo\\\": \\\"/images/logos/edx-logo-elm.svg\\\",\\n \\\"sameAs\\\" : [\\n \\\"https://www.facebook.com/edX\\\",\\n \\\"https://twitter.com/edXOnline\\\",\\n \\\"https://www.linkedin.com/company/edx\\\",\\n \\\"http://www.instagram.com/edxonline\\\",\\n \\\"https://www.youtube.com/user/edxonline\\\"\\n ]\\n }\\n \"}}],[\"$\",\"script\",\"1\",{\"type\":\"application/ld+json\",\"dangerouslySetInnerHTML\":{\"__html\":\"{\\\"@context\\\":\\\"https://schema.org\\\",\\\"@type\\\":\\\"BreadcrumbList\\\",\\\"itemListElement\\\":[{\\\"@type\\\":\\\"ListItem\\\",\\\"position\\\":1,\\\"name\\\":\\\"Home\\\",\\\"item\\\":\\\"https://www.edx.org/\\\"},{\\\"@type\\\":\\\"ListItem\\\",\\\"position\\\":2,\\\"name\\\":\\\"Learn\\\",\\\"item\\\":\\\"https://www.edx.org/learn\\\"},{\\\"@type\\\":\\\"ListItem\\\",\\\"position\\\":3,\\\"name\\\":\\\"Statistics\\\"}]}\"}}],[\"$\",\"script\",\"2\",{\"type\":\"application/ld+json\",\"dangerouslySetInnerHTML\":{\"__html\":\"[{\\\"@context\\\":\\\"https://schema.org\\\",\\\"@type\\\":\\\"WebSite\\\",\\\"url\\\":\\\"https://www.edx.org/learn/statistics\\\",\\\"name\\\":\\\"Best Online Statistics Courses and Programs\\\",\\\"alternateName\\\":\\\"edX Online\\\"}]\"}}],[\"$\",\"script\",\"3\",{\"type\":\"application/ld+json\",\"dangerouslySetInnerHTML\":{\"__html\":\"$311\"}}]],[\"$\",\"main\",null,{\"id\":\"page-id-1210\",\"children\":[\"$\",\"article\",null,{\"className\":\"container prose mt-8 md:mt-auto\",\"children\":[[\"$\",\"$L15\",null,{\"pagetype\":\"learn-more\",\"children\":[]}],[\"$\",\"$L312\",null,{\"variant\":\"no-image\",\"theme\":\"secondary\",\"titleOverride\":\"Learn statistics\",\"title\":\"Best Online Statistics Courses and Programs\",\"path\":\"learn/statistics\",\"image\":\"$undefined\",\"subnavItems\":[{\"id\":\"browse-online-statistics-courses\",\"name\":\"Browse online Statistics courses\"},{\"id\":\"careers-in-statistics\",\"name\":\"Careers in statistics\"}],\"children\":[\"$\",\"p\",null,{\"className\":\"mb-8\",\"children\":\"Learning the skills to uncover relationships between data sets can open the door to professional opportunities and inform decision-making for many different areas of our lives. Start learning statistics with online courses delivered through edX.\"}],\"location\":\"learn-header\",\"htmlId\":\"create-account-button\",\"hasBreadcrumbs\":\"$undefined\",\"showSlantStripe\":\"$undefined\",\"slant\":\"$undefined\",\"titleClassName\":\"$undefined\"}],[\"$\",\"div\",\"2\",{\"className\":\"flex flex-wrap py-12\",\"children\":[\"$\",\"div\",null,{\"children\":[[\"$\",\"img\",\"0\",{\"loading\":\"lazy\",\"decoding\":\"async\",\"className\":\"hidden lg:block float-right ml-4 mb-4\",\"src\":\"https://images.cdn.edx.org/post1210-Statistics.png\",\"alt\":\"Statistics | Introduction Image Description\",\"width\":\"435\",\"height\":\"245\",\"children\":\"$undefined\"}],[\"$\",\"h2\",\"1\",{\"children\":\"What is statistics?\"}],[\"$\",\"p\",\"2\",{\"children\":\"Statistics is a branch of mathematics focused on the collection, analysis, and interpretation of data. Data sets can include full population data, surveys, smaller random samples, qualitative data, and much more. Statisticians can apply a number of data analysis techniques to better understand what the data means and how different data points or data sets relate to each other. For example, a pollster can conduct surveys on voter sentiment to determine which issues are likely driving voters to the polls. They can also use statistics to determine how closely their sample of voters reflects the larger population. \"}]]}]}],[\"$\",\"div\",\"3\",{\"className\":\"fullwidth bg-putty-100\",\"children\":[[\"$\",\"$L313\",null,{\"theme\":\"gray\",\"children\":[]}],[\"$\",\"a\",\"1\",{\"className\":\"subnav-item -mt-1\",\"name\":\"Browse online Statistics courses\",\"id\":\"browse-online-statistics-courses\",\"children\":\"$undefined\"}],\"$L314\",[\"$\",\"div\",null,{\"className\":\"pt-0 pb-6 fullwidth bg-putty-100\",\"children\":[[\"$\",\"h3\",null,{\"className\":\"mb-8 mt-0 text-2xl\",\"children\":\"Related Topics\"}],[\"$\",\"div\",null,{\"className\":\"flex gap-3 overflow-x-auto scroll-smooth not-prose\",\"children\":[\"$\",\"$L16\",null,{\"children\":[[\"$\",\"$L315\",\".$0\",{\"href\":\"/learn/data-analysis\",\"text\":\"Data Analysis\",\"html_id\":\"topic-link\",\"location\":\"related-topics\",\"class_name\":\"bg-background text-primary text-xs border-[.0625rem] border-putty-light px-2 py-1 rounded-[0.4375rem] whitespace-nowrap hover:text-white hover:bg-primary\",\"name\":\"data analysis\",\"position\":\"1\"}],[\"$\",\"$L315\",\".$1\",{\"href\":\"/learn/information-technology\",\"text\":\"Information Technology\",\"html_id\":\"topic-link\",\"location\":\"related-topics\",\"class_name\":\"bg-background text-primary text-xs border-[.0625rem] border-putty-light px-2 py-1 rounded-[0.4375rem] whitespace-nowrap hover:text-white hover:bg-primary\",\"name\":\"information technology\",\"position\":\"2\"}],[\"$\",\"$L315\",\".$2\",{\"href\":\"/learn/data-science\",\"text\":\"Data Science\",\"html_id\":\"topic-link\",\"location\":\"related-topics\",\"class_name\":\"bg-background text-primary text-xs border-[.0625rem] border-putty-light px-2 py-1 rounded-[0.4375rem] whitespace-nowrap hover:text-white hover:bg-primary\",\"name\":\"data science\",\"position\":\"3\"}],[\"$\",\"$L315\",\".$3\",{\"href\":\"/learn/finance\",\"text\":\"Finance\",\"html_id\":\"topic-link\",\"location\":\"related-topics\",\"class_name\":\"bg-background text-primary text-xs border-[.0625rem] border-putty-light px-2 py-1 rounded-[0.4375rem] whitespace-nowrap hover:text-white hover:bg-primary\",\"name\":\"finance\",\"position\":\"4\"}],[\"$\",\"$L315\",\".$4\",{\"href\":\"/learn/computer-science\",\"text\":\"Computer Science\",\"html_id\":\"topic-link\",\"location\":\"related-topics\",\"class_name\":\"bg-background text-primary text-xs border-[.0625rem] border-putty-light px-2 py-1 rounded-[0.4375rem] whitespace-nowrap hover:text-white hover:bg-primary\",\"name\":\"computer science\",\"position\":\"5\"}],[\"$\",\"$L315\",\".$5\",{\"href\":\"/learn/calculus\",\"text\":\"Calculus\",\"html_id\":\"topic-link\",\"location\":\"related-topics\",\"class_name\":\"bg-background text-primary text-xs border-[.0625rem] border-putty-light px-2 py-1 rounded-[0.4375rem] whitespace-nowrap hover:text-white hover:bg-primary\",\"name\":\"calculus\",\"position\":\"6\"}],[\"$\",\"$L315\",\".$6\",{\"href\":\"/learn/financial-accounting\",\"text\":\"Financial Accounting\",\"html_id\":\"topic-link\",\"location\":\"related-topics\",\"class_name\":\"bg-background text-primary text-xs border-[.0625rem] border-putty-light px-2 py-1 rounded-[0.4375rem] whitespace-nowrap hover:text-white hover:bg-primary\",\"name\":\"financial accounting\",\"position\":\"7\"}],[\"$\",\"$L315\",\".$7\",{\"href\":\"/learn/machine-learning\",\"text\":\"Machine Learning\",\"html_id\":\"topic-link\",\"location\":\"related-topics\",\"class_name\":\"bg-background text-primary text-xs border-[.0625rem] border-putty-light px-2 py-1 rounded-[0.4375rem] whitespace-nowrap hover:text-white hover:bg-primary\",\"name\":\"machine learning\",\"position\":\"8\"}],[\"$\",\"$L315\",\".$8\",{\"href\":\"/learn/cakephp\",\"text\":\"CakePHP\",\"html_id\":\"topic-link\",\"location\":\"related-topics\",\"class_name\":\"bg-background text-primary text-xs border-[.0625rem] border-putty-light px-2 py-1 rounded-[0.4375rem] whitespace-nowrap hover:text-white hover:bg-primary\",\"name\":\"cakephp\",\"position\":\"9\"}],[\"$\",\"$L315\",\".$9\",{\"href\":\"/learn/algebra\",\"text\":\"Algebra\",\"html_id\":\"topic-link\",\"location\":\"related-topics\",\"class_name\":\"bg-background text-primary text-xs border-[.0625rem] border-putty-light px-2 py-1 rounded-[0.4375rem] whitespace-nowrap hover:text-white hover:bg-primary\",\"name\":\"algebra\",\"position\":\"10\"}]]}]}],[\"$\",\"div\",null,{\"className\":\"pt-4\",\"children\":[\"$\",\"$L16\",null,{\"children\":[\"$\",\"$L315\",null,{\"href\":\"/learn\",\"text\":\"View all topics\",\"html_id\":\"view-all-topics-link\",\"location\":\"related-topics\",\"class_name\":\"text-gray-dark text-sm underline hover:text-[1f1f1f]\"}]}]}]]}],[\"$\",\"div\",\"4\",{\"className\":\"flex flex-col gap-2 pb-10\",\"children\":[[\"$\",\"$L316\",null,{\"id\":\"$undefined\",\"children\":[\"$\",\"div\",null,{\"id\":\"\",\"children\":[[\"$\",\"h3\",\"0\",{\"children\":\"Statistics courses and certifications/curriculum\"}],[\"$\",\"p\",\"1\",{\"children\":\"A statistics course may cover data collection, p-values, statistical inference, Excel formulas, confidence intervals, random variables, distributions, and more. Earning verified certificates in statistics and other mathematics disciplines may also help you stand out from other applicants when applying for roles in which you’ll need to perform statistical analysis.\"}],[\"$\",\"p\",\"2\",{\"children\":\"Individuals who perform statistical analysis as a core function of their jobs need to be skilled in problem-solving, critical thinking, analytics programming, and research. Regardless of industry, these skills can make you an attractive candidate for roles in this field.\"}]]}]}],[\"$\",\"a\",\"1\",{\"className\":\"subnav-item -mt-1\",\"name\":\"Careers in statistics\",\"id\":\"careers-in-statistics\",\"children\":\"$undefined\"}],[\"$\",\"$L316\",null,{\"id\":\"$undefined\",\"children\":[\"$\",\"div\",null,{\"id\":\"\",\"children\":[[\"$\",\"h2\",\"0\",{\"children\":\"Careers in statistics\"}],[\"$\",\"p\",\"1\",{\"children\":\"Governments, hospitals, banks, educational institutions, and countless other types of organizations rely on statistics for their general operations. For example, the U.S. Census Bureau specializes in the collection and analysis of data from U.S. households that helps to determine everything from the resources needed for underserved communities to the number of representatives each state has in Congress. Statistics have power; learning how to apply statistical analysis to data can be one way to harness that power to benefit any professional setting where you choose to work. \"}]]}]}]]}],[\"$\",\"$L317\",null,{\"theme\":\"gradient\",\"children\":[],\"columns\":4}]]}]]}]}]]}],[\"$\",\"div\",null,{\"className\":\"bg-primary text-primary-foreground pt-16\",\"children\":[\"$\",\"footer\",null,{\"className\":\"flex justify-between max-w-screen-xl mx-auto px-4 pb-4 \",\"children\":[\"$\",\"div\",null,{\"className\":\"flex flex-col w-full\",\"children\":[[\"$\",\"div\",null,{\"className\":\"flex flex-wrap justify-between mb-6 w-full\",\"children\":[[\"$\",\"a\",null,{\"href\":\"/\",\"className\":\"mb-6\",\"children\":[\"$\",\"$L22\",null,{\"src\":\"/trademark-logos/edx-by-2u-white.svg\",\"alt\":\"edX homepage\",\"title\":\"edX homepage\",\"width\":127,\"height\":67,\"className\":\"optanon-category-C0001\",\"data-ot-ignore\":true}]}],[\"$\",\"div\",null,{\"children\":[\"$\",\"div\",null,{\"className\":\"mb-4 justify-center flex flex-row\",\"children\":[[\"$\",\"div\",\"0\",{\"className\":\"mx-2 flex flex-col\",\"children\":[\"$\",\"a\",null,{\"href\":\"https://www.facebook.com/edx/\",\"target\":\"_blank\",\"role\":\"button\",\"aria-label\":\"Visit our Facebook page\",\"children\":[\"$\",\"div\",null,{\"className\":\"flex text-primary bg-white border border-solid border-primary h-12 w-12 items-center justify-center rounded-full\",\"children\":[\"$\",\"svg\",null,{\"width\":\"32\",\"height\":\"32\",\"viewBox\":\"0 0 24 24\",\"fill\":\"none\",\"xmlns\":\"http://www.w3.org/2000/svg\",\"role\":\"img\",\"focusable\":false,\"aria-hidden\":true,\"children\":[\"$\",\"path\",null,{\"d\":\"M14 13.5h2.5l1-4H14v-2c0-1.03 0-2 2-2h1.5V2.14c-.326-.043-1.557-.14-2.857-.14C11.928 2 10 3.657 10 6.7v2.8H7v4h3V22h4v-8.5z\",\"fill\":\"currentColor\"}]}]}]}]}],[\"$\",\"div\",\"1\",{\"className\":\"mx-2 flex flex-col\",\"children\":[\"$\",\"a\",null,{\"href\":\"https://x.com/edXOnline\",\"target\":\"_blank\",\"role\":\"button\",\"aria-label\":\"Visit our X page\",\"children\":[\"$\",\"div\",null,{\"className\":\"flex text-primary bg-white border border-solid border-primary h-12 w-12 items-center justify-center rounded-full\",\"children\":[\"$\",\"svg\",null,{\"width\":\"48\",\"height\":\"48\",\"viewBox\":\"0 0 48 48\",\"fill\":\"none\",\"xmlns\":\"http://www.w3.org/2000/svg\",\"role\":\"img\",\"focusable\":false,\"aria-hidden\":true,\"children\":[\"$\",\"path\",null,{\"d\":\"M21.2144 25.4036L12.2784 35.5671H14.3952L22.1576 26.7441L28.3528 35.5671H35.5L26.1296 22.2239L35.5 11.5671H33.3832L25.1912 20.8866L18.6472 11.5671H11.5M32.6192 34.0052H29.3672L14.3968 13.0523H17.6496\",\"fill\":\"currentColor\"}]}]}]}]}],[\"$\",\"div\",\"2\",{\"className\":\"mx-2 flex flex-col\",\"children\":[\"$\",\"a\",null,{\"href\":\"https://www.linkedin.com/school/edx/\",\"target\":\"_blank\",\"role\":\"button\",\"aria-label\":\"Visit our LinkedIn page\",\"children\":[\"$\",\"div\",null,{\"className\":\"flex text-primary bg-white border border-solid border-primary h-12 w-12 items-center justify-center rounded-full\",\"children\":[\"$\",\"svg\",null,{\"width\":\"20\",\"height\":\"20\",\"viewBox\":\"0 0 20 20\",\"fill\":\"none\",\"xmlns\":\"http://www.w3.org/2000/svg\",\"role\":\"img\",\"focusable\":false,\"aria-hidden\":true,\"children\":[\"$\",\"path\",null,{\"fill-rule\":\"evenodd\",\"clip-rule\":\"evenodd\",\"d\":\"M19.959 11.719v7.379h-4.278v-6.885c0-1.73-.619-2.91-2.167-2.91-1.182 0-1.886.796-2.195 1.565-.113.275-.142.658-.142 1.043v7.187h-4.28s.058-11.66 0-12.869h4.28v1.824l-.028.042h.028v-.042c.568-.875 1.583-2.126 3.856-2.126 2.815 0 4.926 1.84 4.926 5.792zM2.421.026C.958.026 0 .986 0 2.249c0 1.235.93 2.224 2.365 2.224h.028c1.493 0 2.42-.989 2.42-2.224C4.787.986 3.887.026 2.422.026zM.254 19.098h4.278V6.229H.254v12.869z\",\"fill\":\"currentColor\"}]}]}]}]}],[\"$\",\"div\",\"3\",{\"className\":\"mx-2 flex flex-col\",\"children\":[\"$\",\"a\",null,{\"href\":\"https://www.reddit.com/r/edX/\",\"target\":\"_blank\",\"role\":\"button\",\"aria-label\":\"Visit our Reddit page\",\"children\":[\"$\",\"div\",null,{\"className\":\"flex text-primary bg-white border border-solid border-primary h-12 w-12 items-center justify-center rounded-full\",\"children\":[\"$\",\"svg\",null,{\"width\":\"40\",\"height\":\"40\",\"viewBox\":\"-2 -2 24 24\",\"fill\":\"none\",\"xmlns\":\"http://www.w3.org/2000/svg\",\"role\":\"img\",\"focusable\":false,\"aria-hidden\":true,\"children\":[\"$\",\"path\",null,{\"d\":\"M18 10.1c0-1-.8-1.8-1.8-1.7-.4 0-.9.2-1.2.5-1.4-.9-3-1.5-4.7-1.5l.8-3.8 2.6.6c0 .7.6 1.2 1.3 1.2.7 0 1.2-.6 1.2-1.3 0-.7-.6-1.2-1.3-1.2-.5 0-.9.3-1.1.7L11 2.9h-.2c-.1 0-.1.1-.1.2l-1 4.3C8 7.4 6.4 7.9 5 8.9c-.7-.7-1.8-.7-2.5 0s-.7 1.8 0 2.5c.1.1.3.3.5.3v.5c0 2.7 3.1 4.9 7 4.9s7-2.2 7-4.9v-.5c.6-.3 1-.9 1-1.6zM6 11.4c0-.7.6-1.2 1.2-1.2.7 0 1.2.6 1.2 1.2s-.6 1.2-1.2 1.2c-.7 0-1.2-.5-1.2-1.2zm7 3.3c-.9.6-1.9 1-3 .9-1.1 0-2.1-.3-3-.9-.1-.1-.1-.3 0-.5.1-.1.3-.1.4 0 .7.5 1.6.8 2.5.7.9.1 1.8-.2 2.5-.7.1-.1.3-.1.5 0s.2.3.1.5zm-.3-2.1c-.7 0-1.2-.6-1.2-1.2s.6-1.2 1.2-1.2c.7 0 1.2.6 1.2 1.2.1.7-.5 1.2-1.2 1.2z\",\"fill\":\"currentColor\"}]}]}]}]}]]}]}]]}],false,[\"$\",\"div\",null,{\"className\":\"my-6\",\"children\":[[\"$\",\"div\",null,{\"className\":\"flex flex-wrap md:flex-nowrap justify-between\",\"children\":[[\"$\",\"div\",null,{\"className\":\"mr-12 mb-6 grow\",\"children\":[[\"$\",\"span\",null,{\"className\":\"uppercase font-roboto text-[1rem] font-normal text-left pb-6\",\"children\":\"Browse Courses\"}],[\"$\",\"ul\",null,{\"className\":\"my-6 list-none\",\"children\":[[\"$\",\"li\",\"Learn AI\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/learn/artificial-intelligence\",\"children\":\"Learn AI\"}]}],[\"$\",\"li\",\"Learn ChatGPT\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/learn/chatgpt\",\"children\":\"Learn ChatGPT\"}]}],[\"$\",\"li\",\"Learn Spanish\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/learn/spanish\",\"children\":\"Learn Spanish\"}]}],[\"$\",\"li\",\"Learn Python\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/learn/python\",\"children\":\"Learn Python\"}]}],[\"$\",\"li\",\"Learn Excel\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/learn/excel\",\"children\":\"Learn Excel\"}]}],[\"$\",\"li\",\"Learn Software Engineering\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/learn/software-engineering\",\"children\":\"Learn Software Engineering\"}]}],[\"$\",\"li\",\"Learn Blockchain\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/learn/blockchain\",\"children\":\"Learn Blockchain\"}]}],[\"$\",\"li\",\"Learn Computer Programming\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/learn/computer-programming\",\"children\":\"Learn Computer Programming\"}]}],[\"$\",\"li\",\"Learn Economics\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/learn/economics\",\"children\":\"Learn Economics\"}]}],[\"$\",\"li\",\"Learn Architecture\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/learn/architecture\",\"children\":\"Learn Architecture\"}]}],[\"$\",\"li\",\"Learn Project Management\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/learn/project-management\",\"children\":\"Learn Project Management\"}]}],[\"$\",\"li\",\"Learn Business Administration\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/learn/business-administration\",\"children\":\"Learn Business Administration\"}]}]]}],[\"$\",\"div\",null,{\"className\":\"flex flex-col text-[1rem]\",\"children\":[[\"$\",\"a\",\"see more Courses\",{\"href\":\"/learn\",\"className\":\"hover:underline text-[1rem] text-white hover:text-white\",\"children\":\"see more Courses\"}]]}]]}],[\"$\",\"div\",null,{\"className\":\"mr-12 mb-6 grow\",\"children\":[[\"$\",\"span\",null,{\"className\":\"uppercase font-roboto text-[1rem] font-normal text-left pb-6\",\"children\":\"step-by-step guides\"}],[\"$\",\"ul\",null,{\"className\":\"my-6 list-none\",\"children\":[[\"$\",\"li\",\"Become a Cybersecurity Analyst\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/become/how-to-become-a-cybersecurity-analyst\",\"children\":\"Become a Cybersecurity Analyst\"}]}],[\"$\",\"li\",\"Become a Data Scientist\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/become/how-to-become-a-data-scientist\",\"children\":\"Become a Data Scientist\"}]}],[\"$\",\"li\",\"Become a Social Media Manager\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/become/how-to-become-a-social-media-manager\",\"children\":\"Become a Social Media Manager\"}]}],[\"$\",\"li\",\"Become a Software Developer\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/become/how-to-become-a-software-developer\",\"children\":\"Become a Software Developer\"}]}],[\"$\",\"li\",\"Become a Software Engineer\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/become/how-to-become-a-software-engineer-without-a-degree\",\"children\":\"Become a Software Engineer\"}]}]]}],[\"$\",\"div\",null,{\"className\":\"flex flex-col text-[1rem]\",\"children\":[[\"$\",\"a\",\"see more Guides\",{\"href\":\"/become\",\"className\":\"hover:underline text-[1rem] text-white hover:text-white\",\"children\":\"see more Guides\"}]]}]]}],[\"$\",\"div\",null,{\"className\":\"mr-12 mb-6 grow\",\"children\":[[\"$\",\"span\",null,{\"className\":\"uppercase font-roboto text-[1rem] font-normal text-left pb-6\",\"children\":\"Complete your bachelor's online\"}],[\"$\",\"ul\",null,{\"className\":\"my-6 list-none\",\"children\":[[\"$\",\"li\",\"Bachelor's in Business\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/bachelors/business\",\"children\":\"Bachelor's in Business\"}]}],[\"$\",\"li\",\"Bachelor's in Computer Science / Data Science\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/bachelors/computer-data-sciences\",\"children\":\"Bachelor's in Computer Science / Data Science\"}]}],[\"$\",\"li\",\"Bachelor's in Health and Nursing\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/bachelors/health-social-services\",\"children\":\"Bachelor's in Health and Nursing\"}]}],[\"$\",\"li\",\"Bachelor's in Accounting\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/bachelors/online-accounting-bachelor-degree\",\"children\":\"Bachelor's in Accounting\"}]}],[\"$\",\"li\",\"Bachelor's in Finance\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/bachelors/online-bachelors-degree-finance\",\"children\":\"Bachelor's in Finance\"}]}],[\"$\",\"li\",\"Bachelor's in Psychology\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/bachelors/psychology\",\"children\":\"Bachelor's in Psychology\"}]}],[\"$\",\"li\",\"Bachelor's in Public Health\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/bachelors/bachelors-in-public-health-online\",\"children\":\"Bachelor's in Public Health\"}]}],[\"$\",\"li\",\"Bachelor's in Social Work\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/bachelors/social-work-bsw\",\"children\":\"Bachelor's in Social Work\"}]}]]}],[\"$\",\"div\",null,{\"className\":\"flex flex-col text-[1rem]\",\"children\":[[\"$\",\"a\",\"see more Undergraduate Degrees\",{\"href\":\"/bachelors\",\"className\":\"hover:underline text-[1rem] text-white hover:text-white\",\"children\":\"see more Undergraduate Degrees\"}]]}]]}],[\"$\",\"div\",null,{\"className\":\"mr-12 mb-6 grow\",\"children\":[[\"$\",\"span\",null,{\"className\":\"uppercase font-roboto text-[1rem] font-normal text-left pb-6\",\"children\":\"Earn your online graduate degree\"}],[\"$\",\"ul\",null,{\"className\":\"my-6 list-none\",\"children\":[[\"$\",\"li\",\"Master's in Business Administration\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/masters/online-mba\",\"children\":\"Master's in Business Administration\"}]}],[\"$\",\"li\",\"Master's in Public Health\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/masters/masters-in-public-health-online\",\"children\":\"Master's in Public Health\"}]}],[\"$\",\"li\",\"Master's in Social Work\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/masters/online-msw-programs\",\"children\":\"Master's in Social Work\"}]}],[\"$\",\"li\",\"Master's in Nursing\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/masters/online-msn-programs\",\"children\":\"Master's in Nursing\"}]}],[\"$\",\"li\",\"Master's in Data Science\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/masters/online-masters-in-data-science\",\"children\":\"Master's in Data Science\"}]}],[\"$\",\"li\",\"Master's in Engineering\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/masters/online-masters-in-engineering\",\"children\":\"Master's in Engineering\"}]}],[\"$\",\"li\",\"Master's in Speech Pathology\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/masters/online-slp-programs\",\"children\":\"Master's in Speech Pathology\"}]}],[\"$\",\"li\",\"Master's in Counseling/Psychology\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/masters/online-slp-programs\",\"children\":\"Master's in Counseling/Psychology\"}]}],[\"$\",\"li\",\"Master's Degree in Healthcare\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/masters/healthcare\",\"children\":\"Master's Degree in Healthcare\"}]}],[\"$\",\"li\",\"Master's Degree in Education\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/masters/masters-in-education-online\",\"children\":\"Master's Degree in Education\"}]}],[\"$\",\"li\",\"Master's Degree in AI\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/masters/online-masters-in-artificial-intelligence\",\"children\":\"Master's Degree in AI\"}]}],[\"$\",\"li\",\"Master's Degree in Computer Science\",{\"className\":\"mb-2 hover:underline text-[1rem]\",\"children\":[\"$\",\"a\",null,{\"className\":\"text-white hover:text-white\",\"href\":\"/masters/online-masters-in-computer-science\",\"children\":\"Master's Degree in Computer Science\"}]}]]}],[\"$\",\"div\",null,{\"className\":\"flex flex-col text-[1rem]\",\"children\":[[\"$\",\"a\",\"see more Graduate Degrees\",{\"href\":\"/masters\",\"className\":\"hover:underline text-[1rem] text-white hover:text-white\",\"children\":\"see more Graduate Degrees\"}],[\"$\",\"a\",\"see more Doctorate Degrees\",{\"href\":\"/doctorate\",\"className\":\"hover:underline text-[1rem] text-white hover:text-white\",\"children\":\"see more Doctorate Degrees\"}]]}]]}]]}],[\"$\",\"div\",null,{\"className\":\"my-4 border-t-[1px] border-solid border-primary-foreground\"}]]}],[\"$\",\"$L23\",null,{\"links\":\"$318\"}],[\"$\",\"div\",null,{\"className\":\"flex flex-wrap-reverse justify-between\",\"children\":[[\"$\",\"p\",null,{\"className\":\"text-primary-foreground text-[1rem]\",\"children\":[\"© 2024 edX LLC. All rights reserved.\",[\"$\",\"br\",null,{}],[\"$\",\"span\",null,{\"children\":\"| 深圳市恒宇博科技有限公司\"}]]}],[\"$\",\"div\",null,{\"className\":\"flex gap-1\",\"children\":[[\"$\",\"a\",null,{\"href\":\"https://itunes.apple.com/us/app/edx/id945480667?mt=8\u0026external_link=true\",\"target\":\"_blank\",\"rel\":\"noopener noreferrer\",\"children\":[\"$\",\"$L22\",null,{\"src\":\"/images/apple-store-badge-en.png\",\"alt\":\"Download on the App Store\",\"title\":\"Download on the App Store\",\"width\":120,\"height\":40,\"data-ot-ignore\":true,\"className\":\"optanon-category-C0001\"}]}],[\"$\",\"a\",null,{\"href\":\"https://play.google.com/store/apps/details?id=org.edx.mobile\u0026external_link=true\",\"target\":\"_blank\",\"rel\":\"noopener noreferrer\",\"children\":[\"$\",\"$L22\",null,{\"src\":\"/images/google-play-badge-en.png\",\"alt\":\"Get it on Google Play\",\"title\":\"Get it on Google Play\",\"width\":135,\"height\":40,\"data-ot-ignore\":true,\"className\":\"optanon-category-C0001\"}]}]]}]]}]]}]}]}]]\n"])</script><script>self.__next_f.push([1,"334:I[85135,[\"8310\",\"static/chunks/0e5ce63c-e4012ad3e28fdbed.js\",\"5571\",\"static/chunks/c233e9bd-865e5bc301f09aaf.js\",\"2404\",\"static/chunks/a4634e51-1ae34582fa2bb120.js\",\"6290\",\"static/chunks/6290-14a62ddd57f81ba6.js\",\"9177\",\"static/chunks/9177-4f779ab065ca3298.js\",\"5878\",\"static/chunks/5878-e3c69aff2e273e23.js\",\"3069\",\"static/chunks/3069-556a3605b335d482.js\",\"4858\",\"static/chunks/4858-aef93864f4abb320.js\",\"8890\",\"static/chunks/8890-cd2934b2aa3b89dc.js\",\"3402\",\"static/chunks/3402-f8625ce91eb27ea6.js\",\"8082\",\"static/chunks/8082-143f9f9fdf5b9192.js\",\"4980\",\"static/chunks/4980-d730333976453575.js\",\"32\",\"static/chunks/32-bafec80821f44ed5.js\",\"6686\",\"static/chunks/6686-f007b1e2101fda62.js\",\"9366\",\"static/chunks/9366-e6a7fb83e1c23555.js\",\"3397\",\"static/chunks/3397-dd13dd89c81e42c8.js\",\"2628\",\"static/chunks/2628-8d231bd404df8976.js\",\"554\",\"static/chunks/554-025495b6bf8e1dac.js\",\"121\",\"static/chunks/121-00c8365f8c57a8cc.js\",\"3564\",\"static/chunks/3564-dbea25076659e35b.js\",\"5099\",\"static/chunks/5099-9a5433902d87437e.js\",\"6928\",\"static/chunks/app/%5Blocale%5D/learn/%5Bcategory%5D/page-176642ac87704917.js\"],\"default\"]\n335:T6d7,\u003cp\u003eStatistics is the science of turning data into insights and ultimately decisions. Behind recent advances in machine learning, data science and artificial intelligence are fundamental statistical principles. The purpose of this class is to develop and understand these core ideas on firm mathematical grounds starting from the construction of estimators and tests, as well as an analysis of their asymptotic performance.\u003c/p\u003e\n\u003cp\u003eAfter developing basic tools to handle parametric models, we will explore how to answer more advanced questions, such as the following:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eHow suitable is a given model for a particular dataset?\u003c/li\u003e\n\u003cli\u003eHow to select variables in linear regression?\u003c/li\u003e\n\u003cli\u003eHow to model nonlinear phenomena?\u003c/li\u003e\n\u003cli\u003eHow to visualize high-dimensional data?\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eTaking this class will allow you to expand your statistical knowledge to not only include a list of methods, but also th"])</script><script>self.__next_f.push([1,"e mathematical principles that link them together, equipping you with the tools you need to develop new ones.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eThis course is part of the\u003ca href=\"https://micromasters.mit.edu/ds/\"\u003eMITx MicroMasters Program in Statistics and Data Science\u003c/a\u003e. Master the skills needed to be an informed and effective practitioner of data science. You will complete this course and three others from MITx, at a similar pace and level of rigor as an on-campus course at MIT, and then take a virtually-proctored exam to earn your MicroMasters, an academic credential that will demonstrate your proficiency in data science or accelerate your path towards an MIT PhD or a Master's at other universities. To learn more about this program, please visit \u003ca href=\"https://micromasters.mit.edu/ds/\"\u003ehttps://micromasters.mit.edu/ds/\u003c/a\u003e.\u003c/strong\u003e\u003c/p\u003e336:T44a,\u003cp\u003e\u003cspan lang=\"EN\"\u003eStatistics 1 Part 1 is a self-paced course from LSE which aims to introduce you to and develop your understanding of essential statistical concepts, methods and techniques, emphasising the applications of these methods. This course can be taken alone or as part of the LSE MicroBachelors program in Statistics Fundamentals or the LSE MicroBachelors program in Mathematics and Statistics Fundamentals.\u003c/span\u003e\u003c/p\u003e\n\u003cp\u003ePart 1, Introductory Statistics, Probability and Estimation, covers the following topics:\u003c/p\u003e\n\u003cp\u003e● Mathematical revision and the nature of statistics\u003c/p\u003e\n\u003cp\u003e● Data visualisation and descriptive statistics\u003c/p\u003e\n\u003cp\u003e● Probability theory\u003c/p\u003e\n\u003cp\u003e● The normal distribution and ideas of sampling\u003c/p\u003e\n\u003cp\u003e● Point and interval estimation\u003c/p\u003e\n\u003cp\u003eStatistics 1 Part 1 \u003cspan lang=\"EN\"\u003eforms part of a series of courses which focuses on the application of statistical methods in management, economics and the social sciences. During this course, you will focus on the interpretation of tables and results, and how to approach statistical problems effectively.\u003c/span\u003e\u003c/p\u003e337:Tb4d,"])</script><script>self.__next_f.push([1,"\u003cp\u003eThis course teaches the R programming language in the context of statistical data and statistical analysis in the life sciences.\u003c/p\u003e\n\u003cp\u003eWe will learn the basics of statistical inference in order to understand and compute p-values and confidence intervals, all while analyzing data with R code. We provide R programming examples in a way that will help make the connection between concepts and implementation. Problem sets requiring R programming will be used to test understanding and ability to implement basic data analyses. We will use visualization techniques to explore new data sets and determine the most appropriate approach. We will describe robust statistical techniques as alternatives when data do not fit assumptions required by the standard approaches. By using R scripts to analyze data, you will learn the basics of conducting reproducible research.\u003c/p\u003e\n\u003cp\u003eGiven the diversity in educational background of our students we have divided the course materials into seven parts. You can take the entire series or individual courses that interest you. If you are a statistician you should consider skipping the first two or three courses, similarly, if you are biologists you should consider skipping some of the introductory biology lectures. Note that the statistics and programming aspects of the class ramp up in difficulty relatively quickly across the first three courses. We start with simple calculations and descriptive statistics. By the third course will be teaching advanced statistical concepts such as hierarchical models and by the fourth advanced software engineering skills, such as parallel computing and reproducible research concepts.\u003c/p\u003e\n\u003cp\u003eThese courses make up two Professional Certificates and are self-paced:\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eData Analysis for Life Sciences:\u003c/strong\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://www.edx.org/course/statistics-and-r\"\u003ePH525.1x: Statistics and R for the Life Sciences\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://www.edx.org/course/introduction-to-linear-models-and-matrix-algebra\"\u003ePH525.2x: Introduction to Linear Models and Matrix Algebra\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://www.edx.org/course/statistical-inference-and-modeling-for-high-throug\"\u003ePH525.3x: Statistical Inference and Modeling for High-throughput Experiments\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://www.edx.org/course/high-dimensional-data-analysis\"\u003ePH525.4x: High-Dimensional Data Analysis\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cstrong\u003eGenomics Data Analysis:\u003c/strong\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://www.edx.org/course/introduction-to-bioconductor-annotation-and-analys\"\u003ePH525.5x: Introduction to Bioconductor\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://www.edx.org/course/case-studies-in-functional-genomics\"\u003ePH525.6x: Case Studies in Functional Genomics\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://www.edx.org/course/advanced-bioconductor\"\u003ePH525.7x: Advanced Bioconductor\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThis class was supported in part by NIH grant R25GM114818.\u003c/p\u003e"])</script><script>self.__next_f.push([1,"338:T10c8,"])</script><script>self.__next_f.push([1,"\u003cp\u003eData scientists bring value to organizations across industries because they are able to solve complex challenges with data and drive important decision-making processes. Not only is there a huge demand, but there is a significant shortage of qualified data scientists with 54% of the most rigorous data science positions requiring a degree higher than a bachelor’s.\u003c/p\u003e\r\n\r\n\u003cp\u003eThis MicroMasters® program in Statistics and Data Science (SDS) was developed by MITx and the \u003ca href=\"https://idss.mit.edu/academics/micromasters-program-in-statistics-and-data-science-sds/\"\u003eMIT Institute for Data, Systems, and Society (IDSS)\u003c/a\u003e. It is a multidisciplinary approach comprised of four separate tracks with four online courses each and a virtually proctored exam. Each track focuses on a combination of methods-centered courses and domain analysis courses to provide you with foundational knowledge and hands-on training. All learners complete the Probability and Machine Learning courses, two other courses determined by the chosen track, and the Capstone Exam.\r\n\r\n\u003cp\u003eData scientists bring value to organizations across industries because they are able to solve complex challenges with data and drive important decision-making processes. Not only is there a huge demand, but there is a significant shortage of qualified data scientists with 54% of the most rigorous data science positions requiring a degree higher than a bachelor’s.\u003c/p\u003e\r\n\r\n\u003cp\u003eThis MicroMasters® program in Statistics and Data Science (SDS) was developed by MITx and the MIT Institute for Data, Systems, and Society (IDSS). It is a multidisciplinary approach comprised of four separate tracks with four online courses each and a virtually proctored exam. Each track focuses on three methods-centered courses and a domain analysis course to provide you with foundational knowledge and hands-on training in a discipline of your choice. All learners complete the Probability and Machine Learning courses. The track you choose determines your third methods course and a final domain analysis course.\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cb\u003eGeneral Track\u003c/b\u003e\u003cbr\u003e\r\nThis track will prepare you to become an informed and effective practitioner of data science who adds value to your organization across industries.\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003ca href=\"https://www.edx.org/masters/micromasters/mitx-statistics-and-data-science-general-track\"\u003eYou are currently exploring the General track\u003c/a\u003e\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cb\u003eMethods Track\u003c/b\u003e\u003cbr\u003e\r\nThis track will prepare you with in-depth knowledge of data science and time series analysis and will enable you to conduct rigorous analysis, inform decision-making processes, and contribute to evidence-based practices across industries.\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003ca href=\"https://www.edx.org/masters/micromasters/mitx-statistics-and-data-science-methods-track\"\u003eExplore the Methods track here\u003c/a\u003e\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cb\u003eSocial Sciences Track\u003c/b\u003e\u003cbr\u003e\r\nThis track will prepare you to extract meaningful insights from social, cultural, economic, and policy-related data and equip you to tackle complex real-world problems and contribute to cutting-edge advancements in AI and data-driven solutions within all social sciences.\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003ca href=\"https://www.edx.org/masters/micromasters/mitx-statistics-and-data-science-social-sciences-track\"\u003eExplore the Social Sciences track here\u003c/a\u003e\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cb\u003eTime Series and Social Sciences Track\u003c/b\u003e\u003cbr\u003e\r\nThis track will equip you to analyze the impact of interventions on time series data, preparing you for roles in economics, public policy, and social sciences where understanding temporal dynamics is crucial for informed decision-making and policy formulation.\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003ca href=\"https://www.edx.org/masters/micromasters/mitx-statistics-and-data-science-time-series-and-social-sciences-track\"\u003eExplore the Time Series and Social Sciences track here\u003c/a\u003e\u003c/p\u003e\r\n\r\n\u003cp\u003eAll tracks are taught by MIT faculty and administered by IDSS at a similar pace and level of rigor as an on-campus course at MIT. The program is designed for learners who want to acquire sophisticated and rigorous training in data science without leaving their day job but without compromising quality. There is no application process, but college-level calculus and comfort with mathematical reasoning and Python programming are highly recommended if you want to excel.\u003c/p\u003e"])</script><script>self.__next_f.push([1,"339:T6e3,\u003cp\u003eThis Statistics for Data Science course is designed to introduce you to the basic principles of statistical methods and procedures used for data analysis. After completing this course you will have practical knowledge of crucial topics in statistics including - data gathering, summarizing data using descriptive statistics, displaying and visualizing data, examining relationships between variables, probability distributions, expected values, hypothesis testing, introduction to ANOVA (analysis of variance), regression and correlation analysis. You will take a hands-on approach to statistical analysis using Python and Jupyter Notebooks – the tools of choice for Data Scientists and Data Analysts.\u003c/p\u003e\n\u003cp\u003eAt the end of the course, you will complete a project to apply various concepts in the course to a Data Science problem involving a real-life inspired scenario and demonstrate an understanding of the foundational statistical thinking and reasoning. The focus is on developing a clear understanding of the different approaches for different data types, developing an intuitive understanding, making appropriate assessments of the proposed methods, using Python to analyze our data, and interpreting the output accurately. This course is suitable for a variety of professionals and students intending to start their journey in data and statistics-driven roles such as Data Scientists, Data Analysts, Business Analysts, Statisticians, and Researchers. It does not require any computer science or statistics background. We strongly recommend taking the Python for Data Science course before starting this course to get familiar with the Python programming language, Jupyter notebooks, and libraries. An optional refresher on Python is also provided.\u003c/p\u003e33a:T6d8,\u003cp\u003eA strong foundation in mathematics is critical for success in all science and engineering disciplines. Whether you want to make a strong start to a master’s degree, prepare for more advanced courses, solidify your knowledge in a professional context or simply br"])</script><script>self.__next_f.push([1,"ush up on fundamentals, this course will get you up to speed.\u003c/p\u003e\n\u003cp\u003eIn many engineering master’s programs, statistics is used quite intensively. As soon as you are dealing with real-life data, you will need to get an idea of what these data tell you and how you can visualize this (descriptive statistics). But you will also want to perform some analysis (inferential statistics): you may want to build a model that mimics reality, estimate some quantities, or test some hypotheses.\u003c/p\u003e\n\u003cp\u003eThe statistics course in this series will help you refresh your knowledge on these topics. Along the way you will learn how to apply these concepts to datasets, using the statistical software R.\u003c/p\u003e\n\u003cp\u003eThis course offers enough depth to cover the statistics you need to succeed in your engineering master’s or profession in areas such as machine learning, data science and more.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eThis is a review course\u003c/strong\u003e\u003cbr /\u003e\nThis self-contained course is modular, so you do not need to follow the entire course if you wish to focus on a particular aspect. As a review course you are expected to have previously studied or be familiar with most of the material. Hence the pace will be higher than in an introductory course.\u003c/p\u003e\n\u003cp\u003eThis format is ideal for refreshing your bachelor level mathematics and letting you practice as much as you want. You will get many exercises, to be solved using Grasple or R, for which you will receive intelligent, personal and immediate feedback.\u003c/p\u003e33b:T49b,\u003cp\u003eThis course provides an introduction to basic probability concepts. Our emphasis is on applications in science and engineering, with the goal of enhancing modeling and analysis skills for a variety of real-world problems. \u003c/p\u003e\n\u003cp\u003eIn order to make the course completely self-contained (and to bring back long-lost memories), we’ll start off with Bootcamp lessons to review concepts from set theory and calculus. We’ll then discuss the probability axioms that serve as the basis for all of our subsequent work – what makes probability tick? That d"])</script><script>self.__next_f.push([1,"iscussion will give us the tools to study elementary probability counting rules, including permutations and combinations. We’ll use these rules to work on various cool applications, including poker probability calculations and baseball line-ups!\u003c/p\u003e\n\u003cp\u003eThe next venues on our tour are the concepts of independence and conditional probability, which allow us to see how the probabilities of different events are related to each other, and how new information can be used to update probabilities. The course culminates in a discussion of Bayes Rule and its various interesting consequences related to probability updates.\u003c/p\u003e33c:T4ea,\u003cp\u003eThis course discusses properties and applications of random variables. When you’re done, you’ll have enough firepower to undertake a wide variety of modeling and analysis problems; and you’ll be well-prepared for the upcoming Statistics courses. \u003c/p\u003e\n\u003cp\u003eWe’ll begin by introducing the concepts of discrete and continuous random variables. For instance, how many customers are likely to arrive in the next hour (discrete)? What’s the probability that a lightbulb will last more than a year (continuous)? \u003c/p\u003e\n\u003cp\u003eWe’ll learn about various properties of random variables such as the expected value, variance, and moment generating function. This will lead us to a discussion of functions of random variables. Such functions have many uses, including some wonderful applications in computer simulations. \u003c/p\u003e\n\u003cp\u003eIf you enjoy random variables, then you’ll really love joint (two-dimensional) random variables. We’ll provide methodology to extract marginal (one-dimensional) and conditional information from these big boys. This work will enable us to \u003cbr /\u003e\nstudy the important concepts of independence and correlation. \u003c/p\u003e\n\u003cp\u003eAlong the way, we’ll start working with the R statistical package to do some of our calculations and analysis.\u003c/p\u003e33d:T43b,\u003cp\u003eUpon completion of the course, participants should be able to:\u003c/p\u003e\n\u003cp\u003e• Explain the basic concepts, definitions, and accounting principles in "])</script><script>self.__next_f.push([1,"the integrated GFS framework.\u003c/p\u003e\n\u003cp\u003e• Classify basic government flows and stock positions according to GFSM 2014.\u003c/p\u003e\n\u003cp\u003e• Apply the general principles to classify an entity in the public sector and in relevant subsectors, such as the general government and public corporations.\u003c/p\u003e\n\u003cp\u003e• Record the fiscal flows and stocks associated with the activities of public sector entities, following the GFSM 2014 guidelines and classifications.\u003c/p\u003e\n\u003cp\u003e• Explain how the main GFS aggregates and analytical balances are calculated, and what they show about the government’s impact on the economy.\u003c/p\u003e\n\u003cp\u003e• Develop a migration plan to adopt the GFSM 2014 methodology, and compile and disseminate GFS following international guidelines.\u003c/p\u003e\n\u003cp\u003e• Recognize the value of comprehensive, consistent, and internationally comparable GFS, and the use of the key GFS indicators in the design, monitoring, and evaluation of fiscal policy.\u003c/p\u003e33e:T551,\u003cp\u003e\u003cspan lang=\"EN\"\u003eBasics of Bayesian Data Analysis Using R is part one of the Bayesian Data Analysis in R professional certificate. \u003c/span\u003e\u003cspan lang=\"EN\"\u003e\u003c/span\u003e\u003c/p\u003e\n\u003cp\u003eBayesian approach is becoming increasingly popular in all fields of data analysis, including but not limited to epidemiology, ecology, economics, and political sciences. It also plays an increasingly important role in data mining and deep learning. Let this course be your first step into Bayesian statistics.\u003cspan lang=\"EN\"\u003e\u003c/span\u003e\u003c/p\u003e\n\u003cp\u003eHere, you will find a practical introduction to applied Bayesian data analysis with the emphasis on formulating and answering real life questions. You will learn how to combine the data generating mechanism, likelihood, with prior distribution using Bayes’ Theorem to produce the posterior distribution. You will investigate the underlying theory and fundamental concepts by way of simple and clear practical examples, including a case of linear regression.\u003cspan lang=\"EN\"\u003e\u003c/span\u003e\u003c/p\u003e\n\u003cp\u003eYou will be introduced to the Gibbs sampler – the simplest version of the powerful Markov Chain Mont"])</script><script>self.__next_f.push([1,"e Carlo (MCMC) algorithm. And you will see how the popular R-software can be used in this context, and encounter some Bayesian R packages .\u003cspan lang=\"EN\"\u003e\u003c/span\u003e\u003c/p\u003e\n\u003cp\u003eA facility in basic algebra and calculus as well as programming in R is recommended.\u003c/p\u003e33f:T527,\u003cp\u003e\u003cspan lang=\"EN\"\u003e•\u003c/span\u003e\u003cspan lang=\"EN\"\u003e\u003c/span\u003e\u003cspan lang=\"EN\"\u003e Bayes’ Theorem. Differences between classical (frequentist) and Bayesian inference.\u003c/span\u003e\u003cspan lang=\"EN\"\u003e\u003c/span\u003e\u003c/p\u003e\n\u003cp\u003e•\u003cspan lang=\"EN\"\u003e\u003c/span\u003e\u003cspan lang=\"EN\"\u003e Posterior inference: summarizing posterior distributions, credible intervals, posterior probabilities, posterior predictive distributions and data visualisation.\u003c/span\u003e\u003cspan lang=\"EN\"\u003e\u003c/span\u003e\u003c/p\u003e\n\u003cp\u003e•\u003cspan lang=\"EN\"\u003e\u003c/span\u003e\u003cspan lang=\"EN\"\u003e Gamma-poisson, beta-binomial and normal conjugate models for data analysis.\u003c/span\u003e\u003cspan lang=\"EN\"\u003e\u003c/span\u003e\u003c/p\u003e\n\u003cp\u003e•\u003cspan lang=\"EN\"\u003e\u003c/span\u003e\u003cspan lang=\"EN\"\u003e Bayesian regression analysis and analysis of variance (ANOVA).\u003c/span\u003e\u003cspan lang=\"EN\"\u003e\u003c/span\u003e\u003c/p\u003e\n\u003cp\u003e•\u003cspan lang=\"EN\"\u003e\u003c/span\u003e\u003cspan lang=\"EN\"\u003e Use of simulations for posterior inference. Simple applications of Markov chain-Monte Carlo (MCMC)\u003c/span\u003e methods and their implementation in R.\u003cspan lang=\"EN\"\u003e\u003c/span\u003e\u003c/p\u003e\n\u003cp\u003e•\u003cspan lang=\"EN\"\u003e\u003c/span\u003e\u003cspan lang=\"EN\"\u003e Bayesian cluster analysis. \u003c/span\u003e\u003cspan lang=\"EN\"\u003e\u003c/span\u003e\u003c/p\u003e\n\u003cp\u003e•\u003cspan lang=\"EN\"\u003e\u003c/span\u003e\u003cspan lang=\"EN\"\u003e Model diagnostics and comparison.\u003c/span\u003e\u003cspan lang=\"EN\"\u003e\u003c/span\u003e\u003c/p\u003e\n\u003cp\u003e•\u003cspan lang=\"EN\"\u003e\u003c/span\u003e\u003cspan lang=\"EN\"\u003e Ensuring you answer the actual research question rather than “apply methods to the data”\u003c/span\u003e\u003c/p\u003e340:T4e3,\u003cp\u003eThis course covers two important methodologies in statistics – \u003cem\u003econfidence intervals\u003c/em\u003e and \u003cem\u003ehypothesis testing\u003c/em\u003e.\u003c/p\u003e\n\u003cp\u003eConfidence intervals are encountered in everyday life, and allow us to make probabilistic statements such as: “Based on the sample of observations we conducted, we are 95% sure that the unknown mean lies between A and B,” and “We are 95% sure that Candidate Smith’s popularity is 52% +/- 3%.” We begin the"])</script><script>self.__next_f.push([1," course by discussing what a confidence interval is and how it is used. We then formulate and interpret confidence intervals for a variety of probability distributions and their parameters.\u003c/p\u003e\n\u003cp\u003eHypothesis testing allows us to pose hypotheses and test their validity in a statistically rigorous way. For instance, “Does a new drug result in a higher cure rate than the old drug?” or “Is the mean tensile strength of item A greater than that of item B?” The second half the course begins by motivating hypothesis tests and how they are used. We then discuss the types of errors that can occur with hypothesis testing, and how to design tests to mitigate those errors. Finally, we formulate and interpret hypothesis tests for a variety of probability distributions and their parameters.\u003c/p\u003e341:T403,\u003cp\u003eUpon completion of the course, you should be able to:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eDescribe the system of national accounts framework, understand the sequence of accounts and their interrelationships, and identify the key macroeconomic indicators\u003c/li\u003e\n\u003cli\u003eExplain key national accounts concepts, accounting rules, and methods.\u003c/li\u003e\n\u003cli\u003eDefine the components of gross domestic product (GDP) from the production approach. Apply the concepts, accounting rules, methods, and data sources necessary to estimate GDP from the production approach.\u003c/li\u003e\n\u003cli\u003eDefine the components of GDP from the expenditure approach. Apply the concepts, accounting rules, methods, and data sources necessary to estimate GDP from the expenditure approach.\u003c/li\u003e\n\u003cli\u003eDefine the components of GDP from the income approach. Apply the concepts, accounting rules, methods and data sources necessary to estimate GDP from the income approach.\u003c/li\u003e\n\u003cli\u003eDefine and explain how to compile volume estimates of GDP from both the production and expenditure perspective.\u003c/li\u003e\n\u003c/ul\u003e342:T4a4,\u003cp\u003eThis course, presented by the Statistics Department, provides participants with an introduction to the compilation of monetary statistics covering the central bank (CB), other depository corporations (O"])</script><script>self.__next_f.push([1,"DCs) and other financial corporations (OFCs) in accordance with international statistical standards. Course materials are based on the 2016 Monetary and Financial Statistics Manual and Compilation Guide (MFSMCG). The course discusses the principles of residency and sectoring of institutional units, the characteristics and types of financial instruments, valuation principles, and other accounting issues that are relevant to the compilation of monetary statistics. Participants will also become familiar with the defining characteristics of depository corporations (DCs), notably their role as money issuers, and with the main principles on which analysis of monetary and credit aggregates is based. They will also gain a deeper understanding of the OFCs sector and their relevance for compiling a broader and often more reliable measure of the liquidity available in an economy and financing extended to the nonfinancial sectors and nonresidents by the financial corporations.\u003c/p\u003e343:T50c,\u003cp\u003e\u003cspan lang=\"EN\"\u003eAdvanced\u003c/span\u003e Bayesian Data Analysis Using R is part two of the Bayesian Data Analysis in R professional certificate.\u003cspan lang=\"EN\"\u003e\u003c/span\u003e\u003c/p\u003e\n\u003cp\u003eThis course is directed at people who are already familiar with the fundamentals of Bayesian inference. It explores further the concepts, methods, and algorithms introduced in the part one (Introductory Bayesian Data Analysis Using R).\u003cspan lang=\"EN\"\u003e\u003c/span\u003e\u003c/p\u003e\n\u003cp\u003eThe course places mixed effects regression models useful for experiments with repeated measures or additional hierarchy often encountered in biostatistics, ecology and health sciences among others within the Bayesian context. It takes a closer look at the Markov Chain Monte Carlo (MCMC) algorithms, why they work and how to implement them in the R programming language. Convergence assessment and visualisation of the results are discussed in some detail. The course also explores Bayesian model averaging, often used in machine learning, all within the context of practical examples. \u003cspan lang=\"EN\"\u003e\u003c/span\u003e\u003c/p\u003e\n\u003cp\u003eFina"])</script><script>self.__next_f.push([1,"lly, we discuss different kinds of missing data, and the Bayesian methods of dealing with such situations.\u003cspan lang=\"EN\"\u003e\u003c/span\u003e\u003c/p\u003e\n\u003cp\u003ePrior facility in basic algebra and calculus as well as programming in R is highly recommended.\u003c/p\u003e344:T594,\u003cp\u003eThis course, presented by IMF Statistics Department, covers the fundamentals needed to compile and disseminate comprehensive public sector debt statistics (PSDS) that are useful for policy- and decision-makers, as well as other users. \u003c/p\u003e\n\u003cp\u003eThe course introduces the conceptual statistical framework for PSDS—as presented in the Public Sector Debt Statistics: Guide for Compilers and Users—in the context of the government finance statistics (GFS) framework, which is harmonized with other macroeconomic statistical frameworks. Basic concepts, definitions, and classifications are covered, along with the principal accounting rules (including valuation and consolidation) that are relevant for PSDS compilation. \u003c/p\u003e\n\u003cp\u003eThe course discusses the recommended the instrument and institutional coverage for compiling comprehensive, internationally comparable PSDS, and how to record contingent liabilities such as government guarantees. It also deals with the impact on PSDS of some debt-related issues such as debt assumption, debt forgiveness, on-lending, financial leases, and financial bailouts. \u003c/p\u003e\n\u003cp\u003eImportant PSDS compilation considerations—including what PSDS to compile and disseminate—and the IMF’s guidelines and standards on disseminating PSDS are also covered. The course also presents possible uses of PSDS, including debt sustainability analyses (DSA), and fiscal risk and vulnerability analyses.\u003c/p\u003e345:T62d,\u003cp\u003e\u003cspan lang=\"EN-US\"\u003eTraining in hypothesis testing offers several benefits that can enhance your analytical and decision-making skills, whether you work in manufacturing, business, healthcare, research, or any field that involves data analysis. Here are some of the key benefits:\u003c/span\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003cspan lang=\"EN-US\"\u003eContinuous Improvement: By testing and evalua"])</script><script>self.__next_f.push([1,"ting changes systematically, you \u003c/span\u003eoptimize processes over time.\u003c/li\u003e\n\u003cli\u003e\u003cspan lang=\"EN-US\"\u003eCritical Thinking: By learning to design experiments, select \u003c/span\u003eappropriate statistical tests, and interpret results, critical thinking skills are enhanced. \u003c/li\u003e\n\u003cli\u003e\u003cspan lang=\"EN-US\"\u003eProblem Framing: Hypothesis testing \u003c/span\u003erequires the ability to frame problems accurately, a crucial aspect of finding effective solutions.\u003c/li\u003e\n\u003cli\u003e\u003cspan lang=\"EN-US\"\u003eData Interpretation: Understand the significance of patterns, relationships, and variations in the data, which is crucial for drawing meaningful insights.\u003c/span\u003e\u003c/li\u003e\n\u003cli\u003eStatistical Literacy: Hypothesis testing training introduces you to statistical concepts and techniques, enhancing your ability to read and understand research papers, reports, and studies that involve statistical analyses.\u003c/li\u003e\n\u003cli\u003eEvidence-Based Decision Making: Hypothesis testing provides a structured approach to making decisions based on evidence rather than intuition or assumptions. \u003c/li\u003e\n\u003cli\u003eEffective Communication: Learning how to present and explain hypothesis testing results to both technical and non-technical audiences will improve your communication skills.\u003c/li\u003e\n\u003c/ul\u003e346:T42b,\u003cp\u003eStatistics is a versatile discipline that has revolutionized the fields of business, engineering, medicine and pure sciences. This course is Part 2 of a 4-part series on Business Statistics, and is ideal for learners who wish to enroll in business programs. The first two parts cover topics in Descriptive Statistics, whereas the next two focus on Inferential Statistics.\u003c/p\u003e\n\u003cp\u003eSpreadsheets containing real data from diverse areas such as economics, finance and HR drive much of our discussions. \u003c/p\u003e\n\u003cp\u003eIn Part 2, we use the language of probability to examine the underlying distributions of random variables. We model real-life phenomena using known variables such as Binomial, Poisson and Normal. We learn how to simulate data that are distributed according to these variables.\u003c/p\u003e\n\u003cp\u003eWe shall take up datasets that h"])</script><script>self.__next_f.push([1,"ave over a million rows, which makes it difficult to analyze using a spreadsheet. This is a natural setting for R, an advanced statistical programming platform. We incorporate helpful tutorials to get learners acquainted with the platform.\u003c/p\u003e347:T9ee,"])</script><script>self.__next_f.push([1,"\u003cp\u003eWhen you meet a new person, it is hard to know what to expect. You may not be able to read the person or understand what they mean. Even if you want to have a good relationship with them, this lack of understanding can make interactions tense, unpredictable and scary! The same is true for a lot of people as they encounter statistics and mathematical ways of working with data. Statistics can be confusing and opaque. Symbols, Greek letters, very large and very small numbers, and how to interpret all of this can leave to feeling cold and disengaged—even fearful and resentful.\u003c/p\u003e\n\u003cp\u003eBut in the modern information age, having a healthy relationship with statistics can make life a whole lot easier. We are constantly faced with an onslaught of data and claims about it—from news articles, to Facebook and blog posts, casual and professional conversations, reports at our workplace, advertising, and claims from politicians and public officials. How can we process that information, make sense of it, evaluate truth claims, and put ourselves in a position to act on the information? One of the most important ways is by befriending statistics and consistently using statistical ways of thinking. \u003c/p\u003e\n\u003cp\u003eThe purpose of this course, then is to help you develop a functional, satisfying, and useful life-long relationship with statistics. To achieve that goal, we will take a non-technical approach—you will learn how statistics work and why they are so helpful in evaluating the world of information that is around us. You will learn about the logic of statistical thinking and the concepts (rather than the mathematical details and probability theory) that guide statistical inferences and conclusions. \u003c/p\u003e\n\u003cp\u003eYou do not need to be a math whiz to take this course. If you can add, subtract, multiply, and divide (or just be able to use a calculator to do that!), you will be more than able to handle what will happen as this relationship develops. \u003c/p\u003e\n\u003cp\u003eBy the end of the course you will be able to:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eIdentify the most important features of a data set\u003c/li\u003e\n\u003cli\u003eSelect a statistical test based on the features of the data\u003c/li\u003e\n\u003cli\u003eThink like a statistical detective\u003c/li\u003e\n\u003cli\u003eUnderstand the relationship between two different characteristics or variables\u003c/li\u003e\n\u003cli\u003ePerform some simple statistical calculations and draw some conclusions from real data\u003c/li\u003e\n\u003cli\u003eHopefully, love stats! \u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eWe’ll do all of this using entertaining examples related to real-life situations we all encounter in everyday life.\u003c/p\u003e"])</script><script>self.__next_f.push([1,"348:T13b9,"])</script><script>self.__next_f.push([1,"\u003cp\u003eData scientists bring value to organizations across industries because they are able to solve complex challenges with data and drive important decision-making processes. Not only is there a huge demand, but there is a significant shortage of qualified data scientists with 54% of the most rigorous data science positions requiring a degree higher than a bachelor’s.\u003c/p\u003e\r\n\r\n\u003cp\u003eThis MicroMasters® program in Statistics and Data Science (SDS) was developed by MITx and the \u003ca href=\"https://idss.mit.edu/academics/micromasters-program-in-statistics-and-data-science-sds/\"\u003eMIT Institute for Data, Systems, and Society (IDSS)\u003c/a\u003e. It is a multidisciplinary approach comprised of four separate tracks with four online courses each and a virtually proctored exam. Each track focuses on a combination of methods-centered courses and domain analysis courses to provide you with foundational knowledge and hands-on training. All learners complete the Probability and Machine Learning courses, two other courses determined by the chosen track, and the Capstone Exam.\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cb\u003eGeneral Track\u003c/b\u003e\u003cbr\u003e\r\nThis track will prepare you to become an informed and effective practitioner of data science who adds value to your organization across industries.\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003ca href=\"https://www.edx.org/masters/micromasters/mitx-statistics-and-data-science-general-track\"\u003eExplore the General track here\u003c/a\u003e\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cb\u003eMethods Track\u003c/b\u003e\u003cbr\u003e\r\nThis track will prepare you with in-depth knowledge of data science and time series analysis and will enable you to conduct rigorous analysis, inform decision-making processes, and contribute to evidence-based practices across industries.\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003ca href=\"https://www.edx.org/masters/micromasters/mitx-statistics-and-data-science-methods-track\"\u003eYou are currently exploring the Methods track\u003c/a\u003e\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cb\u003eSocial Sciences Track\u003c/b\u003e\u003cbr\u003e\r\nThis track will prepare you to extract meaningful insights from social, cultural, economic, and policy-related data and equip you to tackle complex real-world problems and contribute to cutting-edge advancements in AI and data-driven solutions within all social sciences.\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003ca href=\"https://www.edx.org/masters/micromasters/mitx-statistics-and-data-science-social-sciences-track\"\u003eExplore the Social Sciences track here\u003c/a\u003e\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cb\u003eTime Series and Social Sciences Track\u003c/b\u003e\u003cbr\u003e\r\nThis track will equip you to analyze the impact of interventions on time series data, preparing you for roles in economics, public policy, and social sciences where understanding temporal dynamics is crucial for informed decision-making and policy formulation.\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003ca href=\"https://www.edx.org/masters/micromasters/mitx-statistics-and-data-science-time-series-and-social-sciences-track\"\u003eExplore the Time Series and Social Sciences track here\u003c/a\u003e\u003c/p\u003e\r\n\r\n\u003cp\u003eAll tracks are taught by MIT faculty and administered by IDSS at a similar pace and level of rigor as an on-campu\u003cp\u003eTo earn the MicroMasters program certificate in Statistics and Data Science, learners must complete and successfully earn a certificate in the four required courses and pass a virtually-proctored capstone exam.\u003c/p\u003e\r\n\r\n\u003cp\u003eMicroMasters programs are designed to offer learners a pathway to an advanced degree and can count as credit toward completing a Master’s degree program. Learners who successfully earn this MicroMasters program certificate may apply for admission to several Master’s programs, and if accepted, the MicroMasters program certificate will count towards the degree.\u003c/p\u003e\r\n\r\n\u003cp\u003eLearners who successfully complete this MicroMasters program certificate have the opportunity to apply to the MIT Doctoral Program in Social and Engineering Systems (SES) offered through the MIT Institute for Data, Systems, and Society (IDSS).\u003c/p\u003e \r\n\r\n\u003cp\u003eLearners can use their MicroMasters program certificate to demonstrate their preparation in Statistics and Data Science fundamentals to the SES Admissions Committee. Learners admitted to SES can expect that their MicroMasters coursework will be recognized with credit for corresponding SES core classes, and for satisfying the SES Information, Systems, and Decision Science requirements. More information on the MIT SES Doctoral Program can be found \u003ca href=\"https://idss.mit.edu/academics/ses_doc/\"\u003ehere\u003c/a\u003e.\u003c/p\u003e\r\n\r\n\u003cp\u003eIn addition, learners who successfully earn the MicroMasters program certificate in Statistics and Data Science are now eligible to earn credit at a number of universities across the globe to fast track their pursuit of a full Master’s degree. A list of pathways to graduate programs can be found \u003ca href=\"https://micromasters.mit.edu/ds/pathways-graduate-programs/\"\u003ehere\u003c/a\u003e.\u003c/p\u003es course at MIT. The program is designed for learners who want to acquire sophisticated and rigorous training in data science without leaving their day job but without compromising quality. There is no application process, but college-level calculus and comfort with mathematical reasoning and Python programming are highly recommended if you want to excel.\u003c/p\u003e"])</script><script>self.__next_f.push([1,"349:Tafb,"])</script><script>self.__next_f.push([1,"\u003cp\u003eData scientists bring value to organizations across industries because they are able to solve complex challenges with data and drive important decision-making processes. Not only is there a huge demand, but there is a significant shortage of qualified data scientists with 54% of the most rigorous data science positions requiring a degree higher than a bachelor’s.\u003c/p\u003e\r\n\r\n\u003cp\u003eThis MicroMasters® program in Statistics and Data Science (SDS) was developed by MITx and the \u003ca href=\"https://idss.mit.edu/academics/micromasters-program-in-statistics-and-data-science-sds/\"\u003eMIT Institute for Data, Systems, and Society (IDSS)\u003c/a\u003e. It is a multidisciplinary approach comprised of four separate tracks with four online courses each and a virtually proctored exam. Each track focuses on a combination of methods-centered courses and domain analysis courses to provide you with foundational knowledge and hands-on training. All learners complete the Probability and Machine Learning courses, two other courses determined by the chosen track, and the Capstone Exam.\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cb\u003eGeneral Track\u003c/b\u003e\u003cbr\u003e\r\nThis track will prepare you to become an informed and effective practitioner of data science who adds value to your organization across industries.\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003ca href=\"https://www.edx.org/masters/micromasters/mitx-statistics-and-data-science-general-track\"\u003eExplore the General track here\u003c/a\u003e\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cb\u003eMethods Track\u003c/b\u003e\u003cbr\u003e\r\nThis track will prepare you with in-depth knowledge of data science and time series analysis and will enable you to conduct rigorous analysis, inform decision-making processes, and contribute to evidence-based practices across industries.\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003ca href=\"https://www.edx.org/masters/micromasters/mitx-statistics-and-data-science-methods-track\"\u003eExplore the Methods track here\u003c/a\u003e\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cb\u003eSocial Sciences Track\u003c/b\u003e\u003cbr\u003e\r\nThis track will prepare you to extract meaningful insights from social, cultural, economic, and policy-related data and equip you to tackle complex real-world problems and contribute to cutting-edge advancements in AI and data-driven solutions within all social sciences.\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003ca href=\"https://www.edx.org/masters/micromasters/mitx-statistics-and-data-science-social-sciences-track\"\u003eYou are currently exploring the Social Sciences track\u003c/a\u003e\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cb\u003eTime Series and Social Sciences Track\u003c/b\u003e\u003cbr\u003e\r\nThis track will equip you to analyze the impact of interventions on time series data, preparing you for roles in economics, public policy, and social sciences where understanding temporal dynamics is crucial for informed decision-making and policy formulation.\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003ca href=\"https://www.edx.org/masters/micromasters/mitx-statistics-and-data-science-time-series-and-social-sciences-track\"\u003eExplore the Time Series and Social Sciences track here\u003c/a\u003e\u003c/p\u003e"])</script><script>self.__next_f.push([1,"34a:T414,Master the foundations of data science, data analysis, time series with interventions, and machine learning.,Analyze big data and make data-driven predictions through probabilistic modeling and statistical inference; identify and deploy appropriate modeling and methodologies in order to extract meaningful information for decision making.,Develop and build machine learning algorithms to extract meaningful information from seemingly unstructured data; learn popular unsupervised learning methods, including clustering methodologies and supervised methods such as deep neural networks.,Understand the interplay between statistics and computation for the analysis of real data.,Learn the methods for harnessing and analyzing data to answer questions of cultural, social, economic, and policy interest, and then assess that knowledge.,Finishing this track of the MicroMasters program will prepare you for job titles such as: Data Scientist, Data Analyst, Business Intelligence Analyst, Systems Analyst, Data Engineer in Social Sciences contexts.34b:Tcf0,"])</script><script>self.__next_f.push([1,"\u003cp\u003eData scientists bring value to organizations across industries because they are able to solve complex challenges with data and drive important decision-making processes. Not only is there a huge demand, but there is a significant shortage of qualified data scientists with 54% of the most rigorous data science positions requiring a degree higher than a bachelor’s.\u003c/p\u003e\r\n\r\n\u003cp\u003eThis MicroMasters® program in Statistics and Data Science (SDS) was developed by MITx and the \u003ca href=\"https://idss.mit.edu/academics/micromasters-program-in-statistics-and-data-science-sds/\"\u003eMIT Institute for Data, Systems, and Society (IDSS)\u003c/a\u003e. It is a multidisciplinary approach comprised of four separate tracks with four online courses each and a virtually proctored exam. Each track focuses on a combination of methods-centered courses and domain analysis courses to provide you with foundational knowledge and hands-on training. All learners complete the Probability and Machine Learning courses, two other courses determined by the chosen track, and the Capstone Exam.\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cb\u003eGeneral Track\u003c/b\u003e\u003cbr\u003e\r\nThis track will prepare you to become an informed and effective practitioner of data science who adds value to your organization across industries.\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003ca href=\"https://www.edx.org/masters/micromasters/mitx-statistics-and-data-science-general-track\"\u003eYou are currently exploring the General track here\u003c/a\u003e\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cb\u003eMethods Track\u003c/b\u003e\u003cbr\u003e\r\nThis track will prepare you with in-depth knowledge of data science and time series analysis and will enable you to conduct rigorous analysis, inform decision-making processes, and contribute to evidence-based practices across industries.\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003ca href=\"https://www.edx.org/masters/micromasters/mitx-statistics-and-data-science-methods-track\"\u003eExplore the Methods track here\u003c/a\u003e\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cb\u003eSocial Sciences Track\u003c/b\u003e\u003cbr\u003e\r\nThis track will prepare you to extract meaningful insights from social, cultural, economic, and policy-related data and equip you to tackle complex real-world problems and contribute to cutting-edge advancements in AI and data-driven solutions within all social sciences.\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003ca href=\"https://www.edx.org/masters/micromasters/mitx-statistics-and-data-science-social-sciences-track\"\u003eExplore the Social Sciences track here\u003c/a\u003e\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cb\u003eTime Series and Social Sciences Track\u003c/b\u003e\u003cbr\u003e\r\nThis track will equip you to analyze the impact of interventions on time series data, preparing you for roles in economics, public policy, and social sciences where understanding temporal dynamics is crucial for informed decision-making and policy formulation.\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003ca href=\"https://www.edx.org/masters/micromasters/mitx-statistics-and-data-science-time-series-and-social-sciences-track\"\u003eYou are currently exploring the Time Series and Social Sciences track\u003c/a\u003e\u003c/p\u003e\r\n\r\n\u003cp\u003eAll tracks are taught by MIT faculty and administered by IDSS at a similar pace and level of rigor as an on-campus course at MIT. The program is designed for learners who want to acquire sophisticated and rigorous training in data science without leaving their day job but without compromising quality. There is no application process, but college-level calculus and comfort with mathematical reasoning and Python programming are highly recommended if you want to excel.\u003c/p\u003e"])</script><script>self.__next_f.push([1,"34c:Tc05,"])</script><script>self.__next_f.push([1,"\u003cp\u003eThis comprehensive MicroBachelors program in Mathematics and Statistics Fundamentals introduces students to the essential mathematical and statistical concepts, methods and techniques which they can use to grow their skills in quantitative careers, or as a step towards further study at undergraduate level or in specialised subjects.\u003c/p\u003e\r\n\r\n\u2028\u003cp\u003eSpanning four individual courses, all of which are self-paced and asynchronous, this programme provides students with maximum flexibility to learn with a world-leading institution from anywhere in the world in a way that fits their schedule. Students will be introduced to foundational mathematical and statistical concepts, as well as gain essential skills in the methods of calculus and linear algebra required for economic-based subjects.\u003c/p\u003e\r\n\u2028\r\n\u003cp\u003eThese courses are based on service-level statistics courses offered as part of the University of London degree programmes in Economics, Management, Finance and the Social Sciences (EMFSS), with academic direction from the London School of Economics and Political Science (LSE). They equip students with the fundamental knowledge and tools to set them up for success in second and third-year courses in subjects such as economics, finance, data science, mathematics, statistics, business analytics and programming.\u003c/p\u003e\r\n\r\n\u003cp\u003eThose that complete this MicroBachelors program may wish to go on to apply to the University of London's academically rigorous EMFSS degree programmes that give learners the opportunity to earn a BSc from a top London university wherever they are in the world.\u003c/p\u003e\r\n\r\n\u003cp\u003eShould you wish, you may elect to just study some of the individual courses within the MicroBachelors program, perhaps to build or refresh quantitative skills for career advancement.\u003c/p\u003e\r\n\r\n\u003cp\u003eNo prior mathematics or statistics knowledge is required for this programme.\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cb\u003eMathematics 1a: Differential calculus\u003c/b\u003e \r\n\u003cul\u003e\r\n\u003cli\u003eFunctions and graphs\u003c/li\u003e\r\n\u003cli\u003eThe derivative\u003c/li\u003e\r\n\u003cli\u003eCurve sketching and optimisation\u003c/li\u003e \r\n\u003cli\u003eFunctions of two variables and partial derivatives\u003c/li\u003e \r\n\u003cli\u003eCritical points of two-variable functions\u003c/li\u003e\r\n\u003c/ul\u003e\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cb\u003eMathematics 1b: Integral calculus, algebra, and applications\u003c/b\u003e \r\n\u003cul\u003e\r\n\u003cli\u003eIntegration\u003c/li\u003e\r\n\u003cli\u003eProfit maximisation\u003c/li\u003e\r\n\u003cli\u003eConstrained optimisation\u003c/li\u003e \r\n\u003cli\u003eMatrices, vectors, and linear equations\u003c/li\u003e \r\n\u003cli\u003eSequences, series, and financial modelling\u003c/li\u003e\r\n\u003c/ul\u003e\r\n \r\n\u003cp\u003e\u003cb\u003eStatistics 1a: Introductory statistics, probability and estimation\u003c/b\u003e \r\n\u003cul\u003e\r\n\u003cli\u003eMathematical revision and the nature of statistics\u003c/li\u003e \r\n\u003cli\u003eData visualisation and descriptive statistics\u003c/li\u003e \r\n\u003cli\u003eProbability theory\u003c/li\u003e \r\n\u003cli\u003eThe normal distribution and ideas of sampling\u003c/li\u003e \r\n\u003cli\u003ePoint and interval estimation\u003c/li\u003e \r\n\u003c/ul\u003e\u003c/p\u003e\r\n \r\n\u003cp\u003e\u003cb\u003eStatistics 1b: Statistical methods\u003c/b\u003e \r\n\u003cul\u003e\r\n\u003cli\u003eHypothesis testing I\u003c/li\u003e \r\n\u003cli\u003eHypothesis testing II\u003c/li\u003e\r\n\u003cli\u003eContingency tables and the chi-squared test\u003c/li\u003e \r\n\u003cli\u003eSampling design and some ideas underlying causation\u003c/li\u003e \r\n\u003cli\u003eCorrelation and linear regression\u003c/li\u003e\r\n\u003c/ul\u003e\u003c/p\u003e"])</script><script>self.__next_f.push([1,"34d:Tbe2,"])</script><script>self.__next_f.push([1,"\u003cp\u003eThis comprehensive MicroBachelors program in Statistics Fundamentals introduces students to the essential statistical concepts, methods and techniques which they can use to grow their skills in quantitative careers, or as a step towards further study at undergraduate level or in specialised subjects.\u003c/p\u003e\r\n\r\n\u003cp\u003e\u2028Spanning four individual courses, all of which are self-paced and asynchronous, this programme provides students with maximum flexibility to learn with a world-leading institution from anywhere in the world in a way that fits their schedule. Students will first be introduced to core statistical concepts and gain essential skills to analyse, summarise, and present data, before progressing to probability, distribution theory and statistical inference.\u003c/p\u003e\r\n\r\n\u003cp\u003e\u2028\u2028These courses are based on service-level statistics courses offered as part of the University of London degree programmes in Economics, Management, Finance and the Social Sciences (EMFSS), with academic direction from the London School of Economics and Political Science (LSE). They equip students with the fundamental statistical knowledge and tools to set them up for success in second and third-year courses in subjects such as economics, finance, data science, mathematics, statistics, business analytics and programming.\u003c/p\u003e \r\n\r\n\u003cp\u003e\u2028Those that complete this MicroBachelors program may wish to go on to apply to the University of London's academically rigorous EMFSS degree programmes that give learners the opportunity to earn a BSc from a top London university wherever they are in the world.\u003c/p\u003e \r\n\r\n\u003cp\u003e\u2028Should you wish, you may elect to just study some of the individual courses within the MicroBachelors program, perhaps to build or refresh quantitative skills for career advancement.\u003c/p\u003e\r\n\r\n\u003cp\u003e\u2028No prior statistics knowledge is required for this programme.\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cb\u003eStatistics 1a: Introductory statistics, probability and estimation\u003c/b\u003e\r\n\u003cul\u003e\r\n\u003cli\u003eMathematical revision and the nature of statistics\u003c/li\u003e\r\n\u003cli\u003eData visualisation and descriptive statistics\u003c/li\u003e \r\n\u003cli\u003eProbability theory\u003c/li\u003e \r\n\u003cli\u003eThe normal distribution and ideas of sampling\u003c/li\u003e \r\n\u003cli\u003ePoint and interval estimation\u003c/li\u003e \r\n\u003c/ul\u003e\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cb\u003eStatistics 1b: Statistical methods\u003c/b\u003e\r\n\u003cul\u003e\r\n\u003cli\u003eHypothesis testing I\u003c/li\u003e \r\n\u003cli\u003eHypothesis testing II\u003c/li\u003e \r\n\u003cli\u003eContingency tables and the chi-squared test\u003c/li\u003e \r\n\u003cli\u003eSampling design and some ideas underlying causation\u003c/li\u003e \r\n\u003cli\u003eCorrelation and linear regression\u003c/li\u003e \r\n\u003c/ul\u003e\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cb\u003eStatistics 2a: Probability and distribution theory \u003c/b\u003e\r\n\u003cul\u003e\r\n\u003cli\u003eProbability theory I\u003c/li\u003e \r\n\u003cli\u003eProbability theory II\u003c/li\u003e \r\n\u003cli\u003eRandom variables\u003c/li\u003e \r\n\u003cli\u003eCommon distributions of random variables\u003c/li\u003e \r\n\u003cli\u003eMultivariate random variables\u003c/li\u003e \r\n\u003c/ul\u003e\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cb\u003eStatistics 2b: Statistical inference\u003c/b\u003e\r\n\u003cul\u003e\r\n\u003cli\u003eSampling distributions of statistics\u003c/li\u003e \r\n\u003cli\u003ePoint estimation I\u003c/li\u003e \r\n\u003cli\u003ePoint estimation II and interval estimation\u003c/li\u003e \r\n\u003cli\u003eHypothesis testing\u003c/li\u003e \r\n\u003cli\u003eAnalysis of variance (ANOVA)\u003c/li\u003e \r\n\u003c/ul\u003e\u003c/p\u003e"])</script><script>self.__next_f.push([1,"34e:T925,"])</script><script>self.__next_f.push([1,"\u003cp\u003eWhether you want to make a strong start to a master’s degree, solidify your knowledge in a professional context or simply brush up on fundamentals in probability and statistics, this program will get you up to speed.\u003c/p\u003e\r\n\r\n\u003cp\u003eStatistics is used quite intensively in many engineering contexts and master’s programs. As soon as you are dealing with real-life data, you will need to get an idea of what these data tell you and how you can visualize this (descriptive statistics). You will also want to perform some analysis (inferential statistics), build a model that mimics reality, estimate some quantities, or test some hypotheses. Along the way you will learn how to apply these concepts to datasets, using the statistical software R.\u003c/p\u003e\r\n\r\n\u003cp\u003eThis program also provides an introduction to probability theory. You will encounter discrete and continuous random variables and learn in which situations they appear, what their properties are and how they interact. Probability theory can be applied to learn more about real-life problems, and it is useful for building models. Moreover, it provides the basis for statistics and applications in data analysis. Therefore, it is a useful subject for any aspiring engineer.\u003c/p\u003e\r\n\r\n\u003cp\u003eThese courses are self-paced, self-contained and modular, to make it easier to review specific topics and practice as often as you want without having to follow the entire courses.\u003c/p\u003e\r\n\r\n\u003cp\u003eThis program is ideal for:\r\n\u003cul\u003e\r\n\u003cli\u003eProspective engineering students who want to meet the prerequisites for a MSc program, be better prepared or refresh their mathematics knowledge before starting a master’s degree.\u003c/li\u003e\r\n\u003cli\u003eEngineering or bachelor students who realize that they have a gap in their math knowledge or would like an additional challenge in mathematics not offered by their studies.\u003c/li\u003e\r\n\u003cli\u003eWorking professionals who would like to improve their math knowledge.\u003c/li\u003e\r\n\u003cli\u003eAnyone interested in university level mathematics.\u003c/li\u003e\r\n\u003c/ul\u003e\r\n\u003c/p\u003e\r\n\r\n\u003cp\u003eThis program will refresh your knowledge and review the relevant topics. As review courses, you are expected to have previously studied or be familiar with most of the material.\u003c/p\u003e\r\n\r\n\u003cp\u003eThis program is part of our series ‘Mastering Mathematics for Engineers’, together with ‘Mastering Calculus’ and ‘Mastering Linear Algebra’.\u003c/p\u003e"])</script><script>self.__next_f.push([1,"34f:Ta63,"])</script><script>self.__next_f.push([1,"\u003cp\u003eStatistics is everywhere! This program will prepare learners for subsequent advanced courses and eventually careers in consultancy, research, and industry – any professions involving data analysis and optimization of real-world systems. The course is brought to you by faculty from Georgia Tech’s top-ranked School of Industrial and Systems Engineering.\u003c/p\u003e\r\n\r\n\u003cp\u003eThis first half of this program (Course 1) provides an introduction to basic statistical concepts. We begin by walking through a library of probability distributions, where we motivate their uses and go over their fundamental properties. These distributions include such important folks as the Bernoulli, binomial, geometric, Poisson, uniform, exponential, and normal distributions, just to name a few. Particular attention is paid to the normal distribution, because it leads to the Central Limit Theorem (the most-important mathematical result in the universe, actually), which enables us to make probability calculations for arbitrary averages and sums of random variables.\u003c/p\u003e \r\n\r\n\u003cp\u003eWe then discuss elementary descriptive statistics and estimation methods, including unbiased estimation, maximum likelihood estimation, and the method of moments – you gotta love your MoM! Finally, we describe the t, χ2, and F sampling distributions, which will prove to be useful in upcoming statistical applications.\u003c/p\u003e\r\n\r\n\u003cp\u003eThe second half of the program (Course 2) covers two important methodologies in statistics – confidence intervals and hypothesis testing. Confidence intervals are encountered in everyday life, and allow us to make probabilistic statements such as: “Based on the sample of observations we conducted, we are 95% sure that the unknown mean lies between A and B,” and “We are 95% sure that Candidate Smith’s popularity is 52% +/- 3%.” We begin the course by discussing what a confidence interval is and how it is used. We then formulate and interpret confidence intervals for a variety of probability distributions and their parameters.\u003c/p\u003e\r\n\r\n\u003cp\u003eHypothesis testing allows us to pose hypotheses and test their validity in a statistically rigorous way. For instance, “Does a new drug result in a higher cure rate than the old drug” or “Is the mean tensile strength of item A greater than that of item B?” The second half the course begins by motivating hypothesis tests and how they are used. We then discuss with the types of errors that can occur with hypothesis testing, and how to design tests to mitigate those errors. Finally, we formulate and interpret hypothesis tests for a variety of probability distributions and their parameters.\u003c/p\u003e"])</script><script>self.__next_f.push([1,"350:T494,Bayes’ Theorem. Differences between classical (frequentist) and Bayesian inference.,Posterior inference: summarizing posterior distributions, credible intervals, posterior probabilities, posterior predictive distributions and data visualization.,Gamma-poisson, beta-binomial and normal conjugate models for data analysis.,Bayesian regression analysis and analysis of variance (ANOVA).,Use of simulations for posterior inference. Simple applications of Markov chain-Monte Carlo (MCMC) methods and their implementation in R.,Bayesian cluster analysis.,Model diagnostics and comparison.,Make sure to answer the actual research question rather than “apply methods to the data”,Using latent (unobserved) variables and dealing with missing data.,Multivariate analysis within the context of mixed effects linear regression models. Structure, assumptions, diagnostics and interpretation. Posterior inference and model selection.,Why Monte Carlo integration works and how to implement your own MCMC Metropolis-Hastings algorithm in R.,Bayesian model averaging in the context of change-point problem. Pinpointing the time of change and obtaining uncertainty estimates for it.351:T735,\u003cp\u003eBusiness analytics is the ability to collate and combine multiple streams of data to better understand business processes, customer demands, and relationships between multiple agents.\u003c/p\u003e\r\n\r\n\u003cp\u003eWe live and work in an uncertain world. Every day, business managers, economists, line managers, supervisors and front-line workers must make decisions and predictions based on limited information. This program will help you to make better informed decisions for the future to answer questions like:\r\n\u003cul\u003e\r\n\u003cli\u003eWhat is the probability that a staff member will need more than 20 days of sick leave in a year?\u003c/li\u003e\r\n\u003cli\u003eDoes the new system for preparing food for customers offer a significant improvement over the old system, or is it the same?\u003c/li\u003e\r\n\u003cli\u003eHow are sales likely to fluctuate over the next 12 months, based on trends in historical data?\u003c/li\u003e\r\n\u003c/ul\u003e\r\n"])</script><script>self.__next_f.push([1,"\u003c/p\u003e\r\n\u003cp\u003eTo inform strategic decisions and remain competitive, businesses must leverage the insights contained in the large volumes of data produced both within the business and in the broader business environment. Providing you with skills that are highly sought after in the global workplace, this program will equip you with the analytical know-how needed to extract meaning from complex data sets and translate this meaning into actionable insights. \u003c/p\u003e\r\n\r\n\u003cp\u003eThis program covers a variety of techniques applicable to the collection, presentation, interpretation, and use of numerical data. It provides a foundation for understanding statistical procedures that will help you undertake solid statistical analysis in business and economic situations. This includes statistical inference, probability \u0026 sampling distributions, estimation, hypothesis tests, correlation \u0026 regression, experimental design, sample survey design, quality sampling, and modern business decision theory.\u003c/p\u003e352:T5c2,\u003cp\u003eThis is the second of three courses in the Machine Learning Operations Program using Azure Machine Learning.\u003c/p\u003e\n\u003cp\u003eData Science, AI, and Machine Learning projects can deliver an amazing return on investment. But, in practice, most projects that look great in the lab (and would work if implemented!) never see the light of day. They could save or make the organization millions of dollars but never make it all the way into production. What’s going on? It turns out that making decisions in a whole new way is a big challenge to implement--for many technical, business andhuman-naturereasons. After decades of experience though, our team has learned how to turn this around and actually get working models into production the great majority of the time. A key part of deployment is excellence in data engineering, and is why we developed this course: \u003cstrong\u003eMLOps1 (Azure): Deploying AI \u0026amp; ML Models in Production using Microsoft Azure Machine Learning.\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eYou will get hands on experience with topics like data pipelines, data a"])</script><script>self.__next_f.push([1,"nd model “versioning”, model storage, data artifacts, and more.\u003c/p\u003e\n\u003cp\u003eMost importantly, by the end of this course, you will know...\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eWhat data engineers need to know to work effectively with data scientists\u003c/li\u003e\n\u003cli\u003eHow to embed a predictive model in a pipeline that takes in data and outputs predictions automatically\u003c/li\u003e\n\u003cli\u003eHow to moniter the model’s performance and follow best practices\u003c/li\u003e\n\u003c/ul\u003e353:T526,\u003cp\u003eWhat is Predictive Analytics? These methods lie behind the most transformative technologies of the last decade, that go under the more general name Artificial Intelligence or AI. In this course, the focus is on the skills that will allow you to fit a model to data, and measure how well it performs. \u003c/p\u003e\n\u003cp\u003eThese skills also go under the names \"machine learning\" and \"data science,\" the latter being a broader term than machine learning or predictive analytics but narrower than AI. This course is part of the Machine Learning Operations (MLOps) Program. We will be doing enough data science so that you get hands-on familiarity with understanding a dataset, fitting a model to it, and generating predictions. As you get further into the program, you will learn how to fit that model into a machine learning pipeline.\u003c/p\u003e\n\u003cp\u003eYou will get hands-on experience with the top techniques in supervised learning: linear and logistic regression modeling, decision trees, neural networks, ensembles, and much more.\u003c/p\u003e\n\u003cp\u003eBut most importantly, by the end of this course, you will know\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eWhat a predictive model can (and cannot) do, and how its data is structured\u003c/li\u003e\n\u003cli\u003eHow to predict a numerical output, or a class (category)\u003c/li\u003e\n\u003cli\u003eHow to measure the out-of-sample (future)performance of a model\u003c/li\u003e\n\u003c/ul\u003e354:T5a7,\u003cp\u003eThis is the second of three courses in the Machine Learning Operations Program using Amazon Web Services (AWS).\u003c/p\u003e\n\u003cp\u003eData Science, AI, and Machine Learning projects can deliver an amazing return on investment. But, in practice, most projects that look great in the lab (and would work "])</script><script>self.__next_f.push([1,"if implemented!) never see the light of day. They could save or make the organization millions of dollars but never make it all the way into production. What’s going on? It turns out that making decisions in a whole new way is a big challenge to implement--for many technical, business and human-nature reasons. After decades of experience though, our team has learned how to turn this around and actually get working models into production the great majority of the time. A key part of deployment is excellence in data engineering, and is why we developed this course: MLOps1(AWS): Deploying AI \u0026amp; ML Models in Production.\u003c/p\u003e\n\u003cp\u003eYou will get hands-on experience with topics like data pipelines, data and model “versioning”, model storage, data artifacts, and more.\u003c/p\u003e\n\u003cp\u003eMost importantly, by the end of this course, you will know...\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eWhat data engineers need to know to work effectively with data scientists\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eHow to embed a predictive model in a pipeline that takes in data and outputs predictions automatically\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eHow to monitor the model’s performance and follow best practices\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e355:T5a0,\u003cp\u003eThis is the second of three courses in the Machine Learning Operations Program using Google Cloud Platform (GCP).\u003c/p\u003e\n\u003cp\u003eData Science, AI, and Machine Learning projects can deliver an amazing return on investment. But, in practice, most projects that look great in the lab (and would work if implemented!) never see the light of day. They could save or make the organization millions of dollars but never make it all the way into production. What’s going on? It turns out that making decisions in a whole new way is a big challenge to implement--for many technical, business and human-nature reasons. After decades of experience though, our team has learned how to turn this around and actually get working models into production the great majority of the time. A key part of deployment is excellence in data engineering, and is why we developed this course: \u003cstrong\u003eMLOps1 (GC"])</script><script>self.__next_f.push([1,"P): Deploying AI \u0026amp; ML Models in Production\u003c/strong\u003e.\u003c/p\u003e\n\u003cp\u003eYou will get hands-on experience with topics like data pipelines, data and model “versioning”, model storage, data artifacts, and more.\u003c/p\u003e\n\u003cp\u003eMost importantly, by the end of this course, you will know...\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eWhat data engineers need to know to work effectively with data scientists\u003c/li\u003e\n\u003cli\u003eHow to embed a predictive model in a pipeline that takes in data and outputs predictions automatically\u003c/li\u003e\n\u003cli\u003eHow to monitor the model’s performance and follow best practices\u003c/li\u003e\n\u003c/ul\u003e356:T560,\u003cp\u003eConcern about the harmful effects of machine learning algorithms and big data AI models (bias and more) has resulted in greater attention to the fundamentals of data ethics. News stories appear regularly about credit algorithms that discriminate against women, medical algorithms that discriminate against African Americans, hiring algorithms that base decisions on gender, and more. In most cases, the data scientists who developed and deployed these decision making algorithms and data processes had no such intentions, and were unaware of the harmful impact of their work.\u003c/p\u003e\n\u003cp\u003eThis data science ethics course, the second in the data science ethics program for both practitioners and managers, provides guidance and practical tools to build better models, do better data analysis and avoid these problems. You’ll learn about ****\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eTools for model interpretability\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eGlobal versus local model interpretability methods\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eMetrics for model fairness\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eAuditing your model for bias and fairness\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eRemedies for biased models\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThe course offers real world problems and datasets, a framework data scientists can use to develop their projects, and an audit process to follow in reviewing them. Case studies with ethical considerations, along with Python code, are provided.\u003c/p\u003e357:T839,"])</script><script>self.__next_f.push([1,"\u003cp\u003eMachine Learning Operations (MLOps) lies at the core of the AI Engineering function. In Statistics.com’s MLOps with Azure program you will learn to combine data engineering and data science skills to deploy machine learning models.\u003c/p\u003e\r\n\r\n\u003cp\u003eMost of the work in deploying AI models does not lie in developing models. Rather, it lies in developing, monitoring and maintaining an automated, self-monitoring data pipeline through a model and into actions. The common practice of tossing a project back and forth between pure data scientists and pure data engineers leads to delay and errors. This has created a need for AI engineers who have knowledge of each function. Mastering machine learning deployment skills on the Microsoft Azure platform is a sure path to career success.\u003c/p\u003e\r\n \r\n\u003cp\u003eIn this course, you will learn how to work with data scientists to deploy machine learning models that can learn from data, and generate predictions, recommendations or decisions. This process usually is automated and that is where MLOps and AI engineering skills are needed.\u003c/p\u003e\r\n\r\n\u003cp\u003eYou will focus on developing the skills needed to create a Microsoft Azure pipeline that:\r\n\u003cul\u003e\r\n\u003cli\u003eIngests data to train a predictive model\u003c/li\u003e\r\n\u003cli\u003eFeeds the model as it operates\u003c/li\u003e\r\n\u003cli\u003eScores the data on an ongoing basis\u003c/li\u003e\r\n\u003cli\u003eOutputs an action\u003c/li\u003e\r\n\u003cli\u003eIntegrates into business applications\u003c/li\u003e\r\n\u003c/ul\u003e\u003c/p\u003e\r\n\r\n\u003cp\u003eAdditionally, you will learn to develop the pipeline so that it will continuously monitor several points of operation, including the incoming data (for data drift) and the decision outputs (for anomalies).\r\nStatistics.com is the training platform of Elder Research (elderresearch.com), an internationally recognized data analytics consulting firm that, since 1995, has consulted for hundreds of leading businesses in data strategy, data science, and data engineering. Elder Research leverages the wisdom gained by solving a wide variety of real-world problems to infuse their education programs on the Statistics.com platform with the most cutting-edge training that can be applied day one.\u003c/p\u003e"])</script><script>self.__next_f.push([1,"358:T831,"])</script><script>self.__next_f.push([1,"\u003cp\u003eMachine Learning Operations (MLOps) lies at the core of the AI Engineering function. In Statistics.com’s MLOps with AWS program you will learn to combine data engineering and data science skills to deploy machine learning models.\u003c/p\u003e\r\n\r\n\u003cp\u003eMost of the work in deploying AI models does not lie in developing models. Rather, it lies in developing, monitoring and maintaining an automated, self-monitoring data pipeline through a model and into actions. The common practice of tossing a project back and forth between pure data scientists and pure data engineers leads to delay and errors. This has created a need for AI engineers who have knowledge of each function. Mastering machine learning deployment skills on the Amazon Web Services platform is a sure path to career success.\u003c/p\u003e\r\n \r\n\u003cp\u003eIn this course, you will learn how to work with data scientists to deploy machine learning models that can learn from data, and generate predictions, recommendations or decisions. This process usually is automated and that is where MLOps and AI engineering skills are needed.\u003c/p\u003e\r\n\r\n\u003cp\u003eYou will focus on developing the skills needed to create an AWS pipeline that:\r\n\u003cul\u003e\r\n\u003cli\u003eIngests data to train a predictive model\u003c/li\u003e\r\n\u003cli\u003eFeeds the model as it operates\u003c/li\u003e\r\n\u003cli\u003eScores the data on an ongoing basis\u003c/li\u003e\r\n\u003cli\u003eOutputs an action\u003c/li\u003e\r\n\u003cli\u003eIntegrates into business applications\u003c/li\u003e\r\n\u003c/ul\u003e\u003c/p\u003e\r\n\r\n\u003cp\u003eAdditionally, you will learn to develop the pipeline so that it will continuously monitor several points of operation, including the incoming data (for data drift) and the decision outputs (for anomalies).\r\nStatistics.com is the training platform of Elder Research (elderresearch.com), an internationally recognized data analytics consulting firm that, since 1995, has consulted for hundreds of leading businesses in data strategy, data science, and data engineering. Elder Research leverages the wisdom gained by solving a wide variety of real-world problems to infuse their education programs on the Statistics.com platform with the most cutting-edge training that can be applied day one.\u003c/p\u003e"])</script><script>self.__next_f.push([1,"359:T828,"])</script><script>self.__next_f.push([1,"\u003cp\u003eMachine Learning Operations (MLOps) lies at the core of the AI Engineering function. In Statistics.com’s MLOps with GCP program you will learn to combine data engineering and data science skills to deploy machine learning models.\u003c/p\u003e\r\n\r\n\u003cp\u003eMost of the work in deploying AI models does not lie in developing models. Rather, it lies in developing, monitoring and maintaining an automated, self-monitoring data pipeline through a model and into actions. The common practice of tossing a project back and forth between pure data scientists and pure data engineers leads to delay and errors. This has created a need for AI engineers who have knowledge of each function. Mastering machine learning deployment skills on the Google Cloud platform is a sure path to career success.\u003c/p\u003e\r\n \r\n\u003cp\u003eIn this course, you will learn how to work with data scientists to deploy machine learning models that can learn from data, and generate predictions, recommendations or decisions. This process usually is automated and that is where MLOps and AI engineering skills are needed.\u003c/p\u003e\r\n \r\n\u003cp\u003eYou will focus on developing the skills needed to create a GCP pipeline that:\r\n\u003cul\u003e\r\n\u003cli\u003eIngests data to train a predictive model\u003c/li\u003e\r\n\u003cli\u003eFeeds the model as it operates\u003c/li\u003e\r\n\u003cli\u003eScores the data on an ongoing basis\u003c/li\u003e\r\n\u003cli\u003eOutputs an action\u003c/li\u003e\r\n\u003cli\u003eIntegrates into business applications\u003c/li\u003e\r\n\u003c/ul\u003e\u003c/p\u003e\r\n\r\n\u003cp\u003eAdditionally, you will learn to develop the pipeline so that it will continuously monitor several points of operation, including the incoming data (for data drift) and the decision outputs (for anomalies).\r\nStatistics.com is the training platform of Elder Research (elderresearch.com), an internationally recognized data analytics consulting firm that, since 1995, has consulted for hundreds of leading businesses in data strategy, data science, and data engineering. Elder Research leverages the wisdom gained by solving a wide variety of real-world problems to infuse their education programs on the Statistics.com platform with the most cutting-edge training that can be applied day one.\u003c/p\u003e"])</script><script>self.__next_f.push([1,"35a:T7e7,\u003cp\u003e\u003cstrong\u003e\u003cem\u003eIf you have specific questions about this course, please contact us at\u003ca href=\"mailto:sds-mm@mit.edu\"\u003e sds-mm@mit.edu\u003c/a\u003e.\u003c/em\u003e\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eMachine learning methods are commonly used across engineering and sciences, from computer systems to physics. Moreover, commercial sites such as search engines, recommender systems (e.g., Netflix, Amazon), advertisers, and financial institutions employ machine learning algorithms for content recommendation, predicting customer behavior, compliance, or risk.\u003c/p\u003e\n\u003cp\u003eAs a discipline, machine learning tries to design and understand computer programs that learn from experience for the purpose of prediction or control.\u003c/p\u003e\n\u003cp\u003eIn this course, students will learn about principles and algorithms for turning training data into effective automated predictions. We will cover:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eRepresentation, over-fitting, regularization, generalization, VC dimension;\u003c/li\u003e\n\u003cli\u003eClustering, classification, recommender problems, probabilistic modeling, reinforcement learning;\u003c/li\u003e\n\u003cli\u003eOn-line algorithms, support vector machines, and neural networks/deep learning.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eStudents will implement and experiment with the algorithms in several Python projects designed for different practical applications.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eThis course is part of the\u003ca href=\"https://www.edx.org/micromasters/mitx-statistics-and-data-science\"\u003e MITx MicroMasters Program in Statistics and Data Science\u003c/a\u003e. Master the skills needed to be an informed and effective practitioner of data science. You will complete this course and three others from MITx, at a similar pace and level of rigor as an on-campus course at MIT, and then take a virtually-proctored exam to earn your MicroMasters, an academic credential that will demonstrate your proficiency in data science or accelerate your path towards an MIT PhD or a Master's at other universities. To learn more about this program, please visit \u003ca href=\"https://micromasters.mit.edu/ds/\"\u003ehttps://micromasters.mit.edu/ds/\u003c/a\u003e.\u003c/strong\u003e\u003c/p\u003e35b:T571,\u003cp\u003eSupp"])</script><script>self.__next_f.push([1,"ly chains are complex systems involving multiple businesses and organizations with different goals and objectives. Many different analytical methods and techniques are used by researchers and practitioners alike to better design and manage their supply chains. This business and management course introduces the primary methods and tools that you will encounter in your study and practice of supply chains. We focus on the application of these methods, not necessarily the theoretical underpinnings.\u003c/p\u003e\n\u003cp\u003eWe will begin with an overview of introductory probability and decision analysis to ensure that students understand how uncertainty can be modeled. Next, we will move into basic statistics and regression. Finally, we will introduce optimization modeling from unconstrained to linear, non-linear, and mixed integer linear programming.\u003c/p\u003e\n\u003cp\u003eThis is a hands-on course. Students will use spreadsheets extensively to apply these techniques and approaches in case studies drawn from actual supply chains.\u003c/p\u003e\n\u003cp\u003eSC0x is different from our other courses as it is self-paced and has a scheduled final exam. All material is made available during the second week, allowing learners to begin with any topic at their own convenience.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eThis is an open enrollment course\u003c/strong\u003e , making it accessible for almost anyone, anywhere in the world to enroll and learn for free.\u003c/p\u003e35c:T4ff,\u003cul\u003e\n\u003cli\u003eProbability distributions in finance\u003c/li\u003e\n\u003cli\u003eTime-series models: random walks, ARMA, and GARCH\u003c/li\u003e\n\u003cli\u003eContinuous-time stochastic processes\u003c/li\u003e\n\u003cli\u003eOptimization\u003c/li\u003e\n\u003cli\u003eLinear algebra of asset pricing\u003c/li\u003e\n\u003cli\u003eStatistical and econometric analysis\u003c/li\u003e\n\u003cli\u003eMonte Carlo simulation\u003c/li\u003e\n\u003cli\u003eApplied computational techniques\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cbr /\u003e\n\u003c/strong\u003e\u003cstrong\u003eHow to Prepare\u003c/strong\u003e \u003cstrong\u003e\u003cbr /\u003e\n\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eThere are a number of prerequisites for this course: Calculus (multivariable), probability and statistics, linear algebra, and basic programming skills. Learners are urged to thoroughly review the \u003ca href=\"https://lea"])</script><script>self.__next_f.push([1,"rning.edx.org/course/course-v1:MITx+FIN.Px+2T2022\"\u003e15.455x Prerequisites and Resources site\u003c/a\u003e* which details these prerequisites and provides a robust suite of resources to prepare you for this advanced math course, including a readiness assessment to help you confirm that you have a solid understanding of the 15.455x prerequisite material, and to indicate directions of study in case you need to build on your current foundations prior to starting the course.\u003c/p\u003e\n\u003cp\u003e*Please note that you will need to enroll in order to access the Prerequisite and Resources site. To do so, click the link above, then click \"Enroll.\"\u003c/p\u003e35d:T49b,\u003cp\u003eCreated specifically for those who are new to the study of probability, or for those who are seeking an approachable review of core concepts prior to enrolling in a college-level statistics course, Fat Chance prioritizes the development of a mathematical mode of thought over rote memorization of terms and formulae. Through highly visual lessons and guided practice, this course explores the quantitative reasoning behind probability and the cumulative nature of mathematics by tracing probability and statistics back to a foundation in the principles of counting. \u003c/p\u003e\n\u003cp\u003eIn Modules 1 and 2, you will be introduced to basic counting skills that you will build upon throughout the course. In Module 3, you will apply those skills to simple problems in probability. In Modules 4 through 6, you will explore how those ideas and techniques can be adapted to answer a greater range of probability problems. Lastly, in Module 7, you will be introduced to statistics through the notion of expected value, variance, and the normal distribution. You will see how to use these ideas to approximate probabilities in situations where it is difficult to calculate their exact values.\u003c/p\u003e35e:T555,\u003cp\u003eIn this first course of the Six Sigma Program, you will understand the background and meaning of Six Sigma and the five steps of the DMAIC process improvement flow: Define, Measure, Analyze, Improve, and Control. Discuss w"])</script><script>self.__next_f.push([1,"hat \"Quality\" means and how to identify the Voice of the Customer.\u003c/p\u003e\n\u003cp\u003eYou will learn how to set an improvement project goal, calculate process yield, and identify Critical-to-Quality parameters.\u003c/p\u003e\n\u003cp\u003eYou will learn how to map a process and to use the necessary statistical techniques to establish the baseline performance of a process and to calculate the process capability.\u003c/p\u003e\n\u003cp\u003eTo complement the lectures, we provide interactive exercises, which allow learners to see the statistics \"in action.\" Learners then master the statistical concepts by completing practice problems. These are then reinforced using interactive case studies, which illustrate the application of the statistics in quality improvement situations.\u003c/p\u003e\n\u003cp\u003eUpon successful completion of this program, learners will earn the TUM Lean and Six Sigma Yellow Belt certification, confirming mastery of Lean Six Sigma fundamentals to a Green Belt level. The material is based on the American Society for Quality (www.asq.org) Body of Knowledge up to a Green Belt Level. The Professional Certificate is designed as preparation for a Lean Six Sigma Green Belt exam.\u003c/p\u003e35f:T508,\u003cp\u003eCan you think of an area of your life that is influenced by statistics? Many times when we think about statistics in our daily lives, we think about numerical expressions of statistics, such as the number of daily COVID cases in our county, the percentage of students admitted each year to our university, or the number of people that voted in the last election. From each of these examples, we could go on to make inferences or look to answer questions based on this data, such as whether to open restaurants, how many new students are psychology majors, or if a specific issue drove voters to the polls in a specific state.\u003c/p\u003e\n\u003cp\u003eThis course will begin by introducing the basic concepts of how to describe and visualize data, the fundamentals of using statistics to make inferences, and the logic of null hypothesis testing. Various types of hypothesis tests will be introduced, along with cri"])</script><script>self.__next_f.push([1,"teria for selecting which is appropriate for different study conditions. As an extension of null hypothesis significance tests, you will learn about how to interpret effect sizes and confidence intervals, along with statistical power, before being introduced to alternatives to null hypothesis significance testing. All this is fleshed out in Data Analysis for the Behavioral Sciences.\u003c/p\u003e360:T543,\u003cp\u003eIn this course, you will develop a solid foundational understanding of the most common statistical methods used in health care data analysis.\u003c/p\u003e\n\u003cp\u003eThis course covers some of the most common univariate and multivariate statistical methods used in healthcare data analysis. Students will also learn how to apply these methods using a statistical software package. The course covers basic data wrangling that is necessary for data analysis. It uses examples from the healthcare industry. This course focuses on the use of statistical methods although there may be some discussion of the mathematical underpinnings and relevant formulae and assumptions necessary for understanding the application of statistical methods.\u003c/p\u003e\n\u003cp\u003eThis self-paced course is comprised of written content, video content, step-by-step follow-along activities, and assessments to reinforce your learning (Assessments available to Verified Track learners only).\u003c/p\u003e\n\u003cp\u003eThe course is comprised of 5 modules that you should complete in order, as each subsequent module builds on the previous one.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eModule 1: Descriptive Statistics and Data Distributions\u003c/li\u003e\n\u003cli\u003eModule 2: Sampling Distribution and Hypothesis Tests\u003c/li\u003e\n\u003cli\u003eModule 3: Visualize and Summarize Data in R\u003c/li\u003e\n\u003cli\u003eModule 4: Independent and Paired Sample t-tests\u003c/li\u003e\n\u003cli\u003eModule 5: ANOVA\u003c/li\u003e\n\u003c/ul\u003e361:T513,\u003cp\u003eThe 'Statistical and Probabilistic Foundations of AI' course provides an accessible overview of the mathematics and statistics behind fundamental concepts of machine learning, data science, and artificial intelligence. \u003c/p\u003e\n\u003cp\u003eIt covers descriptive and exploratory data analysis and a brief "])</script><script>self.__next_f.push([1,"introduction to inferential statistics. Starting with summary statistics, it focuses on visualising data and the resulting key characteristics. This includes box plots, histograms, kernel density estimates, and regression. In addition, the course provides the principles of probability necessary to understand the methods used in inferential statistics and machine learning at an introductory level. Starting with the basic concepts of probability and elementary stochastic models, the course also covers more advanced topics of probability theory. These include multivariate distributions, generating functions, limit theorems, and a brief introduction to stochastic simulation. \u003c/p\u003e\n\u003cp\u003eFinally, a brief introduction to inferential statistics is given. Parametric and non-parametric inferential approaches are discussed. Point and interval estimation and hypothesis testing are also covered.\u003c/p\u003e\n\u003cp\u003eThe presentation is rounded off with many examples and data that are analysed and visualised using R.\u003c/p\u003e362:T526,\u003cp\u003eThose enrolled in Probability for Actuaries: Introduction to Discrete Distributions will learn to:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eDescribe basic data types\u003c/li\u003e\n\u003cli\u003eDescribe the central tendency measures of datasets: mean, median and mode\u003c/li\u003e\n\u003cli\u003eDescribe the dispersion measures of datasets: range, percentiles and variance\u003c/li\u003e\n\u003cli\u003eDescribe basic probability concepts including sample space, events and set operations\u003c/li\u003e\n\u003cli\u003eCalculate probabilities for simple discrete events\u003c/li\u003e\n\u003cli\u003eDifferentiate between a discrete and continuous random variable\u003c/li\u003e\n\u003cli\u003eDescribe Bayes Theorem, conditional probability, law of total probability and statistical independence\u003c/li\u003e\n\u003cli\u003eDescribe and use a probability mass function, probability density function and cumulative distribution function\u003c/li\u003e\n\u003cli\u003eDescribe and calculate the mathematical expectation of a random variable\u003c/li\u003e\n\u003cli\u003eDescribe the features and application of the following discrete distributions: Uniform, Binomial, Poisson\u003c/li\u003e\n\u003cli\u003eCalculate probabilities for random variables governed by"])</script><script>self.__next_f.push([1," a Uniform, Binomial or Poisson distribution\u003c/li\u003e\n\u003cli\u003eDescribe the features and application of the following discrete distributions: Geometric, Negative Binomial\u003c/li\u003e\n\u003cli\u003eCalculate probabilities for random variables governed by a Geometric or Negative Binomial distribution\u003c/li\u003e\n\u003c/ul\u003e363:T450,\u003cp\u003e\u003cspan lang=\"EN-US\"\u003eData science tools have revolutionized the way farmers and agricultural professionals approach their work. Python data analysis tools, such as pandas and seaborn, enable farmers to make data-driven decisions using soil, water, and economic data accounts. Pandas is a Python library used to simplify handling large sets of data. Seaborn is a data visualization library used to quickly create graphs.\u003c/span\u003e\u003c/p\u003e\n\u003cp\u003eThis hands-on guided project will prepare you to handle agricultural datasets using these Python tools. Y\u003cspan lang=\"EN-US\"\u003eou will develop job-ready skills, like how to download, prepare, analyze, and visualize data using Python libraries, including pandas and seaborn. You will learn how to build a trend line in order to forecast future trends, and finally, you will learn how to create interactive maps which show data change over time.\u003c/span\u003e\u003c/p\u003e\n\u003cp\u003eYou will be provided with access to a Cloud-based IDE, which has all of the required software, including Python, pre-installed. All you need is a recent version of a modern web browser to complete this project.\u003c/p\u003e364:T820,"])</script><script>self.__next_f.push([1,"\u003cp\u003eThe world is full of uncertainty: accidents, storms, unruly financial markets, noisy communications. The world is also full of data. Probabilistic modeling and the related field of statistical inference are the keys to analyzing data and making scientifically sound predictions.\u003c/p\u003e\n\u003cp\u003eProbabilistic models use the language of mathematics. But instead of relying on the traditional \"theorem-proof\" format, we develop the material in an intuitive -- but still rigorous and mathematically-precise -- manner. Furthermore, while the applications are multiple and evident, we emphasize the basic concepts and methodologies that are universally applicable.\u003c/p\u003e\n\u003cp\u003eThe course covers all of the basic probability concepts, including:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003emultiple discrete or continuous random variables, expectations, and conditional distributions\u003c/li\u003e\n\u003cli\u003elaws of large numbers\u003c/li\u003e\n\u003cli\u003ethe main tools of Bayesian inference methods\u003c/li\u003e\n\u003cli\u003ean introduction to random processes (Poisson processes and Markov chains)\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThe contents of this courseare heavily based upon the corresponding MIT class -- \u003cem\u003eIntroduction to Probability\u003c/em\u003e -- a course that has been offered and continuously refined over more than 50 years. It is a challenging class but will enable you to apply the tools of probability theory to real-world applications or to your research.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eThis course is part of the\u003ca href=\"https://micromasters.mit.edu/ds/\"\u003eMITx MicroMasters Program in Statistics and Data Science\u003c/a\u003e. Master the skills needed to be an informed and effective practitioner of data science. You will complete this course and three others from MITx, at a similar pace and level of rigor as an on-campus course at MIT, and then take a virtually-proctored exam to earn your MicroMasters, an academic credential that will demonstrate your proficiency in data science or accelerate your path towards an MIT PhD or a Master's at other universities. To learn more about this program, please visit \u003ca href=\"https://micromasters.mit.edu/ds/\"\u003ehttps://micromasters.mit.edu/ds/\u003c/a\u003e.\u003c/strong\u003e\u003c/p\u003e"])</script><script>self.__next_f.push([1,"365:T743,\u003cp\u003e\u003cem\u003eIf you have specific questions about this course, please contact us at\u003c/em\u003e \u003cem\u003e\u003ca href=\"mailto:sds-mm@mit.edu\"\u003esds-mm@mit.edu\u003c/a\u003e.\u003c/em\u003e\u003c/p\u003e\n\u003cp\u003eData science requires multi-disciplinary skills ranging from mathematics, statistics, machine learning, problem solving to programming, visualization, and communication skills. In this course, learners will combine these foundational and practical skills with domain knowledge to ask and answer questions using real data.\u003c/p\u003e\n\u003cp\u003eThis course will start with a review of common statistical and computational tools such as hypothesis testing, regression, and gradient descent methods. Then, learners will study common models and methods to analyze specific types of data in four different domain areas:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eEpigenetic Codes and Data Visualization\u003c/li\u003e\n\u003cli\u003eCriminal Networks and Network Analysis\u003c/li\u003e\n\u003cli\u003ePrices, Economics and Time Series\u003c/li\u003e\n\u003cli\u003eEnvironmental Data and Spatial Statistics\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eLearners will be guided to analyze a real data set from each of these areas of focus, and present their findings in written reports. They will also discuss relevant and practical issues with peers.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eThis course is part of the MITx MicroMasters Program in Statistics and Data Science. It is at a similar pace and level of rigor as an on-campus course at MIT. Master the skills needed to be an informed and effective practitioner of data science. You will complete this course and three others from MITx and then take a virtually-proctored exam to earn your MicroMasters, an academic credential that will demonstrate your proficiency in data science or accelerate your path towards an MIT PhD or a Master's at other universities. To learn more about this program, please visit\u003c/strong\u003e \u003cstrong\u003e\u003ca href=\"https://micromasters.mit.edu/ds/\"\u003ehttps://micromasters.mit.edu/ds/\u003c/a\u003e.\u003c/strong\u003e\u003c/p\u003e366:Tb12,"])</script><script>self.__next_f.push([1,"\u003cp\u003e\u003cem\u003eIf you have specific questions about this course, please contact us at\u003ca href=\"mailto:sds-mm@mit.edu\" rel=\"noopener\" target=\"_blank\"\u003esds-mm@mit.edu\u003c/a\u003e.\u003c/em\u003e\u003c/p\u003e\n\u003cp\u003eA time series is a time-stamped set of noisy observations from an underlying process that evolves over time. These observations are dependent on each other in a particular, unknown, fashion. Examples of such series include stock values, value of a currency with respect to the dollar, mean housing prices, the number of Covid-19 infections, or the pitch angle of an airplane during flights. Modeling such processes for the purpose of prediction or intervention is a fundamental problem in statistical learning.\u003c/p\u003e\n\u003cp\u003eThis graduate-level course that will address three lines of development:\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eLearning Structured Models\u003c/strong\u003e\u003cstrong\u003e:\u003c/strong\u003e In this module, we focus on learning the underlying stochastic dynamic model that generates the data. We discuss how algorithms depend on the underlying class of models adopted for this learning. We address the accuracy and reliability of our learned models.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003ePrediction:\u003c/strong\u003e In this module, we make no assumptions on how the data is generated and focus on predicting the next outcome of the process based on past observations. In this context, we analyze \u003cem\u003eMatrix and Tensor Completion Methods\u003c/em\u003e in providing such predictions and we analyze the accuracy of these prediction in the presence of noise, missing data.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eOptimal Intervention and Reinforcement Learning (RL):\u003c/strong\u003e A key ingredient of RL is a simulator that can estimate the value of a reward for a given intervention. In this module course, we build on techniques from RL as well as the first two parts to show how new intervention/control can be derived with better outcomes.\u003c/p\u003e\n\u003cp\u003eThis course will consist of three hands-on projects, in which learners will apply knowledge gained in lectures, build models and implement algorithms to solve problems posed on real time series data sets.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eThis course is part of the\u003ca href=\"https://micromasters.mit.edu/ds/\" rel=\"noopener\" target=\"_blank\"\u003eMITx MicroMasters Program in Statistics and Data Science\u003c/a\u003e. \u003c/strong\u003e\u003cstrong\u003eMaster the skills needed to be an informed and effective practitioner of data science. You will complete this course and three others from MITx, at a similar pace and level of rigor as an on-campus course at MIT, and then take a virtually-proctored exam to earn your MicroMasters, an academic credential that will demonstrate your proficiency in data science or accelerate your path towards an MIT PhD or a Master's at other universities. To learn more about this program, please visit\u003ca href=\"https://micromasters.mit.edu/ds/\" rel=\"noopener\" target=\"_blank\"\u003ehttps://micromasters.mit.edu/ds/\u003c/a\u003e.\u003cbr /\u003e\n\u003c/strong\u003e\u003c/p\u003e"])</script><script>self.__next_f.push([1,"367:Ta05,"])</script><script>self.__next_f.push([1,"\u003cp\u003eThis course concentrates on recognizing and solving convex optimization problems that arise in applications. The syllabus includes: convex sets, functions, and optimization problems; basics of convex analysis; least-squares, linear and quadratic programs, semidefinite programming, minimax, extremal volume, and other problems; optimality conditions, duality theory, theorems of alternative, and applications; interior-point methods; applications to signal processing, statistics and machine learning, control and mechanical engineering, digital and analog circuit design, and finance.\u003c/p\u003e\n\u003cp\u003eThis course should benefit anyone who uses or will use scientific computing or optimization in engineering or related work (e.g., machine learning, finance). More specifically, people from the following fields: Electrical Engineering (especially areas like signal and image processing, communications, control, EDA \u0026amp; CAD); Aero \u0026amp; Astro (control, navigation, design), Mechanical \u0026amp; Civil Engineering (especially robotics, control, structural analysis, optimization, design); Computer Science (especially machine learning, robotics, computer graphics, algorithms \u0026amp; complexity, computational geometry); Operations Research; Scientific Computing and Computational Mathematics. The course may be useful to students and researchers in several other fields as well: Mathematics, Statistics, Finance, Economics.\u003c/p\u003e\n\u003cp\u003eAdditional Instructors / Contributors\u003c/p\u003e\n\u003cp\u003eNeal Parikh\u003c/p\u003e\n\u003cp\u003eNeal Parikh is a 5th year Ph.D. Candidate in Computer Science at Stanford University. He has previously taught Convex Optimization (EE 364A) at Stanford University and holds a B.A.S., summa cum laude, in Mathematics and Computer Science from the University of Pennsylvania and an M.S. in Computer Science from Stanford University.\u003c/p\u003e\n\u003cp\u003eErnest Ryu\u003c/p\u003e\n\u003cp\u003eErnest Ryu is a PhD candidate in Computational and Mathematical Engineering at Stanford University. He has served as a TA for EE364a at Stanford. His research interested include stochastic optimization, convex analysis, and scientific computing.\u003c/p\u003e\n\u003cp\u003eMadeleine Udell\u003c/p\u003e\n\u003cp\u003eMadeleine Udell is a PhD candidate in Computational and Mathematical Engineering at Stanford University. She has served as a TA and as an instructor for EE364a at Stanford. Her research applies convex optimization techniques to a variety of non-convex applications, including sigmoidal programming, biconvex optimization, and structured reinforcement learning problems, with applications to political science, biology, and operations research.\u003c/p\u003e"])</script><script>self.__next_f.push([1,"368:T556,\u003cp\u003eDecision makers often struggle with questions such as: What should be the right price for a product? Which customer is likely to default in his/her loan repayment? Which products should be recommended to an existing customer? Finding right answers to these questions can be challenging yet rewarding.\u003c/p\u003e\r\n\u003cp\u003ePredictive analytics is emerging as a competitive strategy across many business sectors and can set apart high performing companies. It aims to predict the probability of the occurrence of a future event such as customer churn, loan defaults, and stock market fluctuations – leading to effective business management.\u003c/p\u003e\r\n\u003cp\u003eModels such as multiple linear regression, logistic regression, auto-regressive integrated moving average (ARIMA), decision trees, and neural networks are frequently used in solving predictive analytics problems. Regression models help us understand the relationships among these variables and how their relationships can be exploited to make decisions.\u003c/p\u003e\r\n\u003cp\u003eThis course is suitable for students/practitioners interested in improving their knowledge in the field of predictive analytics. The course will also prepare the learner for a career in the field of data analytics. If you are in the quest for the right competitive strategy to make companies successful, then join us to master the tools of predictive analytics.\u003c/p\u003e369:T750,\u003cp\u003eData Science along with artificial intelligence (AI) and its various components such as statistical learning (SL), machine learning (ML) and deep learning algorithms (DL) are recognized as main drivers of organizational value creation. According to Dr Jim Gray, Data Science is the fourth paradigm which drives innovative solutions to organizational problems.\u003cspan lang=\"EN-US\"\u003e\u003c/span\u003e\u003c/p\u003e\n\u003cp\u003eIn this course we will start with basic concepts in probability such as joint and conditional probabilities. We will discuss the implementation of these concepts in ML algorithms for Market Basket Analysis and Recommender Systems. After covering basic probability conc"])</script><script>self.__next_f.push([1,"epts, we move on to random variables, discrete and continuous probability distributions, sampling, estimation and central limit theorem.\u003c/p\u003e\n\u003cp\u003eAn important step in ML model building is feature selection to avoid overfitting and underfitting. ML models such as regression and logistic regression use hypothesis testing to select features. We will discuss various hypothesis tests and how they are used in feature selection. \u003c/p\u003e\n\u003cp\u003eEvery ML model has an optimization stage, either to fine-tune the feature weights, or to find an optimal set of features. We will discuss important optimization techniques, and algorithms such as Gradient Descent, that play an important role in AI and ML model development.\u003cspan lang=\"EN-US\"\u003e\u003c/span\u003e\u003c/p\u003e\n\u003cp\u003eData must be represented in a matrix for AI and ML model development. Matrix operations such as matrix inverse and multiplication are elementary steps in model development. These fundamental concepts in linear algebra will be discussed.\u003c/p\u003e\n\u003cp\u003eThis course is suitable for students/practitioners interested in improving their knowledge in the fundamental concepts of Data Science. The course will also prepare the learner for a career in the field of Data Analytics.\u003c/p\u003e36a:T49f,\u003cp\u003e\u003cspan lang=\"EN-US\"\u003eData science tools have revolutionized the way farmers and agricultural professionals approach their work. Python data analysis tools, such as pandas and seaborn, enable farmers to make data-driven decisions using soil, water, and economic data accounts. Pandas is a Python library used to simplify handling large sets of data. Seaborn is a data visualization library used to quickly create graphs. \u003c/span\u003e\u003cspan lang=\"EN-US\"\u003e\u003c/span\u003e\u003cspan lang=\"EN-US\"\u003e\u003c/span\u003e\u003c/p\u003e\n\u003cp\u003eThis hands-on guided project will prepare you to handle agricultural datasets using these Python tools. Y\u003cspan lang=\"EN-US\"\u003eou will develop job-ready skills, like how to download, prepare, analyze, and visualize data using Python libraries, including pandas and seaborn. You will learn how to build a trend line in order to forecast future tre"])</script><script>self.__next_f.push([1,"nds, and finally, you will learn how to create interactive maps which show data change over time.\u003c/span\u003e\u003cspan lang=\"EN-US\"\u003e\u003c/span\u003e\u003c/p\u003e\n\u003cp\u003eYou will be provided with access to a Cloud-based IDE, which has all of the required software, including Python, pre-installed. All you need is a recent version of a modern web browser to complete this project.\u003c/p\u003e36b:T12a1,"])</script><script>self.__next_f.push([1,"\u003cp\u003e\u003cstrong\u003eTo learn more about this MicroMasters program, please visit\u003ca href=\"https://micromasters.mit.edu/ds/\"\u003ehttps://micromasters.mit.edu/ds/\u003c/a\u003e.\u003cbr /\u003e\n\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eThis course is an assessment that tests your knowledge on the course content from \u003ca href=\"https://mitx-micromasters.zendesk.com/hc/en-us/articles/360035543812-What-is-14-310x-Data-Analysis-for-Social-Scientists-Is-it-a-prerequisite-for-14-310Fx-Data-Analysis-in-Social-Science-Do-I-have-to-pay-for-it-\"\u003e14.310x - Data Analysis for Social Scientists\u003c/a\u003e. Learners are eligible to take this assessment only if they have passed \u003ca href=\"https://mitx-micromasters.zendesk.com/hc/en-us/articles/360035543812-What-is-14-310x-Data-Analysis-for-Social-Scientists-Is-it-a-prerequisite-for-14-310Fx-Data-Analysis-in-Social-Science-Do-I-have-to-pay-for-it-\"\u003e14.310x - Data Analysis for Social Scientists\u003c/a\u003e. \u003cbr /\u003e\nAll learners who have become eligible within the past year have already been automatically enrolled for this assessment. If you are eligible but have not been enrolled or have not received an email notification, please contact us asap at \u003ca href=\"mailto:sds-mm@mit.edu\"\u003esds-mm@mit.edu\u003c/a\u003e with your edX username, along with a proof (learners record or screenshot of your progress page) that you have obtained 50% or above in \u003ca href=\"https://mitx-micromasters.zendesk.com/hc/en-us/articles/360035543812-What-is-14-310x-Data-Analysis-for-Social-Scientists-Is-it-a-prerequisite-for-14-310Fx-Data-Analysis-in-Social-Science-Do-I-have-to-pay-for-it-\"\u003e14.310x - Data Analysis for Social Scientists\u003c/a\u003e. You must upgrade to become a verified learner to take this assessment.\u003ca href=\"https://mitx-micromasters.zendesk.com/hc/en-us/articles/360035543812-What-is-14-310x-Data-Analysis-for-Social-Scientists-Is-it-a-prerequisite-for-14-310Fx-Data-Analysis-in-Social-Science-Do-I-have-to-pay-for-it-\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e14.310x - Data Analysis for Social Scientists is a statistics and data analysis course that will introduce you to the essential notions of probability and statistics. It will cover techniques in modern data analysis: estimation, regression and econometrics, prediction, experimental design, randomized control trials (and A/B testing), machine learning, and data visualization. It will illustrate these concepts with applications drawn from real world examples and frontier research. Finally, it will provide instruction for how to use the statistical package R and opportunities for students to perform self-directed empirical analyses.\u003c/p\u003e\n\u003cp\u003eThis assessment course should only be taken by learners who have completed and passed \u003cem\u003e\u003ca href=\"https://mitx-micromasters.zendesk.com/hc/en-us/articles/360035543812-What-is-14-310x-Data-Analysis-for-Social-Scientists-Is-it-a-prerequisite-for-14-310Fx-Data-Analysis-in-Social-Science-Do-I-have-to-pay-for-it-\"\u003e14.310x - Data Analysis for Social Scientists\u003c/a\u003e\u003c/em\u003e and intend to pursue the MicroMasters credential in Statistics and Data Science. To get credit in this MicroMasters program:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eEnroll in both this assessment course and the content course \u003cem\u003e\u003ca href=\"https://mitx-micromasters.zendesk.com/hc/en-us/articles/360035543812-What-is-14-310x-Data-Analysis-for-Social-Scientists-Is-it-a-prerequisite-for-14-310Fx-Data-Analysis-in-Social-Science-Do-I-have-to-pay-for-it-\"\u003e14.310x - Data Analysis for Social Scientists\u003c/a\u003e\u003c/em\u003e (Note: There is no additional fee to enroll in the content course),\u003c/li\u003e\n\u003cli\u003eComplete the content course 14.310x with a passing grade,\u003c/li\u003e\n\u003cli\u003eCome back to this course and take the exam to earn your verified certificate that will count toward the MicroMasters credential in Statistics and Data Science.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003e\u003cstrong\u003eThis assessment course, along with the content course \u003cem\u003e\u003ca href=\"https://mitx-micromasters.zendesk.com/hc/en-us/articles/360035543812-What-is-14-310x-Data-Analysis-for-Social-Scientists-Is-it-a-prerequisite-for-14-310Fx-Data-Analysis-in-Social-Science-Do-I-have-to-pay-for-it-\"\u003e14.310x - Data Analysis for Social Scientists\u003c/a\u003e\u003c/em\u003e , is part of the \u003ca href=\"https://www.edx.org/micromasters/mitx-statistics-and-data-science\"\u003eMITx MicroMasters Program in Statistics and Data Science\u003c/a\u003e. Master the skills needed to be an informed and effective practitioner of data science. You will complete this course and three others from MITx, at a similar pace and level of rigor as an on-campus course at MIT, and then take a virtually-proctored exam to earn your MicroMasters, an academic credential that will demonstrate your proficiency in data science or accelerate your path towards an MIT PhD or a Master's at other universities. To learn more about this program, please visit \u003ca href=\"https://micromasters.mit.edu/ds/\"\u003ehttps://micromasters.mit.edu/ds/\u003c/a\u003e.\u003c/strong\u003e\u003c/p\u003e"])</script><script>self.__next_f.push([1,"36c:T461,\u003cp\u003eData science is an ever-evolving field, constantly iterating and innovating as technologies and algorithms improve. In order to drive your career forward, you must stay on the cutting-edge of the newest programming languages, such as Python, to stand out from the rest.\u003c/p\u003e\r\n\r\n\u003cp\u003eBased around three courses, this Professional Certificate in Learning Python for Data Science focuses on hands-on learning—putting your Python skills into practice for applied data science. Each course will build upon each other, preparing you to solve complex business challenges using coding and data analysis. No prior coding experience required to enjoy this program.\u003c/p\u003e\r\n\r\n\u003cp\u003eTaught by experts in the field, you will learn the foundations of Python programming and statistics before moving into more advanced learning around Python for machine learning and AI—all while building your quantitative reasoning and statistical skills. By combining these tools, you will not only become a more invaluable contributor to your team and organization, but you also will kickstart your career in the in-demand field of data science.\u003c/p\u003e36d:Ta33,"])</script><script>self.__next_f.push([1,"\u003cp\u003eIn today's work environment, it is vital for professionals to interpret the large amount of quantitative information to which they have access, more and more we have to interpret large volumes of data (big data), either by analyzing financial reports, case studies or presenting data effectively. This Professional Certification program, offered by EGADE Business School, the number one school in Mexico and Latin America in Finance and Administration, will give you the opportunity to successfully develop these skills that are highly required by companies in today's job market.\u003c/p\u003e\r\n \r\n\u003cp\u003eWith the help of experts, you will use interactive exercises to learn the fundamentals of mathematics, statististical analysiscs, data science and finance, all applied to business.\u003c/p\u003e\r\n\r\n\u003cp\u003eThe topics covered in this Professional Certification program will allow you to obtain theoretical and practical training at the master's or postgraduate level to better understand the functions of business management; additionally, it will prepare you to continue your studies successfully by deciding to pursue a Master's Degree in Finance or an MBA at EGADE.\u003c/p\u003e\r\n\r\n\u003cp\u003eYou will need prior experience using Microsoft Excel.\u003c/p\u003e\r\n\r\n\u003cp\u003eThis program will provide you with the key concepts you need to make successful managerial decision makings in your company, both in the short term and in the long term. For example, to make financial decisions, monetary decisions or investment decisions, it is necessary to know the interest rate, opportunity costs, master financial models, know the capital budget and working capital, the value of money, risk management.analyze risk. In general, this program will give you the quantitative skills and problem solving skills you need professionally to be successful in real world making business decisions.\u003c/p\u003e\r\n\r\n\u003cp\u003eQuantitative skills like financial modeling give you a framework for creating new tools to compare investment options and determine which will yield the best return based on a set of inputs and assumptions.Corporate finance can help the company in the creation of value, to analyze its financial resources / equity, to know the real assets that the company has, or to select the best investment projects based on the current value of money, and to know the analysis used in the processes.\u003c/p\u003e\r\n\r\n\u003cp\u003eThe program will also cover data science, which helps in making successful operational decisions and managerial decisions based on data analysis, for example, taking into account the information provided by the data you can determine the efficient use of resources.\u003c/p\u003e"])</script><script>self.__next_f.push([1,"36e:T4ee,\u003cp\u003eTechnological advances have transformed fields that rely on data by providing a wealth of information ready to be analyzed. From working with single genes to comparing entire genomes, biomedical research groups around the world are producing more data than they can handle and the ability to interpret this information is a key skill for any practitioner. The skills necessary to work with these massive datasets are in high demand, and this series will help you learn those skills.\u003c/p\u003e\r\n\r\n\u003cp\u003eUsing the open-source R programming language, you’ll gain a nuanced understanding of the tools required to work with complex life sciences and genomics data. You’ll learn the mathematical concepts — and the data analytics techniques — that you need to drive data-driven research. From a strong foundation in statistics to specialized R programming skills, this series will lead you through the data analytics landscape step-by-step.\u003c/p\u003e\r\n\r\n\u003cp\u003eTaught by Rafael Irizarry from the Harvard T.H. Chan School of Public Health, these courses will enable new discoveries and will help you improve individual and population health. If you’re working in the life sciences and want to learn how to analyze data, enroll now to take your research to the next level.\u003c/p\u003e36f:T4af,\u003cp\u003eExcel in Data Science, one of the hottest fields in tech today. Learn how to gain new insights from big data by asking the right questions, manipulating data sets and visualizing your findings in compelling ways. \u003c/p\u003e \r\n\r\n\u003cp\u003eIn this MicroMasters program, you will develop a well-rounded understanding of the mathematical and computational tools that form the basis of data science and how to use those tools to make data-driven business recommendations. \u003c/p\u003e \r\n\r\n\u003cp\u003eThis MicroMasters program encompasses two sides of data science learning: the mathematical and the applied. \u003c/p\u003e \r\n\r\n\u003cp\u003eMathematical courses cover probability, statistics, and machine learning. The applied courses cover the use of specific toolkit and languages such as Python, Numpy, Matplo"])</script><script>self.__next_f.push([1,"tlib, pandas and Scipy, the Jupyter notebook environment and Apache Spark to delve into real world data.\u003c/p\u003e \r\n\r\n\u003cp\u003eYou will learn how to collect, clean and analyse big data using popular open source software will allow you to perform large-scale data analysis and present your findings in a convincing, visual way. When combined with expertise in a particular type of business, it will make you a highly desirable employee.\u003c/p\u003e370:T694,\u003cp\u003eEvery single minute, computers across the world collect millions of gigabytes of data. What can you do to make sense of this mountain of data? How do data scientists use this data for the applications that power our modern world?\u003c/p\u003e\n\u003cp\u003eData science is an ever-evolving field, using algorithms and scientific methods to parse complex data sets. Data scientists use a range of programming languages, such as Python and R, to harness and analyze data. This course focuses on using Python in data science. By the end of the course, you’ll have a fundamental understanding of machine learning models and basic concepts around Machine Learning (ML) and Artificial Intelligence (AI).\u003c/p\u003e\n\u003cp\u003eUsing Python, learners will study regression models (Linear, Multilinear, and Polynomial) and classification models (kNN, Logistic), utilizing popular libraries such as sklearn, Pandas, matplotlib, and numPy. The course will cover key concepts of machine learning such as: picking the right complexity, preventing overfitting, regularization, assessing uncertainty, weighing trade-offs, and model evaluation. Participation in this course will build your confidence in using Python, preparing you for more advanced study in Machine Learning (ML) and Artificial Intelligence (AI), and advancement in your career.\u003c/p\u003e\n\u003cp\u003eLearners must have a minimum baseline of programming knowledge (preferably in Python) and statistics in order to be successful in this course. Python prerequisites can be met with an introductory Python course offered through CS50’s Introduction to Programming with Python, and statistics prerequis"])</script><script>self.__next_f.push([1,"ites can be met via Fat Chance or with Stat110 offered through HarvardX.\u003c/p\u003e371:T42b,\u003cp\u003eStatistical inference and modeling are indispensable for analyzing data affected by chance, and thus essential for data scientists. In this course, you will learn these key concepts through a motivating case study on election forecasting. \u003c/p\u003e\n\u003cp\u003eThis course will show you how inference and modeling can be applied to develop the statistical approaches that make polls an effective tool and we'll show you how to do this using R. You will learn concepts necessary to define estimates and margins of errors and learn how you can use these to make predictions relatively well and also provide an estimate of the precision of your forecast. \u003c/p\u003e\n\u003cp\u003eOnce you learn this you will be able to understand two concepts that are ubiquitous in data science: confidence intervals, and p-values. Then, to understand statements about the probability of a candidate winning, you will learn about Bayesian modeling. Finally, at the end of the course, we will put it all together to recreate a simplified version of an election forecast model and apply it to the 2016 election.\u003c/p\u003e372:T9cc,"])</script><script>self.__next_f.push([1,"\u003cp\u003eNote: Learners who successfully complete this MathWorks course can earn a Digital Credential — a visual representation of a verified achievement that can be issued, accessed, and displayed online. Enroll to learn more, complete the course, and claim your badge!\u003c/p\u003e\n\u003cp\u003eExpand your data analysis and modeling skills in MATLAB, a programming and numeric computing platform used to analyze data, develop algorithms, and create models. Millions of engineers and scientists worldwide use MATLAB to study and build advanced applications in machine learning, deep learning, signal processing, communications, image processing, and control systems. They are shaping the future by modeling rockets that may someday take you into space, developing autonomous vehicles to travel safely and efficiently, and designing wave farms that harness the power of ocean waves to generate clean energy.\u003c/p\u003e\n\u003cp\u003eIn this course, you'll use MATLAB to examine real-world problems and answer questions like:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eHow far does a blue whale swim each day?\u003c/li\u003e\n\u003cli\u003eWhat is the favorite topping in a pizza shop?\u003c/li\u003e\n\u003cli\u003eWhat is the ride quality of a car suspension?\u003c/li\u003e\n\u003cli\u003eHow does the magnitude of an earthquake impact the strength of a tsunami?\u003c/li\u003e\n\u003cli\u003eWhat is the most expensive failure in a factory?\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eMATLAB makes it easy to see results quickly, so there are no pre-requisites for the course. Whether you're auditing or a verified learner, you will have free access to MATLAB for the duration of the course. You will learn how to process, analyze, and visualize data collected nearly everywhere in today's digital workplace. You'll use powerful templates and auto-generated code to start experimenting immediately and quickly process similar data sets. And you'll gain the essential programming skills needed to perform these exciting tasks.\u003c/p\u003e\n\u003cp\u003eThroughout the course, you'll have ample opportunities to practice your newly acquired skills – through auto-graded assignments, practice quizzes, interactive readings, and projects. By the end of the course, you'll be ready to analyze your own data sets and impress colleagues with word clouds, geographic plots, animations, and more.\u003c/p\u003e\n\u003cp\u003eAdditionally, this course will give you the skills you need to prepare for the \u003ca href=\"https://www.mathworks.com/certification\"\u003eMathWorks Certified MATLAB Associate exam\u003c/a\u003e. Certification verifies valuable transferable skills, sets you apart in the job market, and can help accelerate professional growth.\u003c/p\u003e"])</script><script>self.__next_f.push([1,"373:Td62,"])</script><script>self.__next_f.push([1,"\u003cul\u003e\r\n\u003cli\u003e\u003cstrong\u003eLearn from world leaders and experts in investment and finance in EMDEs.\u003c/strong\u003e Featured speakers include presidents of multilateral development banks, and some of the world’s leading asset managers, investors and consulting firms specialized in investment and finance in EMDEs.\u003c/li\u003e\r\n\u003cli\u003e\u003cstrong\u003eAccess the latest information on investment and finance trends, innovations and results.\u003c/strong\u003e The course provides access to cutting-edge investment and finance strategy resources, diagnostic tools, analysis and statistics on investment opportunities and trends, and progress with development finance goals.\u003c/li\u003e\r\n\u003cli\u003e\u003cstrong\u003eCollaborate with thousands of investment, finance, development and policy experts around the world.\u003c/strong\u003e The course provides a global platform to collaborate and problem-solve with thousands of investment, finance, policy and development professionals around the world.\u003c/li\u003e\r\n\u003cli\u003e\u003cstrong\u003eEarn a World Bank Group – edX certificate.\u003c/strong\u003e Upon successful completion of the course, receive a certificate of completion to add to your LinkedIn profile and resume.\u003c/li\u003e\r\n\u003c/ul\u003e\r\n\u003cp\u003e\u003cstrong\u003eThis course is designed for:\u003c/strong\u003e\u003cbr /\u003e\r\n\u003cstrong\u003eInvestors\u003c/strong\u003e seeking to scale up their investments or invest for the first time in EMDEs, or seeking to invest in funds, bonds and sustainable investment vehicles in EMDEs will learn how to: \u003c/p\u003e\r\n\u003cul\u003e\r\n\u003cli\u003eDevelop roadmaps for investment in EMDEs.\u003c/li\u003e\r\n\u003cli\u003eUse investment diagnostic tools, de-risking and other investment support products of multilateral development banks.\u003c/li\u003e\r\n\u003cli\u003eInvest in sustainable investment bonds, funds and other vehicles.\u003c/li\u003e\r\n\u003cli\u003eAdopt principles and practice of impact investment.\u003c/li\u003e\r\n\u003c/ul\u003e\r\n\u003cp\u003e\u003cstrong\u003eGovernment officials in EMDEs\u003c/strong\u003e seeking to strengthen their national financing strategies and increase their access to development finance of all kinds will learn how to: \u003c/p\u003e\r\n\u003cul\u003e\r\n\u003cli\u003eStrengthen financing strategies for national development.\u003c/li\u003e\r\n\u003cli\u003eImprove the country investment climate and domestic markets.\u003c/li\u003e\r\n\u003cli\u003eAttract investors and access international capital markets.\u003c/li\u003e\r\n\u003cli\u003eIdentify sectors where private sector solutions can create or expand markets, and make substantial contributions to development impact.\u003c/li\u003e\r\n\u003cli\u003eDeepen understanding of project finance and how to structure investments consistent with international standards.\u003c/li\u003e\r\n\u003c/ul\u003e\r\n\u003cp\u003e\u003cstrong\u003eInternational development professionals\u003c/strong\u003e seeking to learn about the latest innovations in investment and finance aligned with the SDGs will learn about: \u003c/p\u003e\r\n\u003cul\u003e\r\n\u003cli\u003eThe new development finance agenda and initiatives underway to mobilize billions in development finance to attract and catalyze trillions more for resource of all kinds.\u003c/li\u003e\r\n\u003cli\u003eThe powerful and innovative new financial instruments and approaches that are being tested, deployed and scaled up globally to achieve the SDGs.\u003c/li\u003e\r\n\u003cli\u003eResults to-date with the financing for development agenda and actions needed to accelerate progress.\u003c/li\u003e\r\n\u003c/ul\u003e\r\n\u003cp\u003e\u003cstrong\u003eFinancial sector actors\u003c/strong\u003e seeking to learn about their role in catalyzing additional finance into EMDEs will learn about: \u003c/p\u003e\r\n\u003cul\u003e\r\n\u003cli\u003eActions needed to strengthen the stability, efficiency, and inclusiveness of financial systems and services.\u003c/li\u003e\r\n\u003c/ul\u003e\r\n\u003cp\u003e\u003cstrong\u003eOther professionals and students\u003c/strong\u003e are welcome to participate in the course.\u003c/p\u003e"])</script><script>self.__next_f.push([1,"374:Tab6,"])</script><script>self.__next_f.push([1,"\u003cp\u003eIn this course you’ll learn various statistics topics including multiple testing problem, error rates, error rate controlling procedures, false discovery rates, q-values and exploratory data analysis. We then introduce statistical modeling and how it is applied to high-throughput data. In particular, we will discuss parametric distributions, including binomial, exponential, and gamma, and describe maximum likelihood estimation. We provide several examples of how these concepts are applied in next generation sequencing and microarray data. Finally, we will discuss hierarchical models and empirical bayes along with some examples of how these are used in practice. We provide R programming examples in a way that will help make the connection between concepts and implementation.\u003c/p\u003e\n\u003cp\u003eGiven the diversity in educational background of our students we have divided the series into seven parts. You can take the entire series or individual courses that interest you. If you are a statistician you should consider skipping the first two or three courses, similarly, if you are biologists you should consider skipping some of the introductory biology lectures. Note that the statistics and programming aspects of the class ramp up in difficulty relatively quickly across the first three courses. By the third course will be teaching advanced statistical concepts such as hierarchical models and by the fourth advanced software engineering skills, such as parallel computing and reproducible research concepts.\u003c/p\u003e\n\u003cp\u003eThese courses make up two Professional Certificates and are self-paced:\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eData Analysis for Life Sciences:\u003c/strong\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://www.edx.org/course/statistics-and-r\"\u003ePH525.1x: Statistics and R for the Life Sciences\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://www.edx.org/course/introduction-to-linear-models-and-matrix-algebra\"\u003ePH525.2x: Introduction to Linear Models and Matrix Algebra\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://www.edx.org/course/statistical-inference-and-modeling-for-high-throug\"\u003ePH525.3x: Statistical Inference and Modeling for High-throughput Experiments\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://www.edx.org/course/high-dimensional-data-analysis\"\u003ePH525.4x: High-Dimensional Data Analysis\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cstrong\u003eGenomics Data Analysis:\u003c/strong\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://www.edx.org/course/introduction-to-bioconductor-annotation-and-analys\"\u003ePH525.5x: Introduction to Bioconductor\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://www.edx.org/course/case-studies-in-functional-genomics\"\u003ePH525.6x: Case Studies in Functional Genomics\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://www.edx.org/course/advanced-bioconductor\"\u003ePH525.7x: Advanced Bioconductor\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThis class was supported in part by NIH grant R25GM114818.\u003c/p\u003e"])</script><script>self.__next_f.push([1,"375:T7b6,\u003cp\u003eBy the end of the course, you will be able to…\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eMaster your critical thinking style. Identify the key components of successful critical thinking, and how to identify and gather information using the critical thinking loop.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eRecognize your patterns. Identify the different types of critical thinking - reactive, unconscious, inflexible and “conscious creative” - including your own.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eBecome Self Aware. Become conscious of accountability and bias when building clear and strategic solutions.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cstrong\u003eAbout CQ: Communication Quotient™\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eThis course draws on \u003ca href=\"https://www.communicationquotient.com/\"\u003eCQ: Communication Quotient™ strategies and models\u003c/a\u003e. Based on cutting edge psychology, neuroscience and communication research, CQ assesses your habits and tendencies to help you better understand who you are and how you communicate with the world around you.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eHollywood storytelling\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eData scientist Dr. Beck and psychologist Dr. Faye have been training sentient robot, E.I., in how to develop CQ skills. Now, E.I. wants to understand what it means to be a Critical Thinker. Share in E.I.’s journey as she interacts with different types of thinkers and reaps the rewards that come from applying critical thinking.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eExpert knowledge\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eBenefit from the combined wisdom of behavioral and communication experts and neuroscientists, with accompanying statistics and relatable examples. Created by BoxPlay, an Emmy award-winning company on a mission to democratize career success.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003e‍Visual learning and actionable content\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eOur innovative, multimedia, step-by-step approach walks you through the entire process of becoming a Conscious Creative Critical Thinker. Beautiful infographics and engaging gifs help explain the strategies behind the CQ: Communication Quotient™ methodology.\u003c/p\u003e376:T5eb,\u003cp\u003eThe R programming language is purpose-built for data "])</script><script>self.__next_f.push([1,"analysis. R is the key that opens the door between the problems you want to solve with data and the answers you need to meet your objectives. This course starts with a question, and then walks you through the process of answering it through data. You will first learn important techniques for preparing (or wrangling) your data for analysis. Then you will learn how to gain a better understanding of your data through exploratory data analysis, helping you to summarize your data and identify relevant relationships between variables that can lead to insights. ****\u003c/p\u003e\n\u003cp\u003eOnce your data is ready to analyze, you will learn how to develop your model, evaluate it and tune its performance. By following this process, you can be sure that your data analysis performs to the standards that you have set, so that you can have confidence in the results. ****\u003c/p\u003e\n\u003cp\u003eBy playing the role of a data analyst who is analyzing airline departure and arrival data to predict flight delays, you will build hands-on experience delivering insights using data. Using an Airline Reporting Carrier On-Time Performance Dataset, you will practice reading data files, preprocessing data, creating models, improving models, and evaluating them to ultimately choose the best one to use. \u003c/p\u003e\n\u003cp\u003eNote: The prerequisite for this course is basic R programming skills. For example, ensure that you have completed a course like Introduction to R Programming for Data Science from IBM.\u003c/p\u003e377:T75b,\u003cp\u003eLean Six Sigma Training can minimize the risks of failure in organizations' Six Sigma initiatives, lean practices, and operational performance. Lean Six Sigma training benefits individuals who may be working with current or future organizations implementing Six Sigma. Employers look to Lean Six Sigma Yellow Belts to participate as core members of Six Sigma projects within the company and require that Yellow Belts are well versed in Lean Six Sigma Supply Chain Techniques, Six Sigma Tools and Methodologies, How to Analyze/Control/Define, Relevant Knowledge Management, Qual"])</script><script>self.__next_f.push([1,"ity Standards, Cost of Poor Quality, Sustainable Supply Chain Processes, and Process Improvement Projects that build Supply Chain resilience.\u003c/p\u003e\n\u003cp\u003eThis course is part of the edX Professional Certificate program Lean Six Sigma for Sustainable Supply Chain (CLSSYB), offered by ISCEA. Lean Six Sigma decision-making within the supply chain process impacts areas of operation management, logistics management, lean management, production management, and risk management in business models.\u003c/p\u003e\n\u003cp\u003eCLSSYB-certified professionals are more likely to lead successful lean thinking, generate competitive advantage and profitability, minimize the risk of failure in corporate initiatives, and drive continuous improvement toward sustainability in supply chain management and supply chain operations.\u003c/p\u003e\n\u003cp\u003eUpon completion of the course, you will have advanced closer to becoming an ISCEA Certified Lean Six Sigma Yellow Belt (CLSSYB). To finalize the process, you must complete both preparatory courses, (CLSSYB01 and CLSSYB02) \u003cstrong\u003eand\u003c/strong\u003e successfully pass the CLSSYB Exam.\u003c/p\u003e\n\u003cp\u003eStand out from the crowd and accelerate your career growth and Supply Chain management practices by obtaining an internationally recognized Lean Six Sigma Yellow Belt Designation to better supply chain performance.\u003c/p\u003e378:T4e2,\u003cp\u003e\u003cstrong\u003eUnleash the power of listening\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eIn this course, you will learn about the different listening styles: passive, competitive, selective and active listening, and how to distinguish between them. With this knowledge, you will understand why active listening is the most effective form of language and communication, and how you can immediately implement it in all your conversations.\u003c/p\u003e\n\u003cp\u003eYou will learn how active listening means paying more attention, absorbing more information, and thinking critically. This means no more repetition, no more misunderstandings, and no more wasted time.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eInspire teamwork\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eBy enhancing communication skills and discovering each other’s strengths"])</script><script>self.__next_f.push([1," and weaknesses, foster greater unity and synergy within your team.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eNail conflict resolution\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eUnderstanding the different communication styles enables you to anticipate potential conflicts and address their underlying causes.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eDrive sales\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eLearn to establish a genuine human connection with others, a skill which is highly coveted by prospects, clients and customers.\u003c/p\u003e\n\u003cp\u003eCollaboration, productivity, success. It all begins with Active Listening…\u003c/p\u003e379:T7c1,\u003cp\u003eBy the end of the course, you‘ll be able to…\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eMaster the Art of Listening. Investigate the importance of active listening and the other three basic listening types.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eRecognize Your Patterns. Identify the key characteristics of passive, competitive and selective listening, and eliminate these habits to become a more active listener.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eImprove your approach. Prepare for conversations or meetings to encourage more active listening in yourself and in others.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cstrong\u003eAbout CQ: Communication Quotient™\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eThis course draws on the \u003ca href=\"https://www.communicationquotient.com/\"\u003eCQ: Communication Quotient™ strategies and models\u003c/a\u003e. Based on cutting edge psychology, neuroscience and communication research, CQ assesses your habits and tendencies to help you better understand who you are and how you communicate with the world around you.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eHollywood storytelling\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eEnter the CQ Matrix, a research facility where data scientist Dr. Beck is training the sentient robot, E.I., to become an Active Listener. But it’s not just the machine who needs to master this vital skill – many of the humans at the facility could benefit too! Take part in training simulations with E.I. and the team.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eExpert knowledge\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eBenefit from the combined wisdom of behavioral and communication experts and neuroscientists, with accompanying statistics and relatable examples. This course is creat"])</script><script>self.__next_f.push([1,"ed by BoxPlay, an Emmy award-winning company on a mission to democratize career success.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003e‍Visual learning and actionable content\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eOur innovative, multimedia, step-by-step approach walks you through the entire process of becoming an Active Listener. Beautiful infographics and engaging gifs help explain the strategies behind the \u003ca href=\"https://www.communicationquotient.com/\"\u003eCQ: Communication Quotient™ methodology\u003c/a\u003e.\u003c/p\u003e37a:T431,\u003cp\u003eIn this course, we will introduce you to the fundamentals of sensor fusion for automotive systems. Key concepts involve Bayesian statistics and how to recursively estimate parameters of interest using a range of different sensors. \u003c/p\u003e\n\u003cp\u003eThe course is designed for students who seek to gain a solid understanding of Bayesian statistics and how to use it to fuse information from different sensors. We emphasize object positioning problems, but the studied techniques are applicable much more generally. The course contains a series of videos, quizzes and hand-on assignments where you get to implement many of the key techniques and build your own sensor fusion toolbox. \u003c/p\u003e\n\u003cp\u003eThe course is self-contained, but we highly recommend that you also take the course ChM015x: Multi-target Tracking for Automotive Systems. Together, these courses give you an excellent foundation to tackle advanced problems related to perceiving the traffic situation around an autonomous vehicle using observations from a variety of different sensors, such as, radar, lidar and camera.\u003c/p\u003e37b:T4b4,\u003cp\u003eLearn to harness the power of data analytics and understand just how much being data-led can benefit your career and your business.\u003c/p\u003e\n\u003cp\u003eThis course will help you discover how vital data analytics is to any organization. You will identify the key components of the data analytics ecosystem including the different types of data analytics: descriptive, diagnostic, predictive, and prescriptive. You’ll also learn about the different data skill sets and data hires that are needed according t"])</script><script>self.__next_f.push([1,"o an organization’s size, goals, and data maturity.\u003c/p\u003e\n\u003cp\u003eNo matter your level of technical expertise, you will come away from this course equipped with a step-by-step process of how to create your own data analytics and business strategy. \u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eLearn from data\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eIdentify key components of the data analytics ecosystem and understand how data connects - well, everything. \u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003ePlan with data\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eEffectively diagnose the pits and peaks of your workflows, and how to optimize them through data. \u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eThrive through data\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eCome away equipped with a step-by-step process of how to create and apply a data-driven business strategy.\u003c/p\u003e37c:T696,\u003cp\u003eBy the end of the course, you will be able to…\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003cstrong\u003eMake data work for you.\u003c/strong\u003e Understand the challenges and opportunities of an effective data analytics ecosystem in businesses of all sizes.\u003c/li\u003e\n\u003cli\u003e\u003cstrong\u003eBecome data literate.\u003c/strong\u003e Identify the purpose and value of the different types of data analytics, including their principles, benefits and challenges.\u003c/li\u003e\n\u003cli\u003e\u003cstrong\u003eGain a competitive edge.\u003c/strong\u003e Identify the factors involved in evaluating data analytics projects, and learn how to use data to gain competitive advantage.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cstrong\u003eExpert knowledge\u003cbr /\u003e\n\u003c/strong\u003e Interviews with world-renowned data experts help you understand how to use data analytics to make decisions and improve your business. Digest relevant statistics and facts that widen your understanding of the topic and industry.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eHollywood storytelling\u003cbr /\u003e\n\u003c/strong\u003e Helios used to be the market leader in bikes, but for some reason the wheels aren’t turning quite like they used to. Join COO Caroline and data consultant Joel as they lead the company through a data transformation, bringing an outdated business model up to speed. Sit in on strategy meetings as the team overcome challenges and make choices that will determine the company’s fate.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003e‍Visual learning\u003cbr /"])</script><script>self.__next_f.push([1,"\u003e\n\u003c/strong\u003e A visual step-by-step approach walks you through the entire process of becoming data-led. Beautiful infographics and engaging gifs explain the most complicated data analytics topics and theories, guiding you through the learning journey.\u003c/p\u003e\n\u003cp\u003eCreated by BoxPlay, an Emmy award-winning company on a mission to democratize career success.\u003c/p\u003e37d:T24d3,"])</script><script>self.__next_f.push([1,"\u003cp\u003e\u003cstrong\u003e1. Statistical Learning vs. Machine Learning\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eStart with the basics by understanding the key differences between \u003cstrong\u003estatistical learning\u003c/strong\u003e and \u003cstrong\u003eMachine Learning\u003c/strong\u003e. \u003cstrong\u003eStatistical learning\u003c/strong\u003e focuses on understanding relationships within data, while \u003cstrong\u003eMachine Learning\u003c/strong\u003e emphasizes prediction and automation. You’ll learn when and how to apply each method to business scenarios, building a strong foundation for advanced \u003cstrong\u003edata analysis\u003c/strong\u003e.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003e2. Understanding Data Types and Distributions\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eIn \u003cstrong\u003eData Science\u003c/strong\u003e , understanding the types of data you’re working with is crucial. Learn about different types of data, including \u003cstrong\u003econtinuous\u003c/strong\u003e and \u003cstrong\u003ecategorical data\u003c/strong\u003e , and how to apply the right \u003cstrong\u003estatistical methods\u003c/strong\u003e to each. You’ll explore important concepts such as \u003cstrong\u003eNormal Distribution\u003c/strong\u003e , \u003cstrong\u003ePoisson Distribution\u003c/strong\u003e , and \u003cstrong\u003eUniform Distribution\u003c/strong\u003e —essential for conducting accurate \u003cstrong\u003edata analysis\u003c/strong\u003e and making predictions.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003e3. Probability and Business Decisions\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eProbability is the cornerstone of \u003cstrong\u003eData Science\u003c/strong\u003e and \u003cstrong\u003eMachine Learning\u003c/strong\u003e. This section will teach you how to use \u003cstrong\u003eprobability\u003c/strong\u003e to calculate risks, assess potential outcomes, and make strategic business decisions. You’ll dive into \u003cstrong\u003edeterministic\u003c/strong\u003e and \u003cstrong\u003eprobabilistic models\u003c/strong\u003e , both of which are vital for decision-making in uncertain conditions. Understanding probability helps businesses predict trends, optimize strategies, and reduce risks.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003e4. Inferential Statistics and Hypothesis Testing\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eInferential statistics allow you to make predictions about a population based on sample data. In this module, you will master key concepts such as \u003cstrong\u003enull hypothesis\u003c/strong\u003e and \u003cstrong\u003ealternative hypothesis testing\u003c/strong\u003e. You'll learn how to apply \u003cstrong\u003eChi-Square tests\u003c/strong\u003e and \u003cstrong\u003eANOVA (Analysis of Variance)\u003c/strong\u003e to analyze relationships within your data and draw actionable conclusions—vital for business \u003cstrong\u003eanalysis\u003c/strong\u003e and product optimization.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003e5. Regression Analysis for Predictive Modeling\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eOne of the most commonly used techniques in \u003cstrong\u003eData Science\u003c/strong\u003e and \u003cstrong\u003ebusiness analysis\u003c/strong\u003e is \u003cstrong\u003eregression analysis\u003c/strong\u003e. You will explore \u003cstrong\u003elinear regression\u003c/strong\u003e , learning how to model relationships between variables and predict future outcomes. This skill is particularly useful in fields such as marketing, sales forecasting, and customer behavior prediction. By interpreting \u003cstrong\u003escatter plots\u003c/strong\u003e and \u003cstrong\u003eR-squared values\u003c/strong\u003e , you'll gain a solid understanding of predictive modeling in a business context.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003e6. Cluster Analysis for Market Segmentation\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eIn the realm of \u003cstrong\u003eData Science\u003c/strong\u003e and \u003cstrong\u003eMachine Learning\u003c/strong\u003e , \u003cstrong\u003ecluster analysis\u003c/strong\u003e is a powerful technique for identifying patterns in large datasets. This course will teach you how to apply \u003cstrong\u003eK-means clustering\u003c/strong\u003e and other \u003cstrong\u003eclustering techniques\u003c/strong\u003e to segment markets, categorize customer data, and tailor your strategies to specific groups. Market segmentation through \u003cstrong\u003edata-driven analysis\u003c/strong\u003e allows businesses to optimize their marketing efforts and product development based on specific customer needs.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003e7. Time Series Analysis and Forecasting\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eForecasting is a crucial part of \u003cstrong\u003ebusiness analysis\u003c/strong\u003e. With \u003cstrong\u003etime series analysis\u003c/strong\u003e , you will learn how to predict future trends, such as sales, customer demand, or financial performance. This module covers key methods such as \u003cstrong\u003eARIMA (Auto-Regressive Integrated Moving Average)\u003c/strong\u003e , \u003cstrong\u003eHolt’s Method\u003c/strong\u003e , and \u003cstrong\u003eWinter’s Method\u003c/strong\u003e. Time series forecasting is widely used in finance, marketing, and operations to make informed business decisions based on historical data.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003e8. Machine Learning Algorithms for Business\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eAs businesses increasingly rely on \u003cstrong\u003emachine learning\u003c/strong\u003e , understanding key algorithms is essential. You’ll explore algorithms such as \u003cstrong\u003eK-means clustering\u003c/strong\u003e , \u003cstrong\u003eregression analysis\u003c/strong\u003e , and more, which are commonly used in \u003cstrong\u003edata science\u003c/strong\u003e to solve real-world business problems. You’ll learn how to implement these models to optimize processes, automate decision-making, and create value in your organization.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003e9. Artificial Intelligence, Machine Learning, and Deep Learning\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eIn the digital age, the terms \u003cstrong\u003eArtificial Intelligence (AI)\u003c/strong\u003e , \u003cstrong\u003eMachine Learning (ML)\u003c/strong\u003e , and \u003cstrong\u003eDeep Learning (DL)\u003c/strong\u003e are often used interchangeably, but they represent different aspects of \u003cstrong\u003edata science\u003c/strong\u003e and automation. This course demystifies these concepts, showing you how they are related and how they work together to create smarter systems.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e\u003cstrong\u003eArtificial Intelligence (AI)\u003c/strong\u003e refers to the broader concept of machines being able to carry out tasks in a way that we would consider \"intelligent.\" It encompasses anything from \u003cstrong\u003emachine learning models\u003c/strong\u003e to rule-based systems that can mimic human decision-making.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003cstrong\u003eMachine Learning (ML)\u003c/strong\u003e is a subset of \u003cstrong\u003eAI\u003c/strong\u003e that focuses on algorithms that allow machines to learn from data and improve their performance over time. In this course, you'll gain hands-on experience with \u003cstrong\u003emachine learning algorithms\u003c/strong\u003e like \u003cstrong\u003eregression\u003c/strong\u003e and \u003cstrong\u003eK-means clustering\u003c/strong\u003e to solve real-world business problems.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003cstrong\u003eDeep Learning (DL)\u003c/strong\u003e is a further specialization of \u003cstrong\u003emachine learning\u003c/strong\u003e , which focuses on algorithms called \u003cstrong\u003eneural networks\u003c/strong\u003e that are inspired by the human brain. \u003cstrong\u003eDeep Learning\u003c/strong\u003e has become a game-changer in areas like image recognition, natural language processing, and complex decision-making processes.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eBy understanding how \u003cstrong\u003eAI\u003c/strong\u003e , \u003cstrong\u003eMachine Learning\u003c/strong\u003e , and \u003cstrong\u003eDeep Learning\u003c/strong\u003e interact, you will be better prepared to leverage these technologies to solve complex business challenges, drive automation, and unlock new opportunities in data-driven decision-making. This section of the course highlights the practical applications of \u003cstrong\u003eAI\u003c/strong\u003e in modern business, from enhancing customer experiences to optimizing operational efficiency.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003e10. Data Visualization for Effective Communication\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eOne of the most crucial steps in the \u003cstrong\u003edata analysis\u003c/strong\u003e process is communicating the insights you have gained. In this module, you’ll explore \u003cstrong\u003edata visualization\u003c/strong\u003e techniques that transform complex data into clear, actionable insights. By using tools like \u003cstrong\u003escatter plots\u003c/strong\u003e , \u003cstrong\u003eheat maps\u003c/strong\u003e , and \u003cstrong\u003efinancial charts\u003c/strong\u003e , you’ll learn how to present data effectively to both technical and non-technical audiences.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eData visualization\u003c/strong\u003e not only makes the data easier to understand but also enables decision-makers to grasp key findings at a glance. In today’s data-driven world, being able to present data in an impactful way is as important as analyzing it.\u003c/p\u003e\n\u003cp\u003eYou’ll also explore more advanced \u003cstrong\u003einteractive visualization\u003c/strong\u003e techniques, which allow users to interact with data in real time, adding a layer of depth to your \u003cstrong\u003edata storytelling\u003c/strong\u003e. Whether you’re working with \u003cstrong\u003etime series data\u003c/strong\u003e or performing financial analyses, the ability to present data visually is a skill that can drive business decisions forward.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003e11. Prescriptive Analytics\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003ePrescriptive analytics\u003c/strong\u003e is the final step in the analytics process, providing actionable recommendations based on \u003cstrong\u003edata analysis\u003c/strong\u003e. In this section, you will learn how to select the right models to solve specific business problems and how to apply prescriptive analytics in real-world scenarios. This approach moves beyond predictions, helping you decide the best course of action based on your data insights.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eReal-World Applications of Data Science and Machine Learning\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eThroughout this course, you will apply \u003cstrong\u003edata science\u003c/strong\u003e and \u003cstrong\u003emachine learning\u003c/strong\u003e techniques to real-world business problems. For example, you’ll learn how to:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eUse \u003cstrong\u003eregression analysis\u003c/strong\u003e to predict future sales based on historical data.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eImplement \u003cstrong\u003ecluster analysis\u003c/strong\u003e to segment customers and develop personalized marketing strategies.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eApply \u003cstrong\u003etime series analysis\u003c/strong\u003e to forecast product demand and optimize inventory management.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThese practical applications ensure that you’re not just learning theory, but gaining hands-on experience that will help you excel in your career.\u003c/p\u003e"])</script><script>self.__next_f.push([1,"37e:T548,\u003cp\u003eIn this online course on Macroeconomic Management in Resource-Rich Countries (MRCx), you will learn about macroeconomic policy issues and challenges that confront resource-rich countries (RRCs). \u003c/p\u003e\n\u003cp\u003eNatural resources such as oil, gas, and minerals, can make a significant difference to a country’s exports and economic growth. Being rich in natural resources has allowed some countries to accumulate large financial assets abroad, enabling them to invest in schools, hospitals, and roads to promote growth and diversification. However, natural resources come with challenges too. In addition to the reality that these resources will eventually run out, policy-makers must cope with the volatility of prices. \u003c/p\u003e\n\u003cp\u003eA diverse and knowledgeable set of instructors from the IMF and its partners analyze experiences of many resource-rich countries; from Africa to Central Asia, Latin America, and the Middle East and share insights that are applicable worldwide. The course offers a variety of learning tools to help you analyze policy challenges and issues facing RRCs and show how you may apply these to your country. \u003c/p\u003e\n\u003cp\u003eMRCx is offered by the IMF with financial support from the Managing Natural Resource Wealth Thematic Fund (MNRW). \u003c/p\u003e\n\u003cp\u003eThe IMF’s online learning program receives financial support from the Government of Japan.\u003c/p\u003e37f:T53c,\u003cp\u003e\u003cstrong\u003eGet what you want\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eClose the gap between where you are and where you would like to be.\u003c/p\u003e\n\u003cp\u003eWhether it’s a major business contract or a routine transaction, we negotiate every day. In this course, you will develop the negotiation skills to enter any scenario with confidence, get the best deal and establish lasting partnerships along the way.\u003c/p\u003e\n\u003cp\u003eYou will learn how to use communication as a toolbox to debate conflict and gain an advantage in any situation. You will explore the eight steps of the negotiation process and learn how to apply each one to real-life scenarios.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eBreak ineffective habits\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eHelp uncover "])</script><script>self.__next_f.push([1,"what may be holding you back from success, and learn the negotiation traits, habits and behaviors that can help propel you forward.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eHack communication\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eUnderstand how to effectively use communication to formulate strategies and techniques to reach your goals.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eDebate with foresight\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eIdentify where and why negotiations fail, and gain techniques to avoid canceled contracts and resentment.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eLong term success\u003cbr /\u003e\n\u003c/strong\u003e Discover the magic of how to create long term success and achieve your desired outcome while boosting long term relationships and the chance of repeat business.\u003c/p\u003e380:T70f,\u003cp\u003eBy the end of the course, you will be able to…\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003cstrong\u003eMaster your negotiation technique.\u003c/strong\u003e Understand the basic approaches to and outcomes of a negotiation, and see examples of negotiation in action.\u003c/li\u003e\n\u003cli\u003e\u003cstrong\u003eSpot your patterns.\u003c/strong\u003e Discover what kind of negotiator you are, from evasive to competitive, manipulative to interrogative, and learn the techniques to becoming cognizant.\u003c/li\u003e\n\u003cli\u003e\u003cstrong\u003eStep-by-step solutions.\u003c/strong\u003e Explore the eight steps of the negotiation process to ensure you can successfully navigate each one.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cstrong\u003eAbout CQ: Communication Quotient™\u003cbr /\u003e\n\u003c/strong\u003e This course draws on CQ: Communication Quotient™ strategies and models. Based on cutting edge psychology, neuroscience and communication research, CQ assesses your habits and tendencies to help you better understand who you are and how you communicate with the world around you.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eHollywood storytelling\u003cbr /\u003e\n\u003c/strong\u003e Meet Dr. Beck and his sister Caroline, as they train their sentient robot, E.I., in the art of negotiation. Realistic and relatable negotiation simulations help you recognize the different types of negotiators and negotiation strategies.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eExpert knowledge\u003c/strong\u003e\u003cbr /\u003e\nBenefit from the combined wisdom of behavioral and communication experts and neuroscientists, with accompanyin"])</script><script>self.__next_f.push([1,"g statistics and relatable examples. Created by BoxPlay, an Emmy award-winning company on a mission to democratize career success.\u003c/p\u003e\n\u003cp\u003e‍ \u003cstrong\u003eVisual learning and actionable content\u003c/strong\u003e\u003cbr /\u003e\nA visual step-by-step approach walks you through the entire process of becoming an Integrative Negotiator. Beautiful infographics and engaging gifs explain the patterns behind the CQ: Communication Quotient™ methodology.\u003c/p\u003e381:T41c,\u003cp\u003eHarness the power of data, and understand just how much being data-led can transform you and your business.\u003c/p\u003e\n\u003cp\u003eThis online, fast-track course provides essential data literacy skills. It’s the lens you need to bring data-led decision-making into focus.\u003c/p\u003e\n\u003cp\u003e‍Learn what data analytics is, identify the different types (descriptive, diagnostic, predictive, and prescriptive), and understand the business case for implementing it in your organization. Realize what it means to be data-led and gain essential data literacy skills to drive your decision-making through data analysis.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eLearn from data\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eIdentify key components of the data analytics ecosystem and understand how data connects - well, everything.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003ePlan with data\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eEffectively diagnose the pits and peaks of your workflows, and how to optimize them through data.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eThrive through data\u003c/strong\u003e\u003cbr /\u003e\nCome away equipped with a step-by-step process of how to create and apply a data-driven business strategy.\u003c/p\u003e382:T4ab,\u003cp\u003eBy the end of the course, you will be able to...\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eMake data work for you. Understand the challenges and opportunities of an effective data analytics ecosystem in businesses of all sizes.\u003c/li\u003e\n\u003cli\u003eBecome data literate. Identify the purpose and value of the different types of data analytics, including their principles, benefits and challenges.\u003c/li\u003e\n\u003cli\u003eGain a competitive edge. Identify the factors involved in evaluating data analytics projects, and learn how to use data to gain competitive advantage.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cstrong\u003eExpert "])</script><script>self.__next_f.push([1,"knowledge\u003cbr /\u003e\n\u003c/strong\u003e Interviews with world-renowned data experts help you understand how to use data analytics to make decisions and improve your business. Digest relevant statistics and facts that widen your understanding of the topic and industry.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003e‍Visual learning\u003cbr /\u003e\n\u003c/strong\u003e A visual step-by-step approach walks you through the entire process of becoming data-led. Beautiful infographics and engaging gifs explain the most complicated data analytics topics and theories, guiding you through the learning journey.\u003c/p\u003e\n\u003cp\u003eCreated by BoxPlay, an Emmy award-winning company on a mission to democratize career success.\u003c/p\u003e383:T6e2,\u003cp dir=\"ltr\"\u003eMillions of children die each year due to easily preventable diseases. Hundreds of millions of people earn less than $2 a day. Billions of animals spend most of their life in pain. Many of us want to help but don’t know how. Can one person make a difference that’s not just a drop in the bucket?\u003c/p\u003e\n\u003cp dir=\"ltr\"\u003e\u003c/p\u003e\n\n\u003cp\u003eThis interdisciplinary course will provide you with a collection of practical tools from economics, public health, behavioral science, ethics, exact sciences, and more to help you achieve a positive and significant impact. From the small decisions we make every day, through the initiatives we choose to support, to our most significant life choices, such as what career to pursue, relying on existing evidence and well established tools in decision making can help you drive a change you believe in.\u003cp dir=\"ltr\"\u003e\u003c/p\u003e\u003c/p\u003e\n\u003cp\u003eIn this course, the first of two parts of the Making a Difference program, you will learn some of the most foundational ideas and tools for achieving a positive impact. In parallel, each lesson will introduce you to a new cause area with plenty of concrete and actionable opportunities for making a difference.\u003cp dir=\"ltr\"\u003e\u003c/p\u003e\u003c/p\u003e\n\u003cp\u003eThis course focuses on the foundations of cost-effectiveness, measurement, and evaluation, key questions around who to extend our compassion and concern towards, and the opportunities with the "])</script><script>self.__next_f.push([1,"strongest evidence for impact.\u003cp dir=\"ltr\"\u003e\u003c/p\u003e\u003c/p\u003e\n\u003cp\u003eThe second course in this program, Making a Difference Ⅱ: High Stakes, builds on the ideas presented in this course and explores tools for prioritization and assessment when there’s limited information and the stakes are extremely high - including risks to the survival and prosperity of human civilization.\u003c/p\u003e384:T647,\u003cp dir=\"ltr\"\u003eClimate Change, Nuclear War, Man-made Pandemics, The rise of AI – Humanity has never been more capable, and yet it has never been more at risk.\u003c/p\u003e\n\u003cp dir=\"ltr\"\u003e\u003c/p\u003e\n\n\u003cp\u003eThis course, which is the second part of the Making a Difference program, provides a collection of practical tools from economics, technology, climate science, the life sciences, and more to help you achieve a positive impact on the world. From the small decisions we make every day, through the initiatives we choose to support, to our most significant life choices, such as what career to pursue, relying on reliable sources and well-established tools in decision-making can help you drive a change you believe in.\u003cp dir=\"ltr\"\u003e\u003c/p\u003e\u003c/p\u003e\n\u003cp\u003eWe will learn some of the most important frameworks and tools to prioritize impactful opportunities – even in the most challenging circumstances, such as preparing for unprecedented risks or comparing completely different cause areas. Each lesson will also introduce you to a new cause area with plenty of concrete and actionable opportunities for making a difference, including some of humanity’s largest modern risks.\u003cp dir=\"ltr\"\u003e\u003c/p\u003e\u003c/p\u003e\n\u003cp\u003eThis course is a follow-up to Making a Difference Ⅰ: Evidence-based Impact, where we learned some foundational tools and ideas for assessing and driving impact and explored opportunities backed by strong evidence.\u003cp dir=\"ltr\"\u003e\u003c/p\u003e\u003c/p\u003e\n\u003cp\u003eIn this course, we pivot away from the evidence-rich environments of the previous course and explore what we can do about risks so great that we can’t wait until we have all the evidence.\u003c/p\u003e385:T6b4,\u003cp\u003eThis psychology course is an introduction to the f"])</script><script>self.__next_f.push([1,"ield of psychology. It begins by asking “What is Psychology?” and provides some concrete answers to that question. Next, it covers the history of psychology and provides a look at the state of psychology today.\u003c/p\u003e\n\u003cp\u003eThis course will provide you with research-based study tips — to help you in this course and in the future. You will learn the methods a psychologist uses in their research. From experimental design to coverage of some basic statistics — by the end of this course you will have a comprehensive appreciation for the methods of psychology.\u003c/p\u003e\n\u003cp\u003eThis course includes video-based lectures and demonstrations, interviews with real research psychologists and a plethora of practice questions to help prepare you for the AP® Psychology exam.\u003c/p\u003e\n\u003cp\u003eThis is the first in our six-course AP® Psychology sequence designed to prepare you for the AP® Psychology exam.\u003c/p\u003e\n\u003cp\u003eAdditional Courses: \u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://www.edx.org/course/apr-psychology-part-2-how-brain-works-ubcx-psyc-2x\"\u003eAP® Psychology - Course 2: How the Brain Works\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://www.edx.org/course/apr-psychology-part-3-how-mind-works-ubcx-psyc-3x\"\u003eAP® Psychology - Course 3: How the Mind Works\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://www.edx.org/course/apr-psychology-part-4-how-behavior-works-ubcx-psyc-4x\"\u003eAP® Psychology - Course 4: How Behavior Works\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://www.edx.org/course/apr-psychology-part-5-health-behavior-ubcx-pysc-5x\"\u003eAP® Psychology - Course 5: Health and Behavior\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://www.edx.org/course/apr-psychology-part-6-exam-preparation-ubcx-psyc-6x\"\u003eAP® Psychology - Course 6: Exam Preparation \u0026amp; Review\u003c/a\u003e\u003c/p\u003e386:T50d,\u003cp\u003eAn estimated 120 zettabytes of data are created each year—that’s 21 zeroes—including new data captured, copied, and consumed. With that number growing annually, the requirements for database infrastructure, architecture, and storage are evolving just as rapidly.\u003c/p\u003e\r\n \r\n\u003cp\u003eAccording to the U.S. Bureau of Labor Statistics, computer science for databases, including d"])</script><script>self.__next_f.push([1,"atabase administration, analysts, and architects, corresponds with these numbers with anticipated growth of 8% over the next 10 years, faster than the average for all occupations. To prepare yourself for a career in the industry, you must not only understand the basics of computer science, but also how to create relationships with the data being created or ingested.\u003c/p\u003e\r\n \r\n \r\n\u003cp\u003eUsing HarvardX’s most popular courses, CS50: Introduction to Computer Science as the foundation, learners explore how to think algorithmically and how to solve problems efficiently, using real-world data sets.You will build on those skills by developing the core competencies needed for database development and structures. By focusing on the primary database language of SQL, you will learn how to create data relationships, normalize data to decrease the potential for errors or redundancy, and automate and optimize searches.\u003c/p\u003e387:T648,\u003cp\u003eThis eight-course Professional Certificate from IBM prepares you with job-ready skills for an entry level data analyst role. Position yourself competitively and power your data analyst career for a job in a thriving market or leverage foundational data skills to explore problems in an increasingly data-driven professional world. The U.S. Bureau of Labor Statistics projects a growth rate of 20% in the data analytics industry until 2028.\u003c/p\u003e\r\n\r\n\u003cp\u003eYou will learn the core principles of data analysis, participate in hands-on skills-based practice, and gain the knowledge to help companies make smarter business decisions. You will work with a variety of data sources, project scenarios, and data analysis tools, including Excel, SQL, Python, Jupyter Notebooks, and Cognos Analytics. These online learning tools will offer you practical experience with data manipulation and the application of analytical and data visualization techniques.\u003c/p\u003e\r\n\r\n\u003cp\u003eThis Professional Certificate does not require any prior programming or statistical skills, and is suitable for learners with or without college degrees. A willingness "])</script><script>self.__next_f.push([1,"to learn, basic computer literacy, comfort working with numbers, high school math, and a desire to enrich your profile with valuable skills is all you need to get started in this course.\u003c/p\u003e\r\n\r\n\u003cp\u003eWith the IBM Data Analyst Professional Certificate you will develop the confidence and portfolio to begin a career as an associate or junior data analyst by learning the essential skills that help professionals in a wide range of job functions and industries explore business problems.\u003c/p\u003e388:T8d0,"])</script><script>self.__next_f.push([1,"\u003cp\u003eHave you thought about a career in data science and machine learning but didn’t know where to start?\u003c/p\u003e \r\n\r\n\u003cp\u003eDemand for professionals in the machine learning (ML) and artificial intelligence (AI) space is growing exponentially, with no signs of slowing thanks to the ever changing data science landscape. In fact, as the availability of machine learning tools becomes more accessible, companies will begin adopting them at a higher rate – continuing to drive the demand of data science analysts and engineers, especially those with experience in programming languages like Python.\u003c/p\u003e \r\n\r\n\u003cp\u003eIndustries such as finance, health care, e-commerce, and technology will increasingly be reliant on data to drive strategic value and product and service innovation – leveraging data-driven insights to gain competitive advantage – and seeking experts in data analysis and machine learning techniques to meet growth goals.\u003c/p\u003e \r\n\r\n\u003cp\u003eThis comprehensive certificate program is designed to provide learners with the practical knowledge in machine learning and its applications to launch a successful career path or transition into data science and machine learning using Python. The program delves into various facets of data analysis, predictive modeling, and machine learning techniques, providing hands-on experience with industry-standard tools like sklearn, Pandas, matplotlib, and numPy; and in methodologies, including decision trees and ultimately more complex algorithms like gradient boosting.\u003c/p\u003e \r\n\r\n\u003cp\u003eBy the end of this certificate, learners will gain hands-on experience building and analyzing complex data sets using Python and machine learning, developing the skills to enter a robust job market with diverse opportunities.\u003c/p\u003e \r\n\r\n\u003cp\u003eLearners should have experience in Python and statistics in order to be successful in the course. You may wish to explore \u003ca href=\"https://www.edx.org/learn/python/harvard-university-cs50-s-introduction-to-programming-with-python\"\u003eCS50’s Introduction to Programming with Python\u003c/a\u003e and statistics prerequisites, which can be met via \u003ca href=\"https://www.edx.org/learn/probability/harvard-university-fat-chance-probability-from-the-ground-up\"\u003eFat Chance\u003c/a\u003e or Stat110 offered through HarvardX.\u003c/p\u003e"])</script><script>self.__next_f.push([1,"389:T8cc,"])</script><script>self.__next_f.push([1,"\u003cp\u003eHave you thought about a career in data science and machine learning but didn’t know where to start?\u003c/p\u003e \r\n\r\n\u003cp\u003eDemand for professionals in the machine learning (ML) and artificial intelligence (AI) space is growing exponentially, with no signs of slowing thanks to the ever changing data science landscape. In fact, as the availability of machine learning tools becomes more accessible, companies will begin adopting them at a higher rate – continuing to drive the demand of data science analysts and engineers, especially those with experience in programming languages like Python.\u003c/p\u003e \r\n\r\n\u003cp\u003eIndustries such as finance, health care, e-commerce, and technology will increasingly be reliant on data to drive strategic value and product and service innovation – leveraging data-driven insights to gain competitive advantage – and seeking experts in data analysis and machine learning techniques to meet growth goals.\u003c/p\u003e\r\n\r\n\u003cp\u003eThis comprehensive certificate program is designed to provide learners with the practical knowledge in machine learning and its applications to launch a successful career path or transition into data science and machine learning using Python. The program delves into various facets of data analysis, predictive modeling, and machine learning techniques, providing hands-on experience with industry-standard tools like sklearn, Pandas, matplotlib, and numPy; and in methodologies, including decision trees and ultimately more complex algorithms like gradient boosting.\u003c/p\u003e\r\n\r\n\u003cp\u003eBy the end of this certificate, learners will gain hands-on experience building and analyzing complex data sets using Python and machine learning, developing the skills to enter a robust job market with diverse opportunities.\u003c/p\u003e\r\n\r\n\u003cp\u003eLearners should have experience in Python and statistics in order to be successful in the course. You may wish to explore \u003ca href=\"https://www.edx.org/learn/python/harvard-university-cs50-s-introduction-to-programming-with-python\"\u003eCS50’s Introduction to Programming with Python\u003c/a\u003e and statistics prerequisites, which can be met via \u003ca href=\"https://www.edx.org/learn/probability/harvard-university-fat-chance-probability-from-the-ground-up\"\u003eFat Chance\u003c/a\u003e or Stat110 offered through HarvardX.\u003c/p\u003e"])</script><script>self.__next_f.push([1,"38a:Tca6,"])</script><script>self.__next_f.push([1,"\u003cp\u003eThe demand for software engineers and full stack developers is set to grow 25% p.a. (U.S. Bureau of Labor Statistics). This comprehensive MicroBachelors program not only gives you job-ready skills and practical experience employers are looking for, but also gives you valuable college credits towards your degree.\u003c/p\u003e\r\n\r\n\u003cp\u003eWithin just 6-8 months, you could be applying for your first full stack development job. No prior programming experience is required to get started. Why do businesses need full stack developers? With their enviable ability to combine frontend and backend programming expertise, full stack engineers create dynamic web and cloud solutions that contribute to business success.\r\n\u003c/p\u003e\r\n\r\n\u003cp\u003eWhether you're an adaptable professional seeking to transition into tech or a creative student/graduate eager to begin an IT career, this IBM Full Stack Application Development MicroBachelors is your ideal path for entering the field.\u003c/p\u003e\r\n\r\n\u003cp\u003eGuided by IBM experts, you’ll learn the tools and technologies businesses use to build, deploy, test, run, and manage full stack cloud-native applications. You’ll build cloud-based applications, participate in hands-on labs, and complete projects that develop the job-ready skills employers check for on a resume.\u003c/p\u003e\r\n\r\n\u003cp\u003eAs you learn, you'll dive into technical subjects such as cloud infrastructure, cloud native practices, and agile software development. You’ll work with HTML, CSS, and JavaScript, and explore CI/CD, containers, Docker, and Kubernetes. You’ll learn about OpenShift, Istio, Python programming, and get hands-on with databases, NoSQL, SQL, Django, and Bootstrap. Plus, you’ll explore application security, microservices, and serverless computing. And you'll be immersed in essential topics like GitHub, Node.js, React, and DevOps, building the skills and knowledge you need for a successful career in software engineering. In the final capstone project, you’ll develop a cloud- native application using resources like GitHub, IBM Cloud services, and various open-source frameworks, and you’ll apply your knowledge of cloud-native languages, database management, AI/machine learning, and CI/CD. This will give you valuable, verified experience you can talk about in interviews. If you’re looking to build a rewarding career in full stack development, this IBM Full Stack Application Development MicroBachelors will give you the job- ready knowledge, practical skills, industry-recognized credentials, and valuable college credits that open doors to highly promising career opportunities.\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003ci\u003e\"We're delighted that IBM is our first corporate partner to offer a MicroBachelors program on edX. Not only is IBM a longtime partner in delivering online education that equips learners with real skills for the workplace, but they are innovating with us as we meet the needs of learners without a college degree with our MicroBachelors programs. This particular program is incredible because it's for people with no prior programming or cloud experience, and prepares them for an entry-level role as a full stack developer with the option to get college credit from our university credit partner.\" - Anant Agarwal, edX Founder and CEO\u003c/i\u003e\u003c/p\u003e"])</script><script>self.__next_f.push([1,"38b:T998,"])</script><script>self.__next_f.push([1,"\u003cp\u003eThe employment outlook for software engineers and full stack developers is projected to grow by 25% per year to 2032 (U.S. Bureau of Labor Statistics). This comprehensive program is designed to give you the skills you need to launch your full stack software development career in just 6-8 months. No prior programming experience or degree is required.\u003c/p\u003e \r\n\r\n\u003cp\u003eWhat do full stack developers do? Full stack developers contribute significantly to business success. Their valuable mix of frontend and backend programming expertize ensures that an engaging user interface integrates effectively with dynamic server-side functionalities to produce a winning web solution. If you’re a versatile professional looking to reskill in tech, or a creative student/graduate keen to kick start an IT career, this IBM Full Stack Developer Professional Certificate is your one-stop route to getting started in this field.\u003c/p\u003e\r\n \r\n\u003cp\u003eWith the support of IBM experts, you’ll learn the tools and technologies that successful software and web developers use to build, deploy, test, run and manage full stack cloud native applications. And you’ll dive into building cloud-based applications, completing hands-on labs, and completing projects that build job-ready skills employers need.\u003c/p\u003e\r\n \r\n\u003cp\u003eFrom the start, you’ll be immersed in technical topics such as cloud foundations, HTML, CSS, JavaScript, cloud native practices, CI/CD, containers, Docker, Kubernetes, OpenShift, Istio, Python programming, databases, SQL, Django, Bootstrap, application security, microservices, serverless computing and more. Plus, you'll explore key topics like GitHub, Node.js, React, and DevOps, building skills and knowledge that will set you up for success in software engineering.\u003c/p\u003e\r\n\r\n\u003cp\u003eAs you learn, you'll get valuable practical experience through hands-on labs and projects. And you’ll complete a final project where you will create a cloud environment using IBM Cloud to build and deploy an application consisting of multiple microservices using CI/CD. This will give you plenty to talk about in interviews to demonstrate your practical proficiency in applying various cloud native tools and technologies.\u003c/p\u003e\r\n\r\n\u003cp\u003eIf you’re looking to build a rewarding career in full stack development, this IBM Full Stack Developer Professional Certificate will get you job-ready and give you the skills you need for a resume that will open up rewarding career opportunities.\u003c/p\u003e"])</script><script>self.__next_f.push([1,"38c:T574,\u003cp\u003eThe demand for data scientists is projected to grow 10x faster than other occupations (Source: US Bureau of Labor Statistics). This IBM Data Science Professional Certificate gives you the job-ready skills and practical experience you need to start your career in data science and machine learning. No prior computer science or programming experience is required.\u003c/p\u003e\r\n\r\n\u003cp\u003eData scientists analyze and interpret complex, large datasets using data mining, machine learning, and predictive modeling techniques. They then seek to uncover patterns, trends, and insights that help businesses make informed decisions.\u003c/P\u003e\r\n\r\n\u003cp\u003eDuring this program, you’ll learn Python programming, SQL for database querying, data manipulation with Pandas and Numpy, data visualization with Matplotlib and Seaborn, and machine learning with Scikit-learn. You’ll work hands-on with data science tools like Jupyter Notebooks, RStudio, and IBM watsonx. You'll use GitHub for version control and access data sources with APIs. Plus, you’ll gain valuable practical skills through hands-on labs, course projects, and a capstone project you can put on your resume and talk about in interviews.\u003c/p\u003e\r\n\r\n\u003cp\u003eIf you’re looking to get started in data science, this program gives you the job-ready skills you need to catch the eye of an employer. Enroll today and look forward to kickstarting a highly rewarding career.\u003c/p\u003e38d:T8c8,"])</script><script>self.__next_f.push([1,"\u003cp\u003eThis Professional Certificate program is intended for anyone who is seeking to develop the job-ready skills, tools, and portfolio for an entry-level data analyst or data scientist position. No prior knowledge of R, or programming is required to get you started!\u003c/p\u003e\r\n\r\n\u003cp\u003eIn this Data Analytics and Visualization with Excel and R Professional Certificate Program, you will dive into the role of a data analyst or data scientist and develop the essential skills you need work with a range of data sources and apply powerful tools, including Excel, Cognos Analytics, and the R programming language (including: ggplot2, Leaflet and R Shiny), towards becoming a data driven practitioner, and gaining a competitive edge in the job market.\u003c/p\u003e\r\n \r\n\u003cp\u003eBy the end of this program, you will be able to explain the data analyst and data scientist roles. Skills you will developer and tools you will be exposed to in this program include:\r\n\u003cul\u003e\r\n\u003cli\u003eExcel spreadsheets to create charts and plots.\u003c/li\u003e\r\n\u003cli\u003eCognos Analytics to create interactive dashboards.\u003c/li\u003e\r\n\u003cli\u003eRelational databases and query data using SQL statements.\u003c/li\u003e \r\n\u003cli\u003eR programming language to complete the entire data analysis process - including data preparation, statistical analysis, data visualization, predictive modeling, and creating interactive data applications.\u003c/li\u003e \r\n\u003cli\u003eVarious methods to communicate your data findings and learn to prepare a report for stakeholders.\r\nThis program is suitable for anyone with a passion for learning and does not require any prior data analysis, statistics, or programming experience.\u003c/li\u003e\r\n\u003c/ul\u003e\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cb\u003eApplied Learning Project\u003c/b\u003e\u003cbr\u003e\r\nThroughout this Professional Certificate, you will also complete hands-on labs and projects to help you gain practical experience with Excel, Cognos Analytics, SQL, and the R programing language and related libraries for data science, including Tidyverse, Tidymodels, R Shiny, ggplot2, Leaflet, and rvest.\u003c/p\u003e\r\n\r\n\u003cp\u003eIn the final course in this Professional Certificate, you will complete a capstone project that applies what you have learned to a challenge that requires data collection, analysis, basic hypothesis testing, visualization, and modelling to be performed on real-world datasets.\u003c/p\u003e"])</script><script>self.__next_f.push([1,"38e:Ta6d,"])</script><script>self.__next_f.push([1,"\u003cp\u003eThe US Bureau of Labor Statistics projects a 23% increase in cybersecurity jobs to 2033. The demand for cybersecurity analysts is growing ever stronger!\r\nWhat do cybersecurity analysts do? Cybersecurity analysts protect an organization's digital assets by identifying, analyzing, and mitigating security threats, ensuring data and systems remain secure against cyberattacks. \r\n \r\n\u003cp\u003eThis IBM Cybersecurity Professional Certificate has been designed by industry experts to provide you with the job-ready cybersecurity and digital forensic skills you need to jumpstart your cybersecurity career. No prior cybersecurity experience is required. \r\n\r\n\u003cp\u003eTo begin, you’ll build your foundational knowledge of cybersecurity essentials, tools, and technologies, operating systems, networking fundamentals, and the basics of cyberattacks. You’ll explore database fundamentals and vulnerabilities and learn about the steps a cybersecurity analyst would take to prevent, manage, and mitigate cybersecurity attacks. Plus, you’ll learn about cybersecurity architecture, compliance frameworks, standards, and regulations. \r\n\r\n\u003cp\u003eYou’ll also explore gen AI for cybersecurity and build valuable skills and hands-on experience in penetration testing, incident response, forensics, and threat intelligence. You’ll work on real-world projects developing cybersecurity plans and compliance frameworks, giving you great practical work to talk about in interviews. Plus, you’ll use real-world case studies that demonstrate that you can: \r\n\u003cul\u003e\r\n\u003cli\u003eApply incident response methodologies and forensics practices.\u003c/li\u003e \r\n\u003cli\u003eUse industry-specific security tools.\u003c/li\u003e \r\n\u003cli\u003eApply cybersecurity industry standards and best practices that mitigate risks, enhance security, and ensure compliance through audit processes.\u003c/li\u003e \r\n\u003cli\u003eUse gen AI tools to boost cybersecurity effectiveness and productivity.\u003c/li\u003e \r\n\u003cli\u003eInvestigate a real-world security breach by identifying the attack, vulnerabilities, costs, and prevention.\u003c/li\u003e\r\n\u003c/ul\u003e\u003c/p\u003e \r\n\r\n\u003cp\u003eTake advantage of the insights provided by seasoned industry experts to guide your job search, resume creation, and Interviewing to help you land your first cybersecurity role. This program will also prepare you to take and earn a 30% discount on the CompTIA Security+ and CySA+ certification exams. After successfully completing this program, you’ll have an industry-recognized IBM Professional Certificate that you can add to your resume and portfolio.\u003c/p\u003e\r\n\r\n\u003cp\u003eIf you’re looking to kickstart your cybersecurity career as a sought-after analyst, ENROLL TODAY, and look forward to being job-ready in less than 6 months!\u003c/p\u003e"])</script><script>self.__next_f.push([1,"38f:T687,\u003cp\u003eNow is a great time to launch a rewarding career in Information Technology (IT) support - no experience or degree is required to get started. The US Bureau of Labor Statistics forecasts a 9% growth in jobs through 2030, averaging 70,000 openings each year, and a medium salary of $58,000 annually for an entry-level Computer Support Specialist. With over 400,000 US job openings, Computer Tech Support Specialists are in high demand.\u003c/p\u003e \r\n \r\n\u003cp\u003eIn this self-paced, certificate program for beginners, you will learn IT support and build competency in IT fundamentals topics, including hardware, operating systems, software, system administration, programming, databases, networking, cybersecurity, and cloud computing, as well as critical skills covered such as customer service and troubleshooting. Mastery of these skills is essential for IT Helpdesk Support and also provides multiple options to grow your career as they are required skills for many technology jobs, including Software Engineer, Data Analyst, and Data Scientist.\u003c/p\u003e\r\n \r\n\u003cp\u003eThis Professional Certificate program from IBM is built by experts to prepare you for an entry-level job in Technical Support. If you can dedicate a few hours per week, you can complete the program in 3 to 6 months. By the end of the program, you will be equipped with job-ready skills employers look for, whether you are just starting out your IT career or changing jobs.\u003c/p\u003e\r\n\r\n\u003cp\u003eWhen you successfully complete the program you’ll receive dual credentials, IBM Digital Badges for each course to help your profile stand out, as well as a Professional Certificate to showcase your job readiness to potential employers.\u003c/p\u003e390:Tb86,"])</script><script>self.__next_f.push([1,"\u003cp\u003eLearn how to drive quality and productivity projects by mastering the methods, tools and principles of Lean Six Sigma.\u003c/p\u003e\r\n \r\n\u003cp\u003eLean Six Sigma enable organizations to identify weaknesses of their business processes, to measure, analyze and improve their performance, and thus to sustainably increase customer satisfaction and decrease costs.\u003c/p\u003e\r\n \r\n\u003cp\u003eIn this program, you will first earn the TUM Lean Six Sigma Yellow Belt Certification by mastering the fundamentals of the Lean Six Sigma methodology, plus the Green Belt Certification by applying your knowledge in practice with a predefined project.\u003c/p\u003e\r\n\r\n\u003cp\u003eThe Body of Knowledge of the first three courses in the series (QPLS1-3x) reflects the standard of the American Society for Quality for their Certified Six Sigma Green Belt. In these courses, you will learn the DMAIC (Define, Measure, Analyze, Improve, Control) process improvement cycle and examine how the principles of Lean Production improve quality and productivity and enable organizational transformation. Both descriptive and inferential statistics will be applied, and all concepts are exercised using online problems and interactive exercises and case studies.\u003c/p\u003e\r\n\r\n\u003cp\u003eAfter receiving our Yellow Belt Certification, learners apply their knowledge in practice to earn the TUM Lean Six Sigma Green Belt Certification (QPLS4x), according the recommendation of the International Society of Six Sigma Professionals, by implementing our predefined project on environmental littering: Improve the cleanliness of areas around selected places in your hometown and control the sustainability of your measures.\u003c/p\u003e\r\n \r\n\u003cp\u003eWe will guide you using software with all relevant tools, specific tasks, a project storybook template to document your results, graded reviews of your documentation after each DMAIC phase, and weekly live online sessions for your questions. The Green Belt Certification will be awarded after completion of the course and final review of your completed project storybook and your collected data.\u003c/p\u003e\r\n\r\n\u003cp\u003eThis TUM Lean Six Sigma Yellow and Green Belt certifications allow you to demonstrate your personal operational excellence with your project story book to actively reduce costs and increase customer satisfaction in any organizational environment. Your new skills can facilitate your career entry or advance your career.\u003c/p\u003e\r\n\r\n\u003cp\u003eNOTE: In order to achieve the TUM Lean Six Sigma Yellow Belt Certification, it is MANDATORY to complete the 3 courses: QPLS1x, QPLS2x and QPLS3x pursuing all 3 Verified Certificates, for which you will earn the Yellow Belt Certificate. Only then you may start your Green Belt Certification project with QPLS4x. There is no deadline for completing the courses and project.\u003c/p\u003e\r\n\r\n\r\n\u003chtml\u003e\r\n\u003cbody\u003e\r\n\r\n\u003cimg src=\"https://images.ctfassets.net/ii9ehdcj88bc/3kcIO09KMO9V3pLcmSgu5Z/89b3cdc9508a500d358329034d57268d/edxprize2022.png?h=250\" alt=\"edX Prize 2022\" \r\n\r\n\u003c/body\u003e\r\n\u003c/html\u003e"])</script><script>self.__next_f.push([1,"391:Td2a,"])</script><script>self.__next_f.push([1,"\u003cp\u003eLearn how to drive quality and productivity programs by mastering the powerful analytical and management tools of the Six Sigma methodology and the revolutionary concepts of Lean Management.\u003c/p\u003e\r\n\r\n\u003cp\u003eSix Sigma and Lean enable organizations to measure and analyze production processes, to eliminate waste and to evolve their management structures in order to motivate employees and improve quality and productivity.\u003c/p\u003e\r\n\r\n\u003cp\u003eThe series of courses is provided in collaboration with the TUM School of Management Executive Education Center and the Chair of Production and Supply Chain Management.\u003c/p\u003e\r\n\r\n\u003cp\u003eIn this Professional Certificate program, you will learn the fundamentals of the Six Sigma methodology and Lean Manufacturing. You will learn the DMAIC (Define, Measure, Analyze, Improve, Control) process improvement cycle and examine how the principles of Lean production improve quality and productivity and enable organizational transformation.\u003c/p\u003e\r\n\r\n\u003cp\u003eYou will be challenged to learn both the quantitative and qualitative methods associated with Six Sigma and Lean, including:\u003c/p\u003e\r\n\r\n\u003cp\u003e\r\n\u003cul\u003e\u003cli\u003eproblem definition;\u003c/li\u003e\r\n\u003cli\u003ebaseline performance measurement and process capability;\u003c/li\u003e\r\n\u003cli\u003emeasurement system analysis;\u003c/li\u003e\r\n\u003cli\u003eroot cause analysis;\u003c/li\u003e\r\n\u003cli\u003eregression and correlation;\u003c/li\u003e\r\n\u003cli\u003edesign of experiments;\u003c/li\u003e\r\n\u003cli\u003econtrol charts implementation.\u003c/li\u003e\r\n\u003c/ul\u003e\u003c/p\u003e\r\n\r\n\u003cp\u003eBoth descriptive and inferential statistics will be applied and all concepts are exercised using online problems and interactive exercises and case studies.\u003c/p\u003e\r\n\r\n\u003cp\u003eA TUM Lean Six Sigma Yellow Belt Certificate will help you advance your career, increase your salary earnings and improve your organization through your mastery of quality skills.\u003c/p\u003e\r\n\r\n\u003cp\u003eUpon successful completion of this program, learners will earn the \u003cb\u003eTUM Lean Six Sigma Yellow Belt certificate, confirming mastery of Lean Six Sigma theory to a Green Belt level\u003c/b\u003e. The Six Sigma material is based on the \u003ca href=\"https://web.archive.org/web/20201108085453/https:/asq.org/\"\u003eAmerican Society for Quality\u003c/a\u003e Six Sigma Body of Knowledge up to a Green Belt level. The Lean Production course material is based on the TUM School of Management’s course in Lean Operations\u003c/p\u003e\r\n\r\n\u003cp\u003eThe Professional Certificate program is designed as preparation for a Lean Six Sigma Green Belt Certification project. If you are interested in obtaining both the TUM Lean Six Sigma Yellow Belt and Green Belt certificates, please go to our \u003ca href=\"https://web.archive.org/web/20201108085453/https:/www.edx.org/professional-certificate/tumx-lean-six-sigma-green-belt-certification\"\u003eSix Sigma: Green Belt Certification Project\u003c/a\u003e.\u003c/p\u003e\r\n\r\n\u003cp\u003eThis TUM Lean Six Sigma Yellow and Green Belt Certification will help you advance your career, increase your salary earnings and improve your organisation through the mastery and application of productivity and quality skills.\u003c/p\u003e\r\n\r\n\u003cp\u003eNOTE: In order to achieve the TUM Lean Six Sigma Yellow Belt Certificate it is MANDATORY to complete all 3 courses mentioned below, pursuing all 3 Verified Certificates. Then, automatically, you will earn the Professional Certificate. Courses can be taken in any order, but since Six Sigma: Analyze, Improve, Control builds on the material learned in Six Sigma: Define and Measure, we recommend you to take Define and Measure first.\u003c/p\u003e"])</script><script>self.__next_f.push([1,"392:T919,"])</script><script>self.__next_f.push([1,"\u003cp\u003eWhether you want to make a strong start to a master’s degree, solidify your knowledge in a professional context or simply brush up on fundamentals in calculus, this program will get you up to speed.\u003c/p\u003e\r\n\r\n\u003cp\u003eThis program will enable you to review the relevant topics and offer you an overview of the calculus common in most engineering bachelor’s programs.\u003c/p\u003e\r\n\r\n\u003cp\u003eThe courses in this program provide enough depth to cover the calculus you need to succeed in your engineering master’s or professional work in areas such as structural engineering, integrated product design, machine learning, geomatics and more.\u003c/p\u003e\r\n\r\n\u003cp\u003eIn the first course you will review all the basic concepts and practice and refresh your skills, from functions to differential equations. By the end you will be able to solve a wide range of differential equations.\u003c/p\u003e\r\n\r\n\u003cp\u003eThe second course will review all the basic concepts and you will practice and refresh the skills related to functions of several variables. Topics covered include contour plots, partial and directional derivatives, extreme values, double and triple integrals and common coordinate changes.\u003c/p\u003e\r\n\r\n\u003cp\u003eThese courses are self-paced, self-contained and modular, to make it easier to review specific topics and practice as often as you want without having to follow the entire courses.\u003c/p\u003e\r\n\r\n\u003cp\u003eThis program is ideal for:\r\n\u003cul\u003e\r\n\u003cli\u003eProspective engineering students who want to meet the prerequisites for a MSc program, be better prepared or refresh their mathematics knowledge before starting a master’s degree.\u003c/li\u003e\r\n\u003cli\u003eEngineering or bachelor students who realize that they have a gap in their math knowledge or would like an additional challenge in mathematics not offered by their studies.\u003c/li\u003e\r\n\u003cli\u003eWorking professionals who would like to improve their math knowledge.\u003c/li\u003e\r\n\u003cli\u003eAnyone interested in university level mathematics.\u003c/li\u003e\r\n\u003c/u\u003e\u003c/p\u003e\r\n\r\n\u003cp\u003eThis program will refresh your knowledge, test your skills and review the relations between the many concepts in calculus. As review courses, you are expected to have previously studied or be familiar with most of the material.\u003c/p\u003e\r\n\r\n\u003cp\u003eThis program is part of our series ‘Mastering Mathematics for Engineers’, together with ‘Mastering Linear Algebra’ and ‘Mastering Probability and Statistics’.\u003c/p\u003e"])</script><script>self.__next_f.push([1,"393:T638,\u003cp\u003eDemand for data analysis skills are projected to grow in the U.S. 21% over the next 10 years, over four times the rate of the overall labor market. Fields like Data Science, Data Analytics, and Statistics are expected to grow up to 34%. According to the World Economic Forum, emerging global demand for data analytics skills across occupations is contributing to a “race for talent,” with more jobs available than qualified candidates. According to Burning Glass Technologies research, hybrid, more complex roles which combine field-centric skills with data analysis competencies are up to 40% higher paying than their single-focus counterparts, are high-growth, and immune to the threat of automation.\u003c/p\u003e \r\n\r\n\u003cp\u003eThis Professional Certificate program prepares students, working professionals, and decision makers to become data literate in both their professional and personal lives. In today’s data-driven world, data literacy will transform you into a “data citizen,” allowing you to communicate and make decisions based upon facts with confidence. You will emerge as a champion for a data literate culture.\u003c/p\u003e \r\n\r\n\u003cp\u003eYou will gain an understanding of how using data visualization, big data, data collection, and analytical tools to better understand business challenges and inform the decision-making process.\u003c/p\u003e \r\n\r\n\u003cp\u003eThis program is valuable for students and professionals who want to go beyond data analysis software proficiency to develop the ability to read, write, and communicate using data in context, including an understanding of data sources and constructs.\u003c/p\u003e394:T7a9,\u003cp\u003eMathTrackX is an XSeries Program that has been designed to provide learners with a solid foundation in fundamental mathematics and how it can be applied in the real world. The 6 courses in this program will assist in developing the skills, knowledge and confidence for STEM related career development or preparation for further studies.\u003c/p\u003e \r\n\r\n\u003cp\u003eGuided by experts from the School of Mathematical Sciences and the Maths Learning Centr"])</script><script>self.__next_f.push([1,"e at the University of Adelaide, this self-paced program will equip learners with a comprehensive understanding of the key underpinnings of mathematics, required for further study. Learners will develop skills in communicating mathematical solutions and arguments, and build confidence in solving mathematical problems. Topics covered include methods and applications of differentiation, integration, probability and statistics.\u003c/p\u003e\r\n\r\n\u003cp\u003eUpon successful completion, this program will be accepted as a prerequisite in place of SACE Stage 2 Mathematical Methods at the University of Adelaide. MathTrackX is not a replacement for SACE Year 12 Stage 2 Maths Methods but could be a useful study tool towards completion of this certificate.\u003c/p\u003e\r\n\r\n\u003cp\u003eRecognition of this program may also be applicable for further studies in your state or country. Please contact your accrediting body for any processes that apply if you are hoping to use this program as a bridging course into further education at a University level. \u003c/p\u003e\r\n\r\n\u003cp\u003eLearners that require further assistance with the foundational skills necessary to excel in mathematics may wish to undertake the \u003ca href=\"https://www.edx.org/learn/math/university-of-adelaide-maths-foundations\"\u003eAdelaideX: Maths Foundations\u003c/a\u003e. The Maths Foundations course is not part of the MathTrackX Program, however, it does provide the necessary skills and understanding required for tertiary-level mathematics that may assist learners before enrolling in the MathTrackX XSeries Program.\u003c/p\u003e395:T930,"])</script><script>self.__next_f.push([1,"\u003cp\u003eWhether you want to make a strong start to a master’s degree, solidify your knowledge in a professional context or simply brush up on fundamentals in linear algebra, this program will get you up to speed.\u003c/p\u003e\r\n\r\n\u003cp\u003eThis program will enable you to review the relevant topics and offer you an overview of the linear algebra common in most engineering bachelor programs.\u003c/p\u003e\r\n\r\n\u003cp\u003eThe courses in this program provide enough depth to cover the linear algebra you need to succeed in your engineering master’s or professional work in areas such as computer graphics, systems and control, machine learning, quantum computing and more.\u003c/p\u003e\r\n\r\n\u003cp\u003eIn the first course you will review all the basic concepts and practice and refresh the skills related to vectors and linear equations. The course focuses on vectors (from both algebraic and geometric perspectives) and solving linear equations.\u003c/p\u003e\r\n\r\n\u003cp\u003eThe second course will review all the basic concepts and practice and refresh the skills related to matrices and linear transformations. Topics covered include matrix algebra, determinants, eigenvalues and eigenvectors, diagonalization and singular value decomposition.\u003c/p\u003e\r\n\r\n\u003cp\u003eThese courses are self-paced, self-contained and modular, to make it easier to review specific topics and practice as often as you want without having to follow the entire courses.\u003c/p\u003e\r\n\r\n\u003cp\u003eThis program is ideal for:\r\n\u003cul\u003e\r\n\u003cli\u003eProspective engineering students who want to meet the prerequisites for a MSc program, be better prepared or refresh their mathematics knowledge before starting a master’s degree.\u003c/li\u003e\r\n\u003cli\u003eEngineering or bachelor students who realize that they have a gap in their math knowledge or would like an additional challenge in mathematics not offered by their studies.\u003c/li\u003e\r\n\u003cli\u003eWorking professionals who would like to improve their math knowledge.\u003c/li\u003e\r\n\u003cli\u003eAnyone interested in university level mathematics.\u003c/li\u003e\r\n\u003c/ul\u003e\u003c/p\u003e\r\n\r\n\u003cp\u003eThis program will refresh your knowledge, test your skills and review the relations between the various concepts in linear algebra. As review courses, you are expected to have previously studied or be familiar with most of the material.\u003c/p\u003e\r\n\r\n\u003cp\u003eThis program is part of our series ‘Mastering Mathematics for Engineers’, together with ‘Mastering Calculus’ and ‘Mastering Probability and Statistics’.\u003c/p\u003e"])</script><script>self.__next_f.push([1,"396:T49c,\u003cp\u003eGive your career a boost by mastering how to fuse information from a variety of different sensors, such as, radar, lidar and camera, for accurate object positioning and tracking of moving objects.\u003c/p\u003e\r\n\r\n\u003cp\u003eThe target audience for this program are engineers in the automotive industry who need to tackle problems related to perceiving the traffic situation around an autonomous vehicle. This course is also aimed at students with a bachelor's degree who want to pursue master level studies in automotive engineering.\u003c/p\u003e\r\n\r\n\u003cp\u003eThis program is derived from master level courses. It starts by introducing the basics of Bayesian statistics and recursive estimation theory and then gradually introduces more advanced concepts. The program offers a unique opportunity to gain practical knowledge in sensor fusion and multi-object tracking algorithms (filters).\u003c/p\u003e \r\n\r\n\u003cp\u003eBy the end of this program, you will be able to contribute to the development of sensor fusion and tracking applications for self-driving vehicles. Most of the involved methods, however, are more general and can be used for surveillance or to track, e.g., biological cells, sports athletes or space debris.\u003c/p\u003e397:T8b0,"])</script><script>self.__next_f.push([1,"\u003cp\u003eIf you have ever wondered what all those economic news and statistics mean to you, how policy changes by the government and central bank may affect your living standard, job or investment, and why things happened in countries far away can still find their way to impact on you here, this is the program for you!\u003c/p\u003e\r\n \r\n\u003cp\u003eThis is an introductory program in Macroeconomics. It focuses on explaining many macroeconomic phenomena that we either observed first hand or heard indirectly from the media. The program considers long-term economic growth in developed and developing economies. You’ll also learn why a national (or global) economy experiences short-term cycles in activity (e.g., recessions and recoveries) around its long-term growth trend.\u003c/p\u003e\r\n \r\n\u003cp\u003eThe behaviour of an economy as a whole is often broadly predictable, but sometimes it can suddenly change due to a range of unpredictable factors such as regional conflicts, financial crises and health emergencies. This program explains what central banks and governments can do to try to smooth these fluctuations and to lift the living standard. Theories or ‘models’ widely used by governments, central banks and the private sector to conduct macroeconomic analyses are explained intuitively as well as discussed critically. The behaviour of the financial system, including the banking system and asset markets, is also considered, especially in the light of financial crises.\u003c/p\u003e\r\n \r\n\u003cp\u003eThe three courses are based but extended on an introductory macroeconomics course taught on campus at The University of Queensland. A focus is placed on core economic principles that are immediately applicable rather than formal mathematical theorisation. A distinctive feature of these courses is their strong emphasis on the international aspect of macroeconomics. Recent global economic and non-economic events have highlighted the importance of understanding the interconnection between the domestic and the international economy.\u003c/p\u003e\r\n \r\n\u003cp\u003eThis program is for everyone, whether you are studying at university, a career professional interested in expanding your economic knowledge, or simply curious about global economic behaviour and what influences it.\u003c/p\u003e"])</script><script>self.__next_f.push([1,"398:T996,"])</script><script>self.__next_f.push([1,"\u003cp\u003eMatrix Algebra underlies many of the current tools for experimental design and the analysis of high-dimensional data. In this introductory online course in data analysis, we will use matrix algebra to represent the linear models that commonly used to model differences between experimental units. We perform statistical inference on these differences. Throughout the course we will use the R programming language to perform matrix operations.\u003c/p\u003e\n\u003cp\u003eGiven the diversity in educational background of our students we have divided the series into seven parts. You can take the entire series or individual courses that interest you. If you are a statistician you should consider skipping the first two or three courses, similarly, if you are biologists you should consider skipping some of the introductory biology lectures. Note that the statistics and programming aspects of the class ramp up in difficulty relatively quickly across the first three courses. You will need to know some basic stats for this course. By the third course will be teaching advanced statistical concepts such as hierarchical models and by the fourth advanced software engineering skills, such as parallel computing and reproducible research concepts.\u003c/p\u003e\n\u003cp\u003eThese courses make up two Professional Certificates and are self-paced:\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eData Analysis for Life Sciences:\u003c/strong\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://www.edx.org/course/statistics-and-r\"\u003ePH525.1x: Statistics and R for the Life Sciences\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://www.edx.org/course/introduction-to-linear-models-and-matrix-algebra\"\u003ePH525.2x: Introduction to Linear Models and Matrix Algebra\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://www.edx.org/course/statistical-inference-and-modeling-for-high-throug\"\u003ePH525.3x: Statistical Inference and Modeling for High-throughput Experiments\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://www.edx.org/course/high-dimensional-data-analysis\"\u003ePH525.4x: High-Dimensional Data Analysis\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cstrong\u003eGenomics Data Analysis:\u003c/strong\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://www.edx.org/course/introduction-to-bioconductor-annotation-and-analys\"\u003ePH525.5x: Introduction to Bioconductor\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://www.edx.org/course/case-studies-in-functional-genomics\"\u003ePH525.6x: Case Studies in Functional Genomics\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://www.edx.org/course/advanced-bioconductor\"\u003ePH525.7x: Advanced Bioconductor\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThis class was supported in part by NIH grant R25GM114818.\u003c/p\u003e"])</script><script>self.__next_f.push([1,"399:T12ef,"])</script><script>self.__next_f.push([1,"\u003cp\u003eWe will explain how to perform the standard processing and normalization steps, starting with raw data, to get to the point where one can investigate relevant biological questions. Throughout the case studies, we will make use of exploratory plots to get a general overview of the shape of the data and the result of the experiment. We start with RNA-seq data analysis covering basic concepts and a first look at FASTQ files. We will also go over quality control of FASTQ files; aligning RNA-seq reads; visualizing alignments and move on to analyzing RNA-seq at the gene-level : counting reads in genes; Exploratory Data Analysis and variance stabilization for counts; count-based differential expression; normalization and batch effects. Finally, we cover RNA-seq at the transcript-level : inferring expression of transcripts (i.e. alternative isoforms); differential exon usage. We will learn the basic steps in analyzing DNA methylation data, including reading the raw data, normalization, and finding regions of differential methylation across multiple samples. The course will end with a brief description of the basic steps for analyzing ChIP-seq datasets, from read alignment, to peak calling, and assessing differential binding patterns across multiple samples.\u003c/p\u003e\n\u003cp\u003eGiven the diversity in educational background of our students we have divided the series into seven parts. You can take the entire series or individual courses that interest you. If you are a statistician you should consider skipping the first two or three courses, similarly, if you are biologists you should consider skipping some of the introductory biology lectures. Note that the statistics and programming aspects of the class ramp up in difficulty relatively quickly across the first three courses. By the third course will be teaching advanced statistical concepts such as hierarchical models and by the fourth advanced software engineering skills, such as parallel computing and reproducible research concepts.\u003c/p\u003e\n\u003cp\u003eThese courses make up two Professional Certificates and are self-paced:\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eData Analysis for Life Sciences:\u003c/strong\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://www.edx.org/course/statistics-and-r\"\u003ePH525.1x: Statistics and R for the Life Sciences\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://www.edx.org/course/introduction-to-linear-models-and-matrix-algebra\"\u003ePH525.2x: Introduction to Linear Models and Matrix Algebra\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://www.edx.org/course/statistical-inference-and-modeling-for-high-throug\"\u003ePH525.3x: Statistical Inference and Modeling for High-throughput Experiments\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://www.edx.org/course/high-dimensional-data-analysis\"\u003ePH525.4x: High-Dimensional Data Analysis\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cstrong\u003eGenomics Data Analysis:\u003c/strong\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://www.edx.org/course/introduction-to-bioconductor-annotation-and-analys\"\u003ePH525.5x: Introduction to Bioconductor\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://www.edx.org/course/case-studies-in-functional-genomics\"\u003ePH525.6x: Case Studies in Functional Genomics\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://www.edx.org/course/advanced-bioconductor\"\u003ePH525.7x: Advanced Bioconductor\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThis class was supported in part by NIH grant R25GM114818.\u003c/p\u003e\n\u003cp\u003eHarvardX requires individuals who enroll in its courses on edX to abide by the terms of the edX honor code. HarvardX will take appropriate corrective action in response to violations of the \u003ca href=\"https://www.edx.org/edx-terms-service\" title=\"Follow link\"\u003eedX honor code\u003c/a\u003e, which may include dismissal from the HarvardX course; revocation of any certificates received for the HarvardX course; or other remedies as circumstances warrant. No refunds will be issued in the case of corrective action for such violations. Enrollees who are taking HarvardX courses as part of another program will also be governed by the academic policies of those programs.\u003c/p\u003e\n\u003cp\u003eHarvardX pursues the science of learning. By registering as an online learner in an HX course, you will also participate in research about learning. Read our \u003ca href=\"http://harvardx.harvard.edu/research-statement\" title=\"Follow link\"\u003eresearch statement \u003c/a\u003eto learn more.\u003c/p\u003e\n\u003cp\u003eHarvard University and HarvardX are committed to maintaining a safe and healthy educational and work environment in which no member of the community is excluded from participation in, denied the benefits of, or subjected to discrimination or harassment in our program. All members of the HarvardX community are expected to abide by Harvard policies on nondiscrimination, including sexual harassment, and the edX Terms of Service. If you have any questions or concerns, please contact \u003ca href=\"mailto:harvardx@harvard.edu\"\u003eharvardx@harvard.edu\u003c/a\u003e and/or \u003ca href=\"https://www.edx.org/contact-us\" title=\"Follow link\"\u003ereport your experience through the edX contact form\u003c/a\u003e.\u003c/p\u003e"])</script><script>self.__next_f.push([1,"39a:T1129,"])</script><script>self.__next_f.push([1,"\u003cp\u003eWe begin with an introduction to the relevant biology, explaining what we measure and why. Then we focus on the two main measurement technologies: next generation sequencing and microarrays. We then move on to describing how raw data and experimental information are imported into R and how we use Bioconductor classes to organize these data, whether generated locally, or harvested from public repositories or institutional archives. Genomic features are generally identified using intervals in genomic coordinates, and highly efficient algorithms for computing with genomic intervals will be examined in detail. Statistical methods for testing gene-centric or pathway-centric hypotheses with genome-scale data are found in packages such as limma, some of these techniques will be illustrated in lectures and labs.\u003c/p\u003e\n\u003cp\u003eGiven the diversity in educational background of our students we have divided the series into seven parts. You can take the entire series or individual courses that interest you. If you are a statistician you should consider skipping the first two or three courses, similarly, if you are biologists you should consider skipping some of the introductory biology lectures. Note that the statistics and programming aspects of the class ramp up in difficulty relatively quickly across the first three courses. By the third course will be teaching advanced statistical concepts such as hierarchical models and by the fourth advanced software engineering skills, such as parallel computing and reproducible research concepts.\u003c/p\u003e\n\u003cp\u003eThese courses make up two Professional Certificates and are self-paced:\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eData Analysis for Life Sciences:\u003c/strong\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://www.edx.org/course/statistics-and-r\"\u003ePH525.1x: Statistics and R for the Life Sciences\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://www.edx.org/course/introduction-to-linear-models-and-matrix-algebra\"\u003ePH525.2x: Introduction to Linear Models and Matrix Algebra\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://www.edx.org/course/statistical-inference-and-modeling-for-high-throug\"\u003ePH525.3x: Statistical Inference and Modeling for High-throughput Experiments\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://www.edx.org/course/high-dimensional-data-analysis\"\u003ePH525.4x: High-Dimensional Data Analysis\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cstrong\u003eGenomics Data Analysis:\u003c/strong\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://www.edx.org/course/introduction-to-bioconductor-annotation-and-analys\"\u003ePH525.5x: Introduction to Bioconductor\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://www.edx.org/course/case-studies-in-functional-genomics\"\u003ePH525.6x: Case Studies in Functional Genomics\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://www.edx.org/course/advanced-bioconductor\"\u003ePH525.7x: Advanced Bioconductor\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThis class was supported in part by NIH grant R25GM114818.\u003c/p\u003e\n\u003cp\u003eHarvardX requires individuals who enroll in its courses on edX to abide by the terms of the edX honor code. HarvardX will take appropriate corrective action in response to violations of the \u003ca href=\"https://www.edx.org/edx-terms-service\" title=\"Follow link\"\u003eedX honor code\u003c/a\u003e, which may include dismissal from the HarvardX course; revocation of any certificates received for the HarvardX course; or other remedies as circumstances warrant. No refunds will be issued in the case of corrective action for such violations. Enrollees who are taking HarvardX courses as part of another program will also be governed by the academic policies of those programs.\u003c/p\u003e\n\u003cp\u003eHarvardX pursues the science of learning. By registering as an online learner in an HX course, you will also participate in research about learning. Read our \u003ca href=\"http://harvardx.harvard.edu/research-statement\" title=\"Follow link\"\u003eresearch statement \u003c/a\u003eto learn more.\u003c/p\u003e\n\u003cp\u003eHarvard University and HarvardX are committed to maintaining a safe and healthy educational and work environment in which no member of the community is excluded from participation in, denied the benefits of, or subjected to discrimination or harassment in our program. All members of the HarvardX community are expected to abide by Harvard policies on nondiscrimination, including sexual harassment, and the edX Terms of Service. If you have any questions or concerns, please contact \u003ca href=\"mailto:harvardx@harvard.edu\"\u003eharvardx@harvard.edu\u003c/a\u003e and/or \u003ca href=\"https://www.edx.org/contact-us\" title=\"Follow link\"\u003ereport your experience through the edX contact form\u003c/a\u003e.\u003c/p\u003e"])</script><script>self.__next_f.push([1,"39b:Tc54,"])</script><script>self.__next_f.push([1,"\u003cp\u003eIf you’re interested in data analysis and interpretation, then this is the data science course for you. We start by learning the mathematical definition of distance and use this to motivate the use of the singular value decomposition (SVD) for dimension reduction of high-dimensional data sets, and multi-dimensional scaling and its connection to principle component analysis. We will learn about the \u003cem\u003ebatch effect,\u003c/em\u003e the most challenging data analytical problem in genomics today, and describe how the techniques can be used to detect and adjust for batch effects. Specifically, we will describe the principal component analysis and factor analysis and demonstrate how these concepts are applied to data visualization and data analysis of high-throughput experimental data.\u003c/p\u003e\n\u003cp\u003eFinally, we give a brief introduction to machine learning and apply it to high-throughput, large-scale data. We describe the general idea behind clustering analysis and descript K-means and hierarchical clustering and demonstrate how these are used in genomics and describe prediction algorithms such as k-nearest neighbors along with the concepts of training sets, test sets, error rates and cross-validation.\u003c/p\u003e\n\u003cp\u003eGiven the diversity in educational background of our students we have divided the series into seven parts. You can take the entire series or individual courses that interest you. If you are a statistician you should consider skipping the first two or three courses, similarly, if you are biologists you should consider skipping some of the introductory biology lectures. Note that the statistics and programming aspects of the class ramp up in difficulty relatively quickly across the first three courses. By the third course will be teaching advanced statistical concepts such as hierarchical models and by the fourth advanced software engineering skills, such as parallel computing and reproducible research concepts.\u003c/p\u003e\n\u003cp\u003eThese courses make up two Professional Certificates and are self-paced:\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eData Analysis for Life Sciences:\u003c/strong\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://www.edx.org/course/statistics-and-r\"\u003ePH525.1x: Statistics and R for the Life Sciences\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://www.edx.org/course/introduction-to-linear-models-and-matrix-algebra\"\u003ePH525.2x: Introduction to Linear Models and Matrix Algebra\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://www.edx.org/course/statistical-inference-and-modeling-for-high-throug\"\u003ePH525.3x: Statistical Inference and Modeling for High-throughput Experiments\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://www.edx.org/course/high-dimensional-data-analysis\"\u003ePH525.4x: High-Dimensional Data Analysis\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cstrong\u003eGenomics Data Analysis:\u003c/strong\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://www.edx.org/course/introduction-to-bioconductor-annotation-and-analys\"\u003ePH525.5x: Introduction to Bioconductor\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://www.edx.org/course/case-studies-in-functional-genomics\"\u003ePH525.6x: Case Studies in Functional Genomics\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://www.edx.org/course/advanced-bioconductor\"\u003ePH525.7x: Advanced Bioconductor\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThis class was supported in part by NIH grant R25GM114818.\u003c/p\u003e"])</script><script>self.__next_f.push([1,"39c:T609,\u003cp\u003eBuilding on the concepts from the first course in the Six Sigma Program, Define and Measure, in this course, you will learn how to statistically analyze data with the Six Sigma methodology using inferential statistical techniques to determine confidence intervals and to test hypotheses based on sample data. You will also review cause and effect techniques for root cause analysis.\u003c/p\u003e\n\u003cp\u003eYou will learn how to perform correlation and regression analyses in order to confirm the root cause and understand how to improve your process and plan designed experiments.\u003c/p\u003e\n\u003cp\u003eYou will learn how to implement statistical process control using control charts and quality management tools, including the 8 Disciplines and the 5 Whys to reduce risk and manage process deviations.\u003c/p\u003e\n\u003cp\u003eTo complement the lectures, learners are provided with interactive exercises, which allow learners to see the statistics \"in action.\" Learners then master statistical concepts by completing practice problems. These are then reinforced using interactive case studies, which illustrate the application of the statistics in quality improvement situations.\u003c/p\u003e\n\u003cp\u003eUpon successful completion of this program, learners will earn the TUM Lean and Six Sigma Yellow Belt certification, confirming mastery of Lean Six Sigma fundamentals to a Green Belt level. The material is based on the American Society for Quality (www.asq.org) Body of Knowledge up to a Green Belt Level. The Professional Certificate is designed as preparation for a Lean Six Sigma Green Belt exam.\u003c/p\u003e39d:T75f,\u003cp\u003eA strong foundation in mathematics is critical for success in all science and engineering disciplines. Whether you want to make a strong start to a master’s degree, prepare for more advanced courses, solidify your knowledge in a professional context or simply brush up on fundamentals, this course will get you up to speed.\u003c/p\u003e\n\u003cp\u003eProbability theory can be applied to learn more about real-life problems, and it is useful for building models. Moreover, it provides the basis for s"])</script><script>self.__next_f.push([1,"tatistics and applications in data analysis. Therefore, it is a useful subject for any aspiring or practicing engineer.\u003c/p\u003e\n\u003cp\u003eWe will use some basic calculus, in particular (partial) differentiation and (multiple) integration. The focus will be on the interpretation rather than on the computation; so the required techniques will be low-level. If, however, you feel insecure about these topics, you can brush up on them in our calculus courses within this series.\u003c/p\u003e\n\u003cp\u003eThis course will offer you an overview of the probability theory elements common to most engineering bachelor programs. It will provide enough depth to cover the probability theory you need to succeed in your engineering master’s or profession in areas such as modeling, finance, signal processing, logistics and more.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eThis is a review course\u003c/strong\u003e\u003cbr /\u003e\nThis self-contained course is modular, so you do not need to follow the entire course if you wish to focus on a particular aspect. As a review course you are expected to have previously studied or be familiar with most of the material. Hence the pace will be higher than in an introductory course.\u003c/p\u003e\n\u003cp\u003eThis format is ideal for refreshing your bachelor level mathematics and letting you practice as much as you want. Through the Grasple platform, you will have access to plenty of exercises and receive intelligent, personal and immediate feedback.\u003c/p\u003e39e:T76f,\u003cp\u003eWant to know how to avoid bad decisions with data?\u003c/p\u003e\n\u003cp\u003eMaking good decisions with data can give you a distinct competitive advantage in business. This statistics and data analysis course will help you understand the fundamental concepts of sound statistical thinking that can be applied in surprisingly wide contexts, sometimes even before there is any data! Key concepts like understanding variation, perceiving relative risk of alternative decisions, and pinpointing sources of variation will be highlighted.\u003c/p\u003e\n\u003cp\u003eThese big picture ideas have motivated the development of quantitative models, but in most traditional statistics"])</script><script>self.__next_f.push([1," courses, these concepts get lost behind a wall of little techniques and computations. In this course we keep the focus on the ideas that really matter, and we illustrate them with lively, practical, accessible examples.\u003c/p\u003e\n\u003cp\u003eWe will explore questions like: How are traditional statistical methods still relevant in modern analytics applications? How can we avoid common fallacies and misconceptions when approaching quantitative problems? How do we apply statistical methods in predictive applications? How do we gain a better understanding of customer engagement through analytics?\u003c/p\u003e\n\u003cp\u003eThis course will be is relevant for anyone eager to have a framework for good decision-making. It will be good preparation for students with a bachelor's degree contemplating graduate study in a business field.\u003c/p\u003e\n\u003cp\u003eOpportunities in analytics are abundant at the moment. Specific techniques or software packages may be helpful in landing first jobs, but those techniques and packages may soon be replaced by something newer and trendier. Understanding the ways in which quantitative models really work, however, is a management level skill that is unlikely to go out of style.\u003c/p\u003e\n\u003cp\u003eThis course is part of the Business Principles and Entrepreneurial Thought XSeries.\u003c/p\u003e39f:T871,"])</script><script>self.__next_f.push([1,"\u003cp\u003eToday the principles and techniques of reproducible research are more important than ever, across diverse disciplines from astrophysics to political science. No one wants to do research that can’t be reproduced. Thus, this course is really for anyone who is doing any data intensive research. While many of us come from a biomedical background, this course is for a broad audience of data scientists. \u003c/p\u003e\n\u003cp\u003eTo meet the needs of the scientific community, this course will examine the fundamentals of methods and tools for reproducible research. Led by experienced faculty from the Harvard T.H. Chan School of Public Health, you will participate in six modules that will include several case studies that illustrate the significant impact of reproducible research methods on scientific discovery. \u003c/p\u003e\n\u003cp\u003eThis course will appeal to students and professionals in biostatistics, computational biology, bioinformatics, and data science. The course content will blend video lectures, case studies, peer-to-peer engagements and use of computational tools and platforms (such as R/RStudio, and Git/Github), culminating in a final presentation of a final reproducible research project. \u003c/p\u003e\n\u003cp\u003eWe’ll cover Fundamentals of Reproducible Science; Case Studies; Data Provenance; Statistical Methods for Reproducible Science; Computational Tools for Reproducible Science; and Reproducible Reporting Science. These concepts are intended to translate to fields throughout the data sciences: physical and life sciences, applied mathematics and statistics, and computing. \u003c/p\u003e\n\u003cp\u003eConsider this course a survey of best practices: we’d like to make you aware of pitfalls in reproducible data science, some failure - and success - stories in the past, and tools and design patterns that might help make it all easier. But ultimately it’ll be up to you to take the skills you learn from this course to create your own environment in which you can easily carry out reproducible research, and to encourage and integrate with similar environments for your collaborators and colleagues. We look forward to seeing you in this course and the research you do in the future!\u003c/p\u003e"])</script><script>self.__next_f.push([1,"3a0:T422,\u003cp\u003eIn this course, you will learn how to organize your data within the Microsoft Office Excel software tool. Once organized, we will discuss data cleaning. You will learn how to identify outliers and anomalies in the data, and how to identify and change data-types. Together we will develop a data analysis plan, after which we will apply analysis methods and tools, including exploratory analysis, evaluation of results, and comparison with other findings.\u003c/p\u003e\n\u003cp\u003eIn this robust Excel course, you will gain a solid foundation in using advanced Excel functions such as pivot tables and vlookup to organize and analyze data sets. You will be able to create an Excel chart in a variety of chart types including scatter plot, pie charts, and more. We’ll discuss various techniques such as descriptive statistics, and review the variety of Excel add-ins available to use this powerful tool to organize, analyze, and transform your data into actionable insights. All course activities are designed and demonstrated using Windows OS and Microsoft Excel 2016.\u003c/p\u003e3a1:T521,\u003cp\u003eThe US Bureau of Labor Statistics forecasts a 32% growth in information security analyst jobs until 2032. These analysts are in demand as part of the team that keeps networks secure.\u003c/p\u003e\n\u003cp\u003eThis course provides practical hands-on computer networking and network security experience that employers want. Through innovative hands-on labs, you’ll learn how to secure a small home office network (SOHO), install and configure DHCP, and filter DNS. You’ll also get real-world practice installing and using an open-source Extended Detection and Response (XDR) system.\u003c/p\u003e\n\u003cp\u003eAdditionally, you’ll build valuable supporting knowledge of ports, protocols, and IP addresses, including IPv6 and network routing. You’ll learn about layer 2 and 3 addressing, routers, and routing tables.\u003c/p\u003e\n\u003cp\u003ePlus, you’ll develop knowledge of cybersecurity analyst tools for data protection, endpoint protection, and Security information and event management (SIEM), which you can apply"])</script><script>self.__next_f.push([1," to an organization’s compliance and threat intelligence needs, which is crucial in today’s cybersecurity landscape.\u003c/p\u003e\n\u003cp\u003eYou’ll complete a final project where you will demonstrate your ability to perform network and security planning tasks.\u003c/p\u003e\n\u003cp\u003eNetworking and network security skills pay. Invest in yourself and enroll today!\u003c/p\u003e3a2:T54b,\u003cp\u003eIn this undergraduate-level biostatistics course, the learners will be introduced to the use of statistics and study designs in biology. Upon successful completion of this course, learners will be able to design experimental, quasi-experimental and observational studies that will meet regulatory guidelines; collect, analyze, and interpret data using appropriate statistical tools. These are skills utilized in bio-statistical research in healthcare as well as other biology related fields. The importance of having these skills is recognized within public health sectors relating to analysis of drug effectiveness and risk factors for different illnesses, effectiveness of heath care interventions as well as helping explain biological phenomena.\u003c/p\u003e\n\u003cp\u003eIn addition to fulfilling requirements in undergraduate college programs, this undergraduate level course also provides future healthcare professionals with foundational coursework required for successful entry into a health professions graduate program or medical school. This course may also spark further interest for the learner towards a more advanced degree in biostatistics. The field of biostatistics provides an increasing opportunity for employment. According to the United States Bureau of Labor Statistics, this field will experience a 14% employment growth between 2010 and 2020.\u003c/p\u003e3a3:T11a6,"])</script><script>self.__next_f.push([1,"\u003cp\u003eIn this course, we begin with approaches to visualization of genome-scale data, and provide tools to build interactive graphical interfaces to speed discovery and interpretation. Using knitr and rmarkdown as basic authoring tools, the concept of reproducible research is developed, and the concept of an executable document is presented. In this framework reports are linked tightly to the underlying data and code, enhancing reproducibility and extensibility of completed analyses. We study out-of-memory approaches to the analysis of very large data resources, using relational databases or HDF5 as \"back ends\" with familiar R interfaces. Multiomic data integration is illustrated using a curated version of The Cancer Genome Atlas. Finally, we explore cloud-resident resources developed for the Encyclopedia of DNA Elements (the ENCODE project). These address transcription factor binding, ATAC-seq, and RNA-seq with CRISPR interference.\u003c/p\u003e\n\u003cp\u003eGiven the diversity in educational background of our students we have divided the series into seven parts. You can take the entire series or individual courses that interest you. If you are a statistician you should consider skipping the first two or three courses, similarly, if you are biologists you should consider skipping some of the introductory biology lectures. Note that the statistics and programming aspects of the class ramp up in difficulty relatively quickly across the first three courses. By the third course will be teaching advanced statistical concepts such as hierarchical models and by the fourth advanced software engineering skills, such as parallel computing and reproducible research concepts.\u003c/p\u003e\n\u003cp\u003eThese courses make up two Professional Certificates and are self-paced:\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eData Analysis for Life Sciences:\u003c/strong\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://www.edx.org/course/statistics-and-r\"\u003ePH525.1x: Statistics and R for the Life Sciences\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://www.edx.org/course/introduction-to-linear-models-and-matrix-algebra\"\u003ePH525.2x: Introduction to Linear Models and Matrix Algebra\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://www.edx.org/course/statistical-inference-and-modeling-for-high-throug\"\u003ePH525.3x: Statistical Inference and Modeling for High-throughput Experiments\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://www.edx.org/course/high-dimensional-data-analysis\"\u003ePH525.4x: High-Dimensional Data Analysis\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cstrong\u003eGenomics Data Analysis:\u003c/strong\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://www.edx.org/course/introduction-to-bioconductor-annotation-and-analys\"\u003ePH525.5x: Introduction to Bioconductor\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://www.edx.org/course/case-studies-in-functional-genomics\"\u003ePH525.6x: Case Studies in Functional Genomics\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://www.edx.org/course/advanced-bioconductor\"\u003ePH525.7x: Advanced Bioconductor\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThis class was supported in part by NIH grant R25GM114818.\u003c/p\u003e\n\u003cp\u003eHarvardX requires individuals who enroll in its courses on edX to abide by the terms of the edX honor code. HarvardX will take appropriate corrective action in response to violations of the \u003ca href=\"https://www.edx.org/edx-terms-service\" title=\"Follow link\"\u003eedX honor code\u003c/a\u003e, which may include dismissal from the HarvardX course; revocation of any certificates received for the HarvardX course; or other remedies as circumstances warrant. No refunds will be issued in the case of corrective action for such violations. Enrollees who are taking HarvardX courses as part of another program will also be governed by the academic policies of those programs.\u003c/p\u003e\n\u003cp\u003eHarvardX pursues the science of learning. By registering as an online learner in an HX course, you will also participate in research about learning. Read our \u003ca href=\"http://harvardx.harvard.edu/research-statement\" title=\"Follow link\"\u003eresearch statement \u003c/a\u003eto learn more.\u003c/p\u003e\n\u003cp\u003eHarvard University and HarvardX are committed to maintaining a safe and healthy educational and work environment in which no member of the community is excluded from participation in, denied the benefits of, or subjected to discrimination or harassment in our program. All members of the HarvardX community are expected to abide by Harvard policies on nondiscrimination, including sexual harassment, and the edX Terms of Service. If you have any questions or concerns, please contact \u003ca href=\"mailto:harvardx@harvard.edu\"\u003eharvardx@harvard.edu\u003c/a\u003e and/or \u003ca href=\"https://www.edx.org/contact-us\" title=\"Follow link\"\u003ereport your experience through the edX contact form\u003c/a\u003e.\u003c/p\u003e"])</script><script>self.__next_f.push([1,"3a4:T4c7,\u003cp\u003eManaging databases is a critical skill for Data Engineers and Database Administrators to ensure data is reliable, protected and easily accessible for organizations to make better decisions, solve problems and create business value.\u003c/p\u003e\n\u003cp\u003eWith the amount of data continually expanding and business leaders focused on building data-literate organizations, it’s no surprise that Database Administrators are in high demand and earn a median salary of US $98,860 per year according to the US Bureau of Labor Statistics.\u003c/p\u003e\n\u003cp\u003eThis course provides you with the knowledge and hands-on experience to manage and maintain databases, understand database security, design and define database schemas, tables, views, and other database objects, describe storage, perform backups and recovery, troubleshoot errors, monitor and optimize performance and automate tasks.\u003c/p\u003e\n\u003cp\u003eThis course includes hands-on practice labs and a real-world inspired project to add to your portfolio that will demonstrate your ability to perform the Database Administration tasks using relational databases (RDBMSes) such as MySQL, PostgreSQL and IBM Db2.\u003c/p\u003e\n\u003cp\u003ePrior knowledge of database fundamentals and SQL is required to complete this course.\u003c/p\u003e3a5:T92f,"])</script><script>self.__next_f.push([1,"\u003cp\u003eAnimal breeding involves the selective breeding of domestic animals with the intention to improve desirable (and heritable) qualities in the next generation. This course introduces the steps required to design a program for breeding animals and teaches the genetic and statistical concepts that are needed to build a solid breeding program. \u003c/p\u003e\n\u003cp\u003eIn this course you will learn how an animal breeder balances the need for improving desirable qualities of the animals with the need for genetic diversity and long sustainability of the program. The scientific concepts in genetics that are applied in animal breeding will be explained and you will learn to apply the models and computational methods that are used in animal breeding. \u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003ePrerequisites\u003c/strong\u003e\u003cbr /\u003e\nKnowledge in the area of statistics at 2nd or 3rd year university level is needed to follow this course successfully.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eFor whom\u003cbr /\u003e\n\u003c/strong\u003e Professionals working with animals will use the knowledge from this course to understand the impact of breeding on their populations, and will be able to include the genetic principles in their decisions. For further studies such as M.Sc. level courses in breeding and genetics, this course will allow you an advanced starting point.\u003c/p\u003e\n\u003cp\u003eAlthough this course is open to everyone, it is particular useful for breeders of:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eCows\u003c/li\u003e\n\u003cli\u003ePoultry/Chicken\u003c/li\u003e\n\u003cli\u003eHorses\u003c/li\u003e\n\u003cli\u003ePigs/Swine\u003c/li\u003e\n\u003cli\u003eDogs\u003c/li\u003e\n\u003cli\u003eSheep\u003c/li\u003e\n\u003cli\u003eGoat\u003c/li\u003e\n\u003cli\u003eFish\u003c/li\u003e\n\u003cli\u003eShrimp\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cstrong\u003eProfessional Certificate Program\u003cbr /\u003e\n\u003c/strong\u003e This course is part of the \u003ca href=\"https://www.edx.org/professional-certificate/wageningenx-animal-breeding-and-genetics?index=product\u0026queryID=0aba9f9feb927113b49a8e266d916a03\u0026position=1\"\u003eProfessional Certificate Program \"Animal Breeding and Genetics\u003c/a\u003e\". Join the other course in the program, \u003ca href=\"https://www.edx.org/course/evaluating-animal-breeding-programmes-2\"\u003eEvaluating Animal Breeding Programs\u003c/a\u003e, and advance your career as a breeder.\u003c/p\u003e\n\u003cp\u003eThe course is developed with financial support and input from the \u003ca href=\"http://www.koeponstichting.nl/index.php/about-us\" title=\"Koepon Foundation\"\u003eKoepon Foundation \u003c/a\u003eand the \u003ca href=\"https://africacgg.net/\" title=\"African Chicken Genetic Gains project\"\u003eAfrican Chicken Genetic Gains project\u003c/a\u003e.\u003c/p\u003e"])</script><script>self.__next_f.push([1,"3a6:Tb16,"])</script><script>self.__next_f.push([1,"Inclusive teaching is an issue that has received increased attention on college campuses around the country and around the world. Understanding how course climate impacts students and their learning \u0026nbsp;is increasingly important to faculty and administrators alike across a wide range of educational contexts. Yet creating equitable learning environments that support all students\u0026rsquo; learning can be a challenge, especially when one considers that course climate consists of a variety of factors (e.g., student-student interactions, faculty-student interactions, course content and policies). Despite the fact that ​creating an inclusive teaching environment is beneficial for ​all​ students\u0026rsquo; learning, issues around inclusion and disinclusion are rarely discussed in practical terms. \u003cbr /\u003e\u003cbr /\u003eParticipants in this course will consider multiple facets of inclusive teaching, including the creation of an equitable course climate, the design and implementation of accessible and inclusive classroom practices and assessments, and the selection and implementation of diverse course content. Participants will engage with key concepts in inclusive teaching and learn from experts in higher education who share their important research on student development, microaggressions, stereotype threat, and Universal Design for Learning. Participants will be equipped with tools to help them develop inclusive courses that support all learners.\u003cbr /\u003e\u003cbr /\u003eThis course was developed by the Columbia University Center for Teaching and Learning, with generous funding from the Provost\u0026rsquo;s Teaching \u0026amp; Learning MOOC RFP, and support from the Office of the Vice Provost for Teaching, Learning, and Innovation.\u003cbr /\u003e\u003cbr /\u003eInclusive teaching experts featured in this course: \u003cbr /\u003e\r\n\u003cul\u003e\r\n\u003cli\u003eStephen Brookfield, PhD, John Ireland Endowed Chair, University of St. Thomas\u003c/li\u003e\r\n\u003cli\u003eSheryl Burgstahler, PhD, Director, University of Washington Access Technology Center, Founder and Director, DO-IT Center\u003c/li\u003e\r\n\u003cli\u003eBryan Dewsbury, PhD, Assistant Professor, Biological Sciences, University of Rhode Island\u003c/li\u003e\r\n\u003cli\u003eMichele DiPietro, PhD, Executive Director, Center for Excellence in Teaching and Learning, Professor of Statistics, Kennesaw State University\u003c/li\u003e\r\n\u003cli\u003eZaretta Hammond, MA, Teacher Educator, author of Culturally Responsive Teaching and the Brain\u003c/li\u003e\r\n\u003cli\u003eStephanie Kershbaum, PhD, Associate Professor of English, University of Delaware\u003c/li\u003e\r\n\u003cli\u003eFrank Tuitt, PhD, Provost on Diversity and Inclusion, Senior Advisor to the Chancellor, University of Denver\u003c/li\u003e\r\n\u003cli\u003eDerald Wing Sue, PhD, Professor of Psychology and Education, Teachers\u0026rsquo; College, Columbia University\u003c/li\u003e\r\n\u003cli\u003eMelissa Wright, MA, Associate Director of Assessment and Evaluation, Columbia University Center for Teaching and Learning\u003c/li\u003e\r\n\u003c/ul\u003e"])</script><script>self.__next_f.push([1,"3a7:Tff7,"])</script><script>self.__next_f.push([1,"\u003cp\u003eThis course promotes a “grand strategy” approach to how climate change and demographic trends – along with the ascendancy of a global majority middle class – transform our global economy from its historic East-West paradigm to one dominated by North-South dynamics. This is a crucial perspectives for anyone involved in international trade and the globalization of markets.\u003c/p\u003e\n\u003cp\u003eThe world economy is undergoing three structural changes, each of which are enough – on their own – to define a new era of globalization . The first is climate change, which decimates lower latitudes (developing countries), denying them the benefits of globalization, while paradoxically empowering higher latitude global markets. The second is demographic aging unfolding at great rapidity across America, Europe, and Asia (Japan in particular). The third is the ascendancy of a majority global middle class whose huge resource requirements, per economists of all stripes, will drive future global economic growth – if this South-centric mass of humanity can successfully navigate climate change’s devastating impact.\u003c/p\u003e\n\u003cp\u003ePut them together and the world trade is facing an unprecedented tilting of its geopolitical axis from one historically oriented East-West to one dominated by North-South dynamics (e.g., mass northward migrations by climate refugees [see the US-Mexico border today]). The world’s 21st-century superpowers (United States, European Union, Russia, China, India) will thus compete in helping smaller powers survive and navigate these world-restructuring dynamics, in effect entering into a superpower “brand war” to win (first) economic and (then) political allegiance from among these more vulnerable nation-states.\u003c/p\u003e\n\u003cp\u003eIn this new form of competition – one that will unfold as much in the cyber realm as the real world, superpowers will seek to address the majority global middle class’s quest for stability, prosperity, and security. Having achieved consumer status for the first time, these billions, largely centered in the Global South (per World Bank statistics), will naturally be attracted to those superpowers most adept at creating a sense of geopolitical “belonging” in larger unions anchored by their large financial markets that facilitate their export-driven growth. We are already witnessing this strategic offering in processes like the EU’s state-accession model and China’s Belt and Road Initiative — despite the recent increase in trade barriers (tariffs) and their effects on international markets.\u003c/p\u003e\n\u003cp\u003eEmploying a “grand strategic” perspective, this MOOC is the first to explore that cluster of tectonic changes as they transform our world, offering competitive advantages to some international businesses while generating lessons and understanding for anyone involved in information technology, economic policy, foreign markets, and foreign direct investment.\u003c/p\u003e\n\u003cp\u003eScientists estimates that species the world over are forced by climate change to increase their evolutionary speed by roughly 10,000 times. The same will be true of humans and all their enterprises: reconfiguring national borders, disrupting labor markets, reshaping capital markets, triggering financial crises, altering how and why multinational corporations engage in outsourcing, and altering global capitalism and its free trade rule-set to its very core.\u003c/p\u003e\n\u003cp\u003eIn combination, climate change, demographic transitions and the emergence of a global majority middle class alter the very nature of economic activity this century (liberalization of investments, role of trade agreements, strategic partnerships among great powers), sending different countries down wildly different paths that beg the question: Exactly what is globalization going forward?\u003c/p\u003e\n\u003cp\u003eIn sum, if broad-framing macroeconomic change is a skill-set you want to master, this course lays the groundwork for your understanding of how globalization affects us all by altering our planet, transforming our societies, and recasting this world order of American creation.\u003c/p\u003e"])</script><script>self.__next_f.push([1,"3a8:T632,\u003cul\u003e\n\u003cli\u003eHow climate change will trigger the biggest geographic transfer of resource wealth in human history – super-empowering the New North while beggaring the Global South\u003c/li\u003e\n\u003cli\u003eHow climate change will drive South-to-North human migrations far beyond anything the world currently witnesses, triggering state failure across lower latitudes and supercharging angry nationalism and populism across higher-latitude states.\u003c/li\u003e\n\u003cli\u003eHow demographic aging across the Global North will permanently transform those nations and their markets.\u003c/li\u003e\n\u003cli\u003eHow globalization’s unfolding is largely driven by nations embracing a demographic transition from high-birth/death rates to low-birth/death rates, allowing for a “demographic dividend” that enables economic integration into global value chains.\u003c/li\u003e\n\u003cli\u003eHow the ascendancy of a majority global middle class re-runs the geopolitical experiment that was the Eurasian continent’s successive “world wars” of the early 20th century, as both Left (communism) and Right (fascism) sought to control that process.\u003c/li\u003e\n\u003cli\u003eHow superpowers will compete in “brand wars” to earn the economic, network, political, and security allegiance of smaller states threatened by these structural shifts.\u003c/li\u003e\n\u003cli\u003eHow the Western Hemisphere (North/Central/South America \u0026amp; Caribbean) are unusually advantaged relative to the Eastern Hemisphere (Europe, Africa, Asia) for the North-South integration to come.\u003c/li\u003e\n\u003cli\u003eHow to process all these tectonic changes and world-restructuring dynamics from a grand strategic perspective.\u003c/li\u003e\n\u003c/ul\u003e3a9:T48d,\u003cp\u003eThis course, presented by the Statistics Department, introduces participants to the underlying concepts, definitions, and methodology for the compilation of Financial Soundness Indicators (FSIs). FSIs were developed by the IMF in the late 1990s and currently, more than 140 countries compile and report FSIs to the IMF. These indicators are widely used by researchers, analysts, and policymakers around the world to monitor the soundness of "])</script><script>self.__next_f.push([1,"the financial system as a whole from a macroprudential perspective, as well as by IMF staff in financial stability analysis and surveillance. This course covers the history of the FSIs and their application in surveillance and macroprudential analysis, the conceptual framework for the FSIs, the data collection process for FSI compilation and its underlying aggregation and consolidation methodologies as well as the application of core and additional FSIs in macroprudential analysis. An important reference throughout this course is the Financial Soundness Indicators Compilation Guide revised in 2019. The 2019 FSIs Guide is the ultimate authority on FSI concepts and methods and is the foundation of this course.\u003c/p\u003e3aa:Td50,"])</script><script>self.__next_f.push([1,"\u003cp\u003eAnimal breeding, and especially breeding of farm animals and aquaculture species, has developed into a professional industry with modern technologies, large-scale data collection, and analyses. This has resulted in very efficient and effective breeding programs. However, in many developing countries, and for many lesser known livestock and fish species there is a need for tailor-made breeding programs. In this MOOC, you will learn about the implementation and evaluation of both large industrial scale and the tailor-made breeding programs, in terms of genetic progress and genetic diversity.\u003c/p\u003e\n\u003cp\u003eTogether with other learners, you will dive into the reasons behind crossbreeding in relation to dissemination of genetic improvement. It is essential to know how key biological factors affect the structure of a breeding program and to understand the different structures a breeding program can have.\u003c/p\u003e\n\u003cp\u003eJoin this course and learn everything about how to properly evaluate breeding programs. In several knowledge clips and assignments, you will learn how to assess the effects of legislation, competition, GxE, new technology on breeding programs.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eEliminating diseases\u003c/strong\u003e\u003cbr /\u003e\nTwo special sections are devoted to genetic diversity and, more specifically, to (i) monogenic recessive disorders, and (ii) genetic diversity at the population level. Monogenic recessive disorders play an important role in breeding programs for companion animals such as dogs and horses. Modern DNA sequencing technology now makes it possible not only to detect these mutations but also to design breeding strategies aimed at eliminating these diseases. Genetic diversity at population level is important to maintain flexibility in populations and to keep animal populations healthy. In this course, you will learn more about how to monitor and conserve genetic diversity in breeding programmes.\u003c/p\u003e\n\u003cp\u003eAfter finishing this course you can make informed decisions when setting up a breeding program for a specific animal in a specific production system and recognize and identify key elements of the course in real-life examples of breeding programs.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003ePrerequisites\u003c/strong\u003e\u003cbr /\u003e\nPlease know that knowledge of statistics at a 2nd or 3rd year university level is needed to follow this course successfully. This course partially builds on knowledge gained in the MOOC Genetic Models for Animal Breeding.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eFor Whom\u003c/strong\u003e\u003cbr /\u003e\nAlthough this course is open to everyone, it is particular useful for breeders of:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eCows\u003c/li\u003e\n\u003cli\u003ePoultry/Chicken\u003c/li\u003e\n\u003cli\u003eHorses\u003c/li\u003e\n\u003cli\u003ePigs/Swine\u003c/li\u003e\n\u003cli\u003eDogs\u003c/li\u003e\n\u003cli\u003eSheep\u003c/li\u003e\n\u003cli\u003eGoat\u003c/li\u003e\n\u003cli\u003eFish\u003c/li\u003e\n\u003cli\u003eShrimp\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cstrong\u003eProfessional Certificate Program\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eThis course is part of the\u003ca href=\"https://www.edx.org/professional-certificate/wageningenx-animal-breeding-and-genetics?index=product\u0026queryID=0aba9f9feb927113b49a8e266d916a03\u0026position=1\"\u003e Professional Certificate Programme \"Animal Breeding and Genetics\"\u003c/a\u003e. Join the other course in the programme, \u003ca href=\"https://www.edx.org/course/genetic-models-for-animal-breeding-2\"\u003eGenetic Models for Animal Breeding\u003c/a\u003e, and advance your career as a breeder.\u003c/p\u003e\n\u003cp\u003eThe course is developed with financial support and input from the \u003ca href=\"http://www.koeponstichting.nl/index.php/about-us\" title=\"Koepon Foundation\"\u003eKoepon Foundation\u003c/a\u003e.\u003c/p\u003e"])</script><script>self.__next_f.push([1,"3ab:T469,\u003cp\u003e\u003cspan lang=\"EN-US\"\u003eOne of the most commonly used tools in data science, pandas is a Python library used to load, process, and analyze datasets using SQL-like queries. Pandas offers several advantages, such as data representation, simpler lines of code, and the ability to handle large sets of data. A number of academic and commercial domains, including finance, economics, statistics, web analytics, and other entities, use pandas as part of their data analytics toolkit.\u003c/span\u003e\u003c/p\u003e\n\u003cp\u003eIn this hands-on guided project, you will learn to perform preliminary data analysis and credit risk analysis on a credit card client dataset using the Python library pandas. You will learn how to import required libraries, explore datasets, analyze data, and visualize the dataset. By the end of this project, you will have learned the fundamentals of data analysis using pandas and developed job-ready skills.\u003c/p\u003e\n\u003cp\u003eYou will be provided with access to a Cloud based-IDE which has all of the required software, including Python pandas, pre-installed. All you need is a recent version of a modern web browser to complete this project.\u003c/p\u003e3ac:Ta7f,"])</script><script>self.__next_f.push([1,"\u003cp\u003e\u003cspan lang=\"EN-US\"\u003e“I am a Lieutenant Colonel in passive service of the Ecuadorian Transit Commission and a teacher at Condues (Training School for Professional Drivers) in Guayaquil, and this course allowed me to understand the reality of statistics and the problems at the regional level in Latin America and the Caribbean, as well as the actions and projections to achieve a reduction in traffic crashes in my country and the others around the region.\"\u003c/span\u003e\u003c/p\u003e\n\u003cp\u003eCan you imagine being able to contrast your opinions and experiences with people like Lieutenant Colonel Enrique from Ecuador or other practicing public managers and representatives of Civil Society organizations from all over the region? In this course, you will have that opportunity and also access to videos of international specialists from various organizations (IDB, PAHO / WHO, WRI, LatinNCAP, among others), readings, best practices in the Caribbean region, recommendations, practical activities, and discussion forums.\u003c/p\u003e\n\u003cp\u003eAs traffic crashes are one of the main causes of death in Latin America and the Caribbean, their consequences are immediate and generate a great social and economic burden.\u003c/p\u003e\n\u003cp\u003eBe a part of the change now, and let's make safe mobility a reality!\u003c/p\u003e\n\u003cp\u003eThis course is \"self-paced,\" so you can enroll any time, even if the course has been open for a while. You can take it at the time that is most suitable for you inside the enrollment period of the course.\u003c/p\u003e\n\u003cp\u003eIf you choose the \u003cstrong\u003eAudit Track\u003c/strong\u003e , you will have unlimited access to the course content, but you won't be able to complete the assessed activities or receive the certificate.\u003c/p\u003e\n\u003cp\u003eIf you opt for the \u003cstrong\u003eVerified track\u003c/strong\u003e , you can access the course in an unlimited way and complete the qualified evaluations until the closing date after making a payment of $10. If you pass, in addition to the verified certificate, you will obtain a * \u003cstrong\u003e\u003ca href=\"https://cursos.iadb.org/en/indes/digital-badges\"\u003e\u003cspan lang=\"EN-US\"\u003edigital badge\u003c/span\u003e\u003c/a\u003e\u003c/strong\u003e that allows you to change the way you share your academic and professional achievements, for example, on social media.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan lang=\"EN-US\"\u003e*Did you know there is financial aid to opt for the verified certificate?\u003c/span\u003e\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eedX offers financial assistance for learners who want to earn Verified Certificates but who may not be able to pay the Verified Certificate fee. Subscribe to the course and \u003cstrong\u003e\u003cem\u003e\u003ca href=\"https://courses.edx.org/financial-assistance/apply/\"\u003eapply for financial assistance\u003c/a\u003e\u003c/em\u003e\u003c/strong\u003e.\u003c/p\u003e\n\u003cp\u003eSee more information in the Frequently Asked Questions section below.\u003c/p\u003e"])</script><script>self.__next_f.push([1,"3ad:T972,"])</script><script>self.__next_f.push([1,"\u003cp\u003eRandomness is inherent in all processes including manufacturing. The fundamental concepts taught in this course will help learners develop powerful statistical process control methods that are the foundation of world-class manufacturing quality.\u003c/p\u003e\n\u003cp\u003eAs part of the Principles of Manufacturing MicroMasters program, this course will introduce statistical methods that apply to any unit manufacturing process. We will cover the following topics:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eRecognizing inherent variability in continuous production\u003c/li\u003e\n\u003cli\u003eIdentifying sources of process output variation\u003c/li\u003e\n\u003cli\u003eDescribing variation in a structured manner\u003c/li\u003e\n\u003cli\u003eApplying basic probability and statistics concepts to characterize process variation\u003c/li\u003e\n\u003cli\u003eDifferentiating between design specifications and process capability\u003c/li\u003e\n\u003cli\u003eSynthesizing novel approaches to unfamiliar situations by extending the core material (i.e. go beyond the “standard” uses).\u003c/li\u003e\n\u003cli\u003eAssessing the appropriateness of various statistical methods for a variety of problems\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eDevelop the engineering and management skills needed for competence and competitiveness in today’s manufacturing industry with the Principles of Manufacturing MicroMasters Credential, designed and delivered by MIT’s #1-ranked Mechanical Engineering department in the world. Learners who pass the 8 courses in the program will earn the MicroMasters Credential and qualify to apply to gain credit towards MIT’s Master of Engineering in Advanced Manufacturing \u0026amp; Design program.\u003c/p\u003e\n\u003cp\u003e---\u003c/p\u003e\n\u003cp\u003ePlease note: edX Inc. has recently entered into an \u003ca href=\"https://news.mit.edu/2021/mit-harvard-transfer-edx-2u-0629\"\u003eagreement to transfer the edX platform to 2U, Inc\u003c/a\u003e., which will continue to run the platform thereafter. The sale will not affect your course enrollment, course fees or change your course experience for this offering. It is possible that the closing of the sale and the transfer of the edX platform may be effectuated sometime in the Fall while this course is running. Please be aware that there could be changes to the edX platform Privacy Policy or Terms of Service after the closing of the sale. However, 2U has committed to preserving robust privacy of individual data for all learners who use the platform. For more information see the \u003ca href=\"https://support.edx.org/hc/en-us/articles/4403415754007-edX-and-2U\"\u003eedX Help Center\u003c/a\u003e.\u003c/p\u003e"])</script><script>self.__next_f.push([1,"3ae:T43d,\u003cp\u003eCybersecurity as a profession is projected to grow much faster than the national average for all occupations.1 Want to break into the field?\u003c/p\u003e\n\u003cp\u003eThis beginner-friendly and asynchronous course will help you jumpstart your cybersecurity career. Engage in an online learning experience tailored to your experience level.\u003c/p\u003e\n\u003cp\u003eIn it, you will learn to think like a cyber pro, at your own pace. Study the key elements of the CIA Triad, cryptography basics, and the daily responsibilities of cybersecurity professionals working in the field today.\u003c/p\u003e\n\u003cp\u003eKey concepts covered in this course include:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eCybersecurity\u003c/li\u003e\n\u003cli\u003eCIA Triad\u003c/li\u003e\n\u003cli\u003eCryptography\u003c/li\u003e\n\u003cli\u003ePlaintext\u003c/li\u003e\n\u003cli\u003eCiphertext\u003c/li\u003e\n\u003cli\u003eEncryption\u003c/li\u003e\n\u003cli\u003eDecryption\u003c/li\u003e\n\u003cli\u003eCipher\u003c/li\u003e\n\u003cli\u003eKey\u003c/li\u003e\n\u003cli\u003eCaesar Cipher\u003c/li\u003e\n\u003cli\u003eSymmetric encryption\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eNo prior experience or technical installations is required to join or complete this course.\u003c/p\u003e\n\u003cp\u003eFootnote:\u003c/p\u003e\n\u003cp\u003e1 Occupational Outlook Handbook: Information Security Analysts. (2022). U.S. Bureau of Labor Statistics. March 14, 2023.\u003c/p\u003e3af:T5e1,\u003cp\u003eAlgorithms power the biggest web companies and the most promising startups. Interviews at tech companies start with questions that probe for good algorithm thinking.\u003c/p\u003e\n\u003cp\u003eIn this computer science course, you will learn how to think about algorithms and create them using sorting techniques such as quick sort and merge sort, and searching algorithms, median finding, and order statistics.\u003c/p\u003e\n\u003cp\u003eThe course progresses with Numerical, String, and Geometric algorithms like Polynomial Multiplication, Matrix Operations, GCD, Pattern Matching, Subsequences, Sweep, and Convex Hull. It concludes with graph algorithms like shortest path and spanning tree.\u003c/p\u003e\n\u003cp\u003eTopics covered:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eSorting and Searching\u003c/li\u003e\n\u003cli\u003eNumerical Algorithms\u003c/li\u003e\n\u003cli\u003eString Algorithms\u003c/li\u003e\n\u003cli\u003eGeometric Algorithms\u003c/li\u003e\n\u003cli\u003eGraph Algorithms\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThis course is part of the \u003ca href=\"https://www.edx.org/xseries/fundamentals-computer-science\"\u003eFundamen"])</script><script>self.__next_f.push([1,"tals of Computer Science XSeries Program\u003c/a\u003e:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://www.edx.org/course/programming-basics-iitbombayx-cs101-1x\"\u003eProgramming Basics\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://www.edx.org/course/object-oriented-programming-iitbombayx-cs101-2x\"\u003eObject-Oriented Programming\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://www.edx.org/course/foundations-data-structures-iitbombayx-cs213-1x#!\"\u003eFoundations of Data Structures\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://www.edx.org/course/implementation-data-structures-iitbombayx-cs213-2x\"\u003eImplementation of Data Structures\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e3b0:T6c3,\u003cp\u003eIn this course, part of the Principles of Manufacturing MicroMasters program, you will learn how to analyze manufacturing systems to optimize performance and control cost. You will develop an understanding of seemingly opaque production lines with a particular emphasis on random disruptive events – their effects and how to deal with them, as well as inventory dynamics and management. \u003c/p\u003e\n\u003cp\u003eManufacturing systems are complex and require decision-making skills and analytical analysis. Managers and practitioners use a wide variety of methods to optimize the performance of manufacturing systems and control costs. The many processes and functions involved in building and maintaining these systems demand a high-level of knowledge. \u003c/p\u003e\n\u003cp\u003eIn this course, you will learn about these various methods and processes. We will start with a review of probability and statistics, and then cover topics in linear programming, queueing theory, inventory management and the Toyota Production System (TPS). Lastly, we will introduce stochastic manufacturing systems models developed here at MIT. \u003c/p\u003e\n\u003cp\u003eThe topics covered will provide the basis for learners to continue into the manufacturing field in such roles as an operations manager or supply chain manager. \u003c/p\u003e\n\u003cp\u003eDevelop the skills needed for competence and competitiveness in today’s manufacturing industry with the Principles of Manufacturing MicroMasters Credential, designed and delivered by MIT’s #1-ranked Mechan"])</script><script>self.__next_f.push([1,"ical Engineering department in the world. Learners who pass the 8 courses in the program will earn the MicroMasters Credential and qualify to apply to gain credit towards MIT’s Master of Engineering in Advanced Manufacturing \u0026amp; Design program.\u003c/p\u003e3b1:T401,\u003cp\u003eLaTeX, a document preparation system, is widely used for publishing in many scientific fields like mathematics, statistics, computer science, engineering, chemistry, physics, economics, linguistics, etc.. It is a powerful and open-source system that provides numerous facilities for automating typesetting of the document: i.e. structuring page layout, listing and auto-numbering of sections, tables, figures, generating a table of contents, managing cross-referencing, citing, and indexing. \u003c/p\u003e\n\u003cp\u003eUnlike other WYSIWYG editors, the content is written in plain text along with appropriate commands, thus, allowing the user to concentrate on the content rather than the aesthetics (the way it looks). The TeX typesetting program which LaTeX uses, was designed such that anyone can create good quality material with less efforts. \u003c/p\u003e\n\u003cp\u003eThis course introduces the basic concepts of LaTeX. Participants taking this course will be able to create and design documents in LaTeX and presentations in Beamer with confidence.\u003c/p\u003e3b2:T502,\u003cp\u003eThis is an introductory course on options and other financial derivatives, and their applications to risk management. We will start with discrete-time, binomial trees models, but most of the course will be in the framework of continuous-time, Brownian Motion driven models. A basic introduction to Stochastic, Ito Calculus will be given. The benchmark model will be the Black-Scholes-Merton pricing model, but we will also discuss more general models, such as stochastic volatility models. We will discuss both the Partial Differential Equations approach, and the probabilistic, martingale approach. We will also cover an introduction to modeling of interest rates and fixed income derivatives.\u003c/p\u003e\n\u003cp\u003eI teach the same class at Caltech, as an advance"])</script><script>self.__next_f.push([1,"d undergraduate class. This means that the class may be challenging, and demand serious effort. On the other hand, successful completion of the class will provide you with a full understanding of the standard option pricing models, and will enable you to study the subject further on your own, or otherwise. You should have a working knowledge of basic calculus, statistics, and probability and be interested in the use of mathematical modeling. Please go to Unit 0 in the Course Outline to take the prerequisites assessment.\u003c/p\u003e3b3:T4cc,\u003cp\u003eLinear algebra is at the core of all of modern mathematics, and is used everywhere from statistics and data science, to economics, physics and electrical engineering. However, learning the subject is not principally about acquiring computational ability, but is more a matter of fluency in its language and theory.\u003c/p\u003e\n\u003cp\u003eIn this course, we will start with systems of linear equations, and connect them to vectors and vector spaces, matrices, and linear transformations. We will be emphasizing the vocabulary throughout, so that students become comfortable working with the different aspects.\u003c/p\u003e\n\u003cp\u003eWe will then introduce matrix and vector operations such as matrix multiplication and inverses, paying particular attention to their underlying purposes. Students will learn not just how to calculate them, but also why they work the way that they do.\u003c/p\u003e\n\u003cp\u003eWe willdiscuss the key concepts of basis and dimension, which form the foundation for many of the more advanced concepts of linear algebra.\u003c/p\u003e\n\u003cp\u003eThe last chapter concerns inner products, which allow us to use linear algebra for approximating solutions; we will see how this allows for applications ranging from statistics and linear regression to digital audio.\u003c/p\u003e3b4:T605,\u003cp\u003eOur capacity to collect and store data has exponentially increased, but deriving information from data from a scientific perspective requires a foundational knowledge of probability.\u003c/p\u003e\r\n\u003cp\u003eAre you interested in a career in the emerging data science field, or as an act"])</script><script>self.__next_f.push([1,"uarial scientist? Or want better to understand statistical theory and mathematical modeling?\u003c/p\u003e\r\n\u003cp\u003eIn this statistics and data analysis course, we will provide an introduction to mathematical probability to help meet your career goals in the exciting new areas becoming known as information science.\u003c/p\u003e\r\n\u003cp\u003eIn this course, we will first introduce basic probability concepts and rules, including Bayes theorem, probability mass functions and CDFs, joint distributions and expected values.\u003c/p\u003e\r\n\u003cp\u003eThen we will discuss a few important probability distribution models with discrete random variables, including Bernoulli and Binomial distributions, Geometric distribution, Negative Binomial distribution, Poisson distribution, Hypergeometric distribution and discrete uniform distribution.\u003c/p\u003e\r\n\u003cp\u003eTo continue learning about probability, enroll in \u003ca href=\"https://prod-edx-mktg-edit.edx.org/course/probability-distribution-models-purduex-416-2x#!\"\u003eProbability: Distribution Models \u0026amp; Continuous Random Variables\u003c/a\u003e, which covers continuous distribution models, central limit theorem and more.\u003c/p\u003e\r\n\r\n\u003cp\u003eThe Center for Science of Information, a National Science Foundation Center, supports learners by offering free educational resources in information science.\u003c/p\u003e3b5:T6e0,\u003cp\u003e\u003cspan lang=\"EN-US\"\u003eCustomer satisfaction is central for the long term survival of any customer oriented business entity. Understanding its target customers, their composition, emotions, requirements, likes and dislikes, are some of the essential enablers for any organization in developing offerings, which will build a brand and ensure its customers’ loyalty. And when we talk of ‘understanding’ we talk of ‘empathy’. So, empathy is defined as the action of understanding, being sensitive and vicariously experiencing the feelings, thoughts and experience of another person. It allows to step in someone else’s shoes and understand the emotions that other is feeling. Empathy can be practised at the organizational level and at individual (delivery point)"])</script><script>self.__next_f.push([1," level. At both levels, it will help to show the customer that they are valued and their concerns matter. \u003c/span\u003e\u003cspan lang=\"EN-US\"\u003e\u003c/span\u003e\u003c/p\u003e\n\u003cp\u003eAs per a 2020 statistics of US customer service, 89% of the companies compete on the quality of customer service alone and 48% of customers have stopped doing business with a company after poor experience. Hence, the need for providing good customer experience on a sustained basis, cannot be overemphasized. Empathy will help in understanding the customer needs, developing tailor-made products and improving the delivery channels. \u003cspan lang=\"EN-US\"\u003eThus empathy can play an important role in enhancing customer service and can be effectively used as a powerful tool for overall business development. \u003c/span\u003e\u003cspan lang=\"EN-US\"\u003e\u003c/span\u003e\u003c/p\u003e\n\u003cp\u003eThe course is designed to provide better understanding of various types of empathy and their application to different situations at work place, to achieve higher levels of customer satisfaction.\u003c/p\u003e3b6:T412,\u003cp\u003eIn this statistics and data analysis course, you will learn about continuous random variables and some of the most frequently used probability distribution models including, exponential distribution, Gamma distribution, Beta distribution, and most importantly, normal distribution.\u003c/p\u003e\r\n\u003cp\u003eYou will learn how these distributions can be connected with the Normal distribution by Central limit theorem (CLT). We will discuss Markov and Chebyshev inequalities, order statistics, moment generating functions and transformation of random variables.\u003c/p\u003e\r\n\u003cp\u003eThis course along with the recommended pre-requisite,\u003ca href=\"https://www.edx.org/course/probability-basic-concepts-discrete-purduex-416-1x\"\u003eProbability: Basic Concepts \u0026amp; Discrete Random Variables\u003c/a\u003e,will you give the skills and knowledge to progress towards an exciting career in information and data science.\u003c/p\u003e\r\n\r\n\u003cp\u003eThe Center for Science of Information, a National Science Foundation Center, supports learners by offering free educational resources in information science.\u003c/p\u003e3b7:T4d1"])</script><script>self.__next_f.push([1,",\u003cp\u003e\u003cspan lang=\"EN-US\"\u003eOne of the most commonly used tools in data science, pandas is a Python library used to load, process, and analyze datasets using SQL-like queries. Pandas offers several advantages, such as data representation, simpler lines of code, and the ability to handle large sets of data. A number of academic and commercial domains, including finance, economics, statistics, web analytics, and other entities, use pandas as part of their data analytics toolkit.\u003c/span\u003e\u003cspan lang=\"EN-US\"\u003e\u003c/span\u003e\u003cspan lang=\"EN-US\"\u003e\u003c/span\u003e\u003c/p\u003e\n\u003cp\u003eIn this hands-on guided project, you will learn to perform preliminary data analysis and credit risk analysis on a credit card client dataset using the Python library pandas. You will learn how to import required libraries, explore datasets, analyze data, and visualize the dataset. By the end of this project, you will have learned the fundamentals of data analysis using pandas and developed job-ready skills.\u003cspan lang=\"EN-US\"\u003e\u003c/span\u003e\u003cspan lang=\"EN-US\"\u003e\u003c/span\u003e\u003c/p\u003e\n\u003cp\u003eYou will be provided with access to a Cloud based-IDE which has all of the required software, including Python pandas, pre-installed. All you need is a recent version of a modern web browser to complete this project.\u003c/p\u003e3b8:T4d0,\u003cp\u003eIn this course you will learn to use some mathematical tools that can help predict and analyze sporting performances and outcomes. This course will help coaches, players, and enthusiasts to make educated decisions about strategy, training, and execution. We will discuss topics such as the myth of the Hot Hand and the curse of the Sports Illustrated cover; how understanding data can improve athletic performance; and how best to pick your Fantasy Football team. We will also see how elementary Calculus provides insight into the biomechanics of sports and how game theory can help improve an athlete’s strategy on the field. \u003c/p\u003e\n\u003cp\u003eIn this course you will learn:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eHow a basic understanding of probability and statistics can be used to analyze sports and other real life situations.\u003c/li"])</script><script>self.__next_f.push([1,"\u003e\n\u003cli\u003eHow to model physical systems, such as a golf swing or a high jump, using basic equations of motion.\u003c/li\u003e\n\u003cli\u003eHow to best pick your Fantasy Football, March Madness, and World Cup winners by using ranking theory to help you determine athletic and team performance. \u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eBy the end of the course, you will have a better understanding of math, how math is used in the sports we love, and in our everyday lives.\u003c/p\u003e3b9:T682,\u003cp\u003eThe skills and expertise required for a career in finance are in high demand across countless industries. From asset management, to corporations, to official institutions, the career opportunities for qualified finance professionals continue to grow and evolve. For example, demand for financial analysts is predicted to grow at a faster than average rate of 11% through 2026 (\u003ca href=\"https://www.thebalancecareers.com/top-jobs-for-finance-majors-2064048\"\u003eSource\u003c/a\u003e). And according to Glassdoor, the median salary of a quantitative financial analyst was $106,575. (\u003ca href=\"https://www.wallstreetmojo.com/quantitative-financial-analyst/\"\u003eSource\u003c/a\u003e)\u003c/p\u003e\r\n\r\n\u003cp\u003eThe MITx MicroMasters® Program in Finance offers recent graduates, early to mid-stage professionals, and other individuals interested in pursuing a career in finance, an opportunity to advance in the finance field or fast-track an MIT Sloan Master of Finance through a rigorous, comprehensive online curriculum, delivered by the world-renowned MIT Sloan School of Management.\u003c/p\u003e \r\n\r\n\u003cp\u003eDrawn from the STEM-based curriculum taught on campus, all five online courses in this program mirror on-campus graduate-level MIT coursework and cover the following topics: modern finance, financial accounting, mathematical methods for quantitative finance, and derivatives markets. Learners who complete and pass each course in this online program may earn a MicroMasters program certificate in finance, and are considered affiliate members of the MIT Alumni Association. Those learners are eligible to apply to the MIT Sloan Master of Finance and upon acce"])</script><script>self.__next_f.push([1,"ptance, earn credit for the work performed online.\u003c/p\u003e3ba:T420,\u003cp\u003e\u003cimg style=\"max-height:175px\" align=\"right\" alt=\"\" src=\"https://www.edx.org/sites/default/files/edx-prize-logo-2018-nominee.png\"/\u003eGain expertise in the growing field of Supply Chain Management through an innovative online program consisting of five courses and a final capstone exam. The MicroMasters Program in Supply Chain from MITx is an advanced, professional, graduate-level foundation in Supply Chain Management. It represents the equivalent of one semester's worth of coursework at MIT.\u003c/P\u003e \r\n\r\n\u003cp\u003eThe MicroMasters program certificate will showcase your understanding of supply chain analytics, design, technology, dynamics and end-to-end supply chain management. Build on the program certificate and take advantage of a great opportunity to be accepted into the #1 ranked supply chain management Masters Degree program for a fraction of the cost.\u003c/P\u003e\r\n\r\n\u003cp\u003e\u003cb\u003e\u003ci\u003ePlease be advised that certain courses in the program may require online proctoring for assessments. Specific details will be provided at the start of the given course.\u003c/p\u003e\u003c/b\u003e\u003c/i\u003e3bb:T4a7,\u003cp\u003eMaking good business decisions can make or break an entrepreneur. This business and management XSeries, brought to you by Babson College, the #1 school in Entrepreneurship (U.S. News \u0026 World Report), will explore topics such as financial accounting, analytics, customer behavior, and strategy all with the lens of an entrepreneur who has to make critical decisions for the success of the business. \u003c/p\u003e\r\n\u003cp\u003eWhether you are contributing to the strategy and development of your company, starting your own business, or working for a non-profit, this series will prepare you to make better, more informed decisions and contribute to the success and health of the organization. Before we begin with some of these core business concepts, we will define what entrepreneurial thinking is and discover some key methodologies to help with these decisions. \u003c/p\u003e\r\n\u003cp\u003eThis XSeries is targeted at:\u003c/p\u003e\r\n\u003cul\u003e\r\n\u003cli\u003eLearners inter"])</script><script>self.__next_f.push([1,"ested in starting their own business.\u003c/li\u003e\r\n\u003cli\u003eLearners who want to or are asked to contribute to the decisions of any organization.\u003c/li\u003e\r\n\u003cli\u003eLearners who are ready to move forward in his or her organization.\u003c/li\u003e\r\n\u003cli\u003eLearners who are ready to take action!\u003c/li\u003e\r\n\u003c/ul\u003e3bc:T520,\u003cp\u003eIn today’s data-driven landscape, proficiency in data analytics and visualization is indispensable for professionals across industries. These skills equip employees with the ability to meaningfully contribute to an organization’s insights by empowering them to make well-informed decisions and identify key trends. Data-driven insights can streamline operations by identifying bottlenecks, optimizing processes, and reducing inefficiencies.\u003c/p\u003e\r\n\r\n\u003cp\u003eData isn’t only about specific insights though. Looking at data sparks innovation and explores areas of untapped potential. Using a systematic approach to problem-solving, employees can more readily identify root causes of issues in order to enhance transparency and accountability. When decisions are based on data, employees understand the rationale behind choices and can take ownership of their roles.\u003c/p\u003e\r\n\r\n\u003cp\u003eThis self-paced, online certificate consists of four courses that position professionals to understand and present meaningful data. Each course features interactive videos to help you understand both the analytical concepts and the software utilized. You will apply the concepts taught using a separate data source in order to practice and gain the confidence necessary to connect, explore, and analyze data sources into the future.\u003c/p\u003e3bd:T6d5,\u003cp\u003eIn the last two centuries, humanity's average wealth has increased tenfold, while at the same time, child mortality has fallen tenfold. Yet, hundreds of millions of people still earn less than $2 a day, animal cruelty is worse than ever, and risks from climate change, pandemics, and artificial intelligence appear to be on the rise. Many of us care about these issues, but can we do anything about them?\u003c/p\u003e\r\n\r\n\u003cp\u003eThis interdisciplinary progra"])</script><script>self.__next_f.push([1,"m will provide you with a collection of practical tools from economics, public health, behavioral science, ethics, exact sciences, technology, the life sciences, and more to help you achieve a positive and significant impact. From the small decisions we make every day, through the initiatives we choose to support, to our most significant life choices, such as what career to pursue, relying on evidence and analytical methodologies can help you drive a change you believe in.\u003c/p\u003e\r\n\r\n\u003cp\u003eOur program is divided into two courses:\r\nThe first, \u003ca href=\"https://edx.org/learn/ethics/tel-aviv-university-making-a-difference-i-evidence-based-impact\"\u003eMaking a Difference Ⅰ: Evidence-based Impact\u003c/a\u003e, focuses on the foundations of cost-effectiveness, measurement, evaluation, and key questions around who to extend our compassion and concern towards. We’ll also explore some of the causes and opportunities with the strongest evidence for impact.\u003c/p\u003e\r\n\r\n\u003cp\u003eThe second course, \u003ca href=\"https://edx.org/learn/ethics/tel-aviv-university-making-a-difference-ii-high-stakes\"\u003eMaking a Difference Ⅱ: High Stakes\u003c/a\u003e, explores tools for prioritization and assessment when there’s limited information and the stakes are extremely high - including risks to the survival and prosperity of human civilization.\u003c/p\u003e3be:T574,\u003cp\u003eEl curso que se propone es ideal para investigadores y alumnos que se encuentren cursando trabajos de fin de grado, trabajos de fin de máster o realizando tesis, así como todos aquellos del área de la administración que quieran realizar un análisis cuantitativo o cualitativo en sus estudios. El curso pretende acercar al alumno al método científico y, en concreto, cómo éste se viene aplicando al estudio y análisis de los métodos de casos.\u003c/p\u003e\n\u003cp\u003eEl curso pretende construir una base básica-inicial en los principios estadísticos, econométricos y metodológicos generales que permitan a los alumnos desarrollar un análisis completo desde el diseño de la investigación, la preparación de los datos, segmentación y "])</script><script>self.__next_f.push([1,"codificación, hasta la obtención de resultados y respuestas a las preguntas de investigación. El curso enfatiza el método científico y el sistema de análisis de datos guiados por un modelo que pone énfasis en la descripción del punto de vista del participante, la generación entre las unidades de datos y el proceso de interpretación.\u003c/p\u003e\n\u003cp\u003eUnidades:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eFuentes de Información para la Investigación\u003c/li\u003e\n\u003cli\u003eManejo de Paquetes Estadísticos\u003c/li\u003e\n\u003cli\u003eModelos Econométricos\u003c/li\u003e\n\u003cli\u003eAnálisis e Interpretación de Datos\u003c/li\u003e\n\u003cli\u003eProcesos de Investigación Cualitativa\u003c/li\u003e\n\u003cli\u003eÉtica en la Investigación\u003c/li\u003e\n\u003cli\u003eExamen Final\u003c/li\u003e\n\u003c/ul\u003e3bf:T710,\u003cp\u003eEste \u003cstrong\u003ecurso en línea\u003c/strong\u003e brinda una introducción al \u003cstrong\u003eanálisis de datos para business intelligence\u003c/strong\u003e. Aprenderás de herramientas y técnicas de estadística descriptiva e inferencial. Serás capaz de analizar data y gráficos para transformarla en información de valor que te permita obtener \u003cstrong\u003ecriterios para la toma de decisiones.\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eCon este curso podrás \u003cstrong\u003eutilizar datos para cumplir objetivos concretos como\u003c/strong\u003e :\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eDescubrir quién es el cliente que representa mayor valor para la empresa\u003c/li\u003e\n\u003cli\u003eIdentificar cómo controlar los gastos\u003c/li\u003e\n\u003cli\u003eIdentificar cómo hacer más rápida la cadena de producción\u003c/li\u003e\n\u003cli\u003eSaber que esperar sobre un producto que acaba de ser lanzado al mercado\u003c/li\u003e\n\u003cli\u003eConocer cómo afecta determinado evento en las ventas\u003c/li\u003e\n\u003cli\u003eSaber cuál es el producto menos rentable para eliminarlo del portafolio\u003c/li\u003e\n\u003cli\u003eIdentificar las mejores epocas para hacer esfuerzos de posicionamiento de determinado producto\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eTendrás dominio de los conceptos básicos y aprenderás a utilizar \u003cstrong\u003eestimadores\u003c/strong\u003e , histogramas, \u003cstrong\u003eescalas de medición\u003c/strong\u003e , varianza, desviación estandar, probabilidad normal, probabilidad informal, valor esperado de una variable aleatoria, \u003cstrong\u003eintervalos de confianza\u003c/strong\u003e , distribución de Poisson y más.\u003c/p"])</script><script>self.__next_f.push([1,"\u003e\n\u003cp\u003eEste es el primer curso del \u003cstrong\u003ePrograma de Certificación Profesional\u003c/strong\u003e \u003cstrong\u003ede Inteligencia de Negocios\u003c/strong\u003e. El segundo curso es sobre \u003cstrong\u003eHerramientas de Business Intelligence\u003c/strong\u003e. Te recomendamos completar ambos para que adquieras conocimiento teórico y experiencia práctica. Tendrás el respaldo de la experiencia de \u003cstrong\u003eJorge Samayoa, Ph.D. por la Universidad de Purdue.\u003c/strong\u003e\u003c/p\u003e3c0:T599,\u003cul\u003e\n\u003cli\u003eCómo realizar un análisis de datos con Excel\u003c/li\u003e\n\u003cli\u003eCómo usar estadística inferencial en empresas\u003c/li\u003e\n\u003cli\u003ePor qué realizar pruebas de hipótesis y cómo hacerlas\u003c/li\u003e\n\u003cli\u003eCómo entender el análisis de regresión y aplicarlo a casos reales\u003c/li\u003e\n\u003cli\u003eCómo estimar intervalos de confianza en una empresa o negocio\u003c/li\u003e\n\u003cli\u003eCómo usar escalas de medición, distribución de frecuencia, representaciones gráficas, datos cualitativos, datos cuantitativos\u003c/li\u003e\n\u003cli\u003eCómo calcular y aplicar las medidas estadísticas de tendencia central\u003c/li\u003e\n\u003cli\u003eDiferencia entre variables aleatorias discretas y continuas, cómo usarlas y cómo determinar un valor esperado\u003c/li\u003e\n\u003cli\u003eAplicar la distribución de probabilidad continua\u003c/li\u003e\n\u003cli\u003eCuáles son los fundamentos de estadística descriptiva y de probabilidad uniforme, exponencial, binomial\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cstrong\u003eLo que no puedes dejar pasar\u003c/strong\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ePracticarás con ejercicios para aplicar la teoría a negocios reales\u003c/li\u003e\n\u003cli\u003eAprenderás a utilizar Excel para utilizar inteligencia de negocios\u003c/li\u003e\n\u003cli\u003eContarás con la guía de un PhD en el campo para recibir conocimiento de valor previamente utilizado y actualizado\u003c/li\u003e\n\u003cli\u003eTendrás acceso a videos guiados para aprender paso a paso y de forma sencilla desde los conceptos más básicos hasta los más especializados\u003c/li\u003e\n\u003cli\u003eAccederás a una red de contactos de profesionales para hacer networking\u003c/li\u003e\n\u003c/ul\u003e3c1:T5e1,\u003cp\u003e¿Quieres ser capaz de valorar de forma analítica a Cristiano Ronaldo o a Fernando Torres usando el Proceso Analítico Jerárquico (AHP), método empleado a nivel mu"])</script><script>self.__next_f.push([1,"ndial para la valoración de todo tipo de activos?\u003c/p\u003e\n\u003cp\u003eEl mundo del deporte mueve miles de millones de euros, muchos de los cuales se invierten en los traspasos de deportistas entre equipos. La valoración de futbolistas es tema complejo en el que influyen muchas variables con relaciones complejas.\u003c/p\u003e\n\u003cp\u003eEn el curso aprenderás a utilizar herramientas que permiten seleccionar de una forma objetiva el mejor jugador para una posición dada o estimar el valor del traspaso de un jugador utilizando las cantidades pagadas por jugadores similares en operaciones recientes.\u003c/p\u003e\n\u003cp\u003eEl contenido del curso es el siguiente:\u003c/p\u003e\n\u003cp\u003eUnidad 1: El mundo del deporte y la valoración\u003cbr /\u003e\nUnidad 2: El proceso analítico jerárquico (AHP)\u003cbr /\u003e\nUnidad 3: Aplicación de AHP a la valoración de deportistas\u003cbr /\u003e\nUnidad 4: Ejemplos\u003c/p\u003e\n\u003cp\u003eEste curso está actualmente en modo autónomo o “self-paced”. ¿Qué significa esto? Que puedes empezarlo cuando quieras y seguirlo a tu ritmo ya que no hay fecha prevista de cierre y cada 6-8 semanas se generarán certificados a aquellos que lo hayan superado. Por otro lado los profesores participarán algo menos en los foros, seguirás teniendo soporte por su parte pero es posible que tarde algo más en contestar tus dudas. \u003c/p\u003e\n\u003cp\u003eThis course is taught in Spanish with English subtitles.\u003c/p\u003e3c2:T46f,\u003cp\u003eIn the first half of this course, we'll investigate DNA replication, and ask the question, where in the genome does DNA replication begin? You will learn how to answer this question for many bacteria using straightforward algorithms to look for hidden messages in the genome. \u003c/p\u003e\r\n\u003cp\u003eIn the second half of the course, we'll examine a different biological question, and ask which DNA patterns play the role of molecular clocks. The cells in your body manage to maintain a circadian rhythm, but how is this achieved on the level of DNA? Once again, we will see that by knowing which hidden messages to look for, we can start to understand the amazingly complex language of DNA. Perhaps surprisingly, "])</script><script>self.__next_f.push([1,"we will apply randomized algorithms to solve problems. \u003c/p\u003e\r\n\u003cp\u003eFinally, you will get your hands dirty and apply existing software tools to find recurring biological motifs within genes that are responsible for helping Mycobacterium tuberculosis go \"dormant\" within a host for many years before causing an active infection. \u003c/p\u003e\r\n\u003cp\u003eThis course begins a series of classes illustrating the power of computing in modern biology.\u003c/p\u003e3c3:T477,\u003cp\u003eAlgorithmics and programming are fundamental skills for engineering students, data scientists and analysts, computer hobbyists or developers.\u003c/p\u003e\n\u003cp\u003eLearning how to program algorithms can be tedious if you aren’t given an opportunity to immediately practice what you learn. In this course, you won't just focus on theory or study a simple catalog of methods, procedures, and concepts. Instead, you’ll be given a challenge wherein you'll be asked to beat an algorithm we’ve written for you by coming up with your own clever solution.\u003c/p\u003e\n\u003cp\u003eTo be specific, you’ll have to work out a route faster than your opponent through a maze while picking up objects.\u003c/p\u003e\n\u003cp\u003eEach week, you will learn new material to improve your artificial intelligence in order to beat your opponent. This structure means that as a learner, you’ll confront each abstract notion with a real-world problem.\u003c/p\u003e\n\u003cp\u003eWe’ll go over data-structures, basic and advanced algorithms for graph theory, complexity/accuracy trade-offs, and even combinatorial game theory.\u003c/p\u003e\n\u003cp\u003eThis course has received financial support from the Patrick and Lina Drahi Foundation.\u003c/p\u003e3c4:T429,\u003cp\u003eWith the continuous generation of massive amounts of biomedical data on a daily basis, whether from research laboratories or clinical labs, we need to improve our ability to understand and analyze the data in order to take full advantage of its power in scientific discoveries and patient care. For non-bioinformaticians, “handling” big data remains a daunting task. This course was designed to facilitate the understanding, analysis, and interpret"])</script><script>self.__next_f.push([1,"ation of biomedical big data to those in the biomedical field with limited or no significant experience in bioinformatics. The goal of this course is to “demystify” the process of analyzing biomedical big data through a series of lectures and online hands-on training sessions and demos. You will learn how to use publicly available online resources and tools for genomic, transcriptomic, and proteomic data analysis, as well as other analytic tools and online resources. This course is funded by a research grant from the US National Institutes of Health (NIH)-Big Data to Knowledge (BD2K) Initiative.\u003c/p\u003e3c5:T94b,"])</script><script>self.__next_f.push([1,"\u003cp\u003eEl mercado laboral actual demanda \u003cstrong\u003ehabilidades de inteligencia de negocios\u003c/strong\u003e. Para ello, te guiaremos a través de dos cursos en los que aprenderás \u003cstrong\u003ecómo cumplir objetivos empresariales \u003c/strong\u003ecomo: reducir costos, analizar datos, optimizar operaciones, anticipar demanda, tomar decisiones acertadas y obtener información valiosa de tus clientes. Todo, a partir de data que habrás sabido extraer, recolectar, integrar, depurar y analizar. Podrás integrar datos a repositorios y convertirlos en información de valor. Sabrás cómo usar herramientas y software de business intelligence. \u003c/p\u003e\r\n\r\n\u003cp\u003eEste \u003cstrong\u003e Programa de Certificación Profesional en Business Intelligence \u003c/strong\u003e está compuesto de dos cursos desarrollados por \u003cstrong\u003e Jorge Samayoa, Ph.D. por la Universidad de Purdue \u003c/strong\u003e. Tendrás el respaldo de su experiencia como consultor en big data, Director de la Maestría de Investigación de Operaciones en Universidad Galileo y docente universitario.\u003c/p\u003e\r\n\r\n\u003cp\u003eEl primer curso online de \u003cstrong\u003eestadística aplicada a negocios \u003c/strong\u003ete dará acceso a videos, ejemplos profesionales y ejercicios prácticos. Te permitirá conocer \u003cstrong\u003e criterios para tomar decisiones \u003c/strong\u003ea partir del análisis de datos e información relevante. Iniciarás utilizando herramientas como \u003cstrong\u003eExcel \u003c/strong\u003epara el análisis de datos y serás capaz de utilizar probabilidad, de trabajar con estimadores, de utilizar econometría y de realizar análisis regresional.\u003c/p\u003e\r\n\r\n\u003cp\u003eEn el segundo \u003cstrong\u003ecurso \u003c/strong\u003e aprenderás sobre decision making: \u003cstrong\u003ecómo tomar decisiones empresariales a partir de datos. \u003c/strong\u003eSerás capaz de utilizar sistemas para recolectar datos (OLAP), modelos para tomar de decisiones, sistemas de soporte para la toma de decisiones (DSS), buenas prácticas de inteligencia de negocios, herramientas y software. Podrás utilizar \u003cstrong\u003ePower BI como herramienta de inteligencia de negocios \u003c/strong\u003e. Tendrás acceso a tutoriales guiados y casos prácticos aplicados a negocios para reforzar tu conocimiento.\u003c/p\u003e\r\n\r\n\u003cp\u003eEste es tu momento de \u003cstrong\u003eavanzar profesional. \u003c/strong\u003e Anímate a inscribirte en los dos cursos del \u003cstrong\u003e Programa de Certificación Profesional en Inteligencia de Negocios \u003c/strong\u003e. Notarás un \"antes\" y un \"después\" en tu carrera profesional.\u003c/p\u003e"])</script><script>self.__next_f.push([1,"3c6:T68d,\u003cp\u003eThis is an introductory-level course in supervised learning, with a focus on regression and classification methods. The syllabus includes: linear and polynomial regression, logistic regression and linear discriminant analysis; cross-validation and the bootstrap, model selection and regularization methods (ridge and lasso); nonlinear models, splines and generalized additive models; tree-based methods, random forests and boosting; support-vector machines; neural networks and deep learning; survival models; multiple testing. Some unsupervised learning methods are discussed: principal components and clustering (k-means and hierarchical).\u003c/p\u003e\n\u003cp\u003eThis is not a math-heavy class, so we try and describe the methods without heavy reliance on formulas and complex mathematics. We focus on what we consider to be the important elements of modern data science. Computing in this course is done in Python. There are lectures devoted to Python, giving tutorials from the ground up, and progressing with more detailed sessions that implement the techniques in each chatper. We also offer the separate and original version of this course called \u003ca href=\"https://www.edx.org/learn/statistics/stanford-university-statistical-learning\" rel=\"noopener\" target=\"_blank\"\u003eStatistical Learning with R\u003c/a\u003e – the chapter lectures are the same, but the lab lectures and computing are done using R.\u003c/p\u003e\n\u003cp\u003eThe lectures cover all the material in An Introduction to Statistical Learning, with Applications in Python by James, Witten, Hastie, Tibshirani, and Taylor (Springer, 2023. The pdf for this book is available for free on the \u003ca href=\"https://www.statlearning.com/\"\u003ebook website\u003c/a\u003e.\u003c/p\u003e3c7:T68d,\u003cp\u003eThis is an introductory-level course in supervised learning, with a focus on regression and classification methods. The syllabus includes: linear and polynomial regression, logistic regression and linear discriminant analysis; cross-validation and the bootstrap, model selection and regularization methods (ridge and lasso); nonlinear models, splines"])</script><script>self.__next_f.push([1," and generalized additive models; tree-based methods, random forests and boosting; support-vector machines; neural networks and deep learning; survival models; multiple testing. Some unsupervised learning methods are discussed: principal components and clustering (k-means and hierarchical).\u003c/p\u003e\n\u003cp\u003eThis is not a math-heavy class, so we try and describe the methods without heavy reliance on formulas and complex mathematics. We focus on what we consider to be the important elements of modern data science. Computing is done in R. There are lectures devoted to R, giving tutorials from the ground up, and progressing with more detailed sessions that implement the techniques in each chapter. We also offer a separate version of the course called \u003ca href=\"https://www.edx.org/learn/data-analysis-statistics/stanford-university-statistical-learning-with-python\" rel=\"noopener\" target=\"_blank\"\u003eStatistical Learning with Python\u003c/a\u003e – the chapter lectures are the same, but the lab lectures and computing are done using Python.\u003c/p\u003e\n\u003cp\u003eThe lectures cover all the material in An Introduction to Statistical Learning, with Applications in R (second addition) by James, Witten, Hastie and Tibshirani (Springer, 2021). The pdf for this book is available for free on the \u003ca href=\"https://www.statlearning.com/\"\u003ebook website\u003c/a\u003e.\u003c/p\u003e3c8:T47c,\u003cp\u003eLinear regression is commonly used to quantify the relationship between two or more variables. It is also used to adjust for confounding. This course, part ofour\u003ca href=\"https://www.edx.org/professional-certificate/harvardx-data-science\"\u003eProfessional Certificate Program in Data Science\u003c/a\u003e, covers how to implement linear regression and adjust for confounding in practice using R. \u003c/p\u003e\n\u003cp\u003eIn data science applications, it is very common to be interested in the relationship between two or more variables. The motivating case study we examine in this course relates to the data-driven approach used to construct baseball teams described in Moneyball. We will try to determine which measured outcomes best predict"])</script><script>self.__next_f.push([1," baseball runs by using linear regression. \u003c/p\u003e\n\u003cp\u003eWe will also examine confounding, where extraneous variables affect the relationship between two or more other variables, leading to spurious associations. Linear regression is a powerful technique for removing confounders, but it is not a magical process. It is essential to understand when it is appropriate to use, and this course will teach you when to apply this technique.\u003c/p\u003e3c9:T429,\u003cp\u003eIdentifying effective policies is a process of trial and error, innovation and experimentation, success and failure. This course provides the basic scientific and statistical tools needed to identify whether a policy or program is generating impact. Organized into modules, the course covers topics ranging from the attribution problem to what is meant by statistical significance (margin of error) to the analysis of data generated by a randomized control trial. The course also helps answer practical questions related to impact evaluation, such as how large of a sample is needed and what can be done when compliance with an experimental design is imperfect or when data is missing for part of the sample.\u003c/p\u003e\n\u003cp\u003eThis course was created collaboratively by Georgetown University and the World Bank's Strategic Impact Evaluation Fund with support from the Georgetown Center for New Designs in Learning and Scholarship, Georgetown University Initiative of Innovation, Development and Evaluation (gui2de), and The Open Learning Campus of the World Bank Group.\u003c/p\u003e3ca:T496,\u003cp\u003eEconomic development is a process of trial and error, innovation and experimentation, success and failure. Given the right institutions, some not unfavorable resource endowments, and a bit of luck, incomes can grow, health can improve, and human development can flourish; other times, things don’t turn out so well.\u003c/p\u003e\n\u003cp\u003eGiven the urgency of development challenges, it is imperative that we learn quickly from our mistakes and build robustly on our successes. The hope is that by understanding what kinds of innovations and p"])</script><script>self.__next_f.push([1,"olicies “work” to improve the lives of the deprived and vulnerable, and how they work, we might be better placed to accelerate the process of development more generally. But how can policy makers and international development practitioners be sure they’re “making a difference?”\u003c/p\u003e\n\u003cp\u003eThis course was created collaboratively by Georgetown University and the World Bank's Strategic Impact Evaluation Fund with support from the Georgetown Center for New Designs in Learning and Scholarship, Georgetown University Initiative of Innovation, Development and Evaluation (gui2de), and The Open Learning Campus of the World Bank Group.\u003c/p\u003e3cb:T56f,\u003cp\u003eIn this course, you will learn about some of the advanced skills you will need for real-world healthcare data analysis. You will continue to practice these skills using the statistical programming software called R and examples from the healthcare industry. The topics covered in this course will help you to engage in the more advanced data wrangling that is often necessary for data analysis and to make data-informed decisions in the healthcare field. While the course focuses on application and the use of these statistical methods, there is some discussion of the mathematical underpinning, relevant formulae, and assumptions necessary for understanding the application of statistical methods. \u003c/p\u003e\n\u003cp\u003eThis self-paced course is comprised of written content, video content, step-by-step follow-along activities, and assessments to reinforce your learning (Assessments available to Verified Track learners only). \u003c/p\u003e\n\u003cp\u003eThe course is comprised of 6 modules that you should complete in order, as each subsequent module builds on the previous one. \u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eModule 1: Causal Inference and Tools for Model Specification\u003c/li\u003e\n\u003cli\u003eModule 2: Matching to Reduce Model Dependence\u003c/li\u003e\n\u003cli\u003eModule 3: Simpson's Paradox and Fixed Effects\u003c/li\u003e\n\u003cli\u003eModule 4: Random Effects\u003c/li\u003e\n\u003cli\u003eModule 5: Repeated Measures and Longitudinal Data\u003c/li\u003e\n\u003cli\u003eModule 6: Missing Data and Bootstrapping\u003c/li\u003e\n\u003c/ul\u003e3cc:T4"])</script><script>self.__next_f.push([1,"a7,\u003cp\u003eIn this course, you will begin learning about more advanced multivariate statistical methods that are regularly used in healthcare data analysis. You will also practice applying these statistical methods to examples from the healthcare industry. The topics covered in this course will prepare you for interpreting data and making data-informed decisions in real-world healthcare settings. While the course focuses on application and the use of these statistical methods, there is some discussion of the mathematical underpinning, relevant formulae, and assumptions necessary for understanding the application of statistical methods. \u003c/p\u003e\n\u003cp\u003eThis self-paced course is comprised of written content, video content, step-by-step follow-along activities, and assessments to reinforce your learning (Assessments available to Verified Track learners only). \u003c/p\u003e\n\u003cp\u003eThe course is comprised of 4 modules that you should complete in order, as each subsequent module builds on the previous one. \u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eModule 1: Non-Linear Trends \u003c/li\u003e\n\u003cli\u003eModule 2: Interacting Variables and Finding Outliers \u003c/li\u003e\n\u003cli\u003eModule 3: Logistic Regression \u003c/li\u003e\n\u003cli\u003eModule 4: Logistic Regression Variants\u003c/li\u003e\n\u003c/ul\u003e3cd:T4b5,\u003cp\u003eIn this course, you will develop a working knowledge of linear relationship data in healthcare and practice using R statistical programming to analyze this data. You will learn about some of the most common univariate and multivariate statical methods used in healthcare data analysis and practice applying them in a statistical software package. While the course focuses on application and the use of these statistical methods, there is some discussion of the mathematical underpinning, relevant formulae, and assumptions necessary for understanding the application of statistical methods.\u003c/p\u003e\n\u003cp\u003eThis self-paced course is comprised of written content, video content, step-by-step follow-along activities, and assessments to reinforce your learning (Assessments available to Verified Track learners only).\u003c/p\u003e\n\u003cp\u003eThe course is comprised of 4"])</script><script>self.__next_f.push([1," modules that you should complete in order, as each subsequent module builds on the previous one.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eModule 1: Introduction to Correlation and Linear Relationships\u003c/li\u003e\n\u003cli\u003eModule 2: Simple OLS Linear Regression\u003c/li\u003e\n\u003cli\u003eModule 3: Dummy Variables and Multiple OLS Linear Regression\u003c/li\u003e\n\u003cli\u003eModule 4: OLS Linear Regression Diagnostic Tests\u003c/li\u003e\n\u003c/ul\u003e3ce:T7d3,\u003cp\u003eHow to process big data is an ongoing challenge facing machine learning. Currently, the problem of machine learning processing large-scale data is very common. How to propose a machine learning algorithm that meets the needs of big data processing is a hot research topic in the era of big data. The \"Big Data Machine Learning\" course is a basic theoretical course for senior undergraduates and graduate students in the Department of Information Science. Its purpose is to train students to comprehensively understand the theoretical basis of big data machine learning and firmly master the methods and solutions of big data machine learning. Ability to solve practical problems. This course mainly studies machine learning and deep learning methods, aiming to realize the application of big data machine learning. The main contents of this course include:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eBasic theory of statistical learning\u003c/li\u003e\n\u003cli\u003e.Basic methods of machine learning\u003c/li\u003e\n\u003cli\u003eDeep learning theories and methods\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eAn ongoing challenge for machine learning is how to deal with big data. At present, the problem of machine learning dealing with large-scale data is widespread. How to propose a machine learning algorithm to meet the needs of big data processing is a hot research topic in the big data era. The course \" Big Data Machine Learning\" is a basic theory course for senior undergraduates and postgraduates in information science department. Its purpose is to cultivate students' comprehensive ability to understand the theoretical basis of Big Data Machine Learning, master the methods of Big Data Machine Learning firmly, and solve practical problems. This course focuses "])</script><script>self.__next_f.push([1,"on the methodsof machine learning and deep learning, and aims to realize the application of big data machine learning. The main contents of the course include:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eThe basic theories of statistical learning\u003c/li\u003e\n\u003cli\u003eThe basic methods of machine learning\u003c/li\u003e\n\u003cli\u003eThe theories and methods of deep learning\u003c/li\u003e\n\u003c/ol\u003e3cf:T747,The world is full of uncertainty: accidents, storms, unruly financial markets, noisy communications. The world is also full of data. Probabilistic modeling and the related field of statistical inference are the keys to analyzing data and making scientifically sound predictions.\u003cbr /\u003e\u003cbr /\u003eThis course is part of a 2-part sequence on the basic tools of probabilistic modeling. Topics covered in this course include:\u0026nbsp;\u0026nbsp;\u003cbr /\u003e\r\n\u003cul\u003e\r\n\u003cli\u003elaws of large numbers\u003c/li\u003e\r\n\u003cli\u003ethe main tools of Bayesian inference methods\u003c/li\u003e\r\n\u003cli\u003ean introduction to classical statistical methods\u003c/li\u003e\r\n\u003cli\u003ean introduction to random processes (Poisson processes and Markov chains)\u003c/li\u003e\r\n\u003c/ul\u003e\r\n\u003cbr /\u003eThis course is a follow-up to Introduction to Probability: Part I - The Fundamentals, which introduced the general framework of probability models, multiple discrete or continuous random variables, expectations, conditional distributions, and various powerful tools of general applicability. The contents of the two parts of the course are essentially the same as those of the corresponding MIT class, which has been offered and continuously refined over more than 50 years. It is a challenging class, but will enable you to apply the tools of probability theory to real-world applications or your research.\u003cbr /\u003e\u003cbr /\u003eProbabilistic models use the language of mathematics. But instead of relying on the traditional \"theorem - proof\" format, we develop the material in an intuitive - but still rigorous and mathematically precise - manner. Furthermore, while the applications are multiple and evident, we emphasize the basic concepts and methodologies that are universally applicable.\u003cbr /\u003e\u003cbr /\u003e\u003cem\u003ePhoto by Pablo Ruiz M\u0026uacute;zqu"])</script><script>self.__next_f.push([1,"iz on Flickr.\u0026nbsp;(\u003ca href=\"https://creativecommons.org/licenses/by-nc-sa/2.0/\" target=\"_blank\" rel=\"noopener noreferrer\"\u003eCC BY-NC-SA 2.0\u003c/a\u003e)\u003c/em\u003e3d0:T5ca,\u003cp\u003e\u003cem\u003ePlease Note: Learners who successfully complete this IBM course can earn a skill badge — a detailed, verifiable and digital credential that profiles the knowledge and skills you’ve acquired in this course. Enroll to learn more, complete the course and claim your badge!\u003c/em\u003e\u003c/p\u003e\n\u003cp\u003eThis Machine Learning with Python course dives into the basics of machine learning using Python, an approachable and well-known programming language. You'll learn about supervised vs. unsupervised learning, look into how statistical modeling relates to machine learning, and do a comparison of each.\u003c/p\u003e\n\u003cp\u003eWe'll explore many popular algorithms including Classification, Regression, Clustering, and Dimensional Reduction and popular models such as Train/Test Split, Root Mean Squared Error (RMSE), and Random Forests. Along the way, you’ll look at real-life examples of machine learning and see how it affects society in ways you may not have guessed!\u003c/p\u003e\n\u003cp\u003eMost importantly, you will transform your theoretical knowledge into practical skill using hands-on labs. Get ready to do more learning than your machine!\u003c/p\u003e\n\u003cp\u003eWe'll explore many popular algorithms including Classification, Regression, Clustering, and Dimensional Reduction and popular models such asTrain/Test Split, Root Mean Squared Error and Random Forests.\u003c/p\u003e\n\u003cp\u003eMostimportantly, you will transform your theoretical knowledge into practical skill using hands-on labs. Get ready to do more learning than your machine!\u003c/p\u003e3d1:T51a,\u003cp\u003eIn the information age, data is all around us. Within this data are answers to compelling questions across many societal domains (politics, business, science, etc.). But if you had access to a large dataset, would you be able to find the answers you seek?\u003c/p\u003e\n\u003cp\u003eThis course, part of the Data Science MicroMasters program, will introduce you to a collection of powerful, open-source, tools needed "])</script><script>self.__next_f.push([1,"to analyze data and to conduct data science. Specifically, you'll learn how to use:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003epython\u003c/li\u003e\n\u003cli\u003ejupyter notebooks\u003c/li\u003e\n\u003cli\u003epandas\u003c/li\u003e\n\u003cli\u003enumpy\u003c/li\u003e\n\u003cli\u003ematplotlib\u003c/li\u003e\n\u003cli\u003egit\u003c/li\u003e\n\u003cli\u003eand many other tools.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eYou will learn these tools all within the context of solving compelling data science problems.\u003c/p\u003e\n\u003cp\u003eAfter completing this course, you'll be able to find answers within large datasets by using python tools to import data, explore it, analyze it, learn from it, visualize it, and ultimately generate easily sharable reports.\u003c/p\u003e\n\u003cp\u003eBy learning these skills, you'll also become a member of a world-wide community which seeks to build data science tools, explore public datasets, and discuss evidence-based findings. Last but not least, this course will provide you with the foundation you need to succeed in later courses in the Data Science MicroMasters program.\u003c/p\u003e3d2:T720,\u003cp\u003eDesigned for anyone writing their first academic research project, \u003cem\u003eAcademic English: How to Write a Thesis\u003c/em\u003e guides you through the process of becoming an academic research writer into producing your first academic research publication. Created by experts in academic writing, the course spans 5 modules covering what it means to be an academic writer, getting ideas for research, finding and sourcing relevant literature, appropriately reporting research methods and results according to disciplinary expectations, and developing critical insights into your research findings. A world of academic language and expertise is at your fingertips in \u003cem\u003eAcademic English\u003c/em\u003e!\u003c/p\u003e\n\u003cp\u003eThis ground-breaking course covers a wealth of useful ideas, tips and language features focusing on each step of the research publication process. Featuring a range of exemplars from high-quality published research sources, and insightful commentary from disciplinary experts across the arts \u0026amp; humanities, social sciences, physical and life sciences, \u003cem\u003eAcademic English\u003c/em\u003e takes you through the key stages of planning, drafting, writin"])</script><script>self.__next_f.push([1,"g and revising a research thesis, dissertation or journal article. We cover the main structures and language features of each written section including the introduction, literature review, methodology, results, discussion and conclusion, with an array of individual and peer activities designed to bridge the gap between what you know and what you can do as a writer. Reflective course assessments test your knowledge of critical disciplinary academic content while guiding you through the academic writing process.\u003c/p\u003e\n\u003cp\u003eStart today! Join us on \u003cem\u003eAcademic English: How to Write a Thesis\u003c/em\u003e and take the first step on your journey into becoming a successful academic writer with us!\u003c/p\u003e3d3:Ta1a,"])</script><script>self.__next_f.push([1,"\u003cp\u003eModule 1: Becoming an academic writer\u003c/p\u003e\n\u003cp\u003eWhere to begin as an academic research writer? How can you take an idea and turn it into a research thesis or article? This module explores what it means to be an academic research writer in the 21st Century, covering concepts such as identifying current or future problems for research, challenging established facts or beliefs, and understanding and replicating existing research in your discipline. We also explore expert opinions on starting the academic writing process, and the different forms in which academic research writing may appear.\u003c/p\u003e\n\u003cp\u003eModule 2: Understanding academic language and conventions\u003c/p\u003e\n\u003cp\u003eAcademic writing is the means of communicating with members of your discipline or research area. It is therefore important to learn how academics communicate with each other in written form, the language that makes academic writing different from other kinds of writing, and the conventions of citation and referencing used in your particular field of research. This module covers these ideas and more while presenting some useful tools that can help you bridge the gap between non-academic and academic writing forms.\u003c/p\u003e\n\u003cp\u003eModule 3: Planning and writing the introduction and the literature review\u003c/p\u003e\n\u003cp\u003eDespite some differences, the structure, language and processes used in writing the introduction and literature review sections of a research thesis or article are remarkably similar across disciplines. This module explores how writers can establish their research territory, present the gaps in current knowledge, and formulate their goals and aims, before considering how the work of others can be integrated into your own arguments and stance.\u003c/p\u003e\n\u003cp\u003eModule 4: Exploring the method and results sections\u003c/p\u003e\n\u003cp\u003eThis module covers key aspects of reporting research methods and data types. We explain how to report participant samples, research instruments, experimental procedures and research design, before covering how to report a range of qualitative and quantitative data types includings interview and observation data, surveys, statistical tests, tables and charts.\u003c/p\u003e\n\u003cp\u003eModule 5: Discussing and concluding your findings\u003c/p\u003e\n\u003cp\u003eNow the research is complete, what does it all mean? This final module helps you find and select the key points of your research findings so that you can summarise what it all means for the academic reader in your discipline or research area. We cover the art of making claims about your findings while considering your study's limitations and ideas for future research.\u003c/p\u003e"])</script><script>self.__next_f.push([1,"3d4:T723,\u003cp\u003e\u003cspan lang=\"EN-US\"\u003ePeople metrics and analytics is the application of statistical techniques into HR data elements using key measures or indicators to examine the performance of the HR function and employees, and to subsequently disclose the value of people’s intangible assets in the integrated reports as part of the 6 Capitals. \u003c/span\u003eIn many organizations, HR departments collect data on the various aspects of people management such as recruitment, selection, employee turnover, training, remuneration and performance management but hardly integrate statistical techniques with metrics (measures or indicators) to understand the reasons underlying the pattern of relationships between a given set of variables, and in some cases even predict the cause-effect-relationships. \u003cspan lang=\"EN-US\"\u003eConsequently, decisions regarding the attraction, sourcing, deploying, developing, and retaining of talent are based on intuition and not evidence.\u003c/span\u003e\u003cspan lang=\"EN-US\"\u003e\u003c/span\u003e\u003c/p\u003e\n\u003cp\u003eThis course will provide participants with insights on how to apply people analytics linked to specific metrics and based on an organizational HR measurement system.\u003cspan lang=\"EN-US\"\u003e Hence a more effective approach is to adopt a structured HR measurement system for determining a business need, identifying a human capital problem, organizing data, analyzing and reporting on the patterns of relationships. This is useful for defining specific metrics to track, analyze and information likely to enable managerial decisions. The course provides v\u003c/span\u003e\u003cspan lang=\"EN-US\"\u003ealue-based metrics, analytics and reporting methods such as internal HR dashboards to visualise people-specific data and external human capital disclosure in the corporate annual reports taking into consideration the international reporting standards.\u003c/span\u003e\u003c/p\u003e3d5:T9dc,"])</script><script>self.__next_f.push([1,"\u003cp\u003eThree innovations are driving the data revolution in medicine. \u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eNext Generation Sequencing, and in particular, the ability to sequence individual genomes at diminishing costs.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eElectronic Medical Records, and our ability to mine, using machine learning techniques, huge datasets of medical records.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eWearable devices, the Web, social networks and crowdsourcing - exemplifying the surprising capacity to collect medical data using non-conventional resources.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eIn order to take advantage of these technologies and participate in the revolution, physicians need a new toolbox that is generally lacking in the medical school curriculum. \u003c/p\u003e\n\u003cp\u003eThis course is a product of a decade of a collaborative effort between researchers from the computational biology program at Bar-Ilan University, and clinicians from Sheba Medical Center to develop and deliver an extended curriculum in genomics and biomedical informatics. The program has been endorsed by the Israeli Medicine Association and Ministry of Health. Here, we present a condensed online course that includes selected topics chosen from the extended program. \u003c/p\u003e\n\u003cp\u003eThis GaBI course on edX presents clinicians and digital health enthusiasts with an overview of the data revolution in medicine, and how to take advantage of it for research and in the clinic. In the scope of this single course, you will not become a bioinformatician, but you will be able to familiarize yourself with the main concepts, tools, algorithms, and databases used in this field, and understand the types of problems that these analysis techniques can help address. \u003c/p\u003e\n\u003cp\u003eThe syllabus covers the main topics of this discipline in a logical order: \u003c/p\u003e\n\u003cp\u003e● Methods used to obtain medical data (genotypic and phenotypic) \u003c/p\u003e\n\u003cp\u003e● Analysis of biological molecules such as DNA, RNA, and proteins using various computational tools from the field of bioinformatics \u003c/p\u003e\n\u003cp\u003e● Use of machine learning and artificial intelligence tools to mine the huge databases of medical information accumulating in Electronic Medical Records (EMRs), the Web, and numerous data science projects in medicine \u003c/p\u003e\n\u003cp\u003e● Analysis of complex interaction networks between DNA, RNA and protein molecules to gain a more holistic and systematic view of biological systems and medical conditions \u003c/p\u003e\n\u003cp\u003e● Practical applications in the clinic and in personalized medicine research, and the use of cutting edge technology to improve health\u003c/p\u003e"])</script><script>self.__next_f.push([1,"3d6:T4b6,\u003cp\u003eLean Six Sigma Black Belt Course Topics: - Basic Quality Principles - Managing Projects and Teams - Identifying the Costs of Poor Quality - The DMAIC Phases - Validating Measurement Systems - Graphical Analysis Tools - Lean Tools - Statistical Analysis Tools - Designing Experiments to Test Improvement Theories - Controlling the Improved Process\u003c/p\u003e\n\u003cp\u003eAfter the completion of the program, Attain Partners | Juran-certified Lean Six Sigma Black Belts will be experts having the ability to: - Develop, coach, and lead cross-functional process improvement team and initiatives - Mentor and advise management on prioritizing, planning, and launching Lean Six Sigma projects - Use, teach, and disseminate Lean Six Sigma tools and methods to green belts, yellow belts, and other team members Participants who successfully complete the course also earn 4 CEUs. Other learning objectives include: - Completion of a Lean Six Sigma project - Mastering the Lean and DMAIC methods for improvement - Mastering both graphical and statistical tools that enable the Lean and DMAIC methods - Obtaining in-depth understanding of the Lean Six Sigma philosophy, theory, strategy, tactics, and quality management tools\u003c/p\u003e3d7:Td77,"])</script><script>self.__next_f.push([1,"\u003cp\u003eEvery employee is involved in business processes to create products or services. The causes of decreasing customer satisfaction and increasing quality costs are often unknown, so derived solutions often only address symptoms. Six Sigma methods and tools enable a systematic solution of typical process problems and lead to sustainable operational excellence.\u003c/p\u003e\n\u003cp\u003eGo from Yellow to Green Belt in this project-based Lean Six Sigma course. With the TUM Yellow Belt, you have mastered the body of knowledge of our Green Belt (according to the American Society for Quality standards). Our Green Belt certification requires the implementation of a Six Sigma project (as recommended by the International Society of Six Sigma Professionals), just as the driving experience is necessary to obtain a driver’s license.\u003c/p\u003e\n\u003cp\u003eTo earn the TUM Lean Six Sigma Green Belt certification, you will implement a predefined standard project on environmental littering. The goal: “Improve the cleanliness of areas around selected places in your hometown and control the sustainability of your measures.” This project topic supports the \u003ca href=\"https://sdgs.un.org/goals\"\u003eUnited Nations Sustainability Goal #11: Sustainable Cities and Communities\u003c/a\u003e. To reach this goal you will drive along the DMAIC, accompanied by a Master Black Belt as co-pilot. The route is determined by our navigation software (sigma guide). We will stop at every important sigma tool, which you will then apply in practice and document in a project storybook. This storybook will demonstrate the operational excellence of and in your work. (Please note: The implementation of company-specific, individually supported business projects for certification are not included in this edX/TUM course)\u003c/p\u003e\n\u003cp\u003eWe will guide you through your improvement project. Each DMAIC phase concludes with a project review by a Lean Six Sigma Master Black Belt. With the feedback on your achieved project results, we keep you on track before you start the next DMAIC phase. You will also participate in weekly live sessions online, where we will discuss the tools and logic of Six Sigma in-depth and answer any questions. The e-book for the course, \u003ca href=\"https://link.springer.com/book/10.1007/978-3-030-31915-1\"\u003eSix Sigma Green Belt Certification Project\u003c/a\u003e, is included in the course price.\u003c/p\u003e\n\u003cp\u003eGreen Belt Certification: Learners will be awarded the TUM Lean Six Sigma Green Belt Certification after completing this course and all of its requirements, including:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ePrevious acquisition of the TUM Lean Six Sigma Yellow Belt certificate,\u003c/li\u003e\n\u003cli\u003eApplication of the sigma tools (sigma guide),\u003c/li\u003e\n\u003cli\u003eDocumentation of the results in a project storybook,\u003c/li\u003e\n\u003cli\u003eFive graded reviews of the project storybook along with the DMAIC phases,\u003c/li\u003e\n\u003cli\u003eParticipation in at least 10 open-online-sessions,\u003c/li\u003e\n\u003cli\u003eDelivery of the completed project storybook and the collected data. \u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eOnce a year we present the \u003cstrong\u003eEnvironment Green Belt Award\u003c/strong\u003e for the best Lean Six Sigma certification project. In addition to the basic certification criteria - a correctly implemented and documented project - an excellent project is required, with a project sponsor and a strong, sustainable reduction of litter at a local hotspot.\u003c/p\u003e\n\u003cp\u003eThis course won the 2021 Runner-Up Award - Blended Learning - Academic Division 2021 of the International E-Learning Association (IELA)\u003c/p\u003e"])</script><script>self.__next_f.push([1,"3d8:T40c,\u003cul\u003e\n\u003cli\u003e\u003cstrong\u003eTo identify\u003c/strong\u003e and define suitable Six Sigma project topics.\u003c/li\u003e\n\u003cli\u003e\u003cstrong\u003eTo implement\u003c/strong\u003e a Six Sigma project along with its DMAIC phases with all relevant qualitative and quantitative tools.\u003c/li\u003e\n\u003cli\u003e\u003cstrong\u003eTo evaluate\u003c/strong\u003e the success of a Six Sigma project with process performance indicators and the derived financial benefits.\u003c/li\u003e\n\u003cli\u003e\u003cstrong\u003eTo apply\u003c/strong\u003e all relevant DMAIC tools, for example, Project Definition, Voice of Customer/CtQ's, Project Charter, Process Mapping, Cause \u0026amp; Effect Matrix, Hypotheses, and their Statistical Tests, Root-Cause-Analysis, etc.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cspan lang=\"EN-GB\"\u003e\u003c/span\u003e\u003c/p\u003e\n\u003cp\u003eIELA Award 2021 -\u003cspan lang=\"EN-GB\"\u003e\u003c/span\u003e\u003c/p\u003e\n\u003cp\u003eThis course won the 2021 \u003cem\u003eRunner-Up Award - Blended Learning - Academic Division 2021\u003c/em\u003e of the International E-Learning Association (IELA) { \u003cspan lang=\"EN-GB\"\u003e\u003ca href=\"http://www.ielassoc.org/awards_program/past_winners.html\" title=\"Award\"\u003ehttp://www.ielassoc.org/awards_program/past_winners.html }\u003c/a\u003e\u003c/span\u003e\u003c/p\u003e3d9:T441,\u003cp\u003e\"Basics of Machine Learning\" is designed to provide participants with a comprehensive understanding of the fundamental concepts and tools of machine learning. The course covers key topics such as probability density estimation, linear regression, classification techniques like linear discriminants, logistic regression, and support vector machines, as well as ensemble methods such as bagging and boosting. Additionally, the course introduces the basics of deep neural networks, laying the groundwork for more advanced learning techniques.\u003c/p\u003e\n\u003cp\u003eThroughout the course, students will gain a solid foundation in the fundamental approaches of machine learning. By working on practical exercises, participants will cement their understanding of the techniques covered and gain valuable hands-on experience.\u003c/p\u003e\n\u003cp\u003eBy the end of the course, students will have the knowledge and skills required to confidently utilize machine learning tools and techniques in their own projects, providing a stro"])</script><script>self.__next_f.push([1,"ng foundation for further study or professional development in this rapidly evolving field.\u003c/p\u003e3da:T868,"])</script><script>self.__next_f.push([1,"\u003cp\u003eWe, at RCPE (\u003ca href=\"http://www.rcpe.at\" rel=\"noopener\" target=\"_blank\"\u003eResearch Center Pharmaceutical Engineering\u003c/a\u003e) and TU-Graz (\u003ca href=\"https://www.edx.org/school/tugrazx\" rel=\"noopener\" target=\"_blank\"\u003eGraz University of Technology\u003c/a\u003e), are excited to share our latest expertise and knowledge in pharmaceutical production with you.\u003c/p\u003e\n\u003cp\u003ePharmaceutical production processes and process development are grounded in the scientific field of pharmaceutical engineering, which is a multidisciplinary area of study.\u003c/p\u003e\n\u003cp\u003eTo effectively tackle pharmaceutical development and production processes, it's essential to have a multidisciplinary team collaborating. At RCPE, our scientific team scientists, pharmacists, physicists, chemical engineers, mathematicians, process control engineers, and quality experts, among others. Together, we've worked to create a comprehensive learning experience for you. While many of our colleagues are engaged in research projects supporting international pharmaceutical companies, we, as your teaching team, have taken on the responsibility of imparting this knowledge to you.\u003c/p\u003e\n\u003cp\u003eThis course is tailored for individuals in the pharmaceutical industry or other professionals seeking to deepen their understanding of powder handling and characterization techniques. Specifically focused on solid dosage forms and powders, the course delves into key aspects relevant to their production and processing. Please note that other dosage forms, such as liquids for parental or oral delivery, topical creams, or aerosols, are not covered in this course. Solid dosage forms are emphasized due to their widespread use and inherent complexities. By the course's conclusion, participants will gain proficiency in handling powders and solid dosage forms, as well as strategies to navigate common challenges encountered during manufacturing and processing.\u003c/p\u003e\n\u003cp\u003eThroughout this course, you will gain practical knowledge and insights that can be directly applied to pharmaceutical manufacturing processes, enabling you to enhance product quality, efficiency, and regulatory compliance in your professional endeavors.\u003c/p\u003e"])</script><script>self.__next_f.push([1,"3db:T419,\u003cp\u003eYou will learn:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eYou will gain proficiency in handling powders and solid dosage forms, as well as strategies to navigate common challenges encountered during manufacturing and processing.\u003c/li\u003e\n\u003cli\u003eYou will learn about various techniques used to analyze particle characteristics, and how these characteristics impact the behavior of pharmaceutical powders.\u003c/li\u003e\n\u003cli\u003eWe will discuss the principles of direct compression, including powder blend characterization, formulation considerations, and process optimization strategies for achieving robust tablet formulations.\u003c/li\u003e\n\u003cli\u003eYou will learn the causes and mechanisms of segregation, as well as strategies to mitigate its effects during manufacturing processes.\u003c/li\u003e\n\u003cli\u003eWe will discuss the principles of powder sampling, including sampling techniques, sample preparation, and statistical considerations for sampling in pharmaceutical manufacturing.\u003c/li\u003e\n\u003cli\u003eWe will examine the key properties of tablets, and their significance in pharmaceutical formulation and development.\u003c/li\u003e\n\u003c/ul\u003e3dc:T5a7,\u003cp\u003e\u003cem\u003eThis course is part of the IPSAMOOC project, a joint venture Federica Weblearning - IPSA, the International Political Science Association\u003c/em\u003e\u003c/p\u003e\n\u003cp\u003eEmile Durkheim, one of the founders of modern empirical social science, once stated that the comparative method is the only one that suits the social sciences. But Descartes hadposited that \"comparaison n'est pas raison,\" which means that comparison is not reason (or theory) by itself. So what's the right answer? \u003c/p\u003e\n\u003cp\u003eThis course provides an introduction and overview of systematic comparative analysis in the social sciences, and shows you how to use this method for constructive explanation and theory building. \u003c/p\u003e\n\u003cp\u003eA major portion of the course is devoted to new approaches and software that have been developed in recent yearsto handle highly complex cases. Such cases includecomparisons of EU member states, Latin American political systems,and particular policy areas. Procedures such as Qualitative Comparati"])</script><script>self.__next_f.push([1,"ve Analysis (QCA) and related methods are able to reduce complexity and to arrive at \"configurational\" solutions based on set theory and Boolean algebra. These are more meaningful in this context thancommonly used, broad-based statistical methods. \u003c/p\u003e\n\u003cp\u003eInthe last section, these methods are contrasted with more common statistical comparative methods at the macro-level. We'll discuss various states or societies and their respective strengths and weaknesses.\u003c/p\u003e3dd:T5e4,\u003cp\u003eIn this course, experts will discuss the options a researcher must consider when embarking on clinical research. What research design should I choose? How do I start the process of getting my research approved? How will I analyze the data I collect? These are all important questions that a researcher faces. \u003c/p\u003e\n\u003cp\u003eWe will discuss the key decisions a researcher needs to make when preparing for and conducting research, as well as tools for data analysis. You will learn what a pragmatic clinical trial is and how to calculate power and sample size for your study. You will also be exposed to more complex study designs sometimes used in pragmatic clinical trials, such as Bayesian and adaptive designs. \u003c/p\u003e\n\u003cp\u003eThis course includes the following 11 lectures: \u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eOverview of Design Options for Pragmatic Clinical Trials\u003c/li\u003e\n\u003cli\u003eOutcome Measures in Clinical Trials\u003c/li\u003e\n\u003cli\u003eNon-inferiority Trials\u003c/li\u003e\n\u003cli\u003eBasic Analytic Methods\u003c/li\u003e\n\u003cli\u003eBasic Power and Sample Size Calculations\u003c/li\u003e\n\u003cli\u003eSMART: Adaptive Treatment Strategies\u003c/li\u003e\n\u003cli\u003eIntroduction to Bayesian Methods\u003c/li\u003e\n\u003cli\u003eBayesian Designs\u003c/li\u003e\n\u003cli\u003eQuasi-Experiment in Health Services Research\u003c/li\u003e\n\u003cli\u003eAdaptive Trial Design\u003c/li\u003e\n\u003cli\u003eLogistics of Clinical Trials\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eThis course is intended for anyone interested in comparative effectiveness research (CER) and patient-centered outcomes research (PCOR) methods. \u003c/p\u003e\n\u003cp\u003eThis course is supported by grant number R25HS023214 from the Agency for Healthcare Research and Quality.\u003c/p\u003e3de:T53b,\u003cp\u003eThis course is designed to introduce you to the compl"])</script><script>self.__next_f.push([1,"ex discipline of portfolio management. The course gives you an insight into the practice and theory of portfolio management. You'll be taught from the perspective of allocators who need to balance risk and return.\u003c/p\u003e\n\u003cp\u003eThe course helps address the overwhelming importance of Modern Portfolio Theory, and delves into quantitative measurements of risk and return like the Sharpe ratio. This course also introduces students to the practical world of investment management. Significant course time is spent on understanding the risk/return tradeoffs that are sought by a Portfolio Manager’s client or superior.\u003c/p\u003e\n\u003cp\u003eWe will also review Investment Policy Statements, understand the need for clear and concise communication and the balance of quantitative and qualitative factors when determining investment decisions.\u003c/p\u003e\n\u003cp\u003eFinally, Portfolio Management covers the spectrum of investment options all the way from ETFs to direct venture investments. This course will show you how all these various instruments are capital market tools that a PM can use to achieve a discipline and well thought out investment strategy.\u003c/p\u003e\n\u003cp\u003e\u003cem\u003e\u003cspan lang=\"EN-CA\"\u003eThis course is part 4 of the New York Institute of Finance’s Portfolio Management Professional Certificate program.\u003c/span\u003e\u003c/em\u003e\u003c/p\u003e3df:T50f,\u003cp\u003eThis course by Imperial College London is designed to help you develop the skills you need to succeed in your A-level maths exams. \u003c/p\u003e\n\u003cp\u003eYou will investigate key topic areas to gain a deeper understanding of the skills and techniques that you can apply throughout your A-level study. These skills include: \u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eFluency – selecting and applying correct methods to answer with speed and efficiency\u003c/li\u003e\n\u003cli\u003eConfidence – critically assessing mathematical methods and investigating ways to apply them\u003c/li\u003e\n\u003cli\u003eProblem solving – analysing the ‘unfamiliar’ and identifying which skills and techniques you require to answer questions\u003c/li\u003e\n\u003cli\u003eConstructing mathematical argument – using mathematical tools such as diagrams, graphs, logica"])</script><script>self.__next_f.push([1,"l deduction, mathematical symbols, mathematical language, construct mathematical argument and present precisely to others\u003c/li\u003e\n\u003cli\u003eDeep reasoning – analysing and critiquing mathematical techniques, arguments, formulae and proofs to comprehend how they can be applied\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eOver seven modules, your initial skillset will be extended to give a clear understanding of how background knowledge underpins the A \u003cbr /\u003e\n-level course. You’ll also be encouraged to consider how what you know fits into the wider mathematical world.\u003c/p\u003e3e0:T483,\u003cul\u003e\n\u003cli\u003e\u003cstrong\u003eImprove\u003c/strong\u003e fluency and accuracy when using laws of indices and surds in a variety of calculations\u003c/li\u003e\n\u003cli\u003e\u003cstrong\u003eLearn\u003c/strong\u003e how to solve the types of inequalities you'll encounter at A-level and various ways to represent these\u003c/li\u003e\n\u003cli\u003e\u003cstrong\u003eDiscover\u003c/strong\u003e how to divide any polynomial by either a linear or quadratic polynomial\u003c/li\u003e\n\u003cli\u003e\u003cstrong\u003eLearn\u003c/strong\u003e about the information found in different forms of the Cartesian equation of a circle and use these to solve coordinate geometry problems\u003c/li\u003e\n\u003cli\u003e\u003cstrong\u003eInvestigate\u003c/strong\u003e the main transformations of graphs; translation, enlargement and reflection, and use these transformations to sketch new graphs\u003c/li\u003e\n\u003cli\u003e\u003cstrong\u003eUnderstand\u003c/strong\u003e the constant acceleration formulae through travel graphs illustration, speed, velocity, distance and displacement against time\u003c/li\u003e\n\u003cli\u003e\u003cstrong\u003eExplore\u003c/strong\u003e statistical sampling methods and weigh up the advantages and disadvantages of each one\u003c/li\u003e\n\u003cli\u003e\u003cstrong\u003eLearn\u003c/strong\u003e how to interpret data presented in a variety of forms including box plots, cumulative frequency curves, histograms and bar charts\u003c/li\u003e\n\u003c/ul\u003e3e1:T699,\u003cp\u003eLearn data literacy online using R programming\u003c/p\u003e\n\u003cp\u003eWhat is data literacy and why is it important? In this data literacy course, you will learn how to become data literate. This will be accomplished by performing data analysis, data visualization, and communicating with data, using real datasets and examples that are relevant to "])</script><script>self.__next_f.push([1,"a variety of audiences and academic disciplines. Data is part of every field, but not everyone has had the opportunity to gain the skills necessary to find the data they need and use it in ways that add to their work. Whether you are in public health, healthcare, banking, law, education, graduate school, or a variety of other fields, there is a way to understand and make use of related data. \u003c/p\u003e\n\u003cp\u003eEarn your data literacy certificate online\u003c/p\u003e\n\u003cp\u003eThis free four-week course will give you the opportunity to build and leverage your data skills for upward mobility at any stage in your career. It will take you through the six steps of the data lifecycle, using different case studies and contexts, and teach you how to analyze, manage, and communicate data, working in R to achieve basic R programming competencies. R is a statistical programming language that is a great resource to analyze data, manage data, and visualize data.\u003c/p\u003e\n\u003cp\u003eNo experience is required to learn this in-demand skill. By the end of this data literacy training course, you will be able to identify key principles of data analysis, use critical thinking skills, and become proficient in building powerful visuals. If you are interested in building a career in data analytics, first learning these foundational lessons is vital.\u003c/p\u003e\n\u003cp\u003e\u003cem\u003ePhoto by NASA on Unsplash\u003c/em\u003e\u003c/p\u003e3e2:Td31,"])</script><script>self.__next_f.push([1,"\u003cp\u003e\u003cspan lang=\"EN-US\"\u003eApply the systematic Lean Six Sigma method and tools to increase the quality and availability of your products and services and lead your process\u003c/span\u003e\u003cspan lang=\"EN-US\"\u003e\u003c/span\u003e\u003cspan lang=\"EN-US\"\u003e to sustainable operational excellence. \u003c/span\u003e\u003cspan lang=\"EN-US\"\u003e\u003c/span\u003e\u003c/p\u003e\n\u003cp\u003eWithin the course program of the \u003cstrong\u003eTUM Lean Six Sigma Green Belt for employees,\u003c/strong\u003e you will:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003cspan lang=\"EN-US\"\u003eIdentify, implement, and evaluate an \u003cstrong\u003eindividual Business Project\u003c/strong\u003e of your organization.\u003c/span\u003e\u003c/li\u003e\n\u003cli\u003e\u003cspan lang=\"EN-US\"\u003eDrive along the DMAIC phases, \u003cstrong\u003eguided by our digital and personal resources\u003c/strong\u003e.\u003c/span\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cspan lang=\"EN-US\"\u003e\u003c/span\u003e\u003c/p\u003e\n\u003cp\u003eWe will stop at every important Sigma tool, which you will then apply in practice and document in your project storybook. These results will be reviewed at each DMAIC milestone and serve as the basis for individual coaching and your certification. \u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan lang=\"EN-US\"\u003eWith our digital and personal guidance, we assist you to …\u003c/span\u003e\u003c/strong\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003cspan lang=\"EN-US\"\u003esuccessfully complete your project\u003c/span\u003e\u003c/li\u003e\n\u003cli\u003e\u003cspan lang=\"EN-US\"\u003ecreate benefits for your organization, significantly exceeding our course fee\u003c/span\u003e\u003c/li\u003e\n\u003cli\u003e\u003cspan lang=\"EN-US\"\u003edevelop the generic competence to identify, implement, and evaluate future projects. \u003c/span\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan lang=\"EN-US\"\u003eDigital Guidance\u003c/span\u003e\u003c/strong\u003e\u003cspan lang=\"EN-US\"\u003e : Our videos, the related eBook, our software sigmaGuide and the tasks introduce every step of your project.\u003c/span\u003e\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan lang=\"EN-US\"\u003ePersonal Guidance\u003c/span\u003e\u003c/strong\u003e\u003cspan lang=\"EN-US\"\u003e - we will accompany your project individually in three different formats:\u003c/span\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003cstrong\u003e\u003cspan lang=\"EN-US\"\u003eDMAIC Phase Reviews:\u003c/span\u003e\u003c/strong\u003e\u003cspan lang=\"EN-US\"\u003e After each of the 5 \u003c/span\u003e\u003cspan lang=\"EN-US\"\u003eDMAIC phases, we will review the results in your project storybook, correct errors, show alternatives, and suggest the next steps.\u003c/span\u003e\u003c/li\u003e\n\u003cli\u003e\u003cstrong\u003e\u003cspan lang=\"EN-US\"\u003eProject Coaching:\u003c/span\u003e\u003c/strong\u003e\u003cspan lang=\"EN-US\"\u003e Coaching takes place at defined points in DEFINE, MEASURE, and ANALYSE to guide your project methodically.\u003c/span\u003e\u003c/li\u003e\n\u003cli\u003e\u003cstrong\u003e\u003cspan lang=\"EN-US\"\u003eGreen Belt Lectures:\u003c/span\u003e\u003c/strong\u003e\u003cspan lang=\"EN-US\"\u003e Our online Green Belt lectures reinforce specific topics. Each lecture series consists of 16 one-hour Zoom sessions, held on Tuesdays at 8:00 UTC and 15:00 UTC, here: \u003ca href=\"https://tum-conf.zoom.us/j/96975983511\" rel=\"noopener\" target=\"_blank\"\u003ehttps://tum-conf.zoom.us/j/96975983511 \u003c/a\u003e\u003c/span\u003ePasscode: 122362. Check it out!\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cspan lang=\"EN-US\"\u003e\u003c/span\u003e\u003c/p\u003e\n\u003cp\u003eYou will additionally acquire the basics of digital Lean competence with our interactive process mining module.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan lang=\"EN-US\"\u003eAre you a student or a job seeker\u003c/span\u003e\u003c/strong\u003e \u003cstrong\u003e\u003cspan lang=\"EN-US\"\u003e?\u003c/span\u003e\u003c/strong\u003e\u003cspan lang=\"EN-US\"\u003e Implement our\u003c/span\u003e \u003cstrong\u003e__\u003cspan lang=\"EN-US\"\u003e predefined\u003c/span\u003e __Sustainability Project\u003c/strong\u003e in our alternative Lean Six Sigma certification course – \u003ca href=\"https://www.edx.org/course/green-belt\" rel=\"noopener\" target=\"_blank\"\u003e\u003cspan lang=\"EN-US\"\u003ehere on edX\u003c/span\u003e\u003c/a\u003e\u003cspan lang=\"EN-US\"\u003e\u003ca href=\"https://www.edx.org/course/green-belt\" rel=\"noopener\" target=\"_blank\"\u003e.\u003c/a\u003e\u003c/span\u003e\u003c/p\u003e"])</script><script>self.__next_f.push([1,"3e3:T4b6,\u003cul\u003e\u003cli\u003eHow to make conjectures, construct logical arguments, and justify your reasoning\u003c/li\u003e\n\t\u003cli\u003eThe concept of function in mathematics, function characteristics and properties, and rate of change of functions\u003c/li\u003e\n\t\u003cli\u003eModeling of common relations and functions such as linear, power, exponential, and logarithmic functions using statistical regression and matrix methods\u003c/li\u003e\n\t\u003cli\u003eAn exploration of algebra and geometry, and the connections between the two in analytic geometry\u003c/li\u003e\n\t\u003cli\u003eProperties and applications of exponential and logarithmic functions including exponential growth and decay and The Logistic Function\u003c/li\u003e\n\t\u003cli\u003eThe development of the trigonometric functions and identities along with applications of trigonometry\u003c/li\u003e\n\t\u003cli\u003eLimits and rate of change of functions as a precursor to Calculus\u003c/li\u003e\n\t\u003cli\u003eOther Coordinates Systems – an investigation of parametrization of the plane and the polar coordinate system along with exploration and use of vectors\u003c/li\u003e\n\t\u003cli\u003eSequences and Series including The Method of Induction\u003c/li\u003e\n\t\u003cli\u003eBasic probability and combinatorics used in an investigation and development of the Binomial Theorem and its connections to Pascal’s Triangle\u003c/li\u003e\n\u003c/ul\u003e3e4:T576,\u003cp\u003eThis course by Imperial College London is designed to help you develop the skills you need to succeed in your A-level mathematics exams.You’ll also be encouraged to consider how what you know fits into the wider mathematical world. \u003c/p\u003e\n\u003cp\u003eOver seven modules, covering an introduction to calculus, Newton’s laws and statistical hypothesis testing your initial skillset will be extended to give a clear understanding of how background knowledge underpins the A -level course. \u003c/p\u003e\n\u003cp\u003eYou will investigate key topic areas to gain a deeper understanding of the skills and techniques that you can apply throughout your A-level study. These skills include: \u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eFluency – selecting and applying correct methods to answer with speed and efficiency\u003c/li\u003e\n\u003cli\u003eConfidence – critically assessing mathematical method"])</script><script>self.__next_f.push([1,"s and investigating ways to apply them\u003c/li\u003e\n\u003cli\u003eProblem solving – analysing the ‘unfamiliar’ and identifying which skills and techniques you require to answer questions\u003c/li\u003e\n\u003cli\u003eConstructing mathematical argument – using mathematical tools such as diagrams, graphs, logical deduction, mathematical symbols, mathematical language, data handling, construct mathematical argument and present precisely to others\u003c/li\u003e\n\u003cli\u003eDeep reasoning – analysing and critiquing mathematical techniques, arguments, formulae and proofs to comprehend how they can be applied\u003c/li\u003e\n\u003c/ul\u003e3e5:T991,"])</script><script>self.__next_f.push([1,"\u003cp\u003eModern healthcare presents numerous opportunities for error, making it essential for healthcare teams to create a culture of safety and work together to identify and mitigate risks. Sponsored by Stanford University School of Medicine, SafetyQuest offers a series of online CME/CE gaming modules (levels 1-4) designed to provide an immersive learning experience about the underlying causes of patient safety issues. \u003c/p\u003e\n\u003cp\u003eThis problem-solving educational program emphasizes preventing errors in all healthcare settings while aligning care with the key quality aims of the Institute of Medicine. Through interactive gaming scenarios, learners will work to save patients from preventable harm, gain essential quality improvement tools, and develop safety strategies to improve patient outcomes.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eWho Should Take This Course\u003c/strong\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ePhysicians, nurses, and healthcare administrators\u003c/li\u003e\n\u003cli\u003eMedical professionals looking to improve teamwork and patient safety culture\u003c/li\u003e\n\u003cli\u003eClinicians interested in problem-solving and quality improvement in healthcare\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cstrong\u003eWho is Eligible for CME/CE Credits and Certificates\u003c/strong\u003e\u003ca href=\"https://med.stanford.edu/cme.html\"\u003e\u003c/p\u003e\n\u003cp\u003eStanford Center for Continuing Medical Education\u003c/a\u003e offers accredited continuing education for interprofessional healthcare team members, especially clinicians (i.e., physicians, nurses, physician assistants, etc.). Be sure to check the accreditation and credit designation stated on the activity page to view the credit type and amount awarded for your profession.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eAccreditation\u003c/strong\u003e\u003cbr /\u003e\nIn support of improving patient care, Stanford Medicine is jointly accredited by the Accreditation Council for Continuing Medical Education (ACCME), the Accreditation Council for Pharmacy Education (ACPE), and the American Nurses Credentialing Center (ANCC), to provide continuing education for the healthcare team. \u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eCredit Designation\u003cbr /\u003e\nAmerican Medical Association (AMA)\u003c/strong\u003e\u003cbr /\u003e\nStanford Medicine designates this Enduring Material for a maximum of 2.00 \u003cem\u003eAMA PRA Category 1 Credits TM\u003c/em\u003e. Physicians should claim only the credit commensurate with the extent of their participation in the activity.\u003ca href=\"https://stanford.cloud-cme.com/default.aspx?P=8\u0026EID=48975\" rel=\"noopener\" target=\"_blank\" title=\"(opens in a new window)\"\u003e\u003c/p\u003e\n\u003cp\u003eClick here\u003c/a\u003e for more CME/CE information.\u003c/p\u003e"])</script><script>self.__next_f.push([1,"3e6:T5ad,\u003cp\u003eInterrupted time series analysis and regression discontinuity designs are two of the most rigorous ways to evaluate policies with routinely collected data. ITSx comprehensively introduces analysts to interrupted time series analysis (ITS) and regression discontinuity designs (RD) from start to finish, including selection and setup of data sources, statistical analysis, interpretation and presentation, and identification of potential pitfalls.\u003c/p\u003e\n\u003cp\u003eAt the conclusion of the course, students will have all the tools necessary to propose, conduct and correctly interpret an analysis using ITS and RD approaches. This will help them position themselves as a go-to person within their company, government department, or academic department as the technical expert on this topic.\u003c/p\u003e\n\u003cp\u003eITS and RD designs avoid many of the pitfalls associated with other techniques. As a result of their analytic strength, the use of ITS and RD approaches has been rapidly increasing over the past decade. These studies have cut across the social sciences, including:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eStudying the effect of traffic speed zones on mortality\u003c/li\u003e\n\u003cli\u003eQuantifying the impact of incentive payments to workers on productivity\u003c/li\u003e\n\u003cli\u003eAssessing whether alcohol policies reduce suicide\u003c/li\u003e\n\u003cli\u003eMeasuring the impact of incentive payments to physicians on quality of care\u003c/li\u003e\n\u003cli\u003eDetermining whether the use of HPV vaccination influences adolescent sexual behavior\u003c/li\u003e\n\u003c/ul\u003e3e7:T5a6,\u003cp\u003eThis psychology course is all about the relationship between health and behavior. We will examine stress as a concept and learn about its relation to health and psychological adjustment. We will discuss abnormal behavior and how psychologists assess it as well as a wide range of psychological disorders and approaches to their treatment.\u003c/p\u003e\n\u003cp\u003eThis course includes video-based lectures and demonstrations, interviews with real research psychologists and a plethora of practice questions to help prepare you for the AP® Psychology exam.\u003c/p\u003e\n\u003cp\u003eThis is the fifth in a six-c"])</script><script>self.__next_f.push([1,"ourse AP® Psychology sequencethat is designed to prepare you for the AP® Psychology exam.\u003c/p\u003e\n\u003cp\u003eAdditional Courses:\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://www.edx.org/course/apr-psychology-part-1-what-psychology-ubcx-psyc-1x#\"\u003eAP® Psychology - Course 1: What is Psychology?\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://www.edx.org/course/apr-psychology-part-2-how-brain-works-ubcx-psyc-2x\"\u003eAP® Psychology - Course 2: How the Brain Works\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://www.edx.org/course/apr-psychology-part-3-how-mind-works-ubcx-psyc-3x\"\u003eAP® Psychology - Course 3: How the Mind Works\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://www.edx.org/course/apr-psychology-part-4-how-behavior-works-ubcx-psyc-4x\"\u003eAP® Psychology - Course 4: How Behavior Works\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://www.edx.org/course/apr-psychology-part-6-exam-preparation-ubcx-psyc-6x\"\u003eAP® Psychology - Course 6: Exam Preparation \u0026amp; Review\u003c/a\u003e\u003c/p\u003e3e8:T61e,\u003cp\u003e\u003cstrong\u003e__\u003c/strong\u003e _ \u003cstrong\u003eVisualizing Natural Language Processing\u003c/strong\u003e _ is the second course in the \u003ca href=\"https://courses.edx.org/dashboard/programs/b8d701a5-01e2-4e28-8313-cdf889550314/\"\u003e\u003cstrong\u003e\u003cem\u003eText Analytics with Python\u003c/em\u003e\u003c/strong\u003e professional certificate\u003c/a\u003e (or you can study it as a stand-alone course). Natural language processing (NLP) is only useful when its results are meaningful to humans. This second course continues by looking at how to make sense of our results using real-world visualizations.\u003c/p\u003e\n\u003cp\u003eHow can we understand the incredible amount of knowledge that has been stored as text data? This course is a practical and scientific introduction to text analytics. That means you’ll learn how it works and why it works at the same time.\u003c/p\u003e\n\u003cp\u003eOn the practical side, you’ll learn how to visualize and interpret the output of text analytics. You’ll learn how to create visualizations ranging from word clouds, heatmaps, and line plots to distribution plots, choropleth maps, and facet grids. You’ll work through real case-studies using jupyter notebooks and to visualize the results of machine learning in Python using pac"])</script><script>self.__next_f.push([1,"kages like pandas, matplotlib, and seaborn.\u003c/p\u003e\n\u003cp\u003eOn the scientific side, you’ll learn what it means to understand language computationally. How do word embeddings and topic models relate to human cognition? Artificial intelligence and humans don’t view language in the same way. You’ll see how both deep learning and human beings interact with the meaning that is encoded in language.\u003c/p\u003e3e9:T5d3,\u003cp\u003eThe volume of data generated daily is staggering—more than 2.5 quintillion bytes every day. As the data surge continues to grow exponentially, organizations and individuals alike need to understand how to process and analyze this information to create strategic advantage.\u003c/p\u003e\r\n\r\n\u003cp\u003eThe CS50 Professional Certificate Program: Computer Science for Data Science explores the limitless potential of computer science converging with the analytical power of R programming. Beginning with CS50: Introduction to Computer Science, learners will complete an intensive and comprehensive dive into the core concepts of computer science developed by renowned Harvard University Professor David J. Malan. The course will cover concepts like abstraction, algorithms, and data structures and management—serving as a foundation for how data is used to improve decision-making and critical thinking skills.\u003c/p\u003e\r\n\r\n\u003cp\u003eThrough CS50’s Introduction to Programming with R, you will elevate your skills as you discover the statistical power of R using real-world datasets to manipulate data, create colorful visualizations, and package and export R code for reproducibility.\u003c/p\u003e\r\n\r\n\u003cp\u003eWhether you're a data enthusiast, a seasoned computing professional, or interested in entering the fastest-growing industry, this professional certificate program unravels the complexities of today’s data landscape, equipping you with the skills needed to create efficient, accurate, and actionable data insights.\u003c/p\u003e3ea:T4c8,\u003cp\u003eThe demand for skilled data science practitioners in industry, academia, and government is rapidly growing. The HarvardX Data Science progra"])</script><script>self.__next_f.push([1,"m prepares you with the necessary knowledge base and useful skills to tackle real-world data analysis challenges. The program covers concepts such as probability, inference, regression, and machine learning and helps you develop an essential skill set that includes R programming, data wrangling with dplyr, data visualization with ggplot2, file organization with Unix/Linux, version control with git and GitHub, and reproducible document preparation with RStudio.\u003c/p\u003e\r\n\r\n\u003cp\u003eIn each course, we use motivating case studies, ask specific questions, and learn by answering these through data analysis. Case studies include: Trends in World Health and Economics, US Crime Rates, The Financial Crisis of 2007-2008, Election Forecasting, Building a Baseball Team (inspired by Moneyball), and Movie Recommendation Systems.\u003c/p\u003e\r\n\r\n\u003cp\u003eThroughout the program, we will be using the R software environment. You will learn R, statistical concepts, and data analysis techniques simultaneously. We believe that you can better retain R knowledge when you learn how to solve a specific problem.\u003c/p\u003e3eb:T54d,\u003cp\u003eIn today's ever-changing business landscape, it is more important than ever for leaders to have an understanding of artificial intelligence and data analytics. AI is expected to drive significant growth and value for the global economy, generated by the companies and countries that leverage it over the coming years. With that in mind, it's critical for leaders, managers, executives, and board members to develop their AI skills and understand how to leverage data to make the right decisions to grow their businesses.\u003c/p\u003e \r\n\r\n\u003cp\u003eThis Professional Certificate in AI and Data Analytics, brought to you by Babson College, the #1 school in Entrepreneurship (U.S. News \u0026 World Report), will give leaders a basic understanding of AI and how autonomous data can be used to make critical business decisions. The courses in this program will give learners the skills, strategies, and tactics to create AI-powered business models and explain how AI will impact t"])</script><script>self.__next_f.push([1,"heir customers, employees, investors, operations, and product/service offerings.\u003c/p\u003e\r\n\r\n\u003cp\u003eThe program will also dive deeper into data analytics to help business leaders understand the fundamental concepts of sound statistical thinking. Key concepts such as understanding variation, perceiving the relative risk of alternative decisions, and pinpointing sources of variation will be highlighted.\u003c/p\u003e3ec:T935,"])</script><script>self.__next_f.push([1,"\u003cp\u003eThis certificate program consists of two mini-courses: (1) A Gentle Introduction to Probability; and (2) Random Variables – Great Expectations to Bell Curves.\u003c/p\u003e\r\n\r\n\u003cp\u003eThe first course provides an introduction to basic probability concepts. Our emphasis is on applications in science and engineering, with the goal of enhancing modeling and analysis skills for a variety of real-world problems.\u003c/p\u003e \r\n\r\n\u003cp\u003eIn order to make the course completely self-contained (and to bring back long-lost memories), we’ll start off with Bootcamp lessons to review concepts from set theory and calculus. We’ll then discuss the probability axioms that serve as the basis for all of our subsequent work – what makes probability tick?\u003c/p\u003e \r\n\r\n\u003cp\u003eThe next venues on our tour are the concepts of independence and conditional probability, which allow us to see how the probabilities of different events are related to each other, and how new information can be used to update probabilities. The course culminates in a discussion of Bayes Rule and its various interesting consequences related to probability updates.\u003c/p\u003e\r\n\r\n\u003cp\u003eThe second course discusses properties and applications of random variables.\u003c/p\u003e \r\n\r\n\u003cp\u003eWe’ll begin by introducing the concepts of discrete and continuous random variables. For instance, how many customers are likely to arrive in the next hour (discrete)? What’s the probability that a lightbulb will last more than a year (continuous)?\u003c/p\u003e\r\n\r\n\u003cp\u003eWe’ll learn about various properties of random variables such as the expected value, variance, and moment generating function. This will lead us to a discussion of functions of random variables. Such functions have many uses, including some wonderful applications in computer simulations.\u003c/p\u003e\r\n\r\n\u003cp\u003eIf you enjoy random variables, then you’ll really love joint (two-dimensional) random variables. We’ll provide methodology to extract marginal (one-dimensional) and conditional information from these big boys. This work will enable us to study the important concepts of independence and correlation.\u003c/p\u003e\r\n\r\n\u003cp\u003eAlong the way, we’ll start working with the R statistical package to do some of our calculations and analysis.\u003c/p\u003e\r\n\r\n\u003cp\u003eBy the end of the course, you will have the technology to model and evaluate a variety of real-world systems in which randomness is present.\u003c/p\u003e"])</script><script>self.__next_f.push([1,"3ed:T47e,\u003cp\u003eOur Lean Six Sigma Black Belt course begins with self-paced learning to give you a basic understanding of the methodology and is augmented with recorded instructor-led webinars to reinforce learning points. It will qualify you to teach the Lean Six Sigma methodologies, tools and application in all functions and levels at your company. Throughout and after the course learners can also complete a project working 1-on-1 with a Master Black Belt mentor and coach to deliver a completed project for their company. Our typical Black Belt projects yield an average of $250K in savings for the organization. Our course proves it’s value within 3-6 months from the beginning of the training.\u003c/p\u003e\r\n\r\n\u003cp\u003eLean Six Sigma Black Belt Course Topics:\r\n\u003cul\u003e\r\n\u003cli\u003eBasic Quality Principles\u003c/li\u003e\r\n\u003cli\u003eManaging Projects and Teams\u003c/li\u003e\r\n\u003cli\u003eIdentifying the Costs of Poor Quality\u003c/li\u003e\r\n\u003cli\u003eThe DMAIC Phases\u003c/li\u003e\r\n\u003cli\u003eValidating Measurement Systems\u003c/li\u003e\r\n\u003cli\u003eGraphical Analysis Tools\u003c/li\u003e\r\n\u003cli\u003eLean Tools\u003c/li\u003e\r\n\u003cli\u003eStatistical Analysis Tools\u003c/li\u003e\r\n\u003cli\u003eDesigning Experiments to Test Improvement Theories\u003c/li\u003e\r\n\u003cli\u003eControlling the Improved Process\u003c/li\u003e\r\n\u003c/ul\u003e\u003c/p\u003e3ee:Ta40,"])</script><script>self.__next_f.push([1,"\u003cp\u003eDemand planning has always been an essential process for virtually every company. But due to consumer behavior changes in recent years, improving forecasting has become a priority. That is the reason why Certified Demand Planners have never been in such high demand.\u003c/p\u003e\r\n\r\n\u003cp\u003eDemand management in today’s business environment is a challenging task. Disruptive events like pandemics, economic sanctions, and armed conflicts have a huge impact on both consumer behavior and goods availability. Top companies are currently recruiting Skilled Demand Planners to be able to adapt to the \"new normal\" conditions, and ISCEA’s Certified Forecaster and Demand Planner (CFDP) Program will place you at the center stage.\u003c/p\u003e\r\n\r\n\u003cp\u003eWhether you are looking to start or boost your career as an Internationally Recognized Demand planner - ISCEA’s CFDP certificate will make you stand out from the crowd. The CFDP credential is sought by recruiters worldwide because it demonstrates that you can reduce procurement, inventory control, and replenishment costs while maximizing the value from inventory management, supply chain planning, ERP, statistical forecasting, and other software investments. These goals can be achieved by improving demand forecasting processes and forecast accuracy.\u003c/p\u003e\r\n\r\n\u003cp\u003eWhen you finish this program, you will be able to help companies cope with rapidly changing demand and improve decision-making processes in the context of Strategic Planning, S\u0026OP (Sales and Operations Planning) / IBP (Integrated Business Planning) processes, and Demand-Driven Supply Chain practices. You will also be able to develop seasonal demand forecasting and new product forecasting strategies, as well as implement a successful CPFR (Collaborative Planning, Forecasting, and Replenishment) process from the ground up.\u003c/p\u003e\r\n\r\n\u003cp\u003eWith no prerequisites, the online courses in this Professional Certification Program will provide you with the knowledge and skills highly regarded by top companies looking to increase their profitability and remain competitive.\u003c/p\u003e\r\n\r\n\u003cp\u003eThis Certification Program is offered by the International Supply Chain Education Alliance (ISCEA), a world-renowned and globally recognized developer of internationally recognized certification programs for supply chain professionals, including Certified Supply Chain Manager (CSCM), Certified Supply Chain Analyst (CSCA) and Certified Forecaster and Demand Planner (CFDP).\u003c/p\u003e\r\n\r\n\u003cp\u003eTo become an ISCEA certified professional Forecaster and Demand Planner (CFDP), you must complete all three preparatory courses and successfully pass the CFDP Exam.\u003c/p\u003e"])</script><script>self.__next_f.push([1,"3ef:T49f,\u003cp\u003eAs part of our \u003ca href=\"https://www.edx.org/professional-certificate/harvardx-data-science\"\u003eProfessional Certificate Program in Data Science\u003c/a\u003e, this course covers the basics of data visualization and exploratory data analysis. We will use three motivating examples and ggplot2, a data visualization package for the statistical programming language R. We will start with simple datasets and then graduate to case studies about world health, economics, and infectious disease trends in the United States. \u003c/p\u003e\n\u003cp\u003eWe'll also be looking at how mistakes, biases, systematic errors, and other unexpected problems often lead to data that should be handled with care. The fact that it can be difficult or impossible to notice a mistake within a dataset makes data visualization particularly important. \u003c/p\u003e\n\u003cp\u003eThe growing availability of informative datasets and software tools has led to increased reliance on data visualizations across many areas. Data visualization provides a powerful way to communicate data-driven findings, motivate analyses, and detect flaws. This course will give you the skills you need to leverage data to reveal valuable insights and advance your career.\u003c/p\u003e3f0:T4ad,\u003cp\u003eCyberattacks have surged by 71% and are predicted to continue increasing. This alarming statistic highlights the continued demand for cybersecurity professionals. Jumpstart your cybersecurity career with this introductory IBM course, which introduces you to fundamental cybersecurity concepts, threats, and preventive measures. \u003c/p\u003e\n\u003cp\u003eExplore the evolution of cybersecurity and the motivations of the actors behind cyberattacks, including types such as malware, ransomware, and other security threats. You'll also relate critical thinking to common cybersecurity practices and architecture. \u003c/p\u003e\n\u003cp\u003eHear from industry experts regarding their own careers, skills, perspectives, and experiences. Frameworks, standards, and organizations play a fundamental role in cybersecurity, which you will also investigate. \u003c/p\u003e\n\u003cp\u003eThroughout, you’ll buil"])</script><script>self.__next_f.push([1,"d practical knowledge and technical expertise through hands-on labs. Your final project will enable you to effectively demonstrate your understanding of cybersecurity principles. \u003c/p\u003e\n\u003cp\u003eThis course is for anyone who wants to know the basics of cybersecurity and is part of a series designed to help you start a career as a Cybersecurity Analyst.\u003c/p\u003e3f1:T894,"])</script><script>self.__next_f.push([1,"\u003cp\u003eIn this course, we go beyond the calculus textbook, working with practitioners in social, life and physical sciences to understand how calculus and mathematical models play a role in their work.\u003c/p\u003e\n\u003cp\u003eThrough a series of case studies, you’ll learn:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eHow standardized test makers use functions to analyze the difficulty of test questions;\u003c/li\u003e\n\u003cli\u003eHow economists model interaction of price and demand using rates of change, in a historical case of subway ridership;\u003c/li\u003e\n\u003cli\u003eHow an x-ray is different from a CT-scan, and what this has to do with integrals;\u003c/li\u003e\n\u003cli\u003eHow biologists use differential equation models to predict when populations will experience dramatic changes, such as extinction or outbreaks;\u003c/li\u003e\n\u003cli\u003eHow the Lotka-Volterra predator-prey model was created to answer a biological puzzle;\u003c/li\u003e\n\u003cli\u003eHow statisticians use functions to model data, like income distributions, and how integrals measure chance;\u003c/li\u003e\n\u003cli\u003eHow Einstein’s Energy Equation, E=mc2 is an approximation to a more complicated equation.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eWith real practitioners as your guide, you’ll explore these situations in a hands-on way: looking at data and graphs, writing equations, doing calculus computations, and making educated guesses and predictions.\u003c/p\u003e\n\u003cp\u003eThis course provides a unique supplement to a course in single-variable calculus. Key topics include application of derivatives, integrals and differential equations, mathematical models and parameters.\u003c/p\u003e\n\u003cp\u003eThis course is for anyone who has completed or is currently taking a single-variable calculus course (differential and integral), at the high school (AP or IB) or college/university level. You will need to be familiar with the basics of derivatives, integrals, and differential equations, as well as functions involving polynomials, exponentials, and logarithms.\u003c/p\u003e\n\u003cp\u003eThis is a course to learn applications of calculus to other fields, and NOT a course to learn the basics of calculus. Whether you’re a student who has just finished an introductory Calculus course or a teacher looking for more authentic examples for your classroom, there is something for you to learn here, and we hope you’ll join us!\u003c/p\u003e"])</script><script>self.__next_f.push([1,"3f2:T456,\u003cp\u003eIn this course, part of our \u003ca href=\"https://www.edx.org/professional-certificate/harvardx-data-science\"\u003eProfessional Certificate Program in Data Science\u003c/a\u003e,you will learn valuable concepts in probability theory. The motivation for this course is the circumstances surrounding the financial crisis of 2007-2008. Part of what caused this financial crisis was that the risk of some securities sold by financial institutions was underestimated. To begin to understand this very complicated event, we need to understand the basics of probability. \u003c/p\u003e\n\u003cp\u003eWe will introduce important concepts such as random variables, independence, Monte Carlo simulations, expected values, standard errors, and the Central Limit Theorem. These statistical concepts are fundamental to conducting statistical tests on data and understanding whether the data you are analyzing is likely occurring due to an experimental method or to chance. \u003c/p\u003e\n\u003cp\u003eProbability theory is the mathematical foundation of statistical inference which is indispensable for analyzing data affected by chance, and thus essential for data scientists.\u003c/p\u003e3f3:T59a,\u003cp\u003eCausal diagrams have revolutionized the way in which researchers ask: What is the causal effect of X on Y? They have become a key tool for researchers who study the effects of treatments, exposures, and policies. By summarizing and communicating assumptions about the causal structure of a problem, causal diagrams have helped clarify apparent paradoxes, describe common biases, and identify adjustment variables. As a result, a sound understanding of causal diagrams is becoming increasingly important in many scientific disciplines.\u003c/p\u003e\n\u003cp\u003eThe first part of this course is comprised of seven lessons that introduce causal diagrams and its applications to causal inference. The first lesson introduces causal DAGs, a type of causal diagrams, and the rules that govern them. The second, third, and fourth lessons use causal DAGs to represent common forms of bias. The fifth lesson uses causal DAGs to represent time-v"])</script><script>self.__next_f.push([1,"arying treatments and treatment-confounder feedback, as well as the bias of conventional statistical methods for confounding adjustment. The sixth lesson introduces SWIGs, another type of causal diagrams. The seventh lesson guides learners in constructing causal diagrams.\u003c/p\u003e\n\u003cp\u003eThe second part of the course presents a series of case studies that highlight the practical applications of causal diagrams to real-world questions from the health and social sciences.\u003c/p\u003e\n\u003cp\u003eProfessor Photo Credit: Anders Ahlbom\u003c/p\u003e3f4:Ta38,"])</script><script>self.__next_f.push([1,"\u003cp\u003eThe study of neuroscience aims to understand the human brain, cognition, the nervous system, and much more. There are many branches of neuroscience, including medical neuroscience, computational neuroscience, and behavioral neuroscience. Studying the human brain can be difficult, so scientists often first use mice in research because of the similarities in neuroanatomy, neurophysiology, and neurobiology. By studying the brains of mice, we gain insight into how the human brain works. This behavioral neuroscience course on edx covers the fundamentals of research involving mice, mice behavior and how it can be used to understand human behavior, and more. Enroll now to:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eUnderstand how to handle laboratory mice responsibly according to federal law by completing animals care and use training.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eUnderstand how research on animals must be scientifically justified, humane and ethical, use appropriate research methods, and provide new knowledge.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eCollect behavioral data from mouse videos from compulsive-like, non-compulsive-like, and randomly bred mouse strains; a mouse model of obsessive-compulsive disorder (OCD).\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eObtain competency in using behavioral tests to measure repetitive behaviors in laboratory mice analogous to compulsions in humans.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eEstablish a foundation in using behavioral tests in laboratory mice to be able to confidently learn how to use new tests.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eDevelop an ability to analyze behavioral neuroscience data using mice and understand repetitive (compulsive-like) behaviors in animal models.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eDevelop an ability to interpret and discuss results in the context of human behavior, and especially psychiatric disorders, and the mouse model of OCD.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eObtain a competency in describing key characteristics of OCD in humans and human behavior as described in the diagnostic and statistical manual of mental disorders (DSM), including obsessive and intrusive thoughts, repetitive behaviors, and hoarding disorder.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eDevelop a capability to formulate original research hypotheses as used in the fields of behavioral sciences, neuropsychology, and behavioral neuroscience.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eObtain a competency in describing and discussing how basic research contributes to the animal model of OCD and how it may have the potential to improve human mental health conditions, quality of life and the biological basis of human behavior.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eLearners who join this course should be free of objections to using mice in research.\u003c/p\u003e"])</script><script>self.__next_f.push([1,"3f5:T67f,\u003cp\u003eAnalytics have revolutionized sport, providing a competitive advantage to organizational decision-making both on and off the field. This course introduces best practices utilized by data analysts in sport business analytics. The course touches on sports data collection, fact finding, visualization, and metrics that guide strategic decision-making in the sport industry. This course will touch on many aspects of the sports industry, including professional sports. You do do not need a comprehensive background in data science, computer science/Python, or machine learning to complete this edX course.\u003c/p\u003e\n\u003cp\u003eThrough the duration of this self-paced, online course, learners will:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eIdentify the concepts and characteristics of sports analytics in the sporting industry, historically and today.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eInterpret aspects of analytics in the sporting industry (e.g., the impact of analytics in sport, player data points, athlete performance data tracking, organizational key performance indicators, etc.)\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eComprehend and engage in critical thinking with analytic topics in the sporting industry.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eObtain a perspective of the growing trend and field of sport analytics.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eGain insight on the strategies, analytical techniques, and concepts used to evaluate players, team performance, and front-office strategies.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eDiscuss topics related to sport analytics\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eUtilize data analysis and statistical analysis techniques to identify problems and propose innovative solutions for improving performance both on the field and in sport management.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e3f6:T70f,\u003cp\u003eSupply shortages, pandemics, military wars, trade wars, and other disruptive events have a significant impact in both consumer behaviour and product availability. Companies are becoming aware that historical sales data sets might no longer be relevant; and that the customary forecasting methods are not the best for their new current situation. \u003c/p\u003e\n\u003cp\u003eThis is th"])</script><script>self.__next_f.push([1,"e reason why, demand for skilled, critical and flexible Demand Planners with broad perspective is on the rise.\u003c/p\u003e\n\u003cp\u003eIn this course you will be able to decide if previously used forecasting techniques are the right ones for today's \"New Normal\" business environment. You will be capable of forecasting customer demand of different offerings going through different stages in their product life cycles; using causal and judgemental techniques, market research, statistical methods, time series of past sales and most recent customer orders.\u003c/p\u003e\n\u003cp\u003eYou will also be able to separate relevant from non-relevant data, and mitigate the impact of low forecast accuracy in demand planning, inventory management and profitability.\u003c/p\u003e\n\u003cp\u003eBy the end of this course, that is part of the edX Professional Certificate program to become a Certified Forecaster and Demand Planner (CFDP), you will be able to choose the right forecasting method for each data pattern and understand how to improve forecast performance with Machine Learning and Lean Six Sigma principles.\u003c/p\u003e\n\u003cp\u003eCFDP certified professionals are globally preferred by recruiters for decision making positions because they are capable of forecasting both slow and rapidly changing seasonal, intermittent and new product demand.\u003c/p\u003e\n\u003cp\u003eTo become an ISCEA Certified Forecaster and Demand Planner (CFDP), you must complete all three preparatory courses and successfully pass the CFDP Exam.\u003c/p\u003e3f7:Tabc,"])</script><script>self.__next_f.push([1,"\u003cp\u003eThis course by Imperial College London is designed to help you develop the skills you need to succeed in your A-level further maths exams.\u003c/p\u003e\n\u003cp\u003eYou will investigate key topic areas to gain a deeper understanding of the skills and techniques that you can apply throughout your A-level study. These skills include:\u003cspan lang=\"EN-US\"\u003e\u003c/span\u003e\u003c/p\u003e\n\u003cp\u003e*\u003cspan lang=\"EN-US\"\u003e Fluency – selecting and applying correct methods to answer with speed and efficiency\u003c/span\u003e\u003cspan lang=\"EN-US\"\u003e\u003c/span\u003e\u003c/p\u003e\n\u003cp\u003e*\u003cspan lang=\"EN-US\"\u003e Confidence – critically assessing mathematical methods and investigating ways to apply them\u003c/span\u003e\u003cspan lang=\"EN-US\"\u003e\u003c/span\u003e\u003c/p\u003e\n\u003cp\u003e*\u003cspan lang=\"EN-US\"\u003e Problem solving – analysing the ‘unfamiliar’ and identifying which skills and techniques you require to answer questions\u003c/span\u003e\u003cspan lang=\"EN-US\"\u003e\u003c/span\u003e\u003c/p\u003e\n\u003cp\u003e*\u003cspan lang=\"EN-US\"\u003e Constructing mathematical argument – using mathematical tools such as diagrams, graphs, logical deduction, mathematical symbols, mathematical language, construct mathematical argument and present precisely to others\u003c/span\u003e\u003cspan lang=\"EN-US\"\u003e\u003c/span\u003e\u003c/p\u003e\n\u003cp\u003e*\u003cspan lang=\"EN-US\"\u003e Deep reasoning – analysing and critiquing mathematical techniques, arguments, formulae and proofs to comprehend how they can be applied\u003c/span\u003e\u003c/p\u003e\n\u003cp\u003eOver eight modules, you will be introduced to \u003cspan lang=\"EN-US\"\u003e\u003c/span\u003e\u003c/p\u003e\n\u003cp\u003e*\u003cspan lang=\"EN-US\"\u003e Simple harmonic motion and damped oscillations.\u003c/span\u003e\u003cspan lang=\"EN-US\"\u003e\u003c/span\u003e\u003c/p\u003e\n\u003cp\u003e*\u003cspan lang=\"EN-US\"\u003e Impulse and momentum.\u003c/span\u003e\u003cspan lang=\"EN-US\"\u003e\u003c/span\u003e\u003c/p\u003e\n\u003cp\u003e*\u003cspan lang=\"EN-US\"\u003e The work done by a constant and a variable force, kinetic and potential energy (both gravitational and elastic) conservation of energy, the work-energy principle, conservative and dissipative forces, power.\u003c/span\u003e\u003cspan lang=\"EN-US\"\u003e\u003c/span\u003e\u003c/p\u003e\n\u003cp\u003e*\u003cspan lang=\"EN-US\"\u003e Oblique impact for elastic and inelastic collision in two dimensions. \u003c/span\u003e\u003cspan lang=\"EN-US\"\u003e\u003c/span\u003e\u003c/p\u003e\n\u003cp\u003e*\u003cspan lang=\"EN-US\"\u003e The Poisson distribution, its properties, approximation to a binomial distribution and hypothesis testing.\u003c/span\u003e\u003cspan lang=\"EN-US\"\u003e\u003c/span\u003e\u003c/p\u003e\n\u003cp\u003e*\u003cspan lang=\"EN-US\"\u003e The distribution of sample means and the central limit theorem. \u003c/span\u003e\u003cspan lang=\"EN-US\"\u003e\u003c/span\u003e\u003c/p\u003e\n\u003cp\u003e*\u003cspan lang=\"EN-US\"\u003e Chi-squared tests, contingency tables, fitting a theoretical distribution and goodness of fit.\u003c/span\u003e\u003cspan lang=\"EN-US\"\u003e\u003c/span\u003e\u003c/p\u003e\n\u003cp\u003e*\u003cspan lang=\"EN-US\"\u003e Type I and type II errors in statistical tests.\u003c/span\u003e\u003c/p\u003e\n\u003cp\u003eYour initial skillset will be extended to give a clear understanding of how background knowledge underpins the A -level further mathematics course. You’ll also be encouraged to consider how what you know fits into the wider mathematical world.\u003c/p\u003e"])</script><script>self.__next_f.push([1,"3f8:Tb5d,"])</script><script>self.__next_f.push([1,"\u003cp\u003eHow to derive and solve a second order differential equation that models simple harmonic motion.\u003c/p\u003e\n\u003cp\u003eHow to derive a second order differential equation for damped oscillations.\u003c/p\u003e\n\u003cp\u003eThe meaning of underdamping, critical damping and overdamping.\u003c/p\u003e\n\u003cp\u003eHow to solve coupled differential equations.\u003c/p\u003e\n\u003cp\u003eHow to calculate the impulse of one object on another in a collision.\u003c/p\u003e\n\u003cp\u003eHow to use the principle of conservation of momentum to model collisions in one dimension.\u003c/p\u003e\n\u003cp\u003eHow to use Newton’s experimental law to model inelastic collisions in one dimension.\u003c/p\u003e\n\u003cp\u003eHow to calculate the work done by a force and the work done against a resistive force.\u003c/p\u003e\n\u003cp\u003eHow to calculate gravitational potential energy and kinetic energy.\u003c/p\u003e\n\u003cp\u003eHow to calculate elastic potential energy.\u003c/p\u003e\n\u003cp\u003eHow to solve problems in which energy is conserved.\u003c/p\u003e\n\u003cp\u003eHow to solve problems in which some energy is lost through work against a dissipative force.\u003c/p\u003e\n\u003cp\u003eHow to calculate power and solve problems involving power. \u003c/p\u003e\n\u003cp\u003eHow to model elastic collision between bodies in two dimensions.\u003c/p\u003e\n\u003cp\u003eHow to model inelastic collision between two bodies in two dimensions.\u003c/p\u003e\n\u003cp\u003eHow to calculate the energy lost in a collision.\u003c/p\u003e\n\u003cp\u003eHow to calculate probability for a Poisson distribution.\u003c/p\u003e\n\u003cp\u003eHow to use the properties of a Poisson distribution.\u003c/p\u003e\n\u003cp\u003eHow to use a Poisson distribution to model a binomial distribution.\u003c/p\u003e\n\u003cp\u003eHow to use a hypothesis test to test for the mean of a Poisson distribution.\u003c/p\u003e\n\u003cp\u003eHow to estimate a population mean from sample data. \u003c/p\u003e\n\u003cp\u003eHow to estimating population variance using the sample variance. How to calculate and interpret the standard error of the mean.\u003c/p\u003e\n\u003cp\u003eHow and when to apply the Central Limit Theorem to the distribution of sample means. \u003c/p\u003e\n\u003cp\u003eHow to use the Central Limit Theorem in probability calculations, using a continuity correction where appropriate. \u003c/p\u003e\n\u003cp\u003eHow to apply the Central Limit Theorem to the sum of n identically distributed independent random variables.\u003c/p\u003e\n\u003cp\u003eHow to conduct a chi-squared test with the appropriate number of degrees of freedom to test for independence in a contingency table and interpret the results of such a test.\u003c/p\u003e\n\u003cp\u003eHow to fit a theoretical distribution, as prescribed by a given hypothesis involving a given ratio, proportion or discrete uniform distribution, to given data.\u003c/p\u003e\n\u003cp\u003eHow to use a chi-squared test with the appropriate number of degrees of freedom to carry out a goodness of fit test.\u003c/p\u003e\n\u003cp\u003eHow to calculate the probability of making a Type I error from tests based on a Poisson or Binomial distribution. \u003c/p\u003e\n\u003cp\u003eHow to calculate probability of making Type I error from tests based on a normal distribution. \u003c/p\u003e\n\u003cp\u003eHow to calculate P(Type II error) and power for a hypothesis test for tests based on a normal, Binomial or a Poisson distribution (or any other A level distribution).\u003c/p\u003e"])</script><script>self.__next_f.push([1,"3f9:T71a,\u003cp\u003eIn this online course, you will learn the theory behind the design of the Value Added Tax (VAT) gap estimation model of the International Monetary Fund’s Revenue Administration Gap Analysis Program (RA-GAP), and you will also learn how to use the model to produce your own VAT gap estimates. You will become familiarized with the overall structure of the model, and how each of its components interacts. You will learn what the inputs needed for the model are, how to prepare them, and how the model uses these inputs to compute the potential VAT, which is compared to the actual VAT to determine the VAT gap. \u003c/p\u003e\n\u003cp\u003eThe online course comprises five main components, or modules. The first module starts by providing some general background on the concept of tax gaps, and then covers the theory behind the design of the VAT gap estimation model. The second module moves on to looking at the various policy structures of a VAT are to be input into the model. The third module provides instructions on how various measures of actual VAT are to be prepared for use in the model, and the reason for why these measures are needed. The fourth module focusses on the compilation of the statistical data needed to construct the potential VAT base, and how this potential VAT base is input into the model. The final module then returns to the model and demonstrates how to execute the model to obtain your results, and, more importantly, how to review and interpret those results. \u003c/p\u003e\n\u003cp\u003eIn short, this course is designed to enable countries to produce VAT gap estimates on a regular and consistent basis, using the VAT gap estimation model of the IMF’s RA-GAP program; which is a well-established tax gap model. \u003c/p\u003e\n\u003cp\u003eThis online course is offered by the IMF with financial support from the Government of Japan.\u003c/p\u003e3fa:Td93,"])</script><script>self.__next_f.push([1,"\u003cp dir=\"ltr\"\u003e\u003cspan style=\"font-size: 11pt; font-family: Arial,sans-serif; color: #000000; background-color: transparent; font-weight: 400; font-style: normal; font-variant: normal; text-decoration: none; vertical-align: baseline; white-space: pre-wrap;\"\u003eMachine learning and AI are rapidly transforming the world, impacting organizations of all sizes. As executives push for AI/ML strategies, DevOps teams have been upskilling and bridging the gap between operations and development for the last several years for traditional applications. The complex machine learning application arrives just as cross-team collaboration becomes familiar.\u003c/span\u003e\u003c/p\u003e\n\u003cp dir=\"ltr\"\u003e\u003cspan style=\"font-size: 11pt; font-family: Arial,sans-serif; color: #000000; background-color: transparent; font-weight: 400; font-style: normal; font-variant: normal; text-decoration: none; vertical-align: baseline; white-space: pre-wrap;\"\u003e\n\nThese data-dependent applications present fresh challenges for deployment and development, demanding expertise from developers and data scientists, data engineers, and machine learning engineers. How can existing engineers, with their container, Kubernetes, and cloud knowledge, navigate this terrain? Can non-engineers seeking smoother data-intensive projects find common ground with statistically-savvy data scientists? We think so! Enter Kubeflow, an open source, Kubernetes-powered toolkit that enables teams of any scale or maturity to harness the potential of machine learning. Rather than reinventing the wheel, Kubeflow simplifies the deployment of proven open-source ML systems across any cloud and even on-premise \u003c/span\u003e\u003c/p\u003e\n\u003cp dir=\"ltr\"\u003e\u003cspan style=\"font-size: 11pt; font-family: Arial,sans-serif; color: #000000; background-color: transparent; font-weight: 400; font-style: normal; font-variant: normal; text-decoration: none; vertical-align: baseline; white-space: pre-wrap;\"\u003e\n\nThis course begins with Kubeflow, covering its origins, deployment options, individual components, and standard integrations. By the end, you'll grasp how MLOPs can ensure the successful production of ML systems, how Kubeflow opens up ML for everyone, regardless of scale, understand\u003c/span\u003e\u003cspan style=\"font-size: 11pt; font-family: Arial,sans-serif; color: #000000; background-color: transparent; font-weight: bold; font-style: normal; font-variant: normal; text-decoration: none; vertical-align: baseline; white-space: pre-wrap;\"\u003e\u003c/span\u003e\u003cspan style=\"font-size: 11pt; font-family: Arial,sans-serif; color: #000000; background-color: transparent; font-weight: 400; font-style: normal; font-variant: normal; text-decoration: none; vertical-align: baseline; white-space: pre-wrap;\"\u003e how to choose the ideal Kubeflow distribution for your needs so you can see Kubeflow’s \"simple, portable, scalable\" promise in action, and launch your own Kubeflow project. We will even touch upon some additional open source integrations so you can make Kubeflow work for you!\u003c/span\u003e\u003c/p\u003e\n\u003cp dir=\"ltr\"\u003e\u003cspan style=\"font-size: 11pt; font-family: Arial,sans-serif; color: #000000; background-color: transparent; font-weight: 400; font-style: normal; font-variant: normal; text-decoration: none; vertical-align: baseline; white-space: pre-wrap;\"\u003e\n\nThis course caters to everyone wanting to leverage the power of machine learning. Whether you're an engineer, data scientist, or simply curious about Kubeflow, join us and discover how you can contribute to the future of machine learning!\u003c/span\u003e\u003c/p\u003e"])</script><script>self.__next_f.push([1,"3fb:Td4c,"])</script><script>self.__next_f.push([1,"\u003cul\u003e\n\u003cli\u003e\u003cp dir=\"ltr\"\u003e\u003cspan style=\"font-size: 11pt; font-family: Arial,sans-serif; color: #000000; background-color: transparent; font-weight: 400; font-style: normal; font-variant: normal; text-decoration: none; vertical-align: baseline; white-space: pre-wrap;\"\u003eDiscuss the value of MLOPs for production systems and how it relates to DevOps\u003c/span\u003e\u003c/p\u003e\u003c/li\u003e\n\u003cli\u003e\u003cp dir=\"ltr\"\u003e\u003cspan style=\"font-size: 11pt; font-family: Arial,sans-serif; color: #000000; background-color: transparent; font-weight: 400; font-style: normal; font-variant: normal; text-decoration: none; vertical-align: baseline; white-space: pre-wrap;\"\u003eRecognize common machine learning platform patterns and the problems they seek to solve\u003c/span\u003e\u003c/p\u003e\u003c/li\u003e\n\u003cli\u003e\u003cp dir=\"ltr\"\u003e\u003cspan style=\"font-size: 11pt; font-family: Arial,sans-serif; color: #000000; background-color: transparent; font-weight: 400; font-style: normal; font-variant: normal; text-decoration: none; vertical-align: baseline; white-space: pre-wrap;\"\u003eExplain the model development lifecycle \u003c/span\u003e\u003c/p\u003e\u003c/li\u003e\n\u003cli\u003e\u003cp dir=\"ltr\"\u003e\u003cspan style=\"font-size: 11pt; font-family: Arial,sans-serif; color: #000000; background-color: transparent; font-weight: 400; font-style: normal; font-variant: normal; text-decoration: none; vertical-align: baseline; white-space: pre-wrap;\"\u003eDefine and identify common machine learning frameworks\u003c/span\u003e\u003c/p\u003e\u003c/li\u003e\n\u003cli\u003e\u003cp dir=\"ltr\"\u003e\u003cspan style=\"font-size: 11pt; font-family: Arial,sans-serif; color: #000000; background-color: transparent; font-weight: 400; font-style: normal; font-variant: normal; text-decoration: none; vertical-align: baseline; white-space: pre-wrap;\"\u003eDiscuss the value proposition and goal of the universal training operator\u003c/span\u003e\u003c/p\u003e\u003c/li\u003e\n\u003cli\u003e\u003cp dir=\"ltr\"\u003e\u003cspan style=\"font-size: 11pt; font-family: Arial,sans-serif; color: #000000; background-color: transparent; font-weight: 400; font-style: normal; font-variant: normal; text-decoration: none; vertical-align: baseline; white-space: pre-wrap;\"\u003eResearch and select a Kubeflow distribution based on your needs or, at the very least, have an informed conversation with a vendor.\u003c/span\u003e\u003c/p\u003e\u003c/li\u003e\n\u003cli\u003e\u003cp dir=\"ltr\"\u003e\u003cspan style=\"font-size: 11pt; font-family: Arial,sans-serif; color: #000000; background-color: transparent; font-weight: 400; font-style: normal; font-variant: normal; text-decoration: none; vertical-align: baseline; white-space: pre-wrap;\"\u003eLaunch and leverage a Kubeflow Notebook.\u003c/span\u003e\u003c/p\u003e\u003c/li\u003e\n\u003cli\u003e\u003cp dir=\"ltr\"\u003e\u003cspan style=\"font-size: 11pt; font-family: Arial,sans-serif; color: #000000; background-color: transparent; font-weight: 400; font-style: normal; font-variant: normal; text-decoration: none; vertical-align: baseline; white-space: pre-wrap;\"\u003eLaunch a primary Kubeflow pipeline.\u003c/span\u003e\u003c/p\u003e\u003c/li\u003e\n\u003cli\u003e\u003cp dir=\"ltr\"\u003e\u003cspan style=\"font-size: 11pt; font-family: Arial,sans-serif; color: #000000; background-color: transparent; font-weight: 400; font-style: normal; font-variant: normal; text-decoration: none; vertical-align: baseline; white-space: pre-wrap;\"\u003eDiscuss additional popular Kubeflow integrations.\u003c/span\u003e\u003c/p\u003e\u003c/li\u003e\n\u003cli\u003e\u003cp dir=\"ltr\"\u003e\u003cspan style=\"font-size: 11pt; font-family: Arial,sans-serif; color: #000000; background-color: transparent; font-weight: 400; font-style: normal; font-variant: normal; text-decoration: none; vertical-align: baseline; white-space: pre-wrap;\"\u003eFamiliarize yourself with Katib and Hyperparameter tuning\u003c/span\u003e\u003c/p\u003e\u003c/li\u003e\n\u003c/ul\u003e"])</script><script>self.__next_f.push([1,"3fc:T56b,\u003cp\u003eViviamo nel \"big data age\", qualunque attività umana, qualsiasi azione, produce dati.\u003cbr /\u003e\nQuesto corso affronta le diverse fasi dell’indagine statistica, dal campionamento statistico all’utilizzo degli strumenti inferenziali per ottenere stime, puntuali o intervallari, e per verificare la plausibilità di ipotesi su una o più caratteristiche della popolazione oggetto di studio.\u003cbr /\u003e\nIn altre parole, lo scopo formativo del corso è di condurre lo studente verso una matura capacità di sintesi e di astrazione nella formalizzazione e nell’analisi dei problemi economico-gestionali attraverso l’impiego degli strumenti di statistica inferenziale ritenuti più adeguati agli obiettivi di analisi e alle caratteristiche dei dati raccolti.\u003c/p\u003e\n\u003cp\u003eToday, we live in a big data age where all human activities and actions produce \u003cbr /\u003e\ndata. In this course, we will trace the steps of statistical surveys: from statistical \u003cbr /\u003e\nsampling, to the inferential tools used for interval and point estimates and for verifying the plausibility of hypotheses on one or more characteristics of the population studied. \u003cbr /\u003e\nIn other words, the scope of this course is to provide the students with a sensible synthetic ability as well as with a mature competence of abstraction when formalizing and analyzing the economic and managerial problems with the most appropriate tools.\u003c/p\u003e3fd:T87e,"])</script><script>self.__next_f.push([1,"\u003cp\u003e\u003cspan lang=\"FR\"\u003eCe cours dispensé par le département des \u003c/span\u003e\u003cspan lang=\"FR\"\u003estatistiques\u003c/span\u003e\u003cspan lang=\"FR\"\u003e du FMI couvre les éléments fondamentaux nécessaires à l’établissement et à la diffusion de statistiques exhaustives sur \u003c/span\u003e\u003cspan lang=\"FR\"\u003ela dette du secteur public (SDSP), qui seront utiles aux responsables de l’élaboration des politiques, aux décideurs et à d’autres utilisateurs\u003c/span\u003e\u003cspan lang=\"FR\"\u003e.\u003c/span\u003e\u003cspan lang=\"FR\"\u003e\u003c/span\u003e\u003c/p\u003e\n\u003cp\u003eLe cours introduit le cadre conceptuel nécessaire aux SDSP tel qu’il est présenté dans les \u003cem\u003e\u003cspan lang=\"FR\"\u003eStatistiques de la dette du secteur public — Guide pour les statisticiens et les utilisateurs\u003c/span\u003e\u003c/em\u003e\u003cspan lang=\"FR\"\u003e ( \u003cem\u003eGuide\u003c/em\u003e ) et dans le contexte du cadre des statistiques\u003c/span\u003e\u003cspan lang=\"FR\"\u003e de finances publiques (SFP), qui est harmonisé avec d’autres cadres de \u003c/span\u003e\u003cspan lang=\"FR\"\u003estatistiques\u003c/span\u003e\u003cspan lang=\"FR\"\u003e macroéconomiques. Nous examinons les concepts de base, les définitions et les classifications, de même que les principales normes comptables (y compris la valorisation et la consolidation) pertinentes pour l’établissement des SDSP. \u003c/span\u003e\u003cspan lang=\"FR\"\u003e\u003c/span\u003e\u003c/p\u003e\n\u003cp\u003eLe cours aborde la couverture institutionnelle et des instruments de dette à considérer pour produire des SDSP exhaustives et comparables à l’échelle internationale, et explique comment enregistrer les passifs conditionnels tels que les garanties des \u003cspan lang=\"FR\"\u003eadministrations publiques\u003c/span\u003e\u003cspan lang=\"FR\"\u003e. Par ailleurs, il traite de l’incidence des SDSP sur certaines thématiques liées à la dette (reprise de dette, remise de dette, rétrocession, crédit-bail, renflouement, etc.).\u003c/span\u003e\u003cspan lang=\"FR\"\u003e\u003c/span\u003e\u003c/p\u003e\n\u003cp\u003eLe cours examine aussi des questions importantes pour l’établissement des SDSP, notamment celle du choix des SDSP à établir et à diffuser, ainsi que les directives et les normes du FMI concernant leur diffusion. Il présente enfin les usages possibles des SDSP, dont les analyses de viabilité de la dette (AVD) et les analyses des risques budgétaires et de la vulnérabilité des finances publiques.\u003c/p\u003e"])</script><script>self.__next_f.push([1,"3fe:T682,\u003cp\u003eLa gestione della produzione e della logistica è una materia di natura multidisciplinare, e questo corso si propone di dare rilievo alle problematiche di natura manageriale, senza per questo sminuire l’importanza degli aspetti più propriamente tecnologici e matematico-statistici.\u003cbr /\u003e\nLa parte iniziale del corso presenta una descrizione dei sistemi di produzione, e delle strategie di produzione e di logistica. Il corso prosegue con le tecniche di previsione di supporto al Manufacturing e successivamente approfondisce il tema della programmazione della produzione, della gestione dei materiali cosiddette a stock e del controllo di qualità. La gestione della logistica e le scelte di outsourcing logistico assumono un ruolo centrale nel corso. Infine, il corso si completa con alcune lezioni monografiche, tenute da manager della produzione, racconti di casi empirici fatti da testimonial d'eccezione, su Kaizen, lean production, ed e-procurement. \u003c/p\u003e\n\u003cp\u003eOperations and logistics management is a multi-disciplinary subject, and this course highlights management issues without neglecting the more technological and mathematical-statistical aspects. \u003cbr /\u003e\nThe first part of the course describes production systems, and production and logistics strategies. It moves on to planning manufacturing support before looking at scheduling production, stock management and quality control in more detail. Logistics management and outsourcing choices play a key role in the course. The course finishes with lessons focusing on special topics, like Kaizen, lean production and e-procurement, where specific case-studies are presented by experts in the field.\u003c/p\u003e3ff:T627,\u003cp\u003ePer fare questo occorre capire l'importanza della metodologia della ricerca, non sempre immediatamente evidente a chi si trova a leggere un saggio sociologico, né tanto meno ai giovani che intraprendono un percorso di studio nel campo delle scienze sociali. Il corso, dunque, affronta il tema della logica del metodo scientifico e della sua applicazione nelle "])</script><script>self.__next_f.push([1,"scienze sociali. L'obiettivo è di consentire agli studenti di impostare e condurre correttamente il lavoro di indagine empirica, nonché di orientare la scelta degli strumenti di raccolta dati in relazione ai diversi tipi di ricerca, fornendo indicazioni circa la loro costruzione e somministrazione. Il corso comprende anche una introduzione alle tecniche di analisi statistiche con cui è possibile trovare risposte agli interrogativi iniziali formulati in sede di disegno\u003cbr /\u003e\ndella ricerca. \u003c/p\u003e\n\u003cp\u003eTo achieve this, we need to understand the importance of research methodology, and this is not immediately obvious to people reading a sociology book, or even to students starting their Social Sciences course. This MOOC, therefore, looks at logic and the scientific approach and how it is applied to the Social Sciences. The objective is to enable students to learn how to set up and implement an empirical study, including the right choice of instruments for data collection according to the specific study, and how to construct and administer them. The course also provides an introduction to statistical analysis which enables us to answer the questions that were set when the research was designed.\u003c/p\u003e400:T417,\u003cp\u003eAnalytical models are key to understanding data, generating predictions, and making business decisions. Without models it’s nearly impossible to gain insights from data. In modeling, it’s essential to understand how to choose the right data sets, algorithms, techniques and formats to solve a particular business problem.\u003c/p\u003e\n\u003cp\u003eIn this course, part of the Analytics: Essential Tools and Methods MicroMasters program, you’ll gain an intuitive understanding of fundamental models and methods of analytics and practice how to implement them using common industry tools like R.\u003c/p\u003e\n\u003cp\u003eYou’ll learn about analytics modeling and how to choose the right approach from among the wide range of options in your toolbox.\u003c/p\u003e\n\u003cp\u003eYou will learn how to use statistical models and machine learning as well as models for:\u003c/p\u003e\n\u003cul\u003e\n\u003c"])</script><script>self.__next_f.push([1,"li\u003eclassification;\u003c/li\u003e\n\u003cli\u003eclustering;\u003c/li\u003e\n\u003cli\u003echange detection;\u003c/li\u003e\n\u003cli\u003edata smoothing;\u003c/li\u003e\n\u003cli\u003evalidation;\u003c/li\u003e\n\u003cli\u003eprediction;\u003c/li\u003e\n\u003cli\u003eoptimization;\u003c/li\u003e\n\u003cli\u003eexperimentation;\u003c/li\u003e\n\u003cli\u003edecision making.\u003c/li\u003e\n\u003c/ul\u003e401:T74d,\u003cp\u003ePsychology is the academic and applied study of the human mind and behavior. Perhaps there are no more salient topics in the information age and the global economy than a comprehensive understanding of how learning takes place and what predicts and determines human behavior. The course is a primer, meant to provide substantive content through which to understand the human condition and to inspire students to continue their learning and growth. \u003c/p\u003e\n\u003cp\u003eStudents interested in the study of psychology are interested in why people do, say and think what they do. They have questions about how learning takes place, how genetics dictate certain traits but not others, how memories are formed, where to draw the line between normality and disorder, whether a damaged brain can regain function and the predictors of addiction. \u003c/p\u003e\n\u003cp\u003eThrough this introductory course, students will have the opportunity to understand the science of psychology and how psychologists measure mental function and behavior and how the results are reported. They will better understand perception and consciousness and the mysteries of sleep and dreams. Through child development, they will understand how the brain is ready for learning and pre-wired for language. Motivation, cognition and personality will be analyzed through the lens of past and current psychological thought. Students will understand the statistical reality of the normal distribution and how that is relevant to most traits. They will review new research on the plasticity of the brain and consider whether intelligence is fixed or flexible. Lastly, the array of disorders and dysfunction will be analyzed and discussed and the line between normal and abnormal will be considered.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://www.edx.org/high-school-initiative\"\u003eLearn more about our Hig"])</script><script>self.__next_f.push([1,"h School and AP* Exam Preparation Courses\u003c/a\u003e\u003c/p\u003e402:T6da,\u003cp\u003eThis course provides the essential foundations required to understand the operation of semiconductor devices such as transistors, diodes, solar cells, light-emitting devices, and more. The material will primarily appeal to electrical engineering students whose interests are in applications of semiconductor devices in circuits and systems. The treatment is physical and intuitive, and not heavily mathematical.\u003c/p\u003e\n\u003cp\u003eTechnology users will gain an understanding of the semiconductor physics that is the basis for devices. Semiconductor technology developers may find it a useful starting point for diving deeper into condensed matter physics, statistical mechanics, thermodynamics, and materials science. The course presents an electrical engineering perspective on semiconductors, but those in other fields may find it a useful introduction to the approach that has guided the development of semiconductor technology for the past 50+ years.\u003c/p\u003e\n\u003cp\u003eStudents taking this course will be required to complete two (2) proctored exams using the edX online Proctortrack software. \u003cbr /\u003e\nCompleted exams will be scanned and sent using Gradescope for grading.\u003c/p\u003e\n\u003cp\u003eSemiconductor Fundamentals is one course in a growing suite of unique, 1-credit-hour short courses being developed in an edX/Purdue University collaboration. Students may elect to pursue a verified certificate for this specific course alone or as one of the six courses needed for the edX/Purdue MicroMasters program in Nanoscience and Technology. For further information and other courses offered and planned, please see the Nanoscience and Technology page. Courses like this can also apply toward a Purdue University MSECE degree for students accepted into the full master’s program.\u003c/p\u003e403:T4b4,\u003cp\u003eStudents will learn about the following specific topics:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eenergy bands\u003c/li\u003e\n\u003cli\u003eband gaps\u003c/li\u003e\n\u003cli\u003eeffective masses\u003c/li\u003e\n\u003cli\u003eelectrons and holes\u003c/li\u003e\n\u003cli\u003ebasics of quantum mechanics\u003c/li\u003e\n\u003cli\u003ethe Fermi function\u003c/l"])</script><script>self.__next_f.push([1,"i\u003e\n\u003cli\u003ethe density-of-states\u003c/li\u003e\n\u003cli\u003eintrinsic carrier density\u003c/li\u003e\n\u003cli\u003edoping and carrier concentrations\u003c/li\u003e\n\u003cli\u003ecarrier transport\u003c/li\u003e\n\u003cli\u003egeneration-recombination\u003c/li\u003e\n\u003cli\u003equasi-Fermi levels\u003c/li\u003e\n\u003cli\u003ethe semiconductor equations\u003c/li\u003e\n\u003cli\u003eenergy band diagrams\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eAmong the important learning objectives, the course will introduce learners to the process of drawing and interpreting energy band diagrams. Energy band diagrams are a powerful, conceptual way to qualitatively understand the operation of semiconductor devices. In a concise way, they encapsulate most of the device-relevant specifics of semiconductor physics. Drawing and interpreting an energy band diagram is the first step in understanding the operation of a device.\u003c/p\u003e\n\u003cp\u003eThis course material is typically covered in the first few weeks of an introductory semiconductor device course, but this class provides a fresh perspective informed by new understanding of electronics at the nanoscale.\u003c/p\u003e404:T560,\u003cp\u003eWe encounter signals and systems extensively in our day-to-day lives, from making a phone call, listening to a song, editing photos, manipulating audio files, using speech recognition softwares like Siri and Google now, to taking EEGs, ECGs and X-Ray images. Each of these involves gathering, storing, transmitting and processing information from the physical world. This course will equip you to deal with these tasks efficiently by learning the basic mathematical framework of signals and systems.\u003c/p\u003e\n\u003cp\u003eThis course is divided into two parts. In this part (EE210.1x), we will explore the various properties of signals and systems, characterization of Linear Shift Invariant Systems, convolution and Fourier Transform, while the next part (\u003ca href=\"https://www.edx.org/course/signals-systems-part-2-iitbombayx-ee210-2x-1\"\u003eEE210.2x\u003c/a\u003e), will deal with the Sampling theorem, Z-Transform, discrete Fourier transform and Laplace transform. Ideas introduced in this course will be useful in understanding further electrical engineering courses which deal with c"])</script><script>self.__next_f.push([1,"ontrol systems, communication systems, power systems, digital signal processing, statistical signal analysis and digital message transmission. The concepts taught in this course are also useful to students of other disciplines like mechanical, chemical, aerospace and other branches of engineering and science.\u003c/p\u003e405:T42d,\u003cp\u003eMachine learning is a type of artificial intelligence (AI) that provides computers with the ability to learn without being explicitly programmed. This area is also concerned with issues both theoretical and practical.\u003c/p\u003e\r\n\u003cp\u003eIn this course, we will present algorithms and approaches in such a way that grounds them in larger systems as you learn about a variety of topics, including:\u003c/p\u003e\r\n\u003cul\u003e\r\n\u003cli\u003estatistical supervised and unsupervised learning methods\u003c/li\u003e\r\n\u003cli\u003erandomized search algorithms\u003c/li\u003e\r\n\u003cli\u003eBayesian learning methods\u003c/li\u003e\r\n\u003cli\u003ereinforcement learning\u003c/li\u003e\r\n\u003c/ul\u003e\r\n\u003cp\u003eThe course also covers theoretical concepts such as inductive bias, the PAC and Mistake‐bound learning frameworks, minimum description length principle, and Ockham's Razor. In order to ground these methods the course includes some programming and involvement in a number of projects.\u003c/p\u003e\r\n\u003cp\u003eBy the end of this course, you should have a strong understanding of machine learning so that you can pursue any further and more advanced learning.\u003c/p\u003e\r\n\u003cp\u003eThis is a three-credit course.\u003c/p\u003e406:T47f,\u003cp\u003eWant to study for an MBA but unsure of the basic data analysis still required? This online course prepares you for studying in an MBA program and in business generally.\u003c/p\u003e\n\u003cp\u003eData analysis appears throughout any rigorous MBA program and in today’s business environment understanding the fundamentals of collecting, presenting, describing and making inferences from data sets is essential for success.\u003c/p\u003e\n\u003cp\u003eThe goal of this course is to teach you fundamental data analysis skills so you are prepared for your MBA study and able to focus your efforts on core MBA curriculum, rather than continually playing catch-up with the underlying stati"])</script><script>self.__next_f.push([1,"stical knowledge needed.\u003c/p\u003e\n\u003cp\u003eWe also hope that learning these data analysis skills will equip you with the ability to understand, to a greater degree, the data you encounter in your working lives and in the world around you - an essential life-skill in today’s data driven environment\u003c/p\u003e\n\u003cp\u003eThis course assumes no prior knowledge of data analysis. Concepts are explained as clearly as possible and regular activities give you the opportunity to practice your skills and improve your confidence.\u003c/p\u003e407:T6b7,\u003cp\u003eIn the last decade, the amount of data available to organizations has reached unprecedented levels. Data is transforming business, social interactions, and the future of our society. In this course, you will learn how to use data and analytics to give an edge to your career and your life. We will examine real world examples of how analytics have been used to significantly improve a business or industry. These examples include Moneyball, eHarmony, the Framingham Heart Study, Twitter, IBM Watson, and Netflix. Through these examples and many more, we will teach you the following analytics methods: linear regression, logistic regression, trees, text analytics, clustering, visualization, and optimization. We will be using the statistical software R to build models and work with data. The contents of this course are essentially the same as those of the corresponding MIT class (The Analytics Edge). It is a challenging class, but it will enable you to apply analytics to real-world applications.\u003c/p\u003e\n\u003cp\u003eThe class will consist of lecture videos, which are broken into small pieces, usually between 4 and 8 minutes each. After each lecture piece, we will ask you a \"quick question\" to assess your understanding of the material. There will also be a recitation, in which one of the teaching assistants will go over the methods introduced with a new example and data set. Each week will have a homework assignment that involves working in R or LibreOffice with various data sets. (R is a free statistical and computing software en"])</script><script>self.__next_f.push([1,"vironment we'll use in the course. See the Software FAQ below for more info). At the end of the class there will be a final exam, which will be similar to the homework assignments.\u003c/p\u003e408:T59d,\u003cp\u003eAs part of the Principles of Manufacturing MicroMasters program, this course will build on statistical process control foundations to add process modeling and optimization.Building on formal methods of designed experiments, the course develops highly applicable methods for creating robust processes with optimal quality. \u003c/p\u003e\n\u003cp\u003eWe will cover the following topics: \u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eEvaluating the causality of inputs and parameters on the output measures\u003c/li\u003e\n\u003cli\u003eDesigning experiments for the purpose of process improvement\u003c/li\u003e\n\u003cli\u003eMethods for optimizing processes and achieving robustness to noise inputs\u003c/li\u003e\n\u003cli\u003eHow to integrate all of these methods into an overall approach to process control that can be widely applied\u003c/li\u003e\n\u003cli\u003eDeveloping a data-based statistical ability to solving engineering problems in general\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThe course will conclude with a capstone activity that will integrate all the Statistical Process Control topics. \u003c/p\u003e\n\u003cp\u003eDevelop the engineering andmanagement skills needed for competence and competitiveness in today’s manufacturing industry with the Principles of Manufacturing MicroMasters Credential, designed and delivered by MIT’s #1-ranked Mechanical Engineering department in the world. Learners who pass the 8 courses in the program earn the MicroMasters Credential and qualify to apply to gain credit for MIT’s Master of Engineering in Advanced Manufacturing \u0026amp; Design program.\u003c/p\u003e409:T788,\u003cp\u003e\u003cem\u003eChemical Thermodynamics II: Equilibrium and Kinetics\u003c/em\u003e is an online course that will teach you how to apply fundamental concepts and principles of thermodynamics to multi-component systems. \u003c/p\u003e\n\u003cp\u003eThe second in a two-part series, this course builds on concepts from \u003ca href=\"https://www.edx.org/learn/chemistry/massachusetts-institute-of-technology-chemical-thermodynamics-i\" rel=\"noopener\" target="])</script><script>self.__next_f.push([1,"\"_blank\"\u003e5.601x Chemical Thermodynamics I\u003c/a\u003e. Together, the pair covers chemical thermodynamics, statistical mechanics, phase equilibria, and kinetics.\u003c/p\u003e\n\u003cp\u003eIn this course, you will leverage the ideas of entropy and free energy (previously developed in 5.601x) to describe chemical potential and how it relates to equilibrium. You will explore chemical equilibria between different chemical species and phase equilibria between different phases of the same chemical species, finally combining both to examine the multiple equilibria present in non-reactive mixtures of species.\u003c/p\u003e\n\u003cp\u003eYou will then change gears to focus on the evolution of chemical systems with time, exploring the concepts of kinetics. After appreciating links between molecular mechanisms and reaction dynamics, you will explore a variety of advanced topics, including catalysis, enzymatics, chain reactions, and oscillating chemical reactions.\u003c/p\u003e\n\u003cp\u003eBased on the MIT undergraduate course 5.602 Thermodynamics II and Kinetics required of all Chemistry majors, this online version is best suited for learners with some knowledge of undergraduate general chemistry and multivariable calculus. However, any learner who wants to get an introduction to fundamental concepts in equilibrium and kinetics will benefit. We welcome undergraduate university students reviewing or supplementing their own course work, as well as mid-career professionals seeking to advance their careers or pursuing post-baccalaureate engineering and technology degrees.\u003c/p\u003e40a:T4e9,\u003cp\u003eSituations where resources are shared among users appear in a wide variety of domains, from lines at stores and toll booths to queues in telecommunication networks. The management of these shared resourcescan have direct consequences on users,whether it be waiting times or blocking probabilities. \u003c/p\u003e\n\u003cp\u003eIn this course, you'll learn how to describe a queuing system statistically, how to model the random evolution of queue lengths over time and calculate key performance indicators, such as an average delay or a l"])</script><script>self.__next_f.push([1,"oss probability. \u003c/p\u003e\n\u003cp\u003eThis course is aimed at engineers, students and teachers interested in network planning. \u003c/p\u003e\n\u003cp\u003ePractical coursework will be carried out using ipython notebooks on a Jupyterhub server which you will be given access to. \u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eStudent testimonial\u003c/strong\u003e\u003cbr /\u003e\n\"Great MOOC ! The videos, which are relatively short, provide a good recap on Markov chains and how they apply to queues. The quizzes work well to check if you've understood.\" Loïc, beta-tester \u003c/p\u003e\n\u003cp\u003e\"The best MOOC on edX! I'm finishing week 2 and I've never seen that much care put in a course lab! And I love these little gotchas you put into quizzes here and there! Thank you!\" rka444, learner from Session 1, February - March 2018\u003c/p\u003e40b:T763,\u003cp\u003eThis course provides the graduate-level introduction to understand, analyze, characterize and design the operation of semiconductor devices such as transistors, diodes, solar cells, light-emitting devices, and more.\u003c/p\u003e\n\u003cp\u003eThe material will primarily appeal to electrical engineering students whose interests are in applications of semiconductor devices in circuits and systems. The treatment is physics-based, provides derivations of the mathematical descriptions, and enables students to quantitatively analyze device internal processes, analyze device performance, and begin the design of devices given specific performance criteria.\u003c/p\u003e\n\u003cp\u003eTechnology users will gain an understanding of the semiconductor physics that is the basis for devices. Semiconductor technology developers may find it a useful starting point for diving deeper into condensed matter physics, statistical mechanics, thermodynamics, and materials science. The course presents an electrical engineering perspective on semiconductors, but those in other fields may find it a useful introduction to the approach that has guided the development of semiconductor technology for the past 50+ years.\u003c/p\u003e\n\u003cp\u003eStudents taking this course will be required to complete:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003etwo (2) projects\u003c/li\u003e\n\u003cli\u003eone (1) proctored exam usin"])</script><script>self.__next_f.push([1,"g the edX online Proctortrack software.\u003c/li\u003e\n\u003cli\u003enine (9) homework assignments.\u003c/li\u003e\n\u003cli\u003ethirty-one (31) online quizzes are spread throughout the 16-week semester.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eCompleted homework and exam will be scanned and submitted using Gradescope for grading.\u003c/p\u003e\n\u003cp\u003eThis course is one of a growing suite of graduate-level courses being developed in an edX/Purdue University collaboration. Courses like this can apply toward a \u003ca href=\"https://engineering.purdue.edu/ECE/Academics/Online\"\u003ePurdue University MSECE degree\u003c/a\u003e for students accepted into the full master’s program.\u003c/p\u003e40c:T5b6,\u003cp\u003eWe encounter signals and systems extensively in our day-to-day lives, from making a phone call, listening to a song, editing photos, manipulating audio files, using speech recognition softwares like Siri and Google now, to taking EEGs, ECGs and X-Ray images. Each of these involves gathering, storing, transmitting and processing information from the physical world. This course will equip you to deal with these tasks efficiently by learning the basic mathematical framework of signals and systems.\u003c/p\u003e\n\u003cp\u003eThis course is divided into two parts. In the first part (\u003ca href=\"https://www.edx.org/course/signals-systems-part-1-iitbombayx-ee210-1x-1#!\"\u003eEE210.1x\u003c/a\u003e), we explored the various properties of signals and systems, characterization of Linear Shift Invariant Systems, convolution and Fourier Transform. Building on that, in this part (EE210.2x) we will deal with the Sampling theorem, Z-Transform, discrete Fourier transform and Laplace transform. The contents of the first part are prerequisites for doing this part. Ideas introduced in this course will be useful in understanding further electrical engineering courses which deal with control systems, communication systems, power systems, digital signal processing, statistical signal analysis and digital message transmission. The concepts taught in this course are also useful to students of other disciplines like mechanical, chemical, aerospace and other branches of engineering and "])</script><script>self.__next_f.push([1,"science.\u003c/p\u003e40d:T5ec,\u003cp\u003eThis course introduces the Schrödinger equation, using the tight-binding method to discuss the concept of bandstructure and E(k) relations, followed by an introduction to the NEGF method with simple illustrative examples. Concept of spinors is introduced along with the application of the NEGF method to spintronic devices.\u003c/p\u003e\n\u003cp\u003eNo prior background in quantum mechanics or statistical mechanics is assumed.\u003c/p\u003e\n\u003cp\u003eVerified students taking this course will be required to complete three (3) proctored exams using the edX online Proctortrack software. To be sure your computer is compatible, see \u003ca href=\"https://www.proctortrack.com/tech-requirements/\"\u003eProctortrack Technical Requirements\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eNanoscience and Technology MicroMasters\u003c/strong\u003e ®\u003c/p\u003e\n\u003cp\u003eIntroduction to Quantum Transport is one course in a growing suite of unique, one-credit-hour short courses developed in an edX/Purdue University collaboration. Students may elect to pursue a verified certificate for this specific course alone or as one of the six courses needed for the edX/Purdue MicroMasters® program in Nanoscience and Technology.\u003c/p\u003e\n\u003cp\u003eFor further information and other courses offered, see the \u003ca href=\"https://www.edx.org/micromasters/purdue-nano-science-technology\"\u003eNanoscience and Technology MicroMasters\u003c/a\u003e® page. Courses like this can also apply toward a \u003ca href=\"https://engineering.purdue.edu/ECE/Academics/Online\"\u003ePurdue University MSECE degree\u003c/a\u003e for students accepted into the full master’s program.\u003c/p\u003e40e:T5bc,\u003cp\u003eThis module is currently offered in the Lyles School of Civil Engineering as part of the CE57200 “Prestressed Concrete Design” 3-Credits (CR) course in the area of structural engineering available to senior undergraduate/graduate students. It integrates science and engineering principles to design prestressed concrete members and structural systems. The application of scientific and engineering knowledge is demonstrated in solving engineering problems associated with the design of precast p"])</script><script>self.__next_f.push([1,"restressed building members both composite and non-composite for superimposed loads, and one-way post-tensioned floor slabs systems bonded and unbonded also composite and non-composite for superimposed loads. Design of pretensioned Hollow-Core slabs, Double-Tee and I-Beam members, and one-way post-tensioned floor slabs is exercised using current building code requirements to provide experiences in realistic design practice. The following subjects are used to solve engineering problems: calculus and differential equations; use of computer tools, data manipulation, statistical analysis, numerical calculation, and reinforced concrete design principles.\u003c/p\u003e\n\u003cp\u003eThe course is developed in three modules each of 1-CR. Module 2 (this module) is focused on the essentials of design of pretensioned concrete structures.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eThis course is available to practicing engineers for 1.5 CEUs for learners completing the course on the verified track.\u003c/strong\u003e\u003c/p\u003e40f:T5be,\u003cp\u003eThis module is currently offered in the Lyles School of Civil Engineering as part of the CE57200 “Prestressed Concrete Design” 3-Credits (CR) course in the area of structural engineering available to senior undergraduate/graduate students. It integrates science and engineering principles to design prestressed concrete members and structural systems. The application of scientific and engineering knowledge is demonstrated in solving engineering problems associated with the design of precast prestressed building members both composite and non-composite for superimposed loads, and one-way post-tensioned floor slabs systems bonded and unbonded also composite and non-composite for superimposed loads. Design of pretensioned Hollow-Core slabs, Double-Tee and I-Beam members, and one-way post-tensioned floor slabs is exercised using current building code requirements to provide experiences in realistic design practice. The following subjects are used to solve engineering problems: calculus and differential equations; use of computer tools, data manipulation, s"])</script><script>self.__next_f.push([1,"tatistical analysis, numerical calculation, and reinforced concrete design principles.\u003c/p\u003e\n\u003cp\u003eThe course is developed in three modules each of 1-CR. Module 3 (this module) is focused on the essentials of design of post-tensioned concrete structures.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eThis course is available to practicing engineers for 1.5 CEUs for learners completing the course on the verified track.\u003c/strong\u003e\u003c/p\u003e410:T5fe,\u003cp\u003eThis module is currently offered in the Lyles School of Civil Engineering as part of the CE57200 “Prestressed Concrete Design” 3-Credits (CR) course in the area of structural engineering available to senior undergraduate/graduate students. It integrates science and engineering principles to design prestressed concrete members and structural systems. The application of scientific and engineering knowledge is demonstrated in solving engineering problems associated with the design of precast prestressed building members both composite and non-composite for superimposed loads, and one-way post-tensioned floor slabs systems bonded and unbonded also composite and non-composite for superimposed loads. Design of pretensioned Hollow-Core slabs, Double-Tee and I-Beam members, and one-way post-tensioned floor slabs is exercised using current building code requirements to provide experiences in realistic design practice. The following subjects are used to solve engineering problems: calculus and differential equations; use of computer tools, data manipulation, statistical analysis, numerical calculation, and reinforced concrete design principles.\u003c/p\u003e\n\u003cp\u003eIn the edX platform, the course is developed in three modules each of 1-credit. \u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eFundamentals of Prestressed Concrete (this course)\u003c/li\u003e\n\u003cli\u003ePretensioned Structures\u003c/li\u003e\n\u003cli\u003ePost-Tensioned Structures\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cstrong\u003eThis course is available to practicing engineers for 1.5 CEUs for learners completing the course on the verified track.\u003c/strong\u003e\u003c/p\u003e411:T4cd,\u003cp\u003eHow do robots “see”, respond to and learn from their interactions with the world around them"])</script><script>self.__next_f.push([1,"? This is the fascinating field of visual intelligence and machine learning. Visual intelligence allows a robot to “sense” and “recognize” the surrounding environment. It also enables a robot to “learn” from the memory of past experiences by extracting patterns in visual signals.\u003c/p\u003e\n\u003cp\u003eYou will understand how Machine Learning extracts statistically meaningful patterns in data that support classification, regression and clustering. Then by studying Computer Vision and Machine Learning together you will be able to build recognition algorithms that can learn from data and adapt to new environments.\u003c/p\u003e\n\u003cp\u003eBy the end of this course, part of the Robotics MicroMasters program, you will be able to program vision capabilities for a robot such as robot localization as well as object recognition using machine learning.\u003c/p\u003e\n\u003cp\u003eProjects in this course will utilize MATLAB and OpenCV and will include real examples of video stabilization, recognition of 3D objects, coding a classifier for objects, building a perceptron, and designing a convolutional neural network (CNN) using one of the standard CNN frameworks.\u003c/p\u003e412:T787,\u003cp\u003eYou may have heard of actuarial science, or you might even know an actuary, but do you know what an actuary does? During the course you'll hear from a wide variety of actuaries about their careers.\u003c/p\u003e\n\u003cp\u003eAnd don't be scared that the course will be \"just a whole lot of mathematics\". Together, we will go beyond the math to learn how actuaries approach problems relating to risk, using examples from:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eFinance\u003c/li\u003e\n\u003cli\u003eInvestments\u003c/li\u003e\n\u003cli\u003eBanking\u003c/li\u003e\n\u003cli\u003eInsurance\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eYou will learn how actuarial science applies mathematical and statistical methods to assess risk in these industries and other professions.\u003c/p\u003e\n\u003cp\u003eYou'll experience \"hands-on\" learning using Excel (or an equivalent spreadsheet tool) to project and investigate the financial condition of a company choosing appropriate strategies for the company through the use of simulations.\u003c/p\u003e\n\u003cp\u003eThe course has been carefully"])</script><script>self.__next_f.push([1," designed for students from a wide variety of backgrounds, with secondary/high school level being the only assumption of mathematical background. Even if you don't have any background in, for example, calculus, the course has been designed so you can skip over these sections without affecting your understanding of the rest of the course. You also do not need to have any Excel or other spreadsheet background to take the course.\u003c/p\u003e\n\u003cp\u003eFor those with stronger mathematical backgrounds, extension questions are provided to test you further. You'll learn a huge amount about actuarial science no matter what your background is!\u003c/p\u003e\n\u003cp\u003e\u003cem\u003e\"Great introduction to this specialized field; every day there are new challenges where as a student you are put in a situation to learn and apply the lessons with practical exercises. Great structure of the course, with main concepts to review at the end of a lesson. I would recommend to anyone who would like to learn more about actuarial science.\"\u003c/em\u003e - Previous student\u003c/p\u003e413:T816,"])</script><script>self.__next_f.push([1,"\u003cp\u003eDevelop the fundamental skills needed for global excellence in manufacturing and competitiveness with the Principles of Manufacturing MicroMasters Credential, designed and delivered by MIT’s #1-world ranked Mechanical Engineering department. Build your career with the credential or use it as credits towards a Master’s Degree by applying to MIT’s world-renowned \u003ca href=\"http://manufacturing.mit.edu/\" target=\"_blank\"\u003eMaster of Engineering in Advanced Manufacturing and Design Blended Program\u003c/a\u003e.\u003c/p\u003e\r\n\r\n\u003cp\u003eThis program provides students with a fundamental basis for understanding and controlling rate, quality and cost in a manufacturing enterprise.\u003c/p\u003e\r\n\r\n\u003cp\u003eThe Principles of Manufacturing are a set of elements common to all manufacturing industries that revolve around the concepts of flow and variations. These principles have emerged from working closely with manufacturing industries at both the research and operational levels. \u003c/p\u003e\r\n\r\n\u003cp\u003eTargeted towards graduate-level engineers, product designers, and technology developers with an interest in a career in advanced manufacturing, the program will help learners understand and apply these principles to product and process design, factory and supply chain design, and factory operations. \u003c/p\u003e\r\n\r\n\u003cp\u003eThis curriculum focusses on the analysis, characterization and control of flow and variation at different levels of the enterprise through the following subject areas:\u003c/p\u003e \r\n\r\n\u003cul\u003e\r\n\u003cli\u003e\u003cstrong\u003eUnit Process Variation and Control:\u003c/strong\u003e Modeling and controlling temporal and spatial variation in unit processes\u003c/li\u003e \r\n\u003cli\u003e\u003cstrong\u003eFactory Level System Variation and Control:\u003c/strong\u003e Modeling and controlling flows in manufacturing systems with stochastic elements and inputs.\u003c/li\u003e \r\n\u003cli\u003e\u003cstrong\u003eSupply Chain – System Variation and Control: \u003c/strong\u003eHow to operate and design optimal manufacturing-centered supply chains.\u003c/li\u003e \r\n\u003cli\u003e\u003cstrong\u003eBusiness Flows:\u003c/strong\u003e Understanding the uses and flow of business information to start up, scale up and operate a manufacturing facility.\u003c/li\u003e\r\n\u003c/ul\u003e"])</script><script>self.__next_f.push([1,"414:T93a,"])</script><script>self.__next_f.push([1,"\u003cp\u003eIdentify, implement and evaluate an individual business project of your organization and compensate the course fee by its financial benefits. \r\n\r\n\u003cp\u003eYou will travel along the DMAIC, guided by digital resources and a Master Black Belt as co-pilot. You will stop at each key Sigma tool and document it in your project storybook. These results are reviewed at each DMAIC milestone and serve as the basis for individual coaching and certification. Your completed storybook will demonstrate the operational excellence of your work and the benefits you gained.\r\nOur goal is for you to successfully complete your project, for the benefits of your project to exceed the course fee, and for you to develop the generic competence to successfully identify, implement, and evaluate future projects. To this end, we will guide you digitally and in person.\r\n\r\n\u003cp\u003eOur digital guidance provides videos, eBooks and tasks to introduce every step of a project. SigmaGuide software offers frameworks for each step, while Minitab provides quantitative tools. Documenting every step of the project in a traceable way is necessary to prove methodical competence and provide a basis for steering the project.\r\n\r\n\u003cp\u003eOur \u003cb\u003epersonal guidance\u003c/b\u003e supports your individual needs in three formats:\r\n\u003cul\u003e\r\n\u003cli\u003e\u003cb\u003eDMAIC Phase Reviews\u003c/b\u003e will review the results of each phase, correct errors, show alternatives and suggest next steps.\u003c/li\u003e\r\n\u003cli\u003e\u003cb\u003eProject Coaching\u003c/b\u003e involves checking the suitability of the project topic and determining the focus (PreDEFINE), structuring the project and prioritizing the problems to be solved (DEFINE), prioritize your hypotheses and plan the collection of necessary data (MEASURE), optimizing the analysis of data, and reaching key milestones (ANALYSE). The IMPROVE phase typically does not require methodical support and the path through CONTROL is determined by ANALYSE.\u003c/li\u003e\r\n\u003cli\u003e\u003cb\u003eGreen Belt Lectures\u003c/b\u003e: Our online Green Belt lectures reinforce topics covered in the course material, such as scientific observation, tool application, hypothesis generation, data collection, hypothesis testing (Minitab), and problem modeling - do's and don'ts.\u003c/li\u003e\r\n\u003c/ul\u003e\u003c/p\u003e\r\n\r\n\u003cp\u003eIn addition, you will acquire the basics of digital lean competence with our interactive process mining module. You can also use process mining for your project - if feasible.\u003c/p\u003e"])</script><script>self.__next_f.push([1,"415:T814,"])</script><script>self.__next_f.push([1,"\u003cp\u003eGain a solid foundation in essential quantitative and analytical skills to succeed as a business professional and prepare yourself to pursue an MBA.\u003c/p\u003e\r\n\r\n\u003cp\u003eIn this Professional Certificate program, you will learn key quantitative and analytical skills needed to succeed as a business professional. In the era of big data, it is vital for business professionals to understand what the numbers say, whether it be analyzing financial reports or presenting data in an effective way.\u003c/p\u003e\r\n\r\n\u003cp\u003eThe subjects covered in this program not only provide foundational business skills but also prepare you to further your business studies and pursue an MBA, where you can build upon these skills and gain theoretical and practical training at a graduate-level to better understand general business management functions.\u003c/p\u003e \r\n\r\n\u003cp\u003eEach course offers a personalised learning plan that highlights the areas you need to focus on to give you a competitive edge within your company or in an MBA program.\u003c/p\u003e\r\n\r\n\u003cp\u003eGuided by experts in the field, you will use real world examples, interactive exercises and the support of your peers to learn the fundamentals of: \r\n\u003cul\u003e\u003cli\u003eAccounting\u003c/li\u003e\r\n\u003cli\u003eFinance\u003c/li\u003e\r\n\u003cli\u003eMaths\u003c/li\u003e\r\n\u003cli\u003eData Analysis\u003c/li\u003e\u003c/ul\u003e\r\n\u003c/p\u003e\r\n\r\n\u003cp\u003eThis Professional Certificate program is targeted at:\r\n\u003cul\u003e\u003cli\u003eProfessionals preparing to or already working in a business environment who want to enhance their quantitative business skills. \u003c/li\u003e\r\n\u003cli\u003eLearners who are ready to embark on or considering an MBA program and want to identify and remove any gaps in their quantitative and analytical skills to ensure they are prepared to succeed in the program. \u003c/li\u003e\u003c/ul\u003e\r\n\u003c/p\u003e\r\n\r\n\u003cp\u003eThe “PreMBA Essentials for Professionals” Professional Certificate program will prepare you for success in an MBA at an institution such as Imperial Business School by helping you gain the fundamental skills you need to advance your studies. Imperial College Business School offers a world-class Global Online MBA program and we invite you to visit their website to learn more. \u003c/p\u003e"])</script><script>self.__next_f.push([1,"416:T6ec,\u003cp\u003eData Science and Data Analytics skills are in high demand and R is the programming language of choice for many data professionals. This Applied Data Science with R program emphasizes a hands-on approach to developing job-ready skills for analyzing and visualizing data using R.\u003c/p\u003e \r\n\r\n\u003cp\u003eYou will start the program by learning the fundamentals of R language, including common data types and structures, and utilize it for basic programming and data manipulation tasks.\u003c/p\u003e\r\n\r\n\u003cp\u003eAs you progress in the program, you will learn about relational database concepts and gain a foundational knowledge of the SQL language. You will access and analyze data in databases using R and SQL through Jupyter notebooks.\u003c/p\u003e\r\n\r\n\u003cp\u003eYou will learn various data analysis techniques – from cleaning and refining data to developing, evaluating, and tuning , data science models. You will also learn how to tell a compelling story with data by creating graphs, visualizations, dashboards and interactive data applications.\u003c/p\u003e\r\n\r\n\u003cp\u003eIn each course you will complete hands-on labs and projects to help you gain practical experience with data manipulation, analysis and visualization using a variety of datasets. You will work with tools like R Studio, Jupyter Notebooks, Watson Studio and related R libraries for data science, including dplyr, Tidyverse, Tidymodels, R Shiny, ggplot2, Leaflet, and rvest.\u003c/p\u003e\r\n\r\n\u003cp\u003eBy the end of the program you will be able to apply the data science skills and techniques that you have accumulated and show case those skills in the R Data Science Capstone Project. involving a real-world dataset, and inspired by a real business challenge. This project will culminate in a presentation for reporting the results of data analysis with stakeholders.\u003c/p\u003e417:Tfd2,"])</script><script>self.__next_f.push([1,"\u003cp\u003eThis updated view of Lean Six Sigma (LSS) provides the best understanding of how Lean, Six Sigma, Quality Management, theories and tools are to be applied to different aspects of Global Supply Chains.\u003c/p\u003e\r\n \r\n\u003cp\u003eIn addition, the Lean Six Sigma Certification Courses provide insight on initiatives and six sigma methods that continue to drive efficiency in sustainably operated supply chain processes. The real-world examples provide a modern interpretation of how initiatives, including sustainability and technology adaptation, drive current Global Value Chains and their envisioned process and continuous improvement.\u003c/p\u003e\r\n\r\n\u003cp\u003eIt is recommended the three-course program be taken in sequence. It guides learners through concepts and foundations of Quality, along with the use of both the basics, as well as the advanced, improvement tools and techniques to show the integration of lean to six sigma.\u003c/p\u003e\r\n\r\n\u003cp\u003eThe program begins with CLSSYB01: Introduction to Lean Six Sigma for Sustainable and Resilient Supply Chains, guiding learners through the basic Six Sigma Methodology and foundations of Six Sigma and Supply Chain Management. CLSSYB01 provides an understanding of various topics starting with an introduction and overview of Six Sigma. The course will advance into DMAIC (Define, Measure, Analyze, Improve and Control) and its related six sigma tools. Learners will gain an understanding of the “Lean” in Six Sigma before moving into the roles and responsibilities of management and stakeholders within Lean Six Sigma in Supply Chain.\u003c/p\u003e\r\n\r\n\u003cp\u003eAfter completing CLSSYB01, learners are encouraged to continue with CLSSYB02 and CLSSYB03 in order to obtain the Lean Six Sigma Certificate and gain further understanding on how to implement Lean Six Sigma Projects for optimization of supply chain and strong sustainability performance.\u003c/p\u003e\r\n\r\n\u003cp\u003eThe Lean Six Sigma for Sustainable Supply Chain Program includes a second content course: CLSSYB02: Lean Six Sigma Program and Project Management, which expands upon the content of CLSSYB01.\u003c/p\u003e\r\n\r\n\u003cp\u003eWithin CLSSYB02, the learner is taken through the applied use of the tools and metrics in the LSS program framework. This applied approach includes the basics of project management and lays out real-world methods to apply these tools at the basic level. This program prepares the learner with the necessary knowledge to be a team member (Yellow Belt) of LSS projects seeking synergies, product quality improvement, reduced variability, and shorter lead times.\u003c/p\u003e\r\n \r\n\u003cp\u003eThe final course is a certification exam. CLSSYB03: ISCEA CLSSYB Exam, allows learners to display their knowledge acquired in the previous courses of the ISCEA Lean Six Sigma for Sustainable Supply Chain Program. If the program is successfully completed, the learner will obtain a credential recognized by the industry that supports improved workforce options for the learner: The Certified Lean Six Sigma Yellow Belt Designation.\u003c/p\u003e \r\n \r\n\u003cp\u003eWhile there are no enforced prerequisites to participate in the program, the Lean Six Sigma for Sustainable Supply Chain Program, on edX by ISCEA, is recommended for pre-career or early career Supply Chain professionals. Previous experience in, or future plans to enter into the areas of merchandising, inventory management, operations management, manufacturing industries, the production process, decision making, or buyer/planner role, complements the expertise gained via completion of the courses. ISCEA envisions learners who are seeking tangible skills, tutorials, and credentials to facilitate their progress into senior roles with more strategic oversight, to be successful candidates for the program. Learners who complete the program can immediately apply the lessons they learn to corporate roles and related value streams. Those focused on corporate process improvement, reduced environmental impact efforts, and customer satisfaction will receive great benefits from this program. There is limited mathematical expectations within the courses of the program.\u003c/p\u003e"])</script><script>self.__next_f.push([1,"418:T40f,\u003cp\u003eThis Healthcare Data Analytics Toolkit MicroMasters program introduces you to the transformative role of data analysis in healthcare. It's designed specifically for those at the beginning of their journey in healthcare data analytics, providing foundational knowledge and skills. Throughout this series, you'll delve into the integration of data analytics in healthcare settings, gaining hands-on experience in analyzing data to draw meaningful conclusions and apply these insights to real-world healthcare challenges.\u003c/p\u003e\r\n\r\n\u003cp\u003eThe introductory series focuses on the basics of data analysis and its application in healthcare settings. You’ll learn the essentials of analyzing data, understanding trends, and making data-informed decisions.\u003c/p\u003e\r\n\r\n\u003cp\u003eWhether you are working in a hospital, leading projects in a healthcare NGO, launching a digital health startup, or investing in cutting-edge healthcare technology, our program provides the foundation for the application of data analysis to solve healthcare's biggest challenges.\u003c/p\u003e419:T82e,"])</script><script>self.__next_f.push([1,"\u003cp\u003eDo you want to inform healthcare decisions by conducting research on the effectiveness, benefits, and potential harms of treatment options? Would you like to help patients choose care that best meets their needs? Perhaps you’d like to learn the basics of clinical research? Or maybe you’d like to use a national health data registry to answer a research question? If any of these questions resonate Comparative Effectiveness Research Training and Instruction – CERTaIN - Professional Certificate Program is right for you!\u003c/p\u003e\r\n\r\n\u003cp\u003eCreated by investigators from The University of Texas MD Anderson Cancer Center and partner institutions, the CERTaIN Professional Certificate program provides a comprehensive overview of core concepts, research methods and data analysis techniques used in comparative effectiveness (CER) and patient-centered outcomes research (PCOR) across five key areas:\r\n\r\n\u003cbr\u003e\u003cbr\u003eCourse 1. Introduction\r\n\u003cbr\u003eCourse 2. Knowledge Synthesis\r\n\u003cbr\u003eCourse 3. Patient-Centered Outcomes Research (PCOR)\r\n\u003cbr\u003eCourse 4. Pragmatic Clinical Trials and Healthcare Delivery Evaluations\r\n\u003cbr\u003eCourse 5. Observational Studies and Registries\u003c/p\u003e\r\n\r\n\u003cp\u003eLearn from expert decision scientists, biostatisticians, oncologists, economists, social scientists, health care policy experts and epidemiologists how to conduct CER/PCOR and see how CER/PCOR methods have been applied in the real world to conduct state of the art research studies.\u003c/p\u003e\r\n\r\n\u003cp\u003eThe CERTaIN Professional Certificate Program is intended for anyone interested in CER/PCOR methods. This program is comprised of 5 courses and includes a combined total of almost 50 lectures in CER/PCOR topics. Each course consists of a series of lectures delivered by content experts and each lecture is segmented into short videos, followed by a quiz to assess your understanding of the material.\u003c/p\u003e\r\n\r\n\u003cp\u003eThe CERTaIN Professional Certificate Program is supported by grant number R25HS023214 from the Agency for Healthcare Research and Quality. \u003c/p\u003e\r\n\r\n\u003cp\u003eThe CERTaIN Professional Certificate Program was created by investigators.\u003c/p\u003e"])</script><script>self.__next_f.push([1,"41a:T494,\u003cp\u003eLearn the core techniques of text analytics and natural language processing (NLP) while discovering the cognitive science that makes it possible in this certificate Text Analytics with Python. On the practical side, you’ll learn how to actually do an analysis in Python: creating pipelines for text classification and text similarity using machine learning. These pipelines are automated workflows that go all the way from data collection to visualization. On the scientific side, you’ll learn what it means to understand language computationally. Artificial intelligence and humans don’t view text documents in the same way. Sometimes deep learning sees patterns that are invisible to us. But often deep learning misses the obvious. We have to understand the limits of a computational approach to language together with the ethical requirements that guide how we choose what data to use and how we protect the privacy of individuals.\u003c/p\u003e\r\n\r\n\u003cp\u003eAlong the way, you’ll explore real-world case studies using pandas, numpy, scikit-learn, tensorflow, matplotlib, seaborn, gensim, and spacy within jupyter notebooks to gain useful insights from unstructured data.\u003c/p\u003e41b:T539,\u003cp\u003eA l’issue de ce cours, vous devriez être en mesure de : \u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eExpliquer les concepts de base, les définitions et les principes comptables dans le cadre intégré des SFP. \u003c/li\u003e\n\u003cli\u003eClasser les flux et les encours de base du secteur des administrations publiques selon le Manuel de statistiques de finances publiques 2014. \u003c/li\u003e\n\u003cli\u003eAppliquer les principes généraux pour classer une institution dans le secteur public et dans les sous-secteurs pertinents, tels que les administrations publiques et les sociétés publiques. \u003c/li\u003e\n\u003cli\u003eEnregistrer les flux et les encours budgétaires associés aux activités des établissements du secteur public, en suivant les directives et les classifications du MSFP 2014. \u003c/li\u003e\n\u003cli\u003eExpliquer comment sont calculés les principaux agrégats et soldes analytiques des SFP, et ce qu’ils montrent de l’im"])</script><script>self.__next_f.push([1,"pact du secteur des administrations publiques sur l’économie. \u003c/li\u003e\n\u003cli\u003eDévelopper un plan de migration pour adopter la méthodologie du MSFP 2014, et compiler et diffuser les SFP en suivant les directives internationales. \u003c/li\u003e\n\u003cli\u003eReconnaître la valeur de compter sur des SFP complètes, cohérentes et comparables au niveau international, et l'utilisation des indicateurs clés des SFP dans la conception, le suivi et l'évaluation de la politique budgétaire.\u003c/li\u003e\n\u003c/ul\u003e41c:T5b9,\u003cp\u003e\u003cspan lang=\"FR-FR\"\u003eÀ la fin du cours, vous devriez être capable de :\u003c/span\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003cspan lang=\"FR-FR\"\u003eDécrire le cadre du \u003c/span\u003eSystème de comptabilité nationale, comprendre la séquence des comptes et leurs interrelations, et identifier les principaux indicateurs macroéconomiques.\u003c/li\u003e\n\u003cli\u003e\u003cspan lang=\"FR-FR\"\u003eExpliquer les principaux concepts\u003c/span\u003e des comptes nationaux, les règles de comptabilisation et les méthodes.\u003c/li\u003e\n\u003cli\u003e\u003cspan lang=\"FR-FR\"\u003eDéfinir les composantes du produit intérieur brut (PIB) à partir de l'approche\u003c/span\u003e de la production. Appliquer les concepts, les règles de comptabilisation, les méthodes et les sources de données nécessaires pour estimer le PIB à partir de l'approche de la production.\u003c/li\u003e\n\u003cli\u003e\u003cspan lang=\"FR-FR\"\u003eDéfinir les composantes du PIB à partir de l'approche des dépenses. \u003c/span\u003eAppliquer les concepts, les règles de comptabilisation, les méthodes et les sources de données nécessaires pour estimer le PIB à partir de l'approche des dépenses.\u003c/li\u003e\n\u003cli\u003e\u003cspan lang=\"FR-FR\"\u003eDéfinir les composantes du PIB à partir de l'approche \u003c/span\u003edes revenus. Appliquer les concepts, les règles de comptabilisation, les méthodes et les sources de données nécessaires pour estimer le PIB à partir de l'approche des revenus.\u003c/li\u003e\n\u003cli\u003e\u003cspan lang=\"FR-FR\"\u003eDéfinir et expliquer comment \u003c/span\u003eétablir les estimations en volume du PIB du point de vue de la production et des dépenses.\u003c/li\u003e\n\u003c/ul\u003e41d:T479,\u003cp\u003eCe cours, présenté par le Département des statistiques, couvre les principes fon"])</script><script>self.__next_f.push([1,"damentaux nécessaires à l'élaboration des comptes internationaux. Le cours présente le cadre statistique conceptuel pour la balance des paiements et la PEG – tel que présenté dans le Manuel de statistiques de la balance des paiements et de la position extérieure globale, sixième édition (MBP6), harmonisé avec d'autres cadres statistiques macroéconomiques. Vous découvrirez les soldes des comptes courants, de capital et financiers, et comment ils reflètent l'interaction de votre économie avec le reste du monde. Sont couverts les concepts de base, les définitions et les classifications, ainsi que les principales règles de comptabilisation (y compris l'évaluation et le moment de l'enregistrement) qui sont pertinentes pour l'établissement des comptes internationaux. Le cours aborde également les catégories fonctionnelles, y compris l'investissement direct. La nécessité d'intégrer la balance des paiements à la PEG pour compiler des statistiques complètes et comparables au niveau international sera également discutée.\u003c/p\u003e41e:T424,\u003cp\u003eÀ la fin de ce cours, les participants devraient être capables de :\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eExpliquer le cadre de la balance des paiements et de la PEG, et les indicateurs pertinents, tels que les soldes des comptes courants, de capital et financier.\u003c/li\u003e\n\u003cli\u003eAppliquer les concepts et définitions fondamentaux pertinents pour les comptes internationaux tels que la résidence, le territoire économique, le centre prédominant d'intérêt économique et les règles de comptabilisation.\u003c/li\u003e\n\u003cli\u003eClasser les transactions et positions transfrontalières selon le MBP6.\u003c/li\u003e\n\u003cli\u003eEnregistrer les principales composantes de la balance des paiements et de la PEG.\u003c/li\u003e\n\u003cli\u003eExpliquer le cadre de l'investissement direct et son rôle dans l'économie, y compris en tant que source de financement.\u003c/li\u003e\n\u003cli\u003eComparer les différentes catégories fonctionnelles et comprendre l'interprétation économique de chaque catégorie.\u003c/li\u003e\n\u003cli\u003eReconnaître la nécessité d'intégrer la balance des pa"])</script><script>self.__next_f.push([1,"iements et la PEG pour produire des données logiques et cohérentes.\u003c/li\u003e\n\u003c/ul\u003e41f:T813,"])</script><script>self.__next_f.push([1,"\u003cp\u003eL'analyse de données quantitatives est devenue aujourd'hui une pratique incontournable dans tous les métiers liés aux sciences sociales. Ces analyses sont utilisées pour comprendre des phénomènes économiques et financiers, décrire la nature de la relation entre des personnes, des objets ou des événements, ou encore anticiper les conséquences d’une décision.\u003c/p\u003e\n\u003cp\u003eCe cours vous permettra d’acquérir les premiers concepts nécessaires pour construire rigoureusement des modèles économétriques. Il est constitué de leçons construites à partir de cas pratiques originaux interrogeant la vie quotidienne. Mentionnons parmi d’autres:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eComment réussir une campagne de financement collaboratif ?\u003c/li\u003e\n\u003cli\u003eQuels sont les déterminants des écarts salariaux entre les hommes et les femmes ?\u003c/li\u003e\n\u003cli\u003eExiste-t-il encore un lien entre l’inflation et le chômage ?\u003c/li\u003e\n\u003cli\u003ePeut-on prédire un changement de niveau de risque sur les marchés financiers ?\u003c/li\u003e\n\u003cli\u003eExiste-t-il un lien entre le niveau de revenu et le sentiment d’être en bonne santé ?\u003c/li\u003e\n\u003cli\u003eLe salaire est-il la seule motivation économique des travailleurs ?\u003c/li\u003e\n\u003cli\u003eLe prix de vente des œuvres de Picasso correspond-il à sa valeur de catalogue ?\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eCe cours contient huit leçons. Il permet tout d’abord de comprendre l’étendue et les limites de l’utilisation de l’économétrie en sciences sociales. La formation se poursuit en étudiant le modèle linéaire, tout en insistant sur la manière dont la construction d’un tel modèle permet d'identifier et de quantifier diverses relations entre les données mesurées. Il élabore également les propriétés statistiques de l'estimateur de moindres carrés, permettant ensuite de montrer comment il est possible de vérifier ou de tester des hypothèses économiques en pratique. Des leçons particulières sont consacrées à l’analyse de données fréquemment utilisées dans la pratique de l'économétrie, telles que les variables catégorielles et les séries temporelles.\u003c/p\u003e"])</script><script>self.__next_f.push([1,"420:T9b7,"])</script><script>self.__next_f.push([1,"\u003cp\u003eLes données sont omniprésentes dans nos vies modernes, et leur quantité est faramineuse. Elles peuvent nous être très utiles dans tous les domaines de l’activité humaine comme la santé, le commerce et l’environnement, pour n’en nommer que quelques-uns. Mais comment tirer profit de ces données sans s’y perdre? Le cours Science des données présente les concepts essentiels permettant de collecter les données, de les traiter statistiquement, de les vérifier, de les visualiser, de les structurer et de les analyser. Nous allons décrire certains algorithmes d'apprentissage automatique, et leurs applications aux données.\u003c/p\u003e\n\u003cp\u003eCe cours s'adresse principalement aux professionnels du secteur et aux universitaires ayant des connaissances de base en mathématiques et en programmation (idéalement Python). Les étudiants diplômés en sciences et en ingénierie (principalement ceux qui ne sont pas encore familiarisés avec la science des données) peuvent trouver ce contenu instructif et convaincant. Le contenu de ce cours sera également d’une grande utilité pour quiconque utilise ou s’intéresse à la science des données, de quelque manière que ce soit.\u003c/p\u003e\n\u003cp\u003eNous estimons qu’il faut environ 8 semaines pour suivre ce cours. Celui-ci est divisé en segments pertinents que vous pouvez regarder à votre propre rythme. Des quiz récapitulatifs sont prévus à la fin de chaque segment pour évaluer votre compréhension du contenu. Vous pourrez également mettre la main à la pâte en réalisant des exercices pratiques qui vous permettront de vous familiariser avec les principaux savoir-faire issus de la science des données.\u003c/p\u003e\n\u003cp\u003eCe cours a été développé par des experts du domaine du département d’informatique et de recherche opérationnelle (DIRO) de l’université de Montréal.\u003c/p\u003e\n\u003cp\u003eL’Université de Montréal rayonne depuis de nombreuses années par la qualité de son enseignement et la diversité de son offre, ce qui en fait une des meilleures universités francophones au monde. Que vous choisissiez ce cours à titre personnel ou dans une perspective de carrière en science, le point de départ est ici. La matière parcourue vous permettra de vous préparer avant de commencer un programme d’études en science des données ou toute autre étude liée à ce domaine.\u003c/p\u003e\n\u003cp\u003eNous vous souhaitons la bienvenue dans ce cours en sciences des données, une des pierres angulaires de l'intelligence artificielle.\u003c/p\u003e"])</script><script>self.__next_f.push([1,"421:Ta2e,"])</script><script>self.__next_f.push([1,"\u003cp\u003eBienvenue au cours VIARENA, «Vision artificielle et exploitation intelligente des ressources naturelles». La vision artificielle est l'art et la science de rendre les ordinateurs capables d'interpréter intelligemment des images. Il existe une multitude d'applications de la vision artificielle réalisables dans nos entreprises, particulièrement les PME et nos communautés. \u003c/p\u003e\n\u003cp\u003eLa vision artificielle est particulièrement accessible et facile à mettre en oeuvre. Malheureusement, c'est un secret trop bien gardé de l'intelligence artificielle. En effet, les données sont abondantes et faciles à récolter, les logiciels sont offerts en logiciel libre, il existe de gros modèles préentraînés et l'infonuagique démocratise l'accès aux infrastructures de calcul.\u003c/p\u003e\n\u003cp\u003eCe cours pratique fait le pari que vous pourrez appliquer la vision artificielle à une foule de problèmes sans en maîtriser les détails mathématiques. VIARENA propose une approche pratique basée sur le code pour vous aider à gagner en confiance pendant que vous apprenez des concepts clés.\u003c/p\u003e\n\u003cp\u003eLe cours VIARENA utilise le langage de programmation Python qui possède le plus riche écosystème en IA. Une trentaine de courts laboratoires, sous la forme de carnets IPython interactifs, utilisent la bibliothèque Keras de Google, une interface de programmation d'applications de haut niveau qui démocratise l'apprentissage profond.\u003c/p\u003e\n\u003cp\u003eLes informaticiens apprécieront les laboratoires avec Google Colab qui leur permettront de travailler directement avec le code sans avoir à installer de logiciels. Toutefois, ce ne sont pas des exercices de programmation, tout le code est là et fonctionnel. Les exercices portent plutôt sur l'appropriation et la compréhension du code.\u003c/p\u003e\n\u003cp\u003eIdentifiez une niche commerciale en survolant une foule d'applications pratiques. VIARENA montre un grand nombre d'exemples et d'applications pour illustrer les possibilités et stimuler votre créativité. Des applications comme la surveillance d'un troupeau, la récolte robotisée, l'inspection visuelle ou sonore d'éoliennes, le diagnostic d'une maladie de plante, le tri automatique de matières résiduelles, l'identification de minéraux, l'inventaire forestier, la prédiction de sécheresse, le comptage de poissons, etc.\u003c/p\u003e\n\u003cp\u003eRécoltez des données avec un drone. Entraînez des réseaux de neurones profonds. Déployez une application sur un téléphone intelligent ou un site Web.\u003c/p\u003e\n\u003cp\u003eL'objectif de VIARENA est: « Faire que l'IA soit aussi québécoise que le sirop d'érable et la motoneige. »\u003c/p\u003e"])</script><script>self.__next_f.push([1,"422:T1b35,"])</script><script>self.__next_f.push([1,"\u003cp\u003eLe cours VIARENA a été conçu pour deux clientèles principales qui correspondent à deux parcours pédagogiques:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eProfil « coureur des bois » - Les entrepreneurs, dirigeants et visionnaires pour les aider à identifier les opportunités et à comprendre les applications potentielles de la vision artificielle.\u003c/li\u003e\n\u003cli\u003eProfil « patenteux » - Les praticiens, informaticiens, programmeurs, codeurs, ingénieurs, techniciens, scientifiques et développeurs de logiciels qui désirent s'initier d'une façon pratique à la vision par ordinateur. Pour eux, les laboratoires exigent la connaissance d'un langage de programmation et si possible de Python\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003e\u003cstrong\u003eObjectifs finaux du cours\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eCOUREUR DES BOIS :\u003c/p\u003e\n\u003cp\u003e- Faire des liens entre les connaissances acquises en vision artificielle et des applications dans la vie réelle.\u003c/p\u003e\n\u003cp\u003ePATENTEUX:.\u003c/p\u003e\n\u003cp\u003e- Réaliser une application en vision artificielle depuis l'acquisition et le prétraitement des images, en passant par la création, l'entraînement et l'évaluation d'un réseau convolutif, puis finalement son déploiement sur la Toile ou sous la forme d'une application mobile.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eObjectifs du module 1\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eCOUREUR DES BOIS \u0026amp; PATENTEUX:\u003c/p\u003e\n\u003cp\u003e- Comprendre que la vision artificielle est accessible et prête à l'emploi;\u003c/p\u003e\n\u003cp\u003e- Comprendre l'importance des données;\u003c/p\u003e\n\u003cp\u003e- Énumérer quelques applications de la vision artificielle;\u003c/p\u003e\n\u003cp\u003e- Connaître certaines limites de l'IA.\u003c/p\u003e\n\u003cp\u003eCOUREUR DES BOIS :\u003c/p\u003e\n\u003cp\u003e- Connaître les éléments-clés d'une stratégie pour bien débuter en IA.\u003c/p\u003e\n\u003cp\u003ePATENTEUX:\u003c/p\u003e\n\u003cp\u003e- Distinguer et définir intelligence artificielle et science des données.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eObjectifs du module 2\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eCe module a pour objectif la mise à jour de vos connaissances par un survol de la science des données et de l'apprentissage automatique. Si vous êtes déjà familier de ces sujets, nous vous invitons à passer directement au module suivant.\u003c/p\u003e\n\u003cp\u003eCOUREUR DES BOIS \u0026amp; PATENTEUX:\u003c/p\u003e\n\u003cp\u003e- Comprendre comment les ordinateurs peuvent apprendre à partir de données;\u003c/p\u003e\n\u003cp\u003e- Saisir l’importance des données, de leur acquisition et de leur prétraitement.\u003c/p\u003e\n\u003cp\u003eCOUREUR DES BOIS :\u003c/p\u003e\n\u003cp\u003e- Comprendre « intuitivement » la science des données, et l’apprentissage automatique.\u003c/p\u003e\n\u003cp\u003ePATENTEUX:\u003c/p\u003e\n\u003cp\u003e- Lire, manipuler, visualiser, calculer des statistiques, analyser des relations dans un jeu de données;\u003c/p\u003e\n\u003cp\u003e- Déterminer la classe-cible et les prédicteurs, séparer les données d'entraînement et de test, choisir un algorithme d’apprentissage classique, entraîner et évaluer un modèle.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eObjectifs du module 3\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eCOUREUR DES BOIS:\u003c/p\u003e\n\u003cp\u003e- Comprendre « intuitivement » le fonctionnement d'un neurone, l'apprentissage d'un perceptron, l'apprentissage d'un réseau de neurones et l'apprentissage profond.\u003c/p\u003e\n\u003cp\u003ePATENTEUX:\u003c/p\u003e\n\u003cp\u003e- Comprendre « pratiquement » le fonctionnement d'un neurone, l'apprentissage d'un perceptron, l'apprentissage d'un réseau de neurones, et l'apprentissage profond;\u003c/p\u003e\n\u003cp\u003e- Appliquer le perceptron multicouche à la reconnaissance visuelle de chiffre manuscrits et d'objets simples.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eObjectifs du module 4\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eCOUREUR DES BOIS \u0026amp; PATENTEUX:\u003c/p\u003e\n\u003cp\u003e- Saisir le potentiel et énumérer quelques applications de la vision artificielle en agriculture.\u003c/p\u003e\n\u003cp\u003eCOUREUR DES BOIS :\u003c/p\u003e\n\u003cp\u003e- Comprendre « intuitivement » le fonctionnement d'un réseau convolutif.\u003c/p\u003e\n\u003cp\u003ePATENTEUX:\u003c/p\u003e\n\u003cp\u003e- Comprendre « pratiquement » le fonctionnement d'un réseau convolutif;\u003c/p\u003e\n\u003cp\u003e- Appliquer un réseau convolutif à la reconnaissance et à la classification d'images de chiffres manuscrits et d'objets simples.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eObjectifs du module 5\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eCOUREUR DES BOIS \u0026amp; PATENTEUX:\u003c/p\u003e\n\u003cp\u003e- Connaître différentes sources de données et leurs méthodes d’acquisition;\u003c/p\u003e\n\u003cp\u003e- Connaître l’utilisation des caméras, LiDAR, des capteurs et des objets connectés;\u003c/p\u003e\n\u003cp\u003e- Comprendre l’intérêt des images satellitaires et recueillies par des drones;\u003c/p\u003e\n\u003cp\u003e- Savoir que la source essentielle des biais est dans les données;\u003c/p\u003e\n\u003cp\u003e- Connaître différentes sources de données synthétiques;\u003c/p\u003e\n\u003cp\u003e- Saisir le potentiel et énumérer quelques applications de la vision artificielle dans les pêches et l’aquaculture.\u003c/p\u003e\n\u003cp\u003eCOUREUR DES BOIS :\u003c/p\u003e\n\u003cp\u003e- Comprendre qu'avoir des quantités d'images de qualité est au coeur des applications de la vision artificielle;\u003c/p\u003e\n\u003cp\u003e- Saisir le défi de l’annotation des images.\u003c/p\u003e\n\u003cp\u003ePATENTEUX:\u003c/p\u003e\n\u003cp\u003e- Comprendre que les données doivent être de qualité et en quantité suffisante;\u003c/p\u003e\n\u003cp\u003e- Comprendre les rudiments du fonctionnement des caméras, des LiDAR, des capteurs et objets connectés;\u003c/p\u003e\n\u003cp\u003e- Moissonner des données sur la Toile;\u003c/p\u003e\n\u003cp\u003e- Connaître les principales fonctions d’un drone;\u003c/p\u003e\n\u003cp\u003e- S'initier au traitement d’images satellitaires;\u003c/p\u003e\n\u003cp\u003e- S'initier au traitement des sons;\u003c/p\u003e\n\u003cp\u003e- Annoter des images.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eObjectifs du module 6\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eCOUREUR DES BOIS \u0026amp; PATENTEUX:\u003c/p\u003e\n\u003cp\u003e- Comprendre le défi du « mur des données massives »;\u003c/p\u003e\n\u003cp\u003e- Connaître des moyens de franchir le « mur des données massives »;\u003c/p\u003e\n\u003cp\u003e- Saisir le potentiel et énumérer quelques applications de la vision artificielle en foresterie.\u003c/p\u003e\n\u003cp\u003eCOUREUR DES BOIS :\u003c/p\u003e\n\u003cp\u003e- Connaître les principes et les avantages de l’apprentissage par transfert et de l’amplification de données.\u003c/p\u003e\n\u003cp\u003ePATENTEUX:\u003c/p\u003e\n\u003cp\u003e- Appliquer l’apprentissage par transfert et l’amplification de données à la reconnaissance d’images.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eObjectifs du module 7\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eCOUREUR DES BOIS \u0026amp; PATENTEUX:\u003c/p\u003e\n\u003cp\u003e- Comprendre les différents choix techniques pour le déploiement d’une application en vision artificielle;\u003c/p\u003e\n\u003cp\u003e- Saisir le potentiel et énumérer quelques applications de la vision artificielle en environnement et faune.\u003c/p\u003e\n\u003cp\u003eCOUREUR DES BOIS :\u003c/p\u003e\n\u003cp\u003e- Comprendre la stratégie de la traversée du gouffre;\u003c/p\u003e\n\u003cp\u003e- Connaître les grands principes de la gestion de projet d’innovation;\u003c/p\u003e\n\u003cp\u003e- Saisir l’importance de la créativité;\u003c/p\u003e\n\u003cp\u003ePATENTEUX:\u003c/p\u003e\n\u003cp\u003e- Déployer une application en vision artificielle sur la Toile;\u003c/p\u003e\n\u003cp\u003e- Réaliser une application mobile en vision artificielle.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eObjectifs du module 8\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eCOUREUR DES BOIS \u0026amp; PATENTEUX:\u003c/p\u003e\n\u003cp\u003e- Être conscient de la surenchère et de l’effet de mode;\u003c/p\u003e\n\u003cp\u003e- Saisir le potentiel et énumérer quelques applications de la vision artificielle dans l’énergie et les mines.\u003c/p\u003e\n\u003cp\u003eCOUREUR DES BOIS :\u003c/p\u003e\n\u003cp\u003e- Connaître quelques ressources utiles pour aller plus loin dans son projet d'affaires.\u003c/p\u003e\n\u003cp\u003ePATENTEUX:\u003c/p\u003e\n\u003cp\u003e- Se familiariser avec la détection d’objets;\u003c/p\u003e\n\u003cp\u003e- Connaître quelques bonnes suggestions de livres et de cours pratiques.\u003c/p\u003e"])</script><script>self.__next_f.push([1,"423:T9c5,"])</script><script>self.__next_f.push([1,"\u003cp\u003eVous voulez apprendre l'algèbre linéaire, un précieux outil complémentaire à vos connaissances acquises durant vos études en économie, ingénierie, physique, ou statistique? Ou simplement pour la beauté de la matière? Alors ce cours est fait pour vous! Outre remplir le rôle d'outil dans les différentes branches mentionnées ci-dessus (permettant la résolution de problèmes concrets), l'algèbre linéaire, qui capture l'essence des mathématiques -à savoir, l'algèbre et la géométrie- vous introduira au monde plus abstrait des mathématiques.\u003c/p\u003e\n\u003cp\u003eProposé comme complément de cours aux ingénieurs de première année à l'Ecole Polytechnique Fédérale de Lausanne, ce MOOC (composé de trois parties) n'en est pas moins un cours à part entière et peut être considéré comme une base solide d'algèbre linéaire pour tout étudiant intéressé par l'apprentissage de cette matière.\u003c/p\u003e\n\u003cp\u003eBien que les vidéos constituent le coeur du cours, des exercices de type QCM (Questions à choix multiples) ainsi que des séries au format PDF seront disponibles chaque semaine, ainsi que des corrigés appropriés. Plus précisément, les séries d'exercices seront accompagnées d'un corrigé au format PDF et certains problèmes bénéficieront d'une correction détaillée en vidéo, dans laquelle l'un des enseignants présentera la solution, étape par étape. Finalement, chaque vidéo de cours sera suivie d'un quiz, dont le but est de tester le degré d’assimilation des connaissances acquises.\u003c/p\u003e\n\u003cp\u003eLe cours est organisé en dix chapitres dans lesquels une approche très détaillée des concepts théoriques est proposée, ainsi que de multiples exemples illustratifs :\u003c/p\u003e\n\u003cp\u003e1) Systèmes d'équations linéaires.\u003c/p\u003e\n\u003cp\u003e2) Algèbre matricielle.\u003c/p\u003e\n\u003cp\u003e3) Espaces vectoriels.\u003c/p\u003e\n\u003cp\u003e4) Bases et dimensions.\u003c/p\u003e\n\u003cp\u003e5) Applications linéaires. \u003c/p\u003e\n\u003cp\u003e6) Matrices et applications linéaires.\u003c/p\u003e\n\u003cp\u003e7) Déterminants.\u003c/p\u003e\n\u003cp\u003e8) Vecteurs propres, valeurs propres, diagonalisation.\u003c/p\u003e\n\u003cp\u003e9) Produits scalaires et espaces euclidiens.\u003c/p\u003e\n\u003cp\u003e10) Matrices orthogonales et matrices symétriques.\u003c/p\u003e\n\u003cp\u003eCette première partie du cours sera dévouée à l'étude des quatre premiers chapitres cités plus haut. Aucune connaissance particulière n’est requise pour comprendre les concepts abordés dans ce MOOC, mais il est conseillé de travailler régulièrement et de manière assidue, de façon à ne pas prendre de retard lors de l'apprentissage de la matière.\u003c/p\u003e"])</script><script>self.__next_f.push([1,"424:T5d8,\u003cp\u003e\u003cspan lang=\"FR-FR\"\u003eCe cours, présenté par le Département de la statistique du Fonds monétaire international (FMI), détaille\u003c/span\u003e aux participants les concepts de base, les définitions et la méthodologie qui permettent de compiler les indicateurs de solidité financière (ISF). Développés par le FMI à la fin des années 1990, ils sont actuellement compilés et transmis au FMI par plus de 150 pays. Ils sont fréquemment employés par les chercheurs, les experts et les décideurs politiques du monde entier pour surveiller la stabilité du système financier dans son ensemble d’un point de vue macroprudentiel. Les équipes du FMI s’en servent également pour leurs analyses de stabilité financière et leurs activités de surveillance en la matière. Ce cours porte sur l’histoire des ISF et leur application dans le domaine de la surveillance et des analyses macroprudentielles. Il détaille le cadre conceptuel des ISF, le processus de collecte des données et les méthodologies d’agrégation et de consolidation qui en sont le soubassement. Il sera également question de l’application des ISF centraux et complémentaires dans les analyses macroprudentielles. Le Guide d’établissement des indicateurs de solidité financière, dont la révision a été effectuée en 2019, constitue une référence importante tout au long de ce cours. Ce guide constitue l’autorité ultime en matière de concepts et méthodes pour les ISF et le fondement de ce cours.\u003c/p\u003e425:T4c7,\u003cp\u003e\u003cspan lang=\"FR-FR\"\u003eÀ la fin de ce cours, les participants devraient être en mesure :\u003c/span\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e\u003cspan lang=\"FR-FR\"\u003eDe définir les concepts essentiels liés aux ISF et leur application dans les domaines de la surveillance et des analyses macroprudentielles.\u003c/span\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003cspan lang=\"FR-FR\"\u003eDe définir le cadre conceptuel, y compris l’application des concepts de capital réglementaire, de ratio de levier et de liquidité, qui entrent en jeu dans la \u003c/span\u003ecompilation des ISF.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003cspan"])</script><script>self.__next_f.push([1," lang=\"FR-FR\"\u003eDe décrire le processus de préparation des données pour la compilation des ISF et d’appliquer les méthodologies recommandées pour l’agrégation et la consolidation de ces données.\u003c/span\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003cspan lang=\"FR-FR\"\u003eDe préciser chacun des ISF centraux et complémentaires pour les institutions collectrices de dépôts et d’expliquer l’application de chacun d’entre eux dans les analyses macroprudentielles.\u003c/span\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003cspan lang=\"FR-FR\"\u003eD’identifier les données sources et de préciser les ISF pour les institutions non-collectrices de dépôts ainsi que leur application dans les analyses macroprudentielles.\u003c/span\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e426:T7c3,\u003cp\u003eBienvenue au MOOC intitulé \u003cem\u003eIntroduction à la science des données sociales.\u003c/em\u003e\u003c/p\u003e\n\u003cp\u003eLes données sont partout, et il faudra rapidement savoir comment les analyser pour en dériver des connaissances sur lesquelles nous pourrons prendre des décisions et des actions plus éclairées. Selon la prestigieuse revue \u003cem\u003eHarvard Business Review\u003c/em\u003e , le travail du scientifique de données sera l’emploi le plus « \u003cem\u003esexy »\u003c/em\u003e du 21ème siècle et le développement de l’intelligence numérique devient une composante incontournable du développement professionnel. Depuis quelques années, il apparaît de plus en plus évident qu’il y a une rareté, sur le marché de l’emploi, de professionnels formés comme scientifiques des données.\u003c/p\u003e\n\u003cp\u003eCe cours introductif à la science des données appliquées pour les sciences sociales, du comportement ou de la santé aborde les concepts et les différents outils permettant de débuter un projet en science des données et de faire les premières analyses descriptives. Cette formation permettra aussi de développer les capacités de créer des visualisations intéressantes des données analysées. Ce cours proposera des exercices pratiques pour découvrir les outils de la science des données et de la recherche « ouverte » inspirés des travaux de l’Open Science Framew"])</script><script>self.__next_f.push([1,"ork. Ce cours propose d’utiliser le langage R, mais aussi des outils provenant de l’environnement Python, dont Google Colaboratory (Colab) et Jupyter Notebooks. R est un langage de programmation, en statistique et apprentissage automatique, dont la popularité est grandissante en sciences sociales et de la santé.\u003c/p\u003e\n\u003cp\u003eCe cours gratuit et en ligne et asynchrone a été élaboré par Éric Lacourse (directeur scientifique) grâce au soutien de Praxis (Centre de formation professionnelle de la Faculté des Arts et Sciences), du Centre de pédagogie universitaire (CPU) et des Bibliothèques de l’Université de Montréal.\u003c/p\u003e427:T9ca,"])</script><script>self.__next_f.push([1,"\u003cp\u003eVous voulez apprendre l'algèbre linéaire, un précieux outil complémentaire à vos connaissances acquises durant vos études en économie, ingénierie, physique, ou statistique? Ou simplement pour la beauté de la matière? Alors ce cours est fait pour vous! Outre remplir le rôle d'outil dans les différentes branches mentionnées ci-dessus (permettant la résolution de problèmes concrets), l'algèbre linéaire, qui capture l'essence des mathématiques -à savoir, l'algèbre et la géométrie- vous introduira au monde plus abstrait des mathématiques.\u003c/p\u003e\n\u003cp\u003eProposé comme complément de cours aux ingénieurs de première année à l'Ecole Polytechnique Fédérale de Lausanne, ce MOOC (composé de trois parties) n'en est pas moins un cours à part entière et peut être considéré comme une base solide d'algèbre linéaire pour tout étudiant intéressé par l'apprentissage de cette matière.\u003c/p\u003e\n\u003cp\u003eBien que les vidéos constituent le coeur du cours, des exercices de type QCM (Questions à choix multiples) ainsi que des séries au format PDF seront disponibles chaque semaine, ainsi que des corrigés appropriés. Plus précisément, les séries d'exercices seront accompagnées d'un corrigé au format PDF et certains problèmes bénéficieront d'une correction détaillée en vidéo, dans laquelle l'un des enseignants présentera la solution, étape par étape. Finalement, chaque vidéo de cours sera suivie d'un quiz, dont le but est de tester le degré d’assimilation des connaissances acquises.\u003c/p\u003e\n\u003cp\u003eLe cours est organisé en dix chapitres dans lesquels une approche très détaillée des concepts théoriques est proposée, ainsi que de multiples exemples illustratifs :\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eSystèmes d'équations linéaires.\u003c/li\u003e\n\u003cli\u003eAlgèbre matricielle.\u003c/li\u003e\n\u003cli\u003eEspaces vectoriels.\u003c/li\u003e\n\u003cli\u003eBases et dimensions.\u003c/li\u003e\n\u003cli\u003eApplications linéaires. \u003c/li\u003e\n\u003cli\u003eMatrices et applications linéaires.\u003c/li\u003e\n\u003cli\u003eDéterminants.\u003c/li\u003e\n\u003cli\u003eVecteurs propres, valeurs propres, diagonalisation.\u003c/li\u003e\n\u003cli\u003eProduits scalaires et espaces euclidiens.\u003c/li\u003e\n\u003cli\u003eMatrices orthogonales et matrices symétriques.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eCette deuxième partie du cours sera dévouée à l'étude des chapitres 5 à 8 cités plus haut. Une bonne connaissance de la matière enseignée dans le MOOC \u003cem\u003eAlgèbre Linéaire (Partie 1)\u003c/em\u003e est requise. Aussi, il est conseillé de travailler régulièrement et de manière assidue, de façon à ne pas prendre de retard lors de l'apprentissage de la matière.\u003c/p\u003e"])</script><script>self.__next_f.push([1,"428:T4de,\u003cp\u003eA l’issue de ce cours, vous devriez être en mesure de : \u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eReconnaître le rôle, la portée, les utilisations et les cadres d’élaboration des comptes nationaux trimestriels et des indicateurs de l’activité économique à haute fréquence. \u003c/li\u003e\n\u003cli\u003ePasser en revue les sources de données disponibles pour établir les CNT et les IAEHF. \u003c/li\u003e\n\u003cli\u003eExpliquer l'utilisation des mesures en volume et la relation fondamentale entre la valeur, la quantité et le prix — en développant la manière de détecter et de traiter des problèmes tels que la nécessité de mettre à jour les pondérations et de reconnaître la perte d'additivité pour les estimations en volume chaînées. \u003c/li\u003e\n\u003cli\u003eAppliquer des techniques de base pour établir des séries d’étalonnage et combler les lacunes / les écarts dans les données. \u003c/li\u003e\n\u003cli\u003eAppliquer les techniques de base de désaisonnalisation aux séries chronologiques, sur la base des bonnes pratiques de correction des variations saisonnières. \u003c/li\u003e\n\u003cli\u003eDécrire une politique de révision équilibrée en tenant compte de la manière dont une base de données en temps réel peut être utilisée pour évaluer la fiabilité des estimations des CNT et des IAEHF.\u003c/li\u003e\n\u003c/ul\u003e429:T9f9,"])</script><script>self.__next_f.push([1,"\u003cp\u003eVous voulez apprendre l'algèbre linéaire, un précieux outil complémentaire à vos connaissances acquises durant vos études en économie, ingénierie, physique, ou statistique? Ou simplement pour la beauté de la matière? Alors ce cours est fait pour vous! Outre remplir le rôle d'outil dans les différentes branches mentionnées ci-dessus (permettant la résolution de problèmes concrets), l'algèbre linéaire, qui capture l'essence des mathématiques -à savoir, l'algèbre et la géométrie- vous introduira au monde plus abstrait des mathématiques.\u003c/p\u003e\n\u003cp\u003eProposé comme complément de cours aux ingénieurs de première année à l'Ecole Polytechnique Fédérale de Lausanne, ce MOOC (composé de trois parties) n'en est pas moins un cours à part entière et peut être considéré comme une base solide d'algèbre linéaire pour tout étudiant intéressé par l'apprentissage de cette matière.\u003c/p\u003e\n\u003cp\u003eBien que les vidéos constituent le coeur du cours, des exercices de type QCM (Questions à choix multiples) ainsi que des séries au format PDF seront disponibles chaque semaine, ainsi que des corrigés appropriés. Plus précisément, les séries d'exercices seront accompagnées d'un corrigé au format PDF et certains problèmes bénéficieront d'une correction détaillée en vidéo, dans laquelle l'un des enseignants présentera la solution, étape par étape. Finalement, chaque vidéo de cours sera suivie d'un quiz, dont le but est de tester le degré d’assimilation des connaissances acquises.\u003c/p\u003e\n\u003cp\u003eLe cours est organisé en dix chapitres dans lesquels une approche très détaillée des concepts théoriques est proposée, ainsi que de multiples exemples illustratifs :\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eSystèmes d'équations linéaires.\u003c/li\u003e\n\u003cli\u003eAlgèbre matricielle.\u003c/li\u003e\n\u003cli\u003eEspaces vectoriels.\u003c/li\u003e\n\u003cli\u003eBases et dimensions.\u003c/li\u003e\n\u003cli\u003eApplications linéaires. \u003c/li\u003e\n\u003cli\u003eMatrices et applications linéaires.\u003c/li\u003e\n\u003cli\u003eDéterminants.\u003c/li\u003e\n\u003cli\u003eVecteurs propres, valeurs propres, diagonalisation.\u003c/li\u003e\n\u003cli\u003eProduits scalaires et espaces euclidiens.\u003c/li\u003e\n\u003cli\u003eMatrices orthogonales et matrices symétriques.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eCette troisième (et dernière) partie du cours sera dévouée à l'étude des chapitres 9 et 10 cités plus haut. Une bonne connaissance de la matière enseignée dans les MOOCs _Algèbre Linéaire (Partie 1) _et _Algébre Linéaire (Partie 2) _est requise. Aussi, il est conseillé de travailler régulièrement et de manière assidue, de façon à ne pas prendre de retard lors de l'apprentissage de la matière.\u003c/p\u003e"])</script><script>self.__next_f.push([1,"42a:T489,\u003cp\u003eA la fin du cours, l'étudiant sera capable\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ede définir les concepts théoriques introduits en cours et d'en donner des exemples illustratifs ;\u003c/li\u003e\n\u003cli\u003ede reconnaître un produit scalaire et maîtriser les propriétés associées à un tel objet (e.g. Inégalité de Cauchy-Schwarz, inégalité du triangle) ;\u003c/li\u003e\n\u003cli\u003ede et maîtriser les notions de bases liées à l'orthogonalité (e.g. familles/bases orthogonales, familles/bases orthonormales, orthogonal d'un sous-espace, Théorème de Pythagore) ;\u003c/li\u003e\n\u003cli\u003ede construire une base orthonormée d'un sous-espace vectoriel d'un espace euclidien à l'aide du procédé de Gram-Schmidt ;\u003c/li\u003e\n\u003cli\u003ede calculer la meilleure approximation quadratique d'un vecteur ;\u003c/li\u003e\n\u003cli\u003ede calculer la solution au sens des moindres carrés d'un système linéaire ;\u003c/li\u003e\n\u003cli\u003ede calculer la factorisation QR d'une matrice donnée, lorsque cela est possible ;\u003c/li\u003e\n\u003cli\u003ede diagonaliser orthogonalement une matrice symétrique donnée ;\u003c/li\u003e\n\u003cli\u003ede déterminer les axes principaux d'une forme quadratique donnée ;\u003c/li\u003e\n\u003cli\u003ede calculer la décomposition en valeurs singulières d'une matrice donnée.\u003c/li\u003e\n\u003c/ul\u003e42b:T883,"])</script><script>self.__next_f.push([1,"\u003cp\u003e\u003cspan lang=\"FR\"\u003eDans ce cours en ligne, vous découvrirez les notions théoriques sur lesquelles repose la conception du modèle d'estimation de l’écart de taxe sur la valeur ajoutée (TVA) du Programme d’analyse des écarts\u003c/span\u003e\u003cspan lang=\"FR\"\u003e\u003c/span\u003e\u003cspan lang=\"FR\"\u003e du Fonds monétaire international à l’intention des administrations fiscales ; en outre, vous apprendrez à utiliser ce modèle afin de produire vos propres estimations de l’écart de TVA. Vous vous familiariserez avec sa structure générale et le mode d'interaction de ses composantes. Vous apprendrez quelles sont les données nécessaires au modèle ainsi que la façon de les établir et vous verrez comment le modèle les utilise pour calculer la TVA potentielle, qui est comparée à la TVA effective pour déterminer l’écart de TVA.\u003c/span\u003e\u003cspan lang=\"FR\"\u003e\u003c/span\u003e\u003c/p\u003e\n\u003cp\u003eLe cours en ligne comprend cinq composantes principales, qualifiées de modules. Le premier module commence par donner un aperçu général du concept d’écart fiscal, puis expose la théorie sur laquelle s’appuie la conception du modèle d'estimation de l’écart de TVA. Le deuxième module explique comment les divers systèmes de TVA doivent être intégrés au modèle. Le troisième module donne des indications sur l’établissement des différentes mesures de la TVA effective en vue de leur intégration au modèle et explique pourquoi elles sont nécessaires. Le quatrième module est consacré à l’élaboration des données statistiques dont on a besoin pour calculer l’assiette de la TVA potentielle et indique comment elle est intégrée au modèle. Le dernier module montre comment exécuter le modèle pour obtenir les résultats et, surtout, comment les analyser et les interpréter.\u003cspan lang=\"FR\"\u003e\u003c/span\u003e\u003c/p\u003e\n\u003cp\u003eEn bref, le cours est conçu pour permettre aux pays d’effectuer régulièrement et sur la même base des estimations de l’écart de TVA en se servant du modèle d'estimation de l'écart de TVA du programme RA-GAP du FMI, qui est bien établi.\u003cspan lang=\"FR\"\u003e\u003c/span\u003e\u003c/p\u003e\n\u003cp\u003eCe cours en ligne est offert par le FMI avec le soutien financier du gouvernement japonais.\u003c/p\u003e"])</script><script>self.__next_f.push([1,"42c:T622,\u003cp\u003eAs the world becomes more data driven, future-focused professionals need to develop the quantitative skills to inform corporate decision-making and managerial strategy. Guided by experts from the London School of Economics and Political Science (LSE), this online certificate course empowers you with the knowledge and practical tools to understand, interpret, and communicate data relevant to your role and organization. \u003c/p\u003e\n\u003cp\u003eDevelop an understanding of how data-driven models can improve your ability to make decisions in a fast-paced world. Over the course of eight weeks, you’ll participate in a capstone project and apply the techniques and concepts covered to extract business insights from a real data set. You’ll also gain experience using Tableau —– a leading business intelligence and data analytics software —– to visualize and report on insights extracted from data sets. \u003c/p\u003e\n\u003cp\u003eThis LSE course will equip managers and analysts in a variety of industries with the skills to make data-driven decisions. Marketing and sales analysts will gain the ability to extract and interpret key business insights for competitive advantage. Similarly, finance, HR, and business analysts will develop data analysis skills that can be directly applied in their role and organization. There are no formal prerequisites for this course, but some numerical literacy is advantageous, as well as a basic working knowledge of Microsoft Excel. You’ll be granted a student license to download and use Tableau free of charge, for the duration of the course.\u003c/p\u003e42d:T92c,"])</script><script>self.__next_f.push([1,"\u003cp\u003eThe convergence of various fields, such as data mining, statistics, optimisation, and computing, has given rise to machine learning, which is rapidly gaining adoption across diverse industries. One of the key advantages of machine learning is its capability to handle large datasets and solve complex problems. From commercial applications like search engines and recommendation systems (think Netflix and Amazon) to financial institutions for predicting customer behaviour, compliance, risk, and algorithmic trading, machine learning is proving to be a game-changer.\u003c/p\u003e\n\u003cp\u003eIf you're looking to upskill in machine learning and its applications, the London School of Economics and Political Science (LSE) offers an eight-week online technical course that covers a comprehensive range of machine learning methods. Through practical case studies and hands-on exercises, you'll learn how to apply machine learning models to real-world problems and interpret the resulting predictions to make informed business decisions. The course is designed to help you build your expertise in modern business analytics and gain valuable insights into how machine learning is used today.\u003c/p\u003e\n\u003cp\u003eIf you are a mid to senior manager, data specialist, consultant, analyst, IT, or business professional looking to integrate machine learning techniques to improve data analytics in your organization, this online certificate course is designed for you. This course offers an in-depth exploration of core principles and machine learning methods, which will benefit those interested in practical applications. Whether you are looking to upskill, transition into a data science role, or improve your understanding of business applications of data science, this course will help develop and validate your practical machine learning skills and knowledge.\u003c/p\u003e\n\u003cp\u003e\u003cem\u003e\u003cstrong\u003ePrerequisites\u003c/strong\u003e\u003c/em\u003e \u003c/p\u003e\n\u003cp\u003e\u003cem\u003eThis course is technical in nature. It makes use of coding in R and covers the application of machine learning in business. Some algebraic and calculus knowledge is strongly advised, but is not required. Training in tertiary-level statistics and knowledge of a functional or object-oriented language are advantageous. HTML is not considered a programming language in this context. No specific software is required for this online certificate course.\u003c/em\u003e\u003c/p\u003e"])</script><script>self.__next_f.push([1,"42e:T610,\u003cp\u003eAs the increase in data changes the way in which organizations operate, professionals with a hybrid blend of analytical skills and domain-specific expertise are required to propel data-driven business decisions. In the Rice University Data Analysis and Visualization online short course, you’ll develop the skills and knowledge to effectively analyze, visualize, and communicate data insights within your organization. \u003c/p\u003e\n\u003cp\u003eGuided by industry experts, you’ll discover how to navigate technical tools such as Tableau, SQL, and VBA. Learn to harness the fundamentals of data analysis such as advanced Excel functions, databases, and practical statistics. Through data-driven insights and effective visualization techniques, you’ll learn to communicate effectively with stakeholders through data storytelling.\u003c/p\u003e\n\u003cp\u003eThis course is designed for professionals in data-driven roles, for decision makers who need to leverage data effectively, and for those interested in moving into these spaces. Functional analysts will further their ability to inform specific functions and business decisions, while managers will benefit from the ability to use analytics tools in their decision making. Any professional interested in taking the first steps toward an analytical role will also benefit from a new understanding of data analysis and visualization.\u003c/p\u003e\n\u003cp\u003eA basic proficiency in Excel is recommended, and while there are no prerequisites for this course, it’s recommended that students have a basic understanding of SQL before registering.\u003c/p\u003e42f:T68f,\u003cp\u003eThe transformative power of data and analytics has never been more important than it is today. Companies increasingly need to deliver insights on customer experience and business trends to remain competitive in the market.\u003c/p\u003e\n\u003cp\u003eThe Business Analytics online short course from the University of Cape Town (UCT) aims to equip you with advanced data analysis techniques to support business decision making and critical thinking in times of ambiguity and uncertainty.\u003c/p\u003e\n\u003cp\u003eTh"])</script><script>self.__next_f.push([1,"is course focuses on practical business application by showing you how to harness data visualization and storytelling to interpret number sets, identify patterns, and uncover business trends critical to driving growth in your organization.\u003c/p\u003e\n\u003cp\u003eBy practically engaging with various analytical tools (such as SQL and Tableau, as well as Python on an introductory level), this course will empower you to tap into the power of business intelligence to transform your data and deliver actionable insights.\u003c/p\u003e\n\u003cp\u003eAs this is an advanced course, it’s ideal for practicing analysts who want to update their knowledge, grow their careers, and improve their ability to impact business decisions with data insights. It’s also designed for those who aspire to become data scientists and for managers and senior decision makers who want to learn how to leverage data to make informed choices and add more value to their organizations. While there are no prerequisites for this course, it’s recommended that learners have a basic understanding of statistics and analytics before registering. Notably, students will engage with and run code via an IDE notebook but won’t have to write code themselves.\u003c/p\u003e430:T66f,\u003cp\u003eIn a world that’s increasingly data-driven, organizations need professionals who can extract meaningful insights from data to make better business decisions. \u003c/p\u003e\n\u003cp\u003eOn the Data Science with Python online short course from the University of Cape Town (UCT), you’ll have the opportunity to develop practical data science and analysis skills for use in everyday business scenarios. Over the course of eight weeks, you’ll cover widely applicable Python libraries and learn how these methods can be, and are, used in day-to-day business situations. \u003c/p\u003e\n\u003cp\u003eGain an introduction into statistical learning, which will provide a foundation on the mechanics of machine learning. You’ll explore supervised learning using tree-based models and neural networks, as well as unsupervised learning using K-means and hierarchical clustering. "])</script><script>self.__next_f.push([1,"You’ll also learn about the process of revealing more robust patterns to ensure models are useful. \u003c/p\u003e\n\u003cp\u003eThis course is aimed at professionals who want to close any gaps they may have in their data science skills and knowledge. IT professionals who need to rapidly enhance their data science toolkit with demonstrable and practical skills would benefit from the technical nature of the content. Professionals working in a variety of industries will learn how to increase efficiencies and identify new opportunities for their organization with key data and programming skills. \u003c/p\u003e\n\u003cp\u003eThis course is technical in nature. It is strongly recommended that you have a basic understanding of mathematics, statistics, and at least one programming language if you wish to reap the full benefits of the course.\u003c/p\u003e431:T8b1,"])</script><script>self.__next_f.push([1,"\u003cp\u003eThe US healthcare system wastes billions of dollars annually as a result of administrative inefficiencies.1 In light of this, there’s an increasing demand for clinicians and health-services managers who understand the operational and economic impact of their everyday business decisions.2\u003c/p\u003e\n\u003cp\u003eThe eight-week Healthcare Management online program from the Yale School of Management Executive Education will give you a grounding in the business principles and organizational practices that underpin the modern healthcare system. \u003c/p\u003e\n\u003cp\u003eThroughout the program, you’ll gain practical health administration and operational skills to help you manage finances, maximize throughput, optimize patient care, and ultimately become a more effective leader. \u003c/p\u003e\n\u003cp\u003eWith a unique, integrated curriculum and specific industry case studies that shed light on the US healthcare system, you’ll find actionable insights applicable to your own context. Sharpen your healthcare-management skills, gain the tools to drive change in your organization, and earn a certificate of participation online from the Yale SOM Executive Education. \u003c/p\u003e\n\u003cp\u003e\u003cem\u003e1\u003ca href=\"https://jamanetwork.com/journals/jama/article-abstract/2752664?guestAccessKey=bf8f9802-be69-4224-a67f-42bf2c53e027\u0026utm_source=For_The_Media\u0026utm_medium=referral\u0026utm_campaign=ftm_links\u0026utm_content=tfl\u0026utm_term=100719\" target=\"_blank\"\u003e JAMA Network\u003c/a\u003e (Oct, 2019).\u003cbr /\u003e\n2\u003ca href=\"https://www.bls.gov/ooh/management/medical-and-health-services-managers.htm\" target=\"_blank\"\u003e Bureau of Labor Statistics\u003c/a\u003e (Jun, 2021).\u003c/em\u003e\u003c/p\u003e\n\u003cp\u003eThis program is aimed at both medical and non-medical professionals who are looking to gain a fundamental understanding of business and organizational principles, and their application in healthcare.\u003c/p\u003e\n\u003cp\u003eIt’s ideal for medical professionals who currently manage or aim to run their own private practices, and who require the financial and managerial skills to do so, or for those who are looking to transition into a more administrative or senior role within healthcare. Physicians, registered nurses, surgeons, and allied health professionals will also benefit from this introduction to the essentials of health-services administration.\u003c/p\u003e"])</script><script>self.__next_f.push([1,"432:T6c8,\u003cp\u003eThanks to machine learning and data analytics, real estate professionals and investors can now make more accurate property assessments than ever before. This Data Science in Real Estate online short course from the MIT School of Architecture and Planning (MIT SA+P) focuses on growing your data science skills within the context of the built environment. During the program, esteemed MIT faculty and industry experts will teach you how to harness statistical techniques to reveal key insights into the factors that impact property investment and development opportunities.\u003c/p\u003e\n\u003cp\u003eOver six weeks, you’ll learn how to evaluate and tidy data, expand data sets, and generate a selection of models that can be used to explain industry trends and forecast real estate values.\u003c/p\u003e\n\u003cp\u003eThis MIT SA+P program provides learners with the data science skills to support decision making and grow a successful property portfolio. Those with experience in data analytics will benefit by learning to apply their skills to the real estate market, while real estate professionals and independent investors can increase their competitive edge by building data skills to improve analysis and valuation, helping them to make better decisions.\u003c/p\u003e\n\u003cp\u003e\u003cem\u003eWhile there are no formal prerequisites for this course, it’s highly recommended that you have a basic understanding of programming, in particular using R. You should be familiar with different data types and basic data structures, including objects, functions, vectors, matrices, data frames, and factors; and have used them practically in the past. If you don’t yet have an understanding of these concepts, you can explore the bridging resources made available in the course brochure.\u003c/em\u003e\u003c/p\u003e433:T9fd,"])</script><script>self.__next_f.push([1,"\u003cp\u003eChanging tenant expectations, sustainability concerns, and where people choose to live due to work-from-home protocols are reshaping the commercial and residential real estate markets. It requires data and quantitative analysis skills to predict the full impact of this on the property sector, and investment and development decisions. \u003c/p\u003e\n\u003cp\u003eThe Real Estate Financial Analytics online short course from the MIT School of Architecture and Planning (MIT SA+P) will enable you to transform uncertainty (‘unknown unknowns’) into risk (‘known unknowns’). You’ll gain the technical skills and tools to assess the viability of residential and commercial real estate investments using rigorous analysis techniques, simulation modeling, and financial modeling. This six-week program introduces real estate price dynamics and teaches you to quantitatively model them using Microsoft Excel, in order to understand some of the challenges of real estate price indexing. It also explores the lure and limitations of forecasting and how to make more accurate predictions using Monte Carlo simulation. \u003c/p\u003e\n\u003cp\u003eIn addition, you’ll explore how flexibility in the context of uncertainty can add value to investments, as well as assess the quantitative and qualitative value of real estate investment decision flexibility using simulation modeling. With guidance from MIT academics and industry experts, you’ll discover the potential for new financial engineering tools based on real estate price indexing.\u003c/p\u003e\n\u003cp\u003eThis program is designed to help equip finance and built environment professionals with the knowledge and techniques to navigate real estate investment decisions successfully. Whether for personal investment management or in a professional capacity, this course aims to provide you with the skills and tools to make better recommendations and projections, identify high-return investments, and build an enduringly strong portfolio.\u003c/p\u003e\n\u003cp\u003eBusiness leaders, financial executives, real estate entrepreneurs, developers, and fund managers and advisers will build on their current skill set, and gain insight into the latest investment trends and structures. Analysts — especially those looking to hone in-demand, specialist real estate expertise — will benefit from the expert thought leadership in areas such as property price dynamics and valuation in the capital market. Due to the technical nature of this course, it’s best suited to those with existing knowledge of finance or economic analysis and experience using Microsoft Excel.\u003c/p\u003e"])</script><script>self.__next_f.push([1,"434:Ta49,"])</script><script>self.__next_f.push([1,"\u003cp\u003eDuration: 6 weeks (excluding orientation)\u003c/p\u003e\n\u003cp\u003eEffective data visualisation and storytelling has the power to transform complex data into impactful insights that guide informed decision-making. This crucial skill enables businesses to spot patterns, make strategic decisions, and predict future trends, helping them to build data-driven growth and success.\u003c/p\u003e\n\u003cp\u003eUnearth the power of data with the \u003cstrong\u003eApplied Data Visualisation and Analysis for Business\u003c/strong\u003e online certificate course from the London School of Economics and Political Science (LSE). Over six weeks, you'll learn the art of converting raw data into captivating visual narratives using Tableau. You’ll also be armed with a suite of econometric and statistical modelling tools in Microsoft Excel. Guided by experts, you’ll gain a deep understanding of the technical details that support effective data visualisations and the expertise needed to thrive in a data-centric environment. \u003c/p\u003e\n\u003cp\u003eThis course is intended for business professionals seeking to boost their technical data visualisation and analysis skill set and grow their ability to influence decision-makers through data storytelling. It's also appropriate for those wishing to enhance their mastery of data visualisation using Tableau and data modelling using Excel. \u003c/p\u003e\n\u003cp\u003eThose interested in the course should ideally be familiar with Tableau basics (the interface, connecting to datasets, and creating basic visualisations) and introductory statistical concepts. There will, however, be a light refresher on these concepts in the course material.\u003c/p\u003e\n\u003cp\u003eIf you don’t have these skills yet, or feel you could benefit from a more-in depth refresher, the LSE \u003ca href=\"https://www.getsmarter.com/products/lse-data-analysis-for-management-online-certificate-course\" target=\"_blank\"\u003eData Analysis for Management\u003c/a\u003e online certificate course can provide you with Tableau fundamentals.\u003c/p\u003e\n\u003cp\u003e\u003cimg alt=\"\" src=\"https://www.getsmarter.com/disk/public/tVYZwNpzsTmzB9pbhBDXkJM1/cpd_accreditation_logo.png\" /\u003e \u003c/p\u003e\n\u003cp\u003eThis Applied Data Visualisation and Analysis for Business online certificate course is certified by the United Kingdom CPD Certification Service, and may be applicable to individuals who are members of, or are associated with, UK-based professional bodies. The course has an estimated 54 hours of learning.\u003c/p\u003e\n\u003cp\u003e\u003cem\u003eNote: should you wish to claim CPD activity, the onus is on you. The London School of Economics and Political Science (LSE) and GetSmarter accept no responsibility, and cannot be held responsible, for the claiming or validation of hours or points.\u003c/em\u003e\u003c/p\u003e"])</script><script>self.__next_f.push([1,"435:T684,\u003cp\u003eWith more and more businesses relying on statistical analysis to drive decision-making, the ability to extract meaning from data has become a highly valued skill. Data analysts play a key role in helping business leaders make informed choices, distinguish between effective and ineffective practices, cut costs, and solve key problems — they are, therefore, an integral part of any successful organizational team.\u003c/p\u003e\n\u003cp\u003eThe Data Analysis online short course from the University of Cape Town (UCT) will introduce you to the fundamentals of data analysis and the broader potential of analytics in business. Over the course of eight modules, you’ll learn how data is collected, stored, organized, analysed, and interpreted, and you’ll be given the chance to practice data analysis techniques on real-world data sets. Ultimately, you’ll walk away with practical skills that you can apply immediately in your organization to address specific business needs in the areas of finance, sales, marketing, operational management, and human resource management.\u003c/p\u003e\n\u003cp\u003eAnyone interested in moving into the realms of data science and analytics will find this UCT online short course useful. The content is geared towards those eager to update their skill sets to remain relevant, as well as established professionals looking to unlock new opportunities within or outside their current organizations. Data analysts, and others who already work with data, can add to existing certifications by learning how to better leverage numbers to achieve results and drive growth. Students will need access to Microsoft Excel to complete the practical components of the course.\u003c/p\u003e436:T499,In today's dynamic business landscape, data-driven decision-making is key. That's why we've designed a skills-based learning program that not only equips you with the latest analytics tools and techniques but also connects you with industry micro-credentials that are in high demand.\r\nBecome a data analyst ready to analyze and to visualize data for strategic de"])</script><script>self.__next_f.push([1,"cision making \r\nStudy contemporary data analyst skills from content derived from leading, global organizations\r\nStudy consumers’ buying habits to help businesses make more strategic decisions about how they market their products and services. \r\nMaster the process of gleaning insights from data to inform better business decisions\r\nLearn in-demand job skills from first day of instruction and bring them into the workplace\r\nThe Masters of Science in Business Analytics is designed to prepare learners for data analyst careers. A data analyst finds a solution to a problem or provides an answer to a question. This career tasks a data analyst to gather, purify, and analyze data sets. Contemporary data analysts work in a variety of fields, including government, business, finance, law enforcement, and science.437:T67f,- #78 National Universities - U.S. News \u0026 World Report, 2019\n- #5 Best U.S. Cities for Jobs - Fortune, 2018\n- Create meaningful change in America’s vibrant political, historical \u0026 cultural capital city\n-An undergraduate degree in Statistics teaches students the principles of statistical theory and methods, including probability theory, data analysis, and statistical inference.\n-Students learn how to design experiments and studies, collect and analyze data, and draw conclusions from statistical analysis.\n-They study statistical modeling and regression analysis, using mathematical and statistical tools to model relationships between variables.\n-Statistics students develop skills in data visualization and communication, including graphing, charting, and presenting data.\n-They learn about the applications of statistics in fields such as biology, economics, psychology, and public health.\n-Students study the principles of machine learning and data mining, using statistical and computational methods to analyze large datasets.\n-Statistics students learn how to use statistical software and computer programming languages to solve statistical problems and analyze data.\n-They also study the history and philosophy o"])</script><script>self.__next_f.push([1,"f statistics, exploring the development of statistical ideas and their relationship to other fields of study.\n-Statistics students learn how to communicate statistical ideas and findings through technical writing and presentations.\n-Finally, an undergraduate degree in Statistics prepares students for careers in various fields such as academia, industry, and government, as well as for further study in graduate and professional programs.438:T7ae,Florida International University is one of the largest public research universities in the US. The FIU Global First Year program prepares you for academic, social, and professional success. Florida International University offers 110+ undergraduate programs. International business, hospitality, engineering, and criminal justice are among FIU’s top fields of study.\n-An undergraduate degree in Mathematics and Statistics teaches students the principles of pure and applied mathematics, including calculus, algebra, and analysis, as well as statistical theory and methods.\n-Students learn about mathematical proof and how to construct rigorous and logical arguments.\n-They study the foundations of probability theory and statistics, including methods of statistical inference and data analysis.\n-Mathematics and Statistics students develop problem-solving skills, critical thinking, and logical reasoning that are useful in a wide range of fields.\n-They learn about the applications of mathematics and statistics in fields such as physics, engineering, finance, and data science.\n-Students study the principles of mathematical modeling and simulation, using mathematical and statistical tools to solve real-world problems.\n-Mathematics and Statistics students learn how to use mathematical and statistical software and computer programming languages to solve mathematical and statistical problems.\n-They also study the history and philosophy of mathematics and statistics, exploring the development of mathematical and statistical ideas and their relationship to other fields of study.\n-Mathematics"])</script><script>self.__next_f.push([1," and Statistics students learn how to communicate mathematical and statistical ideas and findings through technical writing and presentations.\n-Finally, an undergraduate degree in Mathematics and Statistics prepares students for careers in various fields such as academia, industry, and government, as well as for further study in graduate and professional programs.439:T707,UMass Boston, located in America’s most celebrated college city, combines the resources of a major research university and the accessibility of a public institution. With 65+ courses of study and a prestigious Honors College, UMass Boston gives you access to career opportunities, research projects, and a strong alumni network. With 11% of the student body representing 140+ countries and speaking 60+ languages, UMass Boston is truly global.\n-An undergraduate degree in Mathematics teaches students the principles of pure and applied mathematics, including calculus, algebra, and analysis.\n-Students learn about mathematical proof and how to construct rigorous and logical arguments.\n-They study the foundations of geometry, topology, and number theory.\n-Mathematics students develop problem-solving skills, critical thinking, and logical reasoning that are useful in a wide range of fields.\n-They learn about the applications of mathematics in fields such as physics, engineering, finance, and computer science.\n-Students study the principles of probability theory and statistics, including methods of statistical inference and data analysis.\n-Mathematics students learn how to use mathematical software and computer programming languages to solve mathematical problems and simulate real-world scenarios.\n-They also study the history and philosophy of mathematics, exploring the development of mathematical ideas and their relationship to other fields of study.\n-Mathematics students learn how to communicate mathematical ideas and findings through technical writing and presentations.\n-Finally, an undergraduate degree in Mathematics prepares students for careers in "])</script><script>self.__next_f.push([1,"various fields such as academia, industry, and government, as well as for further study in graduate and professional programs.43a:T85d,"])</script><script>self.__next_f.push([1,"Western New England University offers a hands-on and personalized educational experience, with small class sizes and nurturing faculty. The 215-acre campus offers a vibrant community where students can explore cutting-edge research, entrepreneurial prospects, and creative pursuits, all while building a wide professional network. With degree programs in high-demand fields such as engineering, health, pharmaceuticals, and business, Western New England University prepares students to get started on their career journey. Learn from industry professionals as you develop key skills and gain in-depth knowledge that will help you stand out to employers in the US, or anywhere in the world.\n-An undergraduate degree in Mathematical Sciences teaches students the principles of pure and applied mathematics, including calculus, algebra, and analysis.\n-Students learn about the use of mathematical models to solve real-world problems in fields such as engineering, physics, and finance.\n-They study probability theory and statistics, including methods of statistical inference and data analysis.\n-Mathematical Sciences students learn about the foundations of computer science, including algorithms, programming, and data structures.\n-They also study the principles of mathematical logic and the foundations of mathematics, including set theory and topology.\n-Students develop skills in problem-solving, critical thinking, and logical reasoning, which are useful in a wide range of fields.\n-They learn about the use of mathematical software and computer programming languages to solve mathematical problems and simulate real-world scenarios.\n-Mathematical Sciences students study the history and philosophy of mathematics, exploring the development of mathematical ideas and their relationship to other fields of study.\n-They learn how to communicate mathematical ideas and findings through technical writing and presentations.\n-Finally, an undergraduate degree in Mathematical Sciences prepares students for careers in various fields such as academia, industry, and government, as well as for further study in graduate and professional programs."])</script><script>self.__next_f.push([1,"43b:Ta6f,"])</script><script>self.__next_f.push([1,"Gonzaga University’s humanistic heritage focuses on educating the mind, body, and spirit, and developing personal, academic, and professional growth through critical thought and creative innovation. Gonzaga University’s humanistic heritage focuses on educating the mind, body, and spirit, and developing personal, academic, and professional growth through critical thought and creative innovation.\n-In an undergraduate Applied Mathematics degree, students learn mathematical theories and modeling techniques and apply them to solve real-world problems in various fields. The curriculum typically includes courses in calculus, linear algebra, differential equations, probability theory, statistics, numerical analysis, and optimization. The degree program includes projects, research opportunities, and internships, and students may also study advanced topics in mathematics.\n-Calculus: Students learn calculus, including differentiation and integration, which is used to model real-world problems and analyze changes in physical and mathematical systems.\n-Linear algebra: Students learn linear algebra, including matrix algebra and eigenvalue analysis, which is used to solve systems of linear equations and in data analysis.\n-Differential equations: Students learn differential equations, which are used to model physical phenomena and systems that change over time.\n-Probability theory: Students learn probability theory, including random variables and distributions, which is used in data analysis and modeling of random phenomena.\n-Statistics: Students learn statistical methods and techniques, including regression analysis, hypothesis testing, and sampling theory, which are used in data analysis and empirical research.\n-Numerical analysis: Students learn numerical methods for solving mathematical problems that are difficult or impossible to solve analytically, such as systems of differential equations or optimization problems.\n-Optimization: Students learn optimization techniques, including linear and nonlinear programming, which are used to solve problems and model decision-making in various fields.\n-Mathematical modeling: Students learn how to model real-world problems using mathematical tools and techniques, and how to interpret and communicate the results.\n-Computer programming: Students learn computer programming and algorithm design, which is used to solve mathematical problems and implement numerical methods.\n-Advanced topics: Students may study advanced topics in mathematics, such as abstract algebra, topology, real analysis, and partial differential equations, to gain a deeper understanding of mathematical theories and applications."])</script><script>self.__next_f.push([1,"43c:T636,- #147 National Universities - U.S. News \u0026 World Report, 2019\n- A true campus experience just minutes from the cultural and financial capital of the world\n- 240+ major companies recruit on campus Apple, IBM, AIG, Pepsi and Merrill Lynch\n-An undergraduate degree in Mathematics teaches students the principles of pure and applied mathematics, including calculus, algebra, and analysis.\n-Students learn about mathematical proof and how to construct rigorous and logical arguments.\n-They study the foundations of geometry, topology, and number theory.\n-Mathematics students develop problem-solving skills, critical thinking, and logical reasoning that are useful in a wide range of fields.\n-They learn about the applications of mathematics in fields such as physics, engineering, finance, and computer science.\n-Students study the principles of probability theory and statistics, including methods of statistical inference and data analysis.\n-Mathematics students learn how to use mathematical software and computer programming languages to solve mathematical problems and simulate real-world scenarios.\n-They also study the history and philosophy of mathematics, exploring the development of mathematical ideas and their relationship to other fields of study.\n-Mathematics students learn how to communicate mathematical ideas and findings through technical writing and presentations.\n-Finally, an undergraduate degree in Mathematics prepares students for careers in various fields such as academia, industry, and government, as well as for further study in graduate and professional programs.43d:Ta16,"])</script><script>self.__next_f.push([1,"University of the Pacific's undergraduate programs are offered at the Stockton, California campus and offer world-class instruction in a supportive and challenging atmosphere. University of the Pacific offers 80+ undergraduate majors, small class sizes, a diverse campus experience, and internship opportunities.\n-In an undergraduate Applied Mathematics degree, students learn mathematical theories and modeling techniques and apply them to solve real-world problems in various fields. The curriculum typically includes courses in calculus, linear algebra, differential equations, probability theory, statistics, numerical analysis, and optimization. The degree program includes projects, research opportunities, and internships, and students may also study advanced topics in mathematics.\n-Calculus: Students learn calculus, including differentiation and integration, which is used to model real-world problems and analyze changes in physical and mathematical systems.\n-Linear algebra: Students learn linear algebra, including matrix algebra and eigenvalue analysis, which is used to solve systems of linear equations and in data analysis.\n-Differential equations: Students learn differential equations, which are used to model physical phenomena and systems that change over time.\n-Probability theory: Students learn probability theory, including random variables and distributions, which is used in data analysis and modeling of random phenomena.\n-Statistics: Students learn statistical methods and techniques, including regression analysis, hypothesis testing, and sampling theory, which are used in data analysis and empirical research.\n-Numerical analysis: Students learn numerical methods for solving mathematical problems that are difficult or impossible to solve analytically, such as systems of differential equations or optimization problems.\n-Optimization: Students learn optimization techniques, including linear and nonlinear programming, which are used to solve problems and model decision-making in various fields.\n-Mathematical modeling: Students learn how to model real-world problems using mathematical tools and techniques, and how to interpret and communicate the results.\n-Computer programming: Students learn computer programming and algorithm design, which is used to solve mathematical problems and implement numerical methods.\n-Advanced topics: Students may study advanced topics in mathematics, such as abstract algebra, topology, real analysis, and partial differential equations, to gain a deeper understanding of mathematical theories and applications."])</script><script>self.__next_f.push([1,"43e:T951,"])</script><script>self.__next_f.push([1,"The University of Dayton is a top-tier research university dedicated to academic excellence, community leadership, entrepreneurship, and creating a positive global impact. University of Dayton offers international students 80+ undergraduate degree options. The University of Dayton’s popular and highly ranked programs include engineering, entrepreneurship, business, and aerospace and aviation engineering.\n-In an undergraduate Applied Mathematical Economics degree, students learn mathematical modeling techniques to analyze economic systems and data, including courses in calculus, linear algebra, probability theory, statistics, optimization, game theory, and econometrics. They also apply these tools to real-world economic problems and may study microeconomics, macroeconomics, international trade, and development economics. \n-Mathematical modeling: Students learn mathematical modeling techniques to represent and analyze economic systems and data.\n-Calculus: Students learn calculus, including differentiation and integration, which is used extensively in economic analysis and optimization.\n-Linear algebra: Students learn linear algebra, including matrix algebra and eigenvalue analysis, which is used to solve systems of linear equations and in data analysis.\n-Differential equations: Students learn differential equations, which are used to model dynamic economic systems.\n-Probability theory: Students learn probability theory, including random variables and distributions, which is used in econometric analysis and financial modeling.\n-Statistics: Students learn statistical methods and techniques, including regression analysis, hypothesis testing, and sampling theory, which are used in data analysis and empirical research.\n-Optimization: Students learn optimization techniques, including linear and nonlinear programming, which are used to solve economic problems and model decision-making.\n-Game theory: Students learn game theory, which is used to analyze strategic interactions between individuals or groups in economic systems.\n-Econometrics: Students learn econometric methods, which are used to estimate and test economic models using data.\n-Microeconomics and macroeconomics: Students study microeconomic and macroeconomic concepts, including consumer and producer behavior, market structures, national income accounting, monetary policy, and fiscal policy."])</script><script>self.__next_f.push([1,"43f:T9a9,"])</script><script>self.__next_f.push([1,"- #78 National Universities - U.S. News \u0026 World Report, 2019\n- #5 Best U.S. Cities for Jobs - Fortune, 2018\n- Create meaningful change in America’s vibrant political, historical \u0026 cultural capital city\n-In an undergraduate Applied Mathematics degree, students learn mathematical theories and modeling techniques and apply them to solve real-world problems in various fields. The curriculum typically includes courses in calculus, linear algebra, differential equations, probability theory, statistics, numerical analysis, and optimization. The degree program includes projects, research opportunities, and internships, and students may also study advanced topics in mathematics.\n-Calculus: Students learn calculus, including differentiation and integration, which is used to model real-world problems and analyze changes in physical and mathematical systems.\n-Linear algebra: Students learn linear algebra, including matrix algebra and eigenvalue analysis, which is used to solve systems of linear equations and in data analysis.\n-Differential equations: Students learn differential equations, which are used to model physical phenomena and systems that change over time.\n-Probability theory: Students learn probability theory, including random variables and distributions, which is used in data analysis and modeling of random phenomena.\n-Statistics: Students learn statistical methods and techniques, including regression analysis, hypothesis testing, and sampling theory, which are used in data analysis and empirical research.\n-Numerical analysis: Students learn numerical methods for solving mathematical problems that are difficult or impossible to solve analytically, such as systems of differential equations or optimization problems.\n-Optimization: Students learn optimization techniques, including linear and nonlinear programming, which are used to solve problems and model decision-making in various fields.\n-Mathematical modeling: Students learn how to model real-world problems using mathematical tools and techniques, and how to interpret and communicate the results.\n-Computer programming: Students learn computer programming and algorithm design, which is used to solve mathematical problems and implement numerical methods.\n-Advanced topics: Students may study advanced topics in mathematics, such as abstract algebra, topology, real analysis, and partial differential equations, to gain a deeper understanding of mathematical theories and applications."])</script><script>self.__next_f.push([1,"440:T6d8,Louisiana State University is a Top 100 Public University with a dedicated focus on student involvement, research opportunities, and experiential learning. With more than 330 fields of study and 70 majors, LSU offers students opportunities for hands-on experience working alongside world-class faculty. Top-ranked and popular programs include business, engineering, petroleum engineering, and STEM.\n-An undergraduate degree in Mathematics teaches students the principles of pure and applied mathematics, including calculus, algebra, and analysis.\n-Students learn about mathematical proof and how to construct rigorous and logical arguments.\n-They study the foundations of geometry, topology, and number theory.\n-Mathematics students develop problem-solving skills, critical thinking, and logical reasoning that are useful in a wide range of fields.\n-They learn about the applications of mathematics in fields such as physics, engineering, finance, and computer science.\n-Students study the principles of probability theory and statistics, including methods of statistical inference and data analysis.\n-Mathematics students learn how to use mathematical software and computer programming languages to solve mathematical problems and simulate real-world scenarios.\n-They also study the history and philosophy of mathematics, exploring the development of mathematical ideas and their relationship to other fields of study.\n-Mathematics students learn how to communicate mathematical ideas and findings through technical writing and presentations.\n-Finally, an undergraduate degree in Mathematics prepares students for careers in various fields such as academia, industry, and government, as well as for further study in graduate and professional programs.441:T6a9,Auburn University prepares you for success with its prestigious academic programs, emphasis on hands-on learning experiences, and family spirit. Auburn University offers more than 150 undergraduate degrees, including top-ranked programs in engineering, business, supply chain ma"])</script><script>self.__next_f.push([1,"nagement, journalism, architecture and design, and fisheries/aquaculture.\n-An undergraduate degree in Mathematics teaches students the principles of pure and applied mathematics, including calculus, algebra, and analysis.\n-Students learn about mathematical proof and how to construct rigorous and logical arguments.\n-They study the foundations of geometry, topology, and number theory.\n-Mathematics students develop problem-solving skills, critical thinking, and logical reasoning that are useful in a wide range of fields.\n-They learn about the applications of mathematics in fields such as physics, engineering, finance, and computer science.\n-Students study the principles of probability theory and statistics, including methods of statistical inference and data analysis.\n-Mathematics students learn how to use mathematical software and computer programming languages to solve mathematical problems and simulate real-world scenarios.\n-They also study the history and philosophy of mathematics, exploring the development of mathematical ideas and their relationship to other fields of study.\n-Mathematics students learn how to communicate mathematical ideas and findings through technical writing and presentations.\n-Finally, an undergraduate degree in Mathematics prepares students for careers in various fields such as academia, industry, and government, as well as for further study in graduate and professional programs.442:T6c5,The University of Illinois Chicago provides a hands-on learning experience in a supportive, diverse environment. Located in downtown Chicago, UIC offers you the opportunity to live, learn, and excel in the third-largest city in the US. UIC’s top-ranked programs include engineering, business, architecture, design, education, health sciences, public health, and public affairs.\n-An undergraduate degree in Mathematics teaches students the principles of pure and applied mathematics, including calculus, algebra, and analysis.\n-Students learn about mathematical proof and how to construct rigorous and logical a"])</script><script>self.__next_f.push([1,"rguments.\n-They study the foundations of geometry, topology, and number theory.\n-Mathematics students develop problem-solving skills, critical thinking, and logical reasoning that are useful in a wide range of fields.\n-They learn about the applications of mathematics in fields such as physics, engineering, finance, and computer science.\n-Students study the principles of probability theory and statistics, including methods of statistical inference and data analysis.\n-Mathematics students learn how to use mathematical software and computer programming languages to solve mathematical problems and simulate real-world scenarios.\n-They also study the history and philosophy of mathematics, exploring the development of mathematical ideas and their relationship to other fields of study.\n-Mathematics students learn how to communicate mathematical ideas and findings through technical writing and presentations.\n-Finally, an undergraduate degree in Mathematics prepares students for careers in various fields such as academia, industry, and government, as well as for further study in graduate and professional programs.443:T66c,The University of Kansas is a top-tier public research university with a commitment to a research-focused academic curriculum and career support. At KU, you can choose from over 190 fields of study, including top-ranked business, engineering, pharmacy, education, and architecture programs.\n-An undergraduate degree in Mathematics teaches students the principles of pure and applied mathematics, including calculus, algebra, and analysis.\n-Students learn about mathematical proof and how to construct rigorous and logical arguments.\n-They study the foundations of geometry, topology, and number theory.\n-Mathematics students develop problem-solving skills, critical thinking, and logical reasoning that are useful in a wide range of fields.\n-They learn about the applications of mathematics in fields such as physics, engineering, finance, and computer science.\n-Students study the principles of probability theory and"])</script><script>self.__next_f.push([1," statistics, including methods of statistical inference and data analysis.\n-Mathematics students learn how to use mathematical software and computer programming languages to solve mathematical problems and simulate real-world scenarios.\n-They also study the history and philosophy of mathematics, exploring the development of mathematical ideas and their relationship to other fields of study.\n-Mathematics students learn how to communicate mathematical ideas and findings through technical writing and presentations.\n-Finally, an undergraduate degree in Mathematics prepares students for careers in various fields such as academia, industry, and government, as well as for further study in graduate and professional programs.444:T4a4,I didn’t want theory — I could do theory all day. I wanted something I \r\ncould use immediately when I walk out the door, and that’s what Maryville’s \r\ncourses provided.” — Felecia W., Maryville Grad The digital world runs on \r\ndata. So can your career. We live in a digital world — one in which \r\nexamples of data science and analysis can be found everywhere. Consider \r\nyour product recommendations from Amazon. Think about how companies in \r\ndifferent industries like Boeing, Walmart, and Disney use data to drive \r\ncritical business decisions, and insurance companies depend on this \r\nanalysis to forecast risk or banks to evaluate loan applications. Now \r\nimagine the career potential if you had the skills to help them do it. Earn \r\nyour bachelor’s in data science online from Maryville University, and \r\nyou’ll do more than study the tools and techniques used to dig deeper into \r\ndata. Graduates can build the skills to explore, analyze, monitor, manage, \r\nand visualize large data sets using the latest technology. Our innovative \r\nprogram also features a business minor, which can help prepare you for top \r\ndata jobs in nearly any field. Get Curriculum Details445:T7ac,Cleveland State University partners with world-class hospitals, Fortune 500 companies, government research centers, "])</script><script>self.__next_f.push([1,"and cultural institutions to give its students academic, research, and job opportunities. With more than 175+ undergraduate degrees to choose from, Cleveland State Global students are prepared to succeed in the global workforce.\n-An undergraduate degree in Information Systems teaches students how to design, develop, and manage information systems that support business processes and decision-making.\n-Students learn about the principles of project management, including planning, scheduling, and budgeting.\n-They study the analysis and design of information systems, using techniques such as data modeling and process mapping.\n-Information Systems students learn about databases, including design, implementation, and management of database systems.\n-They study enterprise resource planning (ERP) systems, which integrate business processes and functions across different departments and areas of an organization.\n-Students learn about the principles of data analytics, including data mining, machine learning, and statistical analysis, and their applications in business decision-making.\n-They also learn about the legal and ethical issues surrounding the use of information systems in organizations, including privacy, security, and intellectual property.\n-An undergraduate degree in Information Systems teaches students how to communicate technical information to non-technical stakeholders, including writing technical reports and giving presentations.\n-Students learn about emerging technologies and their potential impact on organizations and society, preparing them to be innovative and responsible technology professionals.\n-Finally, Information Systems students develop skills in teamwork and collaboration, as well as leadership and management, to prepare them for careers in various fields such as business, healthcare, and government.446:T80d,"])</script><script>self.__next_f.push([1,"The University of Utah is located on a picturesque campus in Salt Lake City. Utah creates global leaders by placing a strong emphasis on entrepreneurship, innovation, and quality of life. The Utah College of Engineering - ranked #61 in Undergraduate Engineering by U.S. News \u0026 World Report (2020) - prepares students to improve the productivity, health, safety, and enjoyment of human life through leading-edge research and tech development.\n-An undergraduate degree in Information Systems teaches students how to design, develop, and manage information systems that support business processes and decision-making.\n-Students learn about the principles of project management, including planning, scheduling, and budgeting.\n-They study the analysis and design of information systems, using techniques such as data modeling and process mapping.\n-Information Systems students learn about databases, including design, implementation, and management of database systems.\n-They study enterprise resource planning (ERP) systems, which integrate business processes and functions across different departments and areas of an organization.\n-Students learn about the principles of data analytics, including data mining, machine learning, and statistical analysis, and their applications in business decision-making.\n-They also learn about the legal and ethical issues surrounding the use of information systems in organizations, including privacy, security, and intellectual property.\n-An undergraduate degree in Information Systems teaches students how to communicate technical information to non-technical stakeholders, including writing technical reports and giving presentations.\n-Students learn about emerging technologies and their potential impact on organizations and society, preparing them to be innovative and responsible technology professionals.\n-Finally, Information Systems students develop skills in teamwork and collaboration, as well as leadership and management, to prepare them for careers in various fields such as business, healthcare, and government."])</script><script>self.__next_f.push([1,"447:T740,- #147 National Universities - U.S. News \u0026 World Report, 2019\n- A true campus experience just minutes from the cultural and financial capital of the world\n- 240+ major companies recruit on campus Apple, IBM, AIG, Pepsi and Merrill Lynch\n-An undergraduate degree in Information Systems teaches students how to design, develop, and manage information systems that support business processes and decision-making.\n-Students learn about the principles of project management, including planning, scheduling, and budgeting.\n-They study the analysis and design of information systems, using techniques such as data modeling and process mapping.\n-Information Systems students learn about databases, including design, implementation, and management of database systems.\n-They study enterprise resource planning (ERP) systems, which integrate business processes and functions across different departments and areas of an organization.\n-Students learn about the principles of data analytics, including data mining, machine learning, and statistical analysis, and their applications in business decision-making.\n-They also learn about the legal and ethical issues surrounding the use of information systems in organizations, including privacy, security, and intellectual property.\n-An undergraduate degree in Information Systems teaches students how to communicate technical information to non-technical stakeholders, including writing technical reports and giving presentations.\n-Students learn about emerging technologies and their potential impact on organizations and society, preparing them to be innovative and responsible technology professionals.\n-Finally, Information Systems students develop skills in teamwork and collaboration, as well as leadership and management, to prepare them for careers in various fields such as business, healthcare, and government."])</script><script>self.__next_f.push([1,"314:[\"$\",\"$L334\",null,{\"title\":\"Statistics\",\"topic\":\"Statistics\",\"categories\":[{\"productType\":\"Course\",\"categoryLabel\":\"Courses\",\"products\":[{\"productUuid\":\"54f10d8d-e1cd-44a9-9fe3-af78afe8a9ed\",\"productName\":\"Fundamentals of Statistics\",\"productSlug\":\"learn/statistics/massachusetts-institute-of-technology-fundamentals-of-statistics\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/54f10d8d-e1cd-44a9-9fe3-af78afe8a9ed-e646d043ea61.jpg\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Math\",\"Science\"],\"partnerName\":[\"Massachusetts Institute of Technology\"],\"partnerKeys\":[\"MITx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/2a73d2ce-c34a-4e08-8223-83bca9d2f01d-d4f180052205.png\",\"fullDescription\":\"$335\",\"shortDescription\":\"\u003cp\u003eDevelop a deep understanding of the principles that underpin statistical inference: estimation, hypothesis testing and prediction. -- \u003cem\u003ePart of the MITx MicroMasters program in Statistics and Data Science.\u003c/em\u003e\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eConstruct estimators using method of moments and maximum likelihood, and decide how to choose between them\u003c/li\u003e\\n\u003cli\u003eQuantify uncertainty using confidence intervals and hypothesis testing\u003c/li\u003e\\n\u003cli\u003eChoose between different models using goodness of fit test\u003c/li\u003e\\n\u003cli\u003eMake prediction using linear, nonlinear and generalized linear models\u003c/li\u003e\\n\u003cli\u003ePerform dimension reduction using principal component analysis (PCA)\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-54f10d8d-e1cd-44a9-9fe3-af78afe8a9ed\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:MITx+18.6501x+2T2025\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"26a020a0-fa7b-4902-b5ea-69b1958a5658\",\"productName\":\"Statistics 1 Part 1: Introductory statistics, probability and estimation\",\"productSlug\":\"learn/statistics/the-london-school-of-economics-and-political-science-statistics-1-part-1-introductory-statistics-probability-and-estimation\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/26a020a0-fa7b-4902-b5ea-69b1958a5658-1b6e8d6a5c53.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Math\"],\"partnerName\":[\"The London School of Economics and Political Science\"],\"partnerKeys\":[\"LSE\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/07141c7d-a86e-4f48-bb5b-1eef0958b465-b644124b89ef.png\",\"fullDescription\":\"$336\",\"shortDescription\":\"\u003cp\u003eThe first in a series of four courses which help you to master statistics fundamentals and build your quantitative skillset for progression in high-growth careers, or to use as step towards further study at undergraduate level.\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003eBy the end of this course, you will:\u003c/p\u003e\\n\u003cul\u003e\\n\u003cli\u003e\\n\u003cp\u003ebe familiar with some key ideas of statistics that are accessible to a student with a moderate mathematical competence \u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003ebe able to routinely apply a variety of methods for explaining, summarising and presenting data and interpreting results clearly using appropriate diagrams, titles and labels \u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003ehave a grounding in probability theory\u003c/p\u003e\\n\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-26a020a0-fa7b-4902-b5ea-69b1958a5658\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:LSE+LSEST104a1+3T2023\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"94796bd2-6c39-4189-96ac-fce68e613c57\",\"productName\":\"Statistics and R\",\"productSlug\":\"learn/r-programming/harvard-university-statistics-and-r\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/94796bd2-6c39-4189-96ac-fce68e613c57-c76049556dec.jpg\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Biology \u0026 Life Sciences\",\"Science\"],\"partnerName\":[\"Harvard University\"],\"partnerKeys\":[\"HarvardX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/44022f13-20df-4666-9111-cede3e5dc5b6-2cc39992c67a.png\",\"fullDescription\":\"$337\",\"shortDescription\":\"\u003cp\u003eAn introduction to basic statistical concepts and R programming skills necessary for analyzing data in the life sciences.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eRandom variables\u003c/li\u003e\\n\u003cli\u003eDistributions\u003c/li\u003e\\n\u003cli\u003eInference: p-values and confidence intervals\u003c/li\u003e\\n\u003cli\u003eExploratory Data Analysis\u003c/li\u003e\\n\u003cli\u003eNon-parametric statistics\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-94796bd2-6c39-4189-96ac-fce68e613c57\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:HarvardX+PH525.1x+3T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"98ad6cea-24a1-4926-8fc0-13de8dc1c1d1\",\"productName\":\"Statistics and Data Science (General Track)\",\"productSlug\":\"masters/micromasters/mitx-statistics-and-data-science-general-track\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/98ad6cea-24a1-4926-8fc0-13de8dc1c1d1-ca65fc53ddde.jpeg\",\"productType\":\"MicroMasters\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Math\",\"Computer Science\",\"Science\"],\"partnerName\":[\"Massachusetts Institute of Technology\"],\"partnerKeys\":[\"MITx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/2a73d2ce-c34a-4e08-8223-83bca9d2f01d-d4f180052205.png\",\"fullDescription\":\"Master the foundations of data science, data analysis, statistics, and machine learning.,Analyze big data and make data-driven predictions through probabilistic modeling and statistical inference; identify and deploy appropriate modeling and methodologies in order to extract meaningful information for decision making.,Develop and build machine learning algorithms to extract meaningful information from seemingly unstructured data; learn popular unsupervised learning methods, including clustering methodologies and supervised methods such as deep neural networks.,Understand the interplay between statistics and computation for the analysis of real data.,Finishing this MicroMasters program will prepare you for job titles such as: Data Scientist, Data Analyst, Business Intelligence Analyst, Systems Analyst, Data Engineer.\",\"shortDescription\":\"Master the skills needed to become an informed and effective practitioner of data science who adds value to your organization across industries.\",\"productOverview\":\"$338\",\"objectId\":\"program-98ad6cea-24a1-4926-8fc0-13de8dc1c1d1\",\"productSource\":\"edX\",\"productCategory\":\"Program\",\"activeRunKey\":null,\"childCoursesCount\":5,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"ae9667ef-a636-465c-a342-25492f42a954\",\"productName\":\"Introduction to Statistics for Data Science using Python\",\"productSlug\":\"learn/python/ibm-introduction-to-statistics-for-data-science-using-python\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/ae9667ef-a636-465c-a342-25492f42a954-2637e57d564b.png\",\"productType\":\"Course\",\"attributes\":[\"Computer Science\"],\"partnerName\":[\"IBM\"],\"partnerKeys\":[\"IBM\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/87b07564-d569-4cfd-bee6-8b0a407acb73-dc33e4b5f353.png\",\"fullDescription\":\"$339\",\"shortDescription\":\"\u003cp\u003eThis Statistics for Data Science course is designed to introduce you to the basic principles of statistical methods and procedures used for data analysis.\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003eAfter completing this course, a learner will be able to:\u003c/p\u003e\\n\u003cul\u003e\\n\u003cli\u003eCalculate and apply measures of central tendency and measures of dispersion to grouped and ungrouped data.\u003c/li\u003e\\n\u003cli\u003eSummarize, present, and visualize data in a way that is clear, concise, and provides a practical insight for non-statisticians needing the results.\u003c/li\u003e\\n\u003cli\u003eIdentify appropriate hypothesis tests to use for common data sets.\u003c/li\u003e\\n\u003cli\u003eConduct hypothesis tests, correlation tests, and regression analysis.\u003c/li\u003e\\n\u003cli\u003eDemonstrate proficiency in statistical analysis using Python and Jupyter Notebooks.\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-ae9667ef-a636-465c-a342-25492f42a954\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:IBM+ST0151EN+3T2021\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"03b2ee2b-8ba5-4ddb-b1a6-3e69de55a26a\",\"productName\":\"Statistics\",\"productSlug\":\"learn/statistics/delft-university-of-technology-statistics\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/03b2ee2b-8ba5-4ddb-b1a6-3e69de55a26a-f333afd4d0bf.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Math\"],\"partnerName\":[\"Delft University of Technology\"],\"partnerKeys\":[\"DelftX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/c484a523-d396-4aff-90f4-bb7e82e16bf6-f9e6cc4a4c94.png\",\"fullDescription\":\"$33a\",\"shortDescription\":\"\u003cp\u003eThis course provides an overview of bachelor-level statistics. You will review the concepts of descriptive and inferential statistics. You will use the statistical software package R on real data to gain insight in these topics.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eMake and interpret numerical and graphical summaries of datasets.\u003c/li\u003e\\n\u003cli\u003eUse various techniques to find estimators for unknown parameters and how to compare them.\u003c/li\u003e\\n\u003cli\u003eConstruct and interpret confidence intervals, learn how to perform hypothesis testing in various settings, and know how these two concepts are related.\u003c/li\u003e\\n\u003cli\u003ePerform simple and multiple linear regression on quantitative and categorical variables.\u003c/li\u003e\\n\u003cli\u003eApply certain procedures (resampling, bootstrapping, non-parametric approach) when confronted with non-standard situations.\u003c/li\u003e\\n\u003cli\u003eUse the R software package to perform all these tasks.\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-03b2ee2b-8ba5-4ddb-b1a6-3e69de55a26a\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:DelftX+MMFESx+2T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"2102f79d-9a44-41e9-9d92-884bec46dc65\",\"productName\":\"Probability and Statistics in Data Science using Python\",\"productSlug\":\"learn/statistics/the-university-of-california-san-diego-probability-and-statistics-in-data-science-using-python\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/2102f79d-9a44-41e9-9d92-884bec46dc65-c659c737cb7c.jpg\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Math\",\"Computer Science\"],\"partnerName\":[\"The University of California, San Diego\"],\"partnerKeys\":[\"UCSanDiegoX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/c7f335bb-f97c-4472-af09-65ae60197005-7d797d964ddb.png\",\"fullDescription\":\"\u003cp\u003eThe job of a data scientist is to glean knowledge from complex and noisy datasets.\u003c/p\u003e\\n\u003cp\u003eReasoning about uncertainty is inherent in the analysis of noisy data. Probability and Statistics provide the mathematical foundation for such reasoning.\u003c/p\u003e\\n\u003cp\u003eIn this course, part of the Data Science MicroMasters program, you will learn the foundations of probability and statistics. You will learn both the mathematical theory, and get a hands-on experience of applying this theory to actual data using Jupyter notebooks.\u003c/p\u003e\\n\u003cp\u003eConcepts covered included: random variables, dependence, correlation, regression, PCA, entropy and MDL.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eUsing Python, learn statistical and probabilistic approaches to understand and gain insights from data.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eThe mathematical foundations for machine learning\u003c/li\u003e\\n\u003cli\u003eStatistics literacy: understand the meaning of statements such as \\\"at a 99% confidence level\\\"\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-2102f79d-9a44-41e9-9d92-884bec46dc65\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:UCSanDiegoX+DSE210x+1T2025\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"b30c5c26-0189-422c-a66e-5af26463e446\",\"productName\":\"Probability and Statistics I: A Gentle Introduction to Probability\",\"productSlug\":\"learn/statistics/the-georgia-institute-of-technology-probability-and-statistics-i-a-gentle-introduction-to-probability\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/b30c5c26-0189-422c-a66e-5af26463e446-976c90fdc203.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Math\",\"Engineering\"],\"partnerName\":[\"The Georgia Institute of Technology\"],\"partnerKeys\":[\"GTx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/8537d31f-01b4-40fd-b652-e17b38eefe41-4c6537c07d54.png\",\"fullDescription\":\"$33b\",\"shortDescription\":\"\u003cp\u003eThis course provides an introduction to basic probability concepts. Our emphasis is on applications in science and engineering, with the goal of enhancing modeling and analysis skills for a variety of real-world problems.\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003eUpon completion of this course, learners will be able to:\u003c/p\u003e\\n\u003cp\u003e• Recall Bootcamp lessons based on set theory and calculus\u003cbr /\u003e\\n• Understand underlying probability axioms\u003cbr /\u003e\\n• Apply elementary probability counting rules, including permutations and combinations\u003cbr /\u003e\\n• Implement the concepts of independence and conditional probability\u003cbr /\u003e\\n• Determine how to update probabilities via Bayes Rule\u003c/p\u003e\",\"objectId\":\"course-b30c5c26-0189-422c-a66e-5af26463e446\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:GTx+ISYE6739xI+1T2025\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"f0543bb0-b2d6-45db-a805-950aa835a3d8\",\"productName\":\"Introduction to Data Science and Basic Statistics for Business\",\"productSlug\":\"learn/data-analysis/tecnologico-de-monterrey-introduction-to-data-science-and-basic-statistics-for-business\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/f0543bb0-b2d6-45db-a805-950aa835a3d8-67ed97d17697.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Business \u0026 Management\"],\"partnerName\":[\"Tecnológico de Monterrey\"],\"partnerKeys\":[\"TecdeMonterreyX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/ceb9644c-f8dd-4522-9acd-adb33cbb9b4b-e8152bc6676b.png\",\"fullDescription\":\"\u003cp\u003eThis course allows you to develop skills of a decision maker leader based on the following competencies:\u003c/p\u003e\\n\u003cul\u003e\\n\u003cli\u003eanalysis of statistical elements of information\u003c/li\u003e\\n\u003cli\u003econcepts and statistical foundations for the application of the area of ​​data science\u003c/li\u003e\\n\u003c/ul\u003e\\n\u003cp\u003eThrough descriptive statistics, the study and analysis of discrete and continuous probability distributions, as well as the estimation by intervals for the mean and the proportion, it is how you will be able to develop both skills.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eIn this course you will acquire statistical methods for decision making in business, as well as technological tools to develop quantitative skills.\u003c/p\u003e\\n\u003cp\u003eAreas such as \\\" big data\\\" require very clear knowledge of statistics and business, technology provides us various applications that require solid training in statistics for proper use and interpretation .\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003eThrough this course, participants will be able to:\u003c/p\u003e\\n\u003cp\u003e● Apply basic statistical methods to the business environment\u003c/p\u003e\\n\u003cp\u003e● Use technological tools to develop quantitative skills\u003c/p\u003e\\n\u003cp\u003e● Interpret the results of statistical methods applied to businesses\u003c/p\u003e\",\"objectId\":\"course-f0543bb0-b2d6-45db-a805-950aa835a3d8\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:TecdeMonterreyX+EQ-IDS.1x+1T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"57fa2201-b1e7-4919-bb47-db70f18d00ae\",\"productName\":\"Intro Course: Spreadsheets and Statistics\",\"productSlug\":\"learn/statistics/edx-intro-course-spreadsheets-and-statistics\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/57fa2201-b1e7-4919-bb47-db70f18d00ae-3681d99ca932.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Math\"],\"partnerName\":[\"edX\"],\"partnerKeys\":[\"edX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/4f8cb2c9-589b-4d1e-88c1-b01a02db3a9c-42611123eb6a.png\",\"fullDescription\":\"\u003cp\u003eSpreadsheet proficiency is a superpower. Learn how to use the various functionalities of Google Sheets to manipulate, inspect, and interpret data, separating the noise from what’s actually happening in your data set.\u003c/p\u003e\\n\u003cp\u003eThis course is ideal for anyone interested in building their professional toolkit and growing their career with hard skills such as:\u003c/p\u003e\\n\u003cul\u003e\\n\u003cli\u003eUnderstanding the anatomy of a spreadsheet\u003c/li\u003e\\n\u003cli\u003eUsing formulas to automate manual processes\u003c/li\u003e\\n\u003cli\u003eThe ability to work with data sets in Google Sheets\u003c/li\u003e\\n\u003cli\u003eKnowing which data matters when answering a business question\u003c/li\u003e\\n\u003cli\u003eIdentifying the level of importance to assign to your results\u003c/li\u003e\\n\u003c/ul\u003e\",\"shortDescription\":\"\u003cp\u003eBridge the gap between what you know and the skills you need to ensure your success and efficiency in an office setting. This course is ideal for learners who are just starting out in their professional careers, those looking to add some hard skills to their soft skills, or those looking to make the leap from contractor to full-time employee.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eMaster the basics of data analysis in Google Sheets with formatting, formulas, calculations, and charts.\u003c/li\u003e\\n\u003cli\u003ePrepare data by importing from disparate sources and reducing noise with data cleaning tactics.\u003c/li\u003e\\n\u003cli\u003eEvaluate the quality of your data and how to best use it.\u003c/li\u003e\\n\u003cli\u003eUtilize out-of-box statistical visualizations to aid in your exploratory data analysis.\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-57fa2201-b1e7-4919-bb47-db70f18d00ae\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:edX+intro-to-statistic2+3T2022\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"0f87652c-efda-4b39-b045-5c5e5a7b6138\",\"productName\":\"Balance of Payments and International Investment Position Statistics\",\"productSlug\":\"learn/international-business/the-international-monetary-fund-balance-of-payments-and-international-investment-position-statistics\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/0f87652c-efda-4b39-b045-5c5e5a7b6138-aa12a5b8372c.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Economics \u0026 Finance\"],\"partnerName\":[\"The International Monetary Fund\"],\"partnerKeys\":[\"IMFx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/a655d538-b1e8-4f66-a99d-cf4682d2c17b-111a45d036cc.png\",\"fullDescription\":\"\u003cp\u003eThis course covers the fundamentals needed to compile the international accounts. The course introduces the conceptual statistical framework for balance of payments and IIP-as presented in the Balance of Payments and International Investment Position Statistics Manual, sixth edition (BPM6), which is harmonized with other macroeconomic statistical frameworks. You will learn about the current, capital, and financial account balances, and how they reflect your economy's interaction with the rest of the world. Basic concepts, definitions, and classifications are covered, along with the principal accounting rules (including valuation and time of recording) that are relevant for compilation of the international accounts. The course also discusses the functional categories, including direct investment. The need for integration of the balance of payments with the IIP for compiling comprehensive, internationally comparable statistics will also be discussed.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eLearn the fundamentals needed to compile the international accounts.\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003eUpon completion of this course, participants should be able to:\u003c/p\u003e\\n\u003cul\u003e\\n\u003cli\u003eExplain the framework of the balance of payments and IIP and relevant indicators, such as the current, capital, and financial accounts balances.\u003c/li\u003e\\n\u003cli\u003eApply core concepts and definitions relevant to the international accounts such as residence, economic territory, predominant center of economic interest, and accounting rules.\u003c/li\u003e\\n\u003cli\u003eClassify cross-border transactions and positions according to the BPM6.\u003c/li\u003e\\n\u003cli\u003eRecord the main components of balance of payments and IIP.\u003c/li\u003e\\n\u003cli\u003eExplain the direct investment framework and its role in the economy, including as a source of financing.\u003c/li\u003e\\n\u003cli\u003eCompare the different functional categories and understand the economic interpretation for each category.\u003c/li\u003e\\n\u003cli\u003eRecognize the need for integration of the balance of payments with the IIP for producing consistent and coherent data.\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-0f87652c-efda-4b39-b045-5c5e5a7b6138\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:IMFx+BOP-IIPx+2T2024a\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"e8850ec1-3ef3-4a66-bc98-02f62b272775\",\"productName\":\"Probability and Statistics II: Random Variables – Great Expectations to Bell Curves\",\"productSlug\":\"learn/statistics/the-georgia-institute-of-technology-probability-and-statistics-ii-random-variables-great-expectations-to-bell-curves\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/e8850ec1-3ef3-4a66-bc98-02f62b272775-767052074a53.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Math\",\"Engineering\"],\"partnerName\":[\"The Georgia Institute of Technology\"],\"partnerKeys\":[\"GTx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/8537d31f-01b4-40fd-b652-e17b38eefe41-4c6537c07d54.png\",\"fullDescription\":\"$33c\",\"shortDescription\":\"\u003cp\u003eThis course discusses properties and applications of random variables. For instance, how many customers are likely to arrive in the next hour? What’s the probability that a lightbulb will last more than a year?\u003c/p\u003e\\n\u003cp\u003eWhen you’re done with this course, you’ll have enough firepower to undertake a wide variety of modeling and analysis problems; and you’ll be well-prepared for the upcoming Statistics courses.\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003eUpon completion of this course, learners will be able to:\u003c/p\u003e\\n\u003cp\u003e• Identify discrete and continuous random variables\u003cbr /\u003e\\n• Describe the properties of random variables, including the expected value, variance, and moment generating function.\u003cbr /\u003e\\n• Understand functions of random variables, and how they can be used in computer simulation applications.\u003cbr /\u003e\\n• Recognize joint (two-dimensional) random variables and how to extract marginal (onedimensional) and conditional information from them\u003cbr /\u003e\\n• Implement the concepts of independence and correlation\u003cbr /\u003e\\n• Work with and implement the R statistical package\u003c/p\u003e\",\"objectId\":\"course-e8850ec1-3ef3-4a66-bc98-02f62b272775\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:GTx+ISYE6739xII+1T2025\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"5ae584a8-9ede-4496-ac8e-61687304e293\",\"productName\":\"Producer, Export, and Import Price Index Statistics\",\"productSlug\":\"learn/economics-finance/the-international-monetary-fund-producer-export-and-import-price-index-statistics\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/5ae584a8-9ede-4496-ac8e-61687304e293-a425be3b4aad.png\",\"productType\":\"Course\",\"attributes\":[\"Economics \u0026 Finance\",\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"The International Monetary Fund\"],\"partnerKeys\":[\"IMFx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/a655d538-b1e8-4f66-a99d-cf4682d2c17b-111a45d036cc.png\",\"fullDescription\":\"\u003cp\u003eThe producer price index (PPI) and the export and import price index (XMPI) are important complements to the consumer price index (CPI) in drawing a more complete picture of how inflation affects major parts of an economy, including businesses and institutions, in addition to households. These indexes are used to deflate production and expenditure values in the national accounts, adjust prices in long-term contracts, analyze short-term inflation trends, and perform terms of trade analysis.\u003c/p\u003e\\n\u003cp\u003eIn the Producer, Export, and Import Price Index course, or PPIx, you will learn the fundamentals of how these statistics are compiled and used. In this course, we take a close look at the types of transactions and prices included in these indexes, and how they are weighted together to create the total index values reported in the news.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eThe producer price index (PPI) and the export and import price index (XMPI) are important complements to the consumer price index (CPI) in drawing a more complete picture of how inflation affects major parts of an economy, including businesses and institutions, in addition to households. Learn the fundamentals of how these statistics are compiled and used.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eExplain the main uses of producer, export, and import price indexes. \u003c/li\u003e\\n\u003cli\u003eApply specific principles to develop and update price index weights. \u003c/li\u003e\\n\u003cli\u003eApply methods to select samples of statistical units \u003c/li\u003e\\n\u003cli\u003eCalculate price indexes based on collected prices and weights.\u003c/li\u003e\\n\u003cli\u003eIdentify suitable data sources to support the compilation of reliable export and import price indexes.\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-5ae584a8-9ede-4496-ac8e-61687304e293\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:IMFx+PPIx+3T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"c45cd21a-e38b-41f9-a34f-9b5e432defa8\",\"productName\":\"Government Finance Statistics\",\"productSlug\":\"learn/government/the-international-monetary-fund-government-finance-statistics\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/c45cd21a-e38b-41f9-a34f-9b5e432defa8-de947f792b8a.png\",\"productType\":\"Course\",\"attributes\":[\"Economics \u0026 Finance\"],\"partnerName\":[\"The International Monetary Fund\"],\"partnerKeys\":[\"IMFx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/a655d538-b1e8-4f66-a99d-cf4682d2c17b-111a45d036cc.png\",\"fullDescription\":\"\u003cp\u003eThis course, presented by the IMF Statistics Department, focuses on both the conceptual framework of government finance statistics (GFS) as presented in the IMF’s Government Finance Statistics Manual 2014 (GFSM 2014, the update of the 2001 edition), and on practical aspects of data compilation.\u003c/p\u003e\\n\u003cp\u003eThe basic concepts, definitions, accounting rules, classifications and presentation tables of the GFS framework are discussed. The compilation and dissemination of comprehensive and cross country comparable GFS are explained.\u003c/p\u003e\\n\u003cp\u003eFinally, the course shows how to use GFS to evaluate the impact of government activities on a country's economy.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eThis course examines the conceptual and practical elements of compiling and disseminating fiscal statistics according to international standards, useful to assess the impact of government activities on a country’s economy and to facilitate international comparisons.\u003c/p\u003e\",\"productOverview\":\"$33d\",\"objectId\":\"course-c45cd21a-e38b-41f9-a34f-9b5e432defa8\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:IMFx+GFSx+2T2024a\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"6fb00ff0-9a64-4f7e-a559-4be3babbe116\",\"productName\":\"Introduction to Bayesian Statistics Using R\",\"productSlug\":\"learn/r-programming/university-of-canterbury-introduction-to-bayesian-statistics-using-r\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/6fb00ff0-9a64-4f7e-a559-4be3babbe116-26391d49e6ce.png\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Math\"],\"partnerName\":[\"University of Canterbury\"],\"partnerKeys\":[\"UCx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/ecfbe814-b9bf-45ae-8bc0-baf62dbedeb6-8113d578a9f6.png\",\"fullDescription\":\"$33e\",\"shortDescription\":\"\u003cp\u003e\u003cspan lang=\\\"EN\\\"\u003eLearn the fundamentals of Bayesian approach to data analysis, and practice answering real life questions using R. \u003c/span\u003e\u003c/p\u003e\",\"productOverview\":\"$33f\",\"objectId\":\"course-6fb00ff0-9a64-4f7e-a559-4be3babbe116\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:UCx+STA02.1ucX+1T2025\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"0246d635-dacf-4cbb-8b3b-607dc3be4eeb\",\"productName\":\"Statistics 1 Part 2: Statistical Methods\",\"productSlug\":\"learn/statistics/the-london-school-of-economics-and-political-science-statistics-1-part-2-statistical-methods\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/0246d635-dacf-4cbb-8b3b-607dc3be4eeb-cc3d405d09a1.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Math\"],\"partnerName\":[\"The London School of Economics and Political Science\"],\"partnerKeys\":[\"LSE\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/07141c7d-a86e-4f48-bb5b-1eef0958b465-b644124b89ef.png\",\"fullDescription\":\"\u003cp\u003e\u003cspan lang=\\\"EN\\\"\u003eStatistics 1 Part 2 is a self-paced course from LSE which aims to introduce you to and develop your understanding of essential statistical concepts, methods and techniques, emphasising the applications of these methods. This course can be taken alone or as part of the LSE MicroBachelors program in Statistics Fundamentals or the LSE MicroBachelors program in Mathematics and Statistics Fundamentals.\u003c/span\u003e\u003c/p\u003e\\n\u003cp\u003ePart 2, Statistical Methods, covers the following topics:\u003c/p\u003e\\n\u003cp\u003e● Hypothesis testing I\u003c/p\u003e\\n\u003cp\u003e● Hypothesis testing II\u003c/p\u003e\\n\u003cp\u003e● Contingency tables and the chi-squared test\u003c/p\u003e\\n\u003cp\u003e● Sampling design and some ideas underlying causation\u003c/p\u003e\\n\u003cp\u003e● Correlation and linear regression\u003c/p\u003e\\n\u003cp\u003eStatistics 1 Part 2 \u003cspan lang=\\\"EN\\\"\u003eforms part of a series of courses which focuses on the application of statistical methods in management, economics and the social sciences. Attention will focus on how to approach statistical problems, as well as the interpretation of tables and results.\u003c/span\u003e\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eThe second in a series of four courses which help you to master statistics fundamentals and build your quantitative skillset for progression in high-growth careers, or to use as step towards further study at undergraduate level.\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003eBy the end of this course, you will:\u003c/p\u003e\\n\u003cul\u003e\\n\u003cli\u003e\\n\u003cp\u003ebe familiar with some further key ideas of statistics that are accessible to a student with a moderate mathematical competence \u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003ebe able to routinely apply a variety of methods for explaining, summarising and presenting data and interpreting results clearly using appropriate diagrams, titles and labels when required \u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eTo explain the fundamentals of statistical inference and perform inference to test the significance of common measures such as means and proportions and conduct chi-squared tests of contingency tables \u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003ebe able to use simple linear regression and correlation analysis and know when it is appropriate to do so\u003c/p\u003e\\n\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-0246d635-dacf-4cbb-8b3b-607dc3be4eeb\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:LSE+LSEST104a2+3T2023\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"6a0be40d-bce5-4a74-b743-18a7a6cb353a\",\"productName\":\"Probability and Statistics III: A Gentle Introduction to Statistics\",\"productSlug\":\"learn/statistics/the-georgia-institute-of-technology-probability-and-statistics-iii-a-gentle-introduction-to-statistics\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/6a0be40d-bce5-4a74-b743-18a7a6cb353a-f4453ced17cf.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Math\",\"Engineering\"],\"partnerName\":[\"The Georgia Institute of Technology\"],\"partnerKeys\":[\"GTx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/8537d31f-01b4-40fd-b652-e17b38eefe41-4c6537c07d54.png\",\"fullDescription\":\"\u003cp\u003eThis course provides an introduction to basic statistical concepts.\u003c/p\u003e\\n\u003cp\u003eWe begin by walking through a library of probability distributions, where we motivate their uses and go over their fundamental properties. \u003cbr /\u003e\\nThese distributions include such important folks as the Bernoulli, binomial, geometric, Poisson, uniform, exponential, and normal distributions, just to name a few. Particular attention is paid to the normal distribution, because it leads to the Central Limit Theorem (the most-important mathematical result in the universe, actually), which enables us to make probability calculations for arbitrary averages and sums of random variables.\u003c/p\u003e\\n\u003cp\u003eWe then discuss elementary descriptive statistics and estimation methods, including unbiased estimation, maximum likelihood estimation, and the method of moments – you gotta love your MoM! Finally, we describe the t, X2, and F sampling distributions, which will prove to be useful in upcoming statistical applications.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eThis course provides an introduction to basic statistical concepts. We begin by walking through a library of probability distributions – including the normal distribution, which in turn leads to the Central Limit Theorem. We then discuss elementary descriptive statistics and estimation methods.\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003eUpon completion of this course, learners will be able to:\u003c/p\u003e\\n\u003cul\u003e\\n\u003cli\u003eReview a library of discrete and continuous probability distributions\u003c/li\u003e\\n\u003cli\u003eRecognize the normal distribution and the Central Limit Theorem, and how they are applied in practice\u003c/li\u003e\\n\u003cli\u003eRecognize elementary methods of descriptive statistics\u003c/li\u003e\\n\u003cli\u003eDescribe methods that can be used to estimate the unknown parameters of a distribution\u003c/li\u003e\\n\u003cli\u003eIdentify statistical sampling distributions\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-6a0be40d-bce5-4a74-b743-18a7a6cb353a\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:GTx+ISYE6739xIII+1T2025\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"8154a032-d7b8-4ba8-a120-6a8bfa913120\",\"productName\":\"Statistics Fundamentals for Business Analytics\",\"productSlug\":\"learn/business-analytics/lehigh-university-statistics-fundamentals-for-business-analytics\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/8154a032-d7b8-4ba8-a120-6a8bfa913120-b2b51f0a51ce.png\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"Lehigh University\"],\"partnerKeys\":[\"LehighX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/9b3352f1-7df7-4cb9-9726-4b188d49799f-cdfdef9f1ccf.png\",\"fullDescription\":\"\u003cp\u003eThis course introduces the basic tools and methods of statistical analysis, which can be applied to a wide variety of situations and data encountered in the areas of business and economics. Topics discussed include descriptive statistics, probability, sampling distributions, estimation, and hypothesis testing. By the end of the semester students should be able to compute and interpret basic descriptive statistical measures, understand the basic concepts of probability, and apply techniques of statistical inference.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eThis course introduces the basic tools and methods of statistical analysis, which can be applied to a wide variety of situations and data encountered in the areas of business and economics. Topics discussed include descriptive statistics, probability, sampling distributions, estimation, and hypothesis testing. By the end of the semester students should be able to compute and interpret basic descriptive statistical measures, understand the basic concepts of probability, and apply techniques of statistical inference.\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003eBy the end of the semester students should be able to compute and interpret basic descriptive statistical measures, understand the basic concepts of probability, and apply techniques of statistical inference.\u003c/p\u003e\",\"objectId\":\"course-8154a032-d7b8-4ba8-a120-6a8bfa913120\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:LehighX+Stats100+3T2023\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"73025dd6-fea0-48d7-b88a-2f47975678e1\",\"productName\":\"Probability and Statistics IV: Confidence Intervals and Hypothesis Tests\",\"productSlug\":\"learn/statistics/the-georgia-institute-of-technology-probability-and-statistics-iv-confidence-intervals-and-hypothesis-tests\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/73025dd6-fea0-48d7-b88a-2f47975678e1-74c1f829cba0.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Math\",\"Engineering\"],\"partnerName\":[\"The Georgia Institute of Technology\"],\"partnerKeys\":[\"GTx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/8537d31f-01b4-40fd-b652-e17b38eefe41-4c6537c07d54.png\",\"fullDescription\":\"$340\",\"shortDescription\":\"\u003cp\u003eThis course covers two important methodologies in statistics – \u003cem\u003econfidence intervals\u003c/em\u003e and \u003cem\u003ehypothesis testing\u003c/em\u003e. Confidence intervals allow us to make probabilistic statements such as: “We are 95% sure that Candidate Smith’s popularity is 52% +/- 3%.” Hypothesis testing allows us to pose hypotheses and test their validity in a statistically rigorous way. For instance, “Does a new drug result in a higher cure rate than the old drug?\\\"\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003eUpon completion of this course, learners will be able to:\u003c/p\u003e\\n\u003cul\u003e\\n\u003cli\u003eIdentify what a confidence interval is and how it is used\u003c/li\u003e\\n\u003cli\u003eFormulate and interpret confidence intervals for a variety of probability distributions and their parameters\u003c/li\u003e\\n\u003cli\u003eDetermine what a hypothesis test is and how it is used\u003c/li\u003e\\n\u003cli\u003eIdentify the types of errors that can occur with hypothesis testing, and how to design tests to mitigate those errors\u003c/li\u003e\\n\u003cli\u003eFormulate and interpret hypothesis tests for a variety of probability distributions and their parameters\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-73025dd6-fea0-48d7-b88a-2f47975678e1\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:GTx+ISYE6739xIV+1T2025\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"2fbf1e5a-0cce-4493-ab11-19785667031c\",\"productName\":\"Compilation Basics for Macroeconomic Statistics\",\"productSlug\":\"learn/macroeconomics/the-international-monetary-fund-compilation-basics-for-macroeconomic-statistics\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/2fbf1e5a-0cce-4493-ab11-19785667031c-9adb12c08e35.png\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"The International Monetary Fund\"],\"partnerKeys\":[\"IMFx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/a655d538-b1e8-4f66-a99d-cf4682d2c17b-111a45d036cc.png\",\"fullDescription\":\"\u003cp\u003eThiscoursereviews the basic skills, concepts, and principles required to compile and disseminate macroeconomic and financial statistics. The course covers topics such as residence, institutional units, institutional sectors, accounting rules, financial instruments, stocks and flows, the IMF's Data Standards Initiatives, and presents the basic macroeconomic linkages among these statistics. \u003c/p\u003e\\n\u003cp\u003eCompilation Basics for Macroeconomic Statistics (CBMSx) is offered by the IMF with financial support from the Government of Japan.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eBetter data leads to better policies.For policymakers to make sound policy decisions, they need a core set of macroeconomic and financial statistics. Learn the essential background concepts and basic tools needed to compile data using the best available methods.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eDifferentiate institutional units and sectors;\u003c/li\u003e\\n\u003cli\u003eApply the concept of residence; Record in an integrated manner stocks and flows;\u003c/li\u003e\\n\u003cli\u003eApply appropriate accounting rules; Classify financial instruments;\u003c/li\u003e\\n\u003cli\u003eSummarize the requirements and recommendations of the IMF's Data Standards Initiatives;\u003c/li\u003e\\n\u003cli\u003eand Evaluate macroeconomic inter-linkages.\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-2fbf1e5a-0cce-4493-ab11-19785667031c\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:IMFx+CBMSx+2T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"0542e62a-1978-4af1-92e6-232664058941\",\"productName\":\"Statistics 2 Part 1: Probability and Distribution Theory\",\"productSlug\":\"learn/statistics/the-london-school-of-economics-and-political-science-statistics-2-part-1-probability-and-distribution-theory\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/0542e62a-1978-4af1-92e6-232664058941-bfe8ee9cba23.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Math\"],\"partnerName\":[\"The London School of Economics and Political Science\"],\"partnerKeys\":[\"LSE\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/07141c7d-a86e-4f48-bb5b-1eef0958b465-b644124b89ef.png\",\"fullDescription\":\"\u003cp\u003eStatistics 2 Part 1 is a self-paced course from LSE which aims to develop your knowledge of elementary statistical theory, particularly relating to the concepts, methods and techniques of measurement and hypothesis testing that were introduced in Statistics 1, Parts 1 and 2. \u003cspan lang=\\\"EN\\\"\u003e This course can be taken alone or as part of the LSE MicroBachelors program in Statistics Fundamentals.\u003c/span\u003e\u003c/p\u003e\\n\u003cp\u003ePart 1, Probability and Distribution Theory, covers the following topics:\u003c/p\u003e\\n\u003cp\u003e● Probability theory I\u003c/p\u003e\\n\u003cp\u003e● Probability theory II\u003c/p\u003e\\n\u003cp\u003e● Random variables\u003c/p\u003e\\n\u003cp\u003e● Common distributions of random variables\u003c/p\u003e\\n\u003cp\u003e● Multivariate random variables\u003c/p\u003e\\n\u003cp\u003eThere is an emphasis on topics that relate to econometrics, finance and quantitative social science. Concepts and methods that provide the foundations for more specialised undergraduate-level courses in statistics and econometrics are introduced.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eThe third in a series of four courses which help you to master statistics fundamentals and build your quantitative skillset for progression in high-growth careers, or to use as step towards further study at undergraduate level.\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003eBy the end of this course, you will:\u003c/p\u003e\\n\u003cul\u003e\\n\u003cli\u003e\\n\u003cp\u003eHave developed key ideas from Statistics 1 that are accessible to a student with a moderate mathematical competence \u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eapply and be competent users of standard statistical operators\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003ebe able to recall a variety of well-known distributions and their respective moments\u003c/p\u003e\\n\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-0542e62a-1978-4af1-92e6-232664058941\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:LSE+LSEST104b1+3T2023\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"91691d52-375e-4e1d-9c81-6eed50d71a32\",\"productName\":\"National Accounts Statistics\",\"productSlug\":\"learn/statistics/the-international-monetary-fund-national-accounts-statistics\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/91691d52-375e-4e1d-9c81-6eed50d71a32-d2bb0b60ec26.png\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"The International Monetary Fund\"],\"partnerKeys\":[\"IMFx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/a655d538-b1e8-4f66-a99d-cf4682d2c17b-111a45d036cc.png\",\"fullDescription\":\"\u003cp\u003eThis course, presented by the IMF's Statistics Department, teaches you how to compile timely, high quality national accounts statistics based on the system of national accounts (SNA) framework. The course introduces the sequence of national accounts, the accounting rules, and the key macroeconomic indicators in the SNA framework. You will learn about gross domestic product (GDP) - the main aggregate of the system, and how to compile consistent and internationally comparable measures of GDP according to the production, income, and expenditure approaches. The course also discusses in detail, how the SNA can be used to track an economy's production, consumption, and income and how to estimate volume measures of GDP.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eLearn how to compile and disseminate national accounts statistics.\u003c/p\u003e\",\"productOverview\":\"$341\",\"objectId\":\"course-91691d52-375e-4e1d-9c81-6eed50d71a32\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:IMFx+NASx+2T2024a\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"62b9c56c-4d4b-442d-a249-0b9ac61662e1\",\"productName\":\"Mathematics and Statistics Fundamentals Proctored Exam\",\"productSlug\":\"learn/math/the-london-school-of-economics-and-political-science-mathematics-and-statistics-fundamentals-proctored-exam\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/62b9c56c-4d4b-442d-a249-0b9ac61662e1-c45a0e17ae53.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Math\",\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"The London School of Economics and Political Science\"],\"partnerKeys\":[\"LSE\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/07141c7d-a86e-4f48-bb5b-1eef0958b465-b644124b89ef.png\",\"fullDescription\":\"\u003cp\u003eThis exam assesses all concepts, methods and techniques introduced across the four courses within the \u003cspan lang=\\\"EN\\\"\u003eLSE MicroBachelors program in Mathematics and Statistics Fundamentals\u003c/span\u003e:\u003c/p\u003e\\n\u003cp\u003e\u003cstrong\u003e\u003cspan lang=\\\"EN\\\"\u003eMathematics 1: Differential calculus\u003c/span\u003e\u003c/strong\u003e\u003c/p\u003e\\n\u003cp\u003e\u003cstrong\u003e\u003cspan lang=\\\"EN\\\"\u003eMathematics 1: Integral calculus, algebra, and applications\u003c/span\u003e\u003c/strong\u003e\u003c/p\u003e\\n\u003cp\u003e\u003cstrong\u003eStatistics 1: Introductory statistics, probability and estimation\u003c/strong\u003e ****\u003c/p\u003e\\n\u003cp\u003e\u003cstrong\u003eStatistics 1: Statistical methods\u003c/strong\u003e ****\u003c/p\u003e\\n\u003cp\u003eIt is two hours in duration and must be sat under online proctored conditions.\u003c/p\u003e\\n\u003cp\u003eIt is the final step towards completing the \u003cspan lang=\\\"EN\\\"\u003eLSE MicroBachelors program in Statistics Fundamentals \u003c/span\u003eand you must pass with a mark of 60% or higher to gain your certificate.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eTest your knowledge and ability to apply the concepts and methods from the four courses included in the LSE MicroBachelors program in Mathematics and Statistics Fundamentals and take your first step towards further study at undergraduate level or upskill in high-growth careers.\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003eN/A\u003c/p\u003e\",\"objectId\":\"course-62b9c56c-4d4b-442d-a249-0b9ac61662e1\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:LSE+LSEMSPExam+3T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"e628c243-9901-4538-94bc-284d7b737748\",\"productName\":\"Monetary and Financial Statistics\",\"productSlug\":\"learn/economics-finance/the-international-monetary-fund-monetary-and-financial-statistics\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/e628c243-9901-4538-94bc-284d7b737748-cda707dc030d.png\",\"productType\":\"Course\",\"attributes\":[\"Economics \u0026 Finance\",\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"The International Monetary Fund\"],\"partnerKeys\":[\"IMFx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/a655d538-b1e8-4f66-a99d-cf4682d2c17b-111a45d036cc.png\",\"fullDescription\":\"$342\",\"shortDescription\":\"\u003cp\u003eThis course, presented by the Statistics Department of the International Monetary Fund (IMF), provides participants with an introduction to the compilation of monetary statistics covering the central bank (CB), other depository corporations (ODCs) and other financial corporations (OFCs) in accordance with international statistical standards.\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003eUpon competion of this course, participants should be able to:\u003c/p\u003e\\n\u003cul\u003e\\n\u003cli\u003eDescribe the scope and use of MFS, including the source data for monetary statistics and the compilation process.\u003c/li\u003e\\n\u003cli\u003eExplain the conceptual framework underlying MFS compilation, focusing on sectoring, classification and valuation of financial instruments, as well as accounting principles.\u003c/li\u003e\\n\u003cli\u003eUnderstand the different measures of money supply and other key aggregates, as well as their compilation methods from sectoral balance sheets of financial corporations.\u003c/li\u003e\\n\u003cli\u003eBecome familiar with the structure and components of central bank, other depository corporations, and other financial corporations sectoral balance sheets and link them to the compilation of the analytical surveys.\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-e628c243-9901-4538-94bc-284d7b737748\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:IMFx+MFSx+1T2025\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"49159d8a-da63-419c-98b7-382e286b6844\",\"productName\":\"Statistics 2 Part 2: Statistical Inference\",\"productSlug\":\"learn/statistics/the-london-school-of-economics-and-political-science-statistics-2-part-2-statistical-inference\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/49159d8a-da63-419c-98b7-382e286b6844-d9394a4d3ff6.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Math\"],\"partnerName\":[\"The London School of Economics and Political Science\"],\"partnerKeys\":[\"LSE\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/07141c7d-a86e-4f48-bb5b-1eef0958b465-b644124b89ef.png\",\"fullDescription\":\"\u003cp\u003eStatistics 2 Part 2 is a self-paced course from LSE which aims to develop your knowledge of elementary statistical theory, particularly relating to the concepts, methods and techniques of measurement and hypothesis testing that were introduced in Statistics 1 and Statistics 2, Part 1. \u003cspan lang=\\\"EN\\\"\u003eThis course can be taken alone or as part of the LSE MicroBachelors program in Statistics Fundamentals.\u003c/span\u003e\u003c/p\u003e\\n\u003cp\u003ePart 2, Statistical Inference, covers the following topics:\u003c/p\u003e\\n\u003cp\u003e● Sampling distributions of statistics\u003c/p\u003e\\n\u003cp\u003e● Point estimation I\u003c/p\u003e\\n\u003cp\u003e● Point estimation II and interval estimation\u003c/p\u003e\\n\u003cp\u003e● Hypothesis testing\u003c/p\u003e\\n\u003cp\u003e● Analysis of variance (ANOVA)\u003c/p\u003e\\n\u003cp\u003eThere is an emphasis on topics that relate to econometrics, finance and quantitative social science. Concepts and methods that provide the foundations for more specialised courses in statistics and econometrics are introduced.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eThe final part in a series of four courses which help you to master statistics fundamentals and build your quantitative skillset for progression in high-growth careers, or to use as step towards further study at undergraduate level.\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003eBy the end of this course, you will:\u003c/p\u003e\\n\u003cul\u003e\\n\u003cli\u003e\\n\u003cp\u003eHave developed key ideas from Statistics 1 that are accessible to a student with a moderate mathematical competence \u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003ebe able to routinely apply a variety of methods for explaining, summarising and presenting data and interpreting results clearly using appropriate diagrams, titles and labels when required \u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eexplain the fundamentals of statistical inference and apply these principles to justify the use of an appropriate model and perform tests in a number of different settings\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003edemonstrate understanding that statistical techniques are based on assumptions and the plausibility of such assumptions must be investigated when analysing real problems.\u003c/p\u003e\\n\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-49159d8a-da63-419c-98b7-382e286b6844\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:LSE+LSEST104b2+3T2023\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"b52df120-4002-4285-956c-0f3e3710d1fc\",\"productName\":\"MathTrackX: Statistics\",\"productSlug\":\"learn/statistics/university-of-adelaide-mathtrackx-statistics\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/b52df120-4002-4285-956c-0f3e3710d1fc-bc357cc5636d.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Math\"],\"partnerName\":[\"University of Adelaide\"],\"partnerKeys\":[\"AdelaideX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/f5d1ff66-002f-43fa-9d76-1b191d4a3272-0e2420850666.png\",\"fullDescription\":\"\u003cp\u003eThis course is part six of the MathTrackX XSeries Program which has been designed to provide you with a solid foundation in mathematical fundamentals and how they can be applied in the real world.\u003c/p\u003e\\n\u003cp\u003eThis course will build on probability and random variable knowledge gained from previous courses in the MathTrackX XSeries with the study of statistical inference, one of the most important parts of statistics.\u003c/p\u003e\\n\u003cp\u003eGuided by experts from the School of Mathematics and the Maths Learning Centre at the University of Adelaide, this course will cover random sampling, sample means and proportions, confidence intervals for sample means and proportions and one-sample tests of proportions and means.\u003c/p\u003e\\n\u003cp\u003eJoin us as we provide opportunities to develop your skills and confidence in applying mathematics to solve real world problems.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eUnderstand fundamental concepts relating to statistical inference and how they can be applied to solve real world problems.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003e\\n\u003cp\u003eThe concept of a random sample, sources of bias in samples, and procedures to ensure randomness\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eThe concept of the sample proportion as a random variable\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eThe approximate normality of the distribution of proportions for large samples \u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eThe concept of an interval estimates for a parameter associated with a random variable\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eHow to define the approximate margin of error for proportions.\u003c/p\u003e\\n\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-b52df120-4002-4285-956c-0f3e3710d1fc\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:AdelaideX+StatTraX+1T2020\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"7277e30e-35a3-4f9e-b8b9-48360ddf6926\",\"productName\":\"Advanced Bayesian Statistics Using R\",\"productSlug\":\"learn/r-programming/university-of-canterbury-advanced-bayesian-statistics-using-r\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/7277e30e-35a3-4f9e-b8b9-48360ddf6926-3c6a545eab13.png\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Math\"],\"partnerName\":[\"University of Canterbury\"],\"partnerKeys\":[\"UCx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/ecfbe814-b9bf-45ae-8bc0-baf62dbedeb6-8113d578a9f6.png\",\"fullDescription\":\"$343\",\"shortDescription\":\"\u003cp\u003e\u003cspan lang=\\\"EN\\\"\u003eNow that you know the basics of Bayesian inference, dive deeper to explore its richness and flexibility more fully. Let’s take a closer look at modeling latent variables, Bayesian model averaging, generalised linear models, and MCMC methods\u003c/span\u003e\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003e\u003cspan lang=\\\"EN\\\"\u003e•\u003c/span\u003e\u003cspan lang=\\\"EN\\\"\u003e\u003c/span\u003e\u003cspan lang=\\\"EN\\\"\u003e Using latent (unobserved) variables and dealing with missing data.\u003c/span\u003e\u003cspan lang=\\\"EN\\\"\u003e\u003c/span\u003e\u003c/p\u003e\\n\u003cp\u003e•\u003cspan lang=\\\"EN\\\"\u003e\u003c/span\u003e\u003cspan lang=\\\"EN\\\"\u003e Multivariate analysis within the context of mixed effects linear regression models. Structure, assumptions, diagnostics and interpretation. Posterior inference and model selection.\u003c/span\u003e\u003cspan lang=\\\"EN\\\"\u003e\u003c/span\u003e\u003c/p\u003e\\n\u003cp\u003e•\u003cspan lang=\\\"EN\\\"\u003e\u003c/span\u003e\u003cspan lang=\\\"EN\\\"\u003e Why Monte Carlo integration works and how to implement your own MCMC Metropolis-Hastings algorithm in R.\u003c/span\u003e\u003cspan lang=\\\"EN\\\"\u003e\u003c/span\u003e\u003c/p\u003e\\n\u003cp\u003e•\u003cspan lang=\\\"EN\\\"\u003e\u003c/span\u003e\u003cspan lang=\\\"EN\\\"\u003e Bayesian model averaging in the context of change-point problem. Pinpointing the time of change and obtaining uncertainty \u003c/span\u003e\u003c/p\u003e\",\"objectId\":\"course-7277e30e-35a3-4f9e-b8b9-48360ddf6926\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:UCx+STA02.2ucX+1T2025\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"28f0fdfe-9985-4d8a-bcee-8bc80ac6a58f\",\"productName\":\"Public Sector Debt Statistics\",\"productSlug\":\"learn/economics/the-international-monetary-fund-public-sector-debt-statistics\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/28f0fdfe-9985-4d8a-bcee-8bc80ac6a58f-d224562c66a0.jpg\",\"productType\":\"Course\",\"attributes\":[\"Economics \u0026 Finance\"],\"partnerName\":[\"The International Monetary Fund\"],\"partnerKeys\":[\"IMFx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/a655d538-b1e8-4f66-a99d-cf4682d2c17b-111a45d036cc.png\",\"fullDescription\":\"$344\",\"shortDescription\":\"\u003cp\u003eThe course examines coverage and accounting rules for public sector debt, valuation, classification, important methodological issues, and the sources and methods used for compiling the statistics.\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003eUpon completion of the course, participants should be able to: \u003c/p\u003e\\n\u003cul\u003e\\n\u003cli\u003eDefine gross and net debt and explain the basic concepts and accounting principles that apply to compilation of public sector debt statistics.\u003c/li\u003e\\n\u003cli\u003eClassify public sector debt positions according to the Public Sector Debt Statistics Guide classifications.\u003c/li\u003e\\n\u003cli\u003eApply the general principles to classify an entity in the public sector and in relevant subsectors of the public sector, such as the general government and public corporations.\u003c/li\u003e\\n\u003cli\u003eReport to the IMF and the World Bank quarterly public sector debt statistics covering, at a minimum, the central government.\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-28f0fdfe-9985-4d8a-bcee-8bc80ac6a58f\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:IMFx+PSDSx+2T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"daf987af-585d-4dac-a44e-198d53ab0877\",\"productName\":\"Statistics Fundamentals Proctored Exam\",\"productSlug\":\"learn/statistics/the-london-school-of-economics-and-political-science-statistics-fundamentals-proctored-exam\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/daf987af-585d-4dac-a44e-198d53ab0877-9dea623ae309.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Math\"],\"partnerName\":[\"The London School of Economics and Political Science\"],\"partnerKeys\":[\"LSE\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/07141c7d-a86e-4f48-bb5b-1eef0958b465-b644124b89ef.png\",\"fullDescription\":\"\u003cp\u003eThis proctored examination assesses all concepts, methods and techniques introduced across the following four courses within the \u003cspan lang=\\\"EN\\\"\u003eLSE MicroBachelors program in Statistics Fundamentals\u003c/span\u003e:\u003c/p\u003e\\n\u003cp\u003e\u003cstrong\u003eStatistics 1: Introductory statistics, probability and estimation\u003c/strong\u003e\u003c/p\u003e\\n\u003cp\u003e\u003cstrong\u003eStatistics 1: Statistical methods\u003c/strong\u003e\u003c/p\u003e\\n\u003cp\u003e\u003cstrong\u003eStatistics 2: Probability and distribution theory\u003c/strong\u003e\u003c/p\u003e\\n\u003cp\u003e\u003cstrong\u003eStatistics 2: Statistical inference\u003c/strong\u003e ****\u003c/p\u003e\\n\u003cp\u003eIt is two hours in duration and must be sat under online proctored conditions.\u003c/p\u003e\\n\u003cp\u003eIt is the final step towards completing the \u003cspan lang=\\\"EN\\\"\u003eLSE MicroBachelors program\u003c/span\u003e\u003cspan lang=\\\"EN\\\"\u003e in Statistics Fundamentals \u003c/span\u003eand you must pass with a mark of 60% or higher to gain your certificate.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eTest your knowledge and ability to apply the concepts and methods from the four courses included in the LSE MicroBachelors program in Statistics Fundamentals and take your first step towards further study at undergraduate level or upskill in high-growth careers.\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003eN/A\u003c/p\u003e\",\"objectId\":\"course-daf987af-585d-4dac-a44e-198d53ab0877\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:LSE+LSESTPExam+3T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"62befca3-c9f7-43e7-8116-7502647acbbd\",\"productName\":\"External Debt Statistics\",\"productSlug\":\"learn/economics/the-international-monetary-fund-external-debt-statistics\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/62befca3-c9f7-43e7-8116-7502647acbbd-512baf7db34d.png\",\"productType\":\"Course\",\"attributes\":[\"Economics \u0026 Finance\",\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"The International Monetary Fund\"],\"partnerKeys\":[\"IMFx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/a655d538-b1e8-4f66-a99d-cf4682d2c17b-111a45d036cc.png\",\"fullDescription\":\"\u003cp\u003eThis course, presented by the Statistics Department, is intended to provide participants with a thorough understanding of the international standards for the compilation of EDS presented in the 2013 EDS: Guide for Compilers and Users (2013 EDS Guide).\u003c/p\u003e\\n\u003cp\u003eThis course is for those interested in learning the fundamentals of compiling international accounts - specifically compilation of external debt statistics (EDS) and/or international investment position (IIP) statistics. It is a basic-level course laying the foundations. \u003c/p\u003e\\n\u003cp\u003eThe course covers basic concepts, definitions, and classifications, along with the principal accounting rules (including valuation and time of recording) that are relevant for compilation of the EDS. \u003c/p\u003e\\n\u003cp\u003eFinally, participants are briefed on basic concepts of the debt sustainability analysis framework.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eThis course, presented by the Statistics Department, is intended to provide participants with a thorough understanding of the international standards for the compilation of EDS presented in the 2013 EDS: Guide for Compilers and Users (2013 EDS Guide). \u003c/p\u003e\\n\u003cp\u003eThis course is for those interested in learning the fundamentals of compiling international accounts - specifically compilation of external debt statistics (EDS) and/or international investment position (IIP) statistics. It is a basic-level course laying the foundations.\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003eUpon completion of this course, participants should be able to:\u003c/p\u003e\\n\u003cul\u003e\\n\u003cli\u003e\\n\u003cul\u003e\\n\u003cli\u003eExplain the international accounts framework of external sector statistics.\u003c/li\u003e\\n\u003cli\u003eApply the methods for the measurement of external debt from the viewpoint of the debtor and their accounting principles.\u003c/li\u003e\\n\u003cli\u003eReview the presentation of EDS.\u003c/li\u003e\\n\u003cli\u003eDefine the debt reorganization and review the four types of debt reorganization.\u003c/li\u003e\\n\u003cli\u003eComprehend the objective of debt sustainability analysis framework as well as factors that affect economy’s debt sustainability.\u003c/li\u003e\\n\u003c/ul\u003e\\n\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-62befca3-c9f7-43e7-8116-7502647acbbd\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:IMFx+EDSx+2T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"e998abbf-f17e-4936-b0a6-abb34c3e1797\",\"productName\":\"Uncovering Truth with Data: Understanding and Applying Statistics and Hypothesis Testing\",\"productSlug\":\"learn/statistics/juran-uncovering-truth-with-data-understanding-and-applying-statistics-and-hypothesis-testing\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/e998abbf-f17e-4936-b0a6-abb34c3e1797-1fc2fe2f6940.png\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Business \u0026 Management\"],\"partnerName\":[\"Juran\"],\"partnerKeys\":[\"JuranX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/df374c5a-1048-4f42-b947-56954f8f5887-9f123d289980.png\",\"fullDescription\":\"$345\",\"shortDescription\":\"\u003cp\u003e\u003cspan lang=\\\"EN-US\\\"\u003eEarn a Professional Learning Certificate in Applying \u003c/span\u003eStatistics and Hypothesis Testing\u003c/p\u003e\\n\u003cul\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN-US\\\"\u003eEnhance continuous improvement efforts\u003c/span\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN-US\\\"\u003eEnhance analytical skills\u003c/span\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN-US\\\"\u003eImprove decision-making skills\u003c/span\u003e\u003c/li\u003e\\n\u003cli\u003eIdentify statistically proven root-causes of process issues\u003c/li\u003e\\n\u003cli\u003eVerify effectiveness of proposed process improvements\u003c/li\u003e\\n\u003c/ul\u003e\",\"productOverview\":\"\u003cp\u003e\u003cspan lang=\\\"EN-US\\\"\u003eKey concepts you will learn in this course include\u003c/span\u003e:\u003c/p\u003e\\n\u003cul\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN-US\\\"\u003eI\u003c/span\u003entroduction to Probability and Statistics\u003c/li\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN-US\\\"\u003eIntroduction to Hypothesis Testing\u003c/span\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN-US\\\"\u003eConfidence Intervals\u003c/span\u003e\u003c/li\u003e\\n\u003cli\u003eHypothesis Tests for Categorical Data\u003c/li\u003e\\n\u003cli\u003eNormality tests\u003c/li\u003e\\n\u003cli\u003eTests of Equal Variance\u003c/li\u003e\\n\u003cli\u003et-Tests \u003c/li\u003e\\n\u003cli\u003eAnalysis of Variance\u003c/li\u003e\\n\u003cli\u003eCorrelation and Regression\u003c/li\u003e\\n\u003cli\u003eStatistical Analysis using Minitab Software\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-e998abbf-f17e-4936-b0a6-abb34c3e1797\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:JuranX+HTS20231x+3T2023\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"bfbc54a7-6ad1-4609-915f-fbd967dbd0f5\",\"productName\":\"Introduction to Applied Biostatistics: Statistics for Medical Research\",\"productSlug\":\"learn/biostatistics/osaka-university-introduction-to-applied-biostatistics-statistics-for-medical-research\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/bfbc54a7-6ad1-4609-915f-fbd967dbd0f5-46b40f387bae.jpg\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Medicine\"],\"partnerName\":[\"Osaka University\"],\"partnerKeys\":[\"OsakaUx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/c4ebe1e6-da7e-4d7e-8cf6-9693c786cbb0-e8bda4292048.png\",\"fullDescription\":\"Want to learn how to analyze real-world medical data, but unsure where to begin? This Applied Biostatistics course provides an introduction to important topics in medical statistical concepts and reasoning. Each topic will be introduced with examples from published clinical research papers; and all homework assignments will expose learner to hands-on data analysis using real-life datasets. This course also represents an introduction to basic epidemiological concepts covering study designs and sample size computation. Open-source, easy-to-use software will be used such as R Commander and PS sample size software.\",\"shortDescription\":\"Learn data analysis for medical research with practical hands-on examples using R Commander.\",\"productOverview\":\"\u003cul\u003e\u003cli\u003eImportant topics in medical statistical concepts and reasoning\u003c/li\u003e\\n\\t\u003cli\u003eEpidemiological Study Designs\u003c/li\u003e\\n\\t\u003cli\u003eData analysis using R Commander\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-bfbc54a7-6ad1-4609-915f-fbd967dbd0f5\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:OsakaUx+MED101x+3T2016\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"7541204e-2acd-4a5a-986c-5ca67e38d021\",\"productName\":\"Statistics: Unlocking the World of Data\",\"productSlug\":\"learn/statistics/the-university-of-edinburgh-statistics-unlocking-the-world-of-data\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/7541204e-2acd-4a5a-986c-5ca67e38d021-5d35693f5c6f.jpg\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"The University of Edinburgh\"],\"partnerKeys\":[\"EdinburghX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/bc823bd7-b910-4e23-a5fd-ac7283f02c1e-66ced298a065.png\",\"fullDescription\":\"\u003cp\u003eData is everywhere, from the media to the health sciences, and from financial forecasting to engineering design. It drives our decisions, and shapes our views and beliefs. But how can we make sense of it?\u003c/p\u003e\\n\u003cp\u003eThis course introduces some of the key ideas and concepts of statistics, the discipline that allows us to analyse and interpret the data that underpins modern society.\u003c/p\u003e\\n\u003cp\u003eIn this course, you will explore the key principles of statistics for yourself, using interactive applets, and you will learn to interpret and evaluate the data you encounter in everyday life.\u003c/p\u003e\\n\u003cp\u003eNo previous knowledge of statistics is required, although familiarity with secondary school mathematics is advisable.\u003c/p\u003e\\n\u003cp\u003eLogo image: (C) The University of Edinburgh 2016 CC BY, derived from Waverley Bridge, by Manuel Farnlack on Flickr, 2010 CC BY\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eExplore the ideas and methods behind the statistics you encounter in everyday life.\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003eAfter completing this course, you'll be able to:\u003c/p\u003e\\n\u003cul\u003e\\n\u003cli\u003eUnderstand the key principles of statistics;\u003c/li\u003e\\n\u003cli\u003eInterpret and evaluate the kinds of data found in everyday life;\u003c/li\u003e\\n\u003cli\u003ePerform, and interpret results from, simple statistical analyses.\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-7541204e-2acd-4a5a-986c-5ca67e38d021\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:EdinburghX+STATSx+1T2023\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"0319434b-2bf7-43d4-9bf4-c52df7546487\",\"productName\":\"Statistics Using Python\",\"productSlug\":\"learn/statistics/the-university-of-wisconsin-madison-statistics-using-python\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/0319434b-2bf7-43d4-9bf4-c52df7546487-c3eeb1044ad9.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Business \u0026 Management\"],\"partnerName\":[\"The University of Wisconsin-Madison\"],\"partnerKeys\":[\"WisconsinX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/496e8de4-f4c2-4395-bfa4-5e9daeb60f1d-f8f8e09793a2.png\",\"fullDescription\":\"\u003cp\u003eThis course is a compact primer in statistics as a foundation for data-driven business analysis. A selection of concepts include descriptive statistics, probability, inference, correlation, and regression. The course also exposes students to basic Python programming for use in statistics.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eLearn the fundamentals of statistics using Python.\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003eYou will learn to calculate descriptive statistics and generate basic visualizations using Python; explain principles of probability and derive measures related to probability functions; communicate the uncertainty in statistical estimates; and perform regression analysis and distinguish between correlation and causation.\u003c/p\u003e\",\"objectId\":\"course-0319434b-2bf7-43d4-9bf4-c52df7546487\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:WisconsinX+CMSGB705_1+1T2025\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"7c25b549-84c0-4253-9cc8-6c9485666762\",\"productName\":\"Statistics for Business - II\",\"productSlug\":\"learn/statistics/indian-institute-of-management-bangalore-statistics-for-business-ii\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/7c25b549-84c0-4253-9cc8-6c9485666762-379f86464212.jpg\",\"productType\":\"Course\",\"attributes\":[\"Business \u0026 Management\",\"Social Sciences\",\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"Indian Institute of Management Bangalore\"],\"partnerKeys\":[\"IIMBx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/c2e6b3f5-9c1f-41f0-b692-f2173d05a256-7729f0b9d72b.png\",\"fullDescription\":\"$346\",\"shortDescription\":\"Examine data drawn from allied fields of business such as Finance and HR, and learn how to simulate data to follow a specified distribution.\",\"productOverview\":\"\u003cul\u003e\u003cli\u003eTo use spreadsheets to analyze larger datasets\u003c/li\u003e\\n\\t\u003cli\u003eTo pose pertinent business questions of datasets and to answer them\u003c/li\u003e\\n\\t\u003cli\u003eTo describe a random variable in probabilistic terms and derive parameters such as mean and variance\u003c/li\u003e\\n\\t\u003cli\u003eTo draw a simple random sample from a population\u003c/li\u003e\\n\\t\u003cli\u003eTo model business phenomena with known random variables such as Binomial, Poisson and Normal\u003c/li\u003e\\n\\t\u003cli\u003eTo simulate variables that follow a prescribed distribution\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-7c25b549-84c0-4253-9cc8-6c9485666762\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:IIMBx+QM101.2x+2T2020\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"5215d676-dc40-497c-91ee-5ae8b7c0c100\",\"productName\":\"Introductory Statistics : Sample Survey and Instruments for Statistical Inference\",\"productSlug\":\"learn/statistics/seoul-national-university-introductory-statistics-sample-survey-and-instruments-for-statistical-inference\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/5215d676-dc40-497c-91ee-5ae8b7c0c100-a602cea64f46.jpg\",\"productType\":\"Course\",\"attributes\":[\"Economics \u0026 Finance\",\"Social Sciences\"],\"partnerName\":[\"Seoul National University\"],\"partnerKeys\":[\"SNUx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/16c5f1e0-9d68-4771-bb5e-4148cb95cba9-c61990083882.png\",\"fullDescription\":\"\u003cp\u003eIn this course, you will learn about sample surveys with the concepts of samples and populations. In addition, we will discuss possible problems(bias) of the surveys based on practical examples and concept of probability errors in sampling. \u003c/p\u003e\\n\u003cp\u003eThis course will familiarize you with statistical inference, the process by which data is used to draw a conclusion or uncover a scientific truth about a population from a sample. \u003c/p\u003e\\n\u003cp\u003eYou can learn how to obtain confidence intervals and estimate the population percentage using sample percentage. We will also cover statistical inferences using sample average to estimate the population average with the concept of standard error and measurement error. \u003c/p\u003e\\n\u003cp\u003eFinally, you will learn fundamental idea and process of significance test to determine whether the observed difference is real or simply accidental. Test for difference in average between two groups and Chi-Square test will be discussed in depth in this course.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eThe purpose of this course is to introduce basic concepts of sample surveys and to teach statistical inference process using real-life examples.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eSample Surveys\u003c/li\u003e\\n\u003cli\u003eUnemployment Rate Analysis\u003c/li\u003e\\n\u003cli\u003eProbability Errors in Sampling\u003c/li\u003e\\n\u003cli\u003eThe Accuracy of Percentages\u003c/li\u003e\\n\u003cli\u003eAccuracy of Average\u003c/li\u003e\\n\u003cli\u003eA Significance Test\u003c/li\u003e\\n\u003cli\u003eTest for Difference in Average between Two Groups\u003c/li\u003e\\n\u003cli\u003eA Regress Analysis and A Significance Test\u003c/li\u003e\\n\u003cli\u003eChi-Square test\u003c/li\u003e\\n\u003cli\u003eSupplements for Significance Test\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-5215d676-dc40-497c-91ee-5ae8b7c0c100\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:SNUx+SNU212.204.3X+2T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"98a72970-c59c-4f9e-a97f-0bb003fdf1f0\",\"productName\":\"Introductory Statistics : Analyzing Data Using Graphs and Statistics\",\"productSlug\":\"learn/statistics/seoul-national-university-introductory-statistics-analyzing-data-using-graphs-and-statistics\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/98a72970-c59c-4f9e-a97f-0bb003fdf1f0-0c11307a1754.jpg\",\"productType\":\"Course\",\"attributes\":[\"Economics \u0026 Finance\",\"Data Analysis \u0026 Statistics\",\"Social Sciences\"],\"partnerName\":[\"Seoul National University\"],\"partnerKeys\":[\"SNUx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/16c5f1e0-9d68-4771-bb5e-4148cb95cba9-c61990083882.png\",\"fullDescription\":\"\u003cp\u003eWhy do we study statistics? The field of statistics provides professionals and scientists withconceptual foundations and useful techniques for evaluating ideas, testing theories, and - ultimately -uncovering the truth in any situation. \u003c/p\u003e\\n\u003cp\u003eThis course will familiarize you with data and basic statistical concepts, enabling you to analyze data using graphs and statistics. We'll start with types of data, controlled experiments,and observational study. You'll learn touse ahistogram, a representation of the distribution of numerical data, to easily arrange data. \u003c/p\u003e\\n\u003cp\u003eYou will learn about basic concepts of statistics, such as average and standard deviation. Methods of using the normal approximation to solve a problem will be covered in this course. Inaddition, we'll discussthe correlation coefficient and the regression method in order to represent the relationship between two variables.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eThis course teaches basic statistical concepts andexplores many compelling applications of statistical methodsusing real-life applications of Statistics.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eStatistics and Data\u003c/li\u003e\\n\u003cli\u003eThe Histogram\u003c/li\u003e\\n\u003cli\u003eThe Average and the Standard Deviation\u003c/li\u003e\\n\u003cli\u003eThe Normal Approximation\u003c/li\u003e\\n\u003cli\u003eCorrelation\u003c/li\u003e\\n\u003cli\u003eRegression\u003c/li\u003e\\n\u003cli\u003eThe Error for Regression\u003c/li\u003e\\n\u003cli\u003eRegression Line\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-98a72970-c59c-4f9e-a97f-0bb003fdf1f0\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:SNUx+SNU212.204.1X+2T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"d071cbc4-04ef-4c2b-9152-058eebb468ba\",\"productName\":\"Introductory Statistics : Basic Ideas and Instruments for Statistical Inference\",\"productSlug\":\"learn/statistics/seoul-national-university-introductory-statistics-basic-ideas-and-instruments-for-statistical-inference\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/d071cbc4-04ef-4c2b-9152-058eebb468ba-5cec93dd9558.jpg\",\"productType\":\"Course\",\"attributes\":[\"Economics \u0026 Finance\",\"Data Analysis \u0026 Statistics\",\"Social Sciences\"],\"partnerName\":[\"Seoul National University\"],\"partnerKeys\":[\"SNUx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/16c5f1e0-9d68-4771-bb5e-4148cb95cba9-c61990083882.png\",\"fullDescription\":\"\u003cp\u003eStatistical Inference is the process by which data is used to draw a conclusionoruncover ascientific truthabout a population from asample. This course aims to familiarize the student with several ideas and instruments for statistical inference. It covers fundamental concepts and properties of probability. \u003c/p\u003e\\n\u003cp\u003eSpecifically, youwill learn to work with sequences of successes and failures using the binomial formula. You will also learn how the law of averages can be used, as well as how to understand stochastic processes by applying box models. The normal approximation for probability histogram, which is an essential idea for statistical inference, will be discussed in depth in this course.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eThis course utilizes real-life applications of Statistics in an exploration of the Statistical Inferenceprocess.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eProbability\u003c/li\u003e\\n\u003cli\u003eThe Binomial Formula\u003c/li\u003e\\n\u003cli\u003eThe Law of Averages\u003c/li\u003e\\n\u003cli\u003eThe Expected Value and Standard Error\u003c/li\u003e\\n\u003cli\u003eThe Normal Approximation for Probability Histograms\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-d071cbc4-04ef-4c2b-9152-058eebb468ba\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:SNUx+SNU212.204.2X+2T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"d06c2f53-1047-481e-9ee8-6ad25dc4b033\",\"productName\":\"Statistics for Business Analytics: Samples and Populations\",\"productSlug\":\"learn/business-analysis/the-university-of-queensland-statistics-for-business-analytics-samples-and-populations\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/d06c2f53-1047-481e-9ee8-6ad25dc4b033-5d9ff515ad23.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Business \u0026 Management\",\"Economics \u0026 Finance\"],\"partnerName\":[\"The University of Queensland\"],\"partnerKeys\":[\"UQx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/8554749f-b920-4d7f-8986-af6bb95290aa-f336c6a2ca11.png\",\"fullDescription\":\"\u003cp\u003e\u003cspan lang=\\\"EN\\\"\u003eTo address questions like these, the course is divided into three topics:\u003c/span\u003e\u003c/p\u003e\\n\u003cul\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN\\\"\u003eIn Topic 1, we examine the characteristics of \u003cstrong\u003epoint estimates\u003c/strong\u003e – measurements that we take from samples to make inferences about a population.\u003c/span\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN\\\"\u003eTopic 2\u003c/span\u003e\u003cspan lang=\\\"EN\\\"\u003e deals with \u003cstrong\u003econfidence intervals\u003c/strong\u003e , which help us to establish upper and lower limits about where we think the “true” population characteristic lies, at a certain level of confidence.\u003c/span\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN\\\"\u003eIn Topic 3, which is the largest and most important part of this course, we explore \u003cstrong\u003ehypothesis testing\u003c/strong\u003e. This includes one-, two- and many-sample forms of testing.\u003c/span\u003e\u003c/li\u003e\\n\u003c/ul\u003e\",\"shortDescription\":\"\u003cp\u003e\u003cspan lang=\\\"EN\\\"\u003eThis is a great course for anyone who wants to gain foundational and critical analysis and statistics skills with no prior background. \u003c/span\u003e\u003cspan lang=\\\"EN\\\"\u003e\u003c/span\u003e\u003c/p\u003e\\n\u003cp\u003eIn this course, we examine the statistical processes of understanding larger populations from smaller samples. We want to be able to answer questions like:\u003c/p\u003e\\n\u003cul\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN\\\"\u003eHow large a sample is needed to make a reasonable inference about my customer base?\u003c/span\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN\\\"\u003eWhat are the upper and lower limits for the percentage of people who wear medium-sized t-shirts in a population?\u003c/span\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN\\\"\u003eIs the income level of native citizens significantly different to that of people born overseas?\u003c/span\u003e\u003c/li\u003e\\n\u003c/ul\u003e\",\"productOverview\":\"\u003cp\u003e\u003cspan lang=\\\"EN\\\"\u003eUpon successful completion of this course, you will be able to: \u003c/span\u003e\u003c/p\u003e\\n\u003cul\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN\\\"\u003eDescribe\u003c/span\u003e\u003cspan lang=\\\"EN\\\"\u003e the characteristics of point estimates and how they can be used to make inferences about a population.\u003c/span\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN\\\"\u003eCalculat\u003c/span\u003e\u003cspan lang=\\\"EN\\\"\u003ee\u003c/span\u003e\u003cspan lang=\\\"EN\\\"\u003e upper and lower bounds of confidence intervals for given levels of confidence.\u003c/span\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN\\\"\u003eDescribe\u003c/span\u003e\u003cspan lang=\\\"EN\\\"\u003e the general process for conducting a hypothesis test using the Z-score or p-value methods.\u003c/span\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN\\\"\u003eConduct\u003c/span\u003e \u003cstrong\u003e\u003cspan lang=\\\"EN\\\"\u003e\u003c/span\u003e\u003c/strong\u003e\u003cspan lang=\\\"EN\\\"\u003ea hypothesis test and interpret the meaning of the result for:\u003c/span\u003e one mean or proportion against a predetermined standard; two means or proportions against one another; paired data from repeated measurements of the same sample or matched pairs of individuals; and many means using an analysis of variance (ANOVA).\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-d06c2f53-1047-481e-9ee8-6ad25dc4b033\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:UQx+ECON7300.2x+2T2023\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"490b84e6-ca3f-4ea9-a466-2a2a683f145b\",\"productName\":\"Statistics for Business Analytics: Probability\",\"productSlug\":\"learn/probability/the-university-of-queensland-statistics-for-business-analytics-probability\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/490b84e6-ca3f-4ea9-a466-2a2a683f145b-95708271ab5b.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Business \u0026 Management\",\"Economics \u0026 Finance\"],\"partnerName\":[\"The University of Queensland\"],\"partnerKeys\":[\"UQx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/8554749f-b920-4d7f-8986-af6bb95290aa-f336c6a2ca11.png\",\"fullDescription\":\"\u003cp\u003e\u003cspan lang=\\\"EN\\\"\u003eThis course is divided into three topics:\u003c/span\u003e\u003c/p\u003e\\n\u003cul\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN\\\"\u003eIn Topic 1, we talk about the \u003cstrong\u003ebasics of probability\u003c/strong\u003e – ideas like whether or not events can happen together, whether events can influence each other, and processes for calculating probabilities in simple situations.\u003c/span\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN\\\"\u003eTopic 2\u003c/span\u003e\u003cspan lang=\\\"EN\\\"\u003e is about \u003cstrong\u003econditional probability\u003c/strong\u003e ; that is, the idea that we can become more certain about particular outcomes when we know the circumstances under which they are occurring.\u003c/span\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN\\\"\u003eIn Topic 3, we discuss the \u003cstrong\u003e\\\"big 5\\\" probability distributions\u003c/strong\u003e ; powerful tools that can be used to calculate probabilities in a variety of complex situations. These distributions form the \\\"heart\\\" of the course and have practical applications in a wide range of real-life scenarios.\u003c/span\u003e\u003c/li\u003e\\n\u003c/ul\u003e\",\"shortDescription\":\"\u003cp\u003e\u003cspan lang=\\\"EN\\\"\u003eThis is a great course for anyone who wants to gain foundational and critical analysis and statistics skills with no prior background. \u003c/span\u003e\u003cspan lang=\\\"EN\\\"\u003e\u003c/span\u003e\u003c/p\u003e\\n\u003cp\u003eIn this course, we explore the different ways of determining the probability of different events and outcomes. We want to be able to answer questions like:\u003c/p\u003e\\n\u003cul\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN\\\"\u003eWhat is the probability that more than 90% of patients will show up for their appointments at a medical practice?\u003c/span\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN\\\"\u003eWhat are the chances of a store having more than 20 customers in its first two hours of being open?\u003c/span\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN\\\"\u003eHow likely is it that a staff member will use 6 or fewer days of sick leave in a year?\u003c/span\u003e\u003c/li\u003e\\n\u003c/ul\u003e\",\"productOverview\":\"\u003cp\u003e\u003cspan lang=\\\"EN\\\"\u003eUpon successful completion of this course, you will be able to: \u003c/span\u003e\u003c/p\u003e\\n\u003cul\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN\\\"\u003eDescribe\u003c/span\u003e\u003cspan lang=\\\"EN\\\"\u003e the basic concepts of probability.\u003c/span\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN\\\"\u003eCalculate\u003c/span\u003e\u003cspan lang=\\\"EN\\\"\u003e basic probabilities for mutually exclusive, non-mutually exclusive and multiple independent events.\u003c/span\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN\\\"\u003eCalculate\u003c/span\u003e\u003cspan lang=\\\"EN\\\"\u003e conditional probabilities in simple and complex situations.\u003c/span\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN\\\"\u003eDetermine\u003c/span\u003e\u003cspan lang=\\\"EN\\\"\u003e the probability of a given number of successes for discrete variables using binomial, Poisson and hypergeometric distributions.\u003c/span\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN\\\"\u003eDetermine\u003c/span\u003e\u003cspan lang=\\\"EN\\\"\u003e the probability of outcomes above or below a threshold for continuous variables using normal and exponential distributions.\u003c/span\u003e\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-490b84e6-ca3f-4ea9-a466-2a2a683f145b\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:UQx+ECON7300.1x+2T2023\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"5652d94b-7503-4b12-b259-159410dc4575\",\"productName\":\"Statistics for Business Analytics: Modelling and Forecasting\",\"productSlug\":\"learn/business-analytics/the-university-of-queensland-statistics-for-business-analytics-modelling-and-forecasting\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/5652d94b-7503-4b12-b259-159410dc4575-77490c7830da.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Business \u0026 Management\",\"Economics \u0026 Finance\"],\"partnerName\":[\"The University of Queensland\"],\"partnerKeys\":[\"UQx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/8554749f-b920-4d7f-8986-af6bb95290aa-f336c6a2ca11.png\",\"fullDescription\":\"\u003cp\u003e\u003cspan lang=\\\"EN\\\"\u003eWe consider questions like these across three topics:\u003c/span\u003e\u003c/p\u003e\\n\u003cul\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN\\\"\u003eTopic 1 \u003c/span\u003e\u003cspan lang=\\\"EN\\\"\u003estarts with simple, familiar ideas like correlation and builds on these to consider how \u003cstrong\u003esimple linear regression\u003c/strong\u003e can be applied to quantify the relationships between variables.\u003c/span\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN\\\"\u003eTopic 2\u003c/span\u003e\u003cspan lang=\\\"EN\\\"\u003e examines \u003cstrong\u003emultiple linear regression\u003c/strong\u003e and considers how we can establish models that allow us to predict values for variables of interest in circumstances where there are many variables at work.\u003c/span\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN\\\"\u003eTopic 3\u003c/span\u003e\u003cspan lang=\\\"EN\\\"\u003e considers the details of time series \u003cstrong\u003eforecasting\u003c/strong\u003e , using different methods of trend fitting to make predictions about future data.\u003c/span\u003e\u003c/li\u003e\\n\u003c/ul\u003e\",\"shortDescription\":\"\u003cp\u003e\u003cspan lang=\\\"EN\\\"\u003eThis is a great course for anyone who wants to gain foundational and critical analysis and statistics skills with no prior background. \u003c/span\u003e\u003cspan lang=\\\"EN\\\"\u003e\u003c/span\u003e\u003c/p\u003e\\n\u003cp\u003eIn this course, we explore statistical methods for examining the relationships between variables. We also consider how data from the past can be used to make forecasts about likely future trends. We want to be able to answer questions like:\u003c/p\u003e\\n\u003cul\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN\\\"\u003eWhat is the strength of the relationship between quality of customer experience and the likelihood of repeat purchases?\u003c/span\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN\\\"\u003eHow accurately can we predict residents’ use of a local park based on their known demographics?\u003c/span\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN\\\"\u003eIn what way are sales likely to fluctuate over the next 6 months, based on past data?\u003c/span\u003e\u003c/li\u003e\\n\u003c/ul\u003e\",\"productOverview\":\"\u003cp\u003e\u003cspan lang=\\\"EN\\\"\u003eUpon successful completion of this course, you will be able to: \u003c/span\u003e\u003c/p\u003e\\n\u003cul\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN\\\"\u003eInterpret\u003c/span\u003e\u003cspan lang=\\\"EN\\\"\u003e the different components of a linear regression equation.\u003c/span\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN\\\"\u003eDistinguish \u003c/span\u003e\u003cspan lang=\\\"EN\\\"\u003ebetween statistical measurements such as R, R2 and adjusted R2 to assess goodness-of-fit for a regression model.\u003c/span\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN\\\"\u003eUse\u003c/span\u003e\u003cspan lang=\\\"EN\\\"\u003e technological tools to construct simple and multiple linear regression models.\u003c/span\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN\\\"\u003eDescribe\u003c/span\u003e\u003cspan lang=\\\"EN\\\"\u003e the components of a time series.\u003c/span\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN\\\"\u003eSelect \u003c/span\u003e\u003cspan lang=\\\"EN\\\"\u003efrom a range of different methods to determine the most appropriate choice for trend fitting and forecasting for a given set of time series data.\u003c/span\u003e\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-5652d94b-7503-4b12-b259-159410dc4575\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:UQx+ECON7300.3x+2T2022\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"cfc93ddb-f909-4303-9cf3-dda13293d623\",\"productName\":\"I \\\"Heart\\\" Stats: Learning to Love Statistics\",\"productSlug\":\"learn/statistics/university-of-notre-dame-i-heart-stats-learning-to-love-statistics\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/cfc93ddb-f909-4303-9cf3-dda13293d623-bef0f3358cbf.jpg\",\"productType\":\"Course\",\"attributes\":[\"Social Sciences\",\"Data Analysis \u0026 Statistics\",\"Math\"],\"partnerName\":[\"University of Notre Dame\"],\"partnerKeys\":[\"NotreDameX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/2c5210cb-3d23-4ba8-bcfa-edc7f0cfb368-1b48c3164a0a.png\",\"fullDescription\":\"$347\",\"shortDescription\":\"\u003cp\u003eIs your relationship with statistics dysfunctional? We can help: Get to know stats, build a healthy bond, and maybe even fall in love!\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eSelect appropriate statistical tests for data according to the levels of measurement\u003c/li\u003e\\n\u003cli\u003ePerform basic calculations to determine statistical significance\u003c/li\u003e\\n\u003cli\u003eUse standard methods of representation to summarize data\u003c/li\u003e\\n\u003cli\u003eInterpret and assess the credibility of basic statistics\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-cfc93ddb-f909-4303-9cf3-dda13293d623\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:NotreDameX+SOC120x+3T2020\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"d8d3c316-0e41-4083-93ff-733a7e9b16bb\",\"productName\":\"Capstone Exam in Statistics and Data Science.\",\"productSlug\":\"learn/data-science/massachusetts-institute-of-technology-capstone-exam-in-statistics-and-data-science\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/d8d3c316-0e41-4083-93ff-733a7e9b16bb-5a80984f8a81.jpg\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Math\",\"Computer Science\"],\"partnerName\":[\"Massachusetts Institute of Technology\"],\"partnerKeys\":[\"MITx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/2a73d2ce-c34a-4e08-8223-83bca9d2f01d-d4f180052205.png\",\"fullDescription\":\"\u003cp\u003eThis capstone exam is the final part of the MITx MicroMasters Program in Statistics and Data Science. Complete the four courses in this program and take this virtually-proctored exam to earn your MicroMasters credential and demonstrate your proficiency in data science or accelerate your path towards an MIT PhD or a Master's at other universities.\u003c/p\u003e\\n\u003cp\u003eAll eligible learners will be automatically enrolled for the Capstone Exam. If you are eligible and have not been enrolled by two weeks before the start date, or haven’t received an email notification, please contact us asap at \u003ca href=\\\"mailto:sds-mm@mit.edu\\\"\u003esds-mm@mit.edu\u003c/a\u003e. You must upgrade to become a verified learner before the exam period begins.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eSolidify and demonstrate your knowledge and abilities in probability, data analysis, statistics, and machine learning in this culminating assessment. -- \u003cem\u003eFinal Requirement of the MITx MicroMasters Program in Statistics and Data Science.\u003c/em\u003e\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003eTo learn more about this program, please visit \u003ca href=\\\"https://micromasters.mit.edu/ds/\\\"\u003ehttps://micromasters.mit.edu/ds/\u003c/a\u003e.\u003c/p\u003e\",\"objectId\":\"course-d8d3c316-0e41-4083-93ff-733a7e9b16bb\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:MITx+DS.CFx+1T2025\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"98ed1558-ab27-46d6-9d98-31b32fb3f592\",\"productName\":\"Statistics and Data Science (Methods Track)\",\"productSlug\":\"masters/micromasters/mitx-statistics-and-data-science-methods-track\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/98ed1558-ab27-46d6-9d98-31b32fb3f592-d82350317fae.jpeg\",\"productType\":\"MicroMasters\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Math\",\"Computer Science\",\"Science\"],\"partnerName\":[\"Massachusetts Institute of Technology\"],\"partnerKeys\":[\"MITx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/2a73d2ce-c34a-4e08-8223-83bca9d2f01d-d4f180052205.png\",\"fullDescription\":\"Master the foundations of data science, statistics, time series with interventions, and machine learning.,Analyze big data and make data-driven predictions through probabilistic modeling and statistical inference; identify and deploy appropriate modeling and methodologies in order to extract meaningful information for decision making.,Develop and build machine learning algorithms to extract meaningful information from seemingly unstructured data; learn popular unsupervised learning methods, including clustering methodologies and supervised methods such as deep neural networks.,Learn the methods for harnessing and analyzing data to answer questions of cultural, social, economic, and policy interest, and then assess that knowledge.,Finishing this MicroMasters program will prepare you for job titles such as: Data Scientist, Data Analyst, Business Intelligence Analyst, Systems Analyst, Data Engineer.\",\"shortDescription\":\"Master different data science methods such as time series analysis and machine learning that will enable you to conduct rigorous analysis, inform decision-making processes, and contribute to evidence-based practices across industries.\",\"productOverview\":\"$348\",\"objectId\":\"program-98ed1558-ab27-46d6-9d98-31b32fb3f592\",\"productSource\":\"edX\",\"productCategory\":\"Program\",\"activeRunKey\":null,\"childCoursesCount\":5,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"94340239-561b-49ce-b1fc-991a1ed4f227\",\"productName\":\"Statistics and Data Science (Social Sciences Track)\",\"productSlug\":\"masters/micromasters/mitx-statistics-and-data-science-social-sciences-track\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/94340239-561b-49ce-b1fc-991a1ed4f227-fe6eb31d8efc.jpeg\",\"productType\":\"MicroMasters\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Math\",\"Computer Science\",\"Science\",\"Social Sciences\",\"Economics \u0026 Finance\"],\"partnerName\":[\"Massachusetts Institute of Technology\"],\"partnerKeys\":[\"MITx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/2a73d2ce-c34a-4e08-8223-83bca9d2f01d-d4f180052205.png\",\"fullDescription\":\"Master the foundations of data science, statistics, time series with interventions, and machine learning.,Analyze big data and make data-driven predictions through probabilistic modeling and statistical inference; identify and deploy appropriate modeling and methodologies in order to extract meaningful information for decision making.,Develop and build machine learning algorithms to extract meaningful information from seemingly unstructured data; learn popular unsupervised learning methods, including clustering methodologies and supervised methods such as deep neural networks.,Learn the methods for harnessing and analyzing data to answer questions of cultural, social, economic, and policy interest, and then assess that knowledge.,Finishing this MicroMasters program will prepare you for job titles such as: Data Scientist, Data Analyst, Business Intelligence Analyst, Systems Analyst, Data Engineer.\",\"shortDescription\":\"Master the skills needed to extract meaningful insights from social, cultural, economic, and policy-related data and equip you to tackle complex real-world problems and contribute to cutting-edge advancements.\",\"productOverview\":\"$349\",\"objectId\":\"program-94340239-561b-49ce-b1fc-991a1ed4f227\",\"productSource\":\"edX\",\"productCategory\":\"Program\",\"activeRunKey\":null,\"childCoursesCount\":5,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"8a3643f1-b2a9-4e8c-9e27-1cd2d644867c\",\"productName\":\"Statistics and Data Science (Time Series and Social Sciences Track)\",\"productSlug\":\"masters/micromasters/mitx-statistics-and-data-science-time-series-and-social-sciences-track\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/8a3643f1-b2a9-4e8c-9e27-1cd2d644867c-0f1ef3aab9d0.jpeg\",\"productType\":\"MicroMasters\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Math\",\"Computer Science\",\"Social Sciences\",\"Economics \u0026 Finance\"],\"partnerName\":[\"Massachusetts Institute of Technology\"],\"partnerKeys\":[\"MITx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/2a73d2ce-c34a-4e08-8223-83bca9d2f01d-d4f180052205.png\",\"fullDescription\":\"$34a\",\"shortDescription\":\"Master the skills needed to analyze the impact of interventions on time series data and their application roles where understanding temporal dynamics is crucial for informed decision-making and policy formulation.\",\"productOverview\":\"$34b\",\"objectId\":\"program-8a3643f1-b2a9-4e8c-9e27-1cd2d644867c\",\"productSource\":\"edX\",\"productCategory\":\"Program\",\"activeRunKey\":null,\"childCoursesCount\":5,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"95e3b48d-3061-4f4f-ab8c-dce2c0ce730f\",\"productName\":\"Mathematics and Statistics Fundamentals\",\"productSlug\":\"bachelors/microbachelors/lse-mathematics-and-statistics-fundamentals\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/95e3b48d-3061-4f4f-ab8c-dce2c0ce730f-8d311b1693ec.jpg\",\"productType\":\"MicroBachelors\",\"attributes\":[\"Math\",\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"The London School of Economics and Political Science\"],\"partnerKeys\":[\"LSE\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/07141c7d-a86e-4f48-bb5b-1eef0958b465-b644124b89ef.png\",\"fullDescription\":\"To grasp key mathematical concepts, terminology, methods and conventions and obtain the skills to solve unseen mathematical problems,To understand how mathematical techniques can be used to solve problems in economics and related subjects,To master statistics fundamentals and learn to apply a variety of methods for explaining, summarising and presenting data and interpreting results clearly using appropriate diagrams, titles and labels when required,To summarise the ideas of randomness and variability, and the way in which these link to probability theory to allow the systematic and logical collection of statistical techniques of great practical importance in many applied areas,To explain the fundamentals of statistical inference and perform inference to test the significance of common measures such as means and proportions and conduct chi-squared tests of contingency tables\",\"shortDescription\":\"Master mathematics and statistics fundamentals and build your quantitative skillset for progression in high-growth careers, or to use as step towards further study at undergraduate level.\",\"productOverview\":\"$34c\",\"objectId\":\"program-95e3b48d-3061-4f4f-ab8c-dce2c0ce730f\",\"productSource\":\"edX\",\"productCategory\":\"Program\",\"activeRunKey\":null,\"childCoursesCount\":5,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"6a6771b2-cb03-4c50-85c7-442c80d41a69\",\"productName\":\"Statistics Fundamentals\",\"productSlug\":\"bachelors/microbachelors/lse-statistics-fundamentals\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/6a6771b2-cb03-4c50-85c7-442c80d41a69-8046976f723e.jpg\",\"productType\":\"MicroBachelors\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Math\"],\"partnerName\":[\"The London School of Economics and Political Science\"],\"partnerKeys\":[\"LSE\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/07141c7d-a86e-4f48-bb5b-1eef0958b465-b644124b89ef.png\",\"fullDescription\":\"To master statistics fundamentals and learn to apply a variety of methods for explaining, summarising and presenting data and interpreting results clearly.,To summarise the ideas of randomness and variability, and the way in which these link to probability theory to allow the systematic and logical collection of statistical techniques of great practical importance in many applied areas.,To explain the fundamentals of statistical inference and perform inference to test the significance of common measures such as means and proportions and conduct chi-squared tests of contingency tables.,To be competent users of standard statistical operators, linear regression and correlation analysis and be able to recall a variety of well-known probability distributions.\",\"shortDescription\":\"Master statistics fundamentals and build your quantitative skillset for progression in high-growth careers, or to use as step towards further study at undergraduate level.\",\"productOverview\":\"$34d\",\"objectId\":\"program-6a6771b2-cb03-4c50-85c7-442c80d41a69\",\"productSource\":\"edX\",\"productCategory\":\"Program\",\"activeRunKey\":null,\"childCoursesCount\":5,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"66a67f83-b576-43f6-9778-1e42fba134af\",\"productName\":\"Mastering Probability and Statistics\",\"productSlug\":\"certificates/professional-certificate/delftx-mastering-probability-and-statistics\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/66a67f83-b576-43f6-9778-1e42fba134af-6dc74c8c5fd2.png\",\"productType\":\"Professional Certificate\",\"attributes\":[\"Math\"],\"partnerName\":[\"Delft University of Technology\"],\"partnerKeys\":[\"DelftX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/c484a523-d396-4aff-90f4-bb7e82e16bf6-f9e6cc4a4c94.png\",\"fullDescription\":\"Use discrete and continuous random variables and understand how they interact.,Deal with conditional probabilities and conditional distributions.,Obtain understanding into some limiting results, in particular the Central Limit Theorem.,Make and interpret numerical and graphical summaries of datasets and find the connection to concepts from probability theory.,Several techniques to find estimators and assess their quality.,Perform inferential statistics: hypothesis testing, confidence intervals and linear regression, also in non-standard situations.,Use the R software package to apply all these statistical techniques on real datasets.\",\"shortDescription\":\"Refresh and review the probability and statistics you need to succeed in your engineering master’s degree or your profession.\",\"productOverview\":\"$34e\",\"objectId\":\"program-66a67f83-b576-43f6-9778-1e42fba134af\",\"productSource\":\"edX\",\"productCategory\":\"Program\",\"activeRunKey\":null,\"childCoursesCount\":2,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"7f21a350-fa0c-41f9-9d48-55be03116300\",\"productName\":\"Statistics, Confidence Intervals and Hypothesis Tests\",\"productSlug\":\"certificates/professional-certificate/gtx-statistics-confidence-intervals-and-hypothesis-tests\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/7f21a350-fa0c-41f9-9d48-55be03116300-ec6c41138ab1.jpg\",\"productType\":\"Professional Certificate\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Math\",\"Engineering\"],\"partnerName\":[\"The Georgia Institute of Technology\"],\"partnerKeys\":[\"GTx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/8537d31f-01b4-40fd-b652-e17b38eefe41-4c6537c07d54.png\",\"fullDescription\":\"Review a library of discrete and continuous probability distributions.,Meet the normal distribution and the Central Limit Theorem, and discover how they are applied in practice.,Recognize elementary methods of descriptive statistics.,Study methods that can be used to estimate the unknown parameters of a distribution.,Learn what confidence intervals are, how they are used, and how to formulate and interpret confidence intervals for a variety of probability distributions and their parameters.,Learn what hypothesis tests are, how they are used, and the types of errors that can occur with hypothesis testing.,Formulate and interpret hypothesis tests for a variety of probability distributions and their parameters.\",\"shortDescription\":\"Build your knowledge of statistics concepts and methodologies\",\"productOverview\":\"$34f\",\"objectId\":\"program-7f21a350-fa0c-41f9-9d48-55be03116300\",\"productSource\":\"edX\",\"productCategory\":\"Program\",\"activeRunKey\":null,\"childCoursesCount\":2,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"31e91a38-8fe3-4fad-b1c9-4698453a235a\",\"productName\":\"Bayesian Statistics Using R\",\"productSlug\":\"certificates/professional-certificate/ucx-bayesian-statistics-using-r\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/31e91a38-8fe3-4fad-b1c9-4698453a235a-37f297703afe.png\",\"productType\":\"Professional Certificate\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Math\"],\"partnerName\":[\"University of Canterbury\"],\"partnerKeys\":[\"UCx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/ecfbe814-b9bf-45ae-8bc0-baf62dbedeb6-8113d578a9f6.png\",\"fullDescription\":\"$350\",\"shortDescription\":\"This program provides a practical introduction to applied Bayesian data analysis, combining theory, philosophy and computational facility with the emphasis on formulating and answering real life questions.\",\"productOverview\":\"\u003cp\u003eBayesian approach is becoming increasingly popular in all fields of data analysis, including but not limited to epidemiology, ecology, economics, and political sciences. It also plays an increasingly important role in data mining and deep learning.\u003c/p\u003e\\r\\n\\r\\n\u003cp\u003eThis program provides a practical introduction to applied Bayesian data analysis, combining theory, philosophy and computational facility with the emphasis on formulating and answering real life questions. The two courses provide a broad overview of the fundamentals of Bayesian inference via clear practical examples and may serve as a stepping stone towards any other, more specialized, topic in Bayesian statistics. \u003c/p\u003e\",\"objectId\":\"program-31e91a38-8fe3-4fad-b1c9-4698453a235a\",\"productSource\":\"edX\",\"productCategory\":\"Program\",\"activeRunKey\":null,\"childCoursesCount\":2,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"48ce904b-9158-439d-980d-596460128307\",\"productName\":\"Statistics for Business Analytics\",\"productSlug\":\"certificates/professional-certificate/uqx-statistics-for-business-and-economics\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/48ce904b-9158-439d-980d-596460128307-76a12a59ba26.jpeg\",\"productType\":\"Professional Certificate\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Business \u0026 Management\",\"Economics \u0026 Finance\"],\"partnerName\":[\"The University of Queensland\"],\"partnerKeys\":[\"UQx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/8554749f-b920-4d7f-8986-af6bb95290aa-f336c6a2ca11.png\",\"fullDescription\":\"Use basic probability concepts and apply various probability distributions to solve business problems.,Draw conclusions about populations based on sample information using methods of statistical inference.,Use hypothesis testing methods to measure the significance of differences between samples, or between a single sample and a benchmark.,Analyse and interpret the relationships between variables using simple and multiple regression analysis models.,Use statistical methodologies to forecast trends in future data.\",\"shortDescription\":\"\",\"productOverview\":\"$351\",\"objectId\":\"program-48ce904b-9158-439d-980d-596460128307\",\"productSource\":\"edX\",\"productCategory\":\"Program\",\"activeRunKey\":null,\"childCoursesCount\":3,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"fcf0916a-cb14-48fa-9fc5-9f0b2b09554b\",\"productName\":\"MLOps1 (Azure): Deploying AI \u0026 ML Models in Production using Microsoft Azure Machine Learning\",\"productSlug\":\"learn/azure/statistics-com-mlops1-azure-deploying-ai-ml-models-in-production-using-microsoft-azure-machine-learning\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/fcf0916a-cb14-48fa-9fc5-9f0b2b09554b-d06d71c52328.png\",\"productType\":\"Course\",\"attributes\":[\"Computer Science\",\"Data Analysis \u0026 Statistics\",\"Engineering\"],\"partnerName\":[\"Statistics.com\"],\"partnerKeys\":[\"Statistics.comX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/d74214c6-3663-421d-91be-bf407a6efca2-94bf207ef5fa.png\",\"fullDescription\":\"$352\",\"shortDescription\":\"\u003cp\u003eMost data science projects fail. There are various reasons why, but one of the primary reasons is the challenge of deployment. One piece to the deployment puzzle is understanding how data engineers can effectively work with data scientists to monitor and iterate on model performance, which is why we developed this course: MLOps1 (Azure) - Deploying AI \u0026amp; ML Models in Production using Microsoft Azure Machine Learning\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003e\\n\u003cp\u003eWhat data engineers need to know in order to work effectively with data scientists\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eHow to use a machine learning model to make predictions\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eHow to embed that model in a pipeline that takes in data and outputs predictions automatically\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eHow to measure the performance of the model and the pipeline, and how to log those metrics\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eHow to follow best practices for “versioning” the model and the data\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eHow to track and store model and data artifacts\u003c/p\u003e\\n\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-fcf0916a-cb14-48fa-9fc5-9f0b2b09554b\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:Statistics.comX+MLOps1-Azure+1T2022\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"c295846d-cd39-4080-9e80-6fb61ce388d2\",\"productName\":\"Predictive Analytics: Basic Modeling Techniques\",\"productSlug\":\"learn/predictive-analytics/statistics-com-predictive-analytics-basic-modeling-techniques\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/c295846d-cd39-4080-9e80-6fb61ce388d2-0556e0055957.png\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Computer Science\",\"Engineering\"],\"partnerName\":[\"Statistics.com\"],\"partnerKeys\":[\"Statistics.comX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/d74214c6-3663-421d-91be-bf407a6efca2-94bf207ef5fa.png\",\"fullDescription\":\"$353\",\"shortDescription\":\"\u003cp\u003eWhat is Predictive Analytics? These methods lie behind the most transformative technologies of the last decade, that go under the more general name Artificial Intelligence or AI. In this course, the focus is on the skills that will allow you to fit a model to data, and measure how well it performs. We will be doing enough data science so that you get hands-on familiarity with understanding a dataset, fitting a model to it, and generating predictions.\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003eAfter completing this course, you will be able to:\u003c/p\u003e\\n\u003cul\u003e\\n\u003cli\u003e\\n\u003cp\u003eDevelop a variety of machine learning algorithms for both classification and regression, including linear and logistic regression, decisions trees and neural networks\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eEvaluate machine learning model performance with appropriate metrics\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eCombine multiple models into ensembles to improve performance\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eExplain the special contribution that deep learning has made to machine learning task\u003c/p\u003e\\n\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-c295846d-cd39-4080-9e80-6fb61ce388d2\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:Statistics.comX+PAIntro1+2T2022\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"90b55677-39f4-421a-8a5f-2779ea01816a\",\"productName\":\"MLOps1 (AWS): Deploying AI \u0026 ML Models in Production using Amazon Web Services\",\"productSlug\":\"learn/amazon-web-services-aws/statistics-com-mlops1-aws-deploying-ai-ml-models-in-production-using-amazon-web-services\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/90b55677-39f4-421a-8a5f-2779ea01816a-9711ef9b024b.png\",\"productType\":\"Course\",\"attributes\":[\"Computer Science\",\"Data Analysis \u0026 Statistics\",\"Engineering\"],\"partnerName\":[\"Statistics.com\"],\"partnerKeys\":[\"Statistics.comX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/d74214c6-3663-421d-91be-bf407a6efca2-94bf207ef5fa.png\",\"fullDescription\":\"$354\",\"shortDescription\":\"\u003cp\u003eMost data science projects fail. There are various reasons why, but one of the primary reasons is the challenge of deployment. One piece to the deployment puzzle is understanding how data engineers can effectively work with data scientists to monitor and iterate on model performance, which is why we developed this course: MLOps1 (AWS) - Deploying AI \u0026amp; ML Models in Production using Amazon Web Services.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003e\\n\u003cp\u003eWhat data engineers need to know in order to work effectively with data scientists\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eHow to use a machine learning model to make predictions\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eHow to embed that model in a pipeline that takes in data and outputs predictions automatically\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eHow to measure the performance of the model and the pipeline, and how to log those metrics\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eHow to follow best practices for “versioning” the model and the data\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eHow to track and store model and data artifacts\u003c/p\u003e\\n\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-90b55677-39f4-421a-8a5f-2779ea01816a\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:Statistics.comX+MLOps1-AWS+2T2022\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"fb74f53c-e77b-4ed1-80c1-ddcd2c3bce06\",\"productName\":\"MLOps1 (GCP): Deploying AI \u0026 ML Models in Production using Google Cloud Platform\",\"productSlug\":\"learn/machine-learnng/statistics-com-mlops1-gcp-deploying-ai-ml-models-in-production-using-google-cloud-platform\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/fb74f53c-e77b-4ed1-80c1-ddcd2c3bce06-4703cadb10f1.png\",\"productType\":\"Course\",\"attributes\":[\"Computer Science\",\"Data Analysis \u0026 Statistics\",\"Engineering\"],\"partnerName\":[\"Statistics.com\"],\"partnerKeys\":[\"Statistics.comX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/d74214c6-3663-421d-91be-bf407a6efca2-94bf207ef5fa.png\",\"fullDescription\":\"$355\",\"shortDescription\":\"\u003cp\u003eMost data science projects fail. There are various reasons why, but one of the primary reasons is the challenge of deployment. One piece to the deployment puzzle is understanding how data engineers can effectively work with data scientists to monitor and iterate on model performance, which is why we developed this course: MLOps1 (GCP) - Deploying AI \u0026amp; ML Models in Production using Google Cloud Platform\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003e\\n\u003cp\u003eWhat data engineers need to know in order to work effectively with data scientists\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eHow to use a machine learning model to make predictions\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eHow to embed that model in a pipeline that takes in data and outputs predictions automatically\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eHow to measure the performance of the model and the pipeline, and how to log those metrics\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eHow to follow best practices for “versioning” the model and the data\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eHow to track and store model and data artifacts\u003c/p\u003e\\n\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-fb74f53c-e77b-4ed1-80c1-ddcd2c3bce06\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:Statistics.comX+MLOps1-GCP+2T2022\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"029322a5-5639-439e-972c-9e3be668bbc0\",\"productName\":\"MLOps2 (GCP): Data Pipeline Automation \u0026 Optimization using Google Cloud Platform\",\"productSlug\":\"learn/data-science/statistics-com-mlops2-gcp-data-pipeline-automation-optimization-using-google-cloud-platform\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/029322a5-5639-439e-972c-9e3be668bbc0-0bad2733009f.png\",\"productType\":\"Course\",\"attributes\":[\"Computer Science\",\"Data Analysis \u0026 Statistics\",\"Engineering\"],\"partnerName\":[\"Statistics.com\"],\"partnerKeys\":[\"Statistics.comX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/d74214c6-3663-421d-91be-bf407a6efca2-94bf207ef5fa.png\",\"fullDescription\":\"\u003cp\u003eMost data science projects fail. There are various reasons why, but one of the primary reasons is the challenge of deployment. One piece to the deployment puzzle is understanding how to automate your pipeline’s functions and continuously optimize its performance, which is why we developed this course, MLOps2 (GCP): Data Pipeline Automation \u0026amp; Optimization using Gogle Cloud Platform. In this course you will learn how to set up automated monitoring of your data pipeline for prediction. Data drift, model drift and feedback loops can impair model performance and model stability, and you will learn how to monitor for those phenomena. You will also learn about setting triggers and alarms, so that operators can deal with problems with model instability. You will also cover ethical issues in machine learning and the risks they pose, and learn about the \\\"Responsible Data Science\\\" framework.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eMost data science projects fail. There are various reasons why, but one of the primary reasons is the challenge of deployment. One piece to the deployment puzzle is understanding how to automate your pipeline’s functions and continuously optimize its performance, which is why we developed this course, MLOps2 (GCP): Data Pipeline Automation \u0026amp; Optimization using Google Cloud Platform.\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003eYou will learn how to set up automated monitoring of your data pipeline for prediction and get hands on experience with topics like data pipelines, drift and feedback loops, model stability, triggers \u0026amp; alarms, model security, responsible AI and much more.\u003c/p\u003e\\n\u003cp\u003eBut most importantly, by the end of this course, you will know…\u003c/p\u003e\\n\u003cul\u003e\\n\u003cli\u003eHow to meet the differing requirements of model training versus model inference in your pipeline\u003c/li\u003e\\n\u003cli\u003eHow to check for model drift, data drift, and feedback loops\u003c/li\u003e\\n\u003cli\u003eHow to apply the principles of Continuous Integration (CI), Continuous Delivery (CDE) and Continuous Deployment (CD)\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-029322a5-5639-439e-972c-9e3be668bbc0\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:Statistics.comX+MLOps2-GCP+2T2022\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"bfb265dd-054c-45da-a788-45eb83c42f82\",\"productName\":\"Applied Data Science Ethics\",\"productSlug\":\"learn/data-science/statistics-com-applied-data-science-ethics\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/bfb265dd-054c-45da-a788-45eb83c42f82-b154fc6bd1b1.png\",\"productType\":\"Course\",\"attributes\":[\"Ethics\",\"Data Analysis \u0026 Statistics\",\"Computer Science\"],\"partnerName\":[\"Statistics.com\"],\"partnerKeys\":[\"Statistics.comX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/d74214c6-3663-421d-91be-bf407a6efca2-94bf207ef5fa.png\",\"fullDescription\":\"$356\",\"shortDescription\":\"\u003cp\u003eAI’s popularity has resulted in numerous well-publicized cases of bias, injustice, and discrimination. Often these harms occur in machine learning projects that have the best of goals, developed by data scientists with good intentions. This course, the second in the data science ethics program for both practitioners and managers, provides guidance and practical tools to build better models and avoid these problems.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eHow to evaluate predictor impact in black box models using interpretability methods\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eHow to explain the average contribution of features to predictions and the contribution of individual feature values to individual predictions\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eHow to Assess the performance of models with metrics to measure bias and unfairness\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eHow to describe potential ethical issues that can arise with image and text data, and how to address them\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eHow to donduct an audit of a data science project from an ethical standpoint to identify possible harms and potential areas for bias mitigation or harm reduction\u003c/p\u003e\\n\u003c/li\u003e\\n\u003c/ul\u003e\\n\u003cp\u003eIn this course we will mostly be addressing things the data scientist can do to ensure that their projects and solutions are designed and implemented responsibly. We will primarily focus on issues of bias and unfairness across protected groups.\u003c/p\u003e\",\"objectId\":\"course-bfb265dd-054c-45da-a788-45eb83c42f82\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:Statistics.comX+RDS-2+3T2022\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"2128b663-fdc0-4675-8275-3dd69ce62cc6\",\"productName\":\"MLOps2 (Azure): Data Pipeline Automation \u0026 Optimization using Microsoft Azure Machine Learning\",\"productSlug\":\"learn/azure/statistics-com-mlops2-azure-data-pipeline-automation-optimization-using-microsoft-azure-machine-learning\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/2128b663-fdc0-4675-8275-3dd69ce62cc6-d0b14ba7a536.png\",\"productType\":\"Course\",\"attributes\":[\"Computer Science\",\"Data Analysis \u0026 Statistics\",\"Engineering\"],\"partnerName\":[\"Statistics.com\"],\"partnerKeys\":[\"Statistics.comX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/d74214c6-3663-421d-91be-bf407a6efca2-94bf207ef5fa.png\",\"fullDescription\":\"\u003cp\u003eMost data science projects fail. There are various reasons why, but one of the primary reasons is the challenge of deployment. One piece to the deployment puzzle is understanding how to automate your pipeline’s functions and continuously optimize its performance, which is why we developed this course, MLOps2 (Azure): Data Pipeline Automation \u0026amp; Optimization using Microsoft Azure Machine Learning. In this course you will learn how to set up automated monitoring of your data pipeline for prediction. Data drift, model drift and feedback loops can impair model performance and model stability, and you will learn how to monitor for those phenomena. You will also learn about setting triggers and alarms, so that operators can deal with problems with model instability. You will also cover ethical issues in machine learning and the risks they pose, and learn about the \\\"Responsible Data Science\\\" framework.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eMost data science projects fail. There are various reasons why, but one of the primary reasons is the challenge of deployment. One piece to the deployment puzzle is understanding how to automate your pipeline’s functions and continuously optimize its performance, which is why we developed this course, MLOps2 (Azure): Data Pipeline Automation \u0026amp; Optimization using Microsoft Azure Machine Learning\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003eYou will learn how to set up automated monitoring of your data pipeline for prediction and get hands on experience with topics like data pipelines, drift and feedback loops, model stability, triggers \u0026amp; alarms, model security, responsible AI and much more.\u003c/p\u003e\\n\u003cp\u003eBut most importantly, by the end of this course, you will know…\u003c/p\u003e\\n\u003cul\u003e\\n\u003cli\u003eHow to meet the differing requirements of model training versus model inference in your pipeline\u003c/li\u003e\\n\u003cli\u003eHow to check for model drift, data drift, and feedback loops\u003c/li\u003e\\n\u003cli\u003eHow to apply the principles of Continuous Integration (CI), Continuous Delivery (CDE) and Continuous Deployment (CD)\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-2128b663-fdc0-4675-8275-3dd69ce62cc6\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:Statistics.comX+MLOps2-Azure+2T2022\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"a369d2a4-a7bb-48c7-ae39-6abf68ceb8be\",\"productName\":\"Principles of Data Science Ethics\",\"productSlug\":\"learn/data-science/statistics-com-principles-of-data-science-ethics\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/a369d2a4-a7bb-48c7-ae39-6abf68ceb8be-66919442a6d7.png\",\"productType\":\"Course\",\"attributes\":[\"Ethics\",\"Data Analysis \u0026 Statistics\",\"Computer Science\"],\"partnerName\":[\"Statistics.com\"],\"partnerKeys\":[\"Statistics.comX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/d74214c6-3663-421d-91be-bf407a6efca2-94bf207ef5fa.png\",\"fullDescription\":\"\u003cp\u003eConcern about the harmful effects of machine learning algorithms and AI models (bias and more) has resulted in greater attention to the fundamentals of data ethics. News stories appear regularly about credit algorithms that discriminate against women, medical algorithms that discriminate against African Americans, hiring algorithms that base decisions on gender, and more. In most cases, those who developed and deployed these algorithms and data processes had no such intentions, and were unaware of the harmful impact of their work.\u003c/p\u003e\\n\u003cp\u003eThis data science ethics course for both practitioners and managers provides guidance and practical tools to build better models and avoid these problems. The course offers a framework data scientists can use to develop their projects, and an audit process to follow in reviewing them. Case studies along with Python code are provided.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eConcern about the harmful effects of machine learning algorithms and AI models (bias and more) has resulted in greater attention to the fundamentals of data ethics.\u003c/p\u003e\\n\u003cp\u003eThis data science ethics course for both practitioners and managers provides guidance and practical tools to build better models and avoid these problems. The course offers a framework data scientists can use to develop their projects and an audit process to follow in reviewing them. Case studies with Python code are provided.\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003eAfter completing this course you should be able to:\u003c/p\u003e\\n\u003cul\u003e\\n\u003cli\u003eIdentify and anticipate the types of unintended harm that can arise from AI models\u003c/li\u003e\\n\u003cli\u003eExplain why interpretability is key to avoiding harm\u003c/li\u003e\\n\u003cli\u003eDistinguish between intrinsically interpretable models and black box models\u003c/li\u003e\\n\u003cli\u003eEvaluate tradeoffs between model performance and interpretability\u003c/li\u003e\\n\u003cli\u003eEstablish a Responsible Data Science framework for your projects\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-a369d2a4-a7bb-48c7-ae39-6abf68ceb8be\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:Statistics.comX+RDS-1+3T2022\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"cfdc6ba3-4f93-4b50-8366-69aaa0a91d1c\",\"productName\":\"MLOps2 (AWS): Data Pipeline Automation \u0026 Optimization using Amazon Web Services\",\"productSlug\":\"learn/amazon-web-services-aws/statistics-com-mlops2-aws-data-pipeline-automation-optimization-using-amazon-web-services\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/cfdc6ba3-4f93-4b50-8366-69aaa0a91d1c-c3ab413acf4d.png\",\"productType\":\"Course\",\"attributes\":[\"Computer Science\",\"Data Analysis \u0026 Statistics\",\"Engineering\"],\"partnerName\":[\"Statistics.com\"],\"partnerKeys\":[\"Statistics.comX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/d74214c6-3663-421d-91be-bf407a6efca2-94bf207ef5fa.png\",\"fullDescription\":\"\u003cp\u003eMost data science projects fail. There are various reasons why, but one of the primary reasons is the challenge of deployment. One piece to the deployment puzzle is understanding how to automate your pipeline’s functions and continuously optimize its performance, which is why we developed this course: MLOps2 (AWS): Data Pipeline Automation \u0026amp; Optimization using Amazon Web Services. In this course you will learn how to set up automated monitoring of your data pipeline for prediction. Data drift, model drift and feedback loops can impair model performance and model stability, and you will learn how to monitor for those phenomena. You will also learn about setting triggers and alarms, so that operators can deal with problems with model instability. You will also cover ethical issues in machine learning and the risks they pose, and learn about the \\\"Responsible Data Science\\\" framework.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eMost data science projects fail. There are various reasons why, but one of the primary reasons is the challenge of deployment. One piece to the deployment puzzle is understanding how to automate your pipeline’s functions and continuously optimize its performance, which is why we developed this course - MLOps2 (AWS): Data Pipeline Automation \u0026amp; Optimization using Amazon Web Services.\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003eYou will learn how to set up automated monitoring of your data pipeline for prediction and get hands on experience with topics like data pipelines, drift and feedback loops, model stability, triggers \u0026amp; alarms, model security, responsible AI and much more.\u003c/p\u003e\\n\u003cp\u003eBut most importantly, by the end of this course, you will know…\u003c/p\u003e\\n\u003cul\u003e\\n\u003cli\u003eHow to meet the differing requirements of model training versus model inference in your pipeline\u003c/li\u003e\\n\u003cli\u003eHow to check for model drift, data drift, and feedback loops\u003c/li\u003e\\n\u003cli\u003eHow to apply the principles of Continuous Integration (CI), Continuous Delivery (CDE) and Continuous Deployment (CD)\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-cfdc6ba3-4f93-4b50-8366-69aaa0a91d1c\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:Statistics.comX+MLOps2-AWS+2T2022\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"58869e66-895e-47db-a359-90fe99aca9c8\",\"productName\":\"Machine Learning Operations with Microsoft Azure (MLOps with Azure)\",\"productSlug\":\"certificates/professional-certificate/statisticscomx-machine-learning-operations-mlops-with-azure\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/58869e66-895e-47db-a359-90fe99aca9c8-1fc49d2e79fe.png\",\"productType\":\"Professional Certificate\",\"attributes\":[\"Computer Science\",\"Data Analysis \u0026 Statistics\",\"Engineering\"],\"partnerName\":[\"Statistics.com\"],\"partnerKeys\":[\"Statistics.comX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/d74214c6-3663-421d-91be-bf407a6efca2-94bf207ef5fa.png\",\"fullDescription\":\"How to create a pipeline using Azure to ingest data to train a predictive model and feed it as it operates.,How to have the model score the data on an ongoing automated basis.,How to design the pipeline to output a decision or action variable.,How to continuously monitor several points of operation, including the incoming data (for data drift) and the decision outputs (for anomalies).,How to forge an appropriate AI engineering role in your organization.\",\"shortDescription\":\"Machine Learning Operations (MLOps) is the core of AI Engineering. In this program, you will learn the tangible data engineering and data science skills needed to deploy machine learning models via Microsoft Azure.\",\"productOverview\":\"$357\",\"objectId\":\"program-58869e66-895e-47db-a359-90fe99aca9c8\",\"productSource\":\"edX\",\"productCategory\":\"Program\",\"activeRunKey\":null,\"childCoursesCount\":3,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"a550338b-0c0b-4fbf-b85c-8eef36263b75\",\"productName\":\"Machine Learning Operations with Amazon Web Services (MLOps with AWS)\",\"productSlug\":\"certificates/professional-certificate/statisticscomx-machine-learning-operations-with-amazon-web-services-mlops-with-aws\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/a550338b-0c0b-4fbf-b85c-8eef36263b75-573f69228f21.png\",\"productType\":\"Professional Certificate\",\"attributes\":[\"Computer Science\",\"Data Analysis \u0026 Statistics\",\"Engineering\"],\"partnerName\":[\"Statistics.com\"],\"partnerKeys\":[\"Statistics.comX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/d74214c6-3663-421d-91be-bf407a6efca2-94bf207ef5fa.png\",\"fullDescription\":\"How to create a pipeline using AWS to ingest data to train a predictive model and feed it as it operates.,How to have the model score the data on an ongoing automated basis.,How to design the pipeline to output a decision or action variable.,How to continuously monitor several points of operation, including the incoming data (for data drift) and the decision outputs (for anomalies).,How to forge an appropriate AI engineering role in your organization.\",\"shortDescription\":\"Machine Learning Operations (MLOps) is the core of AI Engineering. In this program, you will learn the tangible data engineering and data science skills needed to deploy machine learning models via AWS.\",\"productOverview\":\"$358\",\"objectId\":\"program-a550338b-0c0b-4fbf-b85c-8eef36263b75\",\"productSource\":\"edX\",\"productCategory\":\"Program\",\"activeRunKey\":null,\"childCoursesCount\":3,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"fd10826a-9cda-409d-bf88-b4ba17ed39ab\",\"productName\":\"Machine Learning Operations with Google Cloud Platform (MLOps with GCP)\",\"productSlug\":\"certificates/professional-certificate/statisticscomx-machine-learning-operations-using-google-cloud-platform-mlops-with-gcp\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/fd10826a-9cda-409d-bf88-b4ba17ed39ab-44deced238cd.png\",\"productType\":\"Professional Certificate\",\"attributes\":[\"Computer Science\",\"Data Analysis \u0026 Statistics\",\"Engineering\"],\"partnerName\":[\"Statistics.com\"],\"partnerKeys\":[\"Statistics.comX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/d74214c6-3663-421d-91be-bf407a6efca2-94bf207ef5fa.png\",\"fullDescription\":\"How to create a pipeline using GCP to ingest data to train a predictive model and feed it as it operates.,How to have the model score the data on an ongoing automated basis.,How to design the pipeline to output a decision or action variable.,How to continuously monitor several points of operation, including the incoming data (for data drift) and the decision outputs (for anomalies).,How to forge an appropriate AI engineering role in your organization.\",\"shortDescription\":\"Machine Learning Operations (MLOps) is the core of AI Engineering. In this program, you will learn the tangible data engineering and data science skills needed to deploy machine learning models via GCP.\",\"productOverview\":\"$359\",\"objectId\":\"program-fd10826a-9cda-409d-bf88-b4ba17ed39ab\",\"productSource\":\"edX\",\"productCategory\":\"Program\",\"activeRunKey\":null,\"childCoursesCount\":3,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"69ceddc3-5077-47e9-aff7-8df4db51e8b5\",\"productName\":\"Data Science Ethics\",\"productSlug\":\"certificates/professional-certificate/statistics-comx-data-science-ethics\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/69ceddc3-5077-47e9-aff7-8df4db51e8b5-b19c5e95e18f.png\",\"productType\":\"Professional Certificate\",\"attributes\":[\"Ethics\",\"Data Analysis \u0026 Statistics\",\"Computer Science\"],\"partnerName\":[\"Statistics.com\"],\"partnerKeys\":[\"Statistics.comX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/d74214c6-3663-421d-91be-bf407a6efca2-94bf207ef5fa.png\",\"fullDescription\":\"Identify and anticipate the types of unintended harm that can arise from AI models.,Establish a Responsible Data Science framework for your projects.,Evaluate predictor impact in black box models using interpretability methods.,Assess the performance of models with metrics to measure bias and unfairness.,Conduct an audit of a data science project from an ethical standpoint.\",\"shortDescription\":\"The popularity of data science has resulted in numerous well-publicized cases of bias, injustice, and discrimination. This program offers both a framework for implementing data science projects and an audit process in reviewing them.\",\"productOverview\":\"\u003cp\u003eSometimes data science projects go awry, when the predictions made by statistical and AI / machine learning algorithms turn out to be not just wrong, but biased and unfair in ways that cause harm. This program, for both data science practitioners and managers, provides responsible guidance and practical tools to build better models and avoid these problems.\u003c/p\u003e\",\"objectId\":\"program-69ceddc3-5077-47e9-aff7-8df4db51e8b5\",\"productSource\":\"edX\",\"productCategory\":\"Program\",\"activeRunKey\":null,\"childCoursesCount\":2,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"4c70ad9b-9602-49af-bf00-83fa4bf47708\",\"productName\":\"Machine Learning with Python: from Linear Models to Deep Learning.\",\"productSlug\":\"learn/machine-learning/massachusetts-institute-of-technology-machine-learning-with-python-from-linear-models-to-deep-learning\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/4c70ad9b-9602-49af-bf00-83fa4bf47708-dc4566d15250.jpg\",\"productType\":\"Course\",\"attributes\":[\"Computer Science\",\"Data Analysis \u0026 Statistics\",\"Math\"],\"partnerName\":[\"Massachusetts Institute of Technology\"],\"partnerKeys\":[\"MITx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/2a73d2ce-c34a-4e08-8223-83bca9d2f01d-d4f180052205.png\",\"fullDescription\":\"$35a\",\"shortDescription\":\"\u003cp\u003eAn in-depth introduction to the field of machine learning, from linear models to deep learning and reinforcement learning, through hands-on Python projects. -- \u003cem\u003ePart of the MITx MicroMasters program in Statistics and Data Science.\u003c/em\u003e\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eUnderstand principles behind machine learning problems such as classification, regression, clustering, and reinforcement learning\u003c/li\u003e\\n\u003cli\u003eImplement and analyze models such as linear models, kernel machines, neural networks, and graphical models\u003c/li\u003e\\n\u003cli\u003eChoose suitable models for different applications\u003c/li\u003e\\n\u003cli\u003eImplement and organize machine learning projects, from training, validation, parameter tuning, to feature engineering.\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-4c70ad9b-9602-49af-bf00-83fa4bf47708\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:MITx+6.86x+1T2025\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"09532745-c837-467b-9078-093b8e1265a8\",\"productName\":\"Supply Chain Analytics.\",\"productSlug\":\"learn/supply-chain-design/massachusetts-institute-of-technology-supply-chain-analytics\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/09532745-c837-467b-9078-093b8e1265a8-edd8f0801486.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Business \u0026 Management\",\"Engineering\"],\"partnerName\":[\"Massachusetts Institute of Technology\"],\"partnerKeys\":[\"MITx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/2a73d2ce-c34a-4e08-8223-83bca9d2f01d-d4f180052205.png\",\"fullDescription\":\"$35b\",\"shortDescription\":\"\u003cp\u003eMaster and apply the core methodologies used in supply chain analysis and modeling, including statistics, regression, optimization and probability ​- part of the \u003cem\u003eMITx Supply Chain Management MicroMasters Credential\u003c/em\u003e.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eBasic analytical methods\u003c/li\u003e\\n\u003cli\u003eHow to apply basic probability models\u003c/li\u003e\\n\u003cli\u003eStatistics in supply chains\u003c/li\u003e\\n\u003cli\u003eFormulating and solving optimization models\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-09532745-c837-467b-9078-093b8e1265a8\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:MITx+CTL.SC0x+1T2025\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"1bf266b1-0a55-43e5-ae9f-f0c9a51aa515\",\"productName\":\"Mathematical Methods for Quantitative Finance\",\"productSlug\":\"learn/finance/massachusetts-institute-of-technology-mathematical-methods-for-quantitative-finance\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/1bf266b1-0a55-43e5-ae9f-f0c9a51aa515-cd41794112bc.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Economics \u0026 Finance\",\"Math\",\"Engineering\"],\"partnerName\":[\"Massachusetts Institute of Technology\"],\"partnerKeys\":[\"MITx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/2a73d2ce-c34a-4e08-8223-83bca9d2f01d-d4f180052205.png\",\"fullDescription\":\"\u003cp\u003eModern finance is the science of decision making in an uncertain world, and its language is mathematics. As part of the MicroMasters® Program in Finance, this course develops the tools needed to describe financial markets, make predictions in the face of uncertainty, and find optimal solutions to business and investment decisions.\u003c/p\u003e\\n\u003cp\u003eThis course will help anyone seeking to confidently model risky or uncertain outcomes. Its topics are essential knowledge for applying the theory of modern finance to real-world settings. Quants, traders, risk managers, investment managers, investment advisors, developers, and engineers will all be able to apply these tools and techniques.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eLearn the mathematical foundations essential for financial engineering and quantitative finance: linear algebra, optimization, probability, stochastic processes, statistics, and applied computational techniques in R.\u003c/p\u003e\",\"productOverview\":\"$35c\",\"objectId\":\"course-1bf266b1-0a55-43e5-ae9f-f0c9a51aa515\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:MITx+15.455x+1T2025\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"97f16f83-5e8a-496c-9086-5634c8edccbb\",\"productName\":\"Fat Chance: Probability from the Ground Up\",\"productSlug\":\"learn/probability/harvard-university-fat-chance-probability-from-the-ground-up\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/97f16f83-5e8a-496c-9086-5634c8edccbb-95970686ef9b.jpg\",\"productType\":\"Course\",\"attributes\":[\"Math\"],\"partnerName\":[\"Harvard University\"],\"partnerKeys\":[\"HarvardX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/44022f13-20df-4666-9111-cede3e5dc5b6-2cc39992c67a.png\",\"fullDescription\":\"$35d\",\"shortDescription\":\"\u003cp\u003eIncrease your quantitative reasoning skills through a deeper understanding of probability and statistics.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eAn increased appreciation for, and reduced fear of, basic probability and statistics\u003c/li\u003e\\n\u003cli\u003eHow to solve combinatorial counting problems\u003c/li\u003e\\n\u003cli\u003eHow to solve problems using basic and advanced probability\u003c/li\u003e\\n\u003cli\u003eAn introductory understanding of the normal distribution and its many statistical applications\u003c/li\u003e\\n\u003cli\u003eAn ability to recognize common fallacies in probability, as well as some of the ways in which statistics are abused or simply misunderstood\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-97f16f83-5e8a-496c-9086-5634c8edccbb\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:HarvardX+FC1x+1T2025\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"81cfc304-0eed-4779-9de8-41c79504e456\",\"productName\":\"Six Sigma Part 1: Define and Measure\",\"productSlug\":\"learn/six-sigma/technische-universitat-munchen-six-sigma-define-and-measure\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/81cfc304-0eed-4779-9de8-41c79504e456-23b25ba78a5c.jpg\",\"productType\":\"Course\",\"attributes\":[\"Business \u0026 Management\",\"Data Analysis \u0026 Statistics\",\"Engineering\"],\"partnerName\":[\"Technische Universität München\"],\"partnerKeys\":[\"TUMx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/a455918c-387b-46b2-b943-d4b8f3edcf56-c2120c85b7c3.png\",\"fullDescription\":\"$35e\",\"shortDescription\":\"\u003cp\u003eAn introduction to the Six Sigma methodology and the DMAIC cycle for process improvement with a focus on the Define and Measure phases, including basic statistics for understanding sampling plans and calculating process capability.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eTo understand the background and meaning of the Six Sigma methodology and the role of the DMAIC process improvement cycle.\u003c/li\u003e\\n\u003cli\u003eTo identify the Voice of the Customer and translate into Critical-to-Quality parameters.\u003c/li\u003e\\n\u003cli\u003eTo understand the concept of random variables, probability mass functions, and probability density functions.\u003c/li\u003e\\n\u003cli\u003eTo calculate probabilities using the Normal distribution.\u003c/li\u003e\\n\u003cli\u003eTo understand how the Central Limit Theorem applies to sampling and how to set up sampling plans.\u003c/li\u003e\\n\u003cli\u003eTo understand the importance of a Measurement System Analysis in a Six Sigma project.\u003c/li\u003e\\n\u003cli\u003eTo calculate Process Yield and Process Capability.\u003c/li\u003e\\n\u003cli\u003eTo perform a risk assessment using a Failure Modes and Effects Analysis.\u003c/li\u003e\\n\u003cli\u003eHow to apply the Define and Measure phases of the DMAIC cycle in your work or research, in order to identify problems and quantitatively assess the impact of process changes using statistical analysis.\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-81cfc304-0eed-4779-9de8-41c79504e456\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:TUMx+QPLS1x+2T2021\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"0191b66a-4a30-49b9-a4bb-aeeb4d96b15b\",\"productName\":\"Data Analysis for the Behavioral Sciences\",\"productSlug\":\"learn/data-analysis/american-psychological-association-data-analysis-for-the-behavioral-sciences\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/0191b66a-4a30-49b9-a4bb-aeeb4d96b15b-1a652baba272.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Social Sciences\"],\"partnerName\":[\"American Psychological Association\"],\"partnerKeys\":[\"APA\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/bc4364a6-3fb5-456e-b2f5-fc6efdeff815-851530f4f112.png\",\"fullDescription\":\"$35f\",\"shortDescription\":\"\u003cp\u003eHow do statistics apply to your life and how can we use statistics to draw conclusions about the world? This course will provide you with an integrated and engaging online experience to explore statistics in the behavioral sciences.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003e\\n\u003cp\u003eExplain various ways to categorize variables.\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eExplain various ways to describe data.\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eDescribe how graphs are used to visualize data.\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eExplain the meaning of a correlation coefficient.\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eDescribe the logic of inferential statistics.\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eExplain the logic of null hypothesis significance testing.\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eSelect the appropriate inferential test based on study criteria.\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eCompare and contrast the use of statistical significance, effect size, and confidence intervals.\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eExplain the importance of statistical power.\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eDescribe how alternative procedures address the major objections to null hypothesis significance testing.\u003c/p\u003e\\n\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-0191b66a-4a30-49b9-a4bb-aeeb4d96b15b\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:APA+DAT-ANA+1T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"1bca24b1-b304-4f59-ad5e-aea4fd15296e\",\"productName\":\"Introduction to Healthcare Data Analysis\",\"productSlug\":\"learn/data-analysis-statistics/mgh-institute-of-health-professions-introduction-to-healthcare-data-analysis\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/1bca24b1-b304-4f59-ad5e-aea4fd15296e-03b35bad48b9.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Medicine\",\"Health \u0026 Safety\"],\"partnerName\":[\"MGH Institute of Health Professions\"],\"partnerKeys\":[\"MGH_Institute\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/fa3fe5e7-5100-40a1-b56b-c44b893d92a6-8dd6dff92a89.png\",\"fullDescription\":\"$360\",\"shortDescription\":\"\u003cp\u003eIn this course, you will develop a solid foundational understanding of the most common statistical methods used in health care data analysis. These common statistical methods include descriptive statistics, data distributions, sampling distribution, hypothesis tests, visualizing and summarizing data, independent and paired sample t-tests, and ANOVA.\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003eBy the end of this course, you will be able to:\u003c/p\u003e\\n\u003col\u003e\\n\u003cli\u003eUse basic statistical concepts such as distributions, statistics such as range, mean, median, variance, standard deviation, and visualizations such as histograms and boxplots.\u003c/li\u003e\\n\u003cli\u003eApply basic data wrangling in R statistical program, such as loading data, transforming data, getting basic summary statistics, aggregating data, etc.\u003c/li\u003e\\n\u003cli\u003eApply t-test and ANOVA analysis to healthcare data and interpret the results.\u003c/li\u003e\\n\u003cli\u003eApply hypothesis testing and interpret the results.\u003c/li\u003e\\n\u003cli\u003eCommunicate the results of their analysis to others in a simple language.\u003c/li\u003e\\n\u003c/ol\u003e\",\"objectId\":\"course-1bca24b1-b304-4f59-ad5e-aea4fd15296e\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:MGH_Institute+DA-601+1T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"fda4de23-da85-459c-907d-e640b61352d2\",\"productName\":\"Data Analysis for Business: Foundations\",\"productSlug\":\"learn/data-analysis/sda-bocconi-school-of-management-data-analysis-for-business-foundations\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/fda4de23-da85-459c-907d-e640b61352d2-444fef44a8a6.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"SDA Bocconi School of Management\"],\"partnerKeys\":[\"SDA_Bocconi\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/d3c464ef-ef59-4c3c-b08e-59f0b9305424-286425888b86.png\",\"fullDescription\":\"\u003cp\u003eThe course provides an overview of data analysis for business: an introduction and review of methods to describe data using tables, charts and summary measures. The course is designed to respond to the needs of a non-specialist audience and also for participants with “non-scientific” backgrounds (humanities and other classical disciplines), who have not been extensively exposed to quantitative methods and basic calculation procedures or, more generally, for people who do not feel comfortable with basic statistical techniques. At the end of this course the participants will be able to manage the most common basic data analysis techniques: descriptive and data visualization to properly analyze categorical and numerical business variables.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eEvery day business managers have to make decisions.\u003c/p\u003e\\n\u003cp\u003eIn this course you will learn procedures and methods that can help make better decisions, based on descriptive statistics and data analysis. Using Statistics you can focus on the methods involved in collecting, presenting and summarizing a set of data and in developing conclusions supported by data and empirical evidence.\u003c/p\u003e\\n\u003cp\u003eThe course is designed to respond to the needs of a non-specialist audience and also for participants with “non-scientific” backgrounds (humanities and other classical disciplines), who have not been extensively exposed to quantitative methods and basic calculation procedures or, more generally, for people who do not feel comfortable with basic statistical techniques.\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003eThe Program aims to provide basic knowledge of data analysis. The main topics covered in the Program are:\u003c/p\u003e\\n\u003cul\u003e\\n\u003cli\u003eIntroduction and Data Collection\u003c/li\u003e\\n\u003cli\u003eData Visualization (describing data using tables and graphs)\u003c/li\u003e\\n\u003cli\u003eSummary Statistics (describing data using numerical measures)\u003c/li\u003e\\n\u003cli\u003eReporting\u003c/li\u003e\\n\u003cli\u003eRandom Variables and Normal Probability Distribution\u003c/li\u003e\\n\u003cli\u003eLinear Correlation and Regression Line\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-fda4de23-da85-459c-907d-e640b61352d2\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:SDA_Bocconi+94259+3T2023\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":\"https://prod-discovery.edx-cdn.org/organization/logo_override/fda4de23-da85-459c-907d-e640b61352d2-2ec22f7eda72.jpeg\"},{\"productUuid\":\"3d8a6c28-e7d0-430d-93f1-b27573481081\",\"productName\":\"Statistical and Probabilistic Foundations of AI\",\"productSlug\":\"learn/computer-science/rwth-aachen-university-statsai\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/3d8a6c28-e7d0-430d-93f1-b27573481081-8a3ac755fe9e.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Computer Science\"],\"partnerName\":[\"RWTH Aachen University\"],\"partnerKeys\":[\"RWTHx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/8607c85e-2a12-4c51-8906-3a67848cf2a7-3e0a310f77c3.png\",\"fullDescription\":\"$361\",\"shortDescription\":\"\u003cp\u003e'Statistical and Probabilistic Foundations of AI' provides an accessible overview of the mathematics and statistics behind fundamental concepts of data science, machine learning, and artificial intelligence. It covers descriptive and exploratory data analysis and a brief introduction to inferential statistics. It provides the principles of probability necessary to understand the methods used in inferential statistics and machine learning at an introductory level.\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003eAfter taking this course, you will be able to\u003c/p\u003e\\n\u003cul\u003e\\n\u003cli\u003edescribe data using summary statistics\u003c/li\u003e\\n\u003cli\u003econstruct appropriate statistical plots to visualise information in data\u003c/li\u003e\\n\u003cli\u003eformulate and analyse stochastic models that describe random processes\u003c/li\u003e\\n\u003cli\u003euse basic probabilistic tools and methods to extract information from stochastic models\u003c/li\u003e\\n\u003cli\u003eapply probabilistic methods \u003c/li\u003e\\n\u003cli\u003eunderstand the outcomes of basic inferential methods \u003c/li\u003e\\n\u003cli\u003econstruct point estimators (e.g., maximum likelihood estimators), confidence intervals, and hypothesis tests\u003c/li\u003e\\n\u003cli\u003emake predictions using regression models as well as evaluate the goodness of fit of the regression model\u003c/li\u003e\\n\u003cli\u003euse R to work efficiently with data\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-3d8a6c28-e7d0-430d-93f1-b27573481081\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:RWTHx+BAI004x+3T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"11110a70-3997-494a-8e8e-c50fc3f8d2ca\",\"productName\":\"Probability for Actuaries: Introduction to Discrete Distributions\",\"productSlug\":\"learn/probability/the-university-of-wisconsin-madison-probability-for-actuaries-i\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/11110a70-3997-494a-8e8e-c50fc3f8d2ca-4b5b412e7009.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Economics \u0026 Finance\"],\"partnerName\":[\"The University of Wisconsin-Madison\"],\"partnerKeys\":[\"WisconsinX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/496e8de4-f4c2-4395-bfa4-5e9daeb60f1d-f8f8e09793a2.png\",\"fullDescription\":\"\u003cp\u003eActuarial work involves modeling future contingent events that are uncertain in terms of timing, frequency and severity. Understanding the central tendency of a contingency and its possible distribution is critical for an actuary to help individuals and institutions manage risk. This course starts with a brief discussion of data analysis, focusing on the central tendency and distribution of data. Introductory probability concepts are introduced next. The course concludes with a study of discrete probability models with an eye toward actuarial application.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eThis actuarial science course covers introductory probability theory that can be applied to risk management. Topics covered include an introductory examination of descriptive statistics of data sets, the interpretation of histograms, and the development and application of discrete probability models commonly used to model business risk. This course is intended to familiarize learners with the material covered on Exam P from the Society of Actuaries, also known as exam 1 for the Casualty Actuarial Society.\u003c/p\u003e\",\"productOverview\":\"$362\",\"objectId\":\"course-11110a70-3997-494a-8e8e-c50fc3f8d2ca\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:WisconsinX+WSB0010+2T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"60d1fcb6-3163-42d8-a2c7-27fc65832485\",\"productName\":\"Guided Project: Get Started with Data Science in Agriculture V2\",\"productSlug\":\"learn/data-science/ibm-guided-project-get-started-with-data-science-in-agriculture-v2\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/60d1fcb6-3163-42d8-a2c7-27fc65832485-7afed13d9152.png\",\"productType\":\"Course\",\"attributes\":[\"Computer Science\"],\"partnerName\":[\"IBM\"],\"partnerKeys\":[\"IBM\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/87b07564-d569-4cfd-bee6-8b0a407acb73-dc33e4b5f353.png\",\"fullDescription\":\"$363\",\"shortDescription\":\"\u003cp\u003eIdeal for beginners with some knowledge of Python and statistics, in this one-hour hands-on guided project, you will learn how to use essential Python tools for statistical analysis of agricultural data and present that data on interactive maps\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003e\u003cspan lang=\\\"EN\\\"\u003eAfter completing this project, you will be able to:\u003c/span\u003e\u003c/p\u003e\\n\u003cul\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN\\\"\u003eRead a CSV file\u003c/span\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN\\\"\u003eConvert the CSV file to a DataFrame\u003c/span\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN\\\"\u003ePreprocess the data\u003c/span\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN\\\"\u003ePerform statistical analysis of the data and display various summary statistics\u003c/span\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN\\\"\u003eVisualize data using pandas and seaborn\u003c/span\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN\\\"\u003eBuild interactive maps using Plotly\u003c/span\u003e\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-60d1fcb6-3163-42d8-a2c7-27fc65832485\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:IBM+GPXX03ERENV2+1T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"84251067-b212-4355-a9d3-246d91896b90\",\"productName\":\"Probability - The Science of Uncertainty and Data\",\"productSlug\":\"learn/probability/massachusetts-institute-of-technology-probability-the-science-of-uncertainty-and-data\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/84251067-b212-4355-a9d3-246d91896b90-41bac59be40f.jpg\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Math\",\"Computer Science\"],\"partnerName\":[\"Massachusetts Institute of Technology\"],\"partnerKeys\":[\"MITx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/2a73d2ce-c34a-4e08-8223-83bca9d2f01d-d4f180052205.png\",\"fullDescription\":\"$364\",\"shortDescription\":\"\u003cp\u003eBuild foundational knowledge of data science with this introduction to probabilistic models, including random processes and the basic elements of statistical inference -- \u003cem\u003ePart of the MITx MicroMasters program in Statistics and Data Science.\u003c/em\u003e\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eThe basic structure and elements of probabilistic models\u003c/li\u003e\\n\u003cli\u003eRandom variables, their distributions, means, and variances\u003c/li\u003e\\n\u003cli\u003eProbabilistic calculations\u003c/li\u003e\\n\u003cli\u003eInference methods\u003c/li\u003e\\n\u003cli\u003eLaws of large numbers and their applications\u003c/li\u003e\\n\u003cli\u003eRandom processes\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-84251067-b212-4355-a9d3-246d91896b90\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:MITx+6.431x+2T2025\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"124fb823-86b0-4ec1-8892-51496ce3c605\",\"productName\":\"Data Analysis: Statistical Modeling and Computation in Applications\",\"productSlug\":\"learn/data-analysis/massachusetts-institute-of-technology-data-analysis-statistical-modeling-and-computation-in-applications\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/124fb823-86b0-4ec1-8892-51496ce3c605-20c8afdeed4d.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Computer Science\",\"Math\"],\"partnerName\":[\"Massachusetts Institute of Technology\"],\"partnerKeys\":[\"MITx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/2a73d2ce-c34a-4e08-8223-83bca9d2f01d-d4f180052205.png\",\"fullDescription\":\"$365\",\"shortDescription\":\"\u003cp\u003eA hands-on introduction to the interplay between statistics and computation for the analysis of real data. -- \u003cem\u003ePart of the MITx MicroMasters program in Statistics and Data Science.\u003c/em\u003e\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eModel, form hypotheses, perform statistical analysis on real data \u003c/li\u003e\\n\u003cli\u003eUse dimension reduction techniques such as principal component analysis to visualize high-dimensional data and apply this to genomics data\u003c/li\u003e\\n\u003cli\u003eAnalyze networks (e.g. social networks) and use centrality measures to describe the importance of nodes, and apply this to criminal networks\u003c/li\u003e\\n\u003cli\u003eModel time series using moving average, autoregressive and other stationary models for forecasting with financial data\u003c/li\u003e\\n\u003cli\u003eUse Gaussian processes to model environmental data and make predictions\u003c/li\u003e\\n\u003cli\u003eCommunicate analysis results effectively\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-124fb823-86b0-4ec1-8892-51496ce3c605\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:MITx+6.419x+3T2025\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"0bee80b0-99de-4414-9429-c9f02265d8f9\",\"productName\":\"Learning Time Series with Interventions\",\"productSlug\":\"learn/data-analysis-statistics/massachusetts-institute-of-technology-learning-time-series-with-interventions\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/0bee80b0-99de-4414-9429-c9f02265d8f9-456cb0cf9419.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"Massachusetts Institute of Technology\"],\"partnerKeys\":[\"MITx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/2a73d2ce-c34a-4e08-8223-83bca9d2f01d-d4f180052205.png\",\"fullDescription\":\"$366\",\"shortDescription\":\"\u003cp\u003eAn in-depth introduction to time series analysis, from learning structured models to predictions and reinforcement learning, with hands-on projects - \u003cem\u003ePart of the MITx MicroMasters program in Statistics and Data Science.\u003c/em\u003e\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eAnalyze time series through the perspective of Linear Time-invariant (LTI) systems and use methods and tools such as spectral analysis.\u003c/li\u003e\\n\u003cli\u003eModel time series using autoregressive moving average (ARMA) and integrated processes.\u003c/li\u003e\\n\u003cli\u003ePerform prediction, imputation on general time series data using matrix completion methods.\u003c/li\u003e\\n\u003cli\u003eUse various dynamical programming and reinforcement learning algorithms to optimize control and interventions for time series.\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-0bee80b0-99de-4414-9429-c9f02265d8f9\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:MITx+IDS.S24x+2T2025\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"4a081c09-82b6-4c2c-b41c-75e995cafef8\",\"productName\":\"Convex Optimization\",\"productSlug\":\"learn/engineering/stanford-university-convex-optimization\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/4a081c09-82b6-4c2c-b41c-75e995cafef8-8acb7c3ebedb.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Engineering\",\"Math\"],\"partnerName\":[\"Stanford University\"],\"partnerKeys\":[\"StanfordOnline\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/f53a7458-c79b-4524-97cf-28241114230e-e47d44123c3b.png\",\"fullDescription\":\"$367\",\"shortDescription\":\"\u003cp\u003eThis course concentrates on recognizing and solving convex optimization problems that arise in applications. The syllabus includes: convex sets, functions, and optimization problems; basics of convex analysis; least-squares, linear and quadratic programs, semidefinite programming, minimax, extremal volume, and other problems; optimality conditions, duality theory, theorems of alternative, and applications; interior-point methods; applications to signal processing, statistics and machine learning, control and mechanical engineering, digital and analog circuit design, and finance.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eHow to recognize convex optimization problems that arise in applications.\u003c/li\u003e\\n\u003cli\u003eHow to present the basic theory of such problems, concentrating on results that are useful in computation.\u003c/li\u003e\\n\u003cli\u003eA thorough understanding of how such problems are solved, and some experience in solving them.\u003c/li\u003e\\n\u003cli\u003eThe background required to use the methods in your own research work or applications.\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-4a081c09-82b6-4c2c-b41c-75e995cafef8\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:StanfordOnline+SOE-YCVX0001+1T2020\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"77bc8f62-8fbf-411f-9dc3-13069d00a506\",\"productName\":\"Predictive Analytics\",\"productSlug\":\"learn/predictive-analytics/indian-institute-of-management-bangalore-predictive-analytics\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/77bc8f62-8fbf-411f-9dc3-13069d00a506-b2f8769fa3c9.jpg\",\"productType\":\"Course\",\"attributes\":[\"Business \u0026 Management\",\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"Indian Institute of Management Bangalore\"],\"partnerKeys\":[\"IIMBx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/c2e6b3f5-9c1f-41f0-b692-f2173d05a256-7729f0b9d72b.png\",\"fullDescription\":\"$368\",\"shortDescription\":\"Master the tools of predictive analytics in this statistics based analytics course.\",\"productOverview\":\"\u003cul\u003e\u003cli\u003eUnderstand how to use predictive analytics tools to analyze real-life business problems.\u003c/li\u003e\\r\\n\\t\u003cli\u003eDemonstrate case-based practical problems using predictive analytics techniques to interpret model outputs.\u003c/li\u003e\\r\\n\\t\u003cli\u003eLearn regression, logistic regression, and forecasting using software tools such as MS Excel, SPSS, and SAS.\u003c/li\u003e\\r\\n\u003c/ul\u003e\",\"objectId\":\"course-77bc8f62-8fbf-411f-9dc3-13069d00a506\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:IIMBx+QM901x+1T2020\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"a3aa0f39-f4b2-4c36-af1d-14b1da0fba5e\",\"productName\":\"Foundations of Data Science\",\"productSlug\":\"learn/data-science/indian-institute-of-management-bangalore-foundations-of-data-science\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/a3aa0f39-f4b2-4c36-af1d-14b1da0fba5e-9ae008a2e541.png\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"Indian Institute of Management Bangalore\"],\"partnerKeys\":[\"IIMBx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/c2e6b3f5-9c1f-41f0-b692-f2173d05a256-7729f0b9d72b.png\",\"fullDescription\":\"$369\",\"shortDescription\":\"\u003cp\u003e\u003cspan lang=\\\"EN-US\\\"\u003eLearn the fundamental concepts in probability, statistics, optimization and linear algebra which form the foundations for data science.\u003c/span\u003e\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN-US\\\"\u003eDescribe the role of probability theory, optimization and linear algebra in the field of Artificial Intelligence.\u003c/span\u003e\u003cspan lang=\\\"EN-US\\\"\u003e\u003c/span\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN-US\\\"\u003eDefine probability distributions such as binomial and normal and its applications in ML model development.\u003c/span\u003e\u003cspan lang=\\\"EN-US\\\"\u003e\u003c/span\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN-US\\\"\u003eConduct hypothesis tests such as Z test and t-test and how it is used in ML Model development.\u003cbr /\u003e\\n\u003c/span\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN-US\\\"\u003eExplain optimization and linear algebra concepts and their applications in ML and AI.\u003c/span\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN-US\\\"\u003eConduct hypothesis testing, optimization and linear algebra using Excel.\u003c/span\u003e\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-a3aa0f39-f4b2-4c36-af1d-14b1da0fba5e\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:IIMBx+QM202x+1T2021\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"6a32414f-2791-4db3-a308-18450e56c8ac\",\"productName\":\"Guided Project: Get Started with Data Science in Agriculture\",\"productSlug\":\"learn/data-science/ibm-guided-project-get-started-with-data-science-in-agriculture\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/6a32414f-2791-4db3-a308-18450e56c8ac-abed1017ca5c.png\",\"productType\":\"Course\",\"attributes\":[\"Computer Science\"],\"partnerName\":[\"IBM\"],\"partnerKeys\":[\"IBM\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/87b07564-d569-4cfd-bee6-8b0a407acb73-dc33e4b5f353.png\",\"fullDescription\":\"$36a\",\"shortDescription\":\"\u003cp\u003e\u003cspan lang=\\\"EN\\\"\u003eIdeal for beginners with some knowledge of Python and statistics, in this one-hour hands-on guided project, you will learn how to use essential Python tools for statistical analysis of agricultural data and present that data on interactive maps\u003c/span\u003e\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003e\u003cspan lang=\\\"EN\\\"\u003eAfter completing this project, you will be able to: \u003c/span\u003e\u003c/p\u003e\\n\u003cul\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN\\\"\u003eRead a CSV file \u003c/span\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN\\\"\u003eConvert the CSV file to a DataFrame\u003c/span\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN\\\"\u003ePreprocess the data\u003c/span\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN\\\"\u003ePerform statistical analysis of the data and display various summary statistics\u003c/span\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN\\\"\u003eVisualize data using pandas and seaborn \u003c/span\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN\\\"\u003eBuild interactive maps using Plotly\u003c/span\u003e\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-6a32414f-2791-4db3-a308-18450e56c8ac\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:IBM+GPXX03EREN+1T2023\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"48708e7e-0152-4a4b-ad4c-2dadce29c87f\",\"productName\":\"Data Analysis in Social Science — Assessing Your Knowledge.\",\"productSlug\":\"learn/data-analysis/massachusetts-institute-of-technology-data-analysis-in-social-science-assessing-your-knowledge\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/48708e7e-0152-4a4b-ad4c-2dadce29c87f-1b12f52e380e.jpg\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Social Sciences\",\"Economics \u0026 Finance\"],\"partnerName\":[\"Massachusetts Institute of Technology\"],\"partnerKeys\":[\"MITx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/2a73d2ce-c34a-4e08-8223-83bca9d2f01d-d4f180052205.png\",\"fullDescription\":\"$36b\",\"shortDescription\":\"\u003cp\u003eLearn the methods for harnessing and analyzing data to answer questions of cultural, social, economic, and policy interest, and then assess that knowledge-- \u003cem\u003ePart of the MITx MicroMasters program in Statistics and Data Science.\u003c/em\u003e\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003eYou will be tested on your knowledge in the following areas:\u003c/p\u003e\\n\u003cul\u003e\\n\u003cli\u003eIntuition behind probability and statistical analysis\u003c/li\u003e\\n\u003cli\u003eHow to summarize and describe data\u003c/li\u003e\\n\u003cli\u003eA basic understanding of various methods of evaluating social programs\u003c/li\u003e\\n\u003cli\u003eHow to present results in a compelling and truthful way\u003c/li\u003e\\n\u003cli\u003eSkills and tools for using R for data analysis\u003c/li\u003e\\n\u003c/ul\u003e\\n\u003cp\u003eThese are all taught in the content course \u003cem\u003e\u003ca href=\\\"https://mitx-micromasters.zendesk.com/hc/en-us/articles/360035543812-What-is-14-310x-Data-Analysis-for-Social-Scientists-Is-it-a-prerequisite-for-14-310Fx-Data-Analysis-in-Social-Science-Do-I-have-to-pay-for-it-\\\"\u003e14.310x - Data Analysis for Social Scientists\u003c/a\u003e\u003c/em\u003e\u003c/p\u003e\",\"objectId\":\"course-48708e7e-0152-4a4b-ad4c-2dadce29c87f\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:MITx+14.310Fx+2T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"673ea595-1439-4a34-ad71-cc5c995c6fc6\",\"productName\":\"Learning Python for Data Science\",\"productSlug\":\"certificates/professional-certificate/harvardx-learning-python-for-data-science\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/673ea595-1439-4a34-ad71-cc5c995c6fc6-676610944cee.jpeg\",\"productType\":\"Professional Certificate\",\"attributes\":[\"Computer Science\",\"Data Analysis \u0026 Statistics\",\"Math\"],\"partnerName\":[\"Harvard University\"],\"partnerKeys\":[\"HarvardX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/44022f13-20df-4666-9111-cede3e5dc5b6-2cc39992c67a.png\",\"fullDescription\":\"How to read and write Python code.,Functions, arguments, and return values; variables and types; conditionals and Boolean expressions; and loops.,Basic problem-solving mechanism using probability and statistics.,An ability to recognize common fallacies in probability, as well as some of the ways in which statistics are abused or simply misunderstood.,Applications of Python programming for data science, using popular libraries such as Pandas, numPy, matplotlib, and SKLearn.,How Python serves as a foundation for machine learning and artificial intelligence.\",\"shortDescription\":\"Develop skills in Python programming, statistics, and data science to solve complex business challenges and drive your career forward.\",\"productOverview\":\"$36c\",\"objectId\":\"program-673ea595-1439-4a34-ad71-cc5c995c6fc6\",\"productSource\":\"edX\",\"productCategory\":\"Program\",\"activeRunKey\":null,\"childCoursesCount\":3,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"8108acb8-930f-41d9-aa2b-a5ff607d9bcc\",\"productName\":\"Essential quantitative business skills\",\"productSlug\":\"certificates/professional-certificate/tecdemonterreyx-essential-quantitative-business-skills\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/8108acb8-930f-41d9-aa2b-a5ff607d9bcc-7572bc14706f.jpeg\",\"productType\":\"Professional Certificate\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Business \u0026 Management\",\"Language\",\"Economics \u0026 Finance\"],\"partnerName\":[\"Tecnológico de Monterrey\"],\"partnerKeys\":[\"TecdeMonterreyX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/ceb9644c-f8dd-4522-9acd-adb33cbb9b4b-e8152bc6676b.png\",\"fullDescription\":\"You will develop your capacity for quantitative analysis to solve optimization problems.,You will use statistical techniques for data analysis and forecasting of variables in the business environment.,You will analyze the performance of a company from the information contained in its financial statements.,You will gain knowledge about data science and how to apply it in business as a business analyst.\",\"shortDescription\":\"Gain a solid foundation of essential quantitative skills in math, financial accounting, statistics, and data analysis to succeed as a successful decision maker in your professional career\",\"productOverview\":\"$36d\",\"objectId\":\"program-8108acb8-930f-41d9-aa2b-a5ff607d9bcc\",\"productSource\":\"edX\",\"productCategory\":\"Program\",\"activeRunKey\":null,\"childCoursesCount\":3,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"39b62e2f-9859-4a01-9491-265d28e2c46d\",\"productName\":\"Introduction to Probability\",\"productSlug\":\"learn/probability/harvard-university-introduction-to-probability\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/39b62e2f-9859-4a01-9491-265d28e2c46d-d0ebdf5f2f8b.png\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Math\",\"Computer Science\"],\"partnerName\":[\"Harvard University\"],\"partnerKeys\":[\"HarvardX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/44022f13-20df-4666-9111-cede3e5dc5b6-2cc39992c67a.png\",\"fullDescription\":\"\u003cp\u003eProbability and statistics help to bring logic to a world replete with randomness and uncertainty. This course will give you tools needed to understand data, science, philosophy, engineering, economics, and finance. You will learn not only how to solve challenging technical problems, but also how you can apply those solutions in everyday life. \u003c/p\u003e\\n\u003cp\u003eWith examples ranging from medical testing to sports prediction, you will gain a strong foundation for the study of statistical inference, stochastic processes, randomized algorithms, and other subjects where probability is needed.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eLearn probability, an essential language and set of tools for understanding data, randomness, and uncertainty.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eHow to think about uncertainty and randomness\u003c/li\u003e\\n\u003cli\u003eHow to make good predictions\u003c/li\u003e\\n\u003cli\u003eThe story approach to understanding random variables\u003c/li\u003e\\n\u003cli\u003eCommon probability distributions used in statistics and data science\u003c/li\u003e\\n\u003cli\u003eMethods for finding the expected value of a random quantity\u003c/li\u003e\\n\u003cli\u003eHow to use conditional probability to approach complicated problems\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-39b62e2f-9859-4a01-9491-265d28e2c46d\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:HarvardX+STAT110x+2T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"ad919488-848b-42a2-938d-1b88792699f2\",\"productName\":\"Data Analysis for Life Sciences\",\"productSlug\":\"certificates/professional-certificate/harvardx-data-analysis-for-life-sciences\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/ad919488-848b-42a2-938d-1b88792699f2-0e48ae6ac307.jpg\",\"productType\":\"Professional Certificate\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Biology \u0026 Life Sciences\",\"Science\",\"Math\",\"Computer Science\"],\"partnerName\":[\"Harvard University\"],\"partnerKeys\":[\"HarvardX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/44022f13-20df-4666-9111-cede3e5dc5b6-2cc39992c67a.png\",\"fullDescription\":\"Basic statistical concepts and R programming skills for analyzing data in the life sciences.,The underlying math of linear models useful for data analysis in the life sciences.,The techniques used to perform statistical inference on high-throughput and high-dimensional data.,Several techniques widely used in the analysis of high-dimensional data.\",\"shortDescription\":\"Learn how to analyze life sciences data using the R programming language.\",\"productOverview\":\"$36e\",\"objectId\":\"program-ad919488-848b-42a2-938d-1b88792699f2\",\"productSource\":\"edX\",\"productCategory\":\"Program\",\"activeRunKey\":null,\"childCoursesCount\":4,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"482dee71-e4b9-4b42-a47b-3e16bb69e8f2\",\"productName\":\"Data Science\",\"productSlug\":\"masters/micromasters/uc-san-diegox-data-science\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/482dee71-e4b9-4b42-a47b-3e16bb69e8f2-cc94a82dea0f.jpg\",\"productType\":\"MicroMasters\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Computer Science\",\"Math\"],\"partnerName\":[\"The University of California, San Diego\"],\"partnerKeys\":[\"UCSanDiegoX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/c7f335bb-f97c-4472-af09-65ae60197005-7d797d964ddb.png\",\"fullDescription\":\"How to load and clean real-world data,How to make reliable statistical inferences from noisy data,How to use machine learning to learn models for data,How to visualize complex data,How to use Apache Spark to analyze data that does not fit within the memory of a single computer\",\"shortDescription\":\"Gain the critical skills needed to become a data scientist, rated one of the best jobs in America and in demand globally.\",\"productOverview\":\"$36f\",\"objectId\":\"program-482dee71-e4b9-4b42-a47b-3e16bb69e8f2\",\"productSource\":\"edX\",\"productCategory\":\"Program\",\"activeRunKey\":null,\"childCoursesCount\":4,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"c2004e8e-3882-4927-a883-1c5f39a28865\",\"productName\":\"Introduction to Data Science with Python\",\"productSlug\":\"learn/data-science/harvard-university-introduction-to-data-science-with-python\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/c2004e8e-3882-4927-a883-1c5f39a28865-19b5ff5b0248.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Computer Science\"],\"partnerName\":[\"Harvard University\"],\"partnerKeys\":[\"HarvardX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/44022f13-20df-4666-9111-cede3e5dc5b6-2cc39992c67a.png\",\"fullDescription\":\"$370\",\"shortDescription\":\"\u003cp\u003eLearn the concepts and techniques that make up the foundation of data science and machine learning.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eGain hands-on experience and practice using Python to solve real data science challenges\u003c/li\u003e\\n\u003cli\u003ePractice Python programming and coding for modeling, statistics, and storytelling\u003c/li\u003e\\n\u003cli\u003eUtilize popular libraries such as Pandas, numPy, matplotlib, and SKLearn\u003c/li\u003e\\n\u003cli\u003eRun basic machine learning models using Python, evaluate how those models are performing, and apply those models to real-world problems\u003c/li\u003e\\n\u003cli\u003eBuild a foundation for the use of Python in machine learning and artificial intelligence, preparing you for future Python study\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-c2004e8e-3882-4927-a883-1c5f39a28865\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:HarvardX+CS109x+3T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"c654bfe1-69ba-4a2b-8be1-9acb2e846855\",\"productName\":\"Data Science: Inference and Modeling\",\"productSlug\":\"learn/data-science/harvard-university-data-science-inference-and-modeling\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/c654bfe1-69ba-4a2b-8be1-9acb2e846855-3aa512994f13.jpg\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Computer Science\"],\"partnerName\":[\"Harvard University\"],\"partnerKeys\":[\"HarvardX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/44022f13-20df-4666-9111-cede3e5dc5b6-2cc39992c67a.png\",\"fullDescription\":\"$371\",\"shortDescription\":\"\u003cp\u003eLearn inference and modeling, two of the most widely used statistical tools in data analysis.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eThe concepts necessary to define estimates and margins of errors of populations, parameters, estimates and standard errors in order to make predictions about data\u003c/li\u003e\\n\u003cli\u003eHow to use models to aggregatedata from different sources\u003c/li\u003e\\n\u003cli\u003eThe very basics of Bayesian statistics and predictive modeling\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-c654bfe1-69ba-4a2b-8be1-9acb2e846855\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:HarvardX+PH125.4x+3T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"28ae36f9-40f5-4049-8fca-a93b5c486e81\",\"productName\":\"MATLAB Essentials\",\"productSlug\":\"learn/matlab/mathworks-matlab-essentials\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/28ae36f9-40f5-4049-8fca-a93b5c486e81-8b582fcc905c.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Engineering\",\"Data Analysis \u0026 Statistics\",\"Science\"],\"partnerName\":[\"MathWorks\"],\"partnerKeys\":[\"MathWorks\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/816b7ef2-6c19-431b-8152-3c12b307991f-4247159f02c1.png\",\"fullDescription\":\"$372\",\"shortDescription\":\"\u003cp\u003eMaster the essentials of data visualization, data analysis, programming, and app design interactively with MATLAB.\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003eBy the end of this course, you will be able to:\u003c/p\u003e\\n\u003cul\u003e\\n\u003cli\u003eAccess data within a wide range of formats from spreadsheets and text files.\u003c/li\u003e\\n\u003cli\u003eProduce professional-quality visualizations for 2-D, 3-D, geographic, text, and time-series data.\u003c/li\u003e\\n\u003cli\u003ePerform typical analysis tasks such as group statistics or processing data.\u003c/li\u003e\\n\u003cli\u003eCreate animations to visualize changes over time.\u003c/li\u003e\\n\u003cli\u003eShare work with colleagues for collaboration.\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-28ae36f9-40f5-4049-8fca-a93b5c486e81\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:MathWorks+intro_matlab+2T2021\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"95f61afe-f3d7-4782-8210-618e9080bada\",\"productName\":\"Unlocking Investment and Finance in Emerging Markets and Developing Economies (EMDEs)\",\"productSlug\":\"learn/finance/world-bank-group-unlocking-investment-and-finance-in-emerging-markets-and-developing-economies-emdes\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/95f61afe-f3d7-4782-8210-618e9080bada-193ed45f47d8.jpg\",\"productType\":\"Course\",\"attributes\":[\"Economics \u0026 Finance\",\"Social Sciences\"],\"partnerName\":[\"World Bank Group\"],\"partnerKeys\":[\"WBGx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/3ca455dc-4c90-4097-9203-d647e3e70771-9d3ece650b89.png\",\"fullDescription\":\"\u003cp\u003eBack by popular demand, join the 49,000 participants from 198 countries and territories who signed up for the first two editions of this course delivered by the World Bank Group. \u003c/p\u003e\\r\\n\u003cp\u003eThis course assesses how to unlock investment and finance of all kinds – international, domestic, public and private - including the $100 trillion in assets under management by institutional investors globally, to achieve the SDGs by 2030. Progress to date will be reviewed and participants will be invited to discuss additional actions needed to accelerate investments and finance in EMDEs.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eTo achieve the Sustainable Development Goals (SDGs) by 2030, an estimated $4.5 trillion per year in additional investment and finance in EMDEs will need to be mobilized. This free online course assesses global efforts and innovations by international investors, multilateral development banks and policymakers to unlock massive investment opportunities in EMDEs, while also tackling some of the world’s most pressing development challenges of our time.\u003c/p\u003e\",\"productOverview\":\"$373\",\"objectId\":\"course-95f61afe-f3d7-4782-8210-618e9080bada\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:WBGx+EMDE01x+2T2019\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"3b678477-c397-4840-808e-57e58b8758f1\",\"productName\":\"Statistical Inference and Modeling for High-throughput Experiments\",\"productSlug\":\"learn/statistics/harvard-university-statistical-inference-and-modeling-for-high-throughput-experiments\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/3b678477-c397-4840-808e-57e58b8758f1-544e05250e2c.jpg\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Biology \u0026 Life Sciences\",\"Science\"],\"partnerName\":[\"Harvard University\"],\"partnerKeys\":[\"HarvardX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/44022f13-20df-4666-9111-cede3e5dc5b6-2cc39992c67a.png\",\"fullDescription\":\"$374\",\"shortDescription\":\"\u003cp\u003eA focus on the techniques commonly used to perform statistical inference on high throughput data.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eOrganizing high throughput data\u003c/li\u003e\\n\u003cli\u003eMultiple comparison problem\u003c/li\u003e\\n\u003cli\u003eFamily Wide Error Rates\u003c/li\u003e\\n\u003cli\u003eFalse Discovery Rate\u003c/li\u003e\\n\u003cli\u003eError Rate Control procedures\u003c/li\u003e\\n\u003cli\u003eBonferroni Correction\u003c/li\u003e\\n\u003cli\u003eq-values\u003c/li\u003e\\n\u003cli\u003eStatistical Modeling\u003c/li\u003e\\n\u003cli\u003eHierarchical Models and the basics of Bayesian Statistics\u003c/li\u003e\\n\u003cli\u003eExploratory Data Analysis for High throughput data\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-3b678477-c397-4840-808e-57e58b8758f1\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:HarvardX+PH525.3x+3T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"b8fedeb1-8385-4faa-8018-bad4132f304b\",\"productName\":\"Critical Thinking: How to Develop Critical Thinking Skills\",\"productSlug\":\"learn/critical-thinking-skills/boxplay-critical-thinking-how-to-develop-critical-thinking-skills\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/b8fedeb1-8385-4faa-8018-bad4132f304b-cf1bdb92748b.png\",\"productType\":\"Course\",\"attributes\":[\"Communication\"],\"partnerName\":[\"BoxPlay\"],\"partnerKeys\":[\"BoxPlay\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/165092b7-5a47-41bd-8109-58e2f088c44f-50f67697a302.png\",\"fullDescription\":\"\u003cp\u003e\u003cstrong\u003eBreak through your limits\u003c/strong\u003e\u003c/p\u003e\\n\u003cp\u003eCritical thinking is a valuable everyday skill that can save time, money, and resources.\u003c/p\u003e\\n\u003cp\u003eIn this course, you will learn about the different thinking styles and how you can use critical thinking to enhance communication, collaboration, management, and problem-solving skills.\u003c/p\u003e\\n\u003cp\u003e\u003cstrong\u003eMove beyond bias\u003c/strong\u003e\u003c/p\u003e\\n\u003cp\u003eHelp uncover limiting beliefs that may be holding you back from achieving your goals.\u003c/p\u003e\\n\u003cp\u003e\u003cstrong\u003eBuild self awareness\u003c/strong\u003e\u003c/p\u003e\\n\u003cp\u003eAchieve greater success by understanding what drives your decisions. Learn the traits, habits and behaviors that nurture growth.\u003c/p\u003e\\n\u003cp\u003e\u003cstrong\u003eLean into problems\u003c/strong\u003e\u003c/p\u003e\\n\u003cp\u003eMaster critical thinking by learning how to set an intention,carry out information analysis and implement a plan of action. \u003c/p\u003e\\n\u003cp\u003e\u003cstrong\u003eMaximize collaboration\u003c/strong\u003e\u003c/p\u003e\\n\u003cp\u003eLearn the key skills for any successful team: how to identify and communicate challenges and find solutions that work for everyone.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eSteer away from reactive thinking and onto the path of strategic decision-making.\u003c/p\u003e\",\"productOverview\":\"$375\",\"objectId\":\"course-b8fedeb1-8385-4faa-8018-bad4132f304b\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:BoxPlay+2.0X+1T2025\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"10bf847e-f36e-4c75-8097-9c2f6f86fc57\",\"productName\":\"Analyzing Data with R\",\"productSlug\":\"learn/data-analysis/ibm-analyzing-data-with-r\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/10bf847e-f36e-4c75-8097-9c2f6f86fc57-15797284e311.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"IBM\"],\"partnerKeys\":[\"IBM\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/87b07564-d569-4cfd-bee6-8b0a407acb73-dc33e4b5f353.png\",\"fullDescription\":\"$376\",\"shortDescription\":\"\u003cp\u003eR is the key that opens the door between the problems you want to solve with data and the answers you need. This course walks you through the process of answering questions through data.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003e\\n\u003cp\u003ePrepare data for analysis by handling missing values, formatting and normalizing data, binning, and turning categorical values into numeric values.\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eConduct exploratory data analysis using descriptive statistics, data grouping, analysis of variance (ANOVA), and correlation statistics.\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eDevelop a predictive model using various regression methods.\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eEvaluate a model for overfitting and underfitting conditions and tune its performance using regularization and grid search.\u003c/p\u003e\\n\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-10bf847e-f36e-4c75-8097-9c2f6f86fc57\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:IBM+DA0151EN+2T2021\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"ecbc190b-3d69-4da4-b5e9-9f4bafe6d23e\",\"productName\":\"Introduction to Lean Six Sigma for Sustainable and Resilient Supply Chains\",\"productSlug\":\"learn/supply-chain-management/international-supply-chain-education-alliance-introduction-to-lean-six-sigma-for-sustainable-and-resilient-supply-chains\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/ecbc190b-3d69-4da4-b5e9-9f4bafe6d23e-9a9933ac2c45.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Business \u0026 Management\",\"Engineering\"],\"partnerName\":[\"International Supply Chain Education Alliance\"],\"partnerKeys\":[\"ISCEA\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/e1f70279-dab1-436b-b87d-2aa4c1c3c3b8-2a7a6512dd73.png\",\"fullDescription\":\"$377\",\"shortDescription\":\"\u003cp\u003eBecome a Lean Six Sigma Yellow Belt, well versed in the techniques of Six Sigma, its metrics, and methodologies including but not limited to DMAIC (Define, Measure, Analyze, Improve, and Control), RCA (Root Cause Analysis), SIPOC (Suppliers, Inputs, Processes, Outputs, and Customers), and applications of Lean Six Sigma in Supply Chain Process Improvement.\u003c/p\u003e\\n\u003cp\u003ePart of ISCEA CLSSYB - Certified Lean Six Sigma Yellow Belt Certification and a stepping-stone to the Green and Black Belt Lean Six Sigma Certifications.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eHow Six Sigma began and its relevance to business processes, quality management, and optimization\u003c/li\u003e\\n\u003cli\u003eHow to utilize Six Sigma Methodology and differentiate MAIC to DMAIC Methodology\u003c/li\u003e\\n\u003cli\u003eHow to identify which Gurus supported Six Sigma principles such as Financials, Management Accountability, and 4 Absolutes of Quality\u003c/li\u003e\\n\u003cli\u003eApply Quality Standards that include Six Sigma\u003c/li\u003e\\n\u003cli\u003eUtilize Six Sigma to seek macro-level or micro-level specific improvement\u003c/li\u003e\\n\u003cli\u003eHow to Apply the Lean to Six Sigma and understand what is included in “Lean” to earn a Lean Six Sigma Certificate\u003c/li\u003e\\n\u003cli\u003eTo define the Six Sigma Main Steps and Phases\u003c/li\u003e\\n\u003cli\u003eTo Identify examples/case studies of the Cost of Poor Quality (COPQ) and which statistics do not measure specific measurement\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-ecbc190b-3d69-4da4-b5e9-9f4bafe6d23e\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:ISCEA+CLSSYB01+3T2022\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"7212f4a3-c964-41bb-a932-60b43a6ee921\",\"productName\":\"Active Listening: How to Be an Effective Communicator\",\"productSlug\":\"learn/business-communications/boxplay-active-listening-how-to-be-an-effective-communicator\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/7212f4a3-c964-41bb-a932-60b43a6ee921-fe78106b6227.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Communication\"],\"partnerName\":[\"BoxPlay\"],\"partnerKeys\":[\"BoxPlay\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/165092b7-5a47-41bd-8109-58e2f088c44f-50f67697a302.png\",\"fullDescription\":\"$378\",\"shortDescription\":\"\u003cp\u003eExplore the benefits of active listening and unlock the secret to successful communication in your professional and personal life.\u003c/p\u003e\",\"productOverview\":\"$379\",\"objectId\":\"course-7212f4a3-c964-41bb-a932-60b43a6ee921\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:BoxPlay+1.0X+1T2025\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"723999e6-4b59-4f7c-b3cb-fb4ec59160c7\",\"productName\":\"Sensor Fusion and Non-linear Filtering for Automotive Systems\",\"productSlug\":\"learn/mechanical-engineering/chalmers-university-of-technology-sensor-fusion-and-non-linear-filtering-for-automotive-systems\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/723999e6-4b59-4f7c-b3cb-fb4ec59160c7-c0188b59d770.jpg\",\"productType\":\"Course\",\"attributes\":[\"Engineering\"],\"partnerName\":[\"Chalmers University of Technology\"],\"partnerKeys\":[\"ChalmersX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/6233178f-b703-4c85-bcea-3b3c55ef9289-8c26535e6e82.png\",\"fullDescription\":\"$37a\",\"shortDescription\":\"\u003cp\u003eLearn fundamental algorithms for sensor fusion and non-linear filtering with application to automotive perception systems.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eBasics of Bayesian statistics and recursive estimation theory\u003c/li\u003e\\n\u003cli\u003eDescribe and model common sensors, and their measurements\u003c/li\u003e\\n\u003cli\u003eCompare typical motion models used for positioning, in order to know when to use them in practical problems\u003c/li\u003e\\n\u003cli\u003eDescribe the essential properties of the Kalman filter (KF) and apply it on linear state space models\u003c/li\u003e\\n\u003cli\u003eImplement key nonlinear filters in Matlab, in order to solve problems with nonlinear motion and/or sensor models\u003c/li\u003e\\n\u003cli\u003eSelect a suitable filter method by analysing the properties and requirements in an application\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-723999e6-4b59-4f7c-b3cb-fb4ec59160c7\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:ChalmersX+ChM015x+1T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"23fd2c3f-3e35-4b08-8165-dddd396f804b\",\"productName\":\"Data Analytics Foundations: A Beginner’s Guide\",\"productSlug\":\"learn/data-analytics/boxplay-data-analytics-foundations-a-beginners-guide\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/23fd2c3f-3e35-4b08-8165-dddd396f804b-80c978fa5fd1.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"BoxPlay\"],\"partnerKeys\":[\"BoxPlay\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/165092b7-5a47-41bd-8109-58e2f088c44f-50f67697a302.png\",\"fullDescription\":\"$37b\",\"shortDescription\":\"\u003cp\u003eUnderstand how to drive your decision making and innovate using data analysis.\u003c/p\u003e\",\"productOverview\":\"$37c\",\"objectId\":\"course-23fd2c3f-3e35-4b08-8165-dddd396f804b\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:BoxPlay+4.1X+1T2025\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"e9371883-431c-4734-b93a-9bba8a7ef730\",\"productName\":\"Macroeconomics - The Basics\",\"productSlug\":\"learn/macroeconomics/doane-university-macroeconomics-the-basics\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/e9371883-431c-4734-b93a-9bba8a7ef730-30690e8723e6.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Economics \u0026 Finance\",\"Business \u0026 Management\"],\"partnerName\":[\"Doane University\"],\"partnerKeys\":[\"DoaneX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/e9e90c9f-85ec-4ae5-bea8-2ecae2258446-85b6b8c0a212.png\",\"fullDescription\":\"\u003cp\u003eThe successful operation of modern economics depends on the participation of economically literate citizens. An economically literate citizen should be able to identify problems, gather relevant information, weigh costs and benefits, analyze incentives, and make choices. Students successfully completing this course will be able to comprehend and use basic economic concepts, interpret major macroeconomic statistics, explain how both monetary and fiscal policy can be used to stabilize the economy, and discuss macroeconomic issues.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eExplore macroeconomics and its current and future trends.\u003c/p\u003e\\n\u003cp\u003e\u003cstrong\u003eThis course is eligible for Audit and Verified Certificate only.\u003c/strong\u003e\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eComprehend and use basic economic concepts including supply and demand.\u003c/li\u003e\\n\u003cli\u003eComprehend the variations in different economic systems.\u003c/li\u003e\\n\u003cli\u003eCalculate and interpret major macroeconomic statistics including GDP, unemployment rates, inflation rates and poverty rates.\u003c/li\u003e\\n\u003cli\u003eAnalyze and evaluate the use of both monetary and fiscal policy to stabilize the economy, including taxing policies.\u003c/li\u003e\\n\u003cli\u003eExplain examples of major macroeconomic challenges and current trends as well as future trends as consumers and companies.\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-e9371883-431c-4734-b93a-9bba8a7ef730\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:DoaneX+ECON-203x+2T2022\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"9573ebb3-453c-458a-94bd-27de191aa7ab\",\"productName\":\"Data Science For Business Professionals\",\"productSlug\":\"learn/business-management/institute-of-product-leadership-ipl-data-science-for-business-professionals\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/9573ebb3-453c-458a-94bd-27de191aa7ab-28b417b3e618.png\",\"productType\":\"Course\",\"attributes\":[\"Business \u0026 Management\",\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"Institute of Product Leadership (IPL)\"],\"partnerKeys\":[\"IPL\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/1e2adb13-5e26-4e31-9a99-b3df1fed0618-e5efa94f5060.png\",\"fullDescription\":\"\u003cp\u003eIn today’s fast-paced digital economy, \u003cstrong\u003edata\u003c/strong\u003e is at the heart of every decision, making \u003cstrong\u003eData Science\u003c/strong\u003e one of the most in-demand fields. Whether you are looking to enter the field of \u003cstrong\u003eData Science\u003c/strong\u003e , improve your business \u003cstrong\u003eanalysis\u003c/strong\u003e skills, or apply \u003cstrong\u003eMachine Learning\u003c/strong\u003e techniques to solve business challenges, this course will provide you with the essential knowledge to excel.\u003c/p\u003e\\n\u003cp\u003eThe \\\"Statistics for Data Science and Business Analysis Bootcamp\\\" offers a comprehensive journey through the foundations of \u003cstrong\u003estatistical analysis\u003c/strong\u003e , \u003cstrong\u003eMachine Learning\u003c/strong\u003e , and business decision-making. By the end of this course, you’ll be able to leverage \u003cstrong\u003estatistics\u003c/strong\u003e , \u003cstrong\u003edata science techniques\u003c/strong\u003e , and \u003cstrong\u003emachine learning models\u003c/strong\u003e to extract insights from data, enabling better decision-making and strategic growth for any business.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eUnlock Advanced Statistical Techniques for Data Science and Business Analysis\u003c/p\u003e\",\"productOverview\":\"$37d\",\"objectId\":\"course-9573ebb3-453c-458a-94bd-27de191aa7ab\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:IPL+PL416+3T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"df0769a9-8b89-44ae-b223-4e9de3905b38\",\"productName\":\"UX Data Analysis\",\"productSlug\":\"learn/ux-design/hec-montreal-ux-data-analysis\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/df0769a9-8b89-44ae-b223-4e9de3905b38-b5f92c09ad8d.png\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Computer Science\",\"Social Sciences\"],\"partnerName\":[\"HEC Montréal\"],\"partnerKeys\":[\"HECMontrealX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/79da26e5-dbaf-400a-906c-33c51b87ea83-d1826ad9c521.png\",\"fullDescription\":\"\u003cp\u003eDo big data and UX speak to you? This MOOC will give you the methods and tools to analyze the whole spectrum of data we handle in UX, from qualitative user research and quantitative user testing data analysis to big data Web analytics.\u003c/p\u003e\\n\u003cp\u003eYou will be able to leverage insights from this data to make empirically-based recommendations towards frictionless, optimal user experiences.\u003c/p\u003e\\n\u003cp\u003eTaught by award-winning faculty members, this course is an introduction to the statistical methods and tools useful to UX data analysis. No need to be a math whiz, this course was designed to be accessible to everyone.\u003c/p\u003e\\n\u003cp\u003eNo previous stats knowledge is needed. You will need to use MS Excel to do the final exam and complete the certification. Join us in the journey to unlock the insights of UX data, through the UX Design and Evaluation MicroMasters, or as an individual course.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eBecome a UX data scientist! From qualitative data analysis to big data Web analytics, you will be able to leverage insights from data to make empirically-based recommendations.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eDescriptive Statistics\u003c/li\u003e\\n\u003cli\u003eStudy Design\u003c/li\u003e\\n\u003cli\u003eBias Sources\u003c/li\u003e\\n\u003cli\u003eHypothesis Testing\u003c/li\u003e\\n\u003cli\u003eMeans of Comparison\u003c/li\u003e\\n\u003cli\u003eTwo-Way ANOVA\u003c/li\u003e\\n\u003cli\u003eApplying it all to UX\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-df0769a9-8b89-44ae-b223-4e9de3905b38\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:HECMontrealX+UXe06x.1+2T2021\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"b2c517d0-7064-4afa-a7bb-448c024c0b60\",\"productName\":\"Macroeconomic Management in Resource-Rich Countries\",\"productSlug\":\"learn/macroeconomics/the-international-monetary-fund-macroeconomic-management-in-resource-rich-countries\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/b2c517d0-7064-4afa-a7bb-448c024c0b60-5f02e265d455.jpg\",\"productType\":\"Course\",\"attributes\":[\"Economics \u0026 Finance\"],\"partnerName\":[\"The International Monetary Fund\"],\"partnerKeys\":[\"IMFx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/a655d538-b1e8-4f66-a99d-cf4682d2c17b-111a45d036cc.png\",\"fullDescription\":\"$37e\",\"shortDescription\":\"\u003cp\u003eWhat macroeconomic policy issues and challenges confront resource-rich countries?This course explores how policy-makers cope with the finite nature of the resources and the volatility of prices.\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003e• To assess how economic performance in RRCs might differ from other countries\u003cbr /\u003e\\n• To evaluate the design of an appropriate fiscal regime and fiscal framework in resource-rich countries\u003cbr /\u003e\\n• To apply simple fiscal benchmarks and fiscal rules to determine how much governments should spend and save from the sale of natural resources, and understand the modalities for savings such as a sovereign wealth fund \u003cbr /\u003e\\n• To identify appropriate macroeconomic policy responses to commodity price shocks \u003cbr /\u003e\\n• To apply key principles and good practices to enhance fiscal transparency and statistics in resource-rich countries\u003c/p\u003e\",\"objectId\":\"course-b2c517d0-7064-4afa-a7bb-448c024c0b60\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:IMFx+MRCx+2T2024a\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"325ce335-fb5f-4b2a-a7fa-18a4566fbb21\",\"productName\":\"Negotiation: How to Improve Your Negotiation Skills\",\"productSlug\":\"learn/negotiations/boxplay-negotiation-how-to-improve-your-negotiation-skills\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/325ce335-fb5f-4b2a-a7fa-18a4566fbb21-5d21d195bb3d.png\",\"productType\":\"Course\",\"attributes\":[\"Communication\"],\"partnerName\":[\"BoxPlay\"],\"partnerKeys\":[\"BoxPlay\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/165092b7-5a47-41bd-8109-58e2f088c44f-50f67697a302.png\",\"fullDescription\":\"$37f\",\"shortDescription\":\"\u003cp\u003eLearn the techniques to communicate with ease and negotiate with confidence.\u003c/p\u003e\",\"productOverview\":\"$380\",\"objectId\":\"course-325ce335-fb5f-4b2a-a7fa-18a4566fbb21\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:BoxPlay+3.0X+1T2025\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"0a8812b7-7543-4678-a518-e5735aca8edd\",\"productName\":\"R Data Science Capstone Project\",\"productSlug\":\"learn/r-programming/ibm-r-data-science-capstone-project\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/0a8812b7-7543-4678-a518-e5735aca8edd-d8e6b9ec08c2.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"IBM\"],\"partnerKeys\":[\"IBM\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/87b07564-d569-4cfd-bee6-8b0a407acb73-dc33e4b5f353.png\",\"fullDescription\":\"\u003cp\u003eIn this capstone course, you will apply various data science skills and techniques that you have learned as part of the previous courses in the IBM Data Science with R or IBM Data Analytics with Excel and R Professional Certificate Programs.\u003c/p\u003e\\n\u003cp\u003eIn this capstone project, you will take on the role of a data scientist who has recently joined an organization and is presented with a challenge that requires data collection, analysis, basic hypothesis testing, visualization, and modeling to be performed on real-world datasets. You will collect and understand data from multiple sources, conduct data wrangling and preparation with Tidyverse, perform exploratory data analysis with SQL, Tidyverse and ggplot2, model data with linear regression, create charts and plots to visualize the data, and build an interactive dashboard.\u003c/p\u003e\\n\u003cp\u003eThe project will culminate with a presentation of your data analysis report, with an executive summary for the various stakeholders in the organization.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eApply various data analysis and visualization skills and techniques you have learned by taking on the role of a data scientist working with real-world data sets.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003e\\n\u003cp\u003ePrepare data for modelling by handling missing values, formatting and normalizing data, binning, and turning categorical values into numeric values.\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eDo exploratory data analysis using descriptive statistics, data grouping, data analysis and correlation statistics.\u003c/p\u003e\\n\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-0a8812b7-7543-4678-a518-e5735aca8edd\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:IBM+RP0321EN+3T2021\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"f42e4f6a-fa12-4f94-9b75-0c3e528d01b4\",\"productName\":\"Data Analytics: A Fast-Track Guide to Becoming Data-Led\",\"productSlug\":\"learn/data-analysis/boxplay-data-analytics-a-fast-track-guide-to-becoming-data-led\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/f42e4f6a-fa12-4f94-9b75-0c3e528d01b4-a4c8e7628627.png\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"BoxPlay\"],\"partnerKeys\":[\"BoxPlay\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/165092b7-5a47-41bd-8109-58e2f088c44f-50f67697a302.png\",\"fullDescription\":\"$381\",\"shortDescription\":\"\u003cp\u003eGain essential data literacy skills and drive your decision making using data-led analysis.\u003c/p\u003e\",\"productOverview\":\"$382\",\"objectId\":\"course-f42e4f6a-fa12-4f94-9b75-0c3e528d01b4\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:BoxPlay+4.2X+1T2025\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"e686b8a2-06ca-4c79-a5d1-6a45034d6e18\",\"productName\":\"Making a Difference Ⅰ: Evidence-based Impact\",\"productSlug\":\"learn/ethics/tel-aviv-university-making-a-difference-i-evidence-based-impact\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/e686b8a2-06ca-4c79-a5d1-6a45034d6e18-d5096af5e31d.png\",\"productType\":\"Course\",\"attributes\":[\"Ethics\",\"Economics \u0026 Finance\",\"Health \u0026 Safety\"],\"partnerName\":[\"Tel Aviv University\"],\"partnerKeys\":[\"TAUx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/0e337af8-3643-496e-be9e-fb91274a505d-19990d293b60.png\",\"fullDescription\":\"$383\",\"shortDescription\":\"\u003cp\u003eLearn how you can make a difference at a global scale using reliable evidence, careful evaluation, and your unique skillset.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003e\u003cp dir=\\\"ltr\\\"\u003eAnalytical tools for evaluating what works and what doesn’t.\u003c/p\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cp dir=\\\"ltr\\\"\u003eFrameworks for prioritizing different options for making a difference.\u003c/p\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cp dir=\\\"ltr\\\"\u003eTechniques for critical thinking, decision-making, and research.\u003c/p\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cp dir=\\\"ltr\\\"\u003eConcrete opportunities in promising cause areas you can contribute to.\u003c/p\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cp dir=\\\"ltr\\\"\u003eEthical and philosophical considerations when trying to improve the world.\u003c/p\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cp dir=\\\"ltr\\\"\u003eInsights from philosophy, medicine, economics, psychology, statistics and more.\u003c/p\u003e\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-e686b8a2-06ca-4c79-a5d1-6a45034d6e18\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:TAUx+MaD101+1T2025\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"9bb81b20-d642-414c-9ddf-d098a971605f\",\"productName\":\"Making a Difference Ⅱ: High Stakes\",\"productSlug\":\"learn/ethics/tel-aviv-university-making-a-difference-ii-high-stakes\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/9bb81b20-d642-414c-9ddf-d098a971605f-e7fc887045b9.png\",\"productType\":\"Course\",\"attributes\":[\"Ethics\",\"Economics \u0026 Finance\",\"Health \u0026 Safety\"],\"partnerName\":[\"Tel Aviv University\"],\"partnerKeys\":[\"TAUx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/0e337af8-3643-496e-be9e-fb91274a505d-19990d293b60.png\",\"fullDescription\":\"$384\",\"shortDescription\":\"\u003cp\u003eLearn how you can make a difference at a global scale by focusing relentlessly on the largest risks and harms, prioritizing ambitiously, and leveraging your unique set of skills.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003e\u003cp dir=\\\"ltr\\\"\u003eStrategies for executing ambitious high-impact plans.\u003c/p\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cp dir=\\\"ltr\\\"\u003eFrameworks for prioritizing different options for making a difference.\u003c/p\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cp dir=\\\"ltr\\\"\u003eTechniques for critical thinking, decision-making, and research.\u003c/p\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cp dir=\\\"ltr\\\"\u003eStrategies for directing your career to successfully help others at scale.\u003c/p\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cp dir=\\\"ltr\\\"\u003eConcrete opportunities in promising cause areas you can contribute to.\u003c/p\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cp dir=\\\"ltr\\\"\u003eInsights from economics, statistics, the natural sciences, technology, and more.\u003c/p\u003e\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-9bb81b20-d642-414c-9ddf-d098a971605f\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:TAUx+MaD102+1T2025\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"beff0184-a33e-49ec-9d93-fad3d53cdebb\",\"productName\":\"Business Intelligence and Data Analytics\",\"productSlug\":\"learn/business-intelligence/arizona-state-university-asu-business-intelligence-and-data-analytics\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/beff0184-a33e-49ec-9d93-fad3d53cdebb-9c4ef2da2d20.png\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"Arizona State University\"],\"partnerKeys\":[\"ASUx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/766a3716-f962-425b-b56e-e214c019b229-1fd2c1d49461.png\",\"fullDescription\":\"\u003cp\u003eThis course features interactive videos to help you understand both the analytical concepts and the software. This course contains a capstone project, in which you will apply the concepts taught using a separate data source; this realistic project gives you the practice and confidence necessary to connect, explore, and analyze data sources into the future.\u003cbr /\u003e\\nThis course is also part of a certificate: \u003c/p\u003e\\n\u003cp\u003eData Analytics and Visualization Certificate\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eUsing Excel, learn the basics of business analytics and the importance of the role to obtaining crucial information for the organization.\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003eIn this course, you will learn the basics of business analytics using Excel. You'll start by learning all about business analytics, including the importance of the role of obtaining crucial information for the organization. Then, you will begin working on a dataset in Excel, and learn essential tasks such as sorting and filtering the data to learn more about the business. Finally, learn how to analyze both categorical and numeric data: for categorical data, learn how to aggregate data using Excel's Pivot Table feature; for numeric data, learn the basics of analyzing distributions using statistics and common visualizations such as histograms and boxplots. By the end of the course, you will have hands-on practice in preparing data for analysis and thoroughly analyzing a dataset using descriptive analytic techniques.\u003c/p\u003e\",\"objectId\":\"course-beff0184-a33e-49ec-9d93-fad3d53cdebb\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:ASUx+CCANSR101.+1T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"13b90244-e135-4b2a-9b1a-7c736256c7ba\",\"productName\":\"AP® Psychology - Course 1: What is Psychology?\",\"productSlug\":\"learn/psychology/university-of-british-columbia-ap-r-psychology-course-1-what-is-psychology\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/13b90244-e135-4b2a-9b1a-7c736256c7ba-a698f9092a1a.jpg\",\"productType\":\"Course\",\"attributes\":[\"Social Sciences\",\"Biology \u0026 Life Sciences\",\"Science\"],\"partnerName\":[\"University of British Columbia\"],\"partnerKeys\":[\"UBCx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/eac96c61-1462-4084-a0b2-12525b74a9e1-8377159ff774.png\",\"fullDescription\":\"$385\",\"shortDescription\":\"\u003cp\u003eLearn about the history and research methods of psychology.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eWhat psychology is and is not\u003c/li\u003e\\n\u003cli\u003eThe history of the field of psychology and the state of contemporary psychology\u003c/li\u003e\\n\u003cli\u003eResearch-based study skills\u003c/li\u003e\\n\u003cli\u003eThe research methods of psychology, including descriptive methods, correlational methods and experimental methods\u003c/li\u003e\\n\u003cli\u003eThe basics of descriptive and inferential statistics\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-13b90244-e135-4b2a-9b1a-7c736256c7ba\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:UBCx+PSYC.1x+3T2018\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"9836c9dd-0582-4236-afd0-b3c38ecffded\",\"productName\":\"Math for Machine Learning with Python\",\"productSlug\":\"learn/math/edx-math-for-machine-learning-with-python\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/9836c9dd-0582-4236-afd0-b3c38ecffded-87df037a6a27.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Math\"],\"partnerName\":[\"edX\"],\"partnerKeys\":[\"edX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/4f8cb2c9-589b-4d1e-88c1-b01a02db3a9c-42611123eb6a.png\",\"fullDescription\":\"\u003cp dir=\\\"ltr\\\"\u003eWant to study machine learning or artificial intelligence, but worried that your math skills may not be up to it? Do words like “algebra”and “calculus” fill you with dread? Has it been so long since you studied math at school that you’ve forgotten much of what you learned in the first place?\u003c/p\u003e\\n\u003cp dir=\\\"ltr\\\"\u003e\\n\\nYou’re not alone. Machine learning and AI are built on mathematical principles like Calculus, Linear Algebra, Probability, Statistics, and Optimization; and many would-be AI practitioners find this daunting. This course is not designed to make you a mathematician. Rather, it aims to help you learn some essential foundational concepts and the notation used to express them. By leveraging the power of Python, the course provides a hands-on approach to working with data and applying the techniques you’ve learned.\u003c/p\u003e\\n\u003cp dir=\\\"ltr\\\"\u003e\\n\\nThis course includes content authored by Microsoft Corporation. Copyright 2020-2023 Microsoft Corporation. All Rights Reserved.\u003c/p\u003e\",\"shortDescription\":\"\u003cp dir=\\\"ltr\\\"\u003eLearn the essential mathematical foundations for machine learning and artificial intelligence.\u003c/p\u003e\",\"productOverview\":\"\u003cp dir=\\\"ltr\\\"\u003eAfter completing this course, you will be familiar with the following mathematical concepts and techniques:\u003c/p\u003e\\n\\n\u003cul\u003e\\n\u003cli\u003e\u003cp dir=\\\"ltr\\\"\u003eEquations, Functions, and Graphs\u003c/p\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cp dir=\\\"ltr\\\"\u003eDifferentiation and Optimization\u003c/p\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cp dir=\\\"ltr\\\"\u003eVectors and Matrices\u003c/p\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cp dir=\\\"ltr\\\"\u003eStatistics and Probability\u003c/p\u003e\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-9836c9dd-0582-4236-afd0-b3c38ecffded\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:edX+OC-math-ml-python+3T2023\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"453c40e2-bc62-4122-b3b8-b77a3dddf06a\",\"productName\":\"Data Analytics Methods\",\"productSlug\":\"learn/data-analysis/arizona-state-university-asu-data-analytics-methods\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/453c40e2-bc62-4122-b3b8-b77a3dddf06a-380c143ccee0.png\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"Arizona State University\"],\"partnerKeys\":[\"ASUx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/766a3716-f962-425b-b56e-e214c019b229-1fd2c1d49461.png\",\"fullDescription\":\"\u003cp\u003eThis course features interactive videos to help you understand both the analytical concepts and the software. This course contains a capstone project, in which learners will apply the concepts taught using a separate data source; this realistic project gives learners the practice and confidence necessary to connect, explore, and analyze data sources into the future.\u003cbr /\u003e\\nThis course is also part of a certificate: \u003c/p\u003e\\n\u003cp\u003eData Analytics and Visualization Certificate\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eIn Data Analytics Methods, learn all about predictive modeling for a business setting.\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003eThe types of algorithms covered are used for uncovering more complex business insights than possible using descriptive statistics (of the type covered in Courses 1 and 2). By learning how to build a predictive model in Python, you will gain the capability to better describe the relationships between multiple variables in a dataset. While typically this content depends on an advanced understanding of statistics, this course teaches how to build and interpret models without needing a statistics prerequisite by focusing on the most essential aspects of predictive modeling.\u003c/p\u003e\",\"objectId\":\"course-453c40e2-bc62-4122-b3b8-b77a3dddf06a\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:ASUx+CCANSR201.+1T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"0bce8010-2c91-43be-a5a9-5573c5a98209\",\"productName\":\"Biostatistics for Big Data Applications\",\"productSlug\":\"learn/biostatistics/the-university-of-texas-medical-branch-biostatistics-for-big-data-applications\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/0bce8010-2c91-43be-a5a9-5573c5a98209-381a8d59de47.jpg\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"The University of Texas Medical Branch\"],\"partnerKeys\":[\"UTMBx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/c5f43512-492c-44ca-bafe-f37208963775-1717be393368.png\",\"fullDescription\":\"\u003cp\u003eThis course provides a broad foundation of statistical terms and concepts as well as an introduction to the R statistical software package. The topics covered are fundamental components of biostatistical methods used in both omics and population health research.\u003c/p\u003e\\n\u003cp\u003eWorking with biomedical big data presents many challenges; familiarity with common statistical terms and definitions, and understanding basic statistical theory will help you overcome those challenges.\u003c/p\u003e\\n\u003cp\u003eTopic-specific information and examples will be followed by self-assessment opportunities for you to gauge your understanding. In addition, practice datasets and exercises will be provided for you to improve your R programming skills.\u003c/p\u003e\",\"shortDescription\":\"Learn data analysis basics for working with biomedical big data with practical hands-on examples using R.\",\"productOverview\":\"\u003cul\u003e\u003cli\u003eBasic R Programming\u003c/li\u003e\\n\\t\u003cli\u003eHow to create and interpret graphical summaries of data\u003c/li\u003e\\n\\t\u003cli\u003eBasic inferential statistics including parametric and nonparametric methods\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-0bce8010-2c91-43be-a5a9-5573c5a98209\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:UTMBx+STAT101x+3T2016\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"1aff5a6c-bd75-4770-b073-e95c70a4b373\",\"productName\":\"Death 101: Shaping the Future of Global Health\",\"productSlug\":\"learn/healthcare/university-of-toronto-death-101-shaping-the-future-of-global-health\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/1aff5a6c-bd75-4770-b073-e95c70a4b373-1e8afccc0b49.jpg\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Medicine\",\"Biology \u0026 Life Sciences\"],\"partnerName\":[\"University of Toronto\"],\"partnerKeys\":[\"University_of_TorontoX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/653cb5ea-d5fd-4531-a464-b03de9e52991-66dd31f831b4.png\",\"fullDescription\":\"\u003cp\u003eThis global health and life sciences course enables learners to investigate health problems affecting large populations – the whole world in fact! By understanding the big numbers in global mortality and their causes and distributions you will learn how to think numerically about global health. We will use real data from real people to ask the questions: What are the major causes of death in the world? Why do we need cause of death statistics? How does counting the dead help the living? \u003c/p\u003e\\n\u003cp\u003eWe begin with a historical perspective on global mortality and end with a hopeful look toward future trends. In between, you will learn about how death prior to old age can be avoided, worldwide mortality rates, and specific diseases such as HIV, malaria, childhood conditions, chronic diseases, and risk factors such as smoking. This course will help you use population statistics to understand how rapid gains in health are possible.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eTo help the living, study the dead: we will analyze the world’s biggest health problems by investigating causes of death.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eWhat major factors drive changes in health\u003c/li\u003e\\n\u003cli\u003eMajor causes of death globally and non-communicable diseases\u003c/li\u003e\\n\u003cli\u003eImportant risk factors for disease and death\u003c/li\u003e\\n\u003cli\u003eWhy cause of death statistics are important for global health\u003c/li\u003e\\n\u003cli\u003eHow we measure causes of death\u003c/li\u003e\\n\u003cli\u003eWhat will causes of death look like in 2030, and what can we do to reduce premature death\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-1aff5a6c-bd75-4770-b073-e95c70a4b373\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:University_of_TorontoX+D101x+3T2020a\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"02174f72-3b51-40f2-a6ec-bb4bfd96a868\",\"productName\":\"Math for Machine Learning with R\",\"productSlug\":\"learn/math/edx-math-for-machine-learning-with-r\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/02174f72-3b51-40f2-a6ec-bb4bfd96a868-b592b00bde4c.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Math\"],\"partnerName\":[\"edX\"],\"partnerKeys\":[\"edX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/4f8cb2c9-589b-4d1e-88c1-b01a02db3a9c-42611123eb6a.png\",\"fullDescription\":\"\u003cp dir=\\\"ltr\\\"\u003eAre you ready to unlock the power of machine learning, but concerned about the level of your math skills? This course is tailored to equip you with the knowledge you need to succeed in the machine learning and AI space. Explore complex mathematical concepts with the help of our expert instructors who will guide you through hands-on exercises using R.\u003c/p\u003e\\n\u003cp dir=\\\"ltr\\\"\u003e\\n\\nMathematical principles such as Calculus, Linear Algebra, Probability, Statistics, and Optimization underpin machine learning and AI. This course is designed to fill the gaps for students who missed these key concepts as part of their formal education, or who need to refresh their memories after a long break from studying math. Demystify complex mathematical concepts with the help of our expert instructors who will guide you through hands-on exercises using R.\u003c/p\u003e\\n\u003cp dir=\\\"ltr\\\"\u003e\\n\\nThis course includes content authored by Microsoft Corporation. Copyright 2020-2023 Microsoft Corporation. All Rights Reserved.\u003c/p\u003e\\n\u003cp dir=\\\"ltr\\\"\u003e\u003c/p\u003e\",\"shortDescription\":\"\u003cp dir=\\\"ltr\\\"\u003eExplore the mathematical foundations that underpin machine learning and artificial intelligence.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003e\u003cp dir=\\\"ltr\\\"\u003eReview algebra fundamentals, quadratic equations, and functions.\u003c/p\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cp dir=\\\"ltr\\\"\u003eDelve into differential calculus foundations by exploring differentiation and derivatives.\u003c/p\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cp dir=\\\"ltr\\\"\u003eHarness the power of vectors and matrices to explore relationships.\u003c/p\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cp dir=\\\"ltr\\\"\u003eGain insight into statistics fundamentals and probability.\u003c/p\u003e\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-02174f72-3b51-40f2-a6ec-bb4bfd96a868\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:edX+OC-math-ml-R+2T2023\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"2105f387-1015-4a2a-88a0-544b81837e13\",\"productName\":\"Platform-Based Analytics\",\"productSlug\":\"learn/data-analysis/indiana-university-platform-based-analytics\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/2105f387-1015-4a2a-88a0-544b81837e13-eb8dd41098d4.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Business \u0026 Management\"],\"partnerName\":[\"Indiana University\"],\"partnerKeys\":[\"IUx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/8946fb40-f288-4e05-9275-9e9b4689bda8-e58c545e2296.png\",\"fullDescription\":\"\u003cp\u003e\u003cstrong\u003eThis course will be retired.\u003c/strong\u003e\u003c/p\u003e\\n\u003cp\u003eIn an ever-growing digital world, the need for strong data analysis skills is at the forefront of every business function, along with the ability to accurately describe and interpret analytical findings.\u003c/p\u003e\\n\u003cp\u003eThis course will center on foundational concepts of data analysis, tools for working with data, and strategies for communicating results by utilizing a hands-on teaching approach. Topics include approaching data sets with a critical eye, basic statistical and visual analysis, formatting visuals for interpretation, storytelling with data, and an introduction to spreadsheet modeling.\u003c/p\u003e\\n\u003cp\u003eLearn from renowned Kelley School of Business faculty with combined decades of teaching and analysis experience. This course will provide learners with practical skills to support their data analysis and decision-making needs.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eGain hands-on experience extracting, preparing, exploring, and analyzing data statistically and visually using features and tools native to Microsoft Excel.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003e\\n\u003cp\u003eDefine exploratory, explanatory, prescriptive, and predictive analytics\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eImport data into spreadsheets from external sources\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eCleanse data using functions native to Microsoft Excel\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eSummarize data using basic descriptive statistics and statistical charts\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eCommunicate analysis findings using appropriate data visualization selections and formatting\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eDevelop simple dashboards to answer business questions\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eExplore the foundations of spreadsheet modeling\u003c/p\u003e\\n\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-2105f387-1015-4a2a-88a0-544b81837e13\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:IUx+BUKX-X589+3T2023\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"d6c9f72a-ccb1-4a5d-9d82-9d64dec0ba6b\",\"productName\":\"Data, Models and Decisions in Business Analytics\",\"productSlug\":\"learn/business-analytics/columbia-university-data-models-and-decisions-in-business-analytics\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/d6c9f72a-ccb1-4a5d-9d82-9d64dec0ba6b-b70ec864bd72.jpg\",\"productType\":\"Course\",\"attributes\":[\"Business \u0026 Management\"],\"partnerName\":[\"Columbia University\"],\"partnerKeys\":[\"ColumbiaX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/3d8fc08e-339f-467a-a6c0-2b956ca5d6a0-797c0c6ddbc6.png\",\"fullDescription\":\"\u003cp\u003eIn today’s world, managerial decisions are increasingly based on data-driven models and analysis using statistical and optimization methods that have dramatically changed the way businesses operate in most domains including service operations, marketing, transportation, and finance.\u003c/p\u003e\\n\u003cp\u003eThe main objectives of this course are the following:\u003c/p\u003e\\n\u003cul\u003e\\n\u003cli\u003eIntroduce fundamental techniques towards a principled approach for data-driven decision-making.\u003c/li\u003e\\n\u003cli\u003eQuantitative modeling of dynamic nature of decision problems using historical data, and\u003c/li\u003e\\n\u003cli\u003eLearn various approaches for decision-making in the face of uncertainty\u003c/li\u003e\\n\u003c/ul\u003e\\n\u003cp\u003eTopics covered include probability, statistics, regression, stochastic modeling, and linear, nonlinear and discrete optimization.\u003c/p\u003e\\n\u003cp\u003eMost of the topics will be presented in the context of practical business applications to illustrate its usefulness in practice.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eLearn fundamental tools and techniques for using data towards making business decisions in the face of uncertainty.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eFundamental concepts from probability, statistics, stochastic modeling, and optimization to develop systematic frameworks for decision-making in a dynamic setting\u003c/li\u003e\\n\u003cli\u003eHow to use historical data to learn the underlying model and pattern\u003c/li\u003e\\n\u003cli\u003eOptimization methods and software to solve decision problems under uncertainty in business applications\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-d6c9f72a-ccb1-4a5d-9d82-9d64dec0ba6b\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:ColumbiaX+BAMM.102x+1T2021\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"0a185424-0687-4bdc-aed9-4574b736c1d6\",\"productName\":\"Computer Science for Databases using SQL\",\"productSlug\":\"certificates/professional-certificate/harvardx-computer-science-for-databases-using-sql\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/0a185424-0687-4bdc-aed9-4574b736c1d6-dac9a8bd5abf.png\",\"productType\":\"Professional Certificate\",\"attributes\":[\"Computer Science\",\"Engineering\",\"Data Analysis \u0026 Statistics\",\"Business \u0026 Management\"],\"partnerName\":[\"Harvard University\"],\"partnerKeys\":[\"HarvardX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/44022f13-20df-4666-9111-cede3e5dc5b6-2cc39992c67a.png\",\"fullDescription\":\"A comprehensive understanding of computer science principles, including algorithmic thinking, software development, and problem-solving.,How to utilize real-world datasets to apply programming knowledge using languages like C, Python, and SQL.,Database design principles and the importance of SQL language for effective data management.,How to create and build databases, understanding how to connect SQL with other coding languages.,Career-relevant skills with hands-on practice developing efficient information management strategies.\",\"shortDescription\":\"Gain hands-on experience building and analyzing datasets; building relational databases; and understanding how to connect SQL with other popular coding languages like Python and Java.\",\"productOverview\":\"$386\",\"objectId\":\"program-0a185424-0687-4bdc-aed9-4574b736c1d6\",\"productSource\":\"edX\",\"productCategory\":\"Program\",\"activeRunKey\":null,\"childCoursesCount\":2,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"e78d61bc-aa9d-417f-b244-fed28f5737b6\",\"productName\":\"Data Analyst\",\"productSlug\":\"certificates/professional-certificate/ibm-data-analyst\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/e78d61bc-aa9d-417f-b244-fed28f5737b6-42e63d68ef81.jpeg\",\"productType\":\"Professional Certificate\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Computer Science\",\"Engineering\",\"Business \u0026 Management\"],\"partnerName\":[\"IBM\"],\"partnerKeys\":[\"IBM\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/87b07564-d569-4cfd-bee6-8b0a407acb73-dc33e4b5f353.png\",\"fullDescription\":\"Create charts and plots in Excel, and work with IBM Cognos Analytics to build dashboards.,Describe the data ecosystem and Compose queries to access data in cloud databases using SQL and Python from Jupyter notebooks.,Develop a working knowledge of Python language to analyze data using Python libraries like Pandas and Numpy, and invoke APIs and Web Services.,Perform data analysis tasks like data mining and data wrangling using Excel spreadsheets and Jupyter Notebooks.,Visualize data using Python libraires like Matplotlib, Seaborn, and Folium.\",\"shortDescription\":\"\",\"productOverview\":\"$387\",\"objectId\":\"program-e78d61bc-aa9d-417f-b244-fed28f5737b6\",\"productSource\":\"edX\",\"productCategory\":\"Program\",\"activeRunKey\":null,\"childCoursesCount\":9,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"fa8bacde-cdf0-4d76-a4a0-b2624abe3800\",\"productName\":\"Python for Data Science and Machine Learning\",\"productSlug\":\"certificates/professional-certificate/harvardx-python-for-data-science-and-machine-learning\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/fa8bacde-cdf0-4d76-a4a0-b2624abe3800-f1cd7a3d81f6.png\",\"productType\":\"Professional Certificate\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Computer Science\"],\"partnerName\":[\"Harvard University\"],\"partnerKeys\":[\"HarvardX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/44022f13-20df-4666-9111-cede3e5dc5b6-2cc39992c67a.png\",\"fullDescription\":\"Gain hands-on experience using Python to solve real-world data problems.,Explore regression models, including linear, multilinear, and polynomial models.,Use popular Python libraries such as Pandas, numPy, matplotlib, and SKLearn.,Explore advanced data science challenges through sample data sets, decision trees, and random forests.,Build on your Python skills to run basic machine learning models, evaluating the results and recognizing data bias to avoid underfitting or overfitting data.\",\"shortDescription\":\"The HarvardX Professional Certificate in Python for Data Science and Machine Learning provides learners with hands-on experience in popular libraries and methodologies, positioning them to thrive in a market with diverse opportunities.\",\"productOverview\":\"$388\",\"objectId\":\"program-fa8bacde-cdf0-4d76-a4a0-b2624abe3800\",\"productSource\":\"edX\",\"productCategory\":\"Program\",\"activeRunKey\":null,\"childCoursesCount\":2,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"8166f983-0f18-4812-9204-3d680f263e1f\",\"productName\":\"Data Science and Machine Learning\",\"productSlug\":\"certificates/professional-certificate/harvardx-data-science-and-machine-learning\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/8166f983-0f18-4812-9204-3d680f263e1f-973442f8dec4.png\",\"productType\":\"Professional Certificate\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Computer Science\"],\"partnerName\":[\"Harvard University\"],\"partnerKeys\":[\"HarvardX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/44022f13-20df-4666-9111-cede3e5dc5b6-2cc39992c67a.png\",\"fullDescription\":\"Build on your Python skills run basic machine learning models, evaluating the results and recognizing data bias to avoid underfitting or overfitting data.,Gain hands-on experience using Python to solve real-world data problems.,Explore regression models, including linear, multilinear, and polynomial models.,Use popular Python libraries such as Pandas, numPy, matplotlib, and SKLearn.,Explore advanced data science challenges through sample data sets, decision trees, and random forests.\",\"shortDescription\":\"The HarvardX Professional Certificate in Python for Data Science and Machine Learning provides learners with hands-on experience in popular libraries and methodologies, positioning them to thrive in a market with diverse opportunities.\",\"productOverview\":\"$389\",\"objectId\":\"program-8166f983-0f18-4812-9204-3d680f263e1f\",\"productSource\":\"edX\",\"productCategory\":\"Program\",\"activeRunKey\":null,\"childCoursesCount\":2,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"75a1691c-db20-4153-a270-574f999c13d7\",\"productName\":\"Full Stack Application Development\",\"productSlug\":\"bachelors/microbachelors/ibm-full-stack-application-development\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/75a1691c-db20-4153-a270-574f999c13d7-5b77aff6d587.png\",\"productType\":\"MicroBachelors\",\"attributes\":[\"Computer Science\",\"Data Analysis \u0026 Statistics\",\"Business \u0026 Management\",\"Engineering\"],\"partnerName\":[\"IBM\"],\"partnerKeys\":[\"IBM\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/87b07564-d569-4cfd-bee6-8b0a407acb73-dc33e4b5f353.png\",\"fullDescription\":\"Job-ready full stack development skills in just 6-8 months, plus college credits, valuable hands-on experience, a capstone project, and an industry-recognized certificate employers value. No prior programming or cloud experience required.,How to combine frontend and backend programming expertise to create seamless and dynamic web solutions so your resume stands out in this high-growth field.,How to use HTML, CSS, JavaScript, Bootstrap, React, and Node.js to develop high-quality, user-focused applications with engaging web interfaces and efficient backend processing.,Mastery of Python, Django, SQL, NoSQL, and database applications, along with AI integration using watsonx, ensuring you have essential data management skills for creating dynamic and scalable web applications.,How to apply cloud-native principles and DevOps methodologies, and leverage tools such as containers, Docker, Kubernetes, microservices, and serverless computing, to streamline application deployment and management.\",\"shortDescription\":\"Get job-ready in just 6 months!\",\"productOverview\":\"$38a\",\"objectId\":\"program-75a1691c-db20-4153-a270-574f999c13d7\",\"productSource\":\"edX\",\"productCategory\":\"Program\",\"activeRunKey\":null,\"childCoursesCount\":13,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"a0247cd3-f25d-4aee-9b87-f0b5993c9bda\",\"productName\":\"Full Stack Developer\",\"productSlug\":\"certificates/professional-certificate/ibm-full-stack-developer\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/a0247cd3-f25d-4aee-9b87-f0b5993c9bda-43eeae96f80e.png\",\"productType\":\"Professional Certificate\",\"attributes\":[\"Computer Science\",\"Data Analysis \u0026 Statistics\",\"Business \u0026 Management\",\"Engineering\"],\"partnerName\":[\"IBM\"],\"partnerKeys\":[\"IBM\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/87b07564-d569-4cfd-bee6-8b0a407acb73-dc33e4b5f353.png\",\"fullDescription\":\"Job-ready skills in just 6-8 months with practical experience and an industry-recognized certificate employers are actively looking for. No prior programming or cloud experience required.,How to develop web applications that provide front-end dazzle and effective back-end functionality so your resume stands out in this high-growth field.,HTML, CSS, JavaScript, Bootstrap, React, and Node.js enabling you to deliver high-quality, user-centric applications effectively by creating captivating web experiences supported by smooth backend processing.,Python, Django, SQL, NoSQL, and database applications, including AI integration with watsonx, giving you the essential data management skills you need to create dynamic and scalable web applications.,Cloud native principles, DevOps practices, and technologies such as containers, Docker, Kubernetes, microservices, and serverless computing that enable you to streamline application deployment and management.\",\"shortDescription\":\"Launch your full stack career in just 6-8 months\",\"productOverview\":\"$38b\",\"objectId\":\"program-a0247cd3-f25d-4aee-9b87-f0b5993c9bda\",\"productSource\":\"edX\",\"productCategory\":\"Program\",\"activeRunKey\":null,\"childCoursesCount\":12,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"b5598690-9bd8-4d21-b7f3-dc741b50473f\",\"productName\":\"IBM Data Science\",\"productSlug\":\"certificates/professional-certificate/ibm-data-science\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/b5598690-9bd8-4d21-b7f3-dc741b50473f-174928e730c7.jpeg\",\"productType\":\"Professional Certificate\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Computer Science\",\"Business \u0026 Management\",\"Engineering\"],\"partnerName\":[\"IBM\"],\"partnerKeys\":[\"IBM\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/87b07564-d569-4cfd-bee6-8b0a407acb73-dc33e4b5f353.png\",\"fullDescription\":\"Job-ready data science skills employers look for, supported by hands-on experience and an IBM Professional Certificate you can show on your resume.,Python programming for data science and data manipulation using libraries like Pandas and Numpy to clean and prepare data.,Data analysis and visualization techniques using Matplotlib and Seaborn; crucial skills for presenting insights to stakeholders.,How to write SQL queries to manage and extract data from relational databases; key for database management.,Machine learning fundamentals, including how to build machine learning models with Scikit-learn.,How to use popular data science tools such as Jupyter Notebooks, IBM watsonx, GitHub, and APIs.\",\"shortDescription\":\"Master critical data science skills to start your career in data science and machine learning.\",\"productOverview\":\"$38c\",\"objectId\":\"program-b5598690-9bd8-4d21-b7f3-dc741b50473f\",\"productSource\":\"edX\",\"productCategory\":\"Program\",\"activeRunKey\":null,\"childCoursesCount\":10,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"919da6ae-4fdc-4733-9372-807f780ada0c\",\"productName\":\"Data Analytics and Visualization with Excel and R\",\"productSlug\":\"certificates/professional-certificate/ibm-data-analytics-and-visualization-with-excel-and-r\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/919da6ae-4fdc-4733-9372-807f780ada0c-903cb60ebc8e.jpg\",\"productType\":\"Professional Certificate\",\"attributes\":[\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"IBM\"],\"partnerKeys\":[\"IBM\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/87b07564-d569-4cfd-bee6-8b0a407acb73-dc33e4b5f353.png\",\"fullDescription\":\"Use Excel spreadsheets to perform data analysis tasks such as data preparation (wrangling), creating pivot tables, data mining, \u0026 plotting charts.,Complete the data analysis process, from data preparation to statistical analysis and predictive modeling using R, R Studio, and Jupyter.,Create relational databases and tables, query data, sort, filter and aggregate result sets using SQL and R from JupyterLab.,Communicate data findings with various data visualization techniques including, charts, plots \u0026 interactive dashboards such as Cognos and R Shiny.\",\"shortDescription\":\"Dive into the role of a data analyst or data scientist and develop the essential skills you need work with a range of data sources and apply powerful tools, including Excel, Cognos Analytics, and the R programming language\",\"productOverview\":\"$38d\",\"objectId\":\"program-919da6ae-4fdc-4733-9372-807f780ada0c\",\"productSource\":\"edX\",\"productCategory\":\"Program\",\"activeRunKey\":null,\"childCoursesCount\":8,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"86867d9c-9403-40de-a00c-b59e859edd62\",\"productName\":\"Data Analysis and Visualization Fundamentals\",\"productSlug\":\"certificates/professional-certificate/ibm-data-analysis-and-visualization-fundamentals\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/86867d9c-9403-40de-a00c-b59e859edd62-31e36ee9bc28.jpg\",\"productType\":\"Professional Certificate\",\"attributes\":[\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"IBM\"],\"partnerKeys\":[\"IBM\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/87b07564-d569-4cfd-bee6-8b0a407acb73-dc33e4b5f353.png\",\"fullDescription\":\"Define Data Analytics and the key steps in the Data Analytics process.,Describe the key components of a modern data ecosystem.,Discover the various career opportunities available to Data Analysts.,Describe the steps you need to take to extract raw data from disparate sources, transform raw data into analytics-ready data, and load data into data repositories for use in analytics and reporting.,Describe the process, tools, and techniques required for data wrangling, data cleaning, data mining, and data visualization.,Perform data wrangling, data cleansing, and data analysis tasks using spreadsheets like Microsoft Excel.,Analyze data using filter, sort, and pivot features within spreadsheets like Microsoft Excel.,Design data visualizations using charts, graphs, and plots with tools like Microsoft Excel.,Design and create dashboards in a cloud platform using Cognos Analytics.\",\"shortDescription\":\"\",\"productOverview\":\"\u003cp\u003eData has become a critical asset to nearly every organization. The powerful insights that data analysis and visualization provide is transforming the way organizations operate and how decisions are made. This presents a growing demand for Data Analysts, and the U.S. Bureau of Labor Statistics projects a growth rate of 20% in the data analytics industry until 2028.\u003c/p\u003e\\r\\n \\r\\n\u003cp\u003eThe 3-Course Data Analysis and Visualization Fundamentals program enables you to take the first steps towards understanding the essentials of data analysis, and provides the technical skills, knowledge, tools, and hands-on practice experience to begin your career path in data analytics and becoming an industry expert. NO prior programming knowledge or any data analytics knowledge is required.\u003c/p\u003e\",\"objectId\":\"program-86867d9c-9403-40de-a00c-b59e859edd62\",\"productSource\":\"edX\",\"productCategory\":\"Program\",\"activeRunKey\":null,\"childCoursesCount\":3,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"57e4cbf4-6b8a-4cd2-a164-380453d5c424\",\"productName\":\"Cybersecurity Analyst\",\"productSlug\":\"certificates/professional-certificate/ibm-cybersecurity-analyst\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/57e4cbf4-6b8a-4cd2-a164-380453d5c424-796bf387799a.png\",\"productType\":\"Professional Certificate\",\"attributes\":[\"Computer Science\"],\"partnerName\":[\"IBM\"],\"partnerKeys\":[\"IBM\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/87b07564-d569-4cfd-bee6-8b0a407acb73-dc33e4b5f353.png\",\"fullDescription\":\"Job-ready cybersecurity analyst skills employers need in less than 6 months. Career guidance from seasoned experts. No prior experience required!,How to apply incident response methodologies and forensics practices and use industry-specific security and cybersecurity tools.,How to apply cybersecurity industry standards and best practices that mitigate risks, enhance security, and ensure compliance through audit processes.,When and how to use generative AI tools to boost your cybersecurity effectiveness and productivity.,How to investigate a real-world security breach by identifying the attack, vulnerabilities, costs, and steps for future prevention.\",\"shortDescription\":\"Get job-ready as cybersecurity analyst. Build the skills employers need in digital forensics, threat intelligence, AI tools, and compliance frameworks. Gain practical experience tackling attacks, analyzing breaches, and applying industry standards.\",\"productOverview\":\"$38e\",\"objectId\":\"program-57e4cbf4-6b8a-4cd2-a164-380453d5c424\",\"productSource\":\"edX\",\"productCategory\":\"Program\",\"activeRunKey\":null,\"childCoursesCount\":14,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"6fcfceea-c85e-45e1-9319-af55bb739e41\",\"productName\":\"Information Technology (IT) Support PC\",\"productSlug\":\"certificates/professional-certificate/ibm-information-technology-support\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/6fcfceea-c85e-45e1-9319-af55bb739e41-f654753399d3.png\",\"productType\":\"Professional Certificate\",\"attributes\":[\"Computer Science\",\"Business \u0026 Management\",\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"IBM\"],\"partnerKeys\":[\"IBM\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/87b07564-d569-4cfd-bee6-8b0a407acb73-dc33e4b5f353.png\",\"fullDescription\":\"Develop key technical knowledge and up-to-date skills in preparation for a rewarding career in IT and technical support.,Demonstrate in-demand hardware and software skills that help users select, install, and configure their devices, operating systems, and applications.,Build essential computer networking, cybersecurity, and cloud computing skills that IT Support and Helpdesk specialists need to be successful.,Practice customer service and troubleshooting skills through hands-on labs, demos, and interactive exercises to become job-ready.\",\"shortDescription\":\"\",\"productOverview\":\"$38f\",\"objectId\":\"program-6fcfceea-c85e-45e1-9319-af55bb739e41\",\"productSource\":\"edX\",\"productCategory\":\"Program\",\"activeRunKey\":null,\"childCoursesCount\":7,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"51a9dc2f-fa61-4e93-9af6-6bc3c788fdfc\",\"productName\":\"Lean Six Sigma Green Belt Certification: Sustainability Project\",\"productSlug\":\"certificates/professional-certificate/tumx-lean-six-sigma-green-belt-certification\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/51a9dc2f-fa61-4e93-9af6-6bc3c788fdfc-32e37dcf6490.jpg\",\"productType\":\"Professional Certificate\",\"attributes\":[\"Business \u0026 Management\",\"Data Analysis \u0026 Statistics\",\"Engineering\"],\"partnerName\":[\"Technische Universität München\"],\"partnerKeys\":[\"TUMx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/a455918c-387b-46b2-b943-d4b8f3edcf56-c2120c85b7c3.png\",\"fullDescription\":\"To understand the logic and methodology of Six Sigma and the principles of Lean Management,To apply the qualitative and quantitative tools of Lean Six Sigma,To apply Lean Six Sigma fundamentals in an individual, standardized project,To identify, implement, and evaluate suitable Lean Six Sigma projects in organisations\",\"shortDescription\":\"\",\"productOverview\":\"$390\",\"objectId\":\"program-51a9dc2f-fa61-4e93-9af6-6bc3c788fdfc\",\"productSource\":\"edX\",\"productCategory\":\"Program\",\"activeRunKey\":null,\"childCoursesCount\":4,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"58702c6e-4650-4167-8916-5462032a6a98\",\"productName\":\"Lean Six Sigma Yellow Belt: Quantitative Tools for Quality and Productivity\",\"productSlug\":\"certificates/professional-certificate/tumx-six-sigma-and-lean\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/58702c6e-4650-4167-8916-5462032a6a98-1b195a139629.jpg\",\"productType\":\"Professional Certificate\",\"attributes\":[\"Business \u0026 Management\",\"Data Analysis \u0026 Statistics\",\"Engineering\"],\"partnerName\":[\"Technische Universität München\"],\"partnerKeys\":[\"TUMx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/a455918c-387b-46b2-b943-d4b8f3edcf56-c2120c85b7c3.png\",\"fullDescription\":\"To apply the Six Sigma methodology in your work or research, using the DMAIC process improvement cycle for identifying problems and quantitatively assess the impact of process changes,To contribute actively in Six Sigma improvement projects by applying the necessary statistical analyses, interpreting the results, and driving change,To perform process capacity analysis to evaluate process performance in terms of resource utilization and set up times in order to optimize throughput and minimize inventory,To initiate Lean manufacturing transformation and analyze the new process flows to quantitatively assess productivity improvements,To coach and motivate your colleagues to improve quality and productivity with Six Sigma and Lean\",\"shortDescription\":\"Master Six Sigma and Lean fundamentals to improve productivity and quality in your organization and earn a TUM Lean and Six Sigma Yellow Belt certification.\",\"productOverview\":\"$391\",\"objectId\":\"program-58702c6e-4650-4167-8916-5462032a6a98\",\"productSource\":\"edX\",\"productCategory\":\"Program\",\"activeRunKey\":null,\"childCoursesCount\":3,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"89d2b77a-6f41-433f-9b58-b8d864e100e1\",\"productName\":\"Mastering Calculus\",\"productSlug\":\"certificates/professional-certificate/delftx-mastering-calculus\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/89d2b77a-6f41-433f-9b58-b8d864e100e1-3eda7ebad3be.png\",\"productType\":\"Professional Certificate\",\"attributes\":[\"Math\"],\"partnerName\":[\"Delft University of Technology\"],\"partnerKeys\":[\"DelftX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/c484a523-d396-4aff-90f4-bb7e82e16bf6-f9e6cc4a4c94.png\",\"fullDescription\":\"Represent functions of one, two and three variables using level curves/surfaces and contour maps or graphs.,Approximate functions and their values using (Taylor) polynomial approximations.,Solve a wide variety of separable and linear first order differential equations and initial value problems.,Evaluate a wide variety of definite single, double and triple integrals over a wide variety of domains.,Solve a wide variety of linear second order differential equations including those with constant coefficients using the method of undetermined coefficients and solve the corresponding initial value problems.,Find critical points of functions of several variables and find extreme values of functions of several variables in a closed domain.,Compute and interpret first and higher order total, partial and directional derivatives of general functions of one or several variables.\",\"shortDescription\":\"Refresh and review the calculus you need to succeed in your engineering master’s degree or your profession.\",\"productOverview\":\"$392\",\"objectId\":\"program-89d2b77a-6f41-433f-9b58-b8d864e100e1\",\"productSource\":\"edX\",\"productCategory\":\"Program\",\"activeRunKey\":null,\"childCoursesCount\":2,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"18ff3b25-81ca-4324-b3da-425277a9ee02\",\"productName\":\"Data Analysis for Decision-Making\",\"productSlug\":\"certificates/professional-certificate/ritx-data-analysis-for-decision-making\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/18ff3b25-81ca-4324-b3da-425277a9ee02-bdfbb53cac23.jpg\",\"productType\":\"Professional Certificate\",\"attributes\":[\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"Rochester Institute of Technology\"],\"partnerKeys\":[\"RITx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/de3e9ff0-477d-4496-8cfa-a98f902e5830-71b79f0ac34a.png\",\"fullDescription\":\"How to apply critical thinking skills when working with data,How to use Microsoft Excel to organize and clean data and create a data analysis plan,Use Tableau to create meaningful tables and graphical representations to organize and visually present data,Identify key take away points from data analysis and integrate them with other important information,Critically assess graphical representations for accuracy and misrepresentation of data\",\"shortDescription\":\"\",\"productOverview\":\"$393\",\"objectId\":\"program-18ff3b25-81ca-4324-b3da-425277a9ee02\",\"productSource\":\"edX\",\"productCategory\":\"Program\",\"activeRunKey\":null,\"childCoursesCount\":3,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"6fe2404d-1a01-4c51-bff9-f350a7f5d219\",\"productName\":\"MathTrackX\",\"productSlug\":\"xseries/adelaidex-mathtrackx\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/6fe2404d-1a01-4c51-bff9-f350a7f5d219-0ad6616e4174.jpg\",\"productType\":\"XSeries\",\"attributes\":[\"Math\"],\"partnerName\":[\"University of Adelaide\"],\"partnerKeys\":[\"AdelaideX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/f5d1ff66-002f-43fa-9d76-1b191d4a3272-0e2420850666.png\",\"fullDescription\":\"Concepts and techniques from calculus, probability and statistics at a pre-university level.,How to solve problems and apply reasoning in calculus, probability and statistics.,Interpretation and evaluation of mathematical and statistical information to determine the correctness of solutions to problems.,How to implement a sequence of strategies to solve problems and construct logical arguments to communicate the solutions.\",\"shortDescription\":\"Develop the skills and confidence to apply mathematical concepts in the real world.\",\"productOverview\":\"$394\",\"objectId\":\"program-6fe2404d-1a01-4c51-bff9-f350a7f5d219\",\"productSource\":\"edX\",\"productCategory\":\"Program\",\"activeRunKey\":null,\"childCoursesCount\":6,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"49791ddd-548d-49bd-ae80-03606f01a766\",\"productName\":\"Project Risk Management: Effective Decision Making Strategies\",\"productSlug\":\"certificates/professional-certificate/umd-project-risk-management-effective-decision-making-strategies\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/49791ddd-548d-49bd-ae80-03606f01a766-be30e9405fe1.png\",\"productType\":\"Professional Certificate\",\"attributes\":[\"Engineering\",\"Business \u0026 Management\",\"Philosophy \u0026 Ethics\"],\"partnerName\":[\"The University of Maryland, College Park\",\"University System of Maryland\"],\"partnerKeys\":[\"UMD\",\"USMx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/ac5b634b-1d88-43d5-8199-1142a2e4fc96-0f3719f6fbd4.png\",\"fullDescription\":\"Understand the fundamentals or risk and how to develop a proper assessment of risk using expert judgement.,Gain the skills in modeling budgets and project schedules with uncertain values for cost, duration, and resources.,Apply simulation in evaluating projects and their potential for positive return on investment under uncertainty.,Understand decision making theory and the application of both cognitive science and economics in our thinking about projects.,Know how to apply risk transfer and insurance to reduce owner and vendor risk through financial markets.\",\"shortDescription\":\"Enable better, more confident decision making for your projects and programs using quantitative project risk management methods that leverage cognitive psychology, economics, data science, and strategic planning frameworks.\",\"productOverview\":\"\u003cp\u003eToday’s organizations find themselves in increasingly competitive markets. Competitors move fast and consumer demands evolve even faster. The risks inherent to delivering successful projects in this environment are substantial. The understanding of project risks and the capability successfully to grapple with them is critical to success.\u003c/p\u003e\\r\\n\\r\\n\u003cp\u003eSimplistic schemes for managing project risk which benefit little from modern decision science or statistics do little to help managers. These may actually do more harm than good. The state-of-the-art project manager can do better.\u003c/p\u003e\",\"objectId\":\"program-49791ddd-548d-49bd-ae80-03606f01a766\",\"productSource\":\"edX\",\"productCategory\":\"Program\",\"activeRunKey\":null,\"childCoursesCount\":3,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"f7421d9b-a6ec-4c8d-8960-7c76c20c5c29\",\"productName\":\"Mastering Linear Algebra\",\"productSlug\":\"certificates/professional-certificate/delftx-mastering-linear-algebra\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/f7421d9b-a6ec-4c8d-8960-7c76c20c5c29-e5987c1a38c4.png\",\"productType\":\"Professional Certificate\",\"attributes\":[\"Math\"],\"partnerName\":[\"Delft University of Technology\"],\"partnerKeys\":[\"DelftX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/c484a523-d396-4aff-90f4-bb7e82e16bf6-f9e6cc4a4c94.png\",\"fullDescription\":\"Analyze and solve linear systems of equations.,Work with linear subspaces.,Use orthogonality in the analysis of linear systems and linear subspaces and calculate projections.,Matrix Algebra: calculate products, inverses and inverses of matrices.,Work with linear transformations.,Calculate eigenvalues, eigenvectors and eigenspaces of matrices.,Find diagonalizations and singular value decompositions of matrices, and use those to simplify matrix calculations.\",\"shortDescription\":\"Refresh and review the linear algebra you need to succeed in your engineering master’s degree or your profession.\",\"productOverview\":\"$395\",\"objectId\":\"program-f7421d9b-a6ec-4c8d-8960-7c76c20c5c29\",\"productSource\":\"edX\",\"productCategory\":\"Program\",\"activeRunKey\":null,\"childCoursesCount\":2,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"4917ed9c-1095-43e6-bf6b-9c891ca8b979\",\"productName\":\"Sensor Fusion and Multi-Object Tracking\",\"productSlug\":\"certificates/professional-certificate/chalmersx-sensor-fusion-and-multi-object-tracking\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/4917ed9c-1095-43e6-bf6b-9c891ca8b979-0dd5585d0220.png\",\"productType\":\"Professional Certificate\",\"attributes\":[\"Engineering\"],\"partnerName\":[\"Chalmers University of Technology\"],\"partnerKeys\":[\"ChalmersX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/6233178f-b703-4c85-bcea-3b3c55ef9289-8c26535e6e82.png\",\"fullDescription\":\"Model common sensors, and their measurements.,Implement key nonlinear filters, to solve problems with motion and/or sensor models.,Principles, theory and algorithms in modern Multi-Object Tracking.,Solving various Multi-Object Tracking problems in practice.\",\"shortDescription\":\"Learn how to accurately position objects in traffic and how to track them, for self-driving vehicle applications.\",\"productOverview\":\"$396\",\"objectId\":\"program-4917ed9c-1095-43e6-bf6b-9c891ca8b979\",\"productSource\":\"edX\",\"productCategory\":\"Program\",\"activeRunKey\":null,\"childCoursesCount\":2,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"b411325b-06ad-4699-862e-004570cfe212\",\"productName\":\"Business: Data, Insights and Analytics\",\"productSlug\":\"masters/micromasters/wisconsinx-business-data-insights-and-analytics\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/b411325b-06ad-4699-862e-004570cfe212-9803b9cd3853.jpg\",\"productType\":\"MicroMasters\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Business \u0026 Management\"],\"partnerName\":[\"The University of Wisconsin-Madison\"],\"partnerKeys\":[\"WisconsinX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/496e8de4-f4c2-4395-bfa4-5e9daeb60f1d-f8f8e09793a2.png\",\"fullDescription\":\"Learn Python, SQL, Tableau, AWS, and other top tools.,Leverage expertise in data management software and statistical programming.,Deliver insights and recommendations for organizations using cutting-edge descriptive, predictive, and prescriptive analytics techniques.\",\"shortDescription\":\"Uncover insights and provide actionable recommendations in any business setting through business analytics tools and methodologies.\",\"productOverview\":\"\u003cp\u003eCompanies increasingly rely on analysts and data scientists to convert data into actionable insights to remain competitive. The Wisconsin Business: Data, Insights and Analytics MicroMasters program will help jump-start your career as an analyst where you will gain skills in data visualization, database management, statistics, programming, and cloud computing.\u003c/p\u003e\\r\\n\\r\\n\u003cp\u003eFounded in 1900, the Wisconsin School of Business established one of the first five business programs in the nation. Wisconsin faculty and staff are committed to helping you achieve your professional goals and work to get you on the path to career success.\u003c/p\u003e\\r\\n\\r\\n\u003cp\u003eThe ability to turn data into decisions is crucial in our fast-paced world, and as a business analyst you can learn to leverage data to answer complex business questions.\u003c/p\u003e\",\"objectId\":\"program-b411325b-06ad-4699-862e-004570cfe212\",\"productSource\":\"edX\",\"productCategory\":\"Program\",\"activeRunKey\":null,\"childCoursesCount\":3,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"96ae341d-3e1b-4c89-a39e-e4459cacbf83\",\"productName\":\"Macroeconomics\",\"productSlug\":\"certificates/professional-certificate/uqx-macroeconomics\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/96ae341d-3e1b-4c89-a39e-e4459cacbf83-a0db28b21578.jpg\",\"productType\":\"Professional Certificate\",\"attributes\":[\"Economics \u0026 Finance\",\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"The University of Queensland\"],\"partnerKeys\":[\"UQx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/8554749f-b920-4d7f-8986-af6bb95290aa-f336c6a2ca11.png\",\"fullDescription\":\"Use macroeconomic terminology correctly.,Appraise the roles and functions of macroeconomic institutions.,Use diagrams, simple equations and words to explain key causal relationships in macroeconomics.,Analyse contemporary macroeconomic policy issues and their impacts on business and on society.,Understand macroeconomic data and know how to use them for analysis.\",\"shortDescription\":\"Learn about how the national economy functions and grows, how it interacts with the international economy, and how governments and central banks use policies in their disposal to combat contemporary macroeconomic problems.\",\"productOverview\":\"$397\",\"objectId\":\"program-96ae341d-3e1b-4c89-a39e-e4459cacbf83\",\"productSource\":\"edX\",\"productCategory\":\"Program\",\"activeRunKey\":null,\"childCoursesCount\":3,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"0673236f-aaf9-4e38-ba92-c990f4f7b4cb\",\"productName\":\"Introduction to Linear Models and Matrix Algebra\",\"productSlug\":\"learn/linear-algebra/harvard-university-introduction-to-linear-models-and-matrix-algebra\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/0673236f-aaf9-4e38-ba92-c990f4f7b4cb-909797220855.jpg\",\"productType\":\"Course\",\"attributes\":[\"Math\",\"Computer Science\"],\"partnerName\":[\"Harvard University\"],\"partnerKeys\":[\"HarvardX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/44022f13-20df-4666-9111-cede3e5dc5b6-2cc39992c67a.png\",\"fullDescription\":\"$398\",\"shortDescription\":\"\u003cp\u003eLearn to use R programming to apply linear models to analyze data in life sciences.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eMatrix algebra notation\u003c/li\u003e\\n\u003cli\u003eMatrix algebra operations\u003c/li\u003e\\n\u003cli\u003eApplication of matrix algebra to data analysis\u003c/li\u003e\\n\u003cli\u003eLinear models\u003c/li\u003e\\n\u003cli\u003eBrief introduction to the QR decomposition\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-0673236f-aaf9-4e38-ba92-c990f4f7b4cb\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:HarvardX+PH525.2x+3T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"fb0df571-1822-4f40-926e-036709e8beaf\",\"productName\":\"Case Studies in Functional Genomics\",\"productSlug\":\"learn/data-analysis/harvard-university-case-studies-in-functional-genomics\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/fb0df571-1822-4f40-926e-036709e8beaf-6eb56b0c9bc8.jpg\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Biology \u0026 Life Sciences\",\"Science\"],\"partnerName\":[\"Harvard University\"],\"partnerKeys\":[\"HarvardX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/44022f13-20df-4666-9111-cede3e5dc5b6-2cc39992c67a.png\",\"fullDescription\":\"$399\",\"shortDescription\":\"\u003cp\u003ePerform RNA-Seq, ChIP-Seq, and DNA methylation data analyses, using open source software, including R and Bioconductor.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eMapping reads\u003c/li\u003e\\n\u003cli\u003eQuality assessment of Next Generation Data\u003c/li\u003e\\n\u003cli\u003eAnalyzing RNA-seq data\u003c/li\u003e\\n\u003cli\u003eAnalyzing DNA methylation data\u003c/li\u003e\\n\u003cli\u003eAnalyzing ChIP Seq data\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-fb0df571-1822-4f40-926e-036709e8beaf\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:HarvardX+PH525.6x+3T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"42f20043-d067-4d4a-8952-d6bb9c60b747\",\"productName\":\"Introduction to Bioconductor\",\"productSlug\":\"learn/data-science/harvard-university-introduction-to-bioconductor\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/42f20043-d067-4d4a-8952-d6bb9c60b747-05259b8f46b1.jpg\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Biology \u0026 Life Sciences\",\"Science\"],\"partnerName\":[\"Harvard University\"],\"partnerKeys\":[\"HarvardX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/44022f13-20df-4666-9111-cede3e5dc5b6-2cc39992c67a.png\",\"fullDescription\":\"$39a\",\"shortDescription\":\"\u003cp\u003eThe structure, annotation, normalization, and interpretation of genome scale assays.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eWhat we measure with high-throughput technologies and why\u003c/li\u003e\\n\u003cli\u003eIntroduction to high-throughput technologies\u003cul\u003e\\n\u003cli\u003eNext Generation Sequencing\u003c/li\u003e\\n\u003cli\u003eMicroarrays\u003c/li\u003e\\n\u003c/ul\u003e\\n\u003c/li\u003e\\n\u003cli\u003ePreprocessing and Normalization\u003c/li\u003e\\n\u003cli\u003eThe Bioconductor Genomic Ranges Utilities\u003c/li\u003e\\n\u003cli\u003eGenomic Annotation\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-42f20043-d067-4d4a-8952-d6bb9c60b747\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:HarvardX+PH525.5x+3T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"cb555d73-5183-446c-8555-69a7ffd19206\",\"productName\":\"High-Dimensional Data Analysis\",\"productSlug\":\"learn/data-analysis/harvard-university-high-dimensional-data-analysis\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/cb555d73-5183-446c-8555-69a7ffd19206-f67a7e019e9d.jpg\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Biology \u0026 Life Sciences\",\"Science\"],\"partnerName\":[\"Harvard University\"],\"partnerKeys\":[\"HarvardX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/44022f13-20df-4666-9111-cede3e5dc5b6-2cc39992c67a.png\",\"fullDescription\":\"$39b\",\"shortDescription\":\"\u003cp\u003eA focus on several techniques that are widely used in the analysis of high-dimensional data.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eMathematical Distance\u003c/li\u003e\\n\u003cli\u003eDimension Reduction\u003c/li\u003e\\n\u003cli\u003eSingular Value Decomposition and Principal Component Analysis\u003c/li\u003e\\n\u003cli\u003eMultiple Dimensional Scaling Plots\u003c/li\u003e\\n\u003cli\u003eFactor Analysis\u003c/li\u003e\\n\u003cli\u003eDealing with Batch Effects\u003c/li\u003e\\n\u003cli\u003eClustering\u003c/li\u003e\\n\u003cli\u003eHeatmaps\u003c/li\u003e\\n\u003cli\u003eBasic Machine Learning Concepts\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-cb555d73-5183-446c-8555-69a7ffd19206\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:HarvardX+PH525.4x+3T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"50f33f6f-be42-43d2-9ccc-d5c5aedbf4fd\",\"productName\":\"Six Sigma Part 2: Analyze, Improve, Control\",\"productSlug\":\"learn/six-sigma/technische-universitat-munchen-six-sigma-analyze-improve-control\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/50f33f6f-be42-43d2-9ccc-d5c5aedbf4fd-80a3686061ed.jpg\",\"productType\":\"Course\",\"attributes\":[\"Business \u0026 Management\",\"Data Analysis \u0026 Statistics\",\"Engineering\"],\"partnerName\":[\"Technische Universität München\"],\"partnerKeys\":[\"TUMx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/a455918c-387b-46b2-b943-d4b8f3edcf56-c2120c85b7c3.png\",\"fullDescription\":\"$39c\",\"shortDescription\":\"\u003cp\u003eLearn how to statistically analyze process data to determine the root cause and propose solutions for process problems, to implement quality management tools, such as 8D and the 5 Whys, and to understand the concept of Design for Six Sigma (DFSS).\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eTo identify process problems and perform a root cause analysis using cause and effect diagrams and regression analysis.\u003c/li\u003e\\n\u003cli\u003eTo analyze data using inferential statistical techniques, including confidence intervals and hypothesis testing.\u003c/li\u003e\\n\u003cli\u003eTo test and quantitatively assess the impact of different improvement options using the design of an experiment.\u003c/li\u003e\\n\u003cli\u003eTo test for the significance of effects using an Analysis of Variance.\u003c/li\u003e\\n\u003cli\u003eTo implement control mechanisms for long-term monitoring using control charts for both quantitative and qualitative measurements.\u003c/li\u003e\\n\u003cli\u003eTo apply the Six Sigma methodology for the Analyze, Improve and Control phases in your work or research.\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-50f33f6f-be42-43d2-9ccc-d5c5aedbf4fd\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:TUMx+QPLS2x+2T2021\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"7a694dc8-75f4-4357-b8cc-02d4588b0e4f\",\"productName\":\"Probability Theory\",\"productSlug\":\"learn/probability/delft-university-of-technology-probability-theory\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/7a694dc8-75f4-4357-b8cc-02d4588b0e4f-4f85d7bd42b8.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Math\"],\"partnerName\":[\"Delft University of Technology\"],\"partnerKeys\":[\"DelftX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/c484a523-d396-4aff-90f4-bb7e82e16bf6-f9e6cc4a4c94.png\",\"fullDescription\":\"$39d\",\"shortDescription\":\"\u003cp\u003eThis course provides an introduction to probability theory. You will encounter discrete and continuous random variables and learn in which situations they appear, what their properties are and how they interact.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eDescribe discrete and continuous random variables (RVs).\u003c/li\u003e\\n\u003cli\u003eDeduce properties of RVs, such as expectation and variance.\u003c/li\u003e\\n\u003cli\u003eGain insight into when certain RVs appear in a specific context.\u003c/li\u003e\\n\u003cli\u003eObserve how two RVs interact.\u003c/li\u003e\\n\u003cli\u003eObtain understanding into some limiting results, in particular the Central Limit Theorem and how powerful it is.\u003c/li\u003e\\n\u003cli\u003eSimulate some real-life situations.\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-7a694dc8-75f4-4357-b8cc-02d4588b0e4f\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:DelftX+MMFEPx+2T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"00169f68-ff4b-4621-a741-25ba70c98482\",\"productName\":\"Analytics for Decision Making\",\"productSlug\":\"learn/decision-making/babson-college-analytics-for-decision-making\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/00169f68-ff4b-4621-a741-25ba70c98482-8830883d1f86.jpg\",\"productType\":\"Course\",\"attributes\":[\"Business \u0026 Management\",\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"Babson College\"],\"partnerKeys\":[\"BabsonX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/5e657c42-b466-4101-883a-7f2830ff3d54-1cc106481e49.png\",\"fullDescription\":\"$39e\",\"shortDescription\":\"\u003cp\u003eDiscover the foundational concepts that support modern data science and learn to analyze various data types and quality to make smart business decisions.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eVariability in the real world and implications for decision making\u003c/li\u003e\\n\u003cli\u003eData types and data quality with appropriate visualizations\u003c/li\u003e\\n\u003cli\u003eApply data analysis to managerial decisions, especially in start-ups\u003c/li\u003e\\n\u003cli\u003eMaking effective decisions from no data to big data (what should we collect and then what do we do with all this data?)\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-00169f68-ff4b-4621-a741-25ba70c98482\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:BabsonX+BPET.STATx+2T2018\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"0c06765f-e449-482c-97cf-9d0e8a9f810e\",\"productName\":\"Principles, Statistical and Computational Tools for Reproducible Data Science\",\"productSlug\":\"learn/data-science/harvard-university-principles-statistical-and-computational-tools-for-reproducible-data-science\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/0c06765f-e449-482c-97cf-9d0e8a9f810e-435ce9ee74b3.jpg\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Science\"],\"partnerName\":[\"Harvard University\"],\"partnerKeys\":[\"HarvardX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/44022f13-20df-4666-9111-cede3e5dc5b6-2cc39992c67a.png\",\"fullDescription\":\"$39f\",\"shortDescription\":\"\u003cp\u003eLearn skills and tools that support data science and reproducible research, to ensure you can trust your own research results, reproduce them yourself, and communicate them to others.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eUnderstand a series of concepts, thought patterns, analysis paradigms, and computational and statistical tools, that together support data science and reproducible research.\u003c/li\u003e\\n\u003cli\u003eFundamentals of reproducible science using case studies that illustrate various practices\u003c/li\u003e\\n\u003cli\u003eKey elements for ensuring data provenance and reproducible experimental design\u003c/li\u003e\\n\u003cli\u003eStatistical methods for reproducible data analysis\u003c/li\u003e\\n\u003cli\u003eComputational tools for reproducible data analysis and version control (Git/GitHub, Emacs/RStudio/Spyder), reproducible data (Data repositories/Dataverse) and reproducible dynamic report generation (Rmarkdown/R Notebook/Jupyter/Pandoc), and workflows.\u003c/li\u003e\\n\u003cli\u003eHow to develop new methods and tools for reproducible research and reporting\u003c/li\u003e\\n\u003cli\u003eHow to write your own reproducible paper.\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-0c06765f-e449-482c-97cf-9d0e8a9f810e\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:HarvardX+PH527x+3T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"893be2f2-3891-48f7-9a47-fb832365aff4\",\"productName\":\"Mathematics 1 Part 1: Differential Calculus\",\"productSlug\":\"learn/math/the-london-school-of-economics-and-political-science-mathematics-1-part-1-differential-calculus\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/893be2f2-3891-48f7-9a47-fb832365aff4-7d44c7e9d135.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Math\"],\"partnerName\":[\"The London School of Economics and Political Science\"],\"partnerKeys\":[\"LSE\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/07141c7d-a86e-4f48-bb5b-1eef0958b465-b644124b89ef.png\",\"fullDescription\":\"\u003cp\u003e\u003cspan lang=\\\"EN\\\"\u003eMathematics 1 Part 1 is the first of two self-paced courses from LSE which aim to introduce and develop your understanding of essential mathematical concepts, methods and techniques. This course can be taken alone or as part of the LSE MicroBachelors program in Mathematics and Statistics Fundamentals.\u003c/span\u003e\u003c/p\u003e\\n\u003cp\u003ePart 1 covers the following topics:\u003c/p\u003e\\n\u003cul\u003e\\n\u003cli\u003e\\n\u003cp\u003eFunctions and graphs\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eThe derivative\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eCurve sketching and optimisation\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eFunctions of two variables and partial derivatives\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eCritical points of two-variable functions\u003c/p\u003e\\n\u003c/li\u003e\\n\u003c/ul\u003e\\n\u003cp\u003eThis course will equip you with the skills to solve unseen mathematical problems in these areas and will emphasise their applications to problems in economics, management, and related areas.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003e\u003cspan lang=\\\"EN\\\"\u003eThe first in a series of two courses from LSE which help you to master mathematics fundamentals and build your quantitative skillset for progression in high-growth careers, or to use as step towards further study at undergraduate level.\u003c/span\u003e\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003eBy the end of this course you will have:\u003c/p\u003e\\n\u003cul\u003e\\n\u003cli\u003eused the concepts, terminology, methods and conventions covered in the course to solve mathematical problems\u003c/li\u003e\\n\u003cli\u003ethe ability to solve unseen mathematical problems involving understanding of these concepts and application of these methods\u003c/li\u003e\\n\u003cli\u003eseen how mathematical techniques can be used to solve problems in economics and related subjects\u003c/li\u003e\\n\u003cli\u003eacquired skills in the methods of calculus (including multivariate calculus) and linear algebra, as required for their use in economics-based subjects\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-893be2f2-3891-48f7-9a47-fb832365aff4\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:LSE+LSEMT105a+3T2023\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"46965836-ee74-4707-9a5f-e948357ea5e9\",\"productName\":\"Data Processing and Analysis with Excel\",\"productSlug\":\"learn/excel/rochester-institute-of-technology-data-processing-and-analysis-with-excel\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/46965836-ee74-4707-9a5f-e948357ea5e9-8aa263543d92.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"Rochester Institute of Technology\"],\"partnerKeys\":[\"RITx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/de3e9ff0-477d-4496-8cfa-a98f902e5830-71b79f0ac34a.png\",\"fullDescription\":\"$3a0\",\"shortDescription\":\"\u003cp\u003e\u003cspan lang=\\\"EN\\\"\u003eLearn to use Excel to organize and clean data so it can be manipulated and analyzed.\u003c/span\u003e\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003eAfter completing this course, learners will be able to use Microsoft Excel to:\u003c/p\u003e\\n\u003cp\u003e● Perform basic data organization \u003c/p\u003e\\n\u003cp\u003e● Clean data \u003c/p\u003e\\n\u003cp\u003e● Develop a data analysis plan\u003c/p\u003e\\n\u003cp\u003e● Perform analysis methods and tools\u003c/p\u003e\",\"objectId\":\"course-46965836-ee74-4707-9a5f-e948357ea5e9\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:RITx+Data102x+1T2025\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"2fa0cfda-8dc4-4ff2-a085-a6b0c0f93c31\",\"productName\":\"Introduction to Probability Management\",\"productSlug\":\"learn/probability/stanford-university-introduction-to-probability-management\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/2fa0cfda-8dc4-4ff2-a085-a6b0c0f93c31-bfc7ffdcf485.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"Stanford University\"],\"partnerKeys\":[\"StanfordOnline\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/f53a7458-c79b-4524-97cf-28241114230e-e47d44123c3b.png\",\"fullDescription\":\"\u003cp\u003eThis course assumes that you are comfortable with Microsoft Excel, but you do not need training in statistics. If you wish to receive a verified certificate, you must download the free \u003ca href=\\\"https://www.probabilitymanagement.org/tools\\\"\u003eSIPmath™ Modeler Tools for Excel\u003c/a\u003e from nonprofit ProbabilityManagement.org, and it is recommended that you procure \u003ca href=\\\"https://www.amazon.com/Flaw-Averages-Underestimate-Risk-Uncertainty/dp/1118073754\\\"\u003e\u003cem\u003eThe Flaw of Averages: Why we Underestimate Risk in the Face of Uncertainty\u003c/em\u003e\u003c/a\u003e, John Wiley \u0026amp; Sons, either the 1st or 2nd Edition.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eProbability management is the discipline of communicating and calculating uncertainties as auditable data arrays called Stochastic Information Packets or SIPs. This course provides a basic introduction to the subject.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003e\\n\u003cp\u003eHow to recognize the \u003cstrong\u003eFlaw of Averages,\u003c/strong\u003e a set of systematic errors that occur when uncertainties are represented by single numbers, usually an average. It explains why so many projects are behind schedule, beyond budget, and below projection.\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eThe \u003cstrong\u003eArithmetic of Uncertainty\u003c/strong\u003e , which performs calculations with uncertain inputs, resulting in uncertain outputs from which you can calculate true average outcomes and the chances of achieving specified goals.\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eHow to create \u003cstrong\u003eInteractive Simulations\u003c/strong\u003e which may be shared with any Excel user without the need for add-ins or macros. The approach is just as at home in R, Python or any programming environment that supports arrays.\u003c/p\u003e\\n\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-2fa0cfda-8dc4-4ff2-a085-a6b0c0f93c31\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:StanfordOnline+XCEE242R+2T2020\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"b20ac6d3-50c5-4a5b-8ce4-e33370117312\",\"productName\":\"Essential Math for AI\",\"productSlug\":\"learn/computer-science/columbia-university-essential-math-for-ai\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/b20ac6d3-50c5-4a5b-8ce4-e33370117312-a89a50e00791.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Computer Science\"],\"partnerName\":[\"Columbia University\"],\"partnerKeys\":[\"ColumbiaX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/3d8fc08e-339f-467a-a6c0-2b956ca5d6a0-797c0c6ddbc6.png\",\"fullDescription\":\"\u003cp\u003eThis self-paced, asynchronous course is recommended for learners who want to establish a solid knowledge base in statistics, linear algebra, multivariable calculus, probability and foundational topics in math.\u003c/p\u003e\\n\u003cp\u003eLearners can expect to review the mathematical and technical coursework as well as complete a self-assessment.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eThis course introduces the fundamental math used in AI as a review and refresher in preparation for more comprehensive course work.\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003eThis course will enable students to: \u003c/p\u003e\\n\u003cul\u003e\\n\u003cli\u003eUnderstand the components of math for AI functions including recursions, lambda expressions and higher-order functions.\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-b20ac6d3-50c5-4a5b-8ce4-e33370117312\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:ColumbiaX+CU.OC.AI001+1T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"d04bae51-9058-45bc-9b1b-92ecc929bfcf\",\"productName\":\"Networking Basics and Security\",\"productSlug\":\"learn/computer-science/ibm-networking-basics-and-security\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/d04bae51-9058-45bc-9b1b-92ecc929bfcf-240e23de81d7.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Computer Science\"],\"partnerName\":[\"IBM\"],\"partnerKeys\":[\"IBM\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/87b07564-d569-4cfd-bee6-8b0a407acb73-dc33e4b5f353.png\",\"fullDescription\":\"$3a1\",\"shortDescription\":\"\u003cp\u003eLearn the essentials of computer networking and network security. This course provides hands-on experience in securing networks, configuring devices, and applying network security techniques.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eApply sought-after computer network and network security skills businesses need to protect the network and endpoint devices from unwanted intrusions \u003c/li\u003e\\n\u003cli\u003eApply organization policies to protect endpoint devices from attacks using firewall settings, and outbound and inbound rulesets \u003c/li\u003e\\n\u003cli\u003eInstall, configure, apply patches, and use cloud-based software to find, quarantine, and remove malware and for intrusion detection systems \u003c/li\u003e\\n\u003cli\u003ePerform the tasks necessary to provide recommendations for network hardware devices, network security, and network monitoring and management\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-d04bae51-9058-45bc-9b1b-92ecc929bfcf\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:IBM+SE0202EN+1T2025\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"b10453db-1fdb-45e1-95ea-69cb84152b98\",\"productName\":\"BioStatistics\",\"productSlug\":\"learn/biostatistics/doane-university-biostatistics\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/b10453db-1fdb-45e1-95ea-69cb84152b98-9a550defd099.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Biology \u0026 Life Sciences\",\"Math\"],\"partnerName\":[\"Doane University\"],\"partnerKeys\":[\"DoaneX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/e9e90c9f-85ec-4ae5-bea8-2ecae2258446-85b6b8c0a212.png\",\"fullDescription\":\"$3a2\",\"shortDescription\":\"\u003cp\u003eThis college-level Biostatistics course will teach you the skills required for success in future analytical studies in biology.\u003c/p\u003e\\n\u003cp\u003e\u003cstrong\u003eThis course is eligible for Audit and Verified Certificate only.\u003c/strong\u003e\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eIdentify different types of data, and how it can be collected\u003c/li\u003e\\n\u003cli\u003eRecognize and design simple experiments\u003c/li\u003e\\n\u003cli\u003eSummarize data numerically and graphically using R\u003c/li\u003e\\n\u003cli\u003eUnderstand the difference between point and interval estimation\u003c/li\u003e\\n\u003cli\u003eDetermine and perform correct statistical test\u003c/li\u003e\\n\u003cli\u003eConclude and interpret the results from those tests\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-b10453db-1fdb-45e1-95ea-69cb84152b98\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:DoaneX+BIOL-295x+2T2022\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"742ebc04-732e-4133-b674-41124c0df79b\",\"productName\":\"Data Mining and Knowledge Discovery\",\"productSlug\":\"learn/data-mining/the-hong-kong-university-of-science-and-technology-data-mining-and-knowledge-discovery\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/742ebc04-732e-4133-b674-41124c0df79b-90f628870e7c.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Computer Science\"],\"partnerName\":[\"The Hong Kong University of Science and Technology\"],\"partnerKeys\":[\"HKUSTx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/b736b120-95f6-4ac5-83d0-138fedbbbda2-ed8f10dbd8ba.png\",\"fullDescription\":\"\u003cp\u003eData mining has recently emerged as a major field of research and applications. Aimed at extracting useful and interesting knowledge from large data repositories such as databases and the Web, data mining integrates techniques from the fields of database, statistics and AI.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eLearn how to discover knowledge in data via data mining.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eApply the clustering techniques to find clusters within the data\u003c/li\u003e\\n\u003cli\u003eUse the classification techniques to conduct classification and predication\u003c/li\u003e\\n\u003cli\u003eUse the knowledge of frequest pattern mining to discover patterns from the data\u003c/li\u003e\\n\u003cli\u003eLearn data warehouse techniques for data analysis\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-742ebc04-732e-4133-b674-41124c0df79b\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:HKUSTx+MSBD5002x+1T2025\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"544d56f8-57cb-4a1b-bc90-21e2ce0ea233\",\"productName\":\"Advanced Bioconductor\",\"productSlug\":\"learn/data-analysis/harvard-university-advanced-bioconductor\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/544d56f8-57cb-4a1b-bc90-21e2ce0ea233-bb85a0f891f9.jpg\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Biology \u0026 Life Sciences\",\"Science\"],\"partnerName\":[\"Harvard University\"],\"partnerKeys\":[\"HarvardX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/44022f13-20df-4666-9111-cede3e5dc5b6-2cc39992c67a.png\",\"fullDescription\":\"$3a3\",\"shortDescription\":\"\u003cp\u003eLearn advanced approaches to genomic visualization, reproducible analysis, data architecture, and exploration of cloud-scale consortium-generated genomic data.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eStatic and interactive visualization of genomic data\u003c/li\u003e\\n\u003cli\u003eReproducible analysis methods\u003c/li\u003e\\n\u003cli\u003eMemory-sparing representations of genomic assays\u003c/li\u003e\\n\u003cli\u003eWorking with multiomic experiments in cancer\u003c/li\u003e\\n\u003cli\u003eTargeted interrogation of cloud-scale genomic archives\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-544d56f8-57cb-4a1b-bc90-21e2ce0ea233\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:HarvardX+PH525.7x+3T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"6519e862-2555-40bd-bdd3-0c0e778077d2\",\"productName\":\"Relational Database Administration (DBA)\",\"productSlug\":\"learn/databases/ibm-relational-database-administration-dba\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/6519e862-2555-40bd-bdd3-0c0e778077d2-6f276aa436f3.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Computer Science\"],\"partnerName\":[\"IBM\"],\"partnerKeys\":[\"IBM\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/87b07564-d569-4cfd-bee6-8b0a407acb73-dc33e4b5f353.png\",\"fullDescription\":\"$3a4\",\"shortDescription\":\"\u003cp\u003eThis course helps you develop the foundational skills required to perform the role of a Database Administrator (DBA) including designing, implementing, securing, maintaining, troubleshooting and automating databases such as MySQL, PostgreSQL and Db2.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eDescribe common database administration tasks.\u003c/li\u003e\\n\u003cli\u003eDefine database security measures and create users, groups and roles.\u003c/li\u003e\\n\u003cli\u003ePerform full and incremental backup and restore procedures.\u003c/li\u003e\\n\u003cli\u003eConfigure a database server including various database parameters and logging.\u003c/li\u003e\\n\u003cli\u003eCreate and manage database objects including tables, schemas, keys and indexes.\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-6519e862-2555-40bd-bdd3-0c0e778077d2\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:IBM+DB0231EN+1T2022\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"7b456c49-5b9a-4ff5-bdf0-eaeceaa82d44\",\"productName\":\"Mathematics 1 Part 2: Integral calculus, algebra, and applications\",\"productSlug\":\"learn/math/the-london-school-of-economics-and-political-science-mathematics-1-part-2-integral-calculus-algebra-and-applications\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/7b456c49-5b9a-4ff5-bdf0-eaeceaa82d44-e93d0677cab6.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Math\"],\"partnerName\":[\"The London School of Economics and Political Science\"],\"partnerKeys\":[\"LSE\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/07141c7d-a86e-4f48-bb5b-1eef0958b465-b644124b89ef.png\",\"fullDescription\":\"\u003cp\u003e\u003cspan lang=\\\"EN\\\"\u003eMathematics 1 Part 2 is the second of two self-paced courses from LSE which aim to introduce and develop and understanding of essential mathematical concepts, methods and techniques. \u003c/span\u003eThis course can be taken alone or as part of the LSE MicroBachelors program in Mathematics and Statistics Fundamentals.\u003c/p\u003e\\n\u003cp\u003ePart 2 covers the following topics:\u003c/p\u003e\\n\u003cul\u003e\\n\u003cli\u003e\\n\u003cp\u003eIntegration\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eProfit maximisation\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eConstrained optimisation\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eMatrices, vectors, and linear equations\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eSequences, series, and financial modelling\u003c/p\u003e\\n\u003c/li\u003e\\n\u003c/ul\u003e\\n\u003cp\u003eThis course will equip you with the skills to solve unseen mathematical problems in these areas and will emphasise their applications to problems in economics, management, and related areas.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eThe second in a series of two courses which help you to master mathematics fundamentals and build your quantitative skillset for progression in high-growth careers, or to use as step towards further study at undergraduate level.\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003eBy the end of this course you will have:\u003c/p\u003e\\n\u003cul\u003e\\n\u003cli\u003eused the concepts, terminology, methods and conventions covered in the course to solve mathematical problems\u003c/li\u003e\\n\u003cli\u003ethe ability to solve unseen mathematical problems involving understanding of these concepts and application of these methods\u003c/li\u003e\\n\u003cli\u003eseen how mathematical techniques can be used to solve problems in economics and related subjects\u003c/li\u003e\\n\u003cli\u003eacquired skills in the methods of calculus (including multivariate calculus) and linear algebra, as required for their use in economics-based subjects\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-7b456c49-5b9a-4ff5-bdf0-eaeceaa82d44\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:LSE+LSEMT105b+3T2023\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"83fe6f4d-2509-4d94-a10a-649882b582d5\",\"productName\":\"Genetic Models for Animal Breeding\",\"productSlug\":\"learn/animal-breeding/wageningen-university-research-genetic-models-for-animal-breeding\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/83fe6f4d-2509-4d94-a10a-649882b582d5-6a21af3ef4d4.jpg\",\"productType\":\"Course\",\"attributes\":[\"Biology \u0026 Life Sciences\",\"Science\",\"Chemistry\"],\"partnerName\":[\"Wageningen University \u0026 Research\"],\"partnerKeys\":[\"WageningenX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/0c6e5fa2-96e8-40b2-9ebe-c8b0df2a3b22-7022589dbb5d.png\",\"fullDescription\":\"$3a5\",\"shortDescription\":\"\u003cp\u003eUnderstand the genetic and statistic principles that enable responsible animal breeding. Learn how to set up a breeding programme and apply genetic models and tools to predict the breeding value. Subscribe to this online course now.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eThe steps required in setting up a breeding program.\u003c/li\u003e\\n\u003cli\u003eUnderstanding of the main concepts in animal breeding.\u003c/li\u003e\\n\u003cli\u003eApplying genetic models and tools to predict the breeding value of animals.\u003c/li\u003e\\n\u003cli\u003eApplying tools to predict genetic change and/or inbreeding in populations.\u003c/li\u003e\\n\u003cli\u003eUnderstand the dissemination of genetic progress in different animal\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-83fe6f4d-2509-4d94-a10a-649882b582d5\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:WageningenX+ABG01x+1T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"5419a850-f5d8-4965-9690-6a5d0bc0be40\",\"productName\":\"Inclusive Teaching: Supporting All Students in the College Classroom\",\"productSlug\":\"learn/education/columbia-university-inclusive-teaching-supporting-all-students-in-the-college-classroom\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/5419a850-f5d8-4965-9690-6a5d0bc0be40-76231a075ed3.png\",\"productType\":\"Course\",\"attributes\":[\"Education \u0026 Teacher Training\"],\"partnerName\":[\"Columbia University\"],\"partnerKeys\":[\"ColumbiaX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/3d8fc08e-339f-467a-a6c0-2b956ca5d6a0-797c0c6ddbc6.png\",\"fullDescription\":\"$3a6\",\"shortDescription\":\"Explore the principles of inclusive teaching and learn how to apply them in your classroom to support diverse learners.\",\"productOverview\":\"\u003cul\u003e\\r\\n\u003cli\u003eIdentify instructor assumptions about students and how these assumptions impact teaching practices\u003c/li\u003e\\r\\n\u003cli\u003eDevelop an awareness of critical self-reflection and its value in teaching diverse learners\u003c/li\u003e\\r\\n\u003cli\u003eDefine the key components that impact inclusive classrooms\u003c/li\u003e\\r\\n\u003cli\u003eApply inclusive teaching strategies in individual teaching contexts\u003c/li\u003e\\r\\n\u003cli\u003eIdentify resources needed to continually improve inclusive teaching practice\u003c/li\u003e\\r\\n\u003c/ul\u003e\",\"objectId\":\"course-5419a850-f5d8-4965-9690-6a5d0bc0be40\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:ColumbiaX+INCLTEACH1x+2T2019\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"a2f850c6-c2e2-401c-9e37-8e1ee08927cc\",\"productName\":\"The Superpower Grand Strategies: Winning the Globalization Game\",\"productSlug\":\"learn/economics/university-system-of-maryland-the-superpower-grand-strategies-winning-the-globalization-game\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/a2f850c6-c2e2-401c-9e37-8e1ee08927cc-8a4f877bb838.png\",\"productType\":\"Course\",\"attributes\":[\"Economics \u0026 Finance\",\"Business \u0026 Management\"],\"partnerName\":[\"University System of Maryland\",\"The University of Maryland, College Park\"],\"partnerKeys\":[\"USMx\",\"UMD\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/b9dc96da-b3fc-45a6-b6b7-b8e12eb79335-bc0488f1a5f8.png\",\"fullDescription\":\"$3a7\",\"shortDescription\":\"\u003cp\u003eLearn to navigate North-South dynamics and superpower competition for success in a changing world by exploring how climate change, demographics, and the global middle class reshape global economics.\u003c/p\u003e\",\"productOverview\":\"$3a8\",\"objectId\":\"course-a2f850c6-c2e2-401c-9e37-8e1ee08927cc\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:USMx+ANM01x+1T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"d5356d12-387f-464b-9974-ccc0b2346084\",\"productName\":\"Financial Soundness Indicators\",\"productSlug\":\"learn/finance/the-international-monetary-fund-financial-soundness-indicators\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/d5356d12-387f-464b-9974-ccc0b2346084-a0c3fc2680e5.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Economics \u0026 Finance\",\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"The International Monetary Fund\"],\"partnerKeys\":[\"IMFx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/a655d538-b1e8-4f66-a99d-cf4682d2c17b-111a45d036cc.png\",\"fullDescription\":\"$3a9\",\"shortDescription\":\"\u003cp\u003eThe Financial Soundness Indicators (FSIs) were developed by the IMF, together with the international community, with the aim of supporting analysis and assessing strengths and vulnerabilities of financial systems and their corporate and household counterparts. FSIs are widely used by researchers, analysts, and policymakers around the world to monitor the soundness of the financial system as a whole from a macroprudential perspective. Learn about the collection, compilation and analisys of FSIs in this course.\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003eUpon completion of this course, participants should be able to:\u003c/p\u003e\\n\u003cul\u003e\\n\u003cli\u003eDefine the key concepts of the FSIs and their application in surveillance and macroprudential analysis. \u003c/li\u003e\\n\u003cli\u003eDefine the conceptual framework including application of the regulatory capital, leverage and liquidity concepts used in FSI compilation. \u003c/li\u003e\\n\u003cli\u003eDescribe the data preparation process for FSI compilation, and apply the recommended aggregation and consolidation methodologies. \u003c/li\u003e\\n\u003cli\u003eSpecify each of the Core and Additional FSIs for deposit-takers and explain the application of each in macroprudential analysis.\u003c/li\u003e\\n\u003cli\u003eIdentify the source data and specify the FSIs for non-deposit takers, and explain their application in macroprudential analysis.\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-d5356d12-387f-464b-9974-ccc0b2346084\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:IMFx+FSIx+2T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"b47999fa-20d2-47e9-997b-08bc80bd6c6b\",\"productName\":\"Quarterly National Accounts and High-Frequency Indicators of Economic Activity\",\"productSlug\":\"learn/economics/the-international-monetary-fund-quarterly-national-accounts-and-high-frequency-indicators-of-economic-activity\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/b47999fa-20d2-47e9-997b-08bc80bd6c6b-8da8a53f94a6.png\",\"productType\":\"Course\",\"attributes\":[\"Economics \u0026 Finance\"],\"partnerName\":[\"The International Monetary Fund\"],\"partnerKeys\":[\"IMFx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/a655d538-b1e8-4f66-a99d-cf4682d2c17b-111a45d036cc.png\",\"fullDescription\":\"\u003cp\u003eThis course, presented by the Statistics Department, teaches you how to compile timely and high-quality Quarterly National Accounts (QNA) and High-Frequency Indicators of Economic Activity (HFIEAs). The course presents the concepts, data sources, and compilation techniques needed for producing QNA and HFIEAs, covering both theoretical and practical compilation issues. It introduces participants to benchmarking, seasonal adjustment techniques, as well as volume estimates; and explains the application of these techniques to time series data. The course also discussed how to identify and assess available data sources, use real-time series databases to assess the quality, and implement a suitable revisions policy for compiling QNA and HFIEAs.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eLearn how to compile timely and high-quality Quarterly National Accounts (QNA) and High-Frequency Indicators of Economic Activity (HFIEAs).\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003eUpon completion of the course, participants should be able to:\u003c/p\u003e\\n\u003cul\u003e\\n\u003cli\u003eRecognize the role, scope, uses, and compilation frameworks for QNA and HFIEAs. \u003c/li\u003e\\n\u003cli\u003eReview available data sources for compiling QNA and HFIEAs. \u003c/li\u003e\\n\u003cli\u003eExplain the use of volume measures and the basic relation between value, quantity, and price—expanding on how to detect and address issues such as the need for updated weights; and recognizing the loss of additivity for chain-linked volume estimates.\u003c/li\u003e\\n\u003cli\u003eApply basic techniques for compiling benchmarked series and filling data gaps. \u003c/li\u003e\\n\u003cli\u003eApply basic seasonal adjustment techniques to time series, based on good seasonal adjustment practices.\u003c/li\u003e\\n\u003cli\u003eDescribe a balanced revisions policy taking into consideration how a related real-time database can be used to assess the reliability of the QNA and HFIEA estimates.\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-b47999fa-20d2-47e9-997b-08bc80bd6c6b\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:IMFx+QNA-HFIx+2T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"2ca676d1-faae-4290-9334-99d6fcb768f1\",\"productName\":\"Evaluating Animal Breeding Programmes\",\"productSlug\":\"learn/animal-breeding/wageningen-university-research-evaluating-animal-breeding-programmes\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/2ca676d1-faae-4290-9334-99d6fcb768f1-01aa4cba73e8.png\",\"productType\":\"Course\",\"attributes\":[\"Biology \u0026 Life Sciences\",\"Science\",\"Chemistry\"],\"partnerName\":[\"Wageningen University \u0026 Research\"],\"partnerKeys\":[\"WageningenX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/0c6e5fa2-96e8-40b2-9ebe-c8b0df2a3b22-7022589dbb5d.png\",\"fullDescription\":\"$3aa\",\"shortDescription\":\"\u003cp\u003eLearn how to evaluate an ongoing breeding programme in terms of both genetic progress and genetic diversity, and how to translate that genetic progress from the breeding programme to the farmer’s work.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eIntroduction to evaluating breeding programmes\u003c/li\u003e\\n\u003cli\u003eCrossbreeding and dissemination of genetic improvement\u003c/li\u003e\\n\u003cli\u003eEvaluation of breeding programmes\u003c/li\u003e\\n\u003cli\u003eGenetic diversity in monogenic recessive diseases\u003c/li\u003e\\n\u003cli\u003eGenetic diversity at a population level\u003c/li\u003e\\n\u003cli\u003eBreeding programmes in practice\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-2ca676d1-faae-4290-9334-99d6fcb768f1\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:WageningenX+ABG02x+1T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"f4ce8928-2ca9-47f0-bc53-804769ffe095\",\"productName\":\"IoT Programming and Big Data\",\"productSlug\":\"learn/big-data/curtin-university-iot-programming-and-big-data\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/f4ce8928-2ca9-47f0-bc53-804769ffe095-e7af9f84b6dd.jpg\",\"productType\":\"Course\",\"attributes\":[\"Computer Science\",\"Data Analysis \u0026 Statistics\",\"Design\"],\"partnerName\":[\"Curtin University\"],\"partnerKeys\":[\"CurtinX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/afb92a21-674a-4636-b83b-17e3fef7243d-82515dc77939.png\",\"fullDescription\":\"\u003cp\u003e\u003cstrong\u003eThis course will soon be retired. The last day to enroll is 02/25/2025 at 15:59 UTC.\u003c/strong\u003e\u003c/p\u003e\\n\u003cp\u003eThe Internet of Things is creating massive quantities of data, and managing and analysing it requires a unique approach to programming and statistics for distributed data sources.\u003c/p\u003e\\n\u003cp\u003eThis course will teach introductory programming concepts that allow connection to, and implementation of some functionality on, IoT devices, using the Python programming language. In addition, students will learn how to use Python to process text log files, such as those generated automatically by IoT sensors and other network-connected systems.\u003c/p\u003e\\n\u003cp\u003eLearners do not need prior programming experience to undertake this course, and will not learn a specific programming language - however Python will be used for demonstrations. This course will focus on learning by working through realistic examples.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eLearn how to apply software solutions for different systems and Big Data needs to your IoT designs.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eAppreciate the software needs of an IoT project\u003c/li\u003e\\n\u003cli\u003eUnderstand how data is managed in an IoT network\u003c/li\u003e\\n\u003cli\u003eApply software solutions for different systems and Big Data to your IoT concept designs\u003c/li\u003e\\n\u003cli\u003eCreate Python scripts to manage large data files collected from sensor data and interact with the real world via actuators and other output devices.\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-f4ce8928-2ca9-47f0-bc53-804769ffe095\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:CurtinX+IOT4x+1T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"b96f7406-e31e-42aa-9081-559af66116ba\",\"productName\":\"Applied Bayesian for Analytics\",\"productSlug\":\"learn/data-analysis/indian-institute-of-management-bangalore-applied-bayesian-for-analytics\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/b96f7406-e31e-42aa-9081-559af66116ba-04def16bee4c.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"Indian Institute of Management Bangalore\"],\"partnerKeys\":[\"IIMBx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/c2e6b3f5-9c1f-41f0-b692-f2173d05a256-7729f0b9d72b.png\",\"fullDescription\":\"\u003cp\u003eBayesian Statistics is a captivating field and is used most prominently in data sciences. In this course we will learn about the foundation of Bayesian concepts, how it differs from Classical Statistics including among others Parametrizations, Priors, Likelihood, Monte Carlo methods and computing Bayesian models with the exploration of Multilevel modelling.\u003c/p\u003e\\n\u003cp\u003eThis course is divided into two parts i.e. Theoretical and Empirical part of Bayesian Analytics. First three weeks cover the Theoretical part which includes how to form a prior, how to calculate a posterior and several other aspects. Rest of the weeks will cover the empirical part which explains how to compute Bayesian modelling. Completion of this course will provide you with an understanding of the Bayesian approach, the primary difference between Bayesian and Frequentist approaches and experience in data analyses.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003e\u003cspan lang=\\\"EN-US\\\"\u003eLearn how to construct, fit, estimate and compute Bayesian statistical models with the help of OpenBUGS (freely available software)\u003c/span\u003e\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eUnderstand the necessary Bayesian concepts from practical point of view for better decision making.\u003c/li\u003e\\n\u003cli\u003eLearn Bayesian approach to estimate likely event outcomes, or probabilities using datasets. \u003c/li\u003e\\n\u003cli\u003eGain “hands on” experience in creating and estimating Bayesian models using R and OPENBUGS.\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-b96f7406-e31e-42aa-9081-559af66116ba\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:IIMBx+QM201x+1T2022\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"a4adbb3c-297d-4d2c-aae1-92f4bac02661\",\"productName\":\"CERTaIN: CER/PCOR Methods: Introduction\",\"productSlug\":\"learn/statistics/the-university-of-texas-md-anderson-cancer-center-in-houston-certain-cer-pcor-methods-introduction\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/a4adbb3c-297d-4d2c-aae1-92f4bac02661-3f5bbae35a62.png\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Health \u0026 Safety\"],\"partnerName\":[\"The University of Texas MD Anderson Cancer Center in Houston\"],\"partnerKeys\":[\"MDAndersonX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/b7a45265-c0e2-43a0-b98d-f9869a701784-98244d29a07f.png\",\"fullDescription\":\"\u003cp\u003eIn this course, you will be introduced to basic statistics and study designs used in CER/PCOR and the ethical considerations to take into account when conducting CER/PCOR. \u003c/p\u003e\\n\u003cp\u003eThis introductorycourse includes 4 lectures: \u003c/p\u003e\\n\u003col\u003e\\n\u003cli\u003eBasic Statistics for PCOR/CER I\u003c/li\u003e\\n\u003cli\u003eBasic Statistics for PCOR/CER II\u003c/li\u003e\\n\u003cli\u003eEthics\u003c/li\u003e\\n\u003cli\u003eIntroduction to Comparative Effectiveness and Patient-Centered Outcomes Research\u003c/li\u003e\\n\u003c/ol\u003e\\n\u003cp\u003eThis course is intended for anyone interested in CER/ PCOR methods. \u003c/p\u003e\\n\u003cp\u003eThis course is supported by grant number R25HS023214 from the Agency for Healthcare Research and Quality.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eLearn the fundamentals of comparative effectiveness research (CER) and patient-centered outcomes research (PCOR) methods and data analysis strategies.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eDescribe basic statistical methods used for CER/PCOR\u003c/li\u003e\\n\u003cli\u003eList ethical considerations for CER/PCOR\u003c/li\u003e\\n\u003cli\u003eDefine CER/PCOR and describe examples of each\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-a4adbb3c-297d-4d2c-aae1-92f4bac02661\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:MDAndersonX+CERTaIN.1x+3T2022\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"602cd92f-9e67-48a4-83dc-23b78c20c542\",\"productName\":\"Guided Project: Secure Analysis of a Credit Card Dataset V2\",\"productSlug\":\"learn/computer-science/ibm-guided-project-secure-analysis-of-a-credit-card-dataset-v2\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/602cd92f-9e67-48a4-83dc-23b78c20c542-5336ed73f450.png\",\"productType\":\"Course\",\"attributes\":[\"Computer Science\"],\"partnerName\":[\"IBM\"],\"partnerKeys\":[\"IBM\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/87b07564-d569-4cfd-bee6-8b0a407acb73-dc33e4b5f353.png\",\"fullDescription\":\"$3ab\",\"shortDescription\":\"\u003cp\u003eIn this one-hour of hands-on guided project, you can easily learn how to analyze data using pandas, a popular Python library used for data analysis. This project will teach you how to analyze credit risk on a client dataset using the pandas library.\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003e\u003cspan lang=\\\"EN\\\"\u003eAfter completing this hands-on guided project, you’ll be able to:\u003c/span\u003e\u003c/p\u003e\\n\u003cul\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN-US\\\"\u003eExplore a dataset and perform calculations using its data\u003c/span\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN-US\\\"\u003eBuild dependencies among existing attributes of a dataset\u003c/span\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN-US\\\"\u003eVisualize the results of data analysis with various plot types\u003c/span\u003e\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-602cd92f-9e67-48a4-83dc-23b78c20c542\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:IBM+GPXX01P1ENV2+1T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"00d6f59a-95fb-4eb2-b330-dc8104005adf\",\"productName\":\"Contemporary Japanese Society: What Has Been Happening Behind Demographic Change?\",\"productSlug\":\"learn/social-science/the-university-of-tokyo-contemporary-japanese-society-what-has-been-happening-behind-demographic-change\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/00d6f59a-95fb-4eb2-b330-dc8104005adf-6cc8011cb293.png\",\"productType\":\"Course\",\"attributes\":[\"Social Sciences\"],\"partnerName\":[\"The University of Tokyo\"],\"partnerKeys\":[\"UTokyoX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/234a2849-1ac0-44fc-a5bd-2ab0e4e077fe-b06b8a3a6bca.png\",\"fullDescription\":\"\u003cp\u003eThe main aim of this course is to give an overview of how contemporary Japanese society has been stratified, from the perspective of changing demographic, familial, and socio-economic structure. Basic statistics will be presented to provide a concrete idea of the changes that have taken place in Japan. By the end of the course, students should have an awareness of similarities and differences across nations regarding social issues including aging population, gender gaps in work and family, and socio-economic inequalities.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eLearn basic knowledge of contemporary Japanese society, focusing on demographic change and social stratification after the Second World War.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eObtain basic knowledge of how various structural aspects of Japanese society have changed or remained unchanged.\u003c/li\u003e\\n\u003cli\u003eUnderstand the basic mechanism of social stratification in Japanese society.\u003c/li\u003e\\n\u003cli\u003eDevelop awareness of similarities and differences between the social problems affecting many advanced capitalist societies.\u003c/li\u003e\\n\u003cli\u003eThink actively about how these social problems can be alleviated.\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-00d6f59a-95fb-4eb2-b330-dc8104005adf\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:UTokyoX+UTokyo008x+1T2022\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"b12227a8-2e7b-4eba-b8fe-401d9697009a\",\"productName\":\"Road safety in the Caribbean region: institutions and data management\",\"productSlug\":\"learn/transportation/inter-american-development-bank-road-safety-in-the-caribbean-region-institutions-and-data-management\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/b12227a8-2e7b-4eba-b8fe-401d9697009a-fcc694ac7701.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Engineering\",\"Health \u0026 Safety\",\"Environmental Studies\"],\"partnerName\":[\"Inter-American Development Bank\"],\"partnerKeys\":[\"IDBx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/f87a494a-5b61-4c1c-b9ff-0fefec519326-6ea0a51177d0.png\",\"fullDescription\":\"$3ac\",\"shortDescription\":\"\u003cp\u003e\u003cspan lang=\\\"EN-US\\\"\u003eLearn about the current state of road safety in our region, its main challenges, and areas of action.\u003c/span\u003e\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003e\u003cspan lang=\\\"EN-US\\\"\u003eAt the end of this course, you will be able to:\u003c/span\u003e\u003c/p\u003e\\n\u003cul\u003e\\n\u003cli\u003e\\n\u003cp\u003e\u003cspan lang=\\\"EN-US\\\"\u003eIdentify the road safety challenges that Latin America and the Caribbean face, and understand the importance of designing an action plan based on data and evidence. \u003c/span\u003e\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003e\u003cspan lang=\\\"EN-US\\\"\u003eUnderstand\u003c/span\u003e\u003cspan lang=\\\"EN-US\\\"\u003e the difference between sustainable and unsustainable interventions, recognizing those that have been effective in reducing road crashes; and analyze how these could be implemented in your city. \u003c/span\u003e\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003e\u003cspan lang=\\\"EN-US\\\"\u003eAnalyze our behaviors, as users of motorized vehicles, pedestrians, or cyclists; identifying those that put our safety and that of others at risk.\u003c/span\u003e\u003c/p\u003e\\n\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-b12227a8-2e7b-4eba-b8fe-401d9697009a\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:IDBx+IDB16.11x+1T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"9de3b8b5-c828-4ae6-b842-6b6327815288\",\"productName\":\"Manufacturing Process Control I\",\"productSlug\":\"learn/manufacturing/massachusetts-institute-of-technology-manufacturing-process-control-i\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/9de3b8b5-c828-4ae6-b842-6b6327815288-cb3707095bb2.jpg\",\"productType\":\"Course\",\"attributes\":[\"Engineering\",\"Math\"],\"partnerName\":[\"Massachusetts Institute of Technology\"],\"partnerKeys\":[\"MITx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/2a73d2ce-c34a-4e08-8223-83bca9d2f01d-d4f180052205.png\",\"fullDescription\":\"$3ad\",\"shortDescription\":\"\u003cp\u003eLearn how to model variations in manufacturing processes and develop methods to reduce and control deterministic variations to achieve consistent process quality.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eVariation modeling using the theory of Random Processes\u003c/li\u003e\\n\u003cli\u003eStatistical Process Control (SPC) foundations and applications\u003c/li\u003e\\n\u003cli\u003eXbar, EWMA, CUSUM and discrete event methods for detecting process problems\u003c/li\u003e\\n\u003cli\u003eMethods for analyzing process changes by looking at general process physics\u003c/li\u003e\\n\u003cli\u003eHow to apply these methods to achieve world-class quality in unit manufacturing processes\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-9de3b8b5-c828-4ae6-b842-6b6327815288\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:MITx+2.830.1x+2T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"ada7a9ec-3cfa-48db-86d0-16b11fc262a6\",\"productName\":\"Try It: Cybersecurity Basics\",\"productSlug\":\"learn/cybersecurity/edx-try-it-cybersecurity-basics\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/ada7a9ec-3cfa-48db-86d0-16b11fc262a6-805c8d424037.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Engineering\"],\"partnerName\":[\"edX\"],\"partnerKeys\":[\"edX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/4f8cb2c9-589b-4d1e-88c1-b01a02db3a9c-42611123eb6a.png\",\"fullDescription\":\"$3ae\",\"shortDescription\":\"\u003cp\u003eDo you want to add cybersecurity to your professional skill set? Join this free introductory course to learn cybersecurity basics — and without any prior experience. You’ll learn about the Confidentiality, Integrity, and Availability (CIA) Triad, and how it applies to the daily tasks of a cyber professional. You’ll also examine the basics of cryptography and apply them in an encryption-decryption challenge.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eRecognize the basics and the importance of cybersecurity.\u003c/li\u003e\\n\u003cli\u003eDefine and apply the CIA Triad to different scenarios.\u003c/li\u003e\\n\u003cli\u003eExamine cryptography basics and how they apply to cybersecurity.\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-ada7a9ec-3cfa-48db-86d0-16b11fc262a6\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:edX+BCT-cyber-basics+1T2023\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"67922253-808e-4ae0-aaa7-ecdb4989e4c0\",\"productName\":\"Algorithms\",\"productSlug\":\"learn/algorithms/iitbombay-algorithms\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/67922253-808e-4ae0-aaa7-ecdb4989e4c0-e26d8ffb201a.png\",\"productType\":\"Course\",\"attributes\":[\"Computer Science\"],\"partnerName\":[\"IITBombay\"],\"partnerKeys\":[\"IITBombayX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/410f25d0-d67b-4a90-b7e3-8a856eece7e1-5a926942dd45.png\",\"fullDescription\":\"$3af\",\"shortDescription\":\"\u003cp\u003eLearn how to structure and use algorithms to solve real life problems.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eStructure of important algorithms.\u003c/li\u003e\\n\u003cli\u003eHow to use algorithms with appropriate data structures, to solve real life problems.\u003c/li\u003e\\n\u003cli\u003eHow algorithms and data structures can be used to design system at scale.\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-67922253-808e-4ae0-aaa7-ecdb4989e4c0\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:IITBombayX+CS213.3x+1T2021\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"7a7d4897-584a-4667-aeeb-c3a87a0cc15c\",\"productName\":\"Manufacturing Systems I\",\"productSlug\":\"learn/manufacturing/massachusetts-institute-of-technology-manufacturing-systems-i\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/7a7d4897-584a-4667-aeeb-c3a87a0cc15c-99186295b0b7.jpg\",\"productType\":\"Course\",\"attributes\":[\"Engineering\",\"Math\",\"Business \u0026 Management\"],\"partnerName\":[\"Massachusetts Institute of Technology\"],\"partnerKeys\":[\"MITx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/2a73d2ce-c34a-4e08-8223-83bca9d2f01d-d4f180052205.png\",\"fullDescription\":\"$3b0\",\"shortDescription\":\"\u003cp\u003eLearn about manufacturing systems and ways to analyze them in terms of material flow and storage, information flow, capacities, and times and durations of events, especially random events.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eApplications of basic probability models\u003c/li\u003e\\n\u003cli\u003eBuilding and solving optimization models\u003c/li\u003e\\n\u003cli\u003eInventory dynamics and management\u003c/li\u003e\\n\u003cli\u003ePhilosophy behind the Toyota Production System (TPS)\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-7a7d4897-584a-4667-aeeb-c3a87a0cc15c\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:MITx+2.854.1x+1T2025\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"d6d21d69-5349-41cc-9bc4-952114aa3a07\",\"productName\":\"LaTeX for Students, Engineers, and Scientists\",\"productSlug\":\"learn/engineering/iitbombay-latex-for-students-engineers-and-scientists\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/d6d21d69-5349-41cc-9bc4-952114aa3a07-a8c4ebd57751.jpg\",\"productType\":\"Course\",\"attributes\":[\"Engineering\"],\"partnerName\":[\"IITBombay\"],\"partnerKeys\":[\"IITBombayX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/410f25d0-d67b-4a90-b7e3-8a856eece7e1-5a926942dd45.png\",\"fullDescription\":\"$3b1\",\"shortDescription\":\"\u003cp\u003eExplore a new way of writing and typesetting articles, books, papers, etc. using a document preparation system called LaTeX.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eHandle different types of documents\u003c/li\u003e\\n\u003cli\u003eOrganize documents into different sections, subsections, etc..\u003c/li\u003e\\n\u003cli\u003eFormatting pages (margins, header, footer, orientation)\u003c/li\u003e\\n\u003cli\u003eFormatting text\u003c/li\u003e\\n\u003cli\u003eWrite complex mathematical formulae\u003c/li\u003e\\n\u003cli\u003eInclude tables and images\u003c/li\u003e\\n\u003cli\u003eCross-referencing, bibliography, and Indexing\u003c/li\u003e\\n\u003cli\u003eRead error messages as and when required\u003c/li\u003e\\n\u003cli\u003eCreate presentations using Beamer\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-d6d21d69-5349-41cc-9bc4-952114aa3a07\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:IITBombayX+LaTeX101x+1T2021\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"986c6f19-a06f-4363-b157-1e95b09819a7\",\"productName\":\"Pricing Options with Mathematical Models\",\"productSlug\":\"learn/mathematical-modeling/caltech-pricing-options-with-mathematical-models\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/986c6f19-a06f-4363-b157-1e95b09819a7-95df0dadac5c.jpg\",\"productType\":\"Course\",\"attributes\":[\"Economics \u0026 Finance\"],\"partnerName\":[\"Caltech\"],\"partnerKeys\":[\"CaltechX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/01424b8a-06bf-4410-ac4f-2f1016b105be-e40ca6bcc9d7.png\",\"fullDescription\":\"$3b2\",\"shortDescription\":\"\u003cp\u003eIntroduction to the Black-Scholes-Merton model and other mathematical models for pricing financial derivatives and hedging risk in financial markets.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eOption pricing and risk-hedging methods in the binomial tree and Black-Scholes-Merton models\u003c/li\u003e\\n\u003cli\u003eAbility to price options and other financial derivatives in models beyond Black-Scholes-Merton\u003c/li\u003e\\n\u003cli\u003eInterest rate models and the pricing of interest rate derivatives\u003c/li\u003e\\n\u003cli\u003eEvaluate the economics and mathematics behind the financial models presented\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-986c6f19-a06f-4363-b157-1e95b09819a7\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:CaltechX+BEM1105x+3T2020\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"7b2ecb24-2874-402b-ad86-473e246cae0c\",\"productName\":\"Linear Algebra, Part 1\",\"productSlug\":\"learn/linear-algebra/rice-university-linear-algebra-part-1\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/7b2ecb24-2874-402b-ad86-473e246cae0c-aa0d4ca8dc73.png\",\"productType\":\"Course\",\"attributes\":[\"Math\",\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"Rice University\"],\"partnerKeys\":[\"RICEx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/3e0f3544-6626-4373-afb9-b21e0e66a571-9317ec003c4d.png\",\"fullDescription\":\"$3b3\",\"shortDescription\":\"\u003cp\u003eThis course is an introduction to linear algebra. You will discover the basic objects of linear algebra – how to compute with them, how they fit together theoretically, and how they can be used to solve real problems.\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003eThe relationships between linear equations, matrices, and linear transformations; the principles of vector and matrix operations; the significance of basis and dimension of a vector space; the applications of inner products and orthogonality.\u003c/p\u003e\",\"objectId\":\"course-7b2ecb24-2874-402b-ad86-473e246cae0c\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:RICEx+Math355.1x+2T2020\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"0876df69-2866-4428-9fc3-a97d8d0cf81e\",\"productName\":\"Probability: Basic Concepts \u0026 Discrete Random Variables\",\"productSlug\":\"learn/probability/purdue-university-probability-basic-concepts-discrete-random-variables\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/0876df69-2866-4428-9fc3-a97d8d0cf81e-b54353db0943.jpg\",\"productType\":\"Course\",\"attributes\":[\"Computer Science\",\"Data Analysis \u0026 Statistics\",\"Math\"],\"partnerName\":[\"Purdue University\"],\"partnerKeys\":[\"PurdueX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/e5dfaf30-3828-4826-944e-03ea3dcf5b13-ab295e7bad86.png\",\"fullDescription\":\"$3b4\",\"shortDescription\":\"Learn fundamental concepts of mathematical probability to prepare for a career in the growing field of information and data science.\",\"productOverview\":\"\u003cul\u003e\\r\\n\u003cli\u003eBasic probability concepts and rules\u003c/li\u003e\\r\\n\u003cli\u003eSome of the most widely used probability models with discrete random variables\u003c/li\u003e\\r\\n\u003cli\u003eHow probability models work in practical problems\u003c/li\u003e\\r\\n\u003c/ul\u003e\",\"objectId\":\"course-0876df69-2866-4428-9fc3-a97d8d0cf81e\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:PurdueX+416.1x+3T2018\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"c6bebb2c-e76f-41b9-a247-d7ad74b0da05\",\"productName\":\"The Role of Empathy in Customer Experience\",\"productSlug\":\"learn/business-administration/state-bank-of-india-the-role-of-empathy-in-customer-experience\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/c6bebb2c-e76f-41b9-a247-d7ad74b0da05-06f64f066415.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Business \u0026 Management\",\"Communication\"],\"partnerName\":[\"State Bank of India\"],\"partnerKeys\":[\"State-Bank-of-India\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/6fc80e42-95b2-47c6-a5e8-8d76f104cebd-dd0954c7476b.png\",\"fullDescription\":\"$3b5\",\"shortDescription\":\"\u003cp\u003e\u003cspan lang=\\\"EN-US\\\"\u003eEmpathy, as defined in the Oxford Dictionary, is the ability to understand another person’s feelings, experience, etc. Empathy is increasingly being recognized by organizations across the world as an important component of customer centricity. The better an organization understands its clients’ needs, better will be the delivery of its products and services. And to understand its customers’ needs and expectations, organizations will have to step in their shoes or let us say ‘empathize’ with their customers. \u003c/span\u003e\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003e\u003cspan lang=\\\"EN-US\\\"\u003eThe programme learning and take away include the following:\u003c/span\u003e\u003cspan lang=\\\"EN-US\\\"\u003e\u003c/span\u003e\u003c/p\u003e\\n\u003cp\u003e1.\u003cspan lang=\\\"EN-US\\\"\u003e Importance of Empathy\u003c/span\u003e\u003cspan lang=\\\"EN-US\\\"\u003e\u003c/span\u003e\u003c/p\u003e\\n\u003cp\u003e2.\u003cspan lang=\\\"EN-US\\\"\u003e Types of Empathy\u003c/span\u003e\u003cspan lang=\\\"EN-US\\\"\u003e\u003c/span\u003e\u003c/p\u003e\\n\u003cp\u003e3.\u003cspan lang=\\\"EN-US\\\"\u003e Correlation between Empathy and improved Customer Experience\u003c/span\u003e\u003cspan lang=\\\"EN-US\\\"\u003e\u003c/span\u003e\u003c/p\u003e\\n\u003cp\u003e4.\u003cspan lang=\\\"EN-US\\\"\u003e Benefits of Empathy\u003c/span\u003e\u003cspan lang=\\\"EN-US\\\"\u003e\u003c/span\u003e\u003c/p\u003e\\n\u003cp\u003eThe programme will include a mix of audio-videos and faculty led lectures. The substance of the programme will be a combination of best practices in personal management and real-life examples for effectiveness.\u003c/p\u003e\",\"objectId\":\"course-c6bebb2c-e76f-41b9-a247-d7ad74b0da05\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:State-Bank-of-India+SBIL0022x+1T2023\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"6731b216-c8b6-4db5-9d8a-b7530c0e3ca0\",\"productName\":\"Probability: Distribution Models \u0026 Continuous Random Variables\",\"productSlug\":\"learn/probability/purdue-university-probability-distribution-models-continuous-random-variables\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/6731b216-c8b6-4db5-9d8a-b7530c0e3ca0-2c92ae83dd2b.jpg\",\"productType\":\"Course\",\"attributes\":[\"Computer Science\",\"Data Analysis \u0026 Statistics\",\"Math\"],\"partnerName\":[\"Purdue University\"],\"partnerKeys\":[\"PurdueX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/e5dfaf30-3828-4826-944e-03ea3dcf5b13-ab295e7bad86.png\",\"fullDescription\":\"$3b6\",\"shortDescription\":\"Learn about probability distribution models, including normal distribution, and continuous random variables to prepare for a career in information and data science.\",\"productOverview\":\"\u003cul\u003e\\r\\n\u003cli\u003eProbability concepts and rules\u003c/li\u003e\\r\\n\u003cli\u003eSome of the most widely used probability models with continuous random variables\u003c/li\u003e\\r\\n\u003cli\u003eHow distribution models we have encountered connect with Normal distribution\u003c/li\u003e\\r\\n\u003cli\u003eAdvanced probability topics\u003c/li\u003e\\r\\n\u003c/ul\u003e\",\"objectId\":\"course-6731b216-c8b6-4db5-9d8a-b7530c0e3ca0\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:PurdueX+416.2x+3T2018\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"d793db45-31ae-4030-bebe-a4966f34d215\",\"productName\":\"Guided Project: Secure Analysis of a Credit Card Dataset\",\"productSlug\":\"learn/data-analysis/ibm-guided-project-secure-analysis-of-a-credit-card-dataset\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/d793db45-31ae-4030-bebe-a4966f34d215-63294b33c05e.png\",\"productType\":\"Course\",\"attributes\":[\"Computer Science\"],\"partnerName\":[\"IBM\"],\"partnerKeys\":[\"IBM\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/87b07564-d569-4cfd-bee6-8b0a407acb73-dc33e4b5f353.png\",\"fullDescription\":\"$3b7\",\"shortDescription\":\"\u003cp\u003e\u003cspan lang=\\\"EN-US\\\"\u003eIn this one-hour of hands-on guided project, you can easily learn how to analyze data using pandas, a popular Python library used for data analysis. This project will teach you how to analyze credit risk on a client dataset using the pandas library.\u003c/span\u003e\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003e\u003cspan lang=\\\"EN\\\"\u003eAfter completing this hands-on guided project, you’ll be able to:\u003c/span\u003e\u003c/p\u003e\\n\u003cul\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN-US\\\"\u003eExplore a dataset and perform calculations using its data\u003c/span\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN-US\\\"\u003eBuild dependencies among existing attributes of a dataset\u003c/span\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN-US\\\"\u003eVisualize the results of data analysis with various plot types\u003c/span\u003e\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-d793db45-31ae-4030-bebe-a4966f34d215\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:IBM+GPXX01P1EN+1T2023\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"7d8fd668-1f79-4707-aecb-2306749dacca\",\"productName\":\"Math in Sports\",\"productSlug\":\"learn/math/university-of-notre-dame-math-in-sports\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/7d8fd668-1f79-4707-aecb-2306749dacca-ac074c299a8e.jpg\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Math\",\"Physics\"],\"partnerName\":[\"University of Notre Dame\"],\"partnerKeys\":[\"NotreDameX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/2c5210cb-3d23-4ba8-bcfa-edc7f0cfb368-1b48c3164a0a.png\",\"fullDescription\":\"$3b8\",\"shortDescription\":\"\u003cp\u003eCome learn how you can use mathematics to get a deeper insight into both the sports you love and everyday life.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eDraw conclusions from mathematical analysis using inductive reasoning\u003c/li\u003e\\n\u003cli\u003eEvaluate data using principles of probability\u003c/li\u003e\\n\u003cli\u003eAssess risk and develop strategies that drive event outcomes\u003c/li\u003e\\n\u003cli\u003eModel physical processes in order to predict (or change) outcomes\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-7d8fd668-1f79-4707-aecb-2306749dacca\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:NotreDameX+MAT150x+3T2020\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"c22ff74a-6bec-4357-b941-d3eaf56966c7\",\"productName\":\"Finance\",\"productSlug\":\"masters/micromasters/mitx-finance\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/c22ff74a-6bec-4357-b941-d3eaf56966c7-ba8214a85494.png\",\"productType\":\"MicroMasters\",\"attributes\":[\"Economics \u0026 Finance\",\"Data Analysis \u0026 Statistics\",\"Math\",\"Engineering\"],\"partnerName\":[\"Massachusetts Institute of Technology\"],\"partnerKeys\":[\"MITx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/2a73d2ce-c34a-4e08-8223-83bca9d2f01d-d4f180052205.png\",\"fullDescription\":\"Comprehend the foundations of modern finance.,Understand the basics of corporate finance, capital budgeting, real and financial options, capital structure, yield curve analysis, and corporate risk management.,Apply financial decision making, the theory of efficient markets, valuation theory, financial securities, risk analysis, portfolio theory, derivatives pricing, hedging strategies based on duration and convexity, and asset pricing models.,Identify the basic structure of financial reports and the process of recording transactions. Understand how investors, creditors, and other users analyze financial statements to assess corporate performance.,Perform applied computational techniques in R and apply advanced mathematical topics in financial engineering and quantitative finance using linear algebra, optimization, probability, stochastic processes, and statistics.\",\"shortDescription\":\"Accelerate your finance career. Fast-track your master’s degree in finance.\",\"productOverview\":\"$3b9\",\"objectId\":\"program-c22ff74a-6bec-4357-b941-d3eaf56966c7\",\"productSource\":\"edX\",\"productCategory\":\"Program\",\"activeRunKey\":null,\"childCoursesCount\":6,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"2fc3236d-78a9-45a1-8c0c-fc290e74259e\",\"productName\":\"Supply Chain Management\",\"productSlug\":\"masters/micromasters/mitx-supply-chain-management\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/2fc3236d-78a9-45a1-8c0c-fc290e74259e-f3b970b5cd3a.jpg\",\"productType\":\"MicroMasters\",\"attributes\":[\"Business \u0026 Management\",\"Engineering\"],\"partnerName\":[\"Massachusetts Institute of Technology\"],\"partnerKeys\":[\"MITx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/2a73d2ce-c34a-4e08-8223-83bca9d2f01d-d4f180052205.png\",\"fullDescription\":\"To apply core methodologies (probability, statistics, optimization) used in supply chain modeling and analysis.,To understand and use fundamental models to make trade-offs between forecasting, inventory, and transportation.,To design supply chain networks as well as financial and information flows.,To understand how supply chains act as systems and interact.,How technology is used within supply chains from fundamentals to packaged software systems.,End to end supply chain management.\",\"shortDescription\":\"Earn a MicroMasters credential from MIT’s #1 ranked Supply Chain Management Program to advance your career.\",\"productOverview\":\"$3ba\",\"objectId\":\"program-2fc3236d-78a9-45a1-8c0c-fc290e74259e\",\"productSource\":\"edX\",\"productCategory\":\"Program\",\"activeRunKey\":null,\"childCoursesCount\":6,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"f242e785-fd51-4876-a430-db3e49c4e337\",\"productName\":\"Business Principles and Entrepreneurial Thought\",\"productSlug\":\"xseries/babson-college-business-principles-entrepreneurial-thought\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/f242e785-fd51-4876-a430-db3e49c4e337-8aabf3eeadab.jpg\",\"productType\":\"XSeries\",\"attributes\":[\"Business \u0026 Management\",\"Economics \u0026 Finance\",\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"Babson College\"],\"partnerKeys\":[\"BabsonX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/5e657c42-b466-4101-883a-7f2830ff3d54-1cc106481e49.png\",\"fullDescription\":\"Core business skills in financial accounting, statistics, marketing, finance and strategy,How entrepreneurial thinking can be applied to any business environment,An understanding of entrepreneurial thought and action\",\"shortDescription\":\"Learn core business skills and how they intersect with Entrepreneurship of All Kinds® from the #1 business school in Entrepreneurship.\",\"productOverview\":\"$3bb\",\"objectId\":\"program-f242e785-fd51-4876-a430-db3e49c4e337\",\"productSource\":\"edX\",\"productCategory\":\"Program\",\"activeRunKey\":null,\"childCoursesCount\":6,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"0cc9a3bd-a93c-46ae-bc46-b2ac239c9fcf\",\"productName\":\"Data Analytics and Visualization\",\"productSlug\":\"certificates/professional-certificate/asux-data-analytics-and-visualization\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/0cc9a3bd-a93c-46ae-bc46-b2ac239c9fcf-9cd375c4dc76.png\",\"productType\":\"Professional Certificate\",\"attributes\":[\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"Arizona State University\"],\"partnerKeys\":[\"ASUx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/766a3716-f962-425b-b56e-e214c019b229-1fd2c1d49461.png\",\"fullDescription\":\"Perform basic business analytics operations in Excel, including data aggregation with PivotTable and distribution analysis through statistics and visualizations.,Become familiar with database structures, the star schema and other data joining techniques.,Process data by writing report queries, building complex scripts and leveraging SQL for database analysis.,Visualize data with Tableau, creating interactive dashboards that can integrate multiple visualizations for business decision-making.,Construct a predictive model in Python without needing a statistics prerequisite, gaining knowledge on different algorithms used for complex business analysis insights.\",\"shortDescription\":\"This Professional Certificate serves as your gateway to the mysteries hidden within data, equipping you with the skills to not only extract meaning from complex datasets but also present your findings with powerful visualizations.\",\"productOverview\":\"$3bc\",\"objectId\":\"program-0cc9a3bd-a93c-46ae-bc46-b2ac239c9fcf\",\"productSource\":\"edX\",\"productCategory\":\"Program\",\"activeRunKey\":null,\"childCoursesCount\":4,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"1bdf595a-19e9-48c9-a163-487a83ed58b5\",\"productName\":\"Foundations of Business Analytics\",\"productSlug\":\"certificates/professional-certificate/lehigh-university-foundations-of-business-analytics\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/1bdf595a-19e9-48c9-a163-487a83ed58b5-e4966cfcd8b7.png\",\"productType\":\"Professional Certificate\",\"attributes\":[\"Economics \u0026 Finance\",\"Business \u0026 Management\",\"Data Analysis \u0026 Statistics\",\"Computer Science\"],\"partnerName\":[\"Lehigh University\"],\"partnerKeys\":[\"LehighX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/9b3352f1-7df7-4cb9-9726-4b188d49799f-cdfdef9f1ccf.png\",\"fullDescription\":\"Foundational building blocks and skills for disciplined data driven business decision making. Prerequisites for potential Masters in Business Analytics.,Economics Fundamentals: elasticity of demand and supply, pricing and production decisions of firms, concepts of marginal analysis and opportunity costs to consumer theory, and to the profit-maximizing behavior of firms.,Statistics Fundamentals: basic tools and methods of statistical analysis, which can be applied to a wide variety of situations and data encountered in the areas of business and economics.,Python Fundamentals: establishing a strong foundation in basic programming concepts and apply Python functions to basic business analytic problems\",\"shortDescription\":\"Data science is having a profound impact on our lives/businesses. Business analytics has become a powerful and necessary tool for organizations to compete in the marketplace: make informed decisions, increase revenue, and improve operational efficiency.\",\"productOverview\":\"\u003cp\u003eData science has generated profound impacts on our lives and businesses today. The application of data science in business (i.e., business analytics) has become a powerful and necessary tool for today’s organizations to compete in the marketplace. With the ubiquitous use of electronic and mobile devices, organizations and consumers generate vast amounts of data daily. How to analyze and interpret the data has become a challenge for organizations. Organizations that have implemented data analytics in their business operations can make informed decisions, to increase revenue, and improve operational efficiency. \u003c/p\u003e\\r\\n\\r\\n\u003cp\u003eIn the long-run, data driven decisions lead to better outcomes than choices that are based on intuitions or gut feelings. Hence, more and more managers rely on actual data to make better and more informed choices by utilizing these foundational background and data modeling tools.\u003c/p\u003e\",\"objectId\":\"program-1bdf595a-19e9-48c9-a163-487a83ed58b5\",\"productSource\":\"edX\",\"productCategory\":\"Program\",\"activeRunKey\":null,\"childCoursesCount\":3,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"149ce8de-48c4-4a33-9860-9f0f63cbfd4d\",\"productName\":\"Making a Difference\",\"productSlug\":\"certificates/professional-certificate/taux-making-a-difference\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/149ce8de-48c4-4a33-9860-9f0f63cbfd4d-801c785ee137.png\",\"productType\":\"Professional Certificate\",\"attributes\":[\"Ethics\",\"Economics \u0026 Finance\",\"Health \u0026 Safety\"],\"partnerName\":[\"Tel Aviv University\"],\"partnerKeys\":[\"TAUx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/0e337af8-3643-496e-be9e-fb91274a505d-19990d293b60.png\",\"fullDescription\":\"Analytical tools for evaluating what works and what doesn’t.,Frameworks for prioritizing different options for making a difference.,Concrete opportunities in promising cause areas you can contribute to.,Insights from philosophy, public health, economics, psychology, statistics and more.\",\"shortDescription\":\"\",\"productOverview\":\"$3bd\",\"objectId\":\"program-149ce8de-48c4-4a33-9860-9f0f63cbfd4d\",\"productSource\":\"edX\",\"productCategory\":\"Program\",\"activeRunKey\":null,\"childCoursesCount\":2,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"940b0dff-b524-40b3-adf2-8d0f1fb7f5a3\",\"productName\":\"Técnicas Cuantitativas y Cualitativas para la Investigación\",\"productSlug\":\"learn/data-analysis/universitat-politecnica-de-valencia-tecnicas-cuantitativas-y-cualitativas-para-la-investigacion\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/940b0dff-b524-40b3-adf2-8d0f1fb7f5a3-a95a6e19cedc.jpg\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"Universitat Politècnica de València\"],\"partnerKeys\":[\"UPValenciaX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/518a47f2-66fb-4529-8902-a4f7ca3002ef-32e55d44aff3.png\",\"fullDescription\":\"$3be\",\"shortDescription\":\"\u003cp\u003eEl curso pretende acercar al alumno al método científico y, en concreto, cómo éste se aplica al estudio y análisis de los métodos de casos.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eIntroducción de principios estadísticos, econométricos y metodológicos para la investigación\u003c/li\u003e\\n\u003cli\u003eAnálisis completo de todas las etapas del proceso de investigación\u003c/li\u003e\\n\u003cli\u003eAplicación del método científico al estudio de los métodos de casos\u003c/li\u003e\\n\u003cli\u003eAplicación del método científico al análisis de los métodos de casos\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-940b0dff-b524-40b3-adf2-8d0f1fb7f5a3\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:UPValenciaX+TCCI201.x+3T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"75791441-a8a9-4009-b3ec-8d160d31e07a\",\"productName\":\"Estadística Aplicada a los Negocios\",\"productSlug\":\"learn/data-analysis/universidad-galileo-estadistica-aplicada-a-los-negocios\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/75791441-a8a9-4009-b3ec-8d160d31e07a-345e2b09f95e.jpg\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"Universidad Galileo\"],\"partnerKeys\":[\"GalileoX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/bc4110ab-affc-4aa3-9b65-f3df49e6379f-5fbf95d129d1.png\",\"fullDescription\":\"$3bf\",\"shortDescription\":\"\u003cp\u003eUsa estadística descriptiva e inferencial en los negocios. Aprende a tomar decisiones con ayuda de estimadores, análisis regresional y más.\u003c/p\u003e\",\"productOverview\":\"$3c0\",\"objectId\":\"course-75791441-a8a9-4009-b3ec-8d160d31e07a\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:GalileoX+PCPSTA01x+1T2025\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"52adab72-1767-4016-9303-6df23a63836c\",\"productName\":\"Valoración de Futbolistas con el Método AHP\",\"productSlug\":\"learn/sports-business/universitat-politecnica-de-valencia-valoracion-de-futbolistas-con-el-metodo-ahp\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/52adab72-1767-4016-9303-6df23a63836c-e831528b4899.jpg\",\"productType\":\"Course\",\"attributes\":[\"Business \u0026 Management\"],\"partnerName\":[\"Universitat Politècnica de València\"],\"partnerKeys\":[\"UPValenciaX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/518a47f2-66fb-4529-8902-a4f7ca3002ef-32e55d44aff3.png\",\"fullDescription\":\"$3c1\",\"shortDescription\":\"\u003cp\u003eAprenderás a utilizar el método AHP para seleccionar de forma objetiva el mejor jugador para una posición o estimar el valor de su traspaso.\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003eEn el curso aprenderás a utilizar herramientas que permiten seleccionar de una forma objetiva el mejor jugador para una posición dada o estimar el valor del traspaso de un jugador utilizando las cantidades pagadas por jugadores similares en operaciones recientes.\u003c/p\u003e\",\"objectId\":\"course-52adab72-1767-4016-9303-6df23a63836c\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:UPValenciaX+VF201x+2T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"31e6d779-04f6-4a56-b9a4-4a9b32370e27\",\"productName\":\"Introduction to Genomic Data Science\",\"productSlug\":\"learn/bioinformatics/the-university-of-california-san-diego-introduction-to-genomic-data-science\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/31e6d779-04f6-4a56-b9a4-4a9b32370e27-1e17bf1c04bd.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Computer Science\",\"Biology \u0026 Life Sciences\"],\"partnerName\":[\"The University of California, San Diego\"],\"partnerKeys\":[\"UCSanDiegoX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/c7f335bb-f97c-4472-af09-65ae60197005-7d797d964ddb.png\",\"fullDescription\":\"$3c2\",\"shortDescription\":\"Join us on the frontier of bioinformatics and learn how to look for hidden messages in DNA without ever needing to put on a lab coat.\",\"productOverview\":\"\u003cul\u003e\u003cli\u003eWrite Python programs to solve various tasks you may encounter\u003c/li\u003e\\r\\n\\t\u003cli\u003eFormulate a formal computational problem from an informal biological problem\u003c/li\u003e\\r\\n\\t\u003cli\u003eDevelop algorithms for solving computational problems\u003c/li\u003e\\r\\n\\t\u003cli\u003eEvaluate the effectiveness of algorithms\u003c/li\u003e\\r\\n\\t\u003cli\u003eApply existing software to actual biological datasets\u003c/li\u003e\\r\\n\u003c/ul\u003e\",\"objectId\":\"course-31e6d779-04f6-4a56-b9a4-4a9b32370e27\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:UCSanDiegoX+CSE181.1x+1T2017\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"4cad72ef-0a40-4eee-bd1b-e3d1834e26eb\",\"productName\":\"Advanced Algorithmics and Graph Theory with Python\",\"productSlug\":\"learn/python/imt-advanced-algorithmics-and-graph-theory-with-python\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/4cad72ef-0a40-4eee-bd1b-e3d1834e26eb-531b6c8deb39.png\",\"productType\":\"Course\",\"attributes\":[\"Computer Science\"],\"partnerName\":[\"IMT\"],\"partnerKeys\":[\"IMTx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/55a6dc9c-5bc9-45e1-be34-a94bcc87bb15-c3509d119e45.png\",\"fullDescription\":\"$3c3\",\"shortDescription\":\"\u003cp\u003eStrengthen your skills in algorithmics and graph theory, and gain experience in programming in Python along the way.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eWays to express a computational problem (such as pathfinding) using graph theory\u003c/li\u003e\\n\u003cli\u003eHow to choose the appropriate algorithm to solve the given computational problem\u003c/li\u003e\\n\u003cli\u003eHow to code the algorithmic solution in python\u003c/li\u003e\\n\u003cli\u003eMethods for evaluating the proposed solution in terms of its complexity (amount of resources, scalability) or performance (accuracy, latency)\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-4cad72ef-0a40-4eee-bd1b-e3d1834e26eb\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:IMTx+NET04x+3T2023\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"63f8ec13-8c6b-4c70-b380-3f95e56a21f6\",\"productName\":\"Demystifying Biomedical Big Data: A User’s Guide\",\"productSlug\":\"learn/big-data/georgetown-university-demystifying-biomedical-big-data-a-users-guide\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/63f8ec13-8c6b-4c70-b380-3f95e56a21f6-d8de3c31749c.jpg\",\"productType\":\"Course\",\"attributes\":[\"Computer Science\",\"Data Analysis \u0026 Statistics\",\"Medicine\"],\"partnerName\":[\"Georgetown University\"],\"partnerKeys\":[\"GeorgetownX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/300a9275-e360-4599-92db-8c2222d5f614-712b2867e667.png\",\"fullDescription\":\"$3c4\",\"shortDescription\":\"\u003cp\u003eWhether you are a student, basic scientist, researcher, clinician, or librarian, this course is designed to help you understand, analyze, and interpret biomedical big data.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eUnderstand how biomedical data are being generated and processed\u003c/li\u003e\\n\u003cli\u003eLearn about various biomedical big data resources (e.g. TCGA, G-DOC, UNIPROT, etc.)\u003c/li\u003e\\n\u003cli\u003eExplore and analyze genomic, transcriptomic, and proteomic data using various online analysis tools\u003c/li\u003e\\n\u003cli\u003eMake sense of big data using systems biology resources and tools\u003c/li\u003e\\n\u003cli\u003eAppreciate the value of big data in biomedical research and clinical practice (e.g. enabling precision medicine)\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-63f8ec13-8c6b-4c70-b380-3f95e56a21f6\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:GeorgetownX+BIOX-201-01x+2T2017_2\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"9a310b98-8f27-439e-be85-12d6460245c9\",\"productName\":\"Data Analysis for Genomics\",\"productSlug\":\"certificates/professional-certificate/harvardx-data-analysis-for-genomics\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/9a310b98-8f27-439e-be85-12d6460245c9-dc2e748fb37d.jpg\",\"productType\":\"Professional Certificate\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Biology \u0026 Life Sciences\",\"Science\"],\"partnerName\":[\"Harvard University\"],\"partnerKeys\":[\"HarvardX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/44022f13-20df-4666-9111-cede3e5dc5b6-2cc39992c67a.png\",\"fullDescription\":\"How to bridge diverse genomic assay and annotation structures to data analysis and research presentations via innovative approaches to computing,Advanced techniques to analyze genomic data.,How to structure, annotate, normalize, and interpret genome-scale assays.,How to analyze data from several experimental protocols, using open-source software, including R and Bioconductor.\",\"shortDescription\":\"Learn advanced techniques to analyze genomics data\",\"productOverview\":\"\u003cp\u003eAdvances in genomics have triggered fundamental changes in medicine and research. Genomic datasets are driving the next generation of discovery and treatment, and this series will enable you to analyze and interpret data generated by modern genomics technology.\u003c/p\u003e\\r\\n\\r\\n\u003cp\u003eUsing open-source software, including R and Bioconductor, you will acquire skills to analyze and interpret genomic data. These courses are perfect for those who seek advanced training in high-throughput technology data. Problem sets will require coding in the R language to ensure mastery of key concepts. In the final course, you’ll investigate data analysis for several experimental protocols in genomics.\u003c/p\u003e\\r\\n\\r\\n\u003cp\u003eEnroll now to unlock the wealth of opportunities in modern genomics.\u003c/p\u003e\",\"objectId\":\"program-9a310b98-8f27-439e-be85-12d6460245c9\",\"productSource\":\"edX\",\"productCategory\":\"Program\",\"activeRunKey\":null,\"childCoursesCount\":3,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"390dba30-75d7-4b57-859c-30abd1433885\",\"productName\":\"Inteligencia de negocios\",\"productSlug\":\"certificates/professional-certificate/galileox-inteligencia-de-negocios\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/390dba30-75d7-4b57-859c-30abd1433885-e7dfae347f13.jpg\",\"productType\":\"Professional Certificate\",\"attributes\":[\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"Universidad Galileo\"],\"partnerKeys\":[\"GalileoX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/bc4110ab-affc-4aa3-9b65-f3df49e6379f-5fbf95d129d1.png\",\"fullDescription\":\"Cómo usar Excel y Power BI para análisis de datos,Cómo recuperar, extraer y manejar data valiosa para transformarla en datos de valor e información relevante,Cómo visualizar, depurar, interpretar, analizar y usar datos (datos puros y gráficas),Cuál es el proceso de decision making y cómo usar un sistema de soporte de decisiones,Comprender herramientas, procesos y técnicas de análisis de datos y tecnologías asociadas a la Inteligencia empresarial,Aplicar estadística descriptiva e inferencial e las empresas y estimar intervalos de confianza en una empresa o negocio y entender la mecánica del análisis de regresión,Calcular y aplicar las medidas estadísticas de tendencia central y aplicar la distribución de probabilidad continua\",\"shortDescription\":\"Aprende a transformar big data en decisiones empresariales acertadas. Aprende sobre Business Intelligence. Usa herramientas como Excel y Power BI para la toma de decisiones empresariales.\",\"productOverview\":\"$3c5\",\"objectId\":\"program-390dba30-75d7-4b57-859c-30abd1433885\",\"productSource\":\"edX\",\"productCategory\":\"Program\",\"activeRunKey\":null,\"childCoursesCount\":2,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"e2c8487f-5a70-4643-86e9-07e240059d6f\",\"productName\":\"Statistical Learning with Python\",\"productSlug\":\"learn/python/stanford-university-statistical-learning-with-python\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/e2c8487f-5a70-4643-86e9-07e240059d6f-b8a7f5450a8c.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"Stanford University\"],\"partnerKeys\":[\"StanfordOnline\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/f53a7458-c79b-4524-97cf-28241114230e-e47d44123c3b.png\",\"fullDescription\":\"$3c6\",\"shortDescription\":\"\u003cp\u003eLearn some of the main tools used in statistical modeling and data science. We cover both traditional as well as exciting new methods, and how to use them in Python.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eOverview of statistical learning\u003c/li\u003e\\n\u003cli\u003eLinear regression\u003c/li\u003e\\n\u003cli\u003eClassificaiton\u003c/li\u003e\\n\u003cli\u003eResampling methods\u003c/li\u003e\\n\u003cli\u003eLinear model selection and regularization\u003c/li\u003e\\n\u003cli\u003eMoving beyond linearity\u003c/li\u003e\\n\u003cli\u003eTree-based methods\u003c/li\u003e\\n\u003cli\u003eSupport vector machines\u003c/li\u003e\\n\u003cli\u003eDeep learning\u003c/li\u003e\\n\u003cli\u003eSurvival modeling\u003c/li\u003e\\n\u003cli\u003eUnsupervised learning\u003c/li\u003e\\n\u003cli\u003eMultiple testing\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-e2c8487f-5a70-4643-86e9-07e240059d6f\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:StanfordOnline+SOHS-YSTATSLEARNINGP+1T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"ef2fc3ac-b0bc-4004-bd30-d610832d0cdd\",\"productName\":\"Statistical Learning with R\",\"productSlug\":\"learn/statistics/stanford-university-statistical-learning\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/ef2fc3ac-b0bc-4004-bd30-d610832d0cdd-b971c6b5f47b.png\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"Stanford University\"],\"partnerKeys\":[\"StanfordOnline\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/f53a7458-c79b-4524-97cf-28241114230e-e47d44123c3b.png\",\"fullDescription\":\"$3c7\",\"shortDescription\":\"\u003cp\u003eLearn some of the main tools used in statistical modeling and data science. We cover both traditional as well as exciting new methods, and how to use them in R. \u003cem\u003eCourse material updated in 2021 for second edition of the course textbook.\u003c/em\u003e\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eOverview of statistical learning\u003c/li\u003e\\n\u003cli\u003eLinear regression\u003c/li\u003e\\n\u003cli\u003eClassification\u003c/li\u003e\\n\u003cli\u003eResampling methods\u003c/li\u003e\\n\u003cli\u003eLinear model selection and regularization\u003c/li\u003e\\n\u003cli\u003eMoving beyond linearity\u003c/li\u003e\\n\u003cli\u003eTree-based methods\u003c/li\u003e\\n\u003cli\u003eSupport vector machines\u003c/li\u003e\\n\u003cli\u003eDeep learning\u003c/li\u003e\\n\u003cli\u003eSurvival modeling\u003c/li\u003e\\n\u003cli\u003eUnsupervised learning\u003c/li\u003e\\n\u003cli\u003eMultiple testing\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-ef2fc3ac-b0bc-4004-bd30-d610832d0cdd\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:StanfordOnline+STATSX0001+2T2023\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"e8be2a3c-85ef-4149-a1a3-ed5c8ee9462f\",\"productName\":\"Basics of Statistical Inference and Modelling Using R\",\"productSlug\":\"learn/inferential-statistics/university-of-canterbury-basics-of-statistical-inference-and-modelling-using-r\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/e8be2a3c-85ef-4149-a1a3-ed5c8ee9462f-76bdb57540c6.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Math\"],\"partnerName\":[\"University of Canterbury\"],\"partnerKeys\":[\"UCx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/ecfbe814-b9bf-45ae-8bc0-baf62dbedeb6-8113d578a9f6.png\",\"fullDescription\":\"\u003cp\u003eBasics of Statistical Inference and Modelling Using R is part one of the Statistical Analysis in R professional certificate.\u003c/p\u003e\\n\u003cp\u003eThis course is directed at people with limited statistical background and no practical experience, who have to do data analysis, as well as those who are “out of practice”. While very practice oriented, it aims to give the students the understanding of why the method works (theory), how to implement it (programming using R) and when to apply it (and where to look if the particular method is not applicable in the specific situation).\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003e\u003cspan lang=\\\"EN-US\\\"\u003eLearn why a statistical method works, how to implement it using R and when to apply it and where to look if the particular statistical method is not applicable in the specific situation.\u003c/span\u003e\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eSample and population. Sampling distribution. Parameter estimates and confidence intervals.\u003c/li\u003e\\n\u003cli\u003eCentral Limit Theorem\u003c/li\u003e\\n\u003cli\u003eHypothesis Testing. P-values. Standard tests: t-test, the test of binomial proportions, Chi-squared test. Statistical and Practical Significance.\u003c/li\u003e\\n\u003cli\u003eExploratory data analysis and data visualisation using R.\u003c/li\u003e\\n\u003cli\u003eAnalysis of Variance (ANOVA) and post-hoc tests using R.\u003c/li\u003e\\n\u003cli\u003eMultivariate analysis using linear regression and analysis of variance with covariates (ANCOVA). Assumptions, diagnostics, interpretation. Model comparison and selection.\u003c/li\u003e\\n\u003cli\u003eNumerical Methods: The use of simulations, non-parametric bootstrap and permutation tests using R.\u003c/li\u003e\\n\u003cli\u003eIdentifying the research question.\u003c/li\u003e\\n\u003cli\u003eExperimental design (basics of power analysis) and missing data.\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-e8be2a3c-85ef-4149-a1a3-ed5c8ee9462f\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:UCx+STA01.1ucX+1T2025\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"e8df11e7-e76c-47c5-b905-5e197c33dd68\",\"productName\":\"Advanced statistical physics\",\"productSlug\":\"learn/physics/ecole-polytechnique-federale-de-lausanne-advanced-statistical-physics\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/e8df11e7-e76c-47c5-b905-5e197c33dd68-1aa1939d831f.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Physics\"],\"partnerName\":[\"École polytechnique fédérale de Lausanne\"],\"partnerKeys\":[\"EPFLx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/6f244695-7416-4c6c-a2a9-97769b6acb56-a2dc5dd735ab.png\",\"fullDescription\":\"\u003cp\u003e\u003cspan lang=\\\"EN-US\\\"\u003eThis course covers non-equilibrium statistical processes and the treatment of fluctuation dissipation relations by Einstein, Boltzmann and Kubo. Moreover, the fundamentals of Markov processes, stochastic differential and Fokker Planck equations, mesoscopic master equation, etc will be treated in detail. Prior knowledge of statistical physics is highly recommended but not required. \u003c/span\u003e\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003e\u003cspan lang=\\\"EN-US\\\"\u003eWe explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.\u003c/span\u003e\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eFormulate statistical processes mathematically\u003c/li\u003e\\n\u003cli\u003eSolve the quantum master equation using QuTip in Python\u003c/li\u003e\\n\u003cli\u003eApply numerical simulation tools to non-equilibrium systems\u003c/li\u003e\\n\u003cli\u003eExplore the quantum optical numerical Toolbox (MATLAB)\u003c/li\u003e\\n\u003cli\u003eVisualize non-equilibrium processes numerically using Jupyter Notebooks\u003c/li\u003e\\n\u003cli\u003eElaborate modern examples from Literature of Non-Equilibrium Processes\u003c/li\u003e\\n\u003cli\u003eApply EMCEE Python package to Bayesian statistical data analysis\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-e8df11e7-e76c-47c5-b905-5e197c33dd68\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:EPFLx+STATPHYSx+1T2023\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"d057237e-9d44-45b2-811b-b3c0a5c40447\",\"productName\":\"Advanced Statistical Inference and Modelling Using R\",\"productSlug\":\"learn/r-programming/university-of-canterbury-advanced-statistical-inference-and-modelling-using-r\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/d057237e-9d44-45b2-811b-b3c0a5c40447-f028a424ba58.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Math\"],\"partnerName\":[\"University of Canterbury\"],\"partnerKeys\":[\"UCx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/ecfbe814-b9bf-45ae-8bc0-baf62dbedeb6-8113d578a9f6.png\",\"fullDescription\":\"\u003cp\u003e\u003cspan lang=\\\"EN-US\\\"\u003eAdvanced Statistical Inference and Modelling Using R is part two of the Statistical Analysis in R professional certificate.\u003c/span\u003e\u003cspan lang=\\\"EN-US\\\"\u003e\u003c/span\u003e\u003c/p\u003e\\n\u003cp\u003eThis\u003cspan lang=\\\"EN-US\\\"\u003e course is directed at people who are already familiar with basic linear regression and fundamentals of statistical inference. It extends the knowledge of linear regression to the situations where the response variable is binary, a count, or categorical as well as to hierarchical experimental set-up. While very practice oriented, it aims to give the students the understanding of why the method works (theory), how to implement it (programming using R) and when to apply it (and where to look if the particular method is not applicable in the specific situation).\u003c/span\u003e\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003e\u003cspan lang=\\\"EN-US\\\"\u003eExtend your knowledge of linear regression to the situations where the response variable is binary, a count, or categorical as well as to hierarchical experimental set-up. \u003c/span\u003e\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eExploratory data analysis and data visualisation using R.\u003c/li\u003e\\n\u003cli\u003eMultivariate analysis using Generalised Linear Models (GLMs): \u003cul\u003e\\n\u003cli\u003eBinary response (logistic regression) GLM\u003c/li\u003e\\n\u003cli\u003ePoisson counts GLM\u003c/li\u003e\\n\u003cli\u003eNominal categorical response (multinomial logistic GLM)\u003c/li\u003e\\n\u003cli\u003eOrdinal categorical response (ordinal logistic GLM)\u003c/li\u003e\\n\u003c/ul\u003e\\n\u003c/li\u003e\\n\u003cli\u003eMixed effects linear regression models. Structure, assumptions, diagnostics and interpretation. Model selection.\u003c/li\u003e\\n\u003cli\u003eBasics of power analysis (sample size evaluation) and some thoughts on experimental design and missing data.\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-d057237e-9d44-45b2-811b-b3c0a5c40447\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:UCx+STA01.2ucX+1T2025\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"5b57b66b-1ea5-467a-a643-b93ad2f0f34c\",\"productName\":\"Chemical Thermodynamics I: Thermodynamics and Statistical Mechanics\",\"productSlug\":\"learn/thermodynamics/massachusetts-institute-of-technology-chemical-thermodynamics-i-thermodynamics-and-statistical-mechanics\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/5b57b66b-1ea5-467a-a643-b93ad2f0f34c-33ead18774b5.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Chemistry\"],\"partnerName\":[\"Massachusetts Institute of Technology\"],\"partnerKeys\":[\"MITx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/2a73d2ce-c34a-4e08-8223-83bca9d2f01d-d4f180052205.png\",\"fullDescription\":\"\u003cp\u003eThis course is the first in a series of two thermodynamics courses that together, cover chemical thermodynamics, statistical mechanics, phase equilibria, and kinetics. \u003c/p\u003e\\n\u003cp\u003eIn this course, you will explore the foundational principles of thermodynamics for chemical systems and how these principles connect to the properties of the molecules that comprise them. You will explore the laws of thermodynamics and how they combine to establish the relationships between entropy, energy, work, and heat flow. You will then leverage these relationships to understand the nature of equilibrium and the forces that drive spontaneous transformations. You will then be introduced to the field of statistical mechanics, which formalizes the molecular scale origins of thermodynamic principles. Finally, you will leverage your understanding of thermodynamics and statistical mechanics to explore fundamental applications, including heat engines, calorimetry, and equilibrium in multi-component systems.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eBased on 5.601 Thermodynamics I, this course introduces learners to fundamental concepts in thermodynamics and statistical mechanics. Learners will develop an understanding of fundamental thermodynamic principles and how they arise from molecular scale system properties.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eEnergy and the First Law of Thermodynamics\u003c/li\u003e\\n\u003cli\u003eSpontaneity and the Second and Third Laws of Thermodynamics\u003c/li\u003e\\n\u003cli\u003eStatistical Mechanics\u003c/li\u003e\\n\u003cli\u003eChemical Potential and Applications of Thermodynamics\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-5b57b66b-1ea5-467a-a643-b93ad2f0f34c\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:MITx+5.601x+1T2022\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"58ed2397-efff-4e7d-8fb6-f5c5db758f4c\",\"productName\":\"Statistical Analysis in R\",\"productSlug\":\"certificates/professional-certificate/ucx-statistical-analysis-in-r\",\"productImageUrl\":\"https://images.ctfassets.net/ii9ehdcj88bc/64IG0xFsJ7SqH5FEwPv25t/624a320691b2699eccfaacf288b4384d/stats-in-r-edx-pc.jpg\",\"productType\":\"Professional Certificate\",\"attributes\":[\"Math\"],\"partnerName\":[\"University of Canterbury\"],\"partnerKeys\":[\"UCx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/ecfbe814-b9bf-45ae-8bc0-baf62dbedeb6-8113d578a9f6.png\",\"fullDescription\":\"Basics of statistical inference, confidence intervals and hypothesis testing. Commonly used tests. Pvalues, statistical and practical significance.,Analysis of Variance (ANOVA) and post-hoc tests. Diagnostics, implementation and interpretation using R.,Numerical Methods: The use of simulations, nonparametric bootstrap and permutation tests using R.,Linear Regression, Analysis of Variance with Covariates (ANCOVA), Generalised Linear Models (GLMs) and Mixed Effects Linear models using R.,Basics of power analysis (sample size evaluation) and some thoughts on experimental design.\",\"shortDescription\":\"\",\"productOverview\":\"\u003cp\u003eApplied Statistical Data Analysis Using R professional certificate is directed at people with limited statistical background and no practical experience who have to do data analysis, as well as those who are “out of practice”. The course is practice orientated, aiming to give learners an understanding of why the method works, how to implement it using R, when to apply it and where to look if the particular method is not applicable in the specific situation.\u003c/p\u003e\",\"objectId\":\"program-58ed2397-efff-4e7d-8fb6-f5c5db758f4c\",\"productSource\":\"edX\",\"productCategory\":\"Program\",\"activeRunKey\":null,\"childCoursesCount\":2,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"43e621e2-6302-4cbe-ae87-623837e611b9\",\"productName\":\"R Programming Fundamentals\",\"productSlug\":\"learn/r-programming/stanford-university-r-programming-fundamentals\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/43e621e2-6302-4cbe-ae87-623837e611b9-8d88ff135482.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Computer Science\"],\"partnerName\":[\"Stanford University\"],\"partnerKeys\":[\"StanfordOnline\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/f53a7458-c79b-4524-97cf-28241114230e-e47d44123c3b.png\",\"fullDescription\":\"\u003cp\u003eThis course covers the basics of R: a free programming language and software environment used for statistical computing and graphics. R is widely used by data analysts, statisticians, and data scientists around the world. This course covers an introduction to R, from installation to basic statistical functions. You will learn to work with variable and external data sets, write functions, and hear from one of the co-creators of the R language, Robert Gentleman.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eThis course covers the basics of R: a free programming language and software environment used for statistical computing and graphics. R is widely used by data analysts, statisticians, and data scientists around the world. This course covers an introduction to R, from installation to basic statistical functions. You will learn to work with variable and external data sets, write functions, and hear from one of the co-creators of the R language, Robert Gentleman.\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003eWe will cover:\u003c/p\u003e\\n\u003cp\u003e1. How to download and install R.\u003c/p\u003e\\n\u003cp\u003e2. How to use R in an interactive and easy-to-understand environment.\u003c/p\u003e\\n\u003cp\u003e3. What the key objects are and how we manipulate them in R.\u003c/p\u003e\\n\u003cp\u003e4. Where the objects are stored and how to save our work.\u003c/p\u003e\\n\u003cp\u003e5. All the important data structures: data frames, lists, matrices.\u003c/p\u003e\\n\u003cp\u003e6. How to import data into R and how to save your work.\u003c/p\u003e\\n\u003cp\u003e7. How to manipulate and preprocess data and work with missing values.\u003c/p\u003e\\n\u003cp\u003e8. How to plot your data – an introduction to ggplot2.\u003c/p\u003e\\n\u003cp\u003e9. How to use the wealth of contributed packages to achieve a specific task.\u003c/p\u003e\",\"objectId\":\"course-43e621e2-6302-4cbe-ae87-623837e611b9\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:StanfordOnline+XFDS112+3T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"e88b2359-c517-4316-8e32-5c7d54a85b8a\",\"productName\":\"Data Science: Linear Regression\",\"productSlug\":\"learn/data-science/harvard-university-data-science-linear-regression\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/e88b2359-c517-4316-8e32-5c7d54a85b8a-7bcab4d968c1.jpg\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Computer Science\",\"Math\"],\"partnerName\":[\"Harvard University\"],\"partnerKeys\":[\"HarvardX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/44022f13-20df-4666-9111-cede3e5dc5b6-2cc39992c67a.png\",\"fullDescription\":\"$3c8\",\"shortDescription\":\"\u003cp\u003eLearn how to use R to implement linear regression, one of the most common statistical modeling approaches in data science.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eHow linear regression was originally developed by Galton\u003c/li\u003e\\n\u003cli\u003eWhat is confounding and how to detect it\u003c/li\u003e\\n\u003cli\u003eHow to examine the relationships between variables by implementing linear regression in R\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-e88b2359-c517-4316-8e32-5c7d54a85b8a\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:HarvardX+PH125.7x+3T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"62c71fa0-bd42-4a75-90a8-d35efda5fb30\",\"productName\":\"CS50's Introduction to Programming with R\",\"productSlug\":\"learn/r-programming/harvard-university-cs50-s-introduction-to-programming-with-r\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/62c71fa0-bd42-4a75-90a8-d35efda5fb30-87ec4df7d6ce.png\",\"productType\":\"Course\",\"attributes\":[\"Computer Science\",\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"Harvard University\"],\"partnerKeys\":[\"HarvardX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/44022f13-20df-4666-9111-cede3e5dc5b6-2cc39992c67a.png\",\"fullDescription\":\"\u003cp\u003eAn introduction to programming using a language called R, a popular language for statistical computing and graphics in data science and other domains. Learn to use RStudio, a popular integrated development environment (IDE). Learn to represent real-world data with vectors, matrices, arrays, lists, and data frames. Filter data with conditions, via which you can analyze subsets of data. Apply functions and loops, via which you can manipulate and summarize data sets. Write functions to modularize code and raise exceptions when something goes wrong. Tidy data with R’s tidyverse and create colorful visualizations with R’s grammar of graphics. By course’s end, learn to package, test, and share R code for others to use. Assignments inspired by real-world data sets.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eAn introduction to programming using a language called R, a popular language for statistical computing and graphics in data science and other domains.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eR\u003c/li\u003e\\n\u003cli\u003eRStudio\u003c/li\u003e\\n\u003cli\u003eVectors\u003c/li\u003e\\n\u003cli\u003eMatrices\u003c/li\u003e\\n\u003cli\u003eArrays\u003c/li\u003e\\n\u003cli\u003eLists\u003c/li\u003e\\n\u003cli\u003eData Frames\u003c/li\u003e\\n\u003cli\u003eConditions\u003c/li\u003e\\n\u003cli\u003eFunctions\u003c/li\u003e\\n\u003cli\u003eLoops\u003c/li\u003e\\n\u003cli\u003eExceptions\u003c/li\u003e\\n\u003cli\u003etidyverse\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-62c71fa0-bd42-4a75-90a8-d35efda5fb30\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:HarvardX+CS50R+R\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"45a0f892-75f0-4b7f-b349-bd94c5e3d515\",\"productName\":\"Evaluating Impact in Low- and Middle-Income Countries\",\"productSlug\":\"learn/economics/world-bank-group-evaluating-impact-in-low-and-middle-income-countries\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/45a0f892-75f0-4b7f-b349-bd94c5e3d515-1735994b374c.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Economics \u0026 Finance\"],\"partnerName\":[\"World Bank Group\"],\"partnerKeys\":[\"WBGx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/3ca455dc-4c90-4097-9203-d647e3e70771-9d3ece650b89.png\",\"fullDescription\":\"$3c9\",\"shortDescription\":\"\u003cp\u003eHow can we know if the policies and interventions implemented in low- and middle-income countries are making a difference, if they are really improving outcomes? This course provides the experimental and statistical tools needed to rigorously measure the effects of policies and programs, with a particular focus on questions of causal attribution, the design and conduct of randomized control trials and quasi-experimental methods, and estimation of impacts using regression techniques.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eDefine impact evaluation and recognize its importance.\u003c/li\u003e\\n\u003cli\u003eDescribe the importance of randomization and the problems that can arise in randomized controlled trials (RCTs).\u003c/li\u003e\\n\u003cli\u003eIdentify statistical concepts and tools for program evaluation.\u003c/li\u003e\\n\u003cli\u003eInterpret the concept of regression and how it informs RCT results.\u003c/li\u003e\\n\u003cli\u003eIllustrate the balance between sample size and cost of trial.\u003c/li\u003e\\n\u003cli\u003eExplain the value and application of quasi experimental methods\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-45a0f892-75f0-4b7f-b349-bd94c5e3d515\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:WBGx+IEM01x+1T2022\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"6b09848a-68fc-4ee4-a8af-5794d0a98f11\",\"productName\":\"Impact Evaluation Methods with Applications in Low- and Middle-Income Countries\",\"productSlug\":\"learn/economics/georgetown-university-impact-evaluation-methods-with-applications-in-low-and-middle-income-countries\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/6b09848a-68fc-4ee4-a8af-5794d0a98f11-a4baccbc54ff.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Economics \u0026 Finance\",\"Data Analysis \u0026 Statistics\",\"Health \u0026 Safety\"],\"partnerName\":[\"Georgetown University\"],\"partnerKeys\":[\"GeorgetownX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/300a9275-e360-4599-92db-8c2222d5f614-712b2867e667.png\",\"fullDescription\":\"$3ca\",\"shortDescription\":\"\u003cp\u003eEconomic development is about making a difference in the lives of the poor, through interventions in the health, education, microfinance, transport, agriculture, and other sectors. This course will provide you with the experimental and statistical tools you need to measure the impacts you are hoping to see. How do you design and conduct a randomized control trial, and how do you evaluate the data using regression techniques? What other quasi-experimental methods can be used? How do you know you’re making a difference?\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN\\\"\u003eDefine impact evaluation and recognize its importance.\u003c/span\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN\\\"\u003eDescribe the importance of randomization and the problems that can arise in randomized controlled trials (RCTs).\u003c/span\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN\\\"\u003eIdentify statistical concepts and tools for program evaluation.\u003c/span\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN\\\"\u003eInterpret the concept of regression and how it informs RCT results.\u003c/span\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN\\\"\u003eIllustrate the balance between sample size and cost of trial.\u003c/span\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN\\\"\u003eExplain the value and application of quasi experimental methods\u003c/span\u003e\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-6b09848a-68fc-4ee4-a8af-5794d0a98f11\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:GeorgetownX+econ-491+2T2021\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"c98e4328-c223-4491-9425-20db22781f73\",\"productName\":\"Advanced Topics in Healthcare Data Analysis\",\"productSlug\":\"learn/data-analysis/mgh-institute-of-health-professions-advanced-topics-in-healthcare-data-analysis\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/c98e4328-c223-4491-9425-20db22781f73-1962f7951c40.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Medicine\",\"Health \u0026 Safety\"],\"partnerName\":[\"MGH Institute of Health Professions\"],\"partnerKeys\":[\"MGH_Institute\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/fa3fe5e7-5100-40a1-b56b-c44b893d92a6-8dd6dff92a89.png\",\"fullDescription\":\"$3cb\",\"shortDescription\":\"\u003cp\u003eIn this course, you will learn about some of the complex data analysis tools and techniques that you will need to derive actionable insights from healthcare data, as well as continue learning R statistical programming to effectively apply these tools and techniques. Some of the topics covered in this course include causal inference, model specification, matching, fixed and random effects, repeated measures, dealing with missing data, and bootstrapping.\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003eBy the end of this course, you will be able to: \u003c/p\u003e\\n\u003col\u003e\\n\u003cli\u003eApply causal estimation using randomized controlled trials and difference-in-difference methods. \u003c/li\u003e\\n\u003cli\u003eUse matching to balance datasets for improved regression model results. \u003c/li\u003e\\n\u003cli\u003eEmploy multi-level regressions with fixed and random effects and interpret their results. \u003c/li\u003e\\n\u003cli\u003eImplement various techniques for addressing missing data and small sample sizes in datasets used for regression models. \u003c/li\u003e\\n\u003cli\u003eCommunicate the results of your analysis to others in simple language.\u003c/li\u003e\\n\u003c/ol\u003e\",\"objectId\":\"course-c98e4328-c223-4491-9425-20db22781f73\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:MGH_Institute+DA-604+2T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"b97c19a4-4c1c-4d07-b8dd-0dabc1fa653b\",\"productName\":\"Regression Models in Healthcare\",\"productSlug\":\"learn/healthcare/mgh-institute-of-health-professions-regression-models-in-healthcare\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/b97c19a4-4c1c-4d07-b8dd-0dabc1fa653b-a174c82bd701.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Medicine\",\"Health \u0026 Safety\"],\"partnerName\":[\"MGH Institute of Health Professions\"],\"partnerKeys\":[\"MGH_Institute\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/fa3fe5e7-5100-40a1-b56b-c44b893d92a6-8dd6dff92a89.png\",\"fullDescription\":\"$3cc\",\"shortDescription\":\"\u003cp\u003eIn this course, you will begin learning about more advanced multivariate statistical methods that are regularly used in healthcare data analysis and practice applying them to healthcare data in the statistical programming software R. Some of the topics covered in this course include non-linear trends, interacting variables, outliers, and logistic regression.\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003eBy the end of this course, you will be able to: \u003c/p\u003e\\n\u003col\u003e\\n\u003cli\u003eUse nonlinear regressions with quadratic and logarithmic dependent and independent variables. \u003c/li\u003e\\n\u003cli\u003eUse interactions between variables in regression models and interpret the results. \u003c/li\u003e\\n\u003cli\u003eFind potentially problematic data points in a regression model. \u003c/li\u003e\\n\u003cli\u003eImplement logistic regression models and interpret their results. \u003c/li\u003e\\n\u003cli\u003ePerform diagnostic tests for logistic regression models to determine their validity. \u003c/li\u003e\\n\u003cli\u003eUse ordinal, multinomial, and Poisson logistic regression models and interpret their results.\u003c/li\u003e\\n\u003c/ol\u003e\",\"objectId\":\"course-b97c19a4-4c1c-4d07-b8dd-0dabc1fa653b\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:MGH_Institute+DA-603+2T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"256cf691-84c6-4e2d-b5ea-9d0a1f27c6f5\",\"productName\":\"Linear Relationship Data in Healthcare\",\"productSlug\":\"learn/healthcare/mgh-institute-of-health-professions-linear-relationship-data-in-healthcare\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/256cf691-84c6-4e2d-b5ea-9d0a1f27c6f5-0b23ea2e9045.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Medicine\",\"Health \u0026 Safety\"],\"partnerName\":[\"MGH Institute of Health Professions\"],\"partnerKeys\":[\"MGH_Institute\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/fa3fe5e7-5100-40a1-b56b-c44b893d92a6-8dd6dff92a89.png\",\"fullDescription\":\"$3cd\",\"shortDescription\":\"\u003cp\u003eIn this course, you will develop a working knowledge of linear relationship data in healthcare and practice using R statistical programming to analyze this data. This course covers the concepts of correlation and linear relationships, ordinary least squares (OLS) linear regression, diagnostic tests for OLS linear regression, and dummy variables.\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003eBy the end of this course, you will be able to:\u003c/p\u003e\\n\u003col\u003e\\n\u003cli\u003eImplement simple and multiple linear regression models and interpret their results.\u003c/li\u003e\\n\u003cli\u003ePerform diagnostic tests for linear regression models to determine their validity.\u003c/li\u003e\\n\u003cli\u003eUse dummy variables in regressions and interpret their results.\u003c/li\u003e\\n\u003cli\u003eCommunicate the results of their analysis to others in a simple language.\u003c/li\u003e\\n\u003c/ol\u003e\",\"objectId\":\"course-256cf691-84c6-4e2d-b5ea-9d0a1f27c6f5\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:MGH_Institute+DA-602+2T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"9f0d9f51-21f1-4c87-adff-47c513f516b5\",\"productName\":\"Statistiques de la dette extérieure - EDSx\",\"productSlug\":\"learn/finance/the-international-monetary-fund-statistiques-de-la-dette-exterieure-edsx\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/9f0d9f51-21f1-4c87-adff-47c513f516b5-9b14f62167f6.png\",\"productType\":\"Course\",\"attributes\":[\"Economics \u0026 Finance\",\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"The International Monetary Fund\"],\"partnerKeys\":[\"IMFx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/a655d538-b1e8-4f66-a99d-cf4682d2c17b-111a45d036cc.png\",\"fullDescription\":\"\u003cp\u003eCe cours élémentaire s’adresse à quiconque s’intéresse aux principes fondamentaux qui régissent l’établissement des comptes internationaux, notamment la compilation des statistiques de la dette extérieure (EDS) et/ou de la position extérieure globale (PEG).\u003c/p\u003e\\n\u003cp\u003eLe cours présentera les concepts, les définitions et les classements de base ainsi que les principales règles comptables (dont l’évaluation et la date d’enregistrement) qui sont nécessaires à l’établissement de ces statistiques. \u003cspan lang=\\\"ES\\\"\u003eEnfin, les participants se familiariseront avec les principes fondamentaux qui régissent le cadre d’analyse de viabilité de la dette. \u003c/span\u003e\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003e\u003cspan lang=\\\"fr\\\"\u003eCe cours, présenté par le Département de la statistique, a pour but de donner aux participants une compréhension solide des normes internationales en vigueur pour l’établissement des statistiques de la dette extérieure, présentées dans un ouvrage publié en 2013, Statistiques de la dette extérieure : Guide pour les statisticiens et les utilisateurs (Guide EDS de 2013). \u003c/span\u003e\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003e\u003cspan lang=\\\"ES\\\"\u003eUne fois achevé le cours, les participants devraient être en mesure : \u003c/span\u003e\u003c/p\u003e\\n\u003cul\u003e\\n\u003cli\u003e\u003cspan lang=\\\"ES\\\"\u003eD’expliquer le cadre comptable international des statistiques de la dette extérieure. \u003c/span\u003e\u003c/li\u003e\\n\u003cli\u003eD’appliquer les méthodes de calcul de la dette extérieure du point de vue du débiteur et les principes comptables qui s’y appliquent. \u003c/li\u003e\\n\u003cli\u003eDe passer en revue les différentes présentations possibles des statistiques de la dette extérieure. \u003c/li\u003e\\n\u003cli\u003eDe définir ce qu’est un réaménagement de la dette ainsi que les quatre formes qu’il peut prendre.\u003c/li\u003e\\n\u003cli\u003eDe comprendre l’objectif du cadre d’analyse de viabilité de la dette ainsi que les facteurs qui ont une influence sur la viabilité de la dette d’une économie.\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-9f0d9f51-21f1-4c87-adff-47c513f516b5\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:IMFx+IMFxEDSxFR+2T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"6faca5d4-40b8-4ee1-b775-96fa807719ed\",\"productName\":\"Big Data Machine Learning | 大数据机器学习\",\"productSlug\":\"learn/big-data/tsinghua-university-big-data-machine-learning-da-shu-ju-ji-qi-xue-xi\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/6faca5d4-40b8-4ee1-b775-96fa807719ed-da7e8d422f14.jpg\",\"productType\":\"Course\",\"attributes\":[\"Computer Science\"],\"partnerName\":[\"Tsinghua University\"],\"partnerKeys\":[\"TsinghuaX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/b5714409-b5f4-4c9d-9348-b0fecbaaddd6-780fbb6c72c7.png\",\"fullDescription\":\"$3ce\",\"shortDescription\":\"\u003cp\u003eThe \\\"Big Data Machine Learning\\\" course is a basic theoretical course for senior undergraduates or graduate students in the information discipline. The purpose is to cultivate students to have an in-depth understanding of the theoretical basis of big data machine learning, a firm grasp of big data machine learning methods, and the ability to solve practical problems. and other comprehensive abilities. The main contents of the course include: basic theories of statistical learning, basic methods of machine learning, and deep learning theories and methods.\u003c/p\u003e\",\"productOverview\":\"\u003col\u003e\\n\u003cli\u003eBasic concepts of big data machine learning\u003c/li\u003e\\n\u003cli\u003eBig data machine learning technology and principles\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003e.Machine learning and deep learning algorithms\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eBasic concepts of Big Data Machine Learning\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003ePrinciples and techniques of Big Data Machine Learning\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eAlgorithms of machine learning and deep learning\u003c/p\u003e\\n\u003c/li\u003e\\n\u003c/ol\u003e\",\"objectId\":\"course-6faca5d4-40b8-4ee1-b775-96fa807719ed\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:TsinghuaX+70240403+1T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"2b081f18-7aa0-4d79-95df-a93324db8c00\",\"productName\":\"Boltzmann Law: Physics to Computing\",\"productSlug\":\"learn/engineering/purdue-university-boltzmann-law-physics-to-computing\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/2b081f18-7aa0-4d79-95df-a93324db8c00-7ffda8a36cb4.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Engineering\",\"Science\"],\"partnerName\":[\"Purdue University\"],\"partnerKeys\":[\"PurdueX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/e5dfaf30-3828-4826-944e-03ea3dcf5b13-ab295e7bad86.png\",\"fullDescription\":\"\u003cp\u003eA unique course that connects three diverse fields using the unifying concept of a state-space with 2^N dimensions defined by N binary bits. We start from the seminal concepts of statistical mechanics like entropy, free energy and the law of equilibrium that have been developed with the purpose of describing interacting systems occurring in nature. We then move to the concept of Boltzmann machines (BM) which are interacting systems cleverly engineered to solve important problems in machine learning. Finally, we move to engineered quantum systems stressing the phenomenon of quantum interference which can lead to awesome computing power.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eProvides a unified perspective connecting equilibrium statistical mechanics with stochastic neural networks and quantum computing.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eBoltzmann Law\u003c/li\u003e\\n\u003cli\u003eBoltzmann Machines\u003c/li\u003e\\n\u003cli\u003eTransition Matrix\u003c/li\u003e\\n\u003cli\u003eQuantum Boltzmann Law\u003c/li\u003e\\n\u003cli\u003eQuantum Gates\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-2b081f18-7aa0-4d79-95df-a93324db8c00\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:PurdueX+69506x+3T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"b4929fc7-973d-4a9f-b9f8-7b7f5d2fbffe\",\"productName\":\"Introduction to Probability: Part II – Inference \u0026 Processes\",\"productSlug\":\"learn/probability/massachusetts-institute-of-technology-introduction-to-probability-part-ii-inference-processes\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/b4929fc7-973d-4a9f-b9f8-7b7f5d2fbffe-6c9523c847c4.jpg\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Math\"],\"partnerName\":[\"Massachusetts Institute of Technology\"],\"partnerKeys\":[\"MITx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/2a73d2ce-c34a-4e08-8223-83bca9d2f01d-d4f180052205.png\",\"fullDescription\":\"$3cf\",\"shortDescription\":\"Learn how to use probability theory to develop the basic elements of statistical inference and important random process models\",\"productOverview\":\"\u003cul\u003e\\r\\n\u003cli\u003eBayesian Inference: concepts and key methods\u003c/li\u003e\\r\\n\u003cli\u003eLaws of large numbers and their applications\u003c/li\u003e\\r\\n\u003cli\u003eBasic concepts of classical statistical inference\u003c/li\u003e\\r\\n\u003cli\u003eBasic random process models (Bernoulli, Poisson and Markov) and their main properties\u003c/li\u003e\\r\\n\u003c/ul\u003e\",\"objectId\":\"course-b4929fc7-973d-4a9f-b9f8-7b7f5d2fbffe\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:MITx+6.041.2x+1T2018\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"4315ba0c-a4cf-4f88-badd-fd8a3027fac3\",\"productName\":\"Introduction to Data Analytics for Managers\",\"productSlug\":\"learn/data-analysis/the-university-of-michigan-introduction-to-data-analytics-for-managers\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/4315ba0c-a4cf-4f88-badd-fd8a3027fac3-b37742dd9212.jpg\",\"productType\":\"Course\",\"attributes\":[\"Business \u0026 Management\",\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"The University of Michigan\"],\"partnerKeys\":[\"MichiganX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/ebf3ff9d-a40b-4cbe-84a1-ef7fe4f35beb-61ffe82bb9c2.png\",\"fullDescription\":\"\u003cp\u003eThrough a combination of lectures, business case studies, and hands-on learning this course provides an introduction to data analytics techniques and their application in business.\u003c/p\u003e\\n\u003cp\u003eThe case studies explored will illustrate how companies are leveraging different sources of data, including “big data,” with different analytical techniques, to improve performance. You will receive hands-on learning through a free web-based graphical development environment that will allow you to practice using some of these tools themselves. You will also gain an understanding of the many possibilities for applying data science in business, and will be able to consider additional learning opportunities to gain further depth.\u003c/p\u003e\\n\u003cp\u003eThis course is an excellent resource for managers who see the opportunity to use data analytics in business but do not have the skills and background to engage with data analytics themselves.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eExplore data science and analyze business data with Microsoft Azure through the use of SQL, machine learning, and other statistical techniques focused on business applications.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eThe many different data science techniques and their applicability in business via case studies\u003c/li\u003e\\n\u003cli\u003eHandling of data analytics with a graphical development environment, which makes advanced tools easily accessible without coding\u003c/li\u003e\\n\u003cli\u003eHow to conduct and interpret some basic data science activities, including: \u003cul\u003e\\n\u003cli\u003eA simple scatter plot, to visually assess relationships between two or more quantities;\u003c/li\u003e\\n\u003cli\u003eA basic SQL query, to understand how to pull data from multiple interrelated sources;\u003c/li\u003e\\n\u003cli\u003eA basic hypothesis test, to understand statistical significance and its impact;\u003c/li\u003e\\n\u003cli\u003eA basic machine learning experiment, to understand what machine learning is and how to interpret its output.\u003c/li\u003e\\n\u003c/ul\u003e\\n\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-4315ba0c-a4cf-4f88-badd-fd8a3027fac3\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:MichiganX+DS120x+2T2023\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"34ea79ed-b0c4-4a12-aeb6-64a5b507607a\",\"productName\":\"Machine Learning with Python: A Practical Introduction\",\"productSlug\":\"learn/machine-learning/ibm-machine-learning-with-python-a-practical-introduction\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/34ea79ed-b0c4-4a12-aeb6-64a5b507607a-6d1e5b2a57c3.png\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Engineering\",\"Computer Science\"],\"partnerName\":[\"IBM\"],\"partnerKeys\":[\"IBM\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/87b07564-d569-4cfd-bee6-8b0a407acb73-dc33e4b5f353.png\",\"fullDescription\":\"$3d0\",\"shortDescription\":\"\u003cp\u003eMachine Learning can be an incredibly beneficial tool to uncover hidden insights and predict future trends. This Machine Learning with Python course will give you all the tools you need to get started with supervised and unsupervised learning.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eExplain the difference between the two main types of machine learning methods: supervised and unsupervised\u003c/li\u003e\\n\u003cli\u003eDescribe Supervised learning algorithms, including classification and regression\u003c/li\u003e\\n\u003cli\u003eDescribe Unsupervised learning algorithms, including Clustering and Dimensionality Reduction\u003c/li\u003e\\n\u003cli\u003eExplain how statistical modelling relates to machine learning and how to compare them\u003c/li\u003e\\n\u003cli\u003eDiscuss real-life examples of the different ways machine learning affects society\u003c/li\u003e\\n\u003cli\u003eBuild a prediction model using classification\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-34ea79ed-b0c4-4a12-aeb6-64a5b507607a\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:IBM+ML0101EN+1T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"b3c02aea-cbf6-4fc4-a730-0433860e2a35\",\"productName\":\"Python for Data Science\",\"productSlug\":\"learn/python/the-university-of-california-san-diego-python-for-data-science\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/b3c02aea-cbf6-4fc4-a730-0433860e2a35-bb25bbe40de7.jpg\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Computer Science\"],\"partnerName\":[\"The University of California, San Diego\"],\"partnerKeys\":[\"UCSanDiegoX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/c7f335bb-f97c-4472-af09-65ae60197005-7d797d964ddb.png\",\"fullDescription\":\"$3d1\",\"shortDescription\":\"\u003cp\u003eLearn to use powerful, open-source, Python tools, including Pandas, Git and Matplotlib, to manipulate, analyze, and visualize complex datasets.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eBasic process of data science\u003c/li\u003e\\n\u003cli\u003ePython and Jupyter notebooks\u003c/li\u003e\\n\u003cli\u003eAn applied understanding of how to manipulate and analyze uncurated datasets\u003c/li\u003e\\n\u003cli\u003eBasic statistical analysis and machine learning methods\u003c/li\u003e\\n\u003cli\u003eHow to effectively visualize results\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-b3c02aea-cbf6-4fc4-a730-0433860e2a35\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:UCSanDiegoX+DSE200x+1T2025\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"5099587a-6c94-4e2f-872c-66cecbfa8446\",\"productName\":\"Foundations of Data Analytics\",\"productSlug\":\"learn/data-analysis/the-hong-kong-university-of-science-and-technology-foundations-of-data-analytics\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/5099587a-6c94-4e2f-872c-66cecbfa8446-0fa550c3af43.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Computer Science\",\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"The Hong Kong University of Science and Technology\"],\"partnerKeys\":[\"HKUSTx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/b736b120-95f6-4ac5-83d0-138fedbbbda2-ed8f10dbd8ba.png\",\"fullDescription\":\"\u003cp\u003eFoundations of Data Analytics: This course will provide fundamental techniques for data analytics, including data collection, data extraction, data integration, data cleansing, and basic machine learning techniques. The learners will learn how to manage and optimize the analytics value chain, including collecting and extracting the suitable values, selecting the right data processing, integrating the data from various resources, with programming tools such as Python. This course will also introduce data security and privacy.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eLearn the fundamental techniques for data analytics and to be prepared for learning and applying more advanced big data technologies.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eBasic statistical analysis\u003c/li\u003e\\n\u003cli\u003eThe essentials of data preprocessing\u003c/li\u003e\\n\u003cli\u003eBasic machine learning techniques\u003c/li\u003e\\n\u003cli\u003eUnderstanding data integration\u003c/li\u003e\\n\u003cli\u003eAn introduction to data security and privacy\u003c/li\u003e\\n\u003cli\u003ePython programming\u003c/li\u003e\\n\u003cli\u003ePython libraries for data preprocessing and analysis\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-5099587a-6c94-4e2f-872c-66cecbfa8446\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:HKUSTx+MSBD5001x+1T2025\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"3a59e5c9-83dc-4c73-8af2-37c210423406\",\"productName\":\"Excel for Everyone: Data Management\",\"productSlug\":\"learn/excel/university-of-british-columbia-excel-for-everyone-data-management\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/3a59e5c9-83dc-4c73-8af2-37c210423406-7738c8e2bed1.png\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Business \u0026 Management\"],\"partnerName\":[\"University of British Columbia\"],\"partnerKeys\":[\"UBCx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/eac96c61-1462-4084-a0b2-12525b74a9e1-8377159ff774.png\",\"fullDescription\":\"\u003cp\u003eThis intermediate Excel course builds on the teachings of the introductory \u003ca href=\\\"https://www.edx.org/course/excel-for-everyone-core-foundations\\\"\u003eCore Foundations \u003c/a\u003ecourse, teaching you to leverage the power of data calculations and reports to make informed personal or organizational decisions. \u003c/p\u003e\\n\u003cp\u003eThe course is designed for learners who already have foundational knowledge and skills in Excel but wish to take advantage of some of the higher-level functionality to more effectively analyze and present data. From error prevention to forecasting andautomation, you’ll build an advanced layer of knowledge to manage larger datasets and continue developing your aptitude for data modeling.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eFurther your Excel skills to manage larger datasets and more complex data wrangling, management and modelling.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eHow to manage multiple worksheets and workbooks.\u003c/li\u003e\\n\u003cli\u003eAnalyzing data with datasets and tables.\u003c/li\u003e\\n\u003cli\u003eHow to manage data analysis using Pivot Tables and Pivot Charts.\u003c/li\u003e\\n\u003cli\u003eImplementing What-If Analysis and Decision-Making Tools.\u003c/li\u003e\\n\u003cli\u003eUsing Date, Logical, Statistical and Financial Functions.\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-3a59e5c9-83dc-4c73-8af2-37c210423406\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:UBCx+Excel1.2x+1T2020\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"1cbbfd40-68a2-4c95-9ce9-84ee6b28340b\",\"productName\":\"Academic English: How to Write a Thesis\",\"productSlug\":\"learn/english/the-university-of-queensland-academic-english-how-to-write-a-thesis\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/1cbbfd40-68a2-4c95-9ce9-84ee6b28340b-6baafe80b6bc.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Education \u0026 Teacher Training\"],\"partnerName\":[\"The University of Queensland\"],\"partnerKeys\":[\"UQx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/8554749f-b920-4d7f-8986-af6bb95290aa-f336c6a2ca11.png\",\"fullDescription\":\"$3d2\",\"shortDescription\":\"\u003cp\u003e\u003cem\u003eAcademic English\u003c/em\u003e guides you through the process of becoming an academic writer into producing your first academic research publication. Created by academic writing experts, \u003cem\u003eAcademic English\u003c/em\u003e spans 5 modules explaining ideas for research, finding and sourcing relevant literature, reporting research methods and results according to disciplinary expectations, and developing critical insights into your findings. A world of academic language and expertise is at your fingertips in \u003cem\u003eAcademic English\u003c/em\u003e!\u003c/p\u003e\",\"productOverview\":\"$3d3\",\"objectId\":\"course-1cbbfd40-68a2-4c95-9ce9-84ee6b28340b\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:UQx+ACE201x+1T2023\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"879578f1-cddd-43d5-81d9-1fd84ca33ca6\",\"productName\":\"People analytics and reporting\",\"productSlug\":\"learn/human-resources/stellenbosch-university-people-analytics-and-reporting\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/879578f1-cddd-43d5-81d9-1fd84ca33ca6-1d71958da149.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Business \u0026 Management\"],\"partnerName\":[\"Stellenbosch University\"],\"partnerKeys\":[\"StellenboschX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/42feffdf-caad-4e6b-8432-1b87d4ee30a1-2400ba35fe86.png\",\"fullDescription\":\"$3d4\",\"shortDescription\":\"\u003cp\u003e\u003cspan lang=\\\"EN-US\\\"\u003eOne of the most critical challenges Human Resource (HR) professionals grapple with \u003c/span\u003e\u003cspan lang=\\\"EN-US\\\"\u003eduring these unprecedented times \u003c/span\u003e\u003cspan lang=\\\"EN-US\\\"\u003eis whether\u003c/span\u003e\u003cspan lang=\\\"EN-US\\\"\u003e human capital solutions enable managerial decision-making and enhance the value of people’s intangible assets. \u003c/span\u003e\u003cspan lang=\\\"EN-US\\\"\u003eThis course \u003c/span\u003e\u003cspan lang=\\\"EN-US\\\"\u003eprovides participants with data-driven and evidence-based decision-making competencies required to analyse the contribution of human capital to the business.\u003c/span\u003e\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eThe foundations of people metrics and analytics.\u003c/li\u003e\\n\u003cli\u003eHow to apply the HR measurement cycle.\u003c/li\u003e\\n\u003cli\u003eHow to integrate people metrics into HR practices.\u003c/li\u003e\\n\u003cli\u003eHow to apply statistical techniques to provide people analytics.\u003c/li\u003e\\n\u003cli\u003eInternal and external HR reporting using people metrics and analytics.\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-879578f1-cddd-43d5-81d9-1fd84ca33ca6\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:StellenboschX+Analytics.1+2T2023\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"e002d162-5d2b-43c6-9605-1fac854c4d97\",\"productName\":\"Basic Analytical Chemistry\",\"productSlug\":\"learn/chemistry/the-university-of-tokyo-basic-analytical-chemistry\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/e002d162-5d2b-43c6-9605-1fac854c4d97-b161799bef8f.png\",\"productType\":\"Course\",\"attributes\":[\"Chemistry\",\"Science\"],\"partnerName\":[\"The University of Tokyo\"],\"partnerKeys\":[\"UTokyoX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/234a2849-1ac0-44fc-a5bd-2ab0e4e077fe-b06b8a3a6bca.png\",\"fullDescription\":\"\u003cp\u003eAnalytical chemistry takes a prominent position among all fields of experimental sciences, ranging from fundamental studies of Nature to industrial or clinical applications.Analytical chemistry covers the fundamentals of experimental and analytical methods and the role of chemistry around us. \u003c/p\u003e\\n\u003cp\u003eThis course introduces the principles of analytical chemistry and provides how these principles are applied in chemistry and related disciplines - especially in life sciences, environmental sciences and geochemistry. \u003c/p\u003e\\n\u003cp\u003eThis course, regardless of your background, will teach you fundamental analytical concepts and their practical applications. \u003c/p\u003e\\n\u003cp\u003eBy the end of the course, you will deeply understand analytical methodologies in a systematic manner. Finally, this course will help you develop critical, independent reasoning that you can apply to new problems in chemistry and its related fields. \u003c/p\u003e\\n\u003cp\u003eThis course is for anyone interested in analytical sciences.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eGain a physical understanding of the principles of analytical chemistry andtheir application in scientific research.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eA basic background in the chemical principles, particularly important to analytical chemistry\u003c/li\u003e\\n\u003cli\u003eThe ability to judge the accuracy and precision of experimental data and to show how these judgments can be sharpened by the application of statistical methods\u003c/li\u003e\\n\u003cli\u003eA wide range of techniques that are useful in modern analytical chemistry\u003c/li\u003e\\n\u003cli\u003eThe skills needed to solve analytical problems in a quantitative manner\u003c/li\u003e\\n\u003cli\u003eLaboratory skills to obtain high-quality analytical data\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-e002d162-5d2b-43c6-9605-1fac854c4d97\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:UTokyoX+UTokyo007x+3T2018\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"c624e7bf-ec65-419c-8c56-9feed573e29f\",\"productName\":\"Essentials of Genomics and Biomedical Informatics\",\"productSlug\":\"learn/biomedical-sciences/israelx-essentials-of-genomics-and-biomedical-informatics\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/c624e7bf-ec65-419c-8c56-9feed573e29f-3d1fa2ae6736.png\",\"productType\":\"Course\",\"attributes\":[\"Medicine\",\"Computer Science\",\"Biology \u0026 Life Sciences\"],\"partnerName\":[\"IsraelX\"],\"partnerKeys\":[\"IsraelX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/8c9a342a-2a11-4845-ba09-14b85645d8ac-9dd7b26745d2.png\",\"fullDescription\":\"$3d5\",\"shortDescription\":\"\u003cp\u003eThis course presents clinicians and digital health enthusiasts with an overview of the data revolution in medicine and how to exploit it for research and in the clinic. The course will not make you a bioinformatician but will introduce the main concepts, tools, algorithms, and databases in this field.\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003e● The scientific basis, concepts, and language needed to communicate effectively with bioinformaticians, statisticians and data scientists \u003c/p\u003e\\n\u003cp\u003e● First-hand experience in a computational analysis in the practice sessions \u003c/p\u003e\\n\u003cp\u003e● An opportunity to conduct your own basic research (utilizing existing tools, not programming new ones) \u003c/p\u003e\\n\u003cp\u003e● Sufficient background to enable further studies, research, or training towards a career in this field \u003c/p\u003e\\n\u003cp\u003e● And ultimately, the ability to provide better and more personalized medicine for your patients\u003c/p\u003e\",\"objectId\":\"course-c624e7bf-ec65-419c-8c56-9feed573e29f\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:IsraelX+gabi+3T2022a\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"b8eac1f6-1911-4a4a-aec3-39ed9945422f\",\"productName\":\"Big Data Analytics\",\"productSlug\":\"learn/big-data/university-of-adelaide-big-data-analytics\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/b8eac1f6-1911-4a4a-aec3-39ed9945422f-6465408b0fc3.jpg\",\"productType\":\"Course\",\"attributes\":[\"Computer Science\",\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"University of Adelaide\"],\"partnerKeys\":[\"AdelaideX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/f5d1ff66-002f-43fa-9d76-1b191d4a3272-0e2420850666.png\",\"fullDescription\":\"\u003cp\u003eGain essential skills in today’s digital age to store, process and analyse data to inform business decisions.\u003c/p\u003e\\n\u003cp\u003eIn this course, part of the Big Data MicroMasters program, you will develop your knowledge of big data analytics and enhance your programming and mathematical skills. You will learn to use essential analytic tools such as Apache Spark and R.\u003c/p\u003e\\n\u003cp\u003eTopics covered in this course include:\u003c/p\u003e\\n\u003cul\u003e\\n\u003cli\u003ecloud-based big data analysis;\u003c/li\u003e\\n\u003cli\u003epredictive analytics, including probabilistic and statistical models;\u003c/li\u003e\\n\u003cli\u003eapplication of large-scale data analysis;\u003c/li\u003e\\n\u003cli\u003eanalysis of problem space and data needs.\u003c/li\u003e\\n\u003c/ul\u003e\\n\u003cp\u003eBy the end of this course, you will be able to approach large-scale data science problems with creativity and initiative.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eLearn key technologies and techniques, including R and Apache Spark, to analyse large-scale data sets to uncover valuable business information.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eHow to develop algorithms for the statistical analysis of big data;\u003c/li\u003e\\n\u003cli\u003eKnowledge of big data applications;\u003c/li\u003e\\n\u003cli\u003eHow to use fundamental principles used in predictive analytics;\u003c/li\u003e\\n\u003cli\u003eEvaluate and apply appropriate principles, techniques and theories to large-scale data science problems.\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-b8eac1f6-1911-4a4a-aec3-39ed9945422f\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:AdelaideX+AnalyticsX+1T2021\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"2f2bfe43-fa94-4572-92fd-ecbfcb9d4e45\",\"productName\":\"Lean Six Sigma Black Belt Certification Part 1: Basic Improvement, Define and Measure\",\"productSlug\":\"learn/six-sigma/juran-lean-six-sigma-black-belt-certification-part-1-basic-improvement-define-and-measure\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/2f2bfe43-fa94-4572-92fd-ecbfcb9d4e45-0aff80633a92.png\",\"productType\":\"Course\",\"attributes\":[\"Business \u0026 Management\"],\"partnerName\":[\"Juran\"],\"partnerKeys\":[\"JuranX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/df374c5a-1048-4f42-b947-56954f8f5887-9f123d289980.png\",\"fullDescription\":\"\u003cp\u003eAttain Partners | Juran’s Lean Six Sigma Black Belt course begins with self-paced learning to give you a basic understanding of the methodology. It will qualify you to teach the Lean Six Sigma methodologies, tools and application in all functions and levels at your company. Throughout and after the course learners can also complete a project working 1-on-1 with a Master Black Belt mentor and coach to deliver a completed project for their company. Our typical Black Belt projects yield an average of $250K in savings for the organization. Our course proves its value within 3-6 months from the beginning of the training.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eEarn a professional Lean Six Sigma Black Belt certificate\u003c/p\u003e\",\"productOverview\":\"$3d6\",\"objectId\":\"course-2f2bfe43-fa94-4572-92fd-ecbfcb9d4e45\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:JuranX+LSSBB.1x+1T2022\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"b0490e8d-ddc0-4af1-b9d5-90cc6c7414a4\",\"productName\":\"Lean Six Sigma: Green Belt Sustainability Project\",\"productSlug\":\"learn/business-administration/technische-universitat-munchen-lean-six-sigma-green-belt-sustainability-project\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/b0490e8d-ddc0-4af1-b9d5-90cc6c7414a4-c3ee41b91d29.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Business \u0026 Management\",\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"Technische Universität München\"],\"partnerKeys\":[\"TUMx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/a455918c-387b-46b2-b943-d4b8f3edcf56-c2120c85b7c3.png\",\"fullDescription\":\"$3d7\",\"shortDescription\":\"\u003cp\u003e\u003cspan lang=\\\"EN\\\"\u003eImplement a Lean Six Sigma improvement project along with the DMAIC phases, from its identification to the evaluation of its result, to earn the TUM Lean Six Sigma Green Belt certification.\u003c/span\u003e\u003c/p\u003e\",\"productOverview\":\"$3d8\",\"objectId\":\"course-b0490e8d-ddc0-4af1-b9d5-90cc6c7414a4\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:TUMx+QPLS4x+2T2025\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"623db73f-831d-408f-98ca-352fb6f19710\",\"productName\":\"Landscape Ecology\",\"productSlug\":\"learn/environmental-science/eth-zurich-landscape-ecology\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/623db73f-831d-408f-98ca-352fb6f19710-841608bb38ae.jpg\",\"productType\":\"Course\",\"attributes\":[\"Environmental Studies\"],\"partnerName\":[\"ETH Zurich\"],\"partnerKeys\":[\"ETHx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/9c5eef81-4eac-4f0d-9ca1-c668ccce5d73-af28b99903dc.png\",\"fullDescription\":\"\u003cp\u003eWhat is a landscape? How has it evolved? How do we perceive landscapes? What properties are required to make us feel at home?\u003c/p\u003e\\n\u003cp\u003eAre you interested in these topics and want to understand how landscapes function? Then this is the course for you! We will present the discipline of Landscape Ecology, where natural and social sciences meet. You will realize how innovative and collaborative approaches used in Landscape Ecology allow land managers, planners and the public to shape landscapes for future societies.\u003c/p\u003e\\n\u003cp\u003eWe will teach you the modern tools of Landscape Ecology enabling you to address fundamental research questions. You will also get valuable practical advice in solving existing real landscape issues.\u003c/p\u003e\\n\u003cp\u003eLeading Landscape Ecology professors will present case studies from around the world, highlighting tools and methods in Landscape Ecology and how they are used to solve environmental problems.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eThis is the first MOOC to teach Landscape Ecology. Participants learn theory, methods and tools to understand the landscapes we live in and to solve landscape-related environmental problems.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eMethods for the valuation of landscapes using the ecosystem service paradigm\u003c/li\u003e\\n\u003cli\u003eHow to quantify landscape attributes using landscape metrics\u003c/li\u003e\\n\u003cli\u003eMethods to assess user conflicts in ecologically sensitive landscapes\u003c/li\u003e\\n\u003cli\u003eHow to use satellite data to detect landscape changes\u003c/li\u003e\\n\u003cli\u003ePhilosophical aspects of landscapes, land ethics and conservation\u003c/li\u003e\\n\u003cli\u003eTheories of landscape perception and place attachment\u003c/li\u003e\\n\u003cli\u003eEcology in the context of urban landscapes\u003c/li\u003e\\n\u003cli\u003eStatistical analysis with R\u003c/li\u003e\\n\u003cli\u003eHow to work with spatial data and GIS\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-623db73f-831d-408f-98ca-352fb6f19710\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:ETHx+LE-01x+3T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"93c24606-0add-4815-98f5-9f4da9bc291d\",\"productName\":\"Basics of Machine Learning\",\"productSlug\":\"learn/computer-programming/rwth-aachen-university-basics-of-machine-learning\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/93c24606-0add-4815-98f5-9f4da9bc291d-787ec7d10f9a.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Computer Science\"],\"partnerName\":[\"RWTH Aachen University\"],\"partnerKeys\":[\"RWTHx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/8607c85e-2a12-4c51-8906-3a67848cf2a7-3e0a310f77c3.png\",\"fullDescription\":\"$3d9\",\"shortDescription\":\"\u003cp\u003e\\\"Basics of Machine Learning\\\" introduces participants to the fundamental concepts and tools of machine learning, including probability density estimation, linear regression, classification techniques, ensemble methods, and deep neural networks.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eDefinition of Statistical Machine Learning\u003c/li\u003e\\n\u003cli\u003eProbability density estimation\u003c/li\u003e\\n\u003cli\u003eDefinition and behavior of linear discriminant models\u003c/li\u003e\\n\u003cli\u003eLinear regression\u003c/li\u003e\\n\u003cli\u003eLogistic regression\u003c/li\u003e\\n\u003cli\u003eSupport Vector Machines\u003c/li\u003e\\n\u003cli\u003eEnsemble Methods\u003c/li\u003e\\n\u003cli\u003eBasics of Neural Networks\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-93c24606-0add-4815-98f5-9f4da9bc291d\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:RWTHx+BAI001x+3T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"21be6203-b140-422c-9233-a1dc278d7266\",\"productName\":\"Big Data Analytics Using Spark\",\"productSlug\":\"learn/big-data/the-university-of-california-san-diego-big-data-analytics-using-spark\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/21be6203-b140-422c-9233-a1dc278d7266-d008b677f4c1.jpg\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Computer Science\"],\"partnerName\":[\"The University of California, San Diego\"],\"partnerKeys\":[\"UCSanDiegoX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/c7f335bb-f97c-4472-af09-65ae60197005-7d797d964ddb.png\",\"fullDescription\":\"\u003cp\u003eIn data science, data is called \\\"big\\\" if it cannot fit into the memory of a single standard laptop or workstation.\u003c/p\u003e\\n\u003cp\u003eThe analysis of big datasets requires using a cluster of tens, hundreds or thousands of computers. Effectively using such clusters requires the use of distributed files systems, such as the Hadoop Distributed File System (HDFS) and corresponding computational models, such as Hadoop, MapReduce and Spark.\u003c/p\u003e\\n\u003cp\u003eIn this course, part of the Data Science MicroMasters program, you will learn what the bottlenecks are in massive parallel computation and how to use spark to minimize these bottlenecks.\u003c/p\u003e\\n\u003cp\u003eYou will learn how to perform supervised an unsupervised machine learning on massive datasets using the Machine Learning Library (MLlib).\u003c/p\u003e\\n\u003cp\u003eIn this course, as in the other ones in this MicroMasters program, you will gain hands-on experience using PySpark within the Jupyter notebooks environment.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eLearn how to analyze large datasets using Jupyter notebooks, MapReduce and Spark as a platform.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eProgramming Spark using Pyspark\u003c/li\u003e\\n\u003cli\u003eIdentifying the computational tradeoffs in a Spark application\u003c/li\u003e\\n\u003cli\u003ePerforming data loading and cleaning using Spark and Parquet\u003c/li\u003e\\n\u003cli\u003eModeling data through statistical and machine learning methods\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-21be6203-b140-422c-9233-a1dc278d7266\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:UCSanDiegoX+DSE230x+3T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"16747879-5956-408a-8add-8d9d3b23b373\",\"productName\":\"Tropical coastal ecosystems\",\"productSlug\":\"learn/ecosystems/the-university-of-queensland-tropical-coastal-ecosystems\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/16747879-5956-408a-8add-8d9d3b23b373-e5d1bedaec7f.jpg\",\"productType\":\"Course\",\"attributes\":[\"Biology \u0026 Life Sciences\",\"Energy \u0026 Earth Sciences\",\"Environmental Studies\"],\"partnerName\":[\"The University of Queensland\"],\"partnerKeys\":[\"UQx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/8554749f-b920-4d7f-8986-af6bb95290aa-f336c6a2ca11.png\",\"fullDescription\":\"\u003cp\u003eDo you want to develop the skills and knowledge needed to help preserve tropical coastal ecosystems? These habitats provide goods and services for hundreds of millions of people but human activities have led to their global decline. TROPIC101x will introduce you to the incredible plants and animals that create these unique ecosystems. You will go on to explore the challenges these ecosystems are facing such as overfishing, coastal pollution, ocean warming and acidification, then learn about some techniques being used to tackle these problems. Lectures will be delivered by leading experts. Many of them were filmed on-site in the Great Barrier Reef, at The University of Queensland's research station on Heron Island. The course concludes with an innovative virtual ecology project, where you will have the option to take part in a citizen science project. Join us on an exciting journey, as you develop new knowledge and skills, during this beautiful and engaging course!\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eTake the challenge and understand problems and solutions to managing tropical coastal ecosystems.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eA basic understanding of the value, vulnerability, dynamics and sustainable management of tropical coastal ecosystems\u003c/li\u003e\\n\u003cli\u003eBasic experimental design skills plus some simple analytical and statistical techniques\u003c/li\u003e\\n\u003cli\u003eAn understanding and appreciation of the local and global threats to tropical coastal ecosystems\u003c/li\u003e\\n\u003cli\u003eAn understanding and practical use of spatial planning tools\u003c/li\u003e\\n\u003cli\u003eThe process of designing and implementing an experiment in a virtualecology project\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-16747879-5956-408a-8add-8d9d3b23b373\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:UQx+Tropic101x+1T2023\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"79eda238-568c-4f05-bcef-2da4a99721c8\",\"productName\":\"Lean Six Sigma Black Belt Certification Part 2: Analyze, Improve, and Control\",\"productSlug\":\"learn/six-sigma/juran-lean-six-sigma-black-belt-certification-part-2-analyze-improve-and-control\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/79eda238-568c-4f05-bcef-2da4a99721c8-9dcc86fbfa43.png\",\"productType\":\"Course\",\"attributes\":[\"Business \u0026 Management\"],\"partnerName\":[\"Juran\"],\"partnerKeys\":[\"JuranX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/df374c5a-1048-4f42-b947-56954f8f5887-9f123d289980.png\",\"fullDescription\":\"\u003cp\u003eAttain Partners | Juran’s Lean Six Sigma Black Belt course begins with self-paced learning to give you a basic understanding of the methodologys. It will qualify you to teach the Lean Six Sigma methodologies, tools and application in all functions and levels at your company. Throughout and after the course learners can also complete a project working 1-on-1 with a Master Black Belt mentor and coach to deliver a completed project for their company. Our typical Black Belt projects yield an average of $250K in savings for the organization. Our course proves its value within 3-6 months from the beginning of the training.\u003c/p\u003e\\n\u003cp\u003eLean Six Sigma Black Belt Course Topics: - Basic Quality Principles - Managing Projects and Teams - Identifying the Costs of Poor Quality - The DMAIC Phases - Validating Measurement Systems - Graphical Analysis Tools - Lean Tools - Statistical Analysis Tools - Designing Experiments to Test Improvement Theories - Controlling the Improved Process\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eEarn a professional Lean Six Sigma Black Belt certificate\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003eAfter the completion of the program, Attain Partners | Juran-certified Lean Six Sigma Black Belts will be experts having the ability to: - Develop, coach, and lead cross-functional process improvement team and initiatives - Mentor and advise management on prioritizing, planning, and launching Lean Six Sigma projects - Use, teach, and disseminate Lean Six Sigma tools and methods to green belts, yellow belts, and other team members Participants who successfully complete the course also earn 4 CEUs. Other learning objectives include: - Completion of a Lean Six Sigma project - Mastering the Lean and DMAIC methods for improvement - Mastering both graphical and statistical tools that enable the Lean and DMAIC methods - Obtaining in-depth understanding of the Lean Six Sigma philosophy, theory, strategy, tactics, and quality management tools\u003c/p\u003e\",\"objectId\":\"course-79eda238-568c-4f05-bcef-2da4a99721c8\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:JuranX+LSSBB.2X+2T2022\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"940d168f-356f-460b-a087-4d986e8e1460\",\"productName\":\"Material Science for Medicine Processing\",\"productSlug\":\"learn/science/graz-university-of-technology-material-science-for-medicine-processing\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/940d168f-356f-460b-a087-4d986e8e1460-2a41eaa58599.png\",\"productType\":\"Course\",\"attributes\":[\"Science\",\"Engineering\",\"Medicine\"],\"partnerName\":[\"Graz University of Technology\"],\"partnerKeys\":[\"TUGrazX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/c56a26e7-5025-4f31-97aa-0a5f42445447-0016ae232c5a.png\",\"fullDescription\":\"$3da\",\"shortDescription\":\"\u003cp\u003eSpecifically focused on solid dosage forms and powders, the course delves into key aspects relevant to their production and processing. Solid dosage forms are emphasized due to their widespread use and inherent complexities. By the course's conclusion, participants will gain proficiency in handling powders and solid dosage forms, as well as strategies to navigate common challenges encountered during manufacturing and processing.\u003c/p\u003e\",\"productOverview\":\"$3db\",\"objectId\":\"course-940d168f-356f-460b-a087-4d986e8e1460\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:TUGrazX+Pharm02+3T2023\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"128080fa-2a76-4a59-a37f-88d3cbcc183a\",\"productName\":\"Comparative Research Designs and Methods\",\"productSlug\":\"learn/social-science/universita-degli-studi-di-napoli-federico-ii-comparative-research-designs-and-methods\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/128080fa-2a76-4a59-a37f-88d3cbcc183a-aee61c724a61.jpg\",\"productType\":\"Course\",\"attributes\":[\"Social Sciences\"],\"partnerName\":[\"Università degli Studi di Napoli Federico II\"],\"partnerKeys\":[\"FedericaX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/0b3b2258-7f32-4fb1-807a-87c79543347a-6c8ff3bf8f98.png\",\"fullDescription\":\"$3dc\",\"shortDescription\":\"\u003cp\u003eExplore comparative analysis and itsimportance in the social sciences. You'll learn howto use comparative methods for constructive explanation and theory building and applyit to real-world politics.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eAn understanding of systematic comparative analysis and why it is more useful than other broad-based statistical methods\u003c/li\u003e\\n\u003cli\u003eHow to use systematic comparative analysis for constructive explanation and theory building\u003c/li\u003e\\n\u003cli\u003eHow to apply systematic comparative analysis to real-world politics\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-128080fa-2a76-4a59-a37f-88d3cbcc183a\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:FedericaX+Fed.X18+1T2021\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"4f9b438f-e629-4296-9dbf-7f7d509721f5\",\"productName\":\"CERTaIN: Pragmatic Clinical Trials and Healthcare Delivery Evaluations\",\"productSlug\":\"learn/research/the-university-of-texas-md-anderson-cancer-center-in-houston-certain-pragmatic-clinical-trials-and-healthcare-delivery-evaluations\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/4f9b438f-e629-4296-9dbf-7f7d509721f5-cb39c8443d38.png\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Health \u0026 Safety\"],\"partnerName\":[\"The University of Texas MD Anderson Cancer Center in Houston\"],\"partnerKeys\":[\"MDAndersonX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/b7a45265-c0e2-43a0-b98d-f9869a701784-98244d29a07f.png\",\"fullDescription\":\"$3dd\",\"shortDescription\":\"\u003cp\u003eLearn the fundamentals of pragmatic clinical trials, including study design and basic analytic methods.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eDescribepragmatic clinical trial designs\u003c/li\u003e\\n\u003cli\u003eIdentify and classify clinical trial designs\u003c/li\u003e\\n\u003cli\u003eDescribe the statistical methods used to analyze pragmatic clinical trial data\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-4f9b438f-e629-4296-9dbf-7f7d509721f5\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:MDAndersonX+CERTaIN.4x+3T2022\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"1b676991-8c5d-49fc-a57d-991ac7fc85fe\",\"productName\":\"Computational Thinking and Big Data\",\"productSlug\":\"learn/data-science/university-of-adelaide-computational-thinking-and-big-data\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/1b676991-8c5d-49fc-a57d-991ac7fc85fe-263159294321.jpg\",\"productType\":\"Course\",\"attributes\":[\"Computer Science\",\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"University of Adelaide\"],\"partnerKeys\":[\"AdelaideX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/f5d1ff66-002f-43fa-9d76-1b191d4a3272-0e2420850666.png\",\"fullDescription\":\"\u003cp\u003eComputational thinking is an invaluable skill that can be used across every industry, as it allows you to formulate a problem and express a solution in such a way that a computer can effectively carry it out.\u003c/p\u003e\\n\u003cp\u003eIn this course, part of the Big Data MicroMasters program, you will learn how to apply computational thinking in data science. You will learn core computational thinking concepts including decomposition, pattern recognition, abstraction, and algorithmic thinking.\u003c/p\u003e\\n\u003cp\u003eYou will also learn about data representation and analysis and the processes of cleaning, presenting, and visualizing data. You will develop skills in data-driven problem design and algorithms for big data.\u003c/p\u003e\\n\u003cp\u003eThe course will also explain mathematical representations, probabilistic and statistical models, dimension reduction and Bayesian models.\u003c/p\u003e\\n\u003cp\u003eYou will use tools such as R and Java data processing libraries in associated language environments.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eLearn the core concepts of computational thinking and how to collect, clean and consolidate large-scale datasets.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eUnderstand and apply advanced core computational thinking concepts to large-scale data sets\u003c/li\u003e\\n\u003cli\u003eUse industry-level tools for data preparation and visualisation, such as R and Java\u003c/li\u003e\\n\u003cli\u003eApply methods for data preparation to large data sets\u003c/li\u003e\\n\u003cli\u003eUnderstand mathematical and statistical techniques for attracting information from large data sets and illuminating relationships between data sets\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-1b676991-8c5d-49fc-a57d-991ac7fc85fe\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:AdelaideX+CompX+1T2021\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"4faf9f1d-d45c-45b0-bd7b-9feb62102458\",\"productName\":\"Portfolio Management - Theory \u0026 Practice (Part 1)\",\"productSlug\":\"learn/economics/new-york-institute-of-finance-portfolio-management-theory-practice-part-1\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/4faf9f1d-d45c-45b0-bd7b-9feb62102458-6180c433f78b.png\",\"productType\":\"Course\",\"attributes\":[\"Economics \u0026 Finance\"],\"partnerName\":[\"New York Institute of Finance\"],\"partnerKeys\":[\"NYIF\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/ecabc090-da26-4831-b96e-9c08f67f320e-ffcfe486232e.png\",\"fullDescription\":\"$3de\",\"shortDescription\":\"\u003cp\u003e\u003cspan lang=\\\"EN-CA\\\"\u003eLearn how to conduct portfolio performance measurement and attribution.\u003c/span\u003e\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN-CA\\\"\u003eThe Capital Markets\u003c/span\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN-CA\\\"\u003eStatistical Tools for Portfolio Management\u003c/span\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN-CA\\\"\u003eRisk and Risk/Return Measurement\u003c/span\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN-CA\\\"\u003eAnalyzing Portfolio Performance\u003c/span\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN-CA\\\"\u003eThe Investment Decision Making Process\u003c/span\u003e\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-4faf9f1d-d45c-45b0-bd7b-9feb62102458\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:NYIF+PMPC.PC4x+2T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"20e2ce7f-0e98-43eb-a956-ac820d822afd\",\"productName\":\"Introduction to Computational Thinking and Data Science\",\"productSlug\":\"learn/computer-science/massachusetts-institute-of-technology-introduction-to-computational-thinking-and-data-science\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/20e2ce7f-0e98-43eb-a956-ac820d822afd-891b8dccf7dd.jpg\",\"productType\":\"Course\",\"attributes\":[\"Computer Science\"],\"partnerName\":[\"Massachusetts Institute of Technology\"],\"partnerKeys\":[\"MITx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/2a73d2ce-c34a-4e08-8223-83bca9d2f01d-d4f180052205.png\",\"fullDescription\":\"\u003cp\u003e6.00.2x will teach you how to use computation to accomplish a variety of goals and provides you with a brief introduction to a variety of topics in computational problem solving . This course is aimed at students with some prior programming experience in Python and a rudimentary knowledge of computational complexity. You will spend a considerable amount of time writing programs to implement the concepts covered in the course. For example, you will write a program that will simulate a robot vacuum cleaning a room or will model the population dynamics of viruses replicating and drug treatments in a patient's body.\u003c/p\u003e\\n\u003cp\u003eTopics covered include:\u003c/p\u003e\\n\u003cul\u003e\\n\u003cli\u003eAdvanced programming in Python 3\u003c/li\u003e\\n\u003cli\u003eKnapsack problem, Graphs and graph optimization\u003c/li\u003e\\n\u003cli\u003eDynamic programming\u003c/li\u003e\\n\u003cli\u003ePlotting with the pylab package\u003c/li\u003e\\n\u003cli\u003eRandom walks\u003c/li\u003e\\n\u003cli\u003eProbability, Distributions\u003c/li\u003e\\n\u003cli\u003eMonte Carlo simulations\u003c/li\u003e\\n\u003cli\u003eCurve fitting\u003c/li\u003e\\n\u003cli\u003eStatistical fallacies\u003c/li\u003e\\n\u003c/ul\u003e\",\"shortDescription\":\"\u003cp\u003e6.00.2x is an introduction to using computation to understand real-world phenomena.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003ePlotting with the pylab package\u003c/li\u003e\\n\u003cli\u003eStochastic programming and statistical thinking\u003c/li\u003e\\n\u003cli\u003eMonte Carlo simulations\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-20e2ce7f-0e98-43eb-a956-ac820d822afd\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:MITx+6.00.2x+1T2025\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"37a24f56-f624-41f2-859f-fda43f451e54\",\"productName\":\"A-level Mathematics for Year 12 - Course 1: Algebraic Methods, Graphs and Applied Mathematics Methods\",\"productSlug\":\"learn/math/imperial-college-london-a-level-mathematics-for-year-12-course-1-algebraic-methods-graphs-and-applied-mathematics-methods\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/37a24f56-f624-41f2-859f-fda43f451e54-33de81277ec9.jpg\",\"productType\":\"Course\",\"attributes\":[\"Math\"],\"partnerName\":[\"Imperial College London\"],\"partnerKeys\":[\"ImperialX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/b7b5c4b8-9908-4caa-8e02-453a2a960b0b-9cda9ffb8e95.png\",\"fullDescription\":\"$3df\",\"shortDescription\":\"\u003cp\u003eDevelop your thinking skills, fluency and confidence to aim for an A* in A-levelmaths and prepare for undergraduate STEM degrees.\u003c/p\u003e\",\"productOverview\":\"$3e0\",\"objectId\":\"course-37a24f56-f624-41f2-859f-fda43f451e54\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:ImperialX+alm001+3T2022\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"2cfd52b3-418c-43ae-9cfc-e693e1cc88b0\",\"productName\":\"The Essentials of Data Literacy Online Course\",\"productSlug\":\"learn/r-programming/davidson-college-the-essentials-of-data-literacy-online-course\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/2cfd52b3-418c-43ae-9cfc-e693e1cc88b0-a2791ba4afdc.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"Davidson College\"],\"partnerKeys\":[\"DavidsonX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/2b993f2d-f65b-4791-b2f5-0fa11fedfd15-f867a771d99f.png\",\"fullDescription\":\"$3e1\",\"shortDescription\":\"\u003cp\u003eEssentials of Data Literacy Course\u003c/p\u003e\\n\u003cp\u003eLearn fundamental data skills with an online course that teaches you how to analyze, manage, and visualize data. Audit for free or obtain a certificate.\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003eDevelop your data analytics skills\u003c/p\u003e\\n\u003cul\u003e\\n\u003cli\u003eThe six steps of the data lifecycle \u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eUse R to perform probability functions, statistical analysis, data management, and more \u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eLearn how to be a critical consumer and producer of data visualizations\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eGain a deeper understanding of your company’s data needs \u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eDiscover how to market your data skills to employers\u003c/p\u003e\\n\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-2cfd52b3-418c-43ae-9cfc-e693e1cc88b0\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:DavidsonX+DavidsonX.D006+1T2021\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"086c3b96-10d9-490c-8486-2f1bcfd0d110\",\"productName\":\"Lean Six Sigma Green Belt Business Project\",\"productSlug\":\"learn/six-sigma/technische-universitat-munchen-lean-six-sigma-green-belt-business-project\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/086c3b96-10d9-490c-8486-2f1bcfd0d110-f419f400aff4.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Business \u0026 Management\",\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"Technische Universität München\"],\"partnerKeys\":[\"TUMx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/a455918c-387b-46b2-b943-d4b8f3edcf56-c2120c85b7c3.png\",\"fullDescription\":\"$3e2\",\"shortDescription\":\"\u003cp\u003e\u003cspan lang=\\\"EN-US\\\"\u003eLean Six Sigma = Theory + Project = Benefit. Learn how to improve business processes with Lean Six Sigma and implement related projects along the DMAIC phases: \u003cstrong\u003eD\u003c/strong\u003e efine – \u003cstrong\u003eM\u003c/strong\u003e easure – \u003cstrong\u003eA\u003c/strong\u003e nalyze – \u003cstrong\u003eI\u003c/strong\u003e mprove – \u003cstrong\u003eC\u003c/strong\u003e ontrol and\u003c/span\u003e apply all relevant qualitative and quantitative tools.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eTo identify and define suitable Lean Six Sigma project topics.\u003c/li\u003e\\n\u003cli\u003eTo \u003cspan lang=\\\"EN-US\\\"\u003eimplement a project along with its DMAIC phases with all relevant qualitative and quantitative tools.\u003c/span\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN-US\\\"\u003eTo evaluate the \u003c/span\u003e\u003cspan lang=\\\"EN-US\\\"\u003esuccess of a Six Sigma project with process performance indicators and the derived financial benefits.\u003c/span\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cspan lang=\\\"EN-US\\\"\u003eTo apply all \u003c/span\u003e\u003cspan lang=\\\"EN-US\\\"\u003erelevant DMAIC tools, e.g. Project Definition, Voice of Customer/CtQ's, Project Charter, Process Mapping, Cause \u0026amp; Effect Matrix, Hypotheses, and their Statistical Tests, Root-Cause-Analysis, etc.\u003c/span\u003e\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-086c3b96-10d9-490c-8486-2f1bcfd0d110\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:TUMx+QPLS5x+3T2022\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"e21976ef-688f-4b94-9262-06ebf7451037\",\"productName\":\"Discovery Precalculus: A Creative and Connected Approach\",\"productSlug\":\"learn/pre-calculus/the-university-of-texas-at-austin-discovery-precalculus-a-creative-and-connected-approach\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/e21976ef-688f-4b94-9262-06ebf7451037-3f50bb236ccd.jpg\",\"productType\":\"Course\",\"attributes\":[\"Math\"],\"partnerName\":[\"The University of Texas at Austin\"],\"partnerKeys\":[\"UTAustinX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/9d38ad58-87fb-4a89-9f23-c8df318112e3-aec8e9e98a5f.png\",\"fullDescription\":\"In this interactive pre-Calculus course, you will deepen and extend your knowledge of functions, graphs, and equations from high school algebra and geometry courses so you can successfully work with the concepts in a rigorous university-level calculus course. This course is designed to engage learners in the “doing” of mathematics, emphasizing conceptual understanding of mathematical definitions and student development of logical arguments in support of solutions. The course places major emphasis on why the mathematics topics covered work within the discipline, as opposed to simply the mechanics of the mathematics.\",\"shortDescription\":\"Strengthen your critical thinking skills in this inquiry-based Pre-calculus course.\",\"productOverview\":\"$3e3\",\"objectId\":\"course-e21976ef-688f-4b94-9262-06ebf7451037\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:UTAustinX+UT.PreC.10.03x+3T2016\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"bbf0ed54-4e19-496a-a2b6-e3c468f15ea4\",\"productName\":\"A-level Mathematics for Year 12 - Course 2: Calculus, Newton’s Laws and Hypothesis Testing\",\"productSlug\":\"learn/math/imperial-college-london-a-level-mathematics-for-year-12-course-2-calculus-newtons-laws-and-hypothesis-testing\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/bbf0ed54-4e19-496a-a2b6-e3c468f15ea4-ebb41ddb31a4.jpg\",\"productType\":\"Course\",\"attributes\":[\"Math\"],\"partnerName\":[\"Imperial College London\"],\"partnerKeys\":[\"ImperialX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/b7b5c4b8-9908-4caa-8e02-453a2a960b0b-9cda9ffb8e95.png\",\"fullDescription\":\"$3e4\",\"shortDescription\":\"\u003cp\u003eDevelop your thinking skills, fluency and confidence to aim for an A* in A-level mathematics and prepare for undergraduate STEM degrees.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eHow to differentiate a number exponential functions\u003c/li\u003e\\n\u003cli\u003eHow to apply differentiation to find stationary points\u003c/li\u003e\\n\u003cli\u003eHow to find the equations of tangents and normals to curves\u003c/li\u003e\\n\u003cli\u003eHow to model growth and decay using the exponential function\u003c/li\u003e\\n\u003cli\u003eHow to manipulate expressions involving indices by using logarithms\u003c/li\u003e\\n\u003cli\u003eHow to integrate an exponential function\u003c/li\u003e\\n\u003cli\u003eHow to use integration to find the equation of a curve from its gradient function\u003c/li\u003e\\n\u003cli\u003eHow to use integration to find the area enclosed by a curve\u003c/li\u003e\\n\u003cli\u003eHow to use Newton’s laws to solve problems involving forces\u003c/li\u003e\\n\u003cli\u003eHow to use the Binomial probability distribution to find the probability of a number of successes in a series of statistical trials\u003c/li\u003e\\n\u003cli\u003eHow to define a statistical hypothesis test using the binomial distribution.\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-bbf0ed54-4e19-496a-a2b6-e3c468f15ea4\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:ImperialX+alm002+2T2022\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"38f71726-2799-4739-9269-b4f7dd5a134d\",\"productName\":\"SafetyQuest: Level Four - Mastering QI\",\"productSlug\":\"learn/healthcare/stanford-university-safetyquest-level-four-mastering-qi\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/38f71726-2799-4739-9269-b4f7dd5a134d-139bf4fa83fc.png\",\"productType\":\"Course\",\"attributes\":[\"Medicine\"],\"partnerName\":[\"Stanford University\"],\"partnerKeys\":[\"StanfordOnline\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/f53a7458-c79b-4524-97cf-28241114230e-e47d44123c3b.png\",\"fullDescription\":\"$3e5\",\"shortDescription\":\"\u003cp\u003eEnhance patient safety and teamwork with SafetyQuest, an immersive CME/CE gaming series by Stanford Medicine. Learn to identify risks, prevent errors, and align care with quality aims through interactive scenarios. Gain essential quality improvement tools to improve patient outcomes. Enroll today to strengthen your safety strategies and problem-solving skills!\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eUtilize Lean principles such as 5S and reducing waste to improve quality of care for your patients\u003c/li\u003e\\n\u003cli\u003eAnalyze quality improvement data using statistical process control\u003c/li\u003e\\n\u003cli\u003eApply high value care to your practice\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-38f71726-2799-4739-9269-b4f7dd5a134d\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:StanfordOnline+CME.20969+1T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"08e47d24-f4f2-4bb3-b5ad-b6c2778d4fc7\",\"productName\":\"From Atoms to Materials: Predictive Theory and Simulations\",\"productSlug\":\"learn/quantum-physics-mechanics/purdue-university-from-atoms-to-materials-predictive-theory-and-simulations\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/08e47d24-f4f2-4bb3-b5ad-b6c2778d4fc7-d0fd71ed6bc4.jpg\",\"productType\":\"Course\",\"attributes\":[\"Engineering\"],\"partnerName\":[\"Purdue University\"],\"partnerKeys\":[\"PurdueX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/e5dfaf30-3828-4826-944e-03ea3dcf5b13-ab295e7bad86.png\",\"fullDescription\":\"\u003cp\u003eExplore this five-unit course and discover a unified framework for understanding the essential physics that govern materials at atomic scales. You’ll then be able to relate these processes to the macroscopic world.\u003c/p\u003e\\n\u003cp\u003eThe course starts with an introduction to quantum mechanics and its application to understand the electronic structure of atoms and the nature of the chemical bond. After a brief description of the electronic and atomic structures of molecules and crystals, the course discusses atomic motion in terms of normal modes and phonons, as well as using molecular dynamics simulations.\u003c/p\u003e\\n\u003cp\u003eFinally, principles of statistical mechanics are introduced and used to relate the atomic world to macroscopic properties.\u003c/p\u003e\\n\u003cp\u003eThroughout the course, students will use online simulations in nanoHUB to apply the concepts learned to interesting materials and properties; these simulations will involve density functional theory and molecular dynamics.\u003c/p\u003e\",\"shortDescription\":\"Learn how materials look and work at atomic scales.\",\"productOverview\":\"\u003cul\u003e\u003cli\u003ePrinciples of classical and quantum mechanics and their application to describe materials at atomic scales\u003c/li\u003e\\n\\t\u003cli\u003eStatistical mechanics to connect the atomistic and macroscopic worlds\u003c/li\u003e\\n\\t\u003cli\u003eHow to use density functional theory and molecular dynamics to predict materials properties and processes\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-08e47d24-f4f2-4bb3-b5ad-b6c2778d4fc7\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:PurdueX+MSE550x+3T2017\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"728f708e-1fb7-4306-b6d9-123ba79b98d2\",\"productName\":\"Policy Analysis Using Interrupted Time Series\",\"productSlug\":\"learn/data-analysis/university-of-british-columbia-policy-analysis-using-interrupted-time-series\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/728f708e-1fb7-4306-b6d9-123ba79b98d2-f6516737ff1c.jpg\",\"productType\":\"Course\",\"attributes\":[\"Social Sciences\",\"Data Analysis \u0026 Statistics\",\"Economics \u0026 Finance\"],\"partnerName\":[\"University of British Columbia\"],\"partnerKeys\":[\"UBCx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/eac96c61-1462-4084-a0b2-12525b74a9e1-8377159ff774.png\",\"fullDescription\":\"$3e6\",\"shortDescription\":\"A comprehensive course on conducting and presenting policy evaluations using interrupted time series analysis.\",\"productOverview\":\"\u003cul\u003e\u003cli\u003eThe strengths and drawbacks of ITS and RD studies\u003c/li\u003e\\n\\t\u003cli\u003eData requirements, setup, and statistical modelling\u003c/li\u003e\\n\\t\u003cli\u003eInterpretation of results for non-technical audiences\u003c/li\u003e\\n\\t\u003cli\u003eProduction of compelling figures\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-728f708e-1fb7-4306-b6d9-123ba79b98d2\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:UBCx+ITSx+1T2017\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"203ec944-fd17-446e-b6b4-5226d0b7487a\",\"productName\":\"AP® Psychology - Course 5: Health and Behavior\",\"productSlug\":\"learn/psychology/university-of-british-columbia-ap-r-psychology-course-5-health-and-behavior\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/203ec944-fd17-446e-b6b4-5226d0b7487a-d09ad5a8e536.jpg\",\"productType\":\"Course\",\"attributes\":[\"Social Sciences\",\"Biology \u0026 Life Sciences\",\"Science\"],\"partnerName\":[\"University of British Columbia\"],\"partnerKeys\":[\"UBCx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/eac96c61-1462-4084-a0b2-12525b74a9e1-8377159ff774.png\",\"fullDescription\":\"$3e7\",\"shortDescription\":\"\u003cp\u003eLearn about the relationship between stress and physical and mental health and the treatment of abnormal behavior, including psychological disorders.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003ean understanding of stress as a concept\u003c/li\u003e\\n\u003cli\u003ethe relationship between stress and physical and mental health\u003c/li\u003e\\n\u003cli\u003eapproaches to understanding and classifying abnormal behavior\u003c/li\u003e\\n\u003cli\u003ethe various categories and types of mental disorders as defined in the diagnostic and statistical manual (DSM)\u003c/li\u003e\\n\u003cli\u003ethe various approaches to the treatment of psychological disorders\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-203ec944-fd17-446e-b6b4-5226d0b7487a\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:UBCx+PSYC.5x+3T2018\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"d892e1f4-f191-4c7c-bdbe-60c2791fed55\",\"productName\":\"Text Analytics 2: Visualizing Natural Language Processing\",\"productSlug\":\"learn/natural-language-processing/university-of-canterbury-text-analytics-2-visualizing-natural-language-processing\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/d892e1f4-f191-4c7c-bdbe-60c2791fed55-3eb2ed7829df.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Computer Science\",\"Language\",\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"University of Canterbury\"],\"partnerKeys\":[\"UCx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/ecfbe814-b9bf-45ae-8bc0-baf62dbedeb6-8113d578a9f6.png\",\"fullDescription\":\"$3e8\",\"shortDescription\":\"\u003cp\u003eExtend your knowledge of the core techniques of computational linguistics by working through case-studies and visualizing their results.\u003c/p\u003e\",\"productOverview\":\"\u003col\u003e\\n\u003cli\u003ePractice using \u003cstrong\u003edocument similarity\u003c/strong\u003e and \u003cstrong\u003etopic models\u003c/strong\u003e to work with large data sets.\u003c/li\u003e\\n\u003cli\u003e\u003cstrong\u003eVisualize\u003c/strong\u003e and \u003cstrong\u003einterpret\u003c/strong\u003e text analytics, including statistical significance testing.\u003c/li\u003e\\n\u003cli\u003eAssess the \u003cstrong\u003escientific\u003c/strong\u003e and \u003cstrong\u003eethical\u003c/strong\u003e foundations of new applications for text analysis\u003c/li\u003e\\n\u003c/ol\u003e\",\"objectId\":\"course-d892e1f4-f191-4c7c-bdbe-60c2791fed55\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:UCx+LNG01.2ucx+3T2022\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"9daf016a-45dc-49ec-b60a-8e7b42cd9826\",\"productName\":\"Marketing Analytics\",\"productSlug\":\"learn/marketing-analytics/columbia-university-marketing-analytics\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/9daf016a-45dc-49ec-b60a-8e7b42cd9826-7e9825ff0512.jpg\",\"productType\":\"Course\",\"attributes\":[\"Business \u0026 Management\"],\"partnerName\":[\"Columbia University\"],\"partnerKeys\":[\"ColumbiaX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/3d8fc08e-339f-467a-a6c0-2b956ca5d6a0-797c0c6ddbc6.png\",\"fullDescription\":\"\u003cp\u003eMarketers want to understand and forecast how customers purchase products and services and how they respond to marketing initiatives.\u003c/p\u003e\\n\u003cp\u003eLearn how analytics help businesses drive marketing to maximize its effectiveness and optimize return on investment (ROI).\u003c/p\u003e\\n\u003cp\u003eIn this course, part of the Business Analytics MicroMasters program, discover how to develop quantitative models that leverage business data, statistical computation, and machine learning to forecast sales and marketing impact for:\u003c/p\u003e\\n\u003cul\u003e\\n\u003cli\u003ecustomer relationship management;\u003c/li\u003e\\n\u003cli\u003emarket segmentation;\u003c/li\u003e\\n\u003cli\u003evalue creation;\u003c/li\u003e\\n\u003cli\u003ecommunication;\u003c/li\u003e\\n\u003cli\u003emonetization.\u003c/li\u003e\\n\u003c/ul\u003e\\n\u003cp\u003eYou will learn how to use probabilistic models and optimization tools to model customer demand forecasts, pricing sensitivity, Lifetime Value and how to leverage such data to make optimal decisions on designing new products, marketing segmentation and strategy.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eDevelop quantitative models that leverage business data to forecast sales and support important marketing decisions.\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003eSkills acquired after the course:\u003c/p\u003e\\n\u003cul\u003e\\n\u003cli\u003eDemand forecasting using customer-base models and statistical approaches\u003c/li\u003e\\n\u003cli\u003eMarket segmentation methods and best practices for identifying potential customer segments and focused targeting\u003c/li\u003e\\n\u003cli\u003eComputation of Customer Lifetime Value for analyzing customer, brand loyalty and forecasting revenue in the short and long run\u003c/li\u003e\\n\u003cli\u003eFactors to consider while designing and introducing new products to the market\u003c/li\u003e\\n\u003cli\u003eCalculating Optimal Pricing for products and services to get the best ROI\u003c/li\u003e\\n\u003cli\u003eAssessing Marketing ROI for making better and data-driven decisions\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-9daf016a-45dc-49ec-b60a-8e7b42cd9826\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:ColumbiaX+BAMM.104x+1T2021\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"3543defa-7662-46c0-be1e-94c14de91ea3\",\"productName\":\"Computer Science for Data Science\",\"productSlug\":\"certificates/professional-certificate/harvardx-computer-science-for-data-science\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/3543defa-7662-46c0-be1e-94c14de91ea3-1bb7839b38b0.png\",\"productType\":\"Professional Certificate\",\"attributes\":[\"Computer Science\",\"Engineering\",\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"Harvard University\"],\"partnerKeys\":[\"HarvardX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/44022f13-20df-4666-9111-cede3e5dc5b6-2cc39992c67a.png\",\"fullDescription\":\"A broad and robust understanding of computer science and programming.,How to think algorithmically and solve programming problems efficiently.,The basics of programming using the R language, a widely-used language for statistical computing and data analysis.,Skills in filtering and analyzing data based on conditions, apply functions and loops for data manipulation, and write functions to modularize code.,Trusted techniques to create effective visualizations of data.\",\"shortDescription\":\"The CS50 Professional Certificate Program: Computer Science for Data Science unravels the complexities of today’s data landscape, equipping you with the skills needed to create efficient, accurate, and actionable data insights.\",\"productOverview\":\"$3e9\",\"objectId\":\"program-3543defa-7662-46c0-be1e-94c14de91ea3\",\"productSource\":\"edX\",\"productCategory\":\"Program\",\"activeRunKey\":null,\"childCoursesCount\":2,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"3c32e3e0-b6fe-4ee4-bd4f-210c6339e074\",\"productName\":\"Data Science\",\"productSlug\":\"certificates/professional-certificate/harvardx-data-science\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/3c32e3e0-b6fe-4ee4-bd4f-210c6339e074-09fdeca85b81.jpg\",\"productType\":\"Professional Certificate\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Computer Science\",\"Math\"],\"partnerName\":[\"Harvard University\"],\"partnerKeys\":[\"HarvardX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/44022f13-20df-4666-9111-cede3e5dc5b6-2cc39992c67a.png\",\"fullDescription\":\"Fundamental R programming skills,Statistical concepts such as probability, inference, and modeling and how to apply them in practice,Gain experience with the tidyverse, including data visualization with ggplot2 and data wrangling with dplyr,Become familiar with essential tools for practicing data scientists such as Unix/Linux, git and GitHub, and RStudio,Implement machine learning algorithms,In-depth knowledge of fundamental data science concepts through motivating real-world case studies\",\"shortDescription\":\"Learn key data science essentials, including R and machine learning, through real-world case studies to jumpstart your career as a data scientist.\",\"productOverview\":\"$3ea\",\"objectId\":\"program-3c32e3e0-b6fe-4ee4-bd4f-210c6339e074\",\"productSource\":\"edX\",\"productCategory\":\"Program\",\"activeRunKey\":null,\"childCoursesCount\":9,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"a2a6a8f9-7b61-49ce-9d62-7e959b776fb7\",\"productName\":\"Analytics: Essential Tools and Methods\",\"productSlug\":\"masters/micromasters/gtx-analytics-essential-tools-and-methods\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/a2a6a8f9-7b61-49ce-9d62-7e959b776fb7-9cad702cc5f3.jpg\",\"productType\":\"MicroMasters\",\"attributes\":[\"Computer Science\",\"Data Analysis \u0026 Statistics\",\"Engineering\",\"Business \u0026 Management\"],\"partnerName\":[\"The Georgia Institute of Technology\"],\"partnerKeys\":[\"GTx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/8537d31f-01b4-40fd-b652-e17b38eefe41-4c6537c07d54.png\",\"fullDescription\":\"Use essential analytics tools like R, Python, SQL, and more.,Understand fundamental models and methods of analytics, and how and when to apply them.,Learn to build a data analysis pipeline, from collection and storage through analysis and interactive visualization.,Apply your new analytics skills in a business context to maximize your impact.\",\"shortDescription\":\"Learn fundamental, in-demand analytics skills to maximize business impact and advance your career as an analyst.\",\"productOverview\":\"\u003cp\u003eNominated for the 2020 edX Prize\u003c/p\u003e\\r\\n\\r\\n\u003cp\u003eGain an interdisciplinary understanding of the essential fundamentals of analytics, including analysis methods, analytical tools, such as R, Python and SQL, and business applications.\u003c/p\u003e \\r\\n\\r\\n\u003cp\u003eUsing common analytics software and tools, statistical and machine learning methods, and data-intensive computing and visualization techniques, learners will gain the experience necessary to integrate all of these parts for maximum impact.\u003c/p\u003e \\r\\n\\r\\n\u003cp\u003eProject experience is also included as part of the MicroMasters program. Through these projects, learners will hone their skills with data collection, storage, analysis, and visualization tools, as well as gain instincts for how and when each tool should be used. \u003c/p\u003e \\r\\n\\r\\n\u003cp\u003eThese projects provide hands-on experience with real-world business applications of analytics and a deeper understanding of how to apply analytics skills to make the biggest difference.\u003c/p\u003e\",\"objectId\":\"program-a2a6a8f9-7b61-49ce-9d62-7e959b776fb7\",\"productSource\":\"edX\",\"productCategory\":\"Program\",\"activeRunKey\":null,\"childCoursesCount\":3,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"0ce916b6-ca09-4bc9-9d7f-6db0b2d9af97\",\"productName\":\"AI and Data Analytics for Business Leaders\",\"productSlug\":\"certificates/professional-certificate/babsonx-ai-and-data-analytics-for-business-leaders\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/0ce916b6-ca09-4bc9-9d7f-6db0b2d9af97-789b728c014e.jpg\",\"productType\":\"Professional Certificate\",\"attributes\":[\"Business \u0026 Management\",\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"Babson College\"],\"partnerKeys\":[\"BabsonX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/5e657c42-b466-4101-883a-7f2830ff3d54-1cc106481e49.png\",\"fullDescription\":\"How platform business models and AI technologies complement each other.,Where to look for data and what data is valuable to your business and AI.,The 7 attributes of AI-led organizations.,Variability in the real world and implications for decision making.,Making effective decisions from no data to big data (what should we collect and then what do we do with all this data?).\",\"shortDescription\":\"Learn how you can use AI and Data Analytics to make better business decisions.\",\"productOverview\":\"$3eb\",\"objectId\":\"program-0ce916b6-ca09-4bc9-9d7f-6db0b2d9af97\",\"productSource\":\"edX\",\"productCategory\":\"Program\",\"activeRunKey\":null,\"childCoursesCount\":2,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"8b926013-4b68-482a-bf92-a0628fb344f1\",\"productName\":\"Probability/Random Variables\",\"productSlug\":\"certificates/professional-certificate/gtx-probability-random-variables\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/8b926013-4b68-482a-bf92-a0628fb344f1-8f0cd49296ea.jpg\",\"productType\":\"Professional Certificate\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Math\",\"Engineering\"],\"partnerName\":[\"The Georgia Institute of Technology\"],\"partnerKeys\":[\"GTx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/8537d31f-01b4-40fd-b652-e17b38eefe41-4c6537c07d54.png\",\"fullDescription\":\"Review Bootcamp lessons based on set theory and calculus.,Understand underlying probability axioms.,Apply elementary probability counting rules, including permutations and combinations.,Become familiar with the concepts of independence and conditional probability.,Learn how to update probabilities via Bayes Rule.,Get introduced to discrete and continuous random variables.,Learn about the properties of random variables, including the expected value, variance, and moment generating function.,Study functions of random variables, and how they can be used in computer simulation applications.,Recognize joint(two-dimensional) random variables and how to extract marginal(one-dimensional) and conditional information from them.,Study the concepts of independence and correlation.,Work with the R statistical package.\",\"shortDescription\":\"Learn probability concepts that can be applied in your career\",\"productOverview\":\"$3ec\",\"objectId\":\"program-8b926013-4b68-482a-bf92-a0628fb344f1\",\"productSource\":\"edX\",\"productCategory\":\"Program\",\"activeRunKey\":null,\"childCoursesCount\":2,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"16c1a410-28b1-484c-8039-26754d9f1452\",\"productName\":\"Research Methods in Psychology\",\"productSlug\":\"certificates/professional-certificate/apa-research-methods-in-psychology\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/16c1a410-28b1-484c-8039-26754d9f1452-a22fb359c028.png\",\"productType\":\"Professional Certificate\",\"attributes\":[\"Social Sciences\",\"Ethics\",\"Education \u0026 Teacher Training\",\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"American Psychological Association\"],\"partnerKeys\":[\"APA\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/bc4364a6-3fb5-456e-b2f5-fc6efdeff815-851530f4f112.png\",\"fullDescription\":\"Appraise the scientific method as a means of acquiring knowledge about psychological phenomena.,Critique the various research designs and the associated statistical methods in terms of advantages and disadvantages.,Explain the importance of statistical analysis for appreciating the results of a psychological research study.,Defend the ethical use of humans and animals in research.,Devise a research study that investigates a psychological phenomenon of your choice.\",\"shortDescription\":\"Users learn the fundamentals of research design for quantitative studies in psychology, analysis of data from those designs, and ethical standards for psychological research. Activities focus on real-world scenarios and authentic research examples.\",\"productOverview\":\"\u003cp\u003eLearn how researchers in psychology conduct their studies and better appreciate and critique the research presented in news media, in other courses, or in the psychological research literature.\u003c/p\u003e\\r\\n\\r\\n\u003cp\u003eExplore the statistical methods that psychologists use to summarize, display, and analyze their data, focusing on the conceptual level and the goals that statistical methods are intended to accomplish, rather than on the mechanics of doing the calculations.\u003c/p\u003e\\r\\n\\r\\n\u003cp\u003eConsider the important and fascinating questions about when it is and when it is not appropriate to make humans or other animals the subjects of scientific research, what kinds of protections must be ensured for them, and ethically appropriate approaches to the analysis and reporting of the results of that research.\u003c/p\u003e\",\"objectId\":\"program-16c1a410-28b1-484c-8039-26754d9f1452\",\"productSource\":\"edX\",\"productCategory\":\"Program\",\"activeRunKey\":null,\"childCoursesCount\":3,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"a57c92a2-90b4-42a5-96e3-187a7916160d\",\"productName\":\"Lean Six Sigma Black Belt Training \u0026 Certification Program\",\"productSlug\":\"certificates/professional-certificate/juranx-lean-six-sigma-black-belt-training-and-certification-program\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/a57c92a2-90b4-42a5-96e3-187a7916160d-cff28d36a663.png\",\"productType\":\"Professional Certificate\",\"attributes\":[\"Business \u0026 Management\"],\"partnerName\":[\"Juran\"],\"partnerKeys\":[\"JuranX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/df374c5a-1048-4f42-b947-56954f8f5887-9f123d289980.png\",\"fullDescription\":\"Develop, coach and lead cross-functional process improvement team and initiatives.,Mentor and advise management on prioritizing, planning and launching Lean Six Sigma projects.,Use, teach and disseminate Lean Six Sigma tools and methods to green belts, yellow belts and other team members.,Participants who successfully complete the course also earn 4 CEUs.,Mastering the Lean and DMAIC methods for improvement.,Mastering both graphical and statistical tools that enable the Lean and DMAIC methods.,Obtain in-depth understanding of the Lean Six Sigma philosophy, theory, strategy, tactics and quality management tools.\",\"shortDescription\":\"Earn a professional certificate in Lean Six Sigma Black Belt certification\",\"productOverview\":\"$3ed\",\"objectId\":\"program-a57c92a2-90b4-42a5-96e3-187a7916160d\",\"productSource\":\"edX\",\"productCategory\":\"Program\",\"activeRunKey\":null,\"childCoursesCount\":2,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"8dd76098-ece2-4cfe-b77c-febf5560c188\",\"productName\":\"Certified Forecaster and Demand Planner (CFDP)\",\"productSlug\":\"certificates/professional-certificate/international-supply-chain-education-alliance-certified-forecaster-and-demand-planner-cfdp\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/8dd76098-ece2-4cfe-b77c-febf5560c188-299fed4aa451.jpg\",\"productType\":\"Professional Certificate\",\"attributes\":[\"Business \u0026 Management\",\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"International Supply Chain Education Alliance\"],\"partnerKeys\":[\"ISCEA\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/e1f70279-dab1-436b-b87d-2aa4c1c3c3b8-2a7a6512dd73.png\",\"fullDescription\":\"Supply chain management essentials, inventory planning fundamentals, and their role in achieving a balance between supply and demand.,To lead Demand Planning Processes in the context of Sales and Operations Planning (S\u0026OP), Integrated Business Planning (IBP) and Collaborative Planning (CPFR).,To develop quantitative, judgmental, and causal forecasting models for seasonal, intermittent, and new product demand.,How to choose the right forecasting method for each historical data pattern, and how to improve forecast performance with Machine Learning and Lean Six Sigma principles.,How to mitigate the risk of inaccurate forecasts and deal with randomness, low forecastability, missing data, outliers, disruptive events, and overfitting.,How a Make-and-Sell organization can become Demand-Driven, and how Demand Sensing, Data Analysis, and Demand Driven Material Requirements Planning (DDMRP) can improve Supply Chain Response and overall Supply Chain Network performance.\",\"shortDescription\":\"ISCEA’s Certified Forecaster and Demand Planners (CFDP) are capable to develop demand plans that adapt to today’s rapidly changing business environment while remaining aligned to the company’s strategic objectives.\",\"productOverview\":\"$3ee\",\"objectId\":\"program-8dd76098-ece2-4cfe-b77c-febf5560c188\",\"productSource\":\"edX\",\"productCategory\":\"Program\",\"activeRunKey\":null,\"childCoursesCount\":4,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"b4072f23-f746-43a1-9819-8e3d8b066f38\",\"productName\":\"Data Science: Visualization\",\"productSlug\":\"learn/data-visualization/harvard-university-data-science-visualization\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/b4072f23-f746-43a1-9819-8e3d8b066f38-76465b3bdbcc.jpg\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Computer Science\"],\"partnerName\":[\"Harvard University\"],\"partnerKeys\":[\"HarvardX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/44022f13-20df-4666-9111-cede3e5dc5b6-2cc39992c67a.png\",\"fullDescription\":\"$3ef\",\"shortDescription\":\"\u003cp\u003eLearn basic data visualization principles and how to apply them using ggplot2.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eData visualization principles\u003c/li\u003e\\n\u003cli\u003eHow to communicate data-drivenfindings\u003c/li\u003e\\n\u003cli\u003eHow to use ggplot2 to create custom plots\u003c/li\u003e\\n\u003cli\u003eThe weaknesses of several widely-used plots and why you should avoid them\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-b4072f23-f746-43a1-9819-8e3d8b066f38\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:HarvardX+PH125.2x+3T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"53e0b3db-0712-495f-9ce6-f12045373a5b\",\"productName\":\"Cybersecurity Basics: Tools and Cyberattacks\",\"productSlug\":\"learn/cybersecurity/ibm-cybersecurity-basics-tools-and-cyberattacks\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/53e0b3db-0712-495f-9ce6-f12045373a5b-c07ca535b451.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Computer Science\"],\"partnerName\":[\"IBM\"],\"partnerKeys\":[\"IBM\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/87b07564-d569-4cfd-bee6-8b0a407acb73-dc33e4b5f353.png\",\"fullDescription\":\"$3f0\",\"shortDescription\":\"\u003cp\u003e\u003cspan lang=\\\"EN\\\"\u003eJumpstart your cybersecurity career with this introductory course.\u003c/span\u003e\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eBegin your journey in a cybersecurity-related profession with the fundamental concepts in this course \u003c/li\u003e\\n\u003cli\u003eHow to apply key cybersecurity concepts, tools, and methodologies to protect digital and physical assets \u003c/li\u003e\\n\u003cli\u003eTo identify various security threats and common cybersecurity best practices \u003c/li\u003e\\n\u003cli\u003eTo understand authentication and identity management concepts for safeguarding your organization\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-53e0b3db-0712-495f-9ce6-f12045373a5b\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:IBM+Cybfun.1.0+2T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"08f162d1-6943-490b-8e0b-ee6fd5ab256e\",\"productName\":\"Calculus Applied!\",\"productSlug\":\"learn/calculus/harvard-university-calculus-applied\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/08f162d1-6943-490b-8e0b-ee6fd5ab256e-e59757cca83d.jpg\",\"productType\":\"Course\",\"attributes\":[\"Math\",\"Biology \u0026 Life Sciences\",\"Physics\"],\"partnerName\":[\"Harvard University\"],\"partnerKeys\":[\"HarvardX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/44022f13-20df-4666-9111-cede3e5dc5b6-2cc39992c67a.png\",\"fullDescription\":\"$3f1\",\"shortDescription\":\"\u003cp\u003eApply tools of single-variable calculus to create and analyze mathematical models used by real practitioners in social, life, and physical sciences.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eAuthentic examples and case studies of how calculus is applied to problems in other fields\u003c/li\u003e\\n\u003cli\u003eHow to analyze mathematical models, including variables, constants, and parameters\u003c/li\u003e\\n\u003cli\u003eAppreciation for the assumptions and complications that go into modeling real world situations with mathematics\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-08f162d1-6943-490b-8e0b-ee6fd5ab256e\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:HarvardX+CalcAPL1x+2T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"54a056bd-bfd5-45a2-ba71-aad017e1d275\",\"productName\":\"Data Science: Probability\",\"productSlug\":\"learn/probability/harvard-university-data-science-probability\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/54a056bd-bfd5-45a2-ba71-aad017e1d275-a2fbb913691a.jpg\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Math\"],\"partnerName\":[\"Harvard University\"],\"partnerKeys\":[\"HarvardX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/44022f13-20df-4666-9111-cede3e5dc5b6-2cc39992c67a.png\",\"fullDescription\":\"$3f2\",\"shortDescription\":\"\u003cp\u003eLearn probability theory -- essential for a data scientist -- using a case study on the financial crisis of 2007-2008.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eImportant concepts in probability theory including random variables and independence\u003c/li\u003e\\n\u003cli\u003eHow to perform a Monte Carlo simulation\u003c/li\u003e\\n\u003cli\u003eThe meaning of expected values and standard errors and how to compute them in R\u003c/li\u003e\\n\u003cli\u003eThe importance of the Central Limit Theorem\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-54a056bd-bfd5-45a2-ba71-aad017e1d275\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:HarvardX+PH125.3x+3T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"c9d14131-a515-462b-82e2-6eaec5bc1c17\",\"productName\":\"Using Python for Research\",\"productSlug\":\"learn/python/harvard-university-using-python-for-research\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/c9d14131-a515-462b-82e2-6eaec5bc1c17-07a3a07fc0a1.jpg\",\"productType\":\"Course\",\"attributes\":[\"Computer Science\",\"Data Analysis \u0026 Statistics\",\"Science\"],\"partnerName\":[\"Harvard University\"],\"partnerKeys\":[\"HarvardX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/44022f13-20df-4666-9111-cede3e5dc5b6-2cc39992c67a.png\",\"fullDescription\":\"\u003cp\u003eThis course bridges the gap between introductory and advanced courses in Python. While there are many excellent introductory Python courses available, most typically do not go deep enough for you to apply your Python skills to research projects. In this course, after first reviewing the basics of Python 3, we learn about tools commonly used in research settings. This version of the course includes a new module on statistical learning.\u003c/p\u003e\\n\u003cp\u003eUsing a combination of a guided introduction and more independent in-depth exploration, you will get to practice your new Python skills with various case studies chosen for their scientific breadth and their coverage of different Python features.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eTake your introductory knowledge of Python programming to the next level and learn how to use Python 3 for your research.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003ePython 3 programming basics (a review)\u003c/li\u003e\\n\u003cli\u003ePython tools (e.g., NumPy and SciPy modules) for research applications\u003c/li\u003e\\n\u003cli\u003eHow to apply Python research tools in practical settings\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-c9d14131-a515-462b-82e2-6eaec5bc1c17\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:HarvardX+PH526x+3T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"a2139fb0-ef8f-4c5c-8ff3-fcddc7f3c827\",\"productName\":\"Causal Diagrams: Draw Your Assumptions Before Your Conclusions\",\"productSlug\":\"learn/data-analysis/harvard-university-causal-diagrams-draw-your-assumptions-before-your-conclusions\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/a2139fb0-ef8f-4c5c-8ff3-fcddc7f3c827-22730e17f471.jpg\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Health \u0026 Safety\",\"Math\"],\"partnerName\":[\"Harvard University\"],\"partnerKeys\":[\"HarvardX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/44022f13-20df-4666-9111-cede3e5dc5b6-2cc39992c67a.png\",\"fullDescription\":\"$3f3\",\"shortDescription\":\"\u003cp\u003eLearn simple graphical rules that allow you to use intuitive pictures to improve study design and data analysis for causal inference.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eHow to translate expert knowledge into a causal diagram\u003c/li\u003e\\n\u003cli\u003eHow to draw causal diagrams under different assumptions\u003c/li\u003e\\n\u003cli\u003eUsing causal diagrams to identify common biases\u003c/li\u003e\\n\u003cli\u003eUsing causal diagrams to guide data analysis\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-a2139fb0-ef8f-4c5c-8ff3-fcddc7f3c827\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:HarvardX+PH559x+2T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"29a1e3b8-3e84-4b14-b60d-0fa97512e420\",\"productName\":\"Analyzing Data with Python\",\"productSlug\":\"learn/python/ibm-analyzing-data-with-python\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/29a1e3b8-3e84-4b14-b60d-0fa97512e420-4100ab6e35b3.png\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Engineering\",\"Computer Science\"],\"partnerName\":[\"IBM\"],\"partnerKeys\":[\"IBM\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/87b07564-d569-4cfd-bee6-8b0a407acb73-dc33e4b5f353.png\",\"fullDescription\":\"\u003cp\u003e\u003cem\u003ePlease Note: Learners who successfully complete this IBM course can earn a skill badge — a detailed, verifiable and digital credential that profiles the knowledge and skills you’ve acquired in this course. Enroll to learn more, complete the course and claim your badge!\u003c/em\u003e\u003c/p\u003e\\n\u003cp\u003e\u003cstrong\u003eLEARN TO ANALYZE DATA WITH PYTHON\u003c/strong\u003e\u003c/p\u003e\\n\u003cp\u003eLearn how to analyze data using Python in this introductory course. You will go from understanding the basics of Python to exploring many different types of data through lecture, hands-on labs, and assignments. You will learn how to prepare data for analysis, perform simple statistical analyses, create meaningful data visualizations, predict future trends from data, and more!\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eIn this course, you will learn how to analyze data in Python using multi-dimensional arrays in numpy, manipulate DataFrames in pandas, use SciPy library of mathematical routines, and perform machine learning using scikit-learn!\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eImport data sets, clean and prepare data for analysis, summarize data, and build data pipelines\u003c/li\u003e\\n\u003cli\u003eUse Pandas, DataFrames, Numpy multidimensional arrays, and SciPy libraries to work with various datasets\u003c/li\u003e\\n\u003cli\u003eLoad, manipulate, analyze, and visualize dataset\u003c/li\u003e\\n\u003cli\u003eBuild machine-learning models and make predictions with scikit-learn\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-29a1e3b8-3e84-4b14-b60d-0fa97512e420\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:IBM+DA0101EN+1T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"d59b1a00-52a2-499a-b4b0-ade02e78c117\",\"productName\":\"Macroeconometric Forecasting\",\"productSlug\":\"learn/macroeconometric-forecasting/the-international-monetary-fund-macroeconometric-forecasting\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/d59b1a00-52a2-499a-b4b0-ade02e78c117-893262ddd011.jpg\",\"productType\":\"Course\",\"attributes\":[\"Economics \u0026 Finance\"],\"partnerName\":[\"The International Monetary Fund\"],\"partnerKeys\":[\"IMFx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/a655d538-b1e8-4f66-a99d-cf4682d2c17b-111a45d036cc.png\",\"fullDescription\":\"\u003cp\u003eIn this macroeconomics course, you will learn to predict macroeconomic variables such as inflation, growth or consumption, and to create statistical models in economics and use them to predict responses to economic policy.\u003c/p\u003e\\n\u003cp\u003eYou will learn from hands-on demonstrations of model-building, forecasting and policy analysis, using data sets from a wide variety of countries. Demonstrations and applications will be conducted using \u003cem\u003eEViews\u003c/em\u003e —a popular software for estimating and simulating forecasting models on Windows. Free, temporary licenses for \u003cem\u003eEViews\u003c/em\u003e will be made available for the duration of the course.\u003c/p\u003e\\n\u003cp\u003e\u003cem\u003eMacroeconometric Forecasting is offered by the IMF with financial support from the Government of Japan.\u003c/em\u003e\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eLearn how to create and assess forecasting models to predict macroeconomic variables such as inflation and economic growth.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eEvaluation of macroeconometric models\u003c/li\u003e\\n\u003cli\u003eForecasting of uncertainty and forecasting for policy analysis\u003c/li\u003e\\n\u003cli\u003eProperties of time series data and model design\u003c/li\u003e\\n\u003cli\u003eDynamic specification and the use of vector auto-regression models (VARs) and error correction models (VECMs)\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-d59b1a00-52a2-499a-b4b0-ade02e78c117\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:IMFx+MFx+1T2025a\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"093bbaf3-0260-48e6-b87d-db4239879b44\",\"productName\":\"Behavioral Neuroscience: Foundations of Compulsive Behaviors\",\"productSlug\":\"learn/neuroscience/university-of-alaska-fairbanks-behavioral-neuroscience-foundations-of-compulsive-behaviors\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/093bbaf3-0260-48e6-b87d-db4239879b44-bcc90e651b98.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Biology \u0026 Life Sciences\",\"Medicine\",\"Health \u0026 Safety\"],\"partnerName\":[\"University of Alaska Fairbanks\"],\"partnerKeys\":[\"AlaskaX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/8d801db7-a298-4c63-9372-59e00f6e4038-b7c8e8d997b1.png\",\"fullDescription\":\"$3f4\",\"shortDescription\":\"\u003cp\u003eEnroll in the first MOOC to teach behavioral neuroscience research using laboratory mice. In this self-paced, free online course, you will learn responsible conduct of research and how to collect scientific data using two different tests that measure compulsions, and interpret and discuss the results in the context of obsessive-compulsive disorder in humans.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003e\\n\u003cp\u003eLearn responsible conduct of research.\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eCollect, analyze, and interpret behavioral data from mouse videos.\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eEstablish a foundation in using behavioral tests in laboratory mice.\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eUnderstand obsessive-compulsive disorder in humans and compulsions in animals.\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eUnderstand the role of animal models in studying human psychiatry.\u003c/p\u003e\\n\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-093bbaf3-0260-48e6-b87d-db4239879b44\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:AlaskaX+NEURO1x+2T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"bdaa645c-d4e6-4e8d-a327-15e145f88dea\",\"productName\":\"Sport Analytics: Data Driven Decision Making\",\"productSlug\":\"learn/sports-business/university-of-alaska-fairbanks-sport-analytics-data-driven-decision-making\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/bdaa645c-d4e6-4e8d-a327-15e145f88dea-281358826b19.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Business \u0026 Management\",\"Data Analysis \u0026 Statistics\",\"Economics \u0026 Finance\"],\"partnerName\":[\"University of Alaska Fairbanks\"],\"partnerKeys\":[\"AlaskaX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/8d801db7-a298-4c63-9372-59e00f6e4038-b7c8e8d997b1.png\",\"fullDescription\":\"$3f5\",\"shortDescription\":\"\u003cp\u003eIn sports, gut instincts are great but data analytics are necessary. Learn the fundamentals of how to use data, facts, and metrics to identify problems, make informed decisions and propose innovative solutions to guide strategic, real world business decisions in the sport industry and for sports teams.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eIdentify concepts in sport analytics.\u003c/li\u003e\\n\u003cli\u003eUnderstand the benefits and objectives of sport analytics.\u003c/li\u003e\\n\u003cli\u003eDiscuss the impact of analytics on sport.\u003c/li\u003e\\n\u003cli\u003eDemonstrate insight on the strategies and concepts of sport analytics.\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-bdaa645c-d4e6-4e8d-a327-15e145f88dea\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:AlaskaX+SPRT3x+2T2023\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"a7a4e003-00bb-4dfb-b409-6c4e64cfcf93\",\"productName\":\"Consumer Price Index\",\"productSlug\":\"learn/economics/the-international-monetary-fund-consumer-price-index\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/a7a4e003-00bb-4dfb-b409-6c4e64cfcf93-0ecef4eded9c.png\",\"productType\":\"Course\",\"attributes\":[\"Economics \u0026 Finance\",\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"The International Monetary Fund\"],\"partnerKeys\":[\"IMFx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/a655d538-b1e8-4f66-a99d-cf4682d2c17b-111a45d036cc.png\",\"fullDescription\":\"\u003cp\u003eThis course will help you learn the basics of compiling timely, high-quality CPIs based on the 2020 CPI Manual. The consumer price index has become a key statistic for purposes of economic policymaking, especially monetary policy. The CPI is often specified in legislation and in a wide variety of contracts as the appropriate measure for adjusting payments (such as wages, rents, interest, social security, other benefits, and pensions) for the effects of inflation. Changes in the CPI have substantial and wide-ranging financial implications for governments, businesses, and households.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eConsumer price index (CPI) data are essential inputs for sound policies. Policymakers require reliable measures of price change to make sound policy decisions. In addition, wages, salaries, government payments, pensions, rent, and other payments are indexed to the CPI and require accurate estimates of inflation. Learn the key concepts and compilation methods required to compile sound data using the best available methods.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003e\\n\u003cp\u003eIdentify key uses of CPI data and explain key consumer price index concepts and definitions and how these are applied in practice.\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eIdentify and explain differences between the different index calculation formulas.\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eDefine and explain the different levels of sampling in a CPI and how these sampling methods are applied in practice.\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eIdentify and explain the different methods for the treatment of missing prices and describe how these are applied in practice.\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eIntroduce new CPI weights and link old and new indexes to create a continuous time series of data.\u003c/p\u003e\\n\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-a7a4e003-00bb-4dfb-b409-6c4e64cfcf93\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:IMFx+CPIx+2T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"9ffab349-7b28-4d0d-abf7-5b4bc6a4ac43\",\"productName\":\"Forecasting Techniques for Slow and Rapidly Changing Demand\",\"productSlug\":\"learn/business-administration/international-supply-chain-education-alliance-forecasting-techniques-for-slow-and-rapidly-changing-demand\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/9ffab349-7b28-4d0d-abf7-5b4bc6a4ac43-d3509c49a9c6.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Business \u0026 Management\",\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"International Supply Chain Education Alliance\"],\"partnerKeys\":[\"ISCEA\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/e1f70279-dab1-436b-b87d-2aa4c1c3c3b8-2a7a6512dd73.png\",\"fullDescription\":\"$3f6\",\"shortDescription\":\"\u003cp\u003eMaster quantitative, judgmental and causal models used to forecast seasonal, intermittent, and new product future demand. Choose the right forecasting method for all kinds of demand patterns and sales data. Learn how to deal with randomness and low forecastability; missing data, outliers, and overfitting. Separate forecasting myths from reality and mitigate the risk of inaccurate forecasts.\u003c/p\u003e\\n\u003cp\u003ePart of the ISCEA CFDP - Certified Forecaster and Demand Planner - Internationally Recognized Certificate.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eTo develop quantitative, judgmental, and causal forecasting models for seasonal, intermittent, and new product demand.\u003c/li\u003e\\n\u003cli\u003eHow to choose the right forecasting method for each data pattern.\u003c/li\u003e\\n\u003cli\u003eHow to improve forecast performance with Machine Learning and Lean Six Sigma principles.\u003c/li\u003e\\n\u003cli\u003eTo assess forecast performance based on forecast precision, forecast accuracy and forecastability\u003c/li\u003e\\n\u003cli\u003eHow to mitigate the risk of inaccurate forecasts and deal with randomness, low forecastability, missing data, outliers, disruptive events, and overfitting.\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-9ffab349-7b28-4d0d-abf7-5b4bc6a4ac43\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:ISCEA+CFDP02+3T2022\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"bad2054d-e418-4a7d-9ad1-e06f1902ff4a\",\"productName\":\"Further Mathematics Year 13 course 2: Applications of Differential Equations, Momentum, Work, Energy \u0026 Power, The Poisson Distribution, The Central Limit Theorem, Chi Squared Tests, Type I and II Errors\",\"productSlug\":\"learn/math/imperial-college-london-further-mathematics-year-13-course-2-applications-of-differential-equations-momentum-work-energy-power-the-poisson-distribution-the-central-limit-theorem-chi-squared-tests-type-i-and-ii-errors\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/bad2054d-e418-4a7d-9ad1-e06f1902ff4a-0b07e44e0fb9.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Math\"],\"partnerName\":[\"Imperial College London\"],\"partnerKeys\":[\"ImperialX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/b7b5c4b8-9908-4caa-8e02-453a2a960b0b-9cda9ffb8e95.png\",\"fullDescription\":\"$3f7\",\"shortDescription\":\"\u003cp\u003eDevelop your thinking skills, fluency and confidence in the applied mathematics content of A-level further maths and prepare for undergraduate STEM degrees.\u003c/p\u003e\",\"productOverview\":\"$3f8\",\"objectId\":\"course-bad2054d-e418-4a7d-9ad1-e06f1902ff4a\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:ImperialX+alm008+1T2021\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"07219ce8-2a4c-46e4-8aaf-d5947b45986f\",\"productName\":\"MathTrackX: Probability\",\"productSlug\":\"learn/probability/university-of-adelaide-mathtrackx-probability\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/07219ce8-2a4c-46e4-8aaf-d5947b45986f-bfabe8589142.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Math\"],\"partnerName\":[\"University of Adelaide\"],\"partnerKeys\":[\"AdelaideX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/f5d1ff66-002f-43fa-9d76-1b191d4a3272-0e2420850666.png\",\"fullDescription\":\"\u003cp\u003eThis course is part five of the MathTrackX XSeries Program which has been designed to provide you with a solid foundation in mathematical fundamentals and how they can be applied in the real world.\u003c/p\u003e\\n\u003cp\u003eThis course introduces probability and how it manifests in the world around us. Beginning with discrete random variables, together with their uses in modelling random processes involving chance and variation, you will start to uncover the framework for statistical inference.\u003c/p\u003e\\n\u003cp\u003eGuided by experts from the School of Mathematics and the Maths Learning Centre at the University of Adelaide, this course will introduce discrete and continuous random variables and their applications in a variety of contexts.\u003c/p\u003e\\n\u003cp\u003eJoin us as we provide opportunities to develop your skills and confidence in applying mathematics to solve real world problems.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eUnderstand probability and how it manifests in the world around us.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003e\\n\u003cp\u003eHow to understand and interpret probabilities depending on the context\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eThe difference between a discrete random variable and a continuous random variable\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eHow to calculate probabilities for a range of everyday scenarios\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eHow to calculate the expected value, variance and standard deviation of random variables\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eThe effects of linear changes of scale and origin on the mean and the standard deviation\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eHow to calculate quantiles of normal distribution.\u003c/p\u003e\\n\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-07219ce8-2a4c-46e4-8aaf-d5947b45986f\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:AdelaideX+ProbTraX+1T2020\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"ad4c1d22-e364-4aca-bc0b-2cb42a85f85d\",\"productName\":\"RA-GAP VAT Gap Estimation Model\",\"productSlug\":\"learn/economics/the-international-monetary-fund-ra-gap-vat-gap-estimation-model\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/ad4c1d22-e364-4aca-bc0b-2cb42a85f85d-478ddd911c7a.jpg\",\"productType\":\"Course\",\"attributes\":[\"Economics \u0026 Finance\"],\"partnerName\":[\"The International Monetary Fund\"],\"partnerKeys\":[\"IMFx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/a655d538-b1e8-4f66-a99d-cf4682d2c17b-111a45d036cc.png\",\"fullDescription\":\"$3f9\",\"shortDescription\":\"\u003cp\u003eLearn how to use the VAT gap estimation model used by the International Monetary Fund\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003eAt the conclusion of this course, you will be able to do the following: \u003c/p\u003e\\n\u003cul\u003e\\n\u003cli\u003eExplainwhat the tax gap is, and its components.\u003c/li\u003e\\n\u003cli\u003eExplainthe different components of the IMF RA-GAP VAT gap model.\u003c/li\u003e\\n\u003cli\u003ePreparethe worksheets and data inputs for the model.\u003c/li\u003e\\n\u003cli\u003eInterpretthe results from the model.\u003c/li\u003e\\n\u003cli\u003eDiagnosedata and modelling issues that might be affecting the model results.\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-ad4c1d22-e364-4aca-bc0b-2cb42a85f85d\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:IMFx+VGAPx+2T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"840a303a-0c7f-424b-abff-d6c76dbfcb04\",\"productName\":\"Identifying Community Needs for Public Library Management\",\"productSlug\":\"learn/humanities/the-university-of-michigan-identifying-community-needs-for-public-library-management\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/840a303a-0c7f-424b-abff-d6c76dbfcb04-1ab70e2e22b6.jpg\",\"productType\":\"Course\",\"attributes\":[\"Humanities\",\"Social Sciences\",\"Art \u0026 Culture\"],\"partnerName\":[\"The University of Michigan\"],\"partnerKeys\":[\"MichiganX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/ebf3ff9d-a40b-4cbe-84a1-ef7fe4f35beb-61ffe82bb9c2.png\",\"fullDescription\":\"\u003cp\u003ePublic libraries are becoming dynamic hubs for learning, civic engagement, and community.\u003c/p\u003e\\n\u003cp\u003eThis course will discuss strategies for gathering statistical and descriptive data about public library communities. Learners will identify local partners in education, social services, government agencies, and more.\u003c/p\u003e\\n\u003cp\u003eWhile conducting real-world investigations, learners will gain deeper insight into the wants and needs of community organizations. This will empower learners to make better management decisions to address those needs, even in libraries with limited budgets.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eLearn how to conduct research, surveys, and interviews as well as how to analyze data to better assess the local needs and wants of a public library community.\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003e● How to find demographic and persona data from online sources;\u003c/p\u003e\\n\u003cp\u003e● To conduct environmental scans;\u003c/p\u003e\\n\u003cp\u003e● How to lead focus groups and interviews;\u003c/p\u003e\\n\u003cp\u003e● How to analyze data to find patterns, overlaps, and gaps in available community services;\u003c/p\u003e\\n\u003cp\u003e● To synthesize your findings in a report.\u003c/p\u003e\",\"objectId\":\"course-840a303a-0c7f-424b-abff-d6c76dbfcb04\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:MichiganX+PUBLIB601x+2T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"3a249705-8928-425b-9b0a-776382aab5d4\",\"productName\":\"Introduction to AI/ML Toolkits with Kubeflow\",\"productSlug\":\"learn/artificial-intelligence/the-linux-foundation-introduction-to-ai-ml-toolkits-with-kubeflow\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/3a249705-8928-425b-9b0a-776382aab5d4-8cfc30db20de.png\",\"productType\":\"Course\",\"attributes\":[\"Computer Science\"],\"partnerName\":[\"The Linux Foundation\"],\"partnerKeys\":[\"LinuxFoundationX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/4d254841-5cc9-4174-a28d-5b4f823c0122-51c34231df61.png\",\"fullDescription\":\"$3fa\",\"shortDescription\":\"\u003cp\u003eLearn about Kubeflow, the open source, CNCF-backed, Kubernetes-native, scalable, and portable machine learning toolkit.\u003c/p\u003e\",\"productOverview\":\"$3fb\",\"objectId\":\"course-3a249705-8928-425b-9b0a-776382aab5d4\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:LinuxFoundationX+LFS147x+1T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"ac611c01-9132-41fe-aa21-3b61a6ace180\",\"productName\":\"Analisi dei dati\",\"productSlug\":\"learn/data-analysis/universita-degli-studi-di-napoli-federico-ii-analisi-dei-dati\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/ac611c01-9132-41fe-aa21-3b61a6ace180-0c88068f1f34.jpg\",\"productType\":\"Course\",\"attributes\":[\"Computer Science\"],\"partnerName\":[\"Università degli Studi di Napoli Federico II\"],\"partnerKeys\":[\"FedericaX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/0b3b2258-7f32-4fb1-807a-87c79543347a-6c8ff3bf8f98.png\",\"fullDescription\":\"$3fc\",\"shortDescription\":\"\u003cp\u003eAcquisisci competenze essenziali nell'era digitale al fine di elaborare e analizzare i dati, per prendere decisioni aziendali.\u003c/p\u003e\\n\u003cp\u003eAcquire the essential skills of the digital era: learn to elaborate and analyze data and make your own managerial decisions.\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003e• Analizzare ed elaborare i dati e le loro caratteristiche\u003cbr /\u003e\\n• Acquisire capacità di risoluzione economico - gestionale \u003cbr /\u003e\\n• Principi di base per lavorare con i Big Data.\u003c/p\u003e\\n\u003cp\u003eIn this course you will learn how to:\u003cbr /\u003e\\n• analyze and process data and their characteristics;\u003cbr /\u003e\\n• develop your skills to solve economic and managerial problems;\u003cbr /\u003e\\n• master the basic concepts of Big Data.\u003c/p\u003e\",\"objectId\":\"course-ac611c01-9132-41fe-aa21-3b61a6ace180\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:FedericaX+58+3T2020a\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"ac95f69e-61ec-4859-afef-a866ab043a32\",\"productName\":\"Statistiques de la dette du secteur public\",\"productSlug\":\"learn/statistics/the-international-monetary-fund-statistiques-de-la-dette-du-secteur-public\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/ac95f69e-61ec-4859-afef-a866ab043a32-855178027db5.png\",\"productType\":\"Course\",\"attributes\":[\"Economics \u0026 Finance\"],\"partnerName\":[\"The International Monetary Fund\"],\"partnerKeys\":[\"IMFx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/a655d538-b1e8-4f66-a99d-cf4682d2c17b-111a45d036cc.png\",\"fullDescription\":\"$3fd\",\"shortDescription\":\"\u003cp\u003e\u003cspan lang=\\\"FR\\\"\u003eLe cours porte sur la couverture et les règles comptables pour les statistiques de la dette du secteur public, la valorisation, la classification, les aspects méthodologiques importants et sur les sources et les méthodes utilisées pour établir ces statistiques.\u003c/span\u003e\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003e\u003cspan lang=\\\"FR\\\"\u003ede définir la dette brute et la dette nette et d’expliquer les concepts et les principes comptables de base qui s’appliquent à l’établissement des statistiques de la dette du secteur public ;\u003c/span\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cspan lang=\\\"FR\\\"\u003ede classer l’encours de la dette \u003c/span\u003e\u003cspan lang=\\\"FR\\\"\u003edu secteur public\u003c/span\u003e\u003cspan lang=\\\"FR\\\"\u003e selon les classifications du \u003cem\u003eGuide\u003c/em\u003e sur les statistiques de la dette du secteur public;\u003c/span\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cspan lang=\\\"FR\\\"\u003ed’appliquer les principes généraux pour classer une entité dans le secteur public et les sous-secteurs pertinents du secteur public (administrations publiques et sociétés publiques, par exemple\u003c/span\u003e\u003cspan lang=\\\"FR\\\"\u003e) \u003c/span\u003e\u003cspan lang=\\\"FR\\\"\u003e;\u003c/span\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cspan lang=\\\"FR\\\"\u003ede communiquer au FMI et à la Banque mondiale des statistiques trimestrielles de la dette du secteur public couvrant au minimum l’administration centrale.\u003c/span\u003e\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-ac95f69e-61ec-4859-afef-a866ab043a32\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:IMFx+PSDSx_Fr+2T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"67b13ef3-6ce3-4eed-a4ce-1a0b4d5a3f49\",\"productName\":\"Strategie di produzione e sistemi di logistica\",\"productSlug\":\"learn/logistics/universita-degli-studi-di-napoli-federico-ii-strategie-di-produzione-e-sistemi-di-logistica\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/67b13ef3-6ce3-4eed-a4ce-1a0b4d5a3f49-b4bb7262ee78.jpg\",\"productType\":\"Course\",\"attributes\":[\"Business \u0026 Management\"],\"partnerName\":[\"Università degli Studi di Napoli Federico II\"],\"partnerKeys\":[\"FedericaX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/0b3b2258-7f32-4fb1-807a-87c79543347a-6c8ff3bf8f98.png\",\"fullDescription\":\"$3fe\",\"shortDescription\":\"\u003cp\u003eUna risposta alle necessità degli studenti che vogliono rafforzare la conoscenza e la comprensione degli aspetti manageriali e tecnici collegati ai processi produttivi e logistici.\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003eOltre al management aziendale, si approfondiranno specifiche questioni: \u003cbr /\u003e\\n• i sistemi di produzione;\u003cbr /\u003e\\n• le tecniche di programmazione della produzione in base al fabbisogno;\u003cbr /\u003e\\n• la gestione della logistica;\u003cbr /\u003e\\n• le scelte di outsourcing. \u003c/p\u003e\\n\u003cp\u003eIn addition to industry management, the following topics will be explored: \u003c/p\u003e\\n\u003cul\u003e\\n\u003cli\u003eproduction systems;\u003c/li\u003e\\n\u003cli\u003etechniques for scheduling production according to need;\u003c/li\u003e\\n\u003cli\u003elogistics management;\u003c/li\u003e\\n\u003cli\u003eoutsourcing choices\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-67b13ef3-6ce3-4eed-a4ce-1a0b4d5a3f49\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:FedericaX+Fed.X-34+3T2020\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"66de2752-4e9a-4d31-8583-b708b8915c4d\",\"productName\":\"Come fare ricerca nelle scienze sociali\",\"productSlug\":\"learn/social-science/universita-degli-studi-di-napoli-federico-ii-come-fare-ricerca-nelle-scienze-sociali\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/66de2752-4e9a-4d31-8583-b708b8915c4d-34d569c6f7d4.jpg\",\"productType\":\"Course\",\"attributes\":[\"Social Sciences\",\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"Università degli Studi di Napoli Federico II\"],\"partnerKeys\":[\"FedericaX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/0b3b2258-7f32-4fb1-807a-87c79543347a-6c8ff3bf8f98.png\",\"fullDescription\":\"$3ff\",\"shortDescription\":\"\u003cp\u003eLe scienze sociali consentono di studiare persone, gruppi sociali e istituzioni nel complesso delle loro interazioni, principalmente attraverso percorsi di ricerca empirica.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eConoscenza e capacità di comprensione\u003c/li\u003e\\n\u003cli\u003eConoscenza e capacità di comprensione applicate\u003c/li\u003e\\n\u003cli\u003eAutonomia di giudizio\u003c/li\u003e\\n\u003cli\u003eAbilità comunicative\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eCapacità di apprendimento\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eKnowledge and comprehension skills\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eApplied knowledge and comprehension skills\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eCritical analysis\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eCommunication skills\u003c/p\u003e\\n\u003c/li\u003e\\n\u003cli\u003e\\n\u003cp\u003eStudy skills\u003c/p\u003e\\n\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-66de2752-4e9a-4d31-8583-b708b8915c4d\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:FedericaX+45+3T2020a\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"1cac89b9-58b6-4f8b-8cee-0a2f7feded60\",\"productName\":\"Introduction to Analytics Modeling\",\"productSlug\":\"learn/data-analysis/the-georgia-institute-of-technology-introduction-to-analytics-modeling\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/1cac89b9-58b6-4f8b-8cee-0a2f7feded60-9ed0da58fa14.jpg\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Engineering\"],\"partnerName\":[\"The Georgia Institute of Technology\"],\"partnerKeys\":[\"GTx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/8537d31f-01b4-40fd-b652-e17b38eefe41-4c6537c07d54.png\",\"fullDescription\":\"$400\",\"shortDescription\":\"\u003cp\u003eLearn essential analytics models and methods and how to appropriately apply them, using tools such as R, to retrieve desired insights.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eFundamental analytics models and methods\u003c/li\u003e\\n\u003cli\u003eHow to use analytics software, including R, to implement various types of models\u003c/li\u003e\\n\u003cli\u003eUnderstanding of when to apply specific analytics models\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-1cac89b9-58b6-4f8b-8cee-0a2f7feded60\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:GTx+ISYE6501x+2T2025\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"1580c6c4-5a81-4a79-bf35-bb4dddfb891f\",\"productName\":\"Introduction to Psychology\",\"productSlug\":\"learn/python/st-margarets-episcopal-school-introduction-to-psychology\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/1580c6c4-5a81-4a79-bf35-bb4dddfb891f.jpg\",\"productType\":\"Course\",\"attributes\":[\"Social Sciences\",\"Biology \u0026 Life Sciences\"],\"partnerName\":[\"St. Margaret’s Episcopal School\"],\"partnerKeys\":[\"St. Margaret’s Episcopal School\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/6956ea88-5592-4056-83f7-2e8aaf9a372e-81b5db185cf2.png\",\"fullDescription\":\"$401\",\"shortDescription\":\"There is no more salient topic in the global information age than the human condition, including learning, behavior and dysfunction.\",\"productOverview\":\"\u003cul\u003e\u003cli\u003eAn understanding of what psychology is and its history\u003c/li\u003e\\n\\t\u003cli\u003eHow brain structures function and how neurotransmitters influence behavior\u003c/li\u003e\\n\\t\u003cli\u003eConcepts of how we learn as well as components of emotion\u003c/li\u003e\\n\\t\u003cli\u003eHow a child's mind and personality develops\u003c/li\u003e\\n\\t\u003cli\u003eDiscover classifications of abnormal behaviors\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-1580c6c4-5a81-4a79-bf35-bb4dddfb891f\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:SMES+PSYCH101x+2T2015\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"3cd9489f-d220-4bf9-99e7-e0c85649f919\",\"productName\":\"Semiconductor Fundamentals\",\"productSlug\":\"learn/electronics/purdue-university-semiconductor-fundamentals\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/3cd9489f-d220-4bf9-99e7-e0c85649f919-c6ab3b7278e5.jpg\",\"productType\":\"Course\",\"attributes\":[\"Electronics\",\"Physics\",\"Science\"],\"partnerName\":[\"Purdue University\"],\"partnerKeys\":[\"PurdueX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/e5dfaf30-3828-4826-944e-03ea3dcf5b13-ab295e7bad86.png\",\"fullDescription\":\"$402\",\"shortDescription\":\"\u003cp\u003eFrom smartphones to satellites, semiconductors are everywhere. Tying together physics, chemistry, and electrical engineering, this easy-to-follow introduction provides the background needed to understand devices such as transistors and solar cells.\u003c/p\u003e\",\"productOverview\":\"$403\",\"objectId\":\"course-3cd9489f-d220-4bf9-99e7-e0c85649f919\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:PurdueX+69502x+1T2023\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"ae11bfc9-acf8-48f8-a7a8-359692aa2e84\",\"productName\":\"Signals and Systems, Part 1\",\"productSlug\":\"learn/engineering/iitbombay-signals-and-systems-part-1\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/ae11bfc9-acf8-48f8-a7a8-359692aa2e84-5873591977b5.jpg\",\"productType\":\"Course\",\"attributes\":[\"Engineering\",\"Electronics\"],\"partnerName\":[\"IITBombay\"],\"partnerKeys\":[\"IITBombayX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/410f25d0-d67b-4a90-b7e3-8a856eece7e1-5a926942dd45.png\",\"fullDescription\":\"$404\",\"shortDescription\":\"This course provides the basic toolkit for any signal processing application - the abstraction of signals and systems, from the point of view of analysis and characterization.\",\"productOverview\":\"\u003cul\u003e\u003cli\u003eHow to unite abstractions for several kinds of systems, to draw a common system description\u003c/li\u003e\\n\\t\u003cli\u003eHow to identify properties that this system has or does not have\u003c/li\u003e\\n\\t\u003cli\u003eHow to deal with an important class of systems namely, linear shift invariant systems\u003c/li\u003e\\n\\t\u003cli\u003eHow to represent and analyze signals and systems in the Fourier domain\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-ae11bfc9-acf8-48f8-a7a8-359692aa2e84\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:IITBombayX+EE210.1x+1T2018a\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"71bf3d69-a60b-4a0f-8cf6-0fac393821a2\",\"productName\":\"Machine Learning\",\"productSlug\":\"learn/machine-learning/the-georgia-institute-of-technology-machine-learning\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/71bf3d69-a60b-4a0f-8cf6-0fac393821a2-686cb5c53073.jpg\",\"productType\":\"Course\",\"attributes\":[\"Computer Science\",\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"The Georgia Institute of Technology\"],\"partnerKeys\":[\"GTx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/8537d31f-01b4-40fd-b652-e17b38eefe41-4c6537c07d54.png\",\"fullDescription\":\"$405\",\"shortDescription\":\"Learn about machine learning, the area of artificial intelligence (AI) that is concerned with computational artifacts that modify and improve performance through experience.\",\"productOverview\":\"\u003cp\u003eThere are four primary objectives for the course:\u003c/p\u003e\\r\\n\u003cul\u003e\\r\\n\u003cli\u003eTo provide a broad survey of approaches and techniques in\u0026nbsp;machine learning;\u003c/li\u003e\\r\\n\u003cli\u003eTo develop a deeper understanding of several major topics in machine learning;\u003c/li\u003e\\r\\n\u003cli\u003eTo develop the design and programming skills that will help you to build intelligent, adaptive artifacts;\u003c/li\u003e\\r\\n\u003cli\u003eTo develop the basic skills necessary to pursue research in machine learning.\u003c/li\u003e\\r\\n\u003c/ul\u003e\",\"objectId\":\"course-71bf3d69-a60b-4a0f-8cf6-0fac393821a2\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:GTx+CS7641+2T2018\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"d5b6a3ec-4cb6-4876-8db8-a8e88b63a1a7\",\"productName\":\"Data Analysis Essentials\",\"productSlug\":\"learn/data-analysis/imperial-college-business-school-data-analysis-essentials\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/d5b6a3ec-4cb6-4876-8db8-a8e88b63a1a7-5fd36dfd5297.jpg\",\"productType\":\"Course\",\"attributes\":[\"Business \u0026 Management\",\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"Imperial College Business School\",\"Imperial College London\"],\"partnerKeys\":[\"ImperialBusinessX\",\"ImperialX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/433787ea-55f0-4863-be59-39c0dd90ac40-dff793a24b49.png\",\"fullDescription\":\"$406\",\"shortDescription\":\"\u003cp\u003eDiscover and acquire the quantitative data analysis skills that you will typically need to succeed on an MBA program. This course will cover the fundamentals of collecting, presenting, describing and making inferences from sets of data.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003ePresenting and summarising your data\u003c/li\u003e\\n\u003cli\u003eDecision making under uncertainty\u003c/li\u003e\\n\u003cli\u003eData-based decision making\u003c/li\u003e\\n\u003cli\u003eModelling for decision making\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-d5b6a3ec-4cb6-4876-8db8-a8e88b63a1a7\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:ImperialBusinessX+ICBS004+2T2022\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"ff1df27b-3c97-42ee-a9b3-e031ffd41a4f\",\"productName\":\"The Analytics Edge\",\"productSlug\":\"learn/analytics/massachusetts-institute-of-technology-the-analytics-edge\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/ff1df27b-3c97-42ee-a9b3-e031ffd41a4f-958fa38a4a59.jpg\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"Massachusetts Institute of Technology\"],\"partnerKeys\":[\"MITx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/2a73d2ce-c34a-4e08-8223-83bca9d2f01d-d4f180052205.png\",\"fullDescription\":\"$407\",\"shortDescription\":\"\u003cp\u003eThrough inspiring examples and stories, discover the power of data and use analytics to provide an edge to your career and your life.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eAn applied understanding of many different analytics methods, including linear regression, logistic regression, CART, clustering, and data visualization\u003c/li\u003e\\n\u003cli\u003eHow to implement all of these methods in R\u003c/li\u003e\\n\u003cli\u003eAn applied understanding of mathematical optimization and how to solve optimization models in spreadsheet software\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-ff1df27b-3c97-42ee-a9b3-e031ffd41a4f\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:MITx+15.071x+2T2020\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"1e13fdc5-8cb9-4559-ab59-222ec1855d34\",\"productName\":\"Manufacturing Process Control II\",\"productSlug\":\"learn/manufacturing/massachusetts-institute-of-technology-manufacturing-process-control-ii\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/1e13fdc5-8cb9-4559-ab59-222ec1855d34-64c096e04a18.jpg\",\"productType\":\"Course\",\"attributes\":[\"Engineering\",\"Math\"],\"partnerName\":[\"Massachusetts Institute of Technology\"],\"partnerKeys\":[\"MITx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/2a73d2ce-c34a-4e08-8223-83bca9d2f01d-d4f180052205.png\",\"fullDescription\":\"$408\",\"shortDescription\":\"\u003cp\u003eLearn how to control process variation, including methods to design experiments that capture process behavior and understand means to control variability.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eMultivariate regression for Input-output causality\u003c/li\u003e\\n\u003cli\u003eDesign of experiments (DOE) methods to improve processes\u003c/li\u003e\\n\u003cli\u003eResponse surface methods and process optimization based on DOE methods\u003c/li\u003e\\n\u003cli\u003eDOE-based methods for achieving processes that are robust to external variations\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-1e13fdc5-8cb9-4559-ab59-222ec1855d34\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:MITx+2.830.2x+3T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"ff4f8b7a-d7f2-452f-bc85-ce65ff097908\",\"productName\":\"Chemical Thermodynamics II: Equilibrium and Kinetics\",\"productSlug\":\"learn/chemistry/massachusetts-institute-of-technology-chemical-thermodynamics-ii-equilibrium-and-kinetics\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/ff4f8b7a-d7f2-452f-bc85-ce65ff097908-fc94d2321eb1.png\",\"productType\":\"Course\",\"attributes\":[\"Chemistry\"],\"partnerName\":[\"Massachusetts Institute of Technology\"],\"partnerKeys\":[\"MITx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/2a73d2ce-c34a-4e08-8223-83bca9d2f01d-d4f180052205.png\",\"fullDescription\":\"$409\",\"shortDescription\":\"\u003cp\u003eDiscover the flow of energy at a fundamental physical level, and learn how to approach multi-component systems as they evolve with time.\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003e• Chemical Potential and Chemical Equilibria\u003c/p\u003e\\n\u003cp\u003e• One Component Phase Equilibria and Phase Diagrams\u003c/p\u003e\\n\u003cp\u003e• Ideal and Non-Ideal Solutions\u003c/p\u003e\\n\u003cp\u003e• Kinetic Description of Chemical Reactions\u003c/p\u003e\\n\u003cp\u003e• Chain Reactions and Oscillating Chemical Reactions\u003c/p\u003e\",\"objectId\":\"course-ff4f8b7a-d7f2-452f-bc85-ce65ff097908\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:MITx+5.602x+3T2023\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"a8222a05-65c8-4c4b-8d4c-595ea36d73c2\",\"productName\":\"Queuing Theory: from Markov Chains to Multi-Server Systems\",\"productSlug\":\"learn/math/imt-queuing-theory-from-markov-chains-to-multi-server-systems\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/a8222a05-65c8-4c4b-8d4c-595ea36d73c2-df57bfff4f3e.jpg\",\"productType\":\"Course\",\"attributes\":[\"Math\",\"Computer Science\",\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"IMT\"],\"partnerKeys\":[\"IMTx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/55a6dc9c-5bc9-45e1-be34-a94bcc87bb15-c3509d119e45.png\",\"fullDescription\":\"$40a\",\"shortDescription\":\"\u003cp\u003eLearn key mathematical tools necessary to anticipate the performance levels of queueing systems and understand the behavior of other systems that evolve randomly over time.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eCharacterize a queue, based on probabilistic assumptions about arrivals and service times, number of servers, buffer size and service discipline\u003c/li\u003e\\n\u003cli\u003eDescribe the basics of discrete time and continuous time Markov chains\u003c/li\u003e\\n\u003cli\u003eModel simple queuing systems, e.g. M/M/1 or M/M/C/C queues, as continuous time Markov chains\u003c/li\u003e\\n\u003cli\u003eCompute key performance indicators, such as an average delay, a resource utilization rate, or a loss probability, in simple single-server or multi-server system\u003c/li\u003e\\n\u003cli\u003eDesign queuing simulations with the Python language to analyze how systems with limited resources distribute them between customers\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-a8222a05-65c8-4c4b-8d4c-595ea36d73c2\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:IMTx+CS101+2T2021\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"ca2f9f5a-7772-47f3-9c42-adc43de898cd\",\"productName\":\"Solid State Devices 1\",\"productSlug\":\"learn/electronics/purdue-university-solid-state-devices-1\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/ca2f9f5a-7772-47f3-9c42-adc43de898cd-c946c190b927.png\",\"productType\":\"Course\",\"attributes\":[\"Electronics\",\"Engineering\",\"Physics\"],\"partnerName\":[\"Purdue University\"],\"partnerKeys\":[\"PurdueX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/e5dfaf30-3828-4826-944e-03ea3dcf5b13-ab295e7bad86.png\",\"fullDescription\":\"$40b\",\"shortDescription\":\"\u003cp\u003eSemiconductor are everywhere in human activities, from your credit card to space exploration. This graduate-level introduction brings aspects of physics, chemistry, and engineering together to understand, analyze, and design transistors and solar cells.\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003eWith the completion of this course, students will be able to:\u003c/p\u003e\\n\u003cul\u003e\\n\u003cli\u003eExplain the working principles of these devices.\u003c/li\u003e\\n\u003cli\u003eExplain the physical processes in these devices.\u003c/li\u003e\\n\u003cli\u003eRelate the device performance to materials and design criteria.\u003c/li\u003e\\n\u003cli\u003eSpeak the \\\"language\\\" of device engineers.\u003c/li\u003e\\n\u003cli\u003eBe ready to engage in device research\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-ca2f9f5a-7772-47f3-9c42-adc43de898cd\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:PurdueX+ECE606+1T2023\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"bbe2b5ea-be78-41c1-8229-79f84a970b0d\",\"productName\":\"Signals and Systems, Part 2\",\"productSlug\":\"learn/engineering/iitbombay-signals-and-systems-part-2\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/bbe2b5ea-be78-41c1-8229-79f84a970b0d-287dfbe2d736.jpg\",\"productType\":\"Course\",\"attributes\":[\"Engineering\",\"Electronics\"],\"partnerName\":[\"IITBombay\"],\"partnerKeys\":[\"IITBombayX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/410f25d0-d67b-4a90-b7e3-8a856eece7e1-5a926942dd45.png\",\"fullDescription\":\"$40c\",\"shortDescription\":\"This course provides the basic toolkit for any signal processing application - the abstraction of signals and systems, from the point of view of analysis and characterization.\",\"productOverview\":\"\u003cul\u003e\u003cli\u003eHow to analyze the effect of sampling\u003c/li\u003e\\n\\t\u003cli\u003eHow to reconstruct signals from samples under certain conditions\u003c/li\u003e\\n\\t\u003cli\u003eHow to bring continuous and discrete independent variable systems together\u003c/li\u003e\\n\\t\u003cli\u003eHow to generalize the Fourier Transform for continuous and discrete\u003c/li\u003e\\n\\t\u003cli\u003eindependent variable systems, using the Laplace and z- transforms\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-bbe2b5ea-be78-41c1-8229-79f84a970b0d\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:IITBombayX+EE210.2x+1T2018\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"afa3c60f-685b-46f1-bcef-1e5879df2d75\",\"productName\":\"Design of Urban Water Management Structures\",\"productSlug\":\"learn/engineering/purdue-university-design-of-urban-water-management-structures\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/afa3c60f-685b-46f1-bcef-1e5879df2d75-5555190dcd95.png\",\"productType\":\"Course\",\"attributes\":[\"Engineering\",\"Science\"],\"partnerName\":[\"Purdue University\"],\"partnerKeys\":[\"PurdueX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/e5dfaf30-3828-4826-944e-03ea3dcf5b13-ab295e7bad86.png\",\"fullDescription\":\"\u003cp\u003eDetention storage structures and storm sewer systems are used to store and transport rainfall-runoff through open ditched and underground pipes.\u003c/p\u003e\\n\u003cp\u003eIn this course, we will:\u003c/p\u003e\\n\u003cul\u003e\\n\u003cli\u003eLearn about spatial distribution of rainfall, perform statistical analysis, fit different distributions to the data, and calculate design rainfall.\u003c/li\u003e\\n\u003cli\u003eLearn to estimate runoff using the rational method and time of concentration, and use the SCS-CN method to determine the time distribution of runoff. Unit hydrograph theory and computation of storm hydrographs will be covered.\u003c/li\u003e\\n\u003cli\u003eUse regulations to design storm sewer systems using EPA-SWMM.\u003c/li\u003e\\n\u003cli\u003eCompute storage volumes for detention storage structures.\u003c/li\u003e\\n\u003c/ul\u003e\",\"shortDescription\":\"\u003cp\u003eCompute design rainfall, calculate runoff and stormwater flows; design storm sewer systems and detention storage structures.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eDetermine design rainfall and calculate runoff using rational method, SCS curve number method and unit hydrograph theory.\u003c/li\u003e\\n\u003cli\u003eCalculate stormwater flows.\u003c/li\u003e\\n\u003cli\u003eAnalyze and design storm sewer systems and detention storage volumes by rational method.\u003c/li\u003e\\n\u003cli\u003eIdentify, formulate, and solve complex engineering problems.\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-afa3c60f-685b-46f1-bcef-1e5879df2d75\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:PurdueX+CE59700.3+3T2021\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"a662dad7-cf7e-4bc9-ac3f-ed6dc1aadd2c\",\"productName\":\"Introduction to Quantum Transport\",\"productSlug\":\"learn/electronics/purdue-university-introduction-to-quantum-transport\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/a662dad7-cf7e-4bc9-ac3f-ed6dc1aadd2c-20c23ee44744.jpg\",\"productType\":\"Course\",\"attributes\":[\"Electronics\",\"Engineering\",\"Science\"],\"partnerName\":[\"Purdue University\"],\"partnerKeys\":[\"PurdueX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/e5dfaf30-3828-4826-944e-03ea3dcf5b13-ab295e7bad86.png\",\"fullDescription\":\"$40d\",\"shortDescription\":\"\u003cp\u003eThis course introduces the non-equilibrium Green’s function (NEGF) method widely used to describe quantum effects in nanoscale devices, along with its applications to spintronic devices.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eThe Schrödinger equation\u003c/li\u003e\\n\u003cli\u003eHow the tight-binding model works\u003c/li\u003e\\n\u003cli\u003eThe concept of bandstructure and E(k) relations\u003c/li\u003e\\n\u003cli\u003eSelf-energy\u003c/li\u003e\\n\u003cli\u003eBroadening\u003c/li\u003e\\n\u003cli\u003eNEGF equations\u003c/li\u003e\\n\u003cli\u003eDephasing\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-a662dad7-cf7e-4bc9-ac3f-ed6dc1aadd2c\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:PurdueX+69503x+3T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"8c6bb30f-9689-4b67-a79e-adce53ff5cf6\",\"productName\":\"Pretensioned Structures\",\"productSlug\":\"learn/engineering/purdue-university-pretensioned-structures\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/8c6bb30f-9689-4b67-a79e-adce53ff5cf6-8ba767129d3a.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Engineering\",\"Science\"],\"partnerName\":[\"Purdue University\"],\"partnerKeys\":[\"PurdueX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/e5dfaf30-3828-4826-944e-03ea3dcf5b13-ab295e7bad86.png\",\"fullDescription\":\"$40e\",\"shortDescription\":\"\u003cp\u003eLearn the essentials of design of pretensioned concrete structures. A common design application is in a wide range of building and dam structures where improved performance of prestressed concrete can allow for longer spans of material.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003ePretensioned Construction\u003c/li\u003e\\n\u003cli\u003eFlexure Design\u003c/li\u003e\\n\u003cli\u003eBond of pretensioned strand\u003c/li\u003e\\n\u003cli\u003eShear Design\u003c/li\u003e\\n\u003cli\u003eLosses\u003c/li\u003e\\n\u003cli\u003eEstimate of Deflections\u003c/li\u003e\\n\u003cli\u003eComposite Construction\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-8c6bb30f-9689-4b67-a79e-adce53ff5cf6\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:PurdueX+CE57200.2+1T2021\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"e651e815-e63a-44b9-b439-d06b3d0221a0\",\"productName\":\"Post-Tensioned Structures\",\"productSlug\":\"learn/engineering/purdue-university-post-tensioned-structures\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/e651e815-e63a-44b9-b439-d06b3d0221a0-d05fe4261949.png\",\"productType\":\"Course\",\"attributes\":[\"Engineering\",\"Science\"],\"partnerName\":[\"Purdue University\"],\"partnerKeys\":[\"PurdueX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/e5dfaf30-3828-4826-944e-03ea3dcf5b13-ab295e7bad86.png\",\"fullDescription\":\"$40f\",\"shortDescription\":\"\u003cp\u003eLearn the essentials of design of post-tensioned concrete structures for use in concrete slabs or in preventing cracks and leakage in concrete water tanks.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003ePost-tensioned Construction\u003c/li\u003e\\n\u003cli\u003eReview of equivalent load concept\u003c/li\u003e\\n\u003cli\u003eContinuity effects\u003c/li\u003e\\n\u003cli\u003eFlexure Design\u003c/li\u003e\\n\u003cli\u003eShear Design\u003c/li\u003e\\n\u003cli\u003eEstimate of frictional losses\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-e651e815-e63a-44b9-b439-d06b3d0221a0\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:PurdueX+CE57200.3+1T2021\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"c5c761af-6422-4525-aafd-067fba41e43d\",\"productName\":\"Fundamentals of Prestressed Concrete\",\"productSlug\":\"learn/engineering/purdue-university-fundamentals-of-prestressed-concrete\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/c5c761af-6422-4525-aafd-067fba41e43d-4fe62f1503de.png\",\"productType\":\"Course\",\"attributes\":[\"Engineering\",\"Science\"],\"partnerName\":[\"Purdue University\"],\"partnerKeys\":[\"PurdueX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/e5dfaf30-3828-4826-944e-03ea3dcf5b13-ab295e7bad86.png\",\"fullDescription\":\"$410\",\"shortDescription\":\"\u003cp\u003eLearn the fundamentals of prestressed concrete design and the mechanics of how prestressed materials work under load. The prestressing mechanism provides strength for tensile forces when the material is in service; a common example of use of prestressed concrete is in parking garages.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eHistory of pre-stressed concrete.\u003c/li\u003e\\n\u003cli\u003eUse of standard materials.\u003c/li\u003e\\n\u003cli\u003ePretension and post-tension method used in construction.\u003c/li\u003e\\n\u003cli\u003eFlexure and shear behavior.\u003c/li\u003e\\n\u003cli\u003eEquivalent load concept.\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-c5c761af-6422-4525-aafd-067fba41e43d\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:PurdueX+CE57200.1+1T2021\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"da581720-1c01-41fc-b66f-1a3b1b6551c7\",\"productName\":\"Reliability in Engineering Design\",\"productSlug\":\"learn/engineering/purdue-university-reliability-in-engineering-design\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/da581720-1c01-41fc-b66f-1a3b1b6551c7-3dc087f1978c.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Engineering\"],\"partnerName\":[\"Purdue University\"],\"partnerKeys\":[\"PurdueX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/e5dfaf30-3828-4826-944e-03ea3dcf5b13-ab295e7bad86.png\",\"fullDescription\":\"\u003cp\u003eThe course is aimed at providing an engineering view (as opposed to a purely statistical view or a management view) of reliability analysis as well as reliable product design. The goal is to make the student familiar with both the statistical tools as well as the failure physics that enable one to model time to failure of products and to use such models during design phase to ensure reliable product designs.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eLearn the methods of reliability analysis and reliability-driven design of mechanical and electronic systems.\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003eWhat You Will Learn:\u003c/p\u003e\\n\u003cul\u003e\\n\u003cli\u003eProbability rules and conditional probabilities\u003c/li\u003e\\n\u003cli\u003eExpectation and variance of continuous functions and their manipulation\u003c/li\u003e\\n\u003cli\u003eFailure rate modeling\u003c/li\u003e\\n\u003cli\u003eNormal, lognormal, exponential, Weibull, binomial and Poisson distributions\u003c/li\u003e\\n\u003cli\u003eReliability, mean time to failure and availability\u003c/li\u003e\\n\u003cli\u003eData fitting and reliability estimation\u003c/li\u003e\\n\u003cli\u003eMultimodal distributions and mixed multiple failure mechanisms\u003c/li\u003e\\n\u003cli\u003eReliability block diagrams\u003c/li\u003e\\n\u003cli\u003eMonte Carlo simulation\u003c/li\u003e\\n\u003cli\u003eLoad-strength interference and probabilistic design\u003c/li\u003e\\n\u003cli\u003eFirst-order reliability methods\u003c/li\u003e\\n\u003cli\u003eAccelerated tests and acceleration factors\u003c/li\u003e\\n\u003cli\u003eTime to failure modeling for selected failure mechanisms in mechanical and electronic systems\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-da581720-1c01-41fc-b66f-1a3b1b6551c7\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:PurdueX+ME571+2T2021\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"72ebda00-58ec-4485-b237-eae39b94bae5\",\"productName\":\"Robotics: Vision Intelligence and Machine Learning\",\"productSlug\":\"learn/robotics/university-of-pennsylvania-robotics-vision-intelligence-and-machine-learning\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/72ebda00-58ec-4485-b237-eae39b94bae5-05d8faee10b3.jpg\",\"productType\":\"Course\",\"attributes\":[\"Computer Science\",\"Engineering\"],\"partnerName\":[\"University of Pennsylvania\"],\"partnerKeys\":[\"PennX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/fc03b413-d5d6-48af-974f-21da4d244ee8-6fe2970cf98b.png\",\"fullDescription\":\"$411\",\"shortDescription\":\"\u003cp\u003eLearn how to design robot vision systems that avoid collisions, safely work with humans and understand their environment.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eThe fundamentals of image filtering and tracking, and how to apply those principles to face detection, mosaicking and stabilization\u003c/li\u003e\\n\u003cli\u003eHow to use geometric transformations to determine 3D poses from 2D images for augmented reality tasks and visual odometry for robot localization\u003c/li\u003e\\n\u003cli\u003eHow to recognize objects and the basics of visual learning and neural networks for the purpose of classification\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-72ebda00-58ec-4485-b237-eae39b94bae5\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:PennX+ROBO2x+2T2017\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"0941d27c-ff8b-436f-b08d-1641b57b648d\",\"productName\":\"Introduction to Actuarial Science\",\"productSlug\":\"learn/actuarial-science/australian-national-university-introduction-to-actuarial-science\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/0941d27c-ff8b-436f-b08d-1641b57b648d-9028ab19300a.jpg\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Math\",\"Economics \u0026 Finance\"],\"partnerName\":[\"Australian National University\"],\"partnerKeys\":[\"ANUx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/1e6df8ed-a3fe-4307-99b9-775af509fcba-c733cde41f39.png\",\"fullDescription\":\"$412\",\"shortDescription\":\"\u003cp\u003eThis course readies you for a career as an actuary in finance, investments, banking or insurance.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eThe basics of actuarial science\u003c/li\u003e\\n\u003cli\u003eValuing series of cash flows\u003c/li\u003e\\n\u003cli\u003eIncorporating uncertainty into cash flows due to investment and mortality\u003c/li\u003e\\n\u003cli\u003eMonte-Carlo simulation of uncertain cash flows in Excel (or an equivalent spreadsheet tool)\u003c/li\u003e\\n\u003cli\u003eApplying actuarial techniques to life insurance and predicting human life expectancy\u003c/li\u003e\\n\u003cli\u003eHow actuarial science is used in finance, investments, banking and insurance\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-0941d27c-ff8b-436f-b08d-1641b57b648d\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:ANUx+ANU-ActuarialX+1T2016\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"452d5bbb-00a4-4cc9-99d7-d7dd43c2bece\",\"productName\":\"Principles of Manufacturing\",\"productSlug\":\"masters/micromasters/mitx-principles-manufacturing\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/452d5bbb-00a4-4cc9-99d7-d7dd43c2bece-7fa11c859de9.jpg\",\"productType\":\"MicroMasters\",\"attributes\":[\"Engineering\",\"Business \u0026 Management\",\"Math\",\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"Massachusetts Institute of Technology\"],\"partnerKeys\":[\"MITx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/2a73d2ce-c34a-4e08-8223-83bca9d2f01d-d4f180052205.png\",\"fullDescription\":\"A new perspective for design and operational decision making at all levels of manufacturing, in the context of volume manufacturing, where rate, quality, cost and flexibility are the key metrics,How to operate and control unit processes to ensure maximum quality using basic and advanced statistical and feedback control methods,How to design and operate systems of processes with optimal capacity, resilience and inventory,How to design and operate optimal supply chain systems,The financial underpinnings of a manufacturing enterprise, including new ventures\",\"shortDescription\":\"Learn the principles of manufacturing: process control, production flow, supply chain and basic finance, from the world’s #1 ranked Mechanical Engineering department.\",\"productOverview\":\"$413\",\"objectId\":\"program-452d5bbb-00a4-4cc9-99d7-d7dd43c2bece\",\"productSource\":\"edX\",\"productCategory\":\"Program\",\"activeRunKey\":null,\"childCoursesCount\":8,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"0d7d4822-b0ea-4f8d-b82f-f0fa8477ccc7\",\"productName\":\"Lean Six Sigma Green Belt Certification: Business Project\",\"productSlug\":\"certificates/professional-certificate/tumx-lean-six-sigma-green-belt-certification-business-project\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/0d7d4822-b0ea-4f8d-b82f-f0fa8477ccc7-b30f041bbfd8.jpg\",\"productType\":\"Professional Certificate\",\"attributes\":[\"Business \u0026 Management\",\"Data Analysis \u0026 Statistics\",\"Engineering\"],\"partnerName\":[\"Technische Universität München\"],\"partnerKeys\":[\"TUMx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/a455918c-387b-46b2-b943-d4b8f3edcf56-c2120c85b7c3.png\",\"fullDescription\":\"Approach: Scientific observation, formalizing, structuring, and modelling observations.,Identify: Project-Topic, Topic Suitability Check, Project-Definition.,Implement: Problem Definition, Project Charter | Process Analysis, C\u0026E Matrix, Hypotheses, Data Collection | Performance Indicators, Control Charts, Statistical Tests, Root-Cause Model | Action Plan, FMEA | Before-After Tests, Benefits, Process Management,Evaluate: Financial and non-financial benefits.,Apply: All relevant qualitative tools (sigmaGuide), quantitative tools (Mintab) and the fundamentals of process mining (Celonis Execution Management System); Standardized Project-Documentation.\",\"shortDescription\":\"Implement a Lean Six Sigma improvement project, specific to your organisation, along with the DMAIC phases, from its identification to the evaluation of its result, to earn the TUM Lean Six Sigma Green Belt certification.\",\"productOverview\":\"$414\",\"objectId\":\"program-0d7d4822-b0ea-4f8d-b82f-f0fa8477ccc7\",\"productSource\":\"edX\",\"productCategory\":\"Program\",\"activeRunKey\":null,\"childCoursesCount\":4,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"e09b8c3f-520d-4e1b-a174-b2a8f5d70f1a\",\"productName\":\"PreMBA Essentials for Professionals\",\"productSlug\":\"certificates/professional-certificate/imperialbusinessx-pre-mba-essentials-for-professionals\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/e09b8c3f-520d-4e1b-a174-b2a8f5d70f1a-f644d6b3d982.jpg\",\"productType\":\"Professional Certificate\",\"attributes\":[\"Business \u0026 Management\",\"Economics \u0026 Finance\",\"Math\",\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"Imperial College London\"],\"partnerKeys\":[\"ImperialX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/b7b5c4b8-9908-4caa-8e02-453a2a960b0b-9cda9ffb8e95.png\",\"fullDescription\":\"Understand and apply mathematical and statistical principles underlying key quantitative concepts,Understand the fundamentals of Accounting and Finance,Fundamental analytical skills, including presenting and summarizing data and how to make data-based decisions,Quantitative methods that will help you in your career and in an MBA program should you choose to pursue one\",\"shortDescription\":\"Prepare yourself for success in an MBA program and advance your career by learning core business fundamentals.\",\"productOverview\":\"$415\",\"objectId\":\"program-e09b8c3f-520d-4e1b-a174-b2a8f5d70f1a\",\"productSource\":\"edX\",\"productCategory\":\"Program\",\"activeRunKey\":null,\"childCoursesCount\":4,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"0968951c-760e-4b0c-9195-d8ec885c1d54\",\"productName\":\"Results-Based Project Management\",\"productSlug\":\"certificates/professional-certificate/idbx-results-based-project-management\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/0968951c-760e-4b0c-9195-d8ec885c1d54-e03092da2bf5.jpg\",\"productType\":\"Professional Certificate\",\"attributes\":[\"Business \u0026 Management\",\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"Inter-American Development Bank\"],\"partnerKeys\":[\"IDBx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/f87a494a-5b61-4c1c-b9ff-0fefec519326-6ea0a51177d0.png\",\"fullDescription\":\"To analyze and interpret statistical data and reports to make strategic decisions in order to improve the quality and effectiveness of public management policies.,To identify and apply best practices for the management of development projects, in accordance with the IDB's \\\"Project Management for Results\\\" (PM4R) methodology.,To recognize the main inputs, tools, techniques, outputs, and success factors for the processes involved in risk management, in accordance with the Inter-American Development Bank’s risk management methodology.,Describe how to work in a context that achieves development initiatives efficiently; adapting the best practices outlined in A Guide to the Project Management Body of Knowledge (PMBOK® Guide), Sixth Edition, of the Project Management Institute (PMI).\",\"shortDescription\":\"\",\"productOverview\":\"\u003cp\u003ePromoting economic and social development in Latin America and the Caribbean depends on many factors; and some of the most important ones for successful projects are the efficiency and effectiveness in the management of development projects and programs; achieving project goals and deliverables.\u003c/p\u003e\\r\\n\\r\\n\u003cp\u003eThis professional certificate examines the inter-related components of public policy planning, project planning, activities, management, evaluation, and project risks that can positively impact the project life cycle of socio-economic development initiatives.\u003c/p\u003e \\r\\n\\r\\n\u003cp\u003eIt emphasizes the importance and value of being equally equipped with a critical understanding of the project scope, the project environment, and how data analysis, project management, and risk management fosters effective decision-making in the delivery of public services within developing countries.\u003c/p\u003e\",\"objectId\":\"program-0968951c-760e-4b0c-9195-d8ec885c1d54\",\"productSource\":\"edX\",\"productCategory\":\"Program\",\"activeRunKey\":null,\"childCoursesCount\":3,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"947b7a51-f964-47a5-a43a-8a50d546d8ed\",\"productName\":\"Applied Data Science with R\",\"productSlug\":\"certificates/professional-certificate/ibm-applied-data-science-with-r\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/947b7a51-f964-47a5-a43a-8a50d546d8ed-469fa0ece3fd.png\",\"productType\":\"Professional Certificate\",\"attributes\":[\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"IBM\"],\"partnerKeys\":[\"IBM\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/87b07564-d569-4cfd-bee6-8b0a407acb73-dc33e4b5f353.png\",\"fullDescription\":\"Perform basic R programming tasks such as using common data structures, data manipulation, using APIs, webscraping, and working with R Studio and Jupyter.,Create relational databases and query the data using SQL and R from JupyterLab.,Complete the data analysis process, including data preparation, statistical analysis, and predictive modeling.,Communicate data findings using data visualization charts, plots, and dashboards using libraries such as ggplot, leaflet and R Shiny.,Demonstrate data analysis and visualization skills by completing a project that requires data collection, analysis, basic hypothesis testing, visualization, and modelling performed on real-world datasets.\",\"shortDescription\":\"\",\"productOverview\":\"$416\",\"objectId\":\"program-947b7a51-f964-47a5-a43a-8a50d546d8ed\",\"productSource\":\"edX\",\"productCategory\":\"Program\",\"activeRunKey\":null,\"childCoursesCount\":5,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"9554a109-fc07-4684-963d-6880b19da4d6\",\"productName\":\"Certified Lean Six Sigma Yellow Belt (CLSSYB)\",\"productSlug\":\"certificates/professional-certificate/iscea-certified-lean-six-sigma-yellow-belt-clssyb\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/9554a109-fc07-4684-963d-6880b19da4d6-a77e0b89b8c0.jpg\",\"productType\":\"Professional Certificate\",\"attributes\":[\"Business \u0026 Management\",\"Engineering\"],\"partnerName\":[\"International Supply Chain Education Alliance\"],\"partnerKeys\":[\"ISCEA\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/e1f70279-dab1-436b-b87d-2aa4c1c3c3b8-2a7a6512dd73.png\",\"fullDescription\":\"How to manage and invest in Six Sigma success, involve key players in enterprise-wide deployment, and empower other Yellow Belts to prevent problems.,Develop an understanding of basic problem-solving Six Sigma principles and tools with little mathematical application required.,How to use Tools (Statistical Process Control, etc.) to Identify Real Problems and Root Causes.,To understand Define, Measure, Analyze, Improve, and Control. (DMAIC) Tools and compare to MAIC and other initiatives.,How to integrate lean as an execution tool for getting a process back into control and improving Sustainability Performance of Supply Chains.\",\"shortDescription\":\"Enhance your Lean Six Sigma understanding, learn to Manage Six Sigma by analyzing and utilizing DMAIC, and earn a globally recognized Yellow Belt certification in Lean Six Sigma.\",\"productOverview\":\"$417\",\"objectId\":\"program-9554a109-fc07-4684-963d-6880b19da4d6\",\"productSource\":\"edX\",\"productCategory\":\"Program\",\"activeRunKey\":null,\"childCoursesCount\":3,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"4118b1fb-cfe5-457d-b78d-76c8141a2042\",\"productName\":\"Healthcare Data Analytics Toolkit\",\"productSlug\":\"masters/micromasters/mgh-institute-healthcare-data-analytics-toolkit\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/4118b1fb-cfe5-457d-b78d-76c8141a2042-27ea4d8de15d.png\",\"productType\":\"MicroMasters\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Medicine\",\"Health \u0026 Safety\"],\"partnerName\":[\"MGH Institute of Health Professions\"],\"partnerKeys\":[\"MGH_Institute\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/fa3fe5e7-5100-40a1-b56b-c44b893d92a6-8dd6dff92a89.png\",\"fullDescription\":\"Master fundamental statistical concepts and visualizations, including distributions, mean, median, variance, and creating histograms and boxplots.,Gain proficiency in data wrangling using R, including loading, transforming, and summarizing healthcare data.,Learn to apply and interpret t-tests, ANOVA, and hypothesis testing for insightful healthcare data analysis.,Develop skills in implementing and interpreting linear and logistic regression models and using dummy variables in regressions.,Enhance your ability to effectively communicate complex analytical results in a clear and simple manner.\",\"shortDescription\":\"Advance your career with the tools and techniques of Healthcare Data Analytics. Transform healthcare delivery by enabling data-driven decisions.\",\"productOverview\":\"$418\",\"objectId\":\"program-4118b1fb-cfe5-457d-b78d-76c8141a2042\",\"productSource\":\"edX\",\"productCategory\":\"Program\",\"activeRunKey\":null,\"childCoursesCount\":4,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"63077050-309b-44cd-9f9c-30c71120a9ac\",\"productName\":\"Comparative Effectiveness Research Training and Instruction (CERTaIN)\",\"productSlug\":\"certificates/professional-certificate/mdandersonx-comparative-effectiveness-research-training-and-instruction\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/63077050-309b-44cd-9f9c-30c71120a9ac-d32b1c637aac.jpg\",\"productType\":\"Professional Certificate\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Health \u0026 Safety\",\"Economics \u0026 Finance\"],\"partnerName\":[\"The University of Texas MD Anderson Cancer Center in Houston\"],\"partnerKeys\":[\"MDAndersonX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/b7a45265-c0e2-43a0-b98d-f9869a701784-98244d29a07f.png\",\"fullDescription\":\"Describe CER/PCOR methods,Interpret systematic review and meta-analysis results, and define strategies for critically appraising the literature,Define several types of observational studies, and interpret their results,Describe how health registries can be used to make decisions about best clinical care,Identify and classify clinical trial designs and describe the statistical methods used to analyze their data\",\"shortDescription\":\"Learn the fundamentals of comparative effectiveness research (CER) and patient-centered outcomes research (PCOR) methods.\",\"productOverview\":\"$419\",\"objectId\":\"program-63077050-309b-44cd-9f9c-30c71120a9ac\",\"productSource\":\"edX\",\"productCategory\":\"Program\",\"activeRunKey\":null,\"childCoursesCount\":5,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"b8d701a5-01e2-4e28-8313-cdf889550314\",\"productName\":\"Text Analytics with Python\",\"productSlug\":\"certificates/professional-certificate/ucx-text-analytics-with-python\",\"productImageUrl\":\"https://images.ctfassets.net/ii9ehdcj88bc/Yg09KPgvMlKw8z2Ub2Q9M/26dfb2bc96ee2de7e5845f8f8bc19b30/text-analytics-python-edx-pc.jpg\",\"productType\":\"Professional Certificate\",\"attributes\":[\"Computer Science\",\"Language\",\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"University of Canterbury\"],\"partnerKeys\":[\"UCx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/ecfbe814-b9bf-45ae-8bc0-baf62dbedeb6-8113d578a9f6.png\",\"fullDescription\":\"Construct applications using unstructured data like news articles and tweets.,Apply machine learning classifiers to categorize documents by content and author.,Practice using document similarity and topic models to work with large data sets.,Visualize and interpret text analytics, including statistical significance testing.,Assess the scientific and ethical foundations of new applications for text analysis.\",\"shortDescription\":\"\",\"productOverview\":\"$41a\",\"objectId\":\"program-b8d701a5-01e2-4e28-8313-cdf889550314\",\"productSource\":\"edX\",\"productCategory\":\"Program\",\"activeRunKey\":null,\"childCoursesCount\":2,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"1dc55153-af72-42db-a1a7-67a38947f70e\",\"productName\":\"Statistiques de finances publiques\",\"productSlug\":\"learn/statistics/the-international-monetary-fund-statistiques-de-finances-publiques\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/1dc55153-af72-42db-a1a7-67a38947f70e-dd4a40973197.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Economics \u0026 Finance\"],\"partnerName\":[\"The International Monetary Fund\"],\"partnerKeys\":[\"IMFx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/a655d538-b1e8-4f66-a99d-cf4682d2c17b-111a45d036cc.png\",\"fullDescription\":\"\u003cp\u003eCe cours, présenté par le Département des statistiques du FMI, se concentre à la fois sur le cadre conceptuel des statistiques de finances publiques (SFP) tel que présenté dans le Manuel de statistiques de finances publiques 2014 du FMI (MSFP 2014, la mise à jour de l’édition 2001), et sur les aspects pratiques de la compilation des données. \u003c/p\u003e\\n\u003cp\u003eLe cours examine les concepts de base, les définitions, les règles comptables, les classifications et les tableaux de présentation du cadre des SFP, et il explique la compilation et la diffusion de SFP complètes et comparables entre pays.\u003c/p\u003e\\n\u003cp\u003eEnfin, le cours montre comment utiliser les SFP pour évaluer l’impact des activités du secteur des administrations publiques sur l’économie d’un pays.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003e\u003cspan lang=\\\"FR-FR\\\"\u003eCe cours examine les éléments conceptuels et pratiques de la compilation et de la diffusion des statistiques \u003c/span\u003ebudgétaires selon les normes internationales, utiles pour évaluer l’impact des activités des administrations publiques sur l'économie d'un pays et pour faciliter les comparaisons internationales.\u003c/p\u003e\",\"productOverview\":\"$41b\",\"objectId\":\"course-1dc55153-af72-42db-a1a7-67a38947f70e\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:IMFx+GFSx_Fr+2T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"bde5785c-b4da-4671-adef-401a405d637f\",\"productName\":\"Statistiques des Comptes Nationaux\",\"productSlug\":\"learn/statistics/the-international-monetary-fund-statistiques-des-comptes-nationaux\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/bde5785c-b4da-4671-adef-401a405d637f-4a57ad419e61.png\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"The International Monetary Fund\"],\"partnerKeys\":[\"IMFx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/a655d538-b1e8-4f66-a99d-cf4682d2c17b-111a45d036cc.png\",\"fullDescription\":\"\u003cp\u003e\u003cspan lang=\\\"FR-FR\\\"\u003eCe cours, présenté par le Département des statistiques du FMI, vous apprend à \u003c/span\u003eétablir des statistiques des comptes nationaux en temps opportun et de haute qualité sur la base du cadre du Système de comptabilité nationale (SCN). Le cours présente la séquence des comptes nationaux, les règles de comptabilisation et les principaux indicateurs macroéconomiques dans le cadre du SCN. Vous découvrirez le produit intérieur brut (PIB) – le principal agrégat du système – et comment établir des mesures du PIB cohérentes et comparables au niveau international selon les approches de la production, des revenus et des dépenses. Le cours explique également en détail comment le SCN peut être utilisé pour suivre la production, la consommation et les revenus d'une économie, et comment estimer les mesures de volume du PIB.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003e\u003cspan lang=\\\"FR-FR\\\"\u003eApprendre à établir et diffuser les statistiques des comptes nationaux\u003c/span\u003e.\u003c/p\u003e\",\"productOverview\":\"$41c\",\"objectId\":\"course-bde5785c-b4da-4671-adef-401a405d637f\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:IMFx+NASx_Fr+2T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"1ab465a7-04b6-458f-a52e-adc2e72a9ec3\",\"productName\":\"Statistiques de la Balance des Paiements et de la Position Exterieure Globale\",\"productSlug\":\"learn/statistics/the-international-monetary-fund-statistiques-de-la-balance-des-paiements-et-de-la-position-exterieure-globale\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/1ab465a7-04b6-458f-a52e-adc2e72a9ec3-4a73f7357da4.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Economics \u0026 Finance\"],\"partnerName\":[\"The International Monetary Fund\"],\"partnerKeys\":[\"IMFx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/a655d538-b1e8-4f66-a99d-cf4682d2c17b-111a45d036cc.png\",\"fullDescription\":\"$41d\",\"shortDescription\":\"\u003cp\u003eCe cours couvre les bases nécessaires pour établir les comptes internationaux.\u003c/p\u003e\",\"productOverview\":\"$41e\",\"objectId\":\"course-1ab465a7-04b6-458f-a52e-adc2e72a9ec3\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:IMFx+BOP-IIPx_Fr+2T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"6cbec3a1-2baf-4937-b13b-1606e0911783\",\"productName\":\"Introduction à l’économétrie\",\"productSlug\":\"learn/econometrics/universite-catholique-de-louvain-introduction-a-leconometrie\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/6cbec3a1-2baf-4937-b13b-1606e0911783-9d155046ad3c.jpg\",\"productType\":\"Course\",\"attributes\":[\"Social Sciences\",\"Data Analysis \u0026 Statistics\",\"Economics \u0026 Finance\"],\"partnerName\":[\"Université catholique de Louvain\"],\"partnerKeys\":[\"LouvainX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/990c1282-3357-40c0-807b-d2bb8b27a716-eb4efe4fcff1.png\",\"fullDescription\":\"$41f\",\"shortDescription\":\"\u003cp\u003eÀ partir d’études de cas en économie et finance, apprenez à construire des modèles pour améliorer vos facultés d’analyse et de prévision.\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003eA la fin du cours, vous serez capables de:\u003c/p\u003e\\n\u003cul\u003e\\n\u003cli\u003eformaliser une question économique ou financière dans un modèlestatistique;\u003c/li\u003e\\n\u003cli\u003eestimer et tester des hypothèses économiques dans un modèle statistique;\u003c/li\u003e\\n\u003cli\u003etraduire le résultat d’une analyse quantitative avec rigueur dans un langage opérationnel et pratique.\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-6cbec3a1-2baf-4937-b13b-1606e0911783\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:LouvainX+Louv14x+3T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"96f6a9f1-0875-4396-a473-f6a40f8952a5\",\"productName\":\"Fondamentaux de la science des données\",\"productSlug\":\"learn/science/universite-de-montreal-fondamentaux-de-la-science-des-donnees\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/96f6a9f1-0875-4396-a473-f6a40f8952a5-174a5f471248.png\",\"productType\":\"Course\",\"attributes\":[\"Science\",\"Computer Science\"],\"partnerName\":[\"Université de Montréal\"],\"partnerKeys\":[\"UMontrealX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/1181fcba-6687-4114-8c3c-f34815663fd7-a287d6820336.png\",\"fullDescription\":\"$420\",\"shortDescription\":\"\u003cp\u003eComment tirer profit des milliards de données générées par les activités humaines sans s’y perdre? Inscrivez-vous au MOOC Science des données pour découvrir les concepts fondamentaux qui sont au cœur de l’intelligence artificielle!\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003eÀ la fin de ce cours, vous serez en mesure de :\u003c/p\u003e\\n\u003cul\u003e\\n\u003cli\u003eD’expliquer les concepts essentiels de la science des données\u003c/li\u003e\\n\u003cli\u003eD’appliquer les méthodes mathématiques et statistiques utilisées en science des données\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-96f6a9f1-0875-4396-a473-f6a40f8952a5\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:UMontrealX+DIRO-SD1FR+2T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"01331026-64f6-4533-a1b2-47621720513a\",\"productName\":\"L'analyse de données UX\",\"productSlug\":\"learn/big-data/hec-montreal-l-analyse-de-donnees-ux\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/01331026-64f6-4533-a1b2-47621720513a-728e9c9f70a6.png\",\"productType\":\"Course\",\"attributes\":[\"Data Analysis \u0026 Statistics\",\"Computer Science\",\"Math\"],\"partnerName\":[\"HEC Montréal\"],\"partnerKeys\":[\"HECMontrealX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/79da26e5-dbaf-400a-906c-33c51b87ea83-d1826ad9c521.png\",\"fullDescription\":\"\u003cp\u003eLe « Big Data » et l'UX vous interpellent? Ce MOOC vous donnera les méthodes et outils pour analyser le spectre des données traitées en UX, de l'analyse qualitative aux analytiques Web.\u003c/p\u003e\\n\u003cp\u003eVous apprendrez à tirer parti des informations saillantes qui peuvent être extraites de ces données. Vous formulerez ainsi des recommandations ancrées dans un savoir empirique afin de créer des expériences optimales exemptes de frictions.\u003c/p\u003e\\n\u003cp\u003eCe cours, enseigné par des professeurs maintes fois primés, est une introduction aux méthodes et outils statistiques utiles à l'analyse des données UX. Il a été conçu pour être accessible à tous.\u003c/p\u003e\\n\u003cp\u003eAucune connaissance préalable en statistique n’est requise. Vous devez avoir accès au logiciel \\\"Excel\\\" pour compléter la certification (nécessaire à la complétion de l'examen). Venez découvrir ce qui se cache derrière l’analyse des données UX, avec ce cours ou en entreprenant le MicroMasters en Design et évaluation UX.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eDevenez un scientifique des données UX! De l'analyse de données qualitatives à l'analyse du « Big Data », vous serez en mesure de dégager des « insights » des données afin de formuler des recommandations sur des bases empiriques.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eLa statistique descriptive;\u003c/li\u003e\\n\u003cli\u003eLe design d’étude;\u003c/li\u003e\\n\u003cli\u003eLes sources de biais;\u003c/li\u003e\\n\u003cli\u003eLes tests d’hypothèse;\u003c/li\u003e\\n\u003cli\u003eLa comparaison de moyennes;\u003c/li\u003e\\n\u003cli\u003eL’ANOVA à deux facteurs;\u003c/li\u003e\\n\u003cli\u003eLes applications en expérience utilisateur.\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-01331026-64f6-4533-a1b2-47621720513a\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:HECMontrealX+UXf06x.1+2T2021\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"6b768d3f-9d5b-423b-bd16-5a3ee9ecb54c\",\"productName\":\"Hydrologie I\",\"productSlug\":\"learn/water/rwth-aachen-university-hydrologie-i\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/6b768d3f-9d5b-423b-bd16-5a3ee9ecb54c-955ede41029b.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Engineering\",\"Biology \u0026 Life Sciences\"],\"partnerName\":[\"RWTH Aachen University\"],\"partnerKeys\":[\"RWTHx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/8607c85e-2a12-4c51-8906-3a67848cf2a7-3e0a310f77c3.png\",\"fullDescription\":\"\u003cp\u003eIn diesem Kurs geht es um die verschiedenen Vorgänge in der Natur in Bezug auf den Niederschlag, den Abfluss, die Verdunstung und die jeweiligen Wechselwirkungen. In der Hydrologie gibt es grundsätzlich die Bereiche quantitativer, qualitativer sowie ökologischer Belange - der Kurs Hydrologie I fokussiert sich auf die mengenmäßigen Belange. Wenn sie besser verstehen möchte, was in der Natur abläuft, wenn es um Niederschläge und Abflüsse geht, was bei Starkregen passiert und wie Gesellschaft vor Hochwasser geschützt wird, dann ist dieser Kurs der richtige für Sie!\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eWie ist das Wasservorkommen auf der Welt verteilt? Wer auf der Welt verbraucht am meisten Wasser? Wie wird gemessen, wie viel Niederschlag es pro qm gibt und wie lange würde es dauern, das gesamte Wasservorkommen der Welt einmal auszutauschen? Diese und viele weitere Fragen werden im Kurs Hydrologie I beantwortet.\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003eSie lernen \u003cstrong\u003eVerfahren zur Niederschlagsmessung\u003c/strong\u003e kennen und erfahren, wie sie angewendet werden.\u003c/li\u003e\\n\u003cli\u003eSie lernen unterschiedliche Verfahren zur \u003cstrong\u003eErmittlung von Gebietsniederschlägen\u003c/strong\u003e kennen und lernen diese anzuwenden, um von Punktmessungen von Niederschlägen auf Gebietsniederschläge zu gelangen.\u003c/li\u003e\\n\u003cli\u003eSie lernen unterschiedliche Verfahren zur Messung sowie zur Berechnung der \u003cstrong\u003eVerdunstung\u003c/strong\u003e kennen.\u003c/li\u003e\\n\u003cli\u003eSie lernen die verschiedenen \u003cstrong\u003eAbflusskomponenten\u003c/strong\u003e kennen und erfahren mehr über die \u003cstrong\u003eVerfahren zur Abflussmessung\u003c/strong\u003e.\u003c/li\u003e\\n\u003cli\u003eSie lernen mehr über die grundlegenden Annahmen der \u003cstrong\u003e(hydrologischen) Statistik\u003c/strong\u003e.\u003c/li\u003e\\n\u003cli\u003eSie lernen die charakteristischen Kenngrößen, die ein \u003cstrong\u003eGewässer\u003c/strong\u003e beschreiben sowie ihre Zonierung kennen.\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-6b768d3f-9d5b-423b-bd16-5a3ee9ecb54c\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:RWTHx+HYD001x+2T2023\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"ece803a6-15a3-4d08-b783-8389699ab746\",\"productName\":\"Vision artificielle et exploitation intelligente des ressources naturelles\",\"productSlug\":\"learn/computer-science/universite-de-montreal-vision-artificielle-et-exploitation-intelligente-des-ressources-naturelles\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/ece803a6-15a3-4d08-b783-8389699ab746-95a6f7fcc35a.png\",\"productType\":\"Course\",\"attributes\":[\"Computer Science\"],\"partnerName\":[\"Université de Montréal\"],\"partnerKeys\":[\"UMontrealX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/1181fcba-6687-4114-8c3c-f34815663fd7-a287d6820336.png\",\"fullDescription\":\"$421\",\"shortDescription\":\"\u003cp\u003eLa vision artificielle est facile à mettre en oeuvre. Identifiez une niche commerciale en survolant une foule d'applications pratiques. Récoltez des données avec un drone. Entraînez des réseaux de neurones. Déployez une application sur un téléphone ou le Web.\u003c/p\u003e\",\"productOverview\":\"$422\",\"objectId\":\"course-ece803a6-15a3-4d08-b783-8389699ab746\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:UMontrealX+Cegep-Matane-VIARENA+2T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"b711f246-fb5a-4933-afbc-b69d00e5bd57\",\"productName\":\"Algèbre Linéaire (Partie 1)\",\"productSlug\":\"learn/linear-algebra/ecole-polytechnique-federale-de-lausanne-algebre-lineaire-partie-1\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/b711f246-fb5a-4933-afbc-b69d00e5bd57-d969b201b05a.jpg\",\"productType\":\"Course\",\"attributes\":[\"Math\",\"Engineering\"],\"partnerName\":[\"École polytechnique fédérale de Lausanne\"],\"partnerKeys\":[\"EPFLx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/6f244695-7416-4c6c-a2a9-97769b6acb56-a2dc5dd735ab.png\",\"fullDescription\":\"$423\",\"shortDescription\":\"\u003cp\u003eUn MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003eA la fin du cours, l'étudiant sera capable \u003c/p\u003e\\n\u003cul\u003e\\n\u003cli\u003ede définir les concepts théoriques introduits en cours et d'en donner des exemples illustratifs ; \u003c/li\u003e\\n\u003cli\u003ed'appliquer la théorie matricielle à la résolution de systèmes linéaires et d’interpréter les résultats obtenus ; \u003c/li\u003e\\n\u003cli\u003ede déterminer si un ensemble muni d'une addition et d'une multiplication par scalaires est un espace vectoriel (ou si un sous-ensemble d'un espace vectoriel est un sous-espace vectoriel) ; \u003c/li\u003e\\n\u003cli\u003ede maîtriser les diverses notions relatives à la théorie des espaces vectoriels (e.g. bases, dimensions, sous-espaces).\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-b711f246-fb5a-4933-afbc-b69d00e5bd57\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:EPFLx+AlgebreX+1T2017\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"bb9639d0-76e8-425b-86a4-860baac0d908\",\"productName\":\"Indicateurs de Solidité Financière\",\"productSlug\":\"learn/economics-finance/the-international-monetary-fund-indicateurs-de-solidite-financiere\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/bb9639d0-76e8-425b-86a4-860baac0d908-cb83549f60b0.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Economics \u0026 Finance\",\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"The International Monetary Fund\"],\"partnerKeys\":[\"IMFx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/a655d538-b1e8-4f66-a99d-cf4682d2c17b-111a45d036cc.png\",\"fullDescription\":\"$424\",\"shortDescription\":\"\u003cp\u003e\u003cspan lang=\\\"FR-FR\\\"\u003eLes indicateurs de solidité financière (ISF) ont été conçus par le FMI en collaboration avec la communauté \u003c/span\u003einternationale dans le but de soutenir l’analyse et d’évaluer les atouts et les vulnérabilités des systèmes financiers, des sociétés et des ménages. Ils sont fréquemment employés par les chercheurs, les experts et les décideurs politiques du monde entier pour surveiller la solidité du système financier dans son ensemble d’un point de vue macroprudentiel. Dans ce cours, vous apprendrez comment collecter, compiler et analyser les ISF.\u003c/p\u003e\",\"productOverview\":\"$425\",\"objectId\":\"course-bb9639d0-76e8-425b-86a4-860baac0d908\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:IMFx+FSIx_Fr+3T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"f72203e5-52b9-4861-ae97-2bb5f07078fa\",\"productName\":\"Introduction à la science des données sociales avec R\",\"productSlug\":\"learn/data-science/universite-de-montreal-introduction-a-la-science-des-donnees-sociales-avec-r-2\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/f72203e5-52b9-4861-ae97-2bb5f07078fa-e3a0af7df220.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Social Sciences\",\"Computer Science\"],\"partnerName\":[\"Université de Montréal\"],\"partnerKeys\":[\"UMontrealX\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/1181fcba-6687-4114-8c3c-f34815663fd7-a287d6820336.png\",\"fullDescription\":\"$426\",\"shortDescription\":\"\u003cp\u003eLes données sont partout et il faudra rapidement savoir comment les analyser pour en dériver des connaissances sur lesquelles nous pourrons prendre des décisions et des actions plus éclairées.\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003eCe MOOC est gratuit et accessible tout au long de l’année. Son format asynchrone vous permet de le suivre à votre propre rythme. Plusieurs modalités pédagogiques sont utilisées pour faciliter vos apprentissages :\u003c/p\u003e\\n\u003cul\u003e\\n\u003cli\u003eDes capsules pédagogiques présentant les notions théoriques et des exemples concrets\u003c/li\u003e\\n\u003cli\u003eDes capsules vidéo présentant le point de vue d’intervenants dans le domaine\u003c/li\u003e\\n\u003cli\u003eDe courts quiz permettant de valider votre compréhension des concepts présentés\u003c/li\u003e\\n\u003cli\u003eDes quiz sommatifs à la fin de chaque module pour valider votre compréhension et obtenir votre attestation\u003c/li\u003e\\n\u003cli\u003eDes lectures pour consolider et approfondir vos apprentissages\u003c/li\u003e\\n\u003cli\u003eDivers exercices pratiques vous permettant de mettre en application les notions apprises, en utilisant des données fournies ou vos propres données de recherche\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-f72203e5-52b9-4861-ae97-2bb5f07078fa\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:UMontrealX+FAS-ISDS+2T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"8edfd749-3da8-43cc-8500-ea5ece35cc50\",\"productName\":\"Algèbre Linéaire (Partie 2)\",\"productSlug\":\"learn/algebra/ecole-polytechnique-federale-de-lausanne-algebre-lineaire-partie-2\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/8edfd749-3da8-43cc-8500-ea5ece35cc50-aa8e7cb5992f.jpg\",\"productType\":\"Course\",\"attributes\":[\"Math\",\"Engineering\"],\"partnerName\":[\"École polytechnique fédérale de Lausanne\"],\"partnerKeys\":[\"EPFLx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/6f244695-7416-4c6c-a2a9-97769b6acb56-a2dc5dd735ab.png\",\"fullDescription\":\"$427\",\"shortDescription\":\"\u003cp\u003eUn MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003eA la fin du cours, l'étudiant sera capable:\u003c/p\u003e\\n\u003cul\u003e\\n\u003cli\u003ede définir les concepts théoriques introduits en cours et d'en donner des exemples illustratifs ;\u003c/li\u003e\\n\u003cli\u003ede reconnaître une application linéaire et de définir les notions de base associées à un tel objet (e.g. noyau, image) ;\u003c/li\u003e\\n\u003cli\u003ed’étudier les applications linéaires d'espaces vectoriels de dimension finie à l'aide des représentations matricielles ;\u003c/li\u003e\\n\u003cli\u003ede calculer le déterminant d'une matrice donnée et d'utiliser les propriétés de cet objet à bon escient ;\u003c/li\u003e\\n\u003cli\u003ede maîtriser les notions relatives à la diagonalisation (e.g. valeurs/vecteurs/espaces propres, multiplicité algèbrique/géométrique, polynôme caractéristique) ;\u003c/li\u003e\\n\u003cli\u003ede déterminer si un opérateur linéaire donné est diagonalisable ou non ;\u003c/li\u003e\\n\u003cli\u003ed’appliquer la méthode de diagonalisation à un opérateur linéaire donné.\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-8edfd749-3da8-43cc-8500-ea5ece35cc50\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:EPFLx+Algebre2X+1T2017\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"0ac7ea94-0212-4673-a6e8-c24be14b16c3\",\"productName\":\"Comptes nationaux trimestriels et indicateurs de l’activité économique à haute fréquence\",\"productSlug\":\"learn/economics/the-international-monetary-fund-comptes-nationaux-trimestriels-et-indicateurs-de-lactivite-economique-a-haute-frequence\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/0ac7ea94-0212-4673-a6e8-c24be14b16c3-2c08fb7e15b6.jpeg\",\"productType\":\"Course\",\"attributes\":[\"Economics \u0026 Finance\"],\"partnerName\":[\"The International Monetary Fund\"],\"partnerKeys\":[\"IMFx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/a655d538-b1e8-4f66-a99d-cf4682d2c17b-111a45d036cc.png\",\"fullDescription\":\"\u003cp\u003eCe cours, présenté par le département des statistiques, vous apprend à compiler des comptes nationaux trimestriels (CNT) et des indicateurs de l’activité économique à haute fréquence (IAEHF) de haute qualité et dans les délais impartis. Ce cours présente les concepts, les sources de données et les techniques d’élaboration nécessaires à la production de comptes nationaux trimestriels et d'indicateurs d'activité économique de haute fréquence, en couvrant à la fois les questions théoriques et pratiques de l’élaboration. Il présente aux participants les techniques d’étalonnage et de correction des variations saisonnières, ainsi que les estimations en volume, et explique l'application de ces techniques aux données de séries chronologiques. Le cours aborde également la manière d'identifier et d'évaluer les sources de données disponibles, d'utiliser des bases de données en temps réel pour évaluer la qualité et de mettre en œuvre une politique de révision appropriée pour compiler les CNT et les IAEHF.\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003eApprenez à compiler des comptes nationaux trimestriels (CNT) et des indicateurs de l'activité économique à haute fréquence (IAEHF) de qualité.\u003c/p\u003e\",\"productOverview\":\"$428\",\"objectId\":\"course-0ac7ea94-0212-4673-a6e8-c24be14b16c3\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:IMFx+QNA-HFIx_Fr+2T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"8f7c0701-6b5d-4c69-a6a1-f82c71024de0\",\"productName\":\"L'indice des prix à la consommation\",\"productSlug\":\"learn/finance/the-international-monetary-fund-l-indice-des-prix-a-la-consommation\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/8f7c0701-6b5d-4c69-a6a1-f82c71024de0-5fd912f17e83.png\",\"productType\":\"Course\",\"attributes\":[\"Economics \u0026 Finance\",\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"The International Monetary Fund\"],\"partnerKeys\":[\"IMFx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/a655d538-b1e8-4f66-a99d-cf4682d2c17b-111a45d036cc.png\",\"fullDescription\":\"\u003cp\u003e\u003cspan lang=\\\"FR\\\"\u003eCe cours vous aidera à apprendre les bases de la compilation d'IPC en temps voulu et de haute qualité, basés sur le \u003cem\u003eManuel de l'IPC 2020\u003c/em\u003e. L’indice des prix à la consommation est devenu une statistique clé pour l’élaboration de la politique économique, notamment la politique monétaire. L’IPC est souvent spécifié, dans la législation et dans une grande variété de contrats, comme la mesure appropriée pour ajuster les paiements (tels que les salaires, les loyers, les intérêts, la sécurité sociale, les autres prestations et les pensions) aux effets de l’inflation. Les modifications de l’IPC ont des implications financières considérables pour les gouvernements, les entreprises et les ménages.\u003c/span\u003e\u003c/p\u003e\",\"shortDescription\":\"\u003cp\u003e\u003cspan lang=\\\"FR\\\"\u003eLes données de l’Indice des prix à la consommation (IPC) sont des éléments essentiels pour des politiques saines. Les décideurs politiques ont besoin de mesures fiables de l’évolution des prix pour prendre des décisions politiques judicieuses. De plus, les salaires, traitements, paiements gouvernementaux, pensions, loyers et autres paiements sont indexés sur l'IPC et nécessitent des estimations précises de l'inflation. Apprenez les concepts clés et les méthodes de compilation nécessaires pour établir des données fiables en utilisant les meilleures méthodes disponibles.\u003c/span\u003e\u003c/p\u003e\",\"productOverview\":\"\u003cul\u003e\\n\u003cli\u003e\u003cspan lang=\\\"FR\\\"\u003eIdentifier les principales utilisations des données de l'IPC et expliquer les principaux concepts et définitions de l'indice des prix à la consommation, ainsi que la manière dont ceux-ci sont appliqués dans la pratique.\u003c/span\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cspan lang=\\\"FR\\\"\u003eIdentifier et expliquer les différences entre les différentes formules de calcul d'indices.\u003c/span\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cspan lang=\\\"FR\\\"\u003eDéfinir et expliquer les différents niveaux d'échantillonnage dans un IPC et comment ces méthodes d'échantillonnage sont appliquées dans la pratique.\u003c/span\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cspan lang=\\\"FR\\\"\u003eIdentifier et expliquer les différentes méthodes de traitement des prix manquants et décrire comment celles-ci sont appliquées dans la pratique.\u003c/span\u003e\u003c/li\u003e\\n\u003cli\u003e\u003cspan lang=\\\"FR\\\"\u003eIntroduire de nouvelles pondérations de l'IPC et relier les anciens et les nouveaux indices pour créer une série chronologique continue de données. \u003c/span\u003e\u003c/li\u003e\\n\u003c/ul\u003e\",\"objectId\":\"course-8f7c0701-6b5d-4c69-a6a1-f82c71024de0\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:IMFx+CPIx_Fr+2T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"9a8d51bc-e903-4fdf-9a49-644266ee8ed2\",\"productName\":\"Algèbre Linéaire (Partie 3)\",\"productSlug\":\"learn/linear-algebra/ecole-polytechnique-federale-de-lausanne-algebre-lineaire-partie-3\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/9a8d51bc-e903-4fdf-9a49-644266ee8ed2-3e027e4b2a86.jpg\",\"productType\":\"Course\",\"attributes\":[\"Math\",\"Engineering\"],\"partnerName\":[\"École polytechnique fédérale de Lausanne\"],\"partnerKeys\":[\"EPFLx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/6f244695-7416-4c6c-a2a9-97769b6acb56-a2dc5dd735ab.png\",\"fullDescription\":\"$429\",\"shortDescription\":\"\u003cp\u003eUn MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.\u003c/p\u003e\",\"productOverview\":\"$42a\",\"objectId\":\"course-9a8d51bc-e903-4fdf-9a49-644266ee8ed2\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:EPFLx+Algebre3X+1T2017\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"bb2437e3-6d07-488a-9038-0a353eeceadc\",\"productName\":\"Modèle d'estimation de l'écart de TVA RA-GAP\",\"productSlug\":\"learn/economics/the-international-monetary-fund-modele-d-estimation-de-l-ecart-de-tva-ra-gap\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/bb2437e3-6d07-488a-9038-0a353eeceadc-c4db5d0652da.png\",\"productType\":\"Course\",\"attributes\":[\"Economics \u0026 Finance\"],\"partnerName\":[\"The International Monetary Fund\"],\"partnerKeys\":[\"IMFx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/a655d538-b1e8-4f66-a99d-cf4682d2c17b-111a45d036cc.png\",\"fullDescription\":\"$42b\",\"shortDescription\":\"\u003cp\u003e\u003cspan lang=\\\"FR\\\"\u003eApprenez à utiliser le modèle d'estimation de l'écart de TVA du Fonds monétaire international.\u003c/span\u003e\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003e\u003cspan lang=\\\"FR\\\"\u003eÀ la fin du cours, vous serez en mesure de faire ce qui suit:\u003c/span\u003e\u003c/p\u003e\\n\u003cp\u003e*\u003cspan lang=\\\"FR\\\"\u003e Expliquer en quoi consistent l’écart fiscal et ses composantes.\u003c/span\u003e\u003c/p\u003e\\n\u003cp\u003e*\u003cspan lang=\\\"FR\\\"\u003e Expliquer les différentes composantes du modèle RA-GAP du FMI.\u003c/span\u003e\u003c/p\u003e\\n\u003cp\u003e*\u003cspan lang=\\\"FR\\\"\u003e Préparer les feuilles de calcul et les données à saisir dans le modèle.\u003c/span\u003e\u003c/p\u003e\\n\u003cp\u003e*\u003cspan lang=\\\"FR\\\"\u003e Interpréter les résultats du modèle.\u003c/span\u003e\u003c/p\u003e\\n\u003cp\u003e*\u003cspan lang=\\\"FR\\\"\u003e Diagnostiquer les problèmes de données et de modélisation susceptibles de fausser les résultats du modèle.\u003c/span\u003e\u003c/p\u003e\",\"objectId\":\"course-bb2437e3-6d07-488a-9038-0a353eeceadc\",\"productSource\":\"edX\",\"productCategory\":\"Course\",\"activeRunKey\":\"course-v1:IMFx+VGAPx_Fr+2T2024\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null}]},{\"productType\":\"Executive Education\",\"categoryLabel\":\"Executive Education\",\"products\":[{\"productUuid\":\"3cb02711-99a9-44ac-9acd-ef20cb346e43\",\"productName\":\"Data Analysis for Management\",\"productSlug\":\"executive-education/the-london-school-of-economics-and-political-science-data-analysis-for-management\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/3cb02711-99a9-44ac-9acd-ef20cb346e43-58ad87d854b6.jpg\",\"productType\":\"Executive Education\",\"attributes\":[\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"The London School of Economics and Political Science\"],\"partnerKeys\":[\"LSE\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/07141c7d-a86e-4f48-bb5b-1eef0958b465-b644124b89ef.png\",\"fullDescription\":\"$42c\",\"shortDescription\":\"\u003cp\u003eLearn the skills to analyse, interpret, and communicate data with confidence and impact within your organisation.\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003eOn completion of this course, you’ll walk away with:An understanding of how data-driven models can improve your ability to make decisions in a fast-paced and uncertain world, and the ability to use modelling to predict future trends. Tableau data visualisation and reporting skills, with which to clearly communicate your findings and business needs. A capstone project as proof of your ability to analyse, summarise, visualise, and report on insights extracted from a dataset. Unlimited access to edX’s Career Engagement Network, offering you exclusive resources and events to support your professional journey and drive your career forward.\u003c/p\u003e\",\"objectId\":\"course-3cb02711-99a9-44ac-9acd-ef20cb346e43\",\"productSource\":\"2u\",\"productCategory\":\"Executive Education\",\"activeRunKey\":\"course-v1:LSE+DAM+1T2025a\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":\"https://prod-discovery.edx-cdn.org/organization/logo_override/3cb02711-99a9-44ac-9acd-ef20cb346e43-14a609109fb5.png\"},{\"productUuid\":\"93b36f93-9243-448c-887c-b6a5fc487df6\",\"productName\":\"Machine Learning: Practical Applications\",\"productSlug\":\"executive-education/the-london-school-of-economics-and-political-science-machine-learning-practical-applications\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/93b36f93-9243-448c-887c-b6a5fc487df6-bb4edd017b9b.jpg\",\"productType\":\"Executive Education\",\"attributes\":[\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"The London School of Economics and Political Science\"],\"partnerKeys\":[\"LSE\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/07141c7d-a86e-4f48-bb5b-1eef0958b465-b644124b89ef.png\",\"fullDescription\":\"$42d\",\"shortDescription\":\"\u003cp\u003eDevelop technical machine learning competencies to solve business problems and inform decision making.\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003eOn completion of this course, you’ll walk away with:The confidence to make more informed business decisions and solve complex problems by understanding how different machine learning models can be applied to a variety of data sets. The skills to implement various machine learning techniques, including regression, variable selection, shrinkage methods, classification, dimension reduction, and unsupervised learning. Upgraded mathematics and statistics knowledge, and the foundations of coding in R. Knowledge of the latest frontiers of machine learning, such as neural networks, and how these can be applied to your business context. Unlimited access to edX’s Career Engagement Network, offering you exclusive resources and events to support your professional journey and drive your career forward.\u003c/p\u003e\",\"objectId\":\"course-93b36f93-9243-448c-887c-b6a5fc487df6\",\"productSource\":\"2u\",\"productCategory\":\"Executive Education\",\"activeRunKey\":\"course-v1:LSE+MNL+1T2025\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":\"https://prod-discovery.edx-cdn.org/organization/logo_override/93b36f93-9243-448c-887c-b6a5fc487df6-99d4c2fcd23f.png\"},{\"productUuid\":\"e1a04c62-fe42-46c6-ace9-0acb5b806049\",\"productName\":\"Data Analysis and Visualization\",\"productSlug\":\"executive-education/rice-university-data-analysis-and-visualization\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/e1a04c62-fe42-46c6-ace9-0acb5b806049-7b2770aaadd1.jpg\",\"productType\":\"Executive Education\",\"attributes\":[\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"Rice University\"],\"partnerKeys\":[\"RICEx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/3e0f3544-6626-4373-afb9-b21e0e66a571-9317ec003c4d.png\",\"fullDescription\":\"$42e\",\"shortDescription\":\"\u003cp\u003eDevelop data analysis and visualization skills to drive decision making.\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003eOn completion of this course, you’ll walk away with:The ability to apply the fundamentals of data analysis and effectively visualize data. The knowledge needed to communicate the results of your data analyses to business stakeholders through storytelling. An understanding of sophisticated and in-demand tools such as Tableau, SQL, and VBA. The skills needed to identify methods to automate data analysis tasks. Unlimited access to edX’s Career Engagement Network, offering you exclusive resources and events to support your professional journey and drive your career forward.\u003c/p\u003e\",\"objectId\":\"course-e1a04c62-fe42-46c6-ace9-0acb5b806049\",\"productSource\":\"2u\",\"productCategory\":\"Executive Education\",\"activeRunKey\":\"course-v1:RICEx+DAV+1T2025\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":\"https://prod-discovery.edx-cdn.org/organization/logo_override/e1a04c62-fe42-46c6-ace9-0acb5b806049-bea8a020139b.png\"},{\"productUuid\":\"bfa0900f-4692-4fee-89e5-2fd52754b445\",\"productName\":\"Business Analytics\",\"productSlug\":\"executive-education/university-of-cape-town-business-analytics\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/bfa0900f-4692-4fee-89e5-2fd52754b445-07cbf31fbd32.jpg\",\"productType\":\"Executive Education\",\"attributes\":[\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"University of Cape Town\"],\"partnerKeys\":[\"UCT\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/c5b82171-94d3-40eb-befd-ade27c3d028a-d11f9c19058d.png\",\"fullDescription\":\"$42f\",\"shortDescription\":\"\u003cp\u003eLearn how to apply data analysis techniques to make sense of number sets and drive better business decisions.\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003eOn completion of this course, you’ll walk away with:The ability to use business intelligence tools like Tableau to effectively communicate and present actionable insights across your organisation. Data analysis and business analytics skills that you can apply to drive decision-making. The expertise to create real business value through data visualisation and storytelling. An understanding of the basics of performing data analysis using Python.\u003cem\u003e \u003c/em\u003eWhile you will gain exposure to Python throughout this course, it will not be graded.\u003c/p\u003e\",\"objectId\":\"course-bfa0900f-4692-4fee-89e5-2fd52754b445\",\"productSource\":\"2u\",\"productCategory\":\"Executive Education\",\"activeRunKey\":\"course-v1:UCT+BAN+1T2025\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":\"https://prod-discovery.edx-cdn.org/organization/logo_override/bfa0900f-4692-4fee-89e5-2fd52754b445-42d72e822983.png\"},{\"productUuid\":\"2502405e-c165-4089-96fd-86db78dd4f21\",\"productName\":\"Data Science with Python\",\"productSlug\":\"executive-education/university-of-cape-town-data-science-with-python\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/2502405e-c165-4089-96fd-86db78dd4f21-bb734bd3574b.jpg\",\"productType\":\"Executive Education\",\"attributes\":[\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"University of Cape Town\"],\"partnerKeys\":[\"UCT\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/c5b82171-94d3-40eb-befd-ade27c3d028a-d11f9c19058d.png\",\"fullDescription\":\"$430\",\"shortDescription\":\"\u003cp\u003eGain meaningful insights from data to inform your decision making.\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003eOn completion of this course, you’ll walk away with:The ability to apply data science and analysis techniques to inform decision-making. The tools to build and modify robust models in order to help solve business problems. A practical grounding in the widely used Jupyter Notebook. The ability to fit data to a model using Python in order to gain insight into business problems. A certificate of completion from UCT as validation of your new data science skill set, and unlimited access to edX’s Career Engagement Network, offering you exclusive resources and events to support your professional journey and drive your career forward.\u003c/p\u003e\",\"objectId\":\"course-2502405e-c165-4089-96fd-86db78dd4f21\",\"productSource\":\"2u\",\"productCategory\":\"Executive Education\",\"activeRunKey\":\"course-v1:UCT+DSS+1T2025a\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":\"https://prod-discovery.edx-cdn.org/organization/logo_override/2502405e-c165-4089-96fd-86db78dd4f21-5d9994222e4a.png\"},{\"productUuid\":\"a2a07812-e207-46f1-af94-17abfc905a78\",\"productName\":\"Healthcare Management\",\"productSlug\":\"executive-education/yale-university-healthcare-management\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/a2a07812-e207-46f1-af94-17abfc905a78-956edd086b15.jpg\",\"productType\":\"Executive Education\",\"attributes\":[\"Medicine\"],\"partnerName\":[\"Yale University\"],\"partnerKeys\":[\"Yale\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/cae38b1e-6aad-428e-9cfd-18c69cba06b5-fcb95b150380.png\",\"fullDescription\":\"$431\",\"shortDescription\":\"\u003cp\u003eLearn how applying fundamental business and management principles to healthcare administration can improve access, quality, and safety.\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003eOn completion of this program, you’ll walk away with:A comprehensive understanding of funding structures and resource flows within the US healthcare industry and insight into the factors required for good financial stewardship within healthcare. Practical tools to help you progress from a healthcare manager to a healthcare leader. Operations-management techniques to effectively market a group practice. Knowledge of compliance and quality-assurance standards, and how to negotiate potential conflicts of interest. Unlimited access to 2U’s Career Engagement Network, offering you exclusive resources and events to support your professional journey and drive your career forward.\u003c/p\u003e\",\"objectId\":\"course-a2a07812-e207-46f1-af94-17abfc905a78\",\"productSource\":\"2u\",\"productCategory\":\"Executive Education\",\"activeRunKey\":\"course-v1:Yale+HMG+2T2025\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":\"https://prod-discovery.edx-cdn.org/organization/logo_override/a2a07812-e207-46f1-af94-17abfc905a78-ed2271d31a7a.png\"},{\"productUuid\":\"d14aab4d-81a2-4fc7-8b27-f799ec3fcc7e\",\"productName\":\"Data Science in Real Estate\",\"productSlug\":\"executive-education/massachusetts-institute-of-technology-data-science-in-real-estate\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/d14aab4d-81a2-4fc7-8b27-f799ec3fcc7e-90544b3591e1.jpg\",\"productType\":\"Executive Education\",\"attributes\":[\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"Massachusetts Institute of Technology\"],\"partnerKeys\":[\"MITx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/2a73d2ce-c34a-4e08-8223-83bca9d2f01d-d4f180052205.png\",\"fullDescription\":\"$432\",\"shortDescription\":\"\u003cp\u003eGain the analytical tools to use data for informed decision making in real estate.\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003eOn completion of this course, you’ll walk away with:Tools to inform your real estate investments using insights from data analytics. An understanding of the various factors that impact the value of a property investment. The ability to perform statistical analyses and modeling using interactive software applications like R and Jupyter notebooks. Knowledge of the fundamentals of machine learning concepts in the context of the built environment. Unlimited access to edX’s Career Engagement Network, offering you exclusive resources and events to support your professional journey and drive your career forward.\u003c/p\u003e\",\"objectId\":\"course-d14aab4d-81a2-4fc7-8b27-f799ec3fcc7e\",\"productSource\":\"2u\",\"productCategory\":\"Executive Education\",\"activeRunKey\":\"course-v1:MITx+DSR+1T2025\",\"childCoursesCount\":0,\"displayOnOrgPage\":false,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":\"https://prod-discovery.edx-cdn.org/organization/logo_override/d14aab4d-81a2-4fc7-8b27-f799ec3fcc7e-99e5068ffa6c.png\"},{\"productUuid\":\"644e6a8e-0890-47c2-8c6f-65122b4d490d\",\"productName\":\"Real Estate Financial Analytics\",\"productSlug\":\"executive-education/massachusetts-institute-of-technology-real-estate-financial-analytics\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/644e6a8e-0890-47c2-8c6f-65122b4d490d-4bd294dc1fcd.jpg\",\"productType\":\"Executive Education\",\"attributes\":[\"Economics \u0026 Finance\"],\"partnerName\":[\"Massachusetts Institute of Technology\"],\"partnerKeys\":[\"MITx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/2a73d2ce-c34a-4e08-8223-83bca9d2f01d-d4f180052205.png\",\"fullDescription\":\"$433\",\"shortDescription\":\"\u003cp\u003eLearn how to leverage quantitative analytical techniques and financial modeling to inform real estate investment decisions and risk.\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003eOn completion of this course, you’ll walk away with:The skills to use quantitative techniques and financial modeling to understand real estate price dynamics. Insight into leveraging investment flexibility to manage and take advantage of uncertainty. The ability to interpret Monte Carlo simulation analysis to determine risk and return in real estate investment decisions. Statistical analysis techniques to inform real estate investment decision making, and the knowledge to assess the financial viability of residential and commercial investments. Unlimited access to edX’s Career Engagement Network, offering you exclusive resources and events to support your professional journey and drive your career forward.\u003c/p\u003e\",\"objectId\":\"course-644e6a8e-0890-47c2-8c6f-65122b4d490d\",\"productSource\":\"2u\",\"productCategory\":\"Executive Education\",\"activeRunKey\":\"course-v1:MITx+RLF+1T2025\",\"childCoursesCount\":0,\"displayOnOrgPage\":false,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":\"https://prod-discovery.edx-cdn.org/organization/logo_override/644e6a8e-0890-47c2-8c6f-65122b4d490d-273f1fe2518d.png\"},{\"productUuid\":\"25edd316-d6b9-4d3a-ab27-239af398c0ed\",\"productName\":\"Applied Data Analysis and Visualisation for Business\",\"productSlug\":\"executive-education/the-london-school-of-economics-and-political-science-applied-data-analysis-and-visualisation-for-business\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/25edd316-d6b9-4d3a-ab27-239af398c0ed-3911e8588338.jpg\",\"productType\":\"Executive Education\",\"attributes\":[\"Computer Science\"],\"partnerName\":[\"The London School of Economics and Political Science\"],\"partnerKeys\":[\"LSE\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/07141c7d-a86e-4f48-bb5b-1eef0958b465-b644124b89ef.png\",\"fullDescription\":\"$434\",\"shortDescription\":\"\u003cp\u003eDevelop in-demand data visualisation and analysis skills to elevate your career in a data-driven world.\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003eOn completion of this course, you’ll walk away with:A powerful blend of practical skills to leverage data to investigate business decisions. Proficiency in Tableau and Microsoft Excel, preparing you to confidently work with these tools when you enter the workplace. The ability to critically evaluate your own work and that of others, as well as interpret, critique, and improve data visualisations and analysis outputs. Expertise in econometric and statistical modelling methods, such as multiple linear regression, forecasting, and Monte Carlo simulations. Unlimited access to edX’s Career Engagement Network, offering you exclusive resources and events to support your professional journey and drive your career forward.\u003c/p\u003e\",\"objectId\":\"course-25edd316-d6b9-4d3a-ab27-239af398c0ed\",\"productSource\":\"2u\",\"productCategory\":\"Executive Education\",\"activeRunKey\":\"course-v1:LSE+DVA+1T2025\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":\"https://prod-discovery.edx-cdn.org/organization/logo_override/25edd316-d6b9-4d3a-ab27-239af398c0ed-8205807c39dd.png\"},{\"productUuid\":\"aae08bb5-6d16-47ba-bd22-d86f0aad7d44\",\"productName\":\"Data Analysis\",\"productSlug\":\"executive-education/university-of-cape-town-data-analysis\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/course/image/aae08bb5-6d16-47ba-bd22-d86f0aad7d44-b7d3c4a3563c.jpg\",\"productType\":\"Executive Education\",\"attributes\":[\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"University of Cape Town\"],\"partnerKeys\":[\"UCT\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/c5b82171-94d3-40eb-befd-ade27c3d028a-d11f9c19058d.png\",\"fullDescription\":\"$435\",\"shortDescription\":\"\u003cp\u003eLearn how to sort, analyse, and interpret data to inform business strategy.\u003c/p\u003e\",\"productOverview\":\"\u003cp\u003eOn completion of this course, you’ll walk away with:An understanding of how data analysis can be used to address a wide variety of business needs. A theoretical grasp of databases, and familiarity with a range of different data analysis techniques. The practical skills to sort, manipulate, analyse, visualise, and interpret data using Microsoft Excel. Unlimited access to edX’s Career Engagement Network, offering you exclusive resources and events to support your professional journey and drive your career forward.\u003c/p\u003e\",\"objectId\":\"course-aae08bb5-6d16-47ba-bd22-d86f0aad7d44\",\"productSource\":\"2u\",\"productCategory\":\"Executive Education\",\"activeRunKey\":\"course-v1:UCT+DA+1T2025b\",\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":\"https://prod-discovery.edx-cdn.org/organization/logo_override/aae08bb5-6d16-47ba-bd22-d86f0aad7d44-459f8441e0ca.png\"}]},{\"productType\":\"Masters\",\"categoryLabel\":\"Master's Programs\",\"products\":[{\"productUuid\":\"fefd092a-c8e7-4cbd-9c5b-ba0d1e9ee9a2\",\"productName\":\"Master of Science in Data Analytics\",\"productSlug\":\"masters/maryville-university-master-of-science-in-data-analytics\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/fefd092a-c8e7-4cbd-9c5b-ba0d1e9ee9a2-bec77d70058e.jpg\",\"productType\":\"Masters\",\"attributes\":[],\"partnerName\":[\"Maryville University\"],\"partnerKeys\":[\"Maryville\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/8e585adc-f870-4e8f-abe8-e67da192d49c-33b63ce3ca64.png\",\"fullDescription\":\"\",\"shortDescription\":\"\",\"productOverview\":\"\u003cp\u003eStart a new chapter in your career with an online master’s degree in data \\r\\nanalytics from Maryville University. Grow your skills in computer science, \\r\\nstatistics, data mining, data modeling, business intelligence, dashboards, \\r\\nand visualization to become an in-demand professional capable of helping \\r\\norganizations make strategic decisions based on deep knowledge and \\r\\nunderstanding.\u003c/p\u003e\\r\\n\\r\\n\u003cp\u003eTop career skills you can develop:\\r\\n\u003cul\u003e\\r\\n\u003cli\u003eSQL, Python, RData collection\u003c/li\u003e\\r\\n\u003cli\u003eDashboard\u003c/li\u003e\\r\\n\u003cli\u003eBusiness intelligence\u003c/li\u003e\\r\\n\u003cli\u003eAnalytics\u003c/li\u003e\\r\\n\u003cli\u003eData modeling\u003c/li\u003e\\r\\n\u003c/ul\u003e\u003c/p\u003e\\r\\n\\r\\n\u003cp\u003eGet Curriculum Details\u003c/p\u003e\",\"objectId\":\"program-fefd092a-c8e7-4cbd-9c5b-ba0d1e9ee9a2\",\"productSource\":\"2u\",\"productCategory\":\"2U Degree\",\"activeRunKey\":null,\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[\"US\"],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"70adbe06-2ef5-446e-97cf-7d26520a9697\",\"productName\":\"Master of Applied Data Science\",\"productSlug\":\"masters/online-masters-in-data-science/unc-master-of-applied-data-science\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/70adbe06-2ef5-446e-97cf-7d26520a9697-bf35b51636af.jpg\",\"productType\":\"Masters\",\"attributes\":[],\"partnerName\":[\"The University of North Carolina at Chapel Hill\"],\"partnerKeys\":[\"UNC-CH\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/283be432-c4de-4818-83c5-bd77a2de49d6-2a29798bfd41.png\",\"fullDescription\":\"\",\"shortDescription\":\"Master the data life cycle and apply data insights to drive organizational and social change.\",\"productOverview\":\"Data is the universal language of collaboration. Master the data life cycle and apply data insights to drive organizational and social change. \\r\\nThe online Master of Applied Data Science curriculum will equip you to thoughtfully leverage every stage of the data life cycle — collecting, curating, interpreting, visualizing, and applying — to identify and tell a story through data. The 30-credit curriculum is composed of 10 courses and includes a culminating capstone project.\\r\\nUNC-Chapel Hill’s online Master of Applied Data Science program is offered by the School of Data Science and Society, in collaboration with the School of Information and Library Science; Department of Biostatistics at the Gillings School of Global Public Health; and Department of Computer Science, Department of Mathematics, and Department of Statistics and Operations Research at the College of Arts and Sciences.\",\"objectId\":\"program-70adbe06-2ef5-446e-97cf-7d26520a9697\",\"productSource\":\"2u\",\"productCategory\":\"2U Degree\",\"activeRunKey\":null,\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"88662c1b-65cf-4f4e-9022-afa0dc01b462\",\"productName\":\"Master of Science Psychology\",\"productSlug\":\"masters/psychology/surrey-master-of-science-psychology\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/88662c1b-65cf-4f4e-9022-afa0dc01b462-352d3f41a9c6.jpg\",\"productType\":\"Masters\",\"attributes\":[],\"partnerName\":[\"University of Surrey\"],\"partnerKeys\":[\"UOS\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/fab95b1f-000b-45fe-97a9-89b449974728-7da9db5b85f8.png\",\"fullDescription\":\"\",\"shortDescription\":\"Learn from lecturers who are active researchers in key psychological areas such as behavioural, cognitive, developmental, personality and social psychology\",\"productOverview\":\"We’ll evolve your knowledge of the theories and practical applications of contemporary psychology, with emphasis on how psychology is applied in practice. You'll learn about the core areas of psychology, including cognitive, developmental and social psychology, the biological bases of psychology and individual differences. You’ll explore the brain, behaviour, personality and psychopathology, building an understanding of the conceptual and historical issues in psychology.\\r\\n\\r\\nYou'll develop the research and statistical skills needed to conduct independent research projects under our expert supervision. You’ll also complete a research dissertation that will allow you to carry out experiments and start or join existing projects on important topics in the field. We’ll match your interests with the expertise of our academic staff, ensuring you get the best support possible. These collaborations have seen previous students’ work being published in top-tier journals.\",\"objectId\":\"program-88662c1b-65cf-4f4e-9022-afa0dc01b462\",\"productSource\":\"2u\",\"productCategory\":\"2U Degree\",\"activeRunKey\":null,\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"21a7e677-0e8d-4d4a-a2e1-83b9caaa2e64\",\"productName\":\"Master of Science in Data Science\",\"productSlug\":\"masters/online-masters-in-data-science/hawaii-pacific-master-of-science-in-data-science\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/21a7e677-0e8d-4d4a-a2e1-83b9caaa2e64-d22cea15cad5.jpg\",\"productType\":\"Masters\",\"attributes\":[],\"partnerName\":[\"Hawai‘i Pacific University\"],\"partnerKeys\":[\"HPU\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/753a8147-5768-46e7-b085-7f0d36e83614-329156d5c3d2.png\",\"fullDescription\":\"\",\"shortDescription\":\"LEAD THE WORLD IN BUSINESS ANALYTICS TO PRODUCE SOLUTIONS AND CHANGE HOW ORGANIZATIONS FUNCTION\",\"productOverview\":\"$436\",\"objectId\":\"program-21a7e677-0e8d-4d4a-a2e1-83b9caaa2e64\",\"productSource\":\"2u\",\"productCategory\":\"2U Degree\",\"activeRunKey\":null,\"childCoursesCount\":0,\"displayOnOrgPage\":false,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"0fff466d-8d0a-418a-af92-f2058e121ef3\",\"productName\":\"Master of Science in Data Science\",\"productSlug\":\"masters/maryville-university-master-of-science-in-data-science\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/0fff466d-8d0a-418a-af92-f2058e121ef3-aac5b4bc886c.jpg\",\"productType\":\"Masters\",\"attributes\":[],\"partnerName\":[\"Maryville University\"],\"partnerKeys\":[\"Maryville\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/8e585adc-f870-4e8f-abe8-e67da192d49c-33b63ce3ca64.png\",\"fullDescription\":\"\",\"shortDescription\":\"\",\"productOverview\":\"\u003cp\u003eBig data means big opportunities for you and your career. When you earn \\r\\nyour online master’s in data science from Maryville University, you gain \\r\\nthe credential you need to become a key player in a field that’s changing \\r\\nbusiness and the world around us.\u003c/p\u003e\\r\\n\\r\\n\u003cp\u003eOur program was designed with input from employers and expert partners who \\r\\nuse big data across a diverse range of industries, so you can build \\r\\nproficiency in the most in-demand areas of the modern data science world — \\r\\nand use your skills to create a better future for us all.\u003c/p\u003e\\r\\n\\r\\n\u003cp\u003eGet Curriculum Details\u003c/p\u003e\",\"objectId\":\"program-0fff466d-8d0a-418a-af92-f2058e121ef3\",\"productSource\":\"2u\",\"productCategory\":\"2U Degree\",\"activeRunKey\":null,\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[\"US\"],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"fe201bf7-b2eb-4564-b533-adeb7d504ff8\",\"productName\":\"Master of Arts in International Relations\",\"productSlug\":\"masters/online-masters-in-international-relations/american-master-of-arts-in-international-relations\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/fe201bf7-b2eb-4564-b533-adeb7d504ff8-3408af9897df.png\",\"productType\":\"Masters\",\"attributes\":[\"Business \u0026 Management\"],\"partnerName\":[\"American University\"],\"partnerKeys\":[\"American\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/4f9c5559-f219-400d-b186-13f575b33b08-4a28e48d5256.png\",\"fullDescription\":\"Global Security -- Uncover ways to prevent, mitigate, and manage conflicts globally as you investigate the dynamics of war, peace, and security.,International Development -- Discover how policies, politics, economics, sustainability, and healthcare impact development in communities and nations across the globe.,International Negotiation and Conflict Resolution - Examine the causes of international conflict, and apply strategic negotiation tactics that can help resolve global disputes.,United States Foreign Policy and National Security - Explore the historical, political, and economic underpinnings of strategic policy formulation and execution.\",\"shortDescription\":\"The Master of Arts in International Relations (MAIR) program prepares you to cultivate the economic, statistical, and critical thinking skills needed to analyze cross-cultural communications, foreign, and public policies.\",\"productOverview\":\"American University's School of International Service offers two different Master degree programs online. Both programs are delivered through live classes, taught by world-renowned faculty, and include a visit to American University's campus in Washington, DC, to help students build the skills to effect positive international change. Depending on which degree students pursue, the programs can be completed in 12–24 months. A bachelor's degree is required; but GRE/GMAT scores are not.\",\"objectId\":\"program-fe201bf7-b2eb-4564-b533-adeb7d504ff8\",\"productSource\":\"2u\",\"productCategory\":\"2U Degree\",\"activeRunKey\":null,\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[\"US\"],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"9a6bc27b-2d27-4064-801b-951960ba661d\",\"productName\":\"Master of Science in Data Science\",\"productSlug\":\"masters/online-masters-in-data-science/smu-master-of-science-in-data-science\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/9a6bc27b-2d27-4064-801b-951960ba661d-52b68425f1e0.png\",\"productType\":\"Masters\",\"attributes\":[\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"Southern Methodist University\"],\"partnerKeys\":[\"SMU\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/4d5918c8-a5c0-4a5c-8e14-26cc753a132d-efd10ea9cd00.png\",\"fullDescription\":\"\",\"shortDescription\":\"\",\"productOverview\":\"DataScience@SMU students gain highly sought-after skills in working with unstructured data, big data processing, statistical analysis, text mining and machine learning. With the ability to synthesize findings into actionable results for their organizations, our graduates are able to enter the data science field as candidates with a competitive edge.\",\"objectId\":\"program-9a6bc27b-2d27-4064-801b-951960ba661d\",\"productSource\":\"2u\",\"productCategory\":\"2U Degree\",\"activeRunKey\":null,\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[\"US\"],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"69004438-6674-4104-9e6a-b2f020feb3e4\",\"productName\":\"Master of Science Applications of Data Science online\",\"productSlug\":\"masters/universityofbirmingham-master-of-science-applications-of-data-science-online\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/69004438-6674-4104-9e6a-b2f020feb3e4-a501680a3e68.jpg\",\"productType\":\"Masters\",\"attributes\":[],\"partnerName\":[\"University of Birmingham\"],\"partnerKeys\":[\"UniversityofBirmingham\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/de9d6fcd-f399-48dd-9ad8-09e2bac68f68-2693daa0c7c0.png\",\"fullDescription\":\"\",\"shortDescription\":\"\",\"productOverview\":\"The University of Birmingham's online MSc Applications of Data Science is made up of six modules and a dissertation module. Working regularly with real-world case studies, you’ll explore topics that include the classification of data, the use of statistical models to design clinical trials, and ethical data collection, giving you skills to make important, data-driven decisions.\",\"objectId\":\"program-69004438-6674-4104-9e6a-b2f020feb3e4\",\"productSource\":\"2u\",\"productCategory\":\"2U Degree\",\"activeRunKey\":null,\"childCoursesCount\":0,\"displayOnOrgPage\":false,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"f584d7b2-8e9e-4118-88a8-42c3c34b4333\",\"productName\":\"Master of Health Administration\",\"productSlug\":\"masters/online-mha/george-washington-master-of-health-administration\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/f584d7b2-8e9e-4118-88a8-42c3c34b4333-f22ffda3057b.png\",\"productType\":\"Masters\",\"attributes\":[\"Health \u0026 Safety\"],\"partnerName\":[\"George Washington University\"],\"partnerKeys\":[\"GW\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/5c2ddc82-7948-4008-8b76-3853ac9c0877-0838009e361b.png\",\"fullDescription\":\"\",\"shortDescription\":\"\",\"productOverview\":\"Bachelor's holders with at least two years of experience in the healthcare sector can earn their Master from GW's CAHME-accredited online Master of Health Administration program. With no GRE scores required to apply, you can become an effective leader in health care systems in as few as 24 months with a degree from Milken Institute School of Public Health.\",\"objectId\":\"program-f584d7b2-8e9e-4118-88a8-42c3c34b4333\",\"productSource\":\"2u\",\"productCategory\":\"2U Degree\",\"activeRunKey\":null,\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[\"US\"],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"0efb8c66-6727-4b44-a948-e947dc1355a7\",\"productName\":\"Master of Data Science (Online)\",\"productSlug\":\"masters/online-masters-in-data-science/sydney-online-master-data-science\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/0efb8c66-6727-4b44-a948-e947dc1355a7-e4ef48cf1188.jpg\",\"productType\":\"Masters\",\"attributes\":[\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"The University of Sydney\"],\"partnerKeys\":[\"USYDx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/0da70b4d-5231-43bf-bb60-e95c0cb8de98-71210b7cf35c.png\",\"fullDescription\":\"\",\"shortDescription\":\"\",\"productOverview\":\"Offered by the University of Sydney – ranked No.1 for graduate employability in Australia – the online Master of Data Science prepares you to make an impact and lead in the rapidly growing field of data technology. You will benefit from a multidisciplinary, innovative course structure and learn from international experts in AI and machine learning, with the added flexibility of being 100 percent online.\",\"objectId\":\"program-0efb8c66-6727-4b44-a948-e947dc1355a7\",\"productSource\":\"2u\",\"productCategory\":\"2U Degree\",\"activeRunKey\":null,\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null}]},{\"productType\":\"Bachelors\",\"categoryLabel\":\"Bachelor's Programs\",\"products\":[{\"productUuid\":\"11d68a61-7609-4807-b7b9-faad60256ab9\",\"productName\":\"Statistics\",\"productSlug\":\"bachelors/statistics-amu-sl\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/11d68a61-7609-4807-b7b9-faad60256ab9-c8014aee626b.jpg\",\"productType\":\"Bachelors\",\"attributes\":[\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"American University\"],\"partnerKeys\":[\"American\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/4f9c5559-f219-400d-b186-13f575b33b08-4a28e48d5256.png\",\"fullDescription\":\"\",\"shortDescription\":\"\",\"productOverview\":\"$437\",\"objectId\":\"program-11d68a61-7609-4807-b7b9-faad60256ab9\",\"productSource\":\"shorelight\",\"productCategory\":\"2U Degree\",\"activeRunKey\":null,\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[\"IN\"],\"blockedIn\":[],\"organizationLogoOverride\":\"https://prod-discovery.edx-cdn.org/organization/logo_override/11d68a61-7609-4807-b7b9-faad60256ab9-db86e03d3690.png\"},{\"productUuid\":\"8bc2ccaa-d1ee-4b05-abde-d68ff66fd893\",\"productName\":\"Mathematics and Statistics\",\"productSlug\":\"bachelors/mathematics-and-statistics-fiu-sl\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/8bc2ccaa-d1ee-4b05-abde-d68ff66fd893-f893c934950f.jpg\",\"productType\":\"Bachelors\",\"attributes\":[\"Math\"],\"partnerName\":[\"Florida International University\"],\"partnerKeys\":[\"FIU\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/c6d6a4ba-9dec-4b68-a97e-f087450af687-f125cfb15515.png\",\"fullDescription\":\"\",\"shortDescription\":\"\",\"productOverview\":\"$438\",\"objectId\":\"program-8bc2ccaa-d1ee-4b05-abde-d68ff66fd893\",\"productSource\":\"shorelight\",\"productCategory\":\"2U Degree\",\"activeRunKey\":null,\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[\"IN\"],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"f4fd6612-9753-454c-981c-c4360083d17e\",\"productName\":\"Mathematics\",\"productSlug\":\"bachelors/mathematics-umb-sl\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/f4fd6612-9753-454c-981c-c4360083d17e-ec6b2928a6b5.jpg\",\"productType\":\"Bachelors\",\"attributes\":[\"Math\"],\"partnerName\":[\"University of Massachusetts Boston\"],\"partnerKeys\":[\"UMAB\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/6d245422-d2c0-4864-8602-3b9a7cfc3906-3efca82379c2.png\",\"fullDescription\":\"\",\"shortDescription\":\"\",\"productOverview\":\"$439\",\"objectId\":\"program-f4fd6612-9753-454c-981c-c4360083d17e\",\"productSource\":\"shorelight\",\"productCategory\":\"2U Degree\",\"activeRunKey\":null,\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[\"IN\"],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"ba8dc096-df6e-4105-9049-5f8f4824dd96\",\"productName\":\"Mathematical Sciences\",\"productSlug\":\"bachelors/mathematical-sciences-wne-sl\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/ba8dc096-df6e-4105-9049-5f8f4824dd96-df2765d456eb.jpg\",\"productType\":\"Bachelors\",\"attributes\":[\"Math\"],\"partnerName\":[\"Western New England University\"],\"partnerKeys\":[\"WNE\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/d92f993e-c262-4c8a-9728-d6fa015858cf-ebb8ce0d464b.png\",\"fullDescription\":\"\",\"shortDescription\":\"\",\"productOverview\":\"$43a\",\"objectId\":\"program-ba8dc096-df6e-4105-9049-5f8f4824dd96\",\"productSource\":\"shorelight\",\"productCategory\":\"2U Degree\",\"activeRunKey\":null,\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[\"IN\"],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"b5d59478-942d-4ef1-9498-f71d38d88744\",\"productName\":\"Applied Mathematics\",\"productSlug\":\"bachelors/applied-mathematics-gon-sl\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/b5d59478-942d-4ef1-9498-f71d38d88744-d1992cd2ef83.jpg\",\"productType\":\"Bachelors\",\"attributes\":[\"Math\"],\"partnerName\":[\"Gonzaga University\"],\"partnerKeys\":[\"GON\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/b3ed01ac-1967-49db-888d-569446e3c6cd-de4e367c681e.png\",\"fullDescription\":\"\",\"shortDescription\":\"\",\"productOverview\":\"$43b\",\"objectId\":\"program-b5d59478-942d-4ef1-9498-f71d38d88744\",\"productSource\":\"shorelight\",\"productCategory\":\"2U Degree\",\"activeRunKey\":null,\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[\"IN\"],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"8c3875cf-a9c6-4f8e-b8af-3cc97030590f\",\"productName\":\"Mathematics\",\"productSlug\":\"bachelors/mathematics-adu-sl\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/8c3875cf-a9c6-4f8e-b8af-3cc97030590f-08f57f12934c.jpg\",\"productType\":\"Bachelors\",\"attributes\":[\"Math\"],\"partnerName\":[\"Adelphi University\"],\"partnerKeys\":[\"ADU\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/8a3a7e33-8c13-4de4-8956-539f4b2e3984-575f6fd58281.png\",\"fullDescription\":\"\",\"shortDescription\":\"\",\"productOverview\":\"$43c\",\"objectId\":\"program-8c3875cf-a9c6-4f8e-b8af-3cc97030590f\",\"productSource\":\"shorelight\",\"productCategory\":\"2U Degree\",\"activeRunKey\":null,\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[\"IN\"],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"7d467882-92c9-4a3f-b3da-a10282db44be\",\"productName\":\"Applied Mathematics\",\"productSlug\":\"bachelors/applied-mathematics-uop-sl\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/7d467882-92c9-4a3f-b3da-a10282db44be-460c74355a51.jpg\",\"productType\":\"Bachelors\",\"attributes\":[\"Math\"],\"partnerName\":[\"University of the Pacific\"],\"partnerKeys\":[\"UOP\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/a76e756d-5148-475b-abd8-f58bf76b593e-822dc2d9e9b1.png\",\"fullDescription\":\"\",\"shortDescription\":\"\",\"productOverview\":\"$43d\",\"objectId\":\"program-7d467882-92c9-4a3f-b3da-a10282db44be\",\"productSource\":\"shorelight\",\"productCategory\":\"2U Degree\",\"activeRunKey\":null,\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[\"IN\"],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"73a848fb-bda0-4ca1-a123-39da95d5ef69\",\"productName\":\"Applied Mathematical Economics\",\"productSlug\":\"bachelors/applied-mathematical-economics-day-sl\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/73a848fb-bda0-4ca1-a123-39da95d5ef69-99f00181539e.jpg\",\"productType\":\"Bachelors\",\"attributes\":[\"Math\"],\"partnerName\":[\"University of Dayton\"],\"partnerKeys\":[\"UDayton\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/78f5b92e-ba49-4414-9680-7f12ab89e762-93ba68bed4a6.png\",\"fullDescription\":\"\",\"shortDescription\":\"\",\"productOverview\":\"$43e\",\"objectId\":\"program-73a848fb-bda0-4ca1-a123-39da95d5ef69\",\"productSource\":\"shorelight\",\"productCategory\":\"2U Degree\",\"activeRunKey\":null,\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[\"IN\"],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"407e9cbd-8c8f-4e0f-ab2e-b5cd2a0f879e\",\"productName\":\"Applied Mathematics\",\"productSlug\":\"bachelors/applied-mathematics-amu-sl\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/407e9cbd-8c8f-4e0f-ab2e-b5cd2a0f879e-1222a436fff2.jpg\",\"productType\":\"Bachelors\",\"attributes\":[\"Math\"],\"partnerName\":[\"American University\"],\"partnerKeys\":[\"American\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/4f9c5559-f219-400d-b186-13f575b33b08-4a28e48d5256.png\",\"fullDescription\":\"\",\"shortDescription\":\"\",\"productOverview\":\"$43f\",\"objectId\":\"program-407e9cbd-8c8f-4e0f-ab2e-b5cd2a0f879e\",\"productSource\":\"shorelight\",\"productCategory\":\"2U Degree\",\"activeRunKey\":null,\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[\"IN\"],\"blockedIn\":[],\"organizationLogoOverride\":\"https://prod-discovery.edx-cdn.org/organization/logo_override/407e9cbd-8c8f-4e0f-ab2e-b5cd2a0f879e-4e0252444f77.png\"},{\"productUuid\":\"33c72080-ae26-4dfb-a9f4-8fd085440d16\",\"productName\":\"Mathematics\",\"productSlug\":\"bachelors/mathematics-lsu-sl\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/33c72080-ae26-4dfb-a9f4-8fd085440d16-0a6af8c5dde5.jpg\",\"productType\":\"Bachelors\",\"attributes\":[\"Math\"],\"partnerName\":[\"Louisiana State University\"],\"partnerKeys\":[\"LSU\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/bb75b573-fa99-4cae-a3a5-b1b96d31713a-3b842335f3f0.png\",\"fullDescription\":\"\",\"shortDescription\":\"\",\"productOverview\":\"$440\",\"objectId\":\"program-33c72080-ae26-4dfb-a9f4-8fd085440d16\",\"productSource\":\"shorelight\",\"productCategory\":\"2U Degree\",\"activeRunKey\":null,\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[\"IN\"],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"189345a4-9b18-42f6-8426-7443570d55ac\",\"productName\":\"Mathematics\",\"productSlug\":\"bachelors/mathematics-au-sl\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/189345a4-9b18-42f6-8426-7443570d55ac-10579daf7dcc.jpg\",\"productType\":\"Bachelors\",\"attributes\":[\"Math\"],\"partnerName\":[\"Auburn University\"],\"partnerKeys\":[\"AU\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/3aaa218c-b3dc-4ad4-85be-44569862d45e-1f8596480fcc.png\",\"fullDescription\":\"\",\"shortDescription\":\"\",\"productOverview\":\"$441\",\"objectId\":\"program-189345a4-9b18-42f6-8426-7443570d55ac\",\"productSource\":\"shorelight\",\"productCategory\":\"2U Degree\",\"activeRunKey\":null,\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[\"IN\"],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"171cd35c-9585-4311-b59f-c0b9216e3445\",\"productName\":\"Bachelor of Science in Mathematics\",\"productSlug\":\"bachelors/maryville-university-bachelor-of-science-in-mathematics\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/171cd35c-9585-4311-b59f-c0b9216e3445-b6ccfbfb774c.jpg\",\"productType\":\"Bachelors\",\"attributes\":[],\"partnerName\":[\"Maryville University\"],\"partnerKeys\":[\"Maryville\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/8e585adc-f870-4e8f-abe8-e67da192d49c-33b63ce3ca64.png\",\"fullDescription\":\"\",\"shortDescription\":\"\",\"productOverview\":\"Multiply your career opportunities.If you’re brave enough to make mathematics your life’s work, your interest \\r\\ncan lead you to an exciting future in fields like education, analytics, \\r\\nstatistics, and more. Earn your Bachelor of Science in Mathematics online \\r\\nat Maryville, and you can work toward a versatile degree that can give you \\r\\nthe foundational, theoretical, and practical mathematics skills to pursue \\r\\nfurther education or begin your career.Our program allows you to choose from a wide array of electives in topics \\r\\nlike discrete mathematics, optimization, advanced calculus, financial \\r\\nmathematics, and statistical modeling. You also can earn your minor in data \\r\\nscience so you can use your analytical knowledge to break into new fields \\r\\nof mathematics.\\r\\n\\r\\nGet Curriculum Details\",\"objectId\":\"program-171cd35c-9585-4311-b59f-c0b9216e3445\",\"productSource\":\"2u\",\"productCategory\":\"2U Degree\",\"activeRunKey\":null,\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[\"US\"],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"1473dbd9-3859-4e48-aeb9-e480d752454d\",\"productName\":\"Mathematics\",\"productSlug\":\"bachelors/mathematics-uic-sl\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/1473dbd9-3859-4e48-aeb9-e480d752454d-2b81dfb2b798.jpg\",\"productType\":\"Bachelors\",\"attributes\":[\"Math\"],\"partnerName\":[\"University of Illinois at Chicago\"],\"partnerKeys\":[\"UIC\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/db4a8013-6dae-4f19-89d3-25892bb7e60f-8e09bf42d066.png\",\"fullDescription\":\"\",\"shortDescription\":\"\",\"productOverview\":\"$442\",\"objectId\":\"program-1473dbd9-3859-4e48-aeb9-e480d752454d\",\"productSource\":\"shorelight\",\"productCategory\":\"2U Degree\",\"activeRunKey\":null,\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[\"IN\"],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"0e97ee29-d7fd-41be-b515-b8f6b1931d70\",\"productName\":\"Mathematics\",\"productSlug\":\"bachelors/mathematics-ku-sl\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/0e97ee29-d7fd-41be-b515-b8f6b1931d70-2216cf652d6a.jpg\",\"productType\":\"Bachelors\",\"attributes\":[\"Math\"],\"partnerName\":[\"University of Kansas\"],\"partnerKeys\":[\"KUx\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/c38b3fb5-ecd5-4f00-9b20-612d2b4c9c9c-9501e6ca7dbe.png\",\"fullDescription\":\"\",\"shortDescription\":\"\",\"productOverview\":\"$443\",\"objectId\":\"program-0e97ee29-d7fd-41be-b515-b8f6b1931d70\",\"productSource\":\"shorelight\",\"productCategory\":\"2U Degree\",\"activeRunKey\":null,\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[\"IN\"],\"blockedIn\":[],\"organizationLogoOverride\":\"https://prod-discovery.edx-cdn.org/organization/logo_override/0e97ee29-d7fd-41be-b515-b8f6b1931d70-ed3a5009748e.png\"},{\"productUuid\":\"e19fefa8-ab16-4338-9790-73e16e6a10f8\",\"productName\":\"Bachelor of Arts in General Studies\",\"productSlug\":\"bachelors/maryville-bachelor-of-arts-in-general-studies\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/e19fefa8-ab16-4338-9790-73e16e6a10f8-151cf22a57f8.jpg\",\"productType\":\"Bachelors\",\"attributes\":[],\"partnerName\":[\"Maryville University\"],\"partnerKeys\":[\"Maryville\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/8e585adc-f870-4e8f-abe8-e67da192d49c-33b63ce3ca64.png\",\"fullDescription\":\"\",\"shortDescription\":\"\",\"productOverview\":\"Looking to ignite or advance your career in the rapidly growing healthcare \\r\\nfield? Maryville University’s online bachelor’s degree in general studies \\r\\nwith a concentration in healthcare can help you gain the skills and \\r\\nknowledge to qualify for myriad jobs in nonclinical areas such as public \\r\\nhealth, management, education, and administration.By the time you graduate, you’ll possess a broad, high-level perspective on \\r\\nhealthcare, as well as deeper knowledge in a specialized area of your \\r\\nchoice..Get Curriculum Details\",\"objectId\":\"program-e19fefa8-ab16-4338-9790-73e16e6a10f8\",\"productSource\":\"2u\",\"productCategory\":\"2U Degree\",\"activeRunKey\":null,\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[\"US\"],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"e045a0f4-aa9e-4ba6-9d5a-6d55bc1cd1f9\",\"productName\":\"Bachelor of Science in Marketing\",\"productSlug\":\"bachelors/maryville-university-bachelor-of-science-in-marketing\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/e045a0f4-aa9e-4ba6-9d5a-6d55bc1cd1f9-d91cfa3559bf.jpg\",\"productType\":\"Bachelors\",\"attributes\":[],\"partnerName\":[\"Maryville University\"],\"partnerKeys\":[\"Maryville\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/8e585adc-f870-4e8f-abe8-e67da192d49c-33b63ce3ca64.png\",\"fullDescription\":\"\",\"shortDescription\":\"\",\"productOverview\":\"There’s never been a more exciting time to be a marketer. As time and \\r\\ndigital technology have transformed the consumer journey, today’s marketers \\r\\nneed more than just wide-ranging knowledge of traditional marketing \\r\\nprinciples and business practices. They must also be skilled in search \\r\\nengine marketing (SEM), content management, social media engagement, data \\r\\nanalytics, multimedia, and basic user experience (UX) design.That’s why Maryville University has developed its online Bachelor of \\r\\nScience in Marketing program to prepare you with the skills, knowledge, and \\r\\ntools to face the challenges ahead, whether you’re just starting out or \\r\\nlooking to take your marketing career to the next level.Get Curriculum Details\",\"objectId\":\"program-e045a0f4-aa9e-4ba6-9d5a-6d55bc1cd1f9\",\"productSource\":\"2u\",\"productCategory\":\"2U Degree\",\"activeRunKey\":null,\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[\"US\"],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"da3a0dc4-f697-48fd-bc7d-44c208608dd5\",\"productName\":\"Bachelor of Science in Finance\",\"productSlug\":\"bachelors/maryville-university-bachelor-of-science-in-finance\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/da3a0dc4-f697-48fd-bc7d-44c208608dd5-ee908aa2ace2.jpg\",\"productType\":\"Bachelors\",\"attributes\":[],\"partnerName\":[\"Maryville University\"],\"partnerKeys\":[\"Maryville\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/8e585adc-f870-4e8f-abe8-e67da192d49c-33b63ce3ca64.png\",\"fullDescription\":\"\",\"shortDescription\":\"\",\"productOverview\":\"Maryville University offers a unique online bachelor’s in finance degree. \\r\\nDeveloped with input from industry leaders, our 100% online program blends \\r\\nfinance insights with key marketing and management skills to give you a \\r\\nbroad perspective on driving organizational success.First, you’ll build a strong core of business skills. From there, you’ll \\r\\nstudy advanced financial theory in courses that cover financial \\r\\ninstitutions, securities and investments, money and banking, portfolio \\r\\nmanagement, and more. Myriad electives give you options to develop \\r\\nadditional skills in marketing or even prepare to take the Securities \\r\\nIndustry Essentials (SIE) Exam.Are you ready to start or advance your career in the exciting world of \\r\\nfinance? Find out more and apply today.Get Curriculum Details\",\"objectId\":\"program-da3a0dc4-f697-48fd-bc7d-44c208608dd5\",\"productSource\":\"2u\",\"productCategory\":\"2U Degree\",\"activeRunKey\":null,\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[\"US\"],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"b6223778-8769-407a-85e3-3f167d170d24\",\"productName\":\"Bachelor of Science in Accounting\",\"productSlug\":\"bachelors/maryville-university-bachelor-of-science-in-accounting\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/b6223778-8769-407a-85e3-3f167d170d24-9d74111d9b19.jpg\",\"productType\":\"Bachelors\",\"attributes\":[],\"partnerName\":[\"Maryville University\"],\"partnerKeys\":[\"Maryville\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/8e585adc-f870-4e8f-abe8-e67da192d49c-33b63ce3ca64.png\",\"fullDescription\":\"\",\"shortDescription\":\"\",\"productOverview\":\"In business, success is measured in numbers — revenue, expenses, profit, \\r\\nand loss. That’s why accounting professionals who master this discipline \\r\\nare in high demand.\\r\\n\\r\\nNow, start your accounting career off strong with an online Bachelor of \\r\\nScience in Accounting degree from Maryville University. With a \\r\\ncomprehensive curriculum and convenient online format, this popular business degree program provides the skills, experience, and expertise you need to foster \\r\\nfinancial success in any industry.\\r\\n\\r\\nGet Curriculum Details\",\"objectId\":\"program-b6223778-8769-407a-85e3-3f167d170d24\",\"productSource\":\"2u\",\"productCategory\":\"2U Degree\",\"activeRunKey\":null,\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[\"US\"],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"b02e0669-8a7c-4c2b-982d-1d4f3be0f739\",\"productName\":\"Bachelor of Science in Data Science\",\"productSlug\":\"bachelors/maryville-university-bachelor-of-science-in-data-science\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/b02e0669-8a7c-4c2b-982d-1d4f3be0f739-781aa99abdfb.jpg\",\"productType\":\"Bachelors\",\"attributes\":[],\"partnerName\":[\"Maryville University\"],\"partnerKeys\":[\"Maryville\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/8e585adc-f870-4e8f-abe8-e67da192d49c-33b63ce3ca64.png\",\"fullDescription\":\"\",\"shortDescription\":\"\",\"productOverview\":\"$444\",\"objectId\":\"program-b02e0669-8a7c-4c2b-982d-1d4f3be0f739\",\"productSource\":\"2u\",\"productCategory\":\"2U Degree\",\"activeRunKey\":null,\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[\"US\"],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"1ff33eeb-a989-4a8a-8f5e-f3f29ca27dbe\",\"productName\":\"Bachelor of Social Work\",\"productSlug\":\"bachelors/maryville-university-bachelor-of-social-work\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/1ff33eeb-a989-4a8a-8f5e-f3f29ca27dbe-405afb0b0f3d.jpg\",\"productType\":\"Bachelors\",\"attributes\":[],\"partnerName\":[\"Maryville University\"],\"partnerKeys\":[\"Maryville\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/8e585adc-f870-4e8f-abe8-e67da192d49c-33b63ce3ca64.png\",\"fullDescription\":\"\",\"shortDescription\":\"\",\"productOverview\":\"Learn to create a world of good — from wherever you are.Social workers advocate for the underrepresented. They teach resilience, \\r\\nand they help people persevere and grow through the most challenging \\r\\ncircumstances. They dedicate their lives to serving those in need — \\r\\nchildren, aging adults, victims of crime or trauma, people suffering from \\r\\naddiction, and those facing challenges related to any dimension of \\r\\ndiversity. They act as advocates for social justice, and they give a voice \\r\\nto marginalized individuals, families, organizations, and communities.As an aspiring social worker, you’re pursuing more than a career. You’re \\r\\npursuing a passion.When you earn your online Bachelor of Social Work from Maryville, you’ll \\r\\nhave the opportunity to enhance your skill set and knowledge base to build \\r\\na meaningful career. Your passion can be your life’s work as you commit \\r\\nyourself to the well-being of others and the greater community good. \\r\\nWe’ll help.\",\"objectId\":\"program-1ff33eeb-a989-4a8a-8f5e-f3f29ca27dbe\",\"productSource\":\"2u\",\"productCategory\":\"2U Degree\",\"activeRunKey\":null,\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[\"US\"],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"075eba3a-3c15-4f32-aae0-99623723b15b\",\"productName\":\"Bachelor of Science in Management Information Systems\",\"productSlug\":\"bachelors/maryville-university-bachelor-of-science-in-management-information-systems\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/075eba3a-3c15-4f32-aae0-99623723b15b-a1a81f1c699d.jpg\",\"productType\":\"Bachelors\",\"attributes\":[],\"partnerName\":[\"Maryville University\"],\"partnerKeys\":[\"Maryville\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/8e585adc-f870-4e8f-abe8-e67da192d49c-33b63ce3ca64.png\",\"fullDescription\":\"\",\"shortDescription\":\"\",\"productOverview\":\"In today’s digital world, organizations large and small need qualified \\r\\nmanagement information systems (MIS) professionals to design and manage the \\r\\ncomputer and network systems they rely on for organizational success.That’s why Maryville University’s 100% online bachelor’s degree in \\r\\nmanagement information systems combines cutting-edge MIS skills with key \\r\\nbusiness insights to help you become an invaluable asset to upper \\r\\nmanagement. You’ll gain practical experience in programming, \\r\\nproblem-solving, project management, analytics, and network security as you \\r\\ndevelop the cross-functional expertise you need to become a technical and \\r\\nstrategic leader in any organization.\",\"objectId\":\"program-075eba3a-3c15-4f32-aae0-99623723b15b\",\"productSource\":\"2u\",\"productCategory\":\"2U Degree\",\"activeRunKey\":null,\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[\"US\"],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"fa80cdf3-5420-4734-94b8-ee5ea1bfedb2\",\"productName\":\"Information Systems\",\"productSlug\":\"bachelors/information-systems-csu-sl\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/fa80cdf3-5420-4734-94b8-ee5ea1bfedb2-797d96a4db64.jpg\",\"productType\":\"Bachelors\",\"attributes\":[\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"Cleveland State University\"],\"partnerKeys\":[\"CSU\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/b15a761c-c7c7-4f52-9000-473ae45ade89-4dc4e1acda3e.png\",\"fullDescription\":\"\",\"shortDescription\":\"\",\"productOverview\":\"$445\",\"objectId\":\"program-fa80cdf3-5420-4734-94b8-ee5ea1bfedb2\",\"productSource\":\"shorelight\",\"productCategory\":\"2U Degree\",\"activeRunKey\":null,\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[\"IN\"],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"3ca4bc93-69a5-40d4-9cf2-fdffa3edd89a\",\"productName\":\"Information Systems\",\"productSlug\":\"bachelors/information-systems-uta-sl\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/3ca4bc93-69a5-40d4-9cf2-fdffa3edd89a-406315ebbec2.jpg\",\"productType\":\"Bachelors\",\"attributes\":[\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"University of Utah\"],\"partnerKeys\":[\"UTA\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/893259bc-25b5-4160-b70f-02f8ea4de6a8-65baf2092bb3.png\",\"fullDescription\":\"\",\"shortDescription\":\"\",\"productOverview\":\"$446\",\"objectId\":\"program-3ca4bc93-69a5-40d4-9cf2-fdffa3edd89a\",\"productSource\":\"shorelight\",\"productCategory\":\"2U Degree\",\"activeRunKey\":null,\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[\"IN\"],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"2770c82f-d3dd-4789-9635-f7e27334e06b\",\"productName\":\"Information Systems\",\"productSlug\":\"bachelors/information-systems-adu-sl\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/2770c82f-d3dd-4789-9635-f7e27334e06b-ed5ea8669ccd.jpg\",\"productType\":\"Bachelors\",\"attributes\":[\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"Adelphi University\"],\"partnerKeys\":[\"ADU\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/8a3a7e33-8c13-4de4-8956-539f4b2e3984-575f6fd58281.png\",\"fullDescription\":\"\",\"shortDescription\":\"\",\"productOverview\":\"$447\",\"objectId\":\"program-2770c82f-d3dd-4789-9635-f7e27334e06b\",\"productSource\":\"shorelight\",\"productCategory\":\"2U Degree\",\"activeRunKey\":null,\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[\"IN\"],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"f9414209-c0ac-4572-bb46-2dde155f3a22\",\"productName\":\"Bachelor of Science in Economics and Finance\",\"productSlug\":\"bachelors/universityoflondon-bachelor-of-science-in-economics-and-finance\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/f9414209-c0ac-4572-bb46-2dde155f3a22-5b43b79901c2.png\",\"productType\":\"Bachelors\",\"attributes\":[\"Economics \u0026 Finance\"],\"partnerName\":[\"University of London\",\"The London School of Economics and Political Science\"],\"partnerKeys\":[\"UniversityofLondon\",\"LSE\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/5427ee88-6dba-46ff-8ed8-87b71e3234da-0af1465ab67e.png\",\"fullDescription\":\"\",\"shortDescription\":\"\",\"productOverview\":\"The BSc Economics and Finance programme from the University of London gives you the economic reasoning, quantitative skills and institutional knowledge to solve practical problems in economics and finance. This online programme is designed by academics from the London School of Economics and Political Science (LSE), home to globally renowned finance and economics departments.\",\"objectId\":\"program-f9414209-c0ac-4572-bb46-2dde155f3a22\",\"productSource\":\"2u\",\"productCategory\":\"2U Degree\",\"activeRunKey\":null,\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"e3633b6d-8b23-4a19-8b92-b0a623ffc5f8\",\"productName\":\"Bachelor of Arts in Forensic Psychology\",\"productSlug\":\"bachelors/maryville-university-bachelor-of-arts-in-forensic-psychology\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/e3633b6d-8b23-4a19-8b92-b0a623ffc5f8-a42152662bc2.jpg\",\"productType\":\"Bachelors\",\"attributes\":[],\"partnerName\":[\"Maryville University\"],\"partnerKeys\":[\"Maryville\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/8e585adc-f870-4e8f-abe8-e67da192d49c-33b63ce3ca64.png\",\"fullDescription\":\"\",\"shortDescription\":\"\",\"productOverview\":\"Ready to put your love of psychology to use making a difference in your \\r\\ncommunity? Maryville University’s online Bachelor of Arts in Forensic \\r\\nPsychology program is your opportunity to apply the science of the mind in \\r\\nthe court and corrections systems, social services, and private sector to \\r\\nhelp protect society from crime.This 128-credit online program brings you experiential learning \\r\\nopportunities and coursework in three distinct areas — psychology, criminal \\r\\njustice, and social science — to give you a comprehensive understanding of \\r\\nthe modern forensic psychology landscape. If you’re brave enough to pursue \\r\\na career in this exciting field, we’re here to help you get started.Get Curriculum Details\",\"objectId\":\"program-e3633b6d-8b23-4a19-8b92-b0a623ffc5f8\",\"productSource\":\"2u\",\"productCategory\":\"2U Degree\",\"activeRunKey\":null,\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[\"US\"],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"c106927f-09cc-4b9a-9f8c-c757db45d92a\",\"productName\":\"Bachelor of Science in Economics and Management\",\"productSlug\":\"bachelors/universityoflondon-bachelor-of-science-in-economics-and-management\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/c106927f-09cc-4b9a-9f8c-c757db45d92a-6fe42693bc4d.png\",\"productType\":\"Bachelors\",\"attributes\":[\"Economics \u0026 Finance\"],\"partnerName\":[\"University of London\",\"The London School of Economics and Political Science\"],\"partnerKeys\":[\"UniversityofLondon\",\"LSE\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/5427ee88-6dba-46ff-8ed8-87b71e3234da-0af1465ab67e.png\",\"fullDescription\":\"\",\"shortDescription\":\"\",\"productOverview\":\"The online BSc Economics and Management programme prepares you to apply economic analysis to management practice. As you build economic reasoning skills and an international perspective of management issues, you’ll also cultivate an understanding of the evolving relationships between industries, markets and economies.\",\"objectId\":\"program-c106927f-09cc-4b9a-9f8c-c757db45d92a\",\"productSource\":\"2u\",\"productCategory\":\"2U Degree\",\"activeRunKey\":null,\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"8667372e-53eb-44a9-9dd0-c494e72d7db1\",\"productName\":\"Bachelor of Science in International Relations\",\"productSlug\":\"bachelors/universityoflondon-bachelor-of-science-in-international-relations\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/8667372e-53eb-44a9-9dd0-c494e72d7db1-a1554a3c31f3.png\",\"productType\":\"Bachelors\",\"attributes\":[\"Communication\"],\"partnerName\":[\"University of London\",\"The London School of Economics and Political Science\"],\"partnerKeys\":[\"UniversityofLondon\",\"LSE\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/5427ee88-6dba-46ff-8ed8-87b71e3234da-0af1465ab67e.png\",\"fullDescription\":\"\",\"shortDescription\":\"\",\"productOverview\":\"The BSc International Relations programme from the University of London helps you understand how diverse forces, actors and events shape our global community. This online programme is designed by the London School of Economics and Political Science (LSE)\",\"objectId\":\"program-8667372e-53eb-44a9-9dd0-c494e72d7db1\",\"productSource\":\"2u\",\"productCategory\":\"2U Degree\",\"activeRunKey\":null,\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"6b380029-6a1e-4236-90f2-cccc57990d1a\",\"productName\":\"Bachelor of Science in Economics\",\"productSlug\":\"bachelors/universityoflondon-bachelor-of-science-in-economics\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/6b380029-6a1e-4236-90f2-cccc57990d1a-97285db8bc91.png\",\"productType\":\"Bachelors\",\"attributes\":[\"Economics \u0026 Finance\"],\"partnerName\":[\"University of London\",\"The London School of Economics and Political Science\"],\"partnerKeys\":[\"UniversityofLondon\",\"LSE\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/5427ee88-6dba-46ff-8ed8-87b71e3234da-0af1465ab67e.png\",\"fullDescription\":\"\",\"shortDescription\":\"\",\"productOverview\":\"The online BSc Economics programme gives you a thorough understanding of economic theory, reasoning and analysis. In addition to critical thinking and quantitative skills, you will focus on the practical applications of economics to social issues, policy questions and more.\",\"objectId\":\"program-6b380029-6a1e-4236-90f2-cccc57990d1a\",\"productSource\":\"2u\",\"productCategory\":\"2U Degree\",\"activeRunKey\":null,\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"5e15f5aa-8a0a-4362-833d-1c9875e1ebad\",\"productName\":\"Bachelor of Science in Accounting and Finance\",\"productSlug\":\"bachelors/universityoflondon-bachelor-of-science-in-accounting-and-finance\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/5e15f5aa-8a0a-4362-833d-1c9875e1ebad-bfe666ddc2d9.png\",\"productType\":\"Bachelors\",\"attributes\":[\"Economics \u0026 Finance\"],\"partnerName\":[\"University of London\",\"The London School of Economics and Political Science\"],\"partnerKeys\":[\"UniversityofLondon\",\"LSE\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/5427ee88-6dba-46ff-8ed8-87b71e3234da-0af1465ab67e.png\",\"fullDescription\":\"\",\"shortDescription\":\"\",\"productOverview\":\"The BSc Accounting and Finance programme from the University of London equips you with a practical and highly complementary combination of skills. Designed by the London School of Economics and Political Science, this online programme is ideal for those seeking professional accreditation or applicable knowledge to advance their career.\",\"objectId\":\"program-5e15f5aa-8a0a-4362-833d-1c9875e1ebad\",\"productSource\":\"2u\",\"productCategory\":\"2U Degree\",\"activeRunKey\":null,\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"2fca092d-dfdf-4389-a68f-6023618f63db\",\"productName\":\"Bachelor of Science in Business and Management\",\"productSlug\":\"bachelors/universityoflondon-bachelor-of-science-in-business-and-management\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/2fca092d-dfdf-4389-a68f-6023618f63db-000f08d3fcbd.png\",\"productType\":\"Bachelors\",\"attributes\":[\"Business \u0026 Management\"],\"partnerName\":[\"University of London\",\"The London School of Economics and Political Science\"],\"partnerKeys\":[\"UniversityofLondon\",\"LSE\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/5427ee88-6dba-46ff-8ed8-87b71e3234da-0af1465ab67e.png\",\"fullDescription\":\"\",\"shortDescription\":\"\",\"productOverview\":\"The online BSc Business and Management programme from the University of London prepares students for careers in banking, general management, accountancy and other growing fields. With academic direction from the London School of Economics and Political Science this programme emphasises sought-after creative and strategic problem-solving skills.\",\"objectId\":\"program-2fca092d-dfdf-4389-a68f-6023618f63db\",\"productSource\":\"2u\",\"productCategory\":\"2U Degree\",\"activeRunKey\":null,\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"183bd207-c328-45f7-a80c-959fd358ea78\",\"productName\":\"Bachelor of Science in Mathematics and Economics\",\"productSlug\":\"bachelors/universityoflondon-bachelor-of-science-in-mathematics-and-economics\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/183bd207-c328-45f7-a80c-959fd358ea78-c03943e7f91a.png\",\"productType\":\"Bachelors\",\"attributes\":[\"Economics \u0026 Finance\"],\"partnerName\":[\"University of London\",\"The London School of Economics and Political Science\"],\"partnerKeys\":[\"UniversityofLondon\",\"LSE\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/5427ee88-6dba-46ff-8ed8-87b71e3234da-0af1465ab67e.png\",\"fullDescription\":\"\",\"shortDescription\":\"\",\"productOverview\":\"The online BSc Mathematics and Economics programme from the University of London is designed for students who are passionate about mathematics, particularly its applications in economics, finance and other social science specialisms. This programme is directed by the London School of Economics and Political Science (LSE), one of the foremost social science universities in the world.\",\"objectId\":\"program-183bd207-c328-45f7-a80c-959fd358ea78\",\"productSource\":\"2u\",\"productCategory\":\"2U Degree\",\"activeRunKey\":null,\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"159d1753-d974-4b5b-b657-516805797753\",\"productName\":\"Bachelor of Science in Finance\",\"productSlug\":\"bachelors/universityoflondon-bachelor-of-science-in-finance\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/159d1753-d974-4b5b-b657-516805797753-87f501d767cc.png\",\"productType\":\"Bachelors\",\"attributes\":[\"Economics \u0026 Finance\"],\"partnerName\":[\"University of London\",\"The London School of Economics and Political Science\"],\"partnerKeys\":[\"UniversityofLondon\",\"LSE\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/5427ee88-6dba-46ff-8ed8-87b71e3234da-0af1465ab67e.png\",\"fullDescription\":\"\",\"shortDescription\":\"\",\"productOverview\":\"The online BSc Finance programme from the University of London equips you with a versatile and practical understanding of financial behaviour, markets and decisions.\\r\\n\\r\\nDesigned by academics from the London School of Economics and Political Science (LSE), this degree is heavily informed by current research, policy activity and global financial events.\",\"objectId\":\"program-159d1753-d974-4b5b-b657-516805797753\",\"productSource\":\"2u\",\"productCategory\":\"2U Degree\",\"activeRunKey\":null,\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[],\"organizationLogoOverride\":null},{\"productUuid\":\"123f9327-bfef-459f-8bf2-c53277aa58f8\",\"productName\":\"Bachelor of Science in Data Science and Business Analytics\",\"productSlug\":\"bachelors/universityoflondon-bachelor-of-science-in-data-science-and-business-analytics\",\"productImageUrl\":\"https://prod-discovery.edx-cdn.org/media/programs/card_images/123f9327-bfef-459f-8bf2-c53277aa58f8-60ed48b6667d.png\",\"productType\":\"Bachelors\",\"attributes\":[\"Data Analysis \u0026 Statistics\"],\"partnerName\":[\"University of London\",\"The London School of Economics and Political Science\"],\"partnerKeys\":[\"UniversityofLondon\",\"LSE\"],\"partnerLogoUrl\":\"https://prod-discovery.edx-cdn.org/organization/logos/5427ee88-6dba-46ff-8ed8-87b71e3234da-0af1465ab67e.png\",\"fullDescription\":\"\",\"shortDescription\":\"\",\"productOverview\":\"Study data modelling for trend prediction in The LSE Data Analysis for Management course. Register and earn a certificate of competence from LSE in this online certificate course.\",\"objectId\":\"program-123f9327-bfef-459f-8bf2-c53277aa58f8\",\"productSource\":\"2u\",\"productCategory\":\"2U Degree\",\"activeRunKey\":null,\"childCoursesCount\":0,\"displayOnOrgPage\":true,\"allowedIn\":[],\"blockedIn\":[\"IN\"],\"organizationLogoOverride\":null}]}],\"location\":\"product-catalog\",\"cardFormatSubtype\":\"$undefined\"}]\n"])</script></body></html>

Pages: 1 2 3 4 5 6 7 8 9 10