CINXE.COM
The molecular machinery of regulated cell death | Cell Research
<!DOCTYPE html> <html lang="en" class="grade-c"> <head> <title>The molecular machinery of regulated cell death | Cell Research</title> <link rel="alternate" type="application/rss+xml" href="https://www.nature.com/cr.rss"/> <link rel="preconnect" href="https://cmp.nature.com" crossorigin> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <meta name="applicable-device" content="pc,mobile"> <meta name="viewport" content="width=device-width,initial-scale=1.0,maximum-scale=5,user-scalable=yes"> <meta name="360-site-verification" content="5a2dc4ab3fcb9b0393241ffbbb490480" /> <script data-test="dataLayer"> window.dataLayer = [{"content":{"category":{"contentType":"review article","legacy":{"webtrendsPrimaryArticleType":"reviews","webtrendsSubjectTerms":"cell-death;cell-signalling","webtrendsContentCategory":null,"webtrendsContentCollection":null,"webtrendsContentGroup":"Cell Research","webtrendsContentGroupType":null,"webtrendsContentSubGroup":"Review Article","status":null}},"article":{"doi":"10.1038/s41422-019-0164-5"},"attributes":{"cms":null,"deliveryPlatform":"oscar","copyright":{"open":true,"legacy":{"webtrendsLicenceType":"http://creativecommons.org/licenses/by/4.0/"}}},"contentInfo":{"authors":["Daolin Tang","Rui Kang","Tom Vanden Berghe","Peter Vandenabeele","Guido Kroemer"],"publishedAt":1554336000,"publishedAtString":"2019-04-04","title":"The molecular machinery of regulated cell death","legacy":null,"publishedAtTime":null,"documentType":"aplusplus","subjects":"Cell death,Cell signalling"},"journal":{"pcode":"cr","title":"cell research","volume":"29","issue":"5","id":41422,"publishingModel":"Hybrid Access"},"authorization":{"status":true},"features":[{"name":"furtherReadingSection","present":true}],"collection":null},"page":{"category":{"pageType":"article"},"attributes":{"template":"mosaic","featureFlags":[{"name":"nature-onwards-journey","active":false}],"testGroup":null},"search":null},"privacy":{},"version":"1.0.0","product":null,"session":null,"user":null,"backHalfContent":true,"country":"SG","hasBody":true,"uneditedManuscript":false,"twitterId":["o3xnx","o43y9","o3ef7"],"baiduId":"d38bce82bcb44717ccc29a90c4b781ea","japan":false}]; window.dataLayer.push({ ga4MeasurementId: 'G-ERRNTNZ807', ga360TrackingId: 'UA-71668177-1', twitterId: ['3xnx', 'o43y9', 'o3ef7'], baiduId: 'd38bce82bcb44717ccc29a90c4b781ea', ga4ServerUrl: 'https://collect.nature.com', imprint: 'nature' }); </script> <script> (function(w, d) { w.config = w.config || {}; w.config.mustardcut = false; if (w.matchMedia && w.matchMedia('only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark)').matches) { w.config.mustardcut = true; d.classList.add('js'); d.classList.remove('grade-c'); d.classList.remove('no-js'); } })(window, document.documentElement); </script> <style>@media only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark) { .c-card--major .c-card__title,.u-h1,.u-h2,h1,h2{font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif}.c-article-editorial-summary__container .c-article-editorial-summary__article-title,.c-card__title,.c-reading-companion__figure-title,.u-h3,.u-h4,h3,h4,h5,h6{letter-spacing:-.0117156rem}html{text-size-adjust:100%;box-sizing:border-box;font-size:100%;height:100%;line-height:1.15;overflow-y:scroll}body{background:#eee;color:#222;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:1.125rem;line-height:1.76;margin:0;min-height:100%}details,main{display:block}h1{font-size:2em;margin:.67em 0}a,sup{vertical-align:baseline}a{background-color:transparent;color:#069;overflow-wrap:break-word;text-decoration:underline;text-decoration-skip-ink:auto;word-break:break-word}b{font-weight:bolder}sup{font-size:75%;line-height:0;position:relative;top:-.5em}img{border:0;height:auto;max-width:100%;vertical-align:middle}button,input,select{font-family:inherit;font-size:100%;line-height:1.15;margin:0}button,input{overflow:visible}button,select{text-transform:none}[type=submit],button{-webkit-appearance:button}[type=checkbox]{box-sizing:border-box;padding:0}summary{display:list-item}[hidden]{display:none}.c-card--major .c-card__title,.u-h1,.u-h2,button,h1,h2{font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif}button{border-radius:0;cursor:pointer}.c-card--major .c-card__title,.u-h1,.u-h2,h1,h2{font-weight:700}h1{font-size:2rem;letter-spacing:-.0390625rem;line-height:2.25rem}.c-card--major .c-card__title,.u-h2,h2{font-size:1.5rem;letter-spacing:-.0117156rem;line-height:1.6rem}.u-h3{letter-spacing:-.0117156rem}.c-article-editorial-summary__container .c-article-editorial-summary__article-title,.c-card__title,.c-reading-companion__figure-title,.u-h3,.u-h4,h3,h4,h5,h6{font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:1.25rem;font-weight:700;line-height:1.4rem}.c-article-editorial-summary__container .c-article-editorial-summary__article-title,.c-reading-companion__figure-title,.u-h4,h3,h4,h5,h6{letter-spacing:-.0117156rem}.c-reading-companion__figure-title,.u-h4,h4{font-size:1.125rem}button:focus{outline:3px solid #fece3e;will-change:transform}input+label{padding-left:.5em}nav ol,nav ul{list-style:none none}p:empty{display:none}.sans-serif{font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif}.article-page{background:#fff}.c-article-header{font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;margin-bottom:40px}.c-article-identifiers{color:#6f6f6f;display:flex;flex-wrap:wrap;font-size:1rem;line-height:1.3;list-style:none;margin:0 0 8px;padding:0}.c-article-identifiers__item{border-right:1px solid #6f6f6f;list-style:none;margin-right:8px;padding-right:8px}.c-article-identifiers__item:last-child{border-right:0;margin-right:0;padding-right:0}.c-article-title{font-size:1.5rem;line-height:1.25;margin:0 0 16px}@media only screen and (min-width:768px){.c-article-title{font-size:1.875rem;line-height:1.2}}.c-article-author-list{display:inline;font-size:1rem;list-style:none;margin:0 8px 0 0;padding:0;width:100%}.c-article-author-list__item{display:inline;padding-right:0}.c-article-author-list svg{margin-left:4px}.c-article-author-list__show-more{display:none;margin-right:4px}.c-article-author-list__button,.js .c-article-author-list__item--hide,.js .c-article-author-list__show-more{display:none}.js .c-article-author-list--long .c-article-author-list__show-more,.js .c-article-author-list--long+.c-article-author-list__button{display:inline}@media only screen and (max-width:539px){.js .c-article-author-list__item--hide-small-screen{display:none}.js .c-article-author-list--short .c-article-author-list__show-more,.js .c-article-author-list--short+.c-article-author-list__button{display:inline}}#uptodate-client,.js .c-article-author-list--expanded .c-article-author-list__show-more{display:none!important}.js .c-article-author-list--expanded .c-article-author-list__item--hide-small-screen{display:inline!important}.c-article-author-list__button,.c-button-author-list{background:#ebf1f5;border:4px solid #ebf1f5;border-radius:20px;color:#666;font-size:.875rem;line-height:1.4;padding:2px 11px 2px 8px;text-decoration:none}.c-article-author-list__button svg,.c-button-author-list svg{margin:1px 4px 0 0}.c-article-author-list__button:hover,.c-button-author-list:hover{background:#069;border-color:transparent;color:#fff}.c-article-info-details{font-size:1rem;margin-bottom:8px;margin-top:16px}.c-article-info-details__cite-as{border-left:1px solid #6f6f6f;margin-left:8px;padding-left:8px}.c-article-metrics-bar{display:flex;flex-wrap:wrap;font-size:1rem;line-height:1.3}.c-article-metrics-bar__wrapper{margin:16px 0}.c-article-metrics-bar__item{align-items:baseline;border-right:1px solid #6f6f6f;margin-right:8px}.c-article-metrics-bar__item:last-child{border-right:0}.c-article-metrics-bar__count{font-weight:700;margin:0}.c-article-metrics-bar__label{color:#626262;font-style:normal;font-weight:400;margin:0 10px 0 5px}.c-article-metrics-bar__details{margin:0}.c-article-main-column{font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;margin-right:8.6%;width:60.2%}@media only screen and (max-width:1023px){.c-article-main-column{margin-right:0;width:100%}}.c-article-extras{float:left;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;width:31.2%}@media only screen and (max-width:1023px){.c-article-extras{display:none}}.c-article-associated-content__container .c-article-associated-content__title,.c-article-section__title{border-bottom:2px solid #d5d5d5;font-size:1.25rem;margin:0;padding-bottom:8px}@media only screen and (min-width:768px){.c-article-associated-content__container .c-article-associated-content__title,.c-article-section__title{font-size:1.5rem;line-height:1.24}}.c-article-associated-content__container .c-article-associated-content__title{margin-bottom:8px}.c-article-body p{margin-bottom:24px;margin-top:0}.c-article-section{clear:both}.c-article-section__content{margin-bottom:40px;padding-top:8px}@media only screen and (max-width:1023px){.c-article-section__content{padding-left:0}}.c-article-authors-search{margin-bottom:24px;margin-top:0}.c-article-authors-search__item,.c-article-authors-search__title{font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif}.c-article-authors-search__title{color:#626262;font-size:1.05rem;font-weight:700;margin:0;padding:0}.c-article-authors-search__item{font-size:1rem}.c-article-authors-search__text{margin:0}.c-article-license__badge,c-card__section{margin-top:8px}.c-code-block{border:1px solid #eee;font-family:monospace;margin:0 0 24px;padding:20px}.c-code-block__heading{font-weight:400;margin-bottom:16px}.c-code-block__line{display:block;overflow-wrap:break-word;white-space:pre-wrap}.c-article-share-box__no-sharelink-info{font-size:.813rem;font-weight:700;margin-bottom:24px;padding-top:4px}.c-article-share-box__only-read-input{border:1px solid #d5d5d5;box-sizing:content-box;display:inline-block;font-size:.875rem;font-weight:700;height:24px;margin-bottom:8px;padding:8px 10px}.c-article-share-box__button--link-like{background-color:transparent;border:0;color:#069;cursor:pointer;font-size:.875rem;margin-bottom:8px;margin-left:10px}.c-article-editorial-summary__container{font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:1rem}.c-article-editorial-summary__container .c-article-editorial-summary__content p:last-child{margin-bottom:0}.c-article-editorial-summary__container .c-article-editorial-summary__content--less{max-height:9.5rem;overflow:hidden}.c-article-editorial-summary__container .c-article-editorial-summary__button{background-color:#fff;border:0;color:#069;font-size:.875rem;margin-bottom:16px}.c-article-editorial-summary__container .c-article-editorial-summary__button.active,.c-article-editorial-summary__container .c-article-editorial-summary__button.hover,.c-article-editorial-summary__container .c-article-editorial-summary__button:active,.c-article-editorial-summary__container .c-article-editorial-summary__button:hover{text-decoration:underline;text-decoration-skip-ink:auto}.c-article-associated-content__container .c-article-associated-content__collection-label{font-size:.875rem;line-height:1.4}.c-article-associated-content__container .c-article-associated-content__collection-title{line-height:1.3}.c-context-bar{box-shadow:0 0 10px 0 rgba(51,51,51,.2);position:relative;width:100%}.c-context-bar__title{display:none}.c-reading-companion{clear:both;min-height:389px}.c-reading-companion__sticky{max-width:389px}.c-reading-companion__scroll-pane{margin:0;min-height:200px;overflow:hidden auto}.c-reading-companion__tabs{display:flex;flex-flow:row nowrap;font-size:1rem;list-style:none;margin:0 0 8px;padding:0}.c-reading-companion__tabs>li{flex-grow:1}.c-reading-companion__tab{background-color:#eee;border:1px solid #d5d5d5;border-image:initial;border-left-width:0;color:#069;font-size:1rem;padding:8px 8px 8px 15px;text-align:left;width:100%}.c-reading-companion__tabs li:first-child .c-reading-companion__tab{border-left-width:1px}.c-reading-companion__tab--active{background-color:#fff;border-bottom:1px solid #fff;color:#222;font-weight:700}.c-reading-companion__sections-list{list-style:none;padding:0}.c-reading-companion__figures-list,.c-reading-companion__references-list{list-style:none;min-height:389px;padding:0}.c-reading-companion__sections-list{margin:0 0 8px;min-height:50px}.c-reading-companion__section-item{font-size:1rem;padding:0}.c-reading-companion__section-item a{display:block;line-height:1.5;overflow:hidden;padding:8px 0 8px 16px;text-overflow:ellipsis;white-space:nowrap}.c-reading-companion__figure-item{border-top:1px solid #d5d5d5;font-size:1rem;padding:16px 8px 16px 0}.c-reading-companion__figure-item:first-child{border-top:none;padding-top:8px}.c-reading-companion__reference-item{border-top:1px solid #d5d5d5;font-size:1rem;padding:8px 8px 8px 16px}.c-reading-companion__reference-item:first-child{border-top:none}.c-reading-companion__reference-item a{word-break:break-word}.c-reading-companion__reference-citation{display:inline}.c-reading-companion__reference-links{font-size:.813rem;font-weight:700;list-style:none;margin:8px 0 0;padding:0;text-align:right}.c-reading-companion__reference-links>a{display:inline-block;padding-left:8px}.c-reading-companion__reference-links>a:first-child{display:inline-block;padding-left:0}.c-reading-companion__figure-title{display:block;margin:0 0 8px}.c-reading-companion__figure-links{display:flex;justify-content:space-between;margin:8px 0 0}.c-reading-companion__figure-links>a{align-items:center;display:flex}.c-reading-companion__figure-full-link svg{height:.8em;margin-left:2px}.c-reading-companion__panel{border-top:none;display:none;margin-top:0;padding-top:0}.c-cod,.c-reading-companion__panel--active{display:block}.c-cod{font-size:1rem;width:100%}.c-cod__form{background:#ebf0f3}.c-cod__prompt{font-size:1.125rem;line-height:1.3;margin:0 0 24px}.c-cod__label{display:block;margin:0 0 4px}.c-cod__row{display:flex;margin:0 0 16px}.c-cod__row:last-child{margin:0}.c-cod__input{border:1px solid #d5d5d5;border-radius:2px;flex-basis:75%;flex-shrink:0;margin:0;padding:13px}.c-cod__input--submit{background-color:#069;border:1px solid #069;color:#fff;flex-shrink:1;margin-left:8px;transition:background-color .2s ease-out 0s,color .2s ease-out 0s}.c-cod__input--submit-single{flex-basis:100%;flex-shrink:0;margin:0}.c-cod__input--submit:focus,.c-cod__input--submit:hover{background-color:#fff;color:#069}.c-pdf-download__link .u-icon{padding-top:2px}.c-pdf-download{display:flex;margin-bottom:16px;max-height:48px}@media only screen and (min-width:540px){.c-pdf-download{max-height:none}}@media only screen and (min-width:1024px){.c-pdf-download{max-height:48px}}.c-pdf-download__link{display:flex;flex:1 1 0%}.c-pdf-download__link:hover{text-decoration:none}.c-pdf-download__text{padding-right:4px}@media only screen and (max-width:539px){.c-pdf-download__text{text-transform:capitalize}}@media only screen and (min-width:540px){.c-pdf-download__text{padding-right:8px}}.c-context-bar--sticky .c-pdf-download{display:block;margin-bottom:0;white-space:nowrap}@media only screen and (max-width:539px){.c-pdf-download .u-sticky-visually-hidden{clip:rect(0,0,0,0);border:0;height:1px;margin:-100%;overflow:hidden;padding:0;position:absolute!important;width:1px}}.c-pdf-container{display:flex;justify-content:flex-end}@media only screen and (max-width:539px){.c-pdf-container .c-pdf-download{display:flex;flex-basis:100%}}.c-pdf-container .c-pdf-download+.c-pdf-download{margin-left:16px}.c-article-extras .c-pdf-container .c-pdf-download{width:100%}.c-article-extras .c-pdf-container .c-pdf-download+.c-pdf-download{margin-left:0}@media only screen and (min-width:540px){.c-context-bar--sticky .c-pdf-download__link{align-items:center;flex:1 1 183px}}@media only screen and (max-width:320px){.c-context-bar--sticky .c-pdf-download__link{padding:16px}}.article-page--commercial .c-article-main-column .c-pdf-button__container .c-pdf-download{display:none}@media only screen and (max-width:1023px){.article-page--commercial .c-article-main-column .c-pdf-button__container .c-pdf-download{display:block}}.c-status-message--success{border-bottom:2px solid #00b8b0;justify-content:center;margin-bottom:16px;padding-bottom:8px}.c-recommendations-list__item .c-card{flex-basis:100%}.c-recommendations-list__item .c-card__image{align-items:baseline;flex:1 1 40%;margin:0 0 0 16px;max-width:150px}.c-recommendations-list__item .c-card__image img{border:1px solid #cedbe0;height:auto;min-height:0;position:static}@media only screen and (max-width:1023px){.c-recommendations-list__item .c-card__image{display:none}}.c-card__layout{display:flex;flex:1 1 auto;justify-content:space-between}.c-card__title-recommendation{-webkit-box-orient:vertical;-webkit-line-clamp:4;display:-webkit-box;font-size:1rem;font-weight:700;line-height:1.4;margin:0 0 8px;max-height:5.6em;overflow:hidden!important;text-overflow:ellipsis}.c-card__title-recommendation .c-card__link{color:inherit}.c-card__title-recommendation .c-card__link:hover{text-decoration:underline}.c-card__title-recommendation .MathJax_Display{display:inline!important}.c-card__link:not(.c-card__link--no-block-link):before{z-index:1}.c-article-metrics__heading a,.c-article-metrics__posts .c-card__title a,.c-article-recommendations-card__link{color:inherit}.c-recommendations-column-switch .c-meta{margin-top:auto}.c-article-recommendations-card__meta-type,.c-meta .c-meta__item:first-child{font-weight:700}.c-article-body .c-article-recommendations-card__authors{display:none;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:.875rem;line-height:1.5;margin:0 0 8px}@media only screen and (max-width:539px){.c-article-body .c-article-recommendations-card__authors{display:block;margin:0}}.c-article-metrics__posts .c-card__title{font-size:1.05rem}.c-article-metrics__posts .c-card__title+span{color:#6f6f6f;font-size:1rem}p{overflow-wrap:break-word;word-break:break-word}.c-ad{text-align:center}@media only screen and (min-width:320px){.c-ad{padding:8px}}.c-ad--728x90{background-color:#ccc;display:none}.c-ad--728x90 .c-ad__inner{min-height:calc(1.5em + 94px)}@media only screen and (min-width:768px){.js .c-ad--728x90{display:none}}.c-ad__label{color:#333;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:.875rem;font-weight:400;line-height:1.5;margin-bottom:4px}.c-author-list{color:#6f6f6f;font-family:inherit;font-size:1rem;line-height:inherit;list-style:none;margin:0;padding:0}.c-author-list>li,.c-breadcrumbs>li,.c-footer__links>li,.js .c-author-list,.u-list-comma-separated>li,.u-list-inline>li{display:inline}.c-author-list>li:not(:first-child):not(:last-child):before{content:", "}.c-author-list>li:not(:only-child):last-child:before{content:" & "}.c-author-list--compact{font-size:.875rem;line-height:1.4}.c-author-list--truncated>li:not(:only-child):last-child:before{content:" ... "}.js .c-author-list__hide{display:none;visibility:hidden}.js .c-author-list__hide:first-child+*{margin-block-start:0}.c-meta{color:inherit;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:.875rem;line-height:1.4;list-style:none;margin:0;padding:0}.c-meta--large{font-size:1rem}.c-meta--large .c-meta__item{margin-bottom:8px}.c-meta__item{display:inline-block;margin-bottom:4px}.c-meta__item:not(:last-child){border-right:1px solid #d5d5d5;margin-right:4px;padding-right:4px}@media only screen and (max-width:539px){.c-meta__item--block-sm-max{display:block}.c-meta__item--block-sm-max:not(:last-child){border-right:none;margin-right:0;padding-right:0}}@media only screen and (min-width:1024px){.c-meta__item--block-at-lg{display:block}.c-meta__item--block-at-lg:not(:last-child){border-right:none;margin-right:0;padding-right:0}}.c-meta__type{font-weight:700;text-transform:none}.c-skip-link{background:#069;bottom:auto;color:#fff;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:.875rem;padding:8px;position:absolute;text-align:center;transform:translateY(-100%);z-index:9999}@media (prefers-reduced-motion:reduce){.c-skip-link{transition:top .3s ease-in-out 0s}}@media print{.c-skip-link{display:none}}.c-skip-link:link{color:#fff}.c-status-message{align-items:center;box-sizing:border-box;display:flex;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:1rem;position:relative;width:100%}.c-card__summary>p:last-child,.c-status-message :last-child{margin-bottom:0}.c-status-message--boxed{background-color:#fff;border:1px solid #eee;border-radius:2px;line-height:1.4;padding:16px}.c-status-message__heading{font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:1rem;font-weight:700}.c-status-message__icon{fill:currentcolor;display:inline-block;flex:0 0 auto;height:1.5em;margin-right:8px;transform:translate(0);vertical-align:text-top;width:1.5em}.c-status-message__icon--top{align-self:flex-start}.c-status-message--info .c-status-message__icon{color:#003f8d}.c-status-message--boxed.c-status-message--info{border-bottom:4px solid #003f8d}.c-status-message--error .c-status-message__icon{color:#c40606}.c-status-message--boxed.c-status-message--error{border-bottom:4px solid #c40606}.c-status-message--success .c-status-message__icon{color:#00b8b0}.c-status-message--boxed.c-status-message--success{border-bottom:4px solid #00b8b0}.c-status-message--warning .c-status-message__icon{color:#edbc53}.c-status-message--boxed.c-status-message--warning{border-bottom:4px solid #edbc53}.c-breadcrumbs{color:#000;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:1rem;list-style:none;margin:0;padding:0}.c-breadcrumbs__link{color:#666}svg.c-breadcrumbs__chevron{fill:#888;height:10px;margin:4px 4px 0;width:10px}@media only screen and (max-width:539px){.c-breadcrumbs .c-breadcrumbs__item{display:none}.c-breadcrumbs .c-breadcrumbs__item:last-child,.c-breadcrumbs .c-breadcrumbs__item:nth-last-child(2){display:inline}}.c-card{background-color:transparent;border:0;box-shadow:none;display:flex;flex-direction:column;font-size:14px;min-width:0;overflow:hidden;padding:0;position:relative}.c-card--no-shape{background:0 0;border:0;box-shadow:none}.c-card__image{display:flex;justify-content:center;overflow:hidden;padding-bottom:56.25%;position:relative}@supports (aspect-ratio:1/1){.c-card__image{padding-bottom:0}}.c-card__image img{left:0;min-height:100%;min-width:100%;position:absolute}@supports ((-o-object-fit:cover) or (object-fit:cover)){.c-card__image img{height:100%;object-fit:cover;width:100%}}.c-card__body{flex:1 1 auto;padding:16px}.c-card--no-shape .c-card__body{padding:0}.c-card--no-shape .c-card__body:not(:first-child){padding-top:16px}.c-card__title{letter-spacing:-.01875rem;margin-bottom:8px;margin-top:0}[lang=de] .c-card__title{hyphens:auto}.c-card__summary{line-height:1.4}.c-card__summary>p{margin-bottom:5px}.c-card__summary a{text-decoration:underline}.c-card__link:not(.c-card__link--no-block-link):before{bottom:0;content:"";left:0;position:absolute;right:0;top:0}.c-card--flush .c-card__body{padding:0}.c-card--major{font-size:1rem}.c-card--dark{background-color:#29303c;border-width:0;color:#e3e4e5}.c-card--dark .c-card__title{color:#fff}.c-card--dark .c-card__link,.c-card--dark .c-card__summary a{color:inherit}.c-header{background-color:#fff;border-bottom:5px solid #000;font-size:1rem;line-height:1.4;margin-bottom:16px}.c-header__row{padding:0;position:relative}.c-header__row:not(:last-child){border-bottom:1px solid #eee}.c-header__split{align-items:center;display:flex;justify-content:space-between}.c-header__logo-container{flex:1 1 0px;line-height:0;margin:8px 24px 8px 0}.c-header__logo{transform:translateZ(0)}.c-header__logo img{max-height:32px}.c-header__container{margin:0 auto;max-width:1280px}.c-header__menu{align-items:center;display:flex;flex:0 1 auto;flex-wrap:wrap;font-weight:700;gap:8px 8px;line-height:1.4;list-style:none;margin:0 -8px;padding:0}@media print{.c-header__menu{display:none}}@media only screen and (max-width:1023px){.c-header__menu--hide-lg-max{display:none;visibility:hidden}}.c-header__menu--global{font-weight:400;justify-content:flex-end}.c-header__menu--global svg{display:none;visibility:hidden}.c-header__menu--global svg:first-child+*{margin-block-start:0}@media only screen and (min-width:540px){.c-header__menu--global svg{display:block;visibility:visible}}.c-header__menu--journal{font-size:.875rem;margin:8px 0 8px -8px}@media only screen and (min-width:540px){.c-header__menu--journal{flex-wrap:nowrap;font-size:1rem}}.c-header__item{padding-bottom:0;padding-top:0;position:static}.c-header__item--pipe{border-left:2px solid #eee;padding-left:8px}.c-header__item--padding{padding-bottom:8px;padding-top:8px}@media only screen and (min-width:540px){.c-header__item--dropdown-menu{position:relative}}@media only screen and (min-width:1024px){.c-header__item--hide-lg{display:none;visibility:hidden}}@media only screen and (max-width:767px){.c-header__item--hide-md-max{display:none;visibility:hidden}.c-header__item--hide-md-max:first-child+*{margin-block-start:0}}.c-header__link{align-items:center;color:inherit;display:inline-flex;gap:4px 4px;padding:8px;white-space:nowrap}.c-header__link svg{transition-duration:.2s}.c-header__show-text{display:none;visibility:hidden}.has-tethered .c-header__heading--js-hide:first-child+*{margin-block-start:0}@media only screen and (min-width:540px){.c-header__show-text{display:inline;visibility:visible}}.c-header__dropdown{background-color:#000;border-bottom:1px solid #2f2f2f;color:#eee;font-size:.875rem;line-height:1.2;padding:16px 0}@media print{.c-header__dropdown{display:none}}.c-header__heading{display:inline-block;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:1.25rem;font-weight:400;line-height:1.4;margin-bottom:8px}.c-header__heading--keyline{border-top:1px solid;border-color:#2f2f2f;margin-top:16px;padding-top:16px;width:100%}.c-header__list{display:flex;flex-wrap:wrap;gap:0 16px;list-style:none;margin:0 -8px}.c-header__flush{margin:0 -8px}.c-header__visually-hidden{clip:rect(0,0,0,0);border:0;height:1px;margin:-100%;overflow:hidden;padding:0;position:absolute!important;width:1px}.c-header__search-form{margin-bottom:8px}.c-header__search-layout{display:flex;flex-wrap:wrap;gap:16px 16px}.c-header__search-layout>:first-child{flex:999 1 auto}.c-header__search-layout>*{flex:1 1 auto}.c-header__search-layout--max-width{max-width:720px}.c-header__search-button{align-items:center;background-color:transparent;background-image:none;border:1px solid #fff;border-radius:2px;color:#fff;cursor:pointer;display:flex;font-family:sans-serif;font-size:1rem;justify-content:center;line-height:1.15;margin:0;padding:8px 16px;position:relative;text-decoration:none;transition:all .25s ease 0s,color .25s ease 0s,border-color .25s ease 0s;width:100%}.u-button svg,.u-button--primary svg{fill:currentcolor}.c-header__input,.c-header__select{border:1px solid;border-radius:3px;box-sizing:border-box;font-size:1rem;padding:8px 16px;width:100%}.c-header__select{-webkit-appearance:none;background-image:url("data:image/svg+xml,%3Csvg height='16' viewBox='0 0 16 16' width='16' xmlns='http://www.w3.org/2000/svg'%3E%3Cpath d='m5.58578644 3-3.29289322-3.29289322c-.39052429-.39052429-.39052429-1.02368927 0-1.41421356s1.02368927-.39052429 1.41421356 0l4 4c.39052429.39052429.39052429 1.02368927 0 1.41421356l-4 4c-.39052429.39052429-1.02368927.39052429-1.41421356 0s-.39052429-1.02368927 0-1.41421356z' fill='%23333' fill-rule='evenodd' transform='matrix(0 1 -1 0 11 3)'/%3E%3C/svg%3E");background-position:right .7em top 50%;background-repeat:no-repeat;background-size:1em;box-shadow:0 1px 0 1px rgba(0,0,0,.04);display:block;margin:0;max-width:100%;min-width:150px}@media only screen and (min-width:540px){.c-header__menu--journal .c-header__item--dropdown-menu:last-child .c-header__dropdown.has-tethered{left:auto;right:0}}@media only screen and (min-width:768px){.c-header__menu--journal .c-header__item--dropdown-menu:last-child .c-header__dropdown.has-tethered{left:0;right:auto}}.c-header__dropdown.has-tethered{border-bottom:0;border-radius:0 0 2px 2px;left:0;position:absolute;top:100%;transform:translateY(5px);width:100%;z-index:1}@media only screen and (min-width:540px){.c-header__dropdown.has-tethered{transform:translateY(8px);width:auto}}@media only screen and (min-width:768px){.c-header__dropdown.has-tethered{min-width:225px}}.c-header__dropdown--full-width.has-tethered{padding:32px 0 24px;transform:none;width:100%}.has-tethered .c-header__heading--js-hide{display:none;visibility:hidden}.has-tethered .c-header__list--js-stack{flex-direction:column}.has-tethered .c-header__item--keyline,.has-tethered .c-header__list~.c-header__list .c-header__item:first-child{border-top:1px solid #d5d5d5;margin-top:8px;padding-top:8px}.c-header__item--snid-account-widget{display:flex}.c-header__container{padding:0 4px}.c-header__list{padding:0 12px}.c-header__menu .c-header__link{font-size:14px}.c-header__item--snid-account-widget .c-header__link{padding:8px}.c-header__menu--journal{margin-left:0}@media only screen and (min-width:540px){.c-header__container{padding:0 16px}.c-header__menu--journal{margin-left:-8px}.c-header__menu .c-header__link{font-size:16px}.c-header__link--search{gap:13px 13px}}.u-button{align-items:center;background-color:transparent;background-image:none;border:1px solid #069;border-radius:2px;color:#069;cursor:pointer;display:inline-flex;font-family:sans-serif;font-size:1rem;justify-content:center;line-height:1.3;margin:0;padding:8px;position:relative;text-decoration:none;transition:all .25s ease 0s,color .25s ease 0s,border-color .25s ease 0s;width:auto}.u-button--primary{background-color:#069;background-image:none;border:1px solid #069;color:#fff}.u-button--full-width{display:flex;width:100%}.u-display-none{display:none}.js .u-js-hide,.u-hide{display:none;visibility:hidden}.u-hide:first-child+*{margin-block-start:0}.u-visually-hidden{clip:rect(0,0,0,0);border:0;height:1px;margin:-100%;overflow:hidden;padding:0;position:absolute!important;width:1px}@media print{.u-hide-print{display:none}}@media only screen and (min-width:1024px){.u-hide-at-lg{display:none;visibility:hidden}.u-hide-at-lg:first-child+*{margin-block-start:0}}.u-clearfix:after,.u-clearfix:before{content:"";display:table}.u-clearfix:after{clear:both}.u-color-open-access{color:#b74616}.u-float-left{float:left}.u-icon{fill:currentcolor;display:inline-block;height:1em;transform:translate(0);vertical-align:text-top;width:1em}.u-full-height{height:100%}.u-link-inherit{color:inherit}.u-list-reset{list-style:none;margin:0;padding:0}.u-sans-serif{font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif}.u-text-bold{font-weight:700}.u-container{margin:0 auto;max-width:1280px;padding:0 16px}.u-justify-content-space-between{justify-content:space-between}.u-mt-32{margin-top:32px}.u-mb-8{margin-bottom:8px}.u-mb-16{margin-bottom:16px}.u-mb-24{margin-bottom:24px}.u-mb-32{margin-bottom:32px}.c-nature-box svg+.c-article__button-text,.u-ml-8{margin-left:8px}.u-pa-16{padding:16px}html *,html :after,html :before{box-sizing:inherit}.c-article-section__title,.c-article-title{font-weight:700}.c-card__title{line-height:1.4em}.c-article__button{background-color:#069;border:1px solid #069;border-radius:2px;color:#fff;display:flex;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:.875rem;line-height:1.4;margin-bottom:16px;padding:13px;transition:background-color .2s ease-out 0s,color .2s ease-out 0s}.c-article__button,.c-article__button:hover{text-decoration:none}.c-article__button--inverted,.c-article__button:hover{background-color:#fff;color:#069}.c-article__button--inverted:hover{background-color:#069;color:#fff}.c-header__link{text-decoration:inherit}.grade-c-hide{display:block}.u-lazy-ad-wrapper{background-color:#ccc;display:none;min-height:137px}@media only screen and (min-width:768px){.u-lazy-ad-wrapper{display:block}}.c-nature-box{background-color:#fff;border:1px solid #d5d5d5;border-radius:2px;box-shadow:0 0 5px 0 rgba(51,51,51,.1);line-height:1.3;margin-bottom:24px;padding:16px 16px 3px}.c-nature-box__text{font-size:1rem;margin-bottom:16px}.c-nature-box .c-pdf-download{margin-bottom:16px!important}.c-nature-box--version{background-color:#eee}.c-nature-box__wrapper{transform:translateZ(0)}.c-nature-box__wrapper--placeholder{min-height:165px}.c-pdf-download__link{padding:13px 24px} } </style> <link data-test="critical-css-handler" data-inline-css-source="critical-css" rel="stylesheet" href="/static/css/enhanced-article-a7aac8af10.css" media="print" onload="this.media='only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark)';this.onload=null"> <noscript> <link rel="stylesheet" type="text/css" href="/static/css/enhanced-article-a7aac8af10.css" media="only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark)"> </noscript> <link rel="stylesheet" type="text/css" href="/static/css/article-print-122346e276.css" media="print"> <link rel="apple-touch-icon" sizes="180x180" href=/static/images/favicons/nature/apple-touch-icon-f39cb19454.png> <link rel="icon" type="image/png" sizes="48x48" href=/static/images/favicons/nature/favicon-48x48-b52890008c.png> <link rel="icon" type="image/png" sizes="32x32" href=/static/images/favicons/nature/favicon-32x32-3fe59ece92.png> <link rel="icon" type="image/png" sizes="16x16" href=/static/images/favicons/nature/favicon-16x16-951651ab72.png> <link rel="manifest" href=/static/manifest.json crossorigin="use-credentials"> <link rel="mask-icon" href=/static/images/favicons/nature/safari-pinned-tab-69bff48fe6.svg color="#000000"> <link rel="shortcut icon" href=/static/images/favicons/nature/favicon.ico> <meta name="msapplication-TileColor" content="#000000"> <meta name="msapplication-config" content=/static/browserconfig.xml> <meta name="theme-color" content="#000000"> <meta name="application-name" content="Nature"> <script> (function () { if ( typeof window.CustomEvent === "function" ) return false; function CustomEvent ( event, params ) { params = params || { bubbles: false, cancelable: false, detail: null }; var evt = document.createEvent( 'CustomEvent' ); evt.initCustomEvent( event, params.bubbles, params.cancelable, params.detail ); return evt; } CustomEvent.prototype = window.Event.prototype; window.CustomEvent = CustomEvent; })(); </script> <!-- Google Tag Manager --> <script data-test="gtm-head"> window.initGTM = function() { if (window.config.mustardcut) { (function (w, d, s, l, i) { w[l] = w[l] || []; w[l].push({'gtm.start': new Date().getTime(), event: 'gtm.js'}); var f = d.getElementsByTagName(s)[0], j = d.createElement(s), dl = l != 'dataLayer' ? '&l=' + l : ''; j.async = true; j.src = 'https://www.googletagmanager.com/gtm.js?id=' + i + dl; f.parentNode.insertBefore(j, f); })(window, document, 'script', 'dataLayer', 'GTM-MRVXSHQ'); } } </script> <!-- End Google Tag Manager --> <script> (function(w,d,t) { function cc() { var h = w.location.hostname; if (h.indexOf('preview-www.nature.com') > -1) return; var e = d.createElement(t), s = d.getElementsByTagName(t)[0]; if (h.indexOf('nature.com') > -1) { if (h.indexOf('test-www.nature.com') > -1) { e.src = 'https://cmp.nature.com/production_live/en/consent-bundle-8-74.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } else { e.src = 'https://cmp.nature.com/production_live/en/consent-bundle-8-74.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } } else { e.src = '/static/js/cookie-consent-es5-bundle-cb57c2c98a.js'; e.setAttribute('data-consent', h); } s.insertAdjacentElement('afterend', e); } cc(); })(window,document,'script'); </script> <script id="js-position0"> (function(w, d) { w.idpVerifyPrefix = 'https://verify.nature.com'; w.ra21Host = 'https://wayf.springernature.com'; var moduleSupport = (function() { return 'noModule' in d.createElement('script'); })(); if (w.config.mustardcut === true) { w.loader = { index: 0, registered: [], scripts: [ {src: '/static/js/global-article-es6-bundle-c8a573ca90.js', test: 'global-article-js', module: true}, {src: '/static/js/global-article-es5-bundle-d17603b9e9.js', test: 'global-article-js', nomodule: true}, {src: '/static/js/shared-es6-bundle-4b24791522.js', test: 'shared-js', module: true}, {src: '/static/js/shared-es5-bundle-6766d699d6.js', test: 'shared-js', nomodule: true}, {src: '/static/js/header-150-es6-bundle-5bb959eaa1.js', test: 'header-150-js', module: true}, {src: '/static/js/header-150-es5-bundle-994fde5b1d.js', test: 'header-150-js', nomodule: true} ].filter(function (s) { if (s.src === null) return false; if (moduleSupport && s.nomodule) return false; return !(!moduleSupport && s.module); }), register: function (value) { this.registered.push(value); }, ready: function () { if (this.registered.length === this.scripts.length) { this.registered.forEach(function (fn) { if (typeof fn === 'function') { setTimeout(fn, 0); } }); this.ready = function () {}; } }, insert: function (s) { var t = d.getElementById('js-position' + this.index); if (t && t.insertAdjacentElement) { t.insertAdjacentElement('afterend', s); } else { d.head.appendChild(s); } ++this.index; }, createScript: function (script, beforeLoad) { var s = d.createElement('script'); s.id = 'js-position' + (this.index + 1); s.setAttribute('data-test', script.test); if (beforeLoad) { s.defer = 'defer'; s.onload = function () { if (script.noinit) { loader.register(true); } if (d.readyState === 'interactive' || d.readyState === 'complete') { loader.ready(); } }; } else { s.async = 'async'; } s.src = script.src; return s; }, init: function () { this.scripts.forEach(function (s) { loader.insert(loader.createScript(s, true)); }); d.addEventListener('DOMContentLoaded', function () { loader.ready(); var conditionalScripts; conditionalScripts = [ {match: 'div[data-pan-container]', src: '/static/js/pan-zoom-es6-bundle-464a2af269.js', test: 'pan-zoom-js', module: true }, {match: 'div[data-pan-container]', src: '/static/js/pan-zoom-es5-bundle-98fb9b653b.js', test: 'pan-zoom-js', nomodule: true }, {match: 'math,span.mathjax-tex', src: '/static/js/math-es6-bundle-23597ae350.js', test: 'math-js', module: true}, {match: 'math,span.mathjax-tex', src: '/static/js/math-es5-bundle-6532c6f78b.js', test: 'math-js', nomodule: true} ]; if (conditionalScripts) { conditionalScripts.filter(function (script) { return !!document.querySelector(script.match) && !((moduleSupport && script.nomodule) || (!moduleSupport && script.module)); }).forEach(function (script) { loader.insert(loader.createScript(script)); }); } }, false); } }; loader.init(); } })(window, document); </script> <meta name="robots" content="noarchive"> <meta name="access" content="Yes"> <link rel="search" href="https://www.nature.com/search"> <link rel="search" href="https://www.nature.com/opensearch/opensearch.xml" type="application/opensearchdescription+xml" title="nature.com"> <link rel="search" href="https://www.nature.com/opensearch/request" type="application/sru+xml" title="nature.com"> <script type="application/ld+json">{"mainEntity":{"headline":"The molecular machinery of regulated cell death","description":"Cells may die from accidental cell death (ACD) or regulated cell death (RCD). ACD is a biologically uncontrolled process, whereas RCD involves tightly structured signaling cascades and molecularly defined effector mechanisms. A growing number of novel non-apoptotic forms of RCD have been identified and are increasingly being implicated in various human pathologies. Here, we critically review the current state of the art regarding non-apoptotic types of RCD, including necroptosis, pyroptosis, ferroptosis, entotic cell death, netotic cell death, parthanatos, lysosome-dependent cell death, autophagy-dependent cell death, alkaliptosis and oxeiptosis. The in-depth comprehension of each of these lethal subroutines and their intercellular consequences may uncover novel therapeutic targets for the avoidance of pathogenic cell loss.","datePublished":"2019-04-04T00:00:00Z","dateModified":"2019-04-04T00:00:00Z","pageStart":"347","pageEnd":"364","license":"http://creativecommons.org/licenses/by/4.0/","sameAs":"https://doi.org/10.1038/s41422-019-0164-5","keywords":["Cell death","Cell signalling","Life Sciences","general","Cell Biology"],"image":["https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fs41422-019-0164-5/MediaObjects/41422_2019_164_Fig1_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fs41422-019-0164-5/MediaObjects/41422_2019_164_Fig2_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fs41422-019-0164-5/MediaObjects/41422_2019_164_Fig3_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fs41422-019-0164-5/MediaObjects/41422_2019_164_Fig4_HTML.png"],"isPartOf":{"name":"Cell Research","issn":["1748-7838","1001-0602"],"volumeNumber":"29","@type":["Periodical","PublicationVolume"]},"publisher":{"name":"Nature Publishing Group UK","logo":{"url":"https://www.springernature.com/app-sn/public/images/logo-springernature.png","@type":"ImageObject"},"@type":"Organization"},"author":[{"name":"Daolin Tang","affiliation":[{"name":"Guangzhou Medical University","address":{"name":"The Third Affiliated Hospital, Protein Modification and Degradation Lab, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China","@type":"PostalAddress"},"@type":"Organization"},{"name":"UT Southwestern Medical Center","address":{"name":"Department of Surgery, UT Southwestern Medical Center, Dallas, USA","@type":"PostalAddress"},"@type":"Organization"}],"email":"daolin.tang@utsouthwestern.edu","@type":"Person"},{"name":"Rui Kang","affiliation":[{"name":"UT Southwestern Medical Center","address":{"name":"Department of Surgery, UT Southwestern Medical Center, Dallas, USA","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Tom Vanden Berghe","affiliation":[{"name":"Flanders Institute for Biotechnology","address":{"name":"Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium","@type":"PostalAddress"},"@type":"Organization"},{"name":"Ghent University","address":{"name":"Department for Biomedical Molecular Biology, Ghent University, Ghent, Belgium","@type":"PostalAddress"},"@type":"Organization"},{"name":"University of Antwerp","address":{"name":"Laboratory of Pathophysiology, Faculty of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Peter Vandenabeele","url":"http://orcid.org/0000-0002-6669-8822","affiliation":[{"name":"Flanders Institute for Biotechnology","address":{"name":"Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium","@type":"PostalAddress"},"@type":"Organization"},{"name":"Ghent University","address":{"name":"Department for Biomedical Molecular Biology, Ghent University, Ghent, Belgium","@type":"PostalAddress"},"@type":"Organization"},{"name":"Ghent University","address":{"name":"Methusalem program, Ghent University, Ghent, Belgium","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Guido Kroemer","affiliation":[{"name":"Université Paris Descartes, Sorbonne Paris Cité","address":{"name":"Université Paris Descartes, Sorbonne Paris Cité, Paris, France","@type":"PostalAddress"},"@type":"Organization"},{"name":"Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers","address":{"name":"Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France","@type":"PostalAddress"},"@type":"Organization"},{"name":"Institut National de la Santé et de la Recherche Médicale","address":{"name":"Institut National de la Santé et de la Recherche Médicale, Paris, France","@type":"PostalAddress"},"@type":"Organization"},{"name":"Université Pierre et Marie Curie","address":{"name":"Université Pierre et Marie Curie, Paris, France","@type":"PostalAddress"},"@type":"Organization"},{"name":"Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus","address":{"name":"Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France","@type":"PostalAddress"},"@type":"Organization"},{"name":"Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP","address":{"name":"Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France","@type":"PostalAddress"},"@type":"Organization"},{"name":"Karolinska University Hospital","address":{"name":"Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden","@type":"PostalAddress"},"@type":"Organization"}],"email":"kroemer@orange.fr","@type":"Person"}],"isAccessibleForFree":true,"@type":"ScholarlyArticle"},"@context":"https://schema.org","@type":"WebPage"}</script> <link rel="canonical" href="https://www.nature.com/articles/s41422-019-0164-5"> <meta name="journal_id" content="41422"/> <meta name="dc.title" content="The molecular machinery of regulated cell death"/> <meta name="dc.source" content="Cell Research 2019 29:5"/> <meta name="dc.format" content="text/html"/> <meta name="dc.publisher" content="Nature Publishing Group"/> <meta name="dc.date" content="2019-04-04"/> <meta name="dc.type" content="ReviewPaper"/> <meta name="dc.language" content="En"/> <meta name="dc.copyright" content="2019 The Author(s)"/> <meta name="dc.rights" content="2019 The Author(s)"/> <meta name="dc.rightsAgent" content="journalpermissions@springernature.com"/> <meta name="dc.description" content="Cells may die from accidental cell death (ACD) or regulated cell death (RCD). ACD is a biologically uncontrolled process, whereas RCD involves tightly structured signaling cascades and molecularly defined effector mechanisms. A growing number of novel non-apoptotic forms of RCD have been identified and are increasingly being implicated in various human pathologies. Here, we critically review the current state of the art regarding non-apoptotic types of RCD, including necroptosis, pyroptosis, ferroptosis, entotic cell death, netotic cell death, parthanatos, lysosome-dependent cell death, autophagy-dependent cell death, alkaliptosis and oxeiptosis. The in-depth comprehension of each of these lethal subroutines and their intercellular consequences may uncover novel therapeutic targets for the avoidance of pathogenic cell loss."/> <meta name="prism.issn" content="1748-7838"/> <meta name="prism.publicationName" content="Cell Research"/> <meta name="prism.publicationDate" content="2019-04-04"/> <meta name="prism.volume" content="29"/> <meta name="prism.number" content="5"/> <meta name="prism.section" content="ReviewPaper"/> <meta name="prism.startingPage" content="347"/> <meta name="prism.endingPage" content="364"/> <meta name="prism.copyright" content="2019 The Author(s)"/> <meta name="prism.rightsAgent" content="journalpermissions@springernature.com"/> <meta name="prism.url" content="https://www.nature.com/articles/s41422-019-0164-5"/> <meta name="prism.doi" content="doi:10.1038/s41422-019-0164-5"/> <meta name="citation_pdf_url" content="https://www.nature.com/articles/s41422-019-0164-5.pdf"/> <meta name="citation_fulltext_html_url" content="https://www.nature.com/articles/s41422-019-0164-5"/> <meta name="citation_journal_title" content="Cell Research"/> <meta name="citation_journal_abbrev" content="Cell Res"/> <meta name="citation_publisher" content="Nature Publishing Group"/> <meta name="citation_issn" content="1748-7838"/> <meta name="citation_title" content="The molecular machinery of regulated cell death"/> <meta name="citation_volume" content="29"/> <meta name="citation_issue" content="5"/> <meta name="citation_publication_date" content="2019/05"/> <meta name="citation_online_date" content="2019/04/04"/> <meta name="citation_firstpage" content="347"/> <meta name="citation_lastpage" content="364"/> <meta name="citation_article_type" content="Review Article"/> <meta name="citation_fulltext_world_readable" content=""/> <meta name="citation_language" content="en"/> <meta name="dc.identifier" content="doi:10.1038/s41422-019-0164-5"/> <meta name="DOI" content="10.1038/s41422-019-0164-5"/> <meta name="size" content="661026"/> <meta name="citation_doi" content="10.1038/s41422-019-0164-5"/> <meta name="citation_springer_api_url" content="http://api.springer.com/xmldata/jats?q=doi:10.1038/s41422-019-0164-5&api_key="/> <meta name="description" content="Cells may die from accidental cell death (ACD) or regulated cell death (RCD). ACD is a biologically uncontrolled process, whereas RCD involves tightly structured signaling cascades and molecularly defined effector mechanisms. A growing number of novel non-apoptotic forms of RCD have been identified and are increasingly being implicated in various human pathologies. Here, we critically review the current state of the art regarding non-apoptotic types of RCD, including necroptosis, pyroptosis, ferroptosis, entotic cell death, netotic cell death, parthanatos, lysosome-dependent cell death, autophagy-dependent cell death, alkaliptosis and oxeiptosis. The in-depth comprehension of each of these lethal subroutines and their intercellular consequences may uncover novel therapeutic targets for the avoidance of pathogenic cell loss."/> <meta name="dc.creator" content="Tang, Daolin"/> <meta name="dc.creator" content="Kang, Rui"/> <meta name="dc.creator" content="Berghe, Tom Vanden"/> <meta name="dc.creator" content="Vandenabeele, Peter"/> <meta name="dc.creator" content="Kroemer, Guido"/> <meta name="dc.subject" content="Cell death"/> <meta name="dc.subject" content="Cell signalling"/> <meta name="citation_reference" content="citation_journal_title=Br. J. Cancer; citation_title=Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics; citation_author=JF Kerr, AH Wyllie, AR Currie; citation_volume=26; citation_publication_date=1972; citation_pages=239-257; citation_doi=10.1038/bjc.1972.33; citation_id=CR1"/> <meta name="citation_reference" content="citation_journal_title=Nat. Rev. Mol. Cell Biol.; citation_title=Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins; citation_author=R Singh, A Letai, K Sarosiek; citation_volume=20; citation_publication_date=2019; citation_pages=175-193; citation_doi=10.1038/s41580-018-0089-8; citation_id=CR2"/> <meta name="citation_reference" content="citation_journal_title=Nature; citation_title=Caenorhabditis elegans gene ced-9 protects cells from programmed cell death; citation_author=MO Hengartner, RE Ellis, HR Horvitz; citation_volume=356; citation_publication_date=1992; citation_pages=494-499; citation_doi=10.1038/356494a0; citation_id=CR3"/> <meta name="citation_reference" content="citation_journal_title=Cell; citation_title=C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2; citation_author=MO Hengartner, HR Horvitz; citation_volume=76; citation_publication_date=1994; citation_pages=665-676; citation_doi=10.1016/0092-8674(94)90506-1; citation_id=CR4"/> <meta name="citation_reference" content="citation_journal_title=Development; citation_title=The Caenorhabditis elegans cell death gene ced-4 encodes a novel protein and is expressed during the period of extensive programmed cell death; citation_author=J Yuan, HR Horvitz; citation_volume=116; citation_publication_date=1992; citation_pages=309-320; citation_id=CR5"/> <meta name="citation_reference" content="citation_journal_title=Eur. J. Biochem.; citation_title=Apoptosis signaling by death receptors; citation_author=K Schulze-Osthoff, D Ferrari, M Los, S Wesselborg, ME Peter; citation_volume=254; citation_publication_date=1998; citation_pages=439-459; citation_doi=10.1046/j.1432-1327.1998.2540439.x; citation_id=CR6"/> <meta name="citation_reference" content="citation_journal_title=Physiol. Rev.; citation_title=Apoptosis and dependence receptors: a molecular basis for cellular addiction; citation_author=DE Bredesen, P Mehlen, S Rabizadeh; citation_volume=84; citation_publication_date=2004; citation_pages=411-430; citation_doi=10.1152/physrev.00027.2003; citation_id=CR7"/> <meta name="citation_reference" content="citation_journal_title=Cell Death Differ.; citation_title=Mitochondrial outer membrane permeabilization during apoptosis: the innocent bystander scenario; citation_author=JE Chipuk, L Bouchier-Hayes, DR Green; citation_volume=13; citation_publication_date=2006; citation_pages=1396-1402; citation_doi=10.1038/sj.cdd.4401963; citation_id=CR8"/> <meta name="citation_reference" content="citation_journal_title=Nat. Rev. Mol. Cell Biol.; citation_title=Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy; citation_author=PE Czabotar, G Lessene, A Strasser, JM Adams; citation_volume=15; citation_publication_date=2014; citation_pages=49-63; citation_doi=10.1038/nrm3722; citation_id=CR9"/> <meta name="citation_reference" content="citation_journal_title=Cold Spring Harbor Perspectives in Biology; citation_title=Caspase Functions in Cell Death and Disease: Figure 1; citation_author=David R. McIlwain, Thorsten Berger, Tak W. Mak; citation_volume=7; citation_issue=4; citation_publication_date=2015; citation_pages=a026716; citation_doi=10.1101/cshperspect.a026716; citation_id=CR10"/> <meta name="citation_reference" content="citation_journal_title=Immunity; citation_title=Caspases connect cell-death signaling to organismal homeostasis; citation_author=L Galluzzi, A Lopez-Soto, S Kumar, G Kroemer; citation_volume=44; citation_publication_date=2016; citation_pages=221-231; citation_doi=10.1016/j.immuni.2016.01.020; citation_id=CR11"/> <meta name="citation_reference" content="citation_journal_title=Nat. Rev. Immunol.; citation_title=Regulated cell death and inflammation: an auto-amplification loop causes organ failure; citation_author=A Linkermann, BR Stockwell, S Krautwald, HJ Anders; citation_volume=14; citation_publication_date=2014; citation_pages=759-767; citation_doi=10.1038/nri3743; citation_id=CR12"/> <meta name="citation_reference" content="citation_journal_title=Nat. Rev. Mol. Cell Biol.; citation_title=Regulated necrosis: the expanding network of non-apoptotic cell death pathways; citation_author=T Vanden Berghe, A Linkermann, S Jouan-Lanhouet, H Walczak, P Vandenabeele; citation_volume=15; citation_publication_date=2014; citation_pages=135-147; citation_doi=10.1038/nrm3737; citation_id=CR13"/> <meta name="citation_reference" content="citation_journal_title=Teratology; citation_title=The morphology of various types of cell death in prenatal tissues; citation_author=JU Schweichel, HJ Merker; citation_volume=7; citation_publication_date=1973; citation_pages=253-266; citation_doi=10.1002/tera.1420070306; citation_id=CR14"/> <meta name="citation_reference" content="citation_journal_title=J. Pathol.; citation_title=Shrinkage necrosis: a distinct mode of cellular death; citation_author=JF Kerr; citation_volume=105; citation_publication_date=1971; citation_pages=13-20; citation_doi=10.1002/path.1711050103; citation_id=CR15"/> <meta name="citation_reference" content="citation_journal_title=Mol. Cell; citation_title=Autophagy and the integrated stress response; citation_author=G Kroemer, G Marino, B Levine; citation_volume=40; citation_publication_date=2010; citation_pages=280-293; citation_doi=10.1016/j.molcel.2010.09.023; citation_id=CR16"/> <meta name="citation_reference" content="citation_journal_title=Proc. Natl Acad. Sci. USA; citation_title=Autosis is a Na+,K+-ATPase-regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia-ischemia; citation_author=Y Liu; citation_volume=110; citation_publication_date=2013; citation_pages=20364-20371; citation_doi=10.1073/pnas.1319661110; citation_id=CR17"/> <meta name="citation_reference" content="citation_journal_title=Nature; citation_title=Autophagic cell death restricts chromosomal instability during replicative crisis; citation_author=Joe Nassour, Robert Radford, Adriana Correia, Javier Miralles Fusté, Brigitte Schoell, Anna Jauch, Reuben J. Shaw, Jan Karlseder; citation_volume=565; citation_issue=7741; citation_publication_date=2019; citation_pages=659-663; citation_doi=10.1038/s41586-019-0885-0; citation_id=CR18"/> <meta name="citation_reference" content="citation_journal_title=Nat. Rev. Mol. Cell Biol.; citation_title=Necroptosis in development, inflammation and disease; citation_author=R Weinlich, A Oberst, HM Beere, DR Green; citation_volume=18; citation_publication_date=2017; citation_pages=127-136; citation_doi=10.1038/nrm.2016.149; citation_id=CR19"/> <meta name="citation_reference" content="citation_journal_title=Cell Death Differ.; citation_title=Classification of cell death: recommendations of the Nomenclature Committee on Cell Death; citation_author=G Kroemer; citation_volume=12; citation_publication_date=2005; citation_pages=1463-1467; citation_doi=10.1038/sj.cdd.4401724; citation_id=CR20"/> <meta name="citation_reference" content="citation_journal_title=Cell Death Differ.; citation_title=Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009; citation_author=G Kroemer; citation_volume=16; citation_publication_date=2009; citation_pages=3-11; citation_doi=10.1038/cdd.2008.150; citation_id=CR21"/> <meta name="citation_reference" content="citation_journal_title=Cell Death Differ.; citation_title=Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012; citation_author=L Galluzzi; citation_volume=19; citation_publication_date=2012; citation_pages=107-120; citation_doi=10.1038/cdd.2011.96; citation_id=CR22"/> <meta name="citation_reference" content="citation_journal_title=Cell Death Differ.; citation_title=Essential versus accessory aspects of cell death: recommendations of the NCCD 2015; citation_author=L Galluzzi; citation_volume=22; citation_publication_date=2015; citation_pages=58-73; citation_doi=10.1038/cdd.2014.137; citation_id=CR23"/> <meta name="citation_reference" content="citation_journal_title=Cell Death Differ.; citation_title=Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018; citation_author=L Galluzzi; citation_volume=25; citation_publication_date=2018; citation_pages=486-541; citation_doi=10.1038/s41418-017-0012-4; citation_id=CR24"/> <meta name="citation_reference" content="citation_journal_title=Nature; citation_title=Necroptosis and its role in inflammation; citation_author=M Pasparakis, P Vandenabeele; citation_volume=517; citation_publication_date=2015; citation_pages=311-320; citation_doi=10.1038/nature14191; citation_id=CR25"/> <meta name="citation_reference" content="citation_journal_title=Virology; citation_title=The mode of death of pig kidney cells infected with cowpox virus is governed by the expression of the crmA gene; citation_author=CA Ray, DJ Pickup; citation_volume=217; citation_publication_date=1996; citation_pages=384-391; citation_doi=10.1006/viro.1996.0128; citation_id=CR26"/> <meta name="citation_reference" content="citation_journal_title=J. Immunol.; citation_title=Tumor necrosis factor can induce both apoptic and necrotic forms of cell lysis; citation_author=SM Laster, JG Wood, LR Gooding; citation_volume=141; citation_publication_date=1988; citation_pages=2629-2634; citation_id=CR27"/> <meta name="citation_reference" content="citation_journal_title=Nat. Immunol.; citation_title=Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule; citation_author=N Holler; citation_volume=1; citation_publication_date=2000; citation_pages=489-495; citation_doi=10.1038/82732; citation_id=CR28"/> <meta name="citation_reference" content="citation_journal_title=Proc. Natl Acad. Sci. USA; citation_title=Toll-like receptors activate programmed necrosis in macrophages through a receptor-interacting kinase-3-mediated pathway; citation_author=S He, Y Liang, F Shao, X Wang; citation_volume=108; citation_publication_date=2011; citation_pages=20054-20059; citation_doi=10.1073/pnas.1116302108; citation_id=CR29"/> <meta name="citation_reference" content="citation_journal_title=Cell Host. Microbe.; citation_title=DAI/ZBP1/DLM-1 complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA; citation_author=JW Upton, WJ Kaiser, ES Mocarski; citation_volume=11; citation_publication_date=2012; citation_pages=290-297; citation_doi=10.1016/j.chom.2012.01.016; citation_id=CR30"/> <meta name="citation_reference" content="citation_journal_title=Cell Death Differ.; citation_title=Induction of necroptotic cell death by viral activation of the RIG-I or STING pathway; citation_author=SN Schock; citation_volume=24; citation_publication_date=2017; citation_pages=615-625; citation_doi=10.1038/cdd.2016.153; citation_id=CR31"/> <meta name="citation_reference" content="citation_journal_title=J. Immunol.; citation_title=Intracellular nucleic acid sensing triggers necroptosis through synergistic type I IFN and TNF signaling; citation_author=M Brault, TM Olsen, J Martinez, DB Stetson, A Oberst; citation_volume=200; citation_publication_date=2018; citation_pages=2748-2756; citation_doi=10.4049/jimmunol.1701492; citation_id=CR32"/> <meta name="citation_reference" content="citation_journal_title=Proc. Natl Acad. Sci. USA; citation_title=PUMA amplifies necroptosis signaling by activating cytosolic DNA sensors; citation_author=D Chen; citation_volume=115; citation_publication_date=2018; citation_pages=3930-3935; citation_doi=10.1073/pnas.1717190115; citation_id=CR33"/> <meta name="citation_reference" content="citation_journal_title=J. Immunol.; citation_title=Neutrophil necroptosis is triggered by ligation of adhesion molecules following GM-CSF priming; citation_author=X Wang, Z He, H Liu, S Yousefi, HU Simon; citation_volume=197; citation_publication_date=2016; citation_pages=4090-4100; citation_doi=10.4049/jimmunol.1600051; citation_id=CR34"/> <meta name="citation_reference" content="citation_journal_title=J. Exp. Med.; citation_title=Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor; citation_author=D Vercammen; citation_volume=187; citation_publication_date=1998; citation_pages=1477-1485; citation_doi=10.1084/jem.187.9.1477; citation_id=CR35"/> <meta name="citation_reference" content="citation_journal_title=Nat. Chem. Biol.; citation_title=Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury; citation_author=A Degterev; citation_volume=1; citation_publication_date=2005; citation_pages=112-119; citation_doi=10.1038/nchembio711; citation_id=CR36"/> <meta name="citation_reference" content="citation_journal_title=Nat. Chem. Biol.; citation_title=Identification of RIP1 kinase as a specific cellular target of necrostatins; citation_author=A Degterev; citation_volume=4; citation_publication_date=2008; citation_pages=313-321; citation_doi=10.1038/nchembio.83; citation_id=CR37"/> <meta name="citation_reference" content="citation_journal_title=Science; citation_title=RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis; citation_author=DW Zhang; citation_volume=325; citation_publication_date=2009; citation_pages=332-336; citation_doi=10.1126/science.1172308; citation_id=CR38"/> <meta name="citation_reference" content="citation_journal_title=Cell; citation_title=Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha; citation_author=S He; citation_volume=137; citation_publication_date=2009; citation_pages=1100-1111; citation_doi=10.1016/j.cell.2009.05.021; citation_id=CR39"/> <meta name="citation_reference" content="citation_journal_title=Cell; citation_title=Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation; citation_author=YS Cho; citation_volume=137; citation_publication_date=2009; citation_pages=1112-1123; citation_doi=10.1016/j.cell.2009.05.037; citation_id=CR40"/> <meta name="citation_reference" content="citation_journal_title=Cell; citation_title=Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase; citation_author=L Sun; citation_volume=148; citation_publication_date=2012; citation_pages=213-227; citation_doi=10.1016/j.cell.2011.11.031; citation_id=CR41"/> <meta name="citation_reference" content="citation_journal_title=Proc. Natl Acad. Sci. USA; citation_title=Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis; citation_author=J Zhao; citation_volume=109; citation_publication_date=2012; citation_pages=5322-5327; citation_doi=10.1073/pnas.1200012109; citation_id=CR42"/> <meta name="citation_reference" content="citation_journal_title=Cell; citation_title=The structure of the necrosome RIPK1-RIPK3 core, a human hetero-amyloid signaling complex; citation_author=M Mompean; citation_volume=173; citation_publication_date=2018; citation_pages=1244-1253 e1210; citation_doi=10.1016/j.cell.2018.03.032; citation_id=CR43"/> <meta name="citation_reference" content="citation_journal_title=Cell; citation_title=The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis; citation_author=J Li; citation_volume=150; citation_publication_date=2012; citation_pages=339-350; citation_doi=10.1016/j.cell.2012.06.019; citation_id=CR44"/> <meta name="citation_reference" content="citation_journal_title=Nat. Cell Biol.; citation_title=CHIP controls necroptosis through ubiquitylation- and lysosome-dependent degradation of RIPK3; citation_author=J Seo; citation_volume=18; citation_publication_date=2016; citation_pages=291-302; citation_doi=10.1038/ncb3314; citation_id=CR45"/> <meta name="citation_reference" content="citation_journal_title=Gastroenterology; citation_title=Inhibition of aurora kinase A induces necroptosis in pancreatic carcinoma; citation_author=Y Xie; citation_volume=153; citation_publication_date=2017; citation_pages=1429-1443 e1425; citation_doi=10.1053/j.gastro.2017.07.036; citation_id=CR46"/> <meta name="citation_reference" content="citation_journal_title=Nat. Cell Biol.; citation_title=Ppm1b negatively regulates necroptosis through dephosphorylating Rip3; citation_author=W Chen; citation_volume=17; citation_publication_date=2015; citation_pages=434-444; citation_doi=10.1038/ncb3120; citation_id=CR47"/> <meta name="citation_reference" content="citation_journal_title=Nat. Immunol.; citation_title=The ubiquitin-modifying enzyme A20 restricts ubiquitination of the kinase RIPK3 and protects cells from necroptosis; citation_author=M Onizawa; citation_volume=16; citation_publication_date=2015; citation_pages=618-627; citation_doi=10.1038/ni.3172; citation_id=CR48"/> <meta name="citation_reference" content="citation_journal_title=Cell Host. Microbe.; citation_title=RIP1/RIP3 binding to HSV-1 ICP6 initiates necroptosis to restrict virus propagation in mice; citation_author=Z Huang; citation_volume=17; citation_publication_date=2015; citation_pages=229-242; citation_doi=10.1016/j.chom.2015.01.002; citation_id=CR49"/> <meta name="citation_reference" content="citation_journal_title=Proc. Natl Acad. Sci. USA; citation_title=Interferon-induced RIP1/RIP3-mediated necrosis requires PKR and is licensed by FADD and caspases; citation_author=RJ Thapa; citation_volume=110; citation_publication_date=2013; citation_pages=E3109-E3118; citation_doi=10.1073/pnas.1301218110; citation_id=CR50"/> <meta name="citation_reference" content="citation_journal_title=Nat. Immunol.; citation_title=Type I interferon induces necroptosis in macrophages during infection with Salmonella enterica serovar Typhimurium; citation_author=N Robinson; citation_volume=13; citation_publication_date=2012; citation_pages=954-962; citation_doi=10.1038/ni.2397; citation_id=CR51"/> <meta name="citation_reference" content="citation_journal_title=Mol. Cell; citation_title=Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3; citation_author=H Wang; citation_volume=54; citation_publication_date=2014; citation_pages=133-146; citation_doi=10.1016/j.molcel.2014.03.003; citation_id=CR52"/> <meta name="citation_reference" content="citation_journal_title=Cell Rep; citation_title=MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates; citation_author=Y Dondelinger; citation_volume=7; citation_publication_date=2014; citation_pages=971-981; citation_doi=10.1016/j.celrep.2014.04.026; citation_id=CR53"/> <meta name="citation_reference" content="citation_journal_title=Proc. Natl Acad. Sci. USA; citation_title=Activation of the pseudokinase MLKL unleashes the four-helix bundle domain to induce membrane localization and necroptotic cell death; citation_author=JM Hildebrand; citation_volume=111; citation_publication_date=2014; citation_pages=15072-15077; citation_doi=10.1073/pnas.1408987111; citation_id=CR54"/> <meta name="citation_reference" content="citation_journal_title=Immunity; citation_title=The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism; citation_author=JM Murphy; citation_volume=39; citation_publication_date=2013; citation_pages=443-453; citation_doi=10.1016/j.immuni.2013.06.018; citation_id=CR55"/> <meta name="citation_reference" content="citation_journal_title=Cell Res.; citation_title=Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death; citation_author=X Chen; citation_volume=24; citation_publication_date=2014; citation_pages=105-121; citation_doi=10.1038/cr.2013.171; citation_id=CR56"/> <meta name="citation_reference" content="citation_journal_title=Cell Death Dis.; citation_title=Hsp90 modulates the stability of MLKL and is required for TNF-induced necroptosis; citation_author=XM Zhao; citation_volume=7; citation_publication_date=2016; citation_doi=10.1038/cddis.2015.390; citation_id=CR57"/> <meta name="citation_reference" content="citation_journal_title=Cell Chem Biol; citation_title=Natural product kongensin A is a non-canonical HSP90 inhibitor that blocks RIP3-dependent necroptosis; citation_author=D Li; citation_volume=23; citation_publication_date=2016; citation_pages=257-266; citation_doi=10.1016/j.chembiol.2015.08.018; citation_id=CR58"/> <meta name="citation_reference" content="citation_journal_title=Cell Death Dis.; citation_title=HSP90 activity is required for MLKL oligomerisation and membrane translocation and the induction of necroptotic cell death; citation_author=AV Jacobsen; citation_volume=7; citation_publication_date=2016; citation_doi=10.1038/cddis.2015.386; citation_id=CR59"/> <meta name="citation_reference" content="citation_journal_title=Mol. Cell. Proteomics.; citation_title=An inducible retroviral expression system for tandem affinity purification mass-spectrometry-based proteomics identifies mixed lineage kinase domain-like protein (MLKL) as an heat shock protein 90 (HSP90) client; citation_author=JW Bigenzahn; citation_volume=15; citation_publication_date=2016; citation_pages=1139-1150; citation_doi=10.1074/mcp.O115.055350; citation_id=CR60"/> <meta name="citation_reference" content="citation_journal_title=Mol. Cell; citation_title=MLKL requires the inositol phosphate code to execute necroptosis; citation_author=CM Dovey; citation_volume=70; citation_publication_date=2018; citation_pages=936-948 e937; citation_doi=10.1016/j.molcel.2018.05.010; citation_id=CR61"/> <meta name="citation_reference" content="citation_journal_title=Cell; citation_title=ESCRT-III acts downstream of MLKL to regulate necroptotic cell death and its consequences; citation_author=YN Gong; citation_volume=169; citation_publication_date=2017; citation_pages=286-300 e216; citation_doi=10.1016/j.cell.2017.03.020; citation_id=CR62"/> <meta name="citation_reference" content="citation_journal_title=Immunity; citation_title=MLKL, the protein that mediates necroptosis, also regulates endosomal trafficking and extracellular vesicle generation; citation_author=S Yoon, A Kovalenko, K Bogdanov, D Wallach; citation_volume=47; citation_publication_date=2017; citation_pages=51-65 e57; citation_doi=10.1016/j.immuni.2017.06.001; citation_id=CR63"/> <meta name="citation_reference" content="citation_journal_title=Cell Death Differ.; citation_title=Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features; citation_author=T Vanden Berghe; citation_volume=17; citation_publication_date=2010; citation_pages=922-930; citation_doi=10.1038/cdd.2009.184; citation_id=CR64"/> <meta name="citation_reference" content="citation_journal_title=Cell; citation_title=The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways; citation_author=Z Wang, H Jiang, S Chen, F Du, X Wang; citation_volume=148; citation_publication_date=2012; citation_pages=228-243; citation_doi=10.1016/j.cell.2011.11.030; citation_id=CR65"/> <meta name="citation_reference" content="citation_journal_title=Nat. Commun.; citation_title=RIP1 autophosphorylation is promoted by mitochondrial ROS and is essential for RIP3 recruitment into necrosome; citation_author=Y Zhang; citation_volume=8; citation_publication_date=2017; citation_doi=10.1038/ncomms14329; citation_id=CR66"/> <meta name="citation_reference" content="citation_journal_title=Nat. Cell Biol.; citation_title=RIP3 targets pyruvate dehydrogenase complex to increase aerobic respiration in TNF-induced necroptosis; citation_author=Z Yang; citation_volume=20; citation_publication_date=2018; citation_pages=186-197; citation_doi=10.1038/s41556-017-0022-y; citation_id=CR67"/> <meta name="citation_reference" content="citation_journal_title=Cell Death Dis.; citation_title=Depletion of RIPK3 or MLKL blocks TNF-driven necroptosis and switches towards a delayed RIPK1 kinase-dependent apoptosis; citation_author=Q Remijsen; citation_volume=5; citation_publication_date=2014; citation_doi=10.1038/cddis.2013.531; citation_id=CR68"/> <meta name="citation_reference" content="citation_journal_title=Cell Death Differ.; citation_title=Necroptosis is preceded by nuclear translocation of the signaling proteins that induce it; citation_author=S Yoon, K Bogdanov, A Kovalenko, D Wallach; citation_volume=23; citation_publication_date=2016; citation_pages=253-260; citation_doi=10.1038/cdd.2015.92; citation_id=CR69"/> <meta name="citation_reference" content="citation_journal_title=Commun Biol; citation_title=Nuclear RIPK3 and MLKL contribute to cytosolic necrosome formation and necroptosis; citation_author=K Weber, R Roelandt, I Bruggeman, Y Estornes, P Vandenabeele; citation_volume=1; citation_publication_date=2018; citation_pages=6; citation_doi=10.1038/s42003-017-0007-1; citation_id=CR70"/> <meta name="citation_reference" content="citation_journal_title=Cell Death Dis.; citation_title=Necroptosis and neutrophil-associated disorders; citation_author=X Wang, S Yousefi, HU Simon; citation_volume=9; citation_publication_date=2018; citation_doi=10.1038/s41419-017-0058-8; citation_id=CR71"/> <meta name="citation_reference" content="citation_journal_title=Science; citation_title=Activity of protein kinase RIPK3 determines whether cells die by necroptosis or apoptosis; citation_author=K Newton; citation_volume=343; citation_publication_date=2014; citation_pages=1357-1360; citation_doi=10.1126/science.1249361; citation_id=CR72"/> <meta name="citation_reference" content="citation_journal_title=Nat. Commun.; citation_title=RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL; citation_author=KE Lawlor; citation_volume=6; citation_publication_date=2015; citation_doi=10.1038/ncomms7282; citation_id=CR73"/> <meta name="citation_reference" content="citation_journal_title=Genes Dev.; citation_title=Necroptosis in development and diseases; citation_author=B Shan, H Pan, A Najafov, J Yuan; citation_volume=32; citation_publication_date=2018; citation_pages=327-340; citation_doi=10.1101/gad.312561.118; citation_id=CR74"/> <meta name="citation_reference" content="citation_journal_title=Cell. Mol. Life Sci.; citation_title=Developmental checkpoints guarded by regulated necrosis; citation_author=CP Dillon, B Tummers, K Baran, DR Green; citation_volume=73; citation_publication_date=2016; citation_pages=2125-2136; citation_doi=10.1007/s00018-016-2188-z; citation_id=CR75"/> <meta name="citation_reference" content="citation_journal_title=Annu. Rev. Pathol.; citation_title=Necroptosis: mechanisms and relevance to disease; citation_author=L Galluzzi, O Kepp, FK Chan, G Kroemer; citation_volume=12; citation_publication_date=2017; citation_pages=103-130; citation_doi=10.1146/annurev-pathol-052016-100247; citation_id=CR76"/> <meta name="citation_reference" content="citation_journal_title=Immunity; citation_title=Passenger mutations confound interpretation of all genetically modified congenic mice; citation_author=T Vanden Berghe; citation_volume=43; citation_publication_date=2015; citation_pages=200-209; citation_doi=10.1016/j.immuni.2015.06.011; citation_id=CR77"/> <meta name="citation_reference" content="citation_journal_title=Infect. Immun.; citation_title=Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells; citation_author=SL Fink, BT Cookson; citation_volume=73; citation_publication_date=2005; citation_pages=1907-1916; citation_doi=10.1128/IAI.73.4.1907-1916.2005; citation_id=CR78"/> <meta name="citation_reference" content="citation_journal_title=Mol. Microbiol.; citation_title=Salmonella induces macrophage death by caspase-1-dependent necrosis; citation_author=MA Brennan, BT Cookson; citation_volume=38; citation_publication_date=2000; citation_pages=31-40; citation_doi=10.1046/j.1365-2958.2000.02103.x; citation_id=CR79"/> <meta name="citation_reference" content="citation_journal_title=Proc. Natl Acad. Sci. USA; citation_title=The Salmonella invasin SipB induces macrophage apoptosis by binding to caspase-1; citation_author=D Hersh; citation_volume=96; citation_publication_date=1999; citation_pages=2396-2401; citation_doi=10.1073/pnas.96.5.2396; citation_id=CR80"/> <meta name="citation_reference" content="citation_journal_title=Nat. Rev. Immunol.; citation_title=Inflammasomes: mechanism of assembly, regulation and signalling; citation_author=P Broz, VM Dixit; citation_volume=16; citation_publication_date=2016; citation_pages=407-420; citation_doi=10.1038/nri.2016.58; citation_id=CR81"/> <meta name="citation_reference" content="citation_journal_title=Cell Res.; citation_title=Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis; citation_author=X Chen; citation_volume=26; citation_publication_date=2016; citation_pages=1007-1020; citation_doi=10.1038/cr.2016.100; citation_id=CR82"/> <meta name="citation_reference" content="citation_journal_title=Science Immunology; citation_title=Chemical disruption of the pyroptotic pore-forming protein gasdermin D inhibits inflammatory cell death and sepsis; citation_author=Joseph K. Rathkey, Junjie Zhao, Zhonghua Liu, Yinghua Chen, Jie Yang, Hannah C. Kondolf, Bryan L. Benson, Steven M. Chirieleison, Alex Y. Huang, George R. Dubyak, Tsan S. Xiao, Xiaoxia Li, Derek W. Abbott; citation_volume=3; citation_issue=26; citation_publication_date=2018; citation_pages=eaat2738; citation_doi=10.1126/sciimmunol.aat2738; citation_id=CR83"/> <meta name="citation_reference" content="citation_journal_title=Nature; citation_title=NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux; citation_author=Y He, MY Zeng, D Yang, B Motro, G Nunez; citation_volume=530; citation_publication_date=2016; citation_pages=354-357; citation_doi=10.1038/nature16959; citation_id=CR84"/> <meta name="citation_reference" content="citation_journal_title=Nat. Immunol.; citation_title=The AIM2 inflammasome is critical for innate immunity to Francisella tularensis; citation_author=T Fernandes-Alnemri; citation_volume=11; citation_publication_date=2010; citation_pages=385-393; citation_doi=10.1038/ni.1859; citation_id=CR85"/> <meta name="citation_reference" content="citation_journal_title=Nat. Immunol.; citation_title=The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses; citation_author=VA Rathinam; citation_volume=11; citation_publication_date=2010; citation_pages=395-402; citation_doi=10.1038/ni.1864; citation_id=CR86"/> <meta name="citation_reference" content="citation_journal_title=Nature; citation_title=Non-canonical inflammasome activation targets caspase-11; citation_author=N Kayagaki; citation_volume=479; citation_publication_date=2011; citation_pages=117-121; citation_doi=10.1038/nature10558; citation_id=CR87"/> <meta name="citation_reference" content="citation_journal_title=Nature; citation_title=Inflammatory caspases are innate immune receptors for intracellular LPS; citation_author=J Shi; citation_volume=514; citation_publication_date=2014; citation_pages=187-192; citation_doi=10.1038/nature13683; citation_id=CR88"/> <meta name="citation_reference" content="citation_journal_title=Science; citation_title=Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock; citation_author=JA Hagar, DA Powell, Y Aachoui, RK Ernst, EA Miao; citation_volume=341; citation_publication_date=2013; citation_pages=1250-1253; citation_doi=10.1126/science.1240988; citation_id=CR89"/> <meta name="citation_reference" content="citation_journal_title=Science; citation_title=Noncanonical inflammasome activation by intracellular LPS independent of TLR4; citation_author=N Kayagaki; citation_volume=341; citation_publication_date=2013; citation_pages=1246-1249; citation_doi=10.1126/science.1240248; citation_id=CR90"/> <meta name="citation_reference" content="citation_journal_title=Cell; citation_title=Bacterial outer membrane vesicles mediate cytosolic localization of LPS and caspase-11 activation; citation_author=SK Vanaja; citation_volume=165; citation_publication_date=2016; citation_pages=1106-1119; citation_doi=10.1016/j.cell.2016.04.015; citation_id=CR91"/> <meta name="citation_reference" content="citation_journal_title=Immunity; citation_title=The endotoxin delivery protein HMGB1 mediates caspase-11-dependent lethality in sepsis; citation_author=M Deng; citation_volume=49; citation_publication_date=2018; citation_pages=740-753 e747; citation_doi=10.1016/j.immuni.2018.08.016; citation_id=CR92"/> <meta name="citation_reference" content="citation_journal_title=Cell; citation_title=TRIF licenses caspase-11-dependent NLRP3 inflammasome activation by gram-negative bacteria; citation_author=VA Rathinam; citation_volume=150; citation_publication_date=2012; citation_pages=606-619; citation_doi=10.1016/j.cell.2012.07.007; citation_id=CR93"/> <meta name="citation_reference" content="citation_journal_title=Cell; citation_title=IRGB10 Liberates Bacterial Ligands For Sensing by the AIM2 and Caspase-11-NLRP3 Inflammasomes; citation_author=SM Man; citation_volume=167; citation_publication_date=2016; citation_pages=382-396 e317; citation_doi=10.1016/j.cell.2016.09.012; citation_id=CR94"/> <meta name="citation_reference" content="citation_journal_title=Nature; citation_title=Novel role of PKR in inflammasome activation and HMGB1 release; citation_author=B Lu; citation_volume=488; citation_publication_date=2012; citation_pages=670-674; citation_doi=10.1038/nature11290; citation_id=CR95"/> <meta name="citation_reference" content="citation_journal_title=Nat. Commun.; citation_title=PKM2-dependent glycolysis promotes NLRP3 and AIM2 inflammasome activation; citation_author=M Xie; citation_volume=7; citation_publication_date=2016; citation_doi=10.1038/ncomms13280; citation_id=CR96"/> <meta name="citation_reference" content="citation_journal_title=Nat. Commun.; citation_title=PKM2 regulates the Warburg effect and promotes HMGB1 release in sepsis; citation_author=L Yang; citation_volume=5; citation_publication_date=2014; citation_doi=10.1038/ncomms5436; citation_id=CR97"/> <meta name="citation_reference" content="citation_journal_title=Cell Rep; citation_title=mTORC1-Induced HK1-dependent glycolysis regulates NLRP3 inflammasome activation; citation_author=JS Moon; citation_volume=12; citation_publication_date=2015; citation_pages=102-115; citation_doi=10.1016/j.celrep.2015.05.046; citation_id=CR98"/> <meta name="citation_reference" content="citation_journal_title=Nature; citation_title=Pore-forming activity and structural autoinhibition of the gasdermin family; citation_author=J Ding; citation_volume=535; citation_publication_date=2016; citation_pages=111-116; citation_doi=10.1038/nature18590; citation_id=CR99"/> <meta name="citation_reference" content="citation_journal_title=Nature; citation_title=Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores; citation_author=X Liu; citation_volume=535; citation_publication_date=2016; citation_pages=153-158; citation_doi=10.1038/nature18629; citation_id=CR100"/> <meta name="citation_reference" content="citation_journal_title=Nature; citation_title=Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling; citation_author=N Kayagaki; citation_volume=526; citation_publication_date=2015; citation_pages=666-671; citation_doi=10.1038/nature15541; citation_id=CR101"/> <meta name="citation_reference" content="citation_journal_title=Nature; citation_title=Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death; citation_author=J Shi; citation_volume=526; citation_publication_date=2015; citation_pages=660-665; citation_doi=10.1038/nature15514; citation_id=CR102"/> <meta name="citation_reference" content="citation_journal_title=Cell Res.; citation_title=Gasdermin D is an executor of pyroptosis and required for interleukin-1beta secretion; citation_author=WT He; citation_volume=25; citation_publication_date=2015; citation_pages=1285-1298; citation_doi=10.1038/cr.2015.139; citation_id=CR103"/> <meta name="citation_reference" content="citation_journal_title=J. Exp. Med.; citation_title=Caspase-11 auto-proteolysis is crucial for noncanonical inflammasome activation; citation_author=BL Lee; citation_volume=215; citation_publication_date=2018; citation_pages=2279-2288; citation_doi=10.1084/jem.20180589; citation_id=CR104"/> <meta name="citation_reference" content="citation_journal_title=Cell Host. Microbe.; citation_title=Lipid peroxidation drives gasdermin D-mediated pyroptosis in lethal polymicrobial sepsis; citation_author=R Kang; citation_volume=24; citation_publication_date=2018; citation_pages=97-108 e104; citation_doi=10.1016/j.chom.2018.05.009; citation_id=CR105"/> <meta name="citation_reference" content="citation_journal_title=Science Advances; citation_title=A C9ORF72/SMCR8-containing complex regulates ULK1 and plays a dual role in autophagy; citation_author=Mei Yang, Chen Liang, Kunchithapadam Swaminathan, Stephanie Herrlinger, Fan Lai, Ramin Shiekhattar, Jian-Fu Chen; citation_volume=2; citation_issue=9; citation_publication_date=2016; citation_pages=e1601167; citation_doi=10.1126/sciadv.1601167; citation_id=CR106"/> <meta name="citation_reference" content="citation_journal_title=Science; citation_title=ESCRT-dependent membrane repair negatively regulates pyroptosis downstream of GSDMD activation; citation_author=S Ruhl; citation_volume=362; citation_publication_date=2018; citation_pages=956-960; citation_doi=10.1126/science.aar7607; citation_id=CR107"/> <meta name="citation_reference" content="citation_journal_title=Science; citation_title=Pathogen blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin D and cell death; citation_author=P Orning; citation_volume=362; citation_publication_date=2018; citation_pages=1064-1069; citation_doi=10.1126/science.aau2818; citation_id=CR108"/> <meta name="citation_reference" content="citation_journal_title=Proc. Natl Acad. Sci. USA; citation_title=Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during Yersinia infection; citation_author=J Sarhan; citation_volume=115; citation_publication_date=2018; citation_pages=E10888-E10897; citation_doi=10.1073/pnas.1809548115; citation_id=CR109"/> <meta name="citation_reference" content="citation_journal_title=Nature; citation_title=Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin; citation_author=Y Wang; citation_volume=547; citation_publication_date=2017; citation_pages=99-103; citation_doi=10.1038/nature22393; citation_id=CR110"/> <meta name="citation_reference" content="citation_journal_title=Cell Rep; citation_title=Gasdermin D exerts anti-inflammatory effects by promoting neutrophil death; citation_author=H Kambara; citation_volume=22; citation_publication_date=2018; citation_pages=2924-2936; citation_doi=10.1016/j.celrep.2018.02.067; citation_id=CR111"/> <meta name="citation_reference" content="citation_journal_title=Science Immunology; citation_title=Gasdermin D plays a vital role in the generation of neutrophil extracellular traps; citation_author=Gabriel Sollberger, Axel Choidas, Garth Lawrence Burn, Peter Habenberger, Raffaella Di Lucrezia, Susanne Kordes, Sascha Menninger, Jan Eickhoff, Peter Nussbaumer, Bert Klebl, Renate Krüger, Alf Herzig, Arturo Zychlinsky; citation_volume=3; citation_issue=26; citation_publication_date=2018; citation_pages=eaar6689; citation_doi=10.1126/sciimmunol.aar6689; citation_id=CR112"/> <meta name="citation_reference" content="citation_journal_title=Science Immunology; citation_title=Noncanonical inflammasome signaling elicits gasdermin D–dependent neutrophil extracellular traps; citation_author=Kaiwen W. Chen, Mercedes Monteleone, Dave Boucher, Gabriel Sollberger, Divya Ramnath, Nicholas D. Condon, Jessica B. von Pein, Petr Broz, Matthew J. Sweet, Kate Schroder; citation_volume=3; citation_issue=26; citation_publication_date=2018; citation_pages=eaar6676; citation_doi=10.1126/sciimmunol.aar6676; citation_id=CR113"/> <meta name="citation_reference" content="citation_journal_title=Immunity; citation_title=The pore-forming protein gasdermin D regulates interleukin-1 secretion from living macrophages; citation_author=CL Evavold; citation_volume=48; citation_publication_date=2018; citation_pages=35-44 e36; citation_doi=10.1016/j.immuni.2017.11.013; citation_id=CR114"/> <meta name="citation_reference" content="citation_journal_title=Cell Death & Differentiation; citation_title=Single-cell analysis of pyroptosis dynamics reveals conserved GSDMD-mediated subcellular events that precede plasma membrane rupture; citation_author=Nathalia M. de Vasconcelos, Nina Van Opdenbosch, Hanne Van Gorp, Eef Parthoens, Mohamed Lamkanfi; citation_volume=26; citation_issue=1; citation_publication_date=2018; citation_pages=146-161; citation_doi=10.1038/s41418-018-0106-7; citation_id=CR115"/> <meta name="citation_reference" content="citation_journal_title=Cancer Cell.; citation_title=Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells; citation_author=S Dolma, SL Lessnick, WC Hahn, BR Stockwell; citation_volume=3; citation_publication_date=2003; citation_pages=285-296; citation_doi=10.1016/S1535-6108(03)00050-3; citation_id=CR116"/> <meta name="citation_reference" content="citation_journal_title=Cell; citation_title=Ferroptosis: an iron-dependent form of nonapoptotic cell death; citation_author=SJ Dixon; citation_volume=149; citation_publication_date=2012; citation_pages=1060-1072; citation_doi=10.1016/j.cell.2012.03.042; citation_id=CR117"/> <meta name="citation_reference" content="citation_journal_title=Nat. Cell Biol.; citation_title=Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice; citation_author=JP Friedmann Angeli; citation_volume=16; citation_publication_date=2014; citation_pages=1180-1191; citation_doi=10.1038/ncb3064; citation_id=CR118"/> <meta name="citation_reference" content="citation_journal_title=Redox Biol.; citation_title=BID links ferroptosis to mitochondrial cell death pathways; citation_author=S Neitemeier; citation_volume=12; citation_publication_date=2017; citation_pages=558-570; citation_doi=10.1016/j.redox.2017.03.007; citation_id=CR119"/> <meta name="citation_reference" content="citation_journal_title=Oncotarget; citation_title=Molecular crosstalk between ferroptosis and apoptosis: emerging role of ER stress-induced p53-independent PUMA expression; citation_author=SH Hong; citation_volume=8; citation_publication_date=2017; citation_pages=115164-115178; citation_id=CR120"/> <meta name="citation_reference" content="citation_journal_title=Proc. Natl Acad. Sci. USA; citation_title=Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis; citation_author=WS Yang; citation_volume=113; citation_publication_date=2016; citation_pages=E4966-E4975; citation_doi=10.1073/pnas.1603244113; citation_id=CR121"/> <meta name="citation_reference" content="citation_journal_title=PLoS Biol.; citation_title=Unsolved mysteries: how does lipid peroxidation cause ferroptosis?; citation_author=H Feng, BR Stockwell; citation_volume=16; citation_publication_date=2018; citation_pages=e2006203; citation_doi=10.1371/journal.pbio.2006203; citation_id=CR122"/> <meta name="citation_reference" content="citation_journal_title=Cell Death Differ.; citation_title=Loss of cysteinyl-tRNA synthetase (CARS) induces the transsulfuration pathway and inhibits ferroptosis induced by cystine deprivation; citation_author=M Hayano, WS Yang, CK Corn, NC Pagano, BR Stockwell; citation_volume=23; citation_publication_date=2016; citation_pages=270-278; citation_doi=10.1038/cdd.2015.93; citation_id=CR123"/> <meta name="citation_reference" content="citation_journal_title=Cell; citation_title=Regulation of ferroptotic cancer cell death by GPX4; citation_author=WS Yang; citation_volume=156; citation_publication_date=2014; citation_pages=317-331; citation_doi=10.1016/j.cell.2013.12.010; citation_id=CR124"/> <meta name="citation_reference" content="citation_journal_title=Cell; citation_title=Elucidating compound mechanism of action by network perturbation analysis; citation_author=JH Woo; citation_volume=162; citation_publication_date=2015; citation_pages=441-451; citation_doi=10.1016/j.cell.2015.05.056; citation_id=CR125"/> <meta name="citation_reference" content="citation_journal_title=Bioorg. Med. Chem. Lett.; citation_title=Development of small-molecule probes that selectively kill cells induced to express mutant RAS; citation_author=M Weiwer; citation_volume=22; citation_publication_date=2012; citation_pages=1822-1826; citation_doi=10.1016/j.bmcl.2011.09.047; citation_id=CR126"/> <meta name="citation_reference" content="citation_journal_title=Cell. Mol. Life Sci.; citation_title=Mechanisms of ferroptosis; citation_author=JY Cao, SJ Dixon; citation_volume=73; citation_publication_date=2016; citation_pages=2195-2209; citation_doi=10.1007/s00018-016-2194-1; citation_id=CR127"/> <meta name="citation_reference" content="citation_journal_title=Nat. Chem. Biol.; citation_title=FINO2 initiates ferroptosis through GPX4 inactivation and iron oxidation; citation_author=MM Gaschler; citation_volume=14; citation_publication_date=2018; citation_pages=507-515; citation_doi=10.1038/s41589-018-0031-6; citation_id=CR128"/> <meta name="citation_reference" content="citation_journal_title=J. Clin. Invest.; citation_title=Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma; citation_author=B Hassannia; citation_volume=128; citation_publication_date=2018; citation_pages=3341-3355; citation_doi=10.1172/JCI99032; citation_id=CR129"/> <meta name="citation_reference" content="citation_journal_title=JCI Insight; citation_title=Inhibition of neuronal ferroptosis protects hemorrhagic brain; citation_author=Q Li; citation_volume=2; citation_publication_date=2017; citation_pages=e90777; citation_doi=10.1172/jci.insight.90777; citation_id=CR130"/> <meta name="citation_reference" content="citation_journal_title=Biochem. Biophys. Res. Commun.; citation_title=CISD1 inhibits ferroptosis by protection against mitochondrial lipid peroxidation; citation_author=H Yuan, X Li, X Zhang, R Kang, D Tang; citation_volume=478; citation_publication_date=2016; citation_pages=838-844; citation_doi=10.1016/j.bbrc.2016.08.034; citation_id=CR131"/> <meta name="citation_reference" content="citation_journal_title=Nature; citation_title=RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels; citation_author=N Yagoda; citation_volume=447; citation_publication_date=2007; citation_pages=864-868; citation_doi=10.1038/nature05859; citation_id=CR132"/> <meta name="citation_reference" content="citation_journal_title=Mol. Cell; citation_title=Role of mitochondria in ferroptosis; citation_author=M Gao; citation_volume=73; citation_publication_date=2019; citation_pages=354-363 e353; citation_doi=10.1016/j.molcel.2018.10.042; citation_id=CR133"/> <meta name="citation_reference" content="citation_journal_title=Cell Death Differ.; citation_title=Ferroptosis: process and function; citation_author=Y Xie; citation_volume=23; citation_publication_date=2016; citation_pages=369-379; citation_doi=10.1038/cdd.2015.158; citation_id=CR134"/> <meta name="citation_reference" content="citation_journal_title=Cell Metab.; citation_title=Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death; citation_author=A Seiler; citation_volume=8; citation_publication_date=2008; citation_pages=237-248; citation_doi=10.1016/j.cmet.2008.07.005; citation_id=CR135"/> <meta name="citation_reference" content="citation_journal_title=Free Radic. Biol. Med.; citation_title=Embryonic fibroblasts from Gpx4+/- mice: a novel model for studying the role of membrane peroxidation in biological processes; citation_author=Q Ran; citation_volume=35; citation_publication_date=2003; citation_pages=1101-1109; citation_doi=10.1016/S0891-5849(03)00466-0; citation_id=CR136"/> <meta name="citation_reference" content="citation_journal_title=Blood; citation_title=Glutathione peroxidase 4 prevents necroptosis in mouse erythroid precursors; citation_author=O Canli; citation_volume=127; citation_publication_date=2016; citation_pages=139-148; citation_doi=10.1182/blood-2015-06-654194; citation_id=CR137"/> <meta name="citation_reference" content="citation_journal_title=Chem. Biol.; citation_title=Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells; citation_author=WS Yang, BR Stockwell; citation_volume=15; citation_publication_date=2008; citation_pages=234-245; citation_doi=10.1016/j.chembiol.2008.02.010; citation_id=CR138"/> <meta name="citation_reference" content="citation_journal_title=Nat. Chem. Biol.; citation_title=ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition; citation_author=S Doll; citation_volume=13; citation_publication_date=2017; citation_pages=91-98; citation_doi=10.1038/nchembio.2239; citation_id=CR139"/> <meta name="citation_reference" content="citation_journal_title=Nat. Chem. Biol.; citation_title=Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis; citation_author=VE Kagan; citation_volume=13; citation_publication_date=2017; citation_pages=81-90; citation_doi=10.1038/nchembio.2238; citation_id=CR140"/> <meta name="citation_reference" content="citation_journal_title=Biochem. Biophys. Res. Commun.; citation_title=Identification of ACSL4 as a biomarker and contributor of ferroptosis; citation_author=H Yuan, X Li, X Zhang, R Kang, D Tang; citation_volume=478; citation_publication_date=2016; citation_pages=1338-1343; citation_doi=10.1016/j.bbrc.2016.08.124; citation_id=CR141"/> <meta name="citation_reference" content="citation_journal_title=Cell; citation_title=PEBP1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals; citation_author=SE Wenzel; citation_volume=171; citation_publication_date=2017; citation_pages=628-641 e626; citation_doi=10.1016/j.cell.2017.09.044; citation_id=CR142"/> <meta name="citation_reference" content="citation_journal_title=Hepatology; citation_title=Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells; citation_author=X Sun; citation_volume=63; citation_publication_date=2016; citation_pages=173-184; citation_doi=10.1002/hep.28251; citation_id=CR143"/> <meta name="citation_reference" content="citation_journal_title=Oncogene; citation_title=HSPB1 as a novel regulator of ferroptotic cancer cell death; citation_author=X Sun; citation_volume=34; citation_publication_date=2015; citation_pages=5617-5625; citation_doi=10.1038/onc.2015.32; citation_id=CR144"/> <meta name="citation_reference" content="citation_journal_title=Cancer Res.; citation_title=HSPA5 regulates ferroptotic cell death in cancer cells; citation_author=S Zhu; citation_volume=77; citation_publication_date=2017; citation_pages=2064-2077; citation_doi=10.1158/0008-5472.CAN-16-1979; citation_id=CR145"/> <meta name="citation_reference" content="citation_journal_title=Mol. Cell; citation_title=Glutaminolysis and transferrin regulate ferroptosis; citation_author=M Gao, P Monian, N Quadri, R Ramasamy, X Jiang; citation_volume=59; citation_publication_date=2015; citation_pages=298-308; citation_doi=10.1016/j.molcel.2015.06.011; citation_id=CR146"/> <meta name="citation_reference" content="citation_journal_title=Hepatology; citation_title=Metallothionein-1G facilitates sorafenib resistance through inhibition of ferroptosis; citation_author=X Sun; citation_volume=64; citation_publication_date=2016; citation_pages=488-500; citation_doi=10.1002/hep.28574; citation_id=CR147"/> <meta name="citation_reference" content="citation_journal_title=Mol. Cell; citation_title=NRF2 is a major target of ARF in p53-independent tumor suppression; citation_author=D Chen; citation_volume=68; citation_publication_date=2017; citation_pages=224-232 e224; citation_doi=10.1016/j.molcel.2017.09.009; citation_id=CR148"/> <meta name="citation_reference" content="citation_journal_title=Cancer Lett.; citation_title=Heme oxygenase-1 mediates BAY 11-7085 induced ferroptosis; citation_author=LC Chang; citation_volume=416; citation_publication_date=2018; citation_pages=124-137; citation_doi=10.1016/j.canlet.2017.12.025; citation_id=CR149"/> <meta name="citation_reference" content="citation_journal_title=Oncotarget; citation_title=Heme oxygenase-1 accelerates erastin-induced ferroptotic cell death; citation_author=MY Kwon, E Park, SJ Lee, SW Chung; citation_volume=6; citation_publication_date=2015; citation_pages=24393-24403; citation_id=CR150"/> <meta name="citation_reference" content="citation_journal_title=Nature; citation_title=Ferroptosis as a p53-mediated activity during tumour suppression; citation_author=L Jiang; citation_volume=520; citation_publication_date=2015; citation_pages=57-62; citation_doi=10.1038/nature14344; citation_id=CR151"/> <meta name="citation_reference" content="citation_journal_title=Nature Cell Biology; citation_title=BAP1 links metabolic regulation of ferroptosis to tumour suppression; citation_author=Yilei Zhang, Jiejun Shi, Xiaoguang Liu, Li Feng, Zihua Gong, Pranavi Koppula, Kapil Sirohi, Xu Li, Yongkun Wei, Hyemin Lee, Li Zhuang, Gang Chen, Zhen-Dong Xiao, Mien-Chie Hung, Junjie Chen, Peng Huang, Wei Li, Boyi Gan; citation_volume=20; citation_issue=10; citation_publication_date=2018; citation_pages=1181-1192; citation_doi=10.1038/s41556-018-0178-0; citation_id=CR152"/> <meta name="citation_reference" content="citation_journal_title=Cell Rep; citation_title=The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity; citation_author=Y Xie; citation_volume=20; citation_publication_date=2017; citation_pages=1692-1704; citation_doi=10.1016/j.celrep.2017.07.055; citation_id=CR153"/> <meta name="citation_reference" content="citation_journal_title=Cell Rep; citation_title=p53 suppresses metabolic stress-induced ferroptosis in cancer cells; citation_author=A Tarangelo; citation_volume=22; citation_publication_date=2018; citation_pages=569-575; citation_doi=10.1016/j.celrep.2017.12.077; citation_id=CR154"/> <meta name="citation_reference" content="citation_journal_title=Free Radical Biology and Medicine; citation_title=The tumor suppressor protein p53 and the ferroptosis network; citation_author=Rui Kang, Guido Kroemer, Daolin Tang; citation_volume=133; citation_publication_date=2019; citation_pages=162-168; citation_doi=10.1016/j.freeradbiomed.2018.05.074; citation_id=CR155"/> <meta name="citation_reference" content="citation_journal_title=Genes Dev.; citation_title=An African-specific polymorphism in the TP53 gene impairs p53 tumor suppressor function in a mouse model; citation_author=M Jennis; citation_volume=30; citation_publication_date=2016; citation_pages=918-930; citation_doi=10.1101/gad.275891.115; citation_id=CR156"/> <meta name="citation_reference" content="citation_journal_title=Proc. Natl Acad. Sci. USA; citation_title=Chaperone-mediated autophagy is involved in the execution of ferroptosis; citation_author=Z Wu; citation_volume=116; citation_publication_date=2019; citation_pages=2996-3005; citation_doi=10.1073/pnas.1819728116; citation_id=CR157"/> <meta name="citation_reference" content="citation_journal_title=Cell Res.; citation_title=Ferroptosis is an autophagic cell death process; citation_author=M Gao; citation_volume=26; citation_publication_date=2016; citation_pages=1021-1032; citation_doi=10.1038/cr.2016.95; citation_id=CR158"/> <meta name="citation_reference" content="citation_journal_title=Autophagy.; citation_title=Autophagy promotes ferroptosis by degradation of ferritin; citation_author=W Hou; citation_volume=12; citation_publication_date=2016; citation_pages=1425-1428; citation_doi=10.1080/15548627.2016.1187366; citation_id=CR159"/> <meta name="citation_reference" content="citation_journal_title=Curr. Biol.; citation_title=AMPK-mediated BECN1 phosphorylation promotes ferroptosis by directly blocking system Xc(-) activity; citation_author=X Song; citation_volume=28; citation_publication_date=2018; citation_pages=2388-2399 e2385; citation_doi=10.1016/j.cub.2018.05.094; citation_id=CR160"/> <meta name="citation_reference" content="Zhou, B. et al. Ferroptosis is a type of autophagy-dependent cell death. Sem. Cancer Biol. pii: S1044-579X(19)30006-9. https://doi.org/10.1016/j.semcancer.2019.03.002 (2019)."/> <meta name="citation_reference" content="citation_journal_title=Biochem. Biophys. Res. Commun.; citation_title=Lipid storage and lipophagy regulates ferroptosis; citation_author=Y Bai; citation_volume=508; citation_publication_date=2019; citation_pages=997-1003; citation_doi=10.1016/j.bbrc.2018.12.039; citation_id=CR162"/> <meta name="citation_reference" content="citation_journal_title=Curr Pathobiol Rep; citation_title=Autophagy and ferroptosis - what’s the connection?; citation_author=R Kang, D Tang; citation_volume=5; citation_publication_date=2017; citation_pages=153-159; citation_doi=10.1007/s40139-017-0139-5; citation_id=CR163"/> <meta name="citation_reference" content="citation_journal_title=Cell; citation_title=Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease; citation_author=BR Stockwell; citation_volume=171; citation_publication_date=2017; citation_pages=273-285; citation_doi=10.1016/j.cell.2017.09.021; citation_id=CR164"/> <meta name="citation_reference" content="citation_journal_title=Curr. Top. Med. Chem.; citation_title=Oxytosis: a novel form of programmed cell death; citation_author=S Tan, D Schubert, P Maher; citation_volume=1; citation_publication_date=2001; citation_pages=497-506; citation_doi=10.2174/1568026013394741; citation_id=CR165"/> <meta name="citation_reference" content="citation_journal_title=Brain Res.; citation_title=Calcium-dependent glutamate cytotoxicity in a neuronal cell line; citation_author=TH Murphy, AT Malouf, A Sastre, RL Schnaar, JT Coyle; citation_volume=444; citation_publication_date=1988; citation_pages=325-332; citation_doi=10.1016/0006-8993(88)90941-9; citation_id=CR166"/> <meta name="citation_reference" content="citation_journal_title=Front. Neurosci.; citation_title=Oxytosis/ferroptosis-(Re-) emerging roles for oxidative stress-dependent non-apoptotic cell death in diseases of the central nervous system; citation_author=J Lewerenz, G Ates, A Methner, M Conrad, P Maher; citation_volume=12; citation_publication_date=2018; citation_pages=214; citation_doi=10.3389/fnins.2018.00214; citation_id=CR167"/> <meta name="citation_reference" content="citation_journal_title=Front. Biosci. (Landmark Ed); citation_title=Parthanatos, a messenger of death; citation_author=KK David, SA Andrabi, TM Dawson, VL Dawson; citation_volume=14; citation_publication_date=2009; citation_pages=1116-1128; citation_doi=10.2741/3297; citation_id=CR168"/> <meta name="citation_reference" content="citation_journal_title=J. Biol. Chem.; citation_title=AIFsh, a novel apoptosis-inducing factor (AIF) pro-apoptotic isoform with potential pathological relevance in human cancer; citation_author=C Delettre; citation_volume=281; citation_publication_date=2006; citation_pages=6413-6427; citation_doi=10.1074/jbc.M509884200; citation_id=CR169"/> <meta name="citation_reference" content="citation_journal_title=J. Neurosci.; citation_title=Apoptosis-inducing factor substitutes for caspase executioners in NMDA-triggered excitotoxic neuronal death; citation_author=H Wang; citation_volume=24; citation_publication_date=2004; citation_pages=10963-10973; citation_doi=10.1523/JNEUROSCI.3461-04.2004; citation_id=CR170"/> <meta name="citation_reference" content="citation_journal_title=Nature; citation_title=Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis; citation_author=DW Nicholson; citation_volume=376; citation_publication_date=1995; citation_pages=37-43; citation_doi=10.1038/376037a0; citation_id=CR171"/> <meta name="citation_reference" content="citation_journal_title=Cell; citation_title=Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase; citation_author=M Tewari; citation_volume=81; citation_publication_date=1995; citation_pages=801-809; citation_doi=10.1016/0092-8674(95)90541-3; citation_id=CR172"/> <meta name="citation_reference" content="citation_journal_title=Cell Death Dis.; citation_title=OGG1-initiated base excision repair exacerbates oxidative stress-induced parthanatos; citation_author=R Wang; citation_volume=9; citation_publication_date=2018; citation_doi=10.1038/s41419-018-0680-0; citation_id=CR173"/> <meta name="citation_reference" content="citation_journal_title=Ann. N. Y. Acad. Sci.; citation_title=Mitochondrial and nuclear cross talk in cell death: parthanatos; citation_author=SA Andrabi, TM Dawson, VL Dawson; citation_volume=1147; citation_publication_date=2008; citation_pages=233-241; citation_doi=10.1196/annals.1427.014; citation_id=CR174"/> <meta name="citation_reference" content="citation_journal_title=Nature; citation_title=Molecular characterization of mitochondrial apoptosis-inducing factor; citation_author=SA Susin; citation_volume=397; citation_publication_date=1999; citation_pages=441-446; citation_doi=10.1038/17135; citation_id=CR175"/> <meta name="citation_reference" content="citation_journal_title=Science; citation_title=Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor; citation_author=SW Yu; citation_volume=297; citation_publication_date=2002; citation_pages=259-263; citation_doi=10.1126/science.1072221; citation_id=CR176"/> <meta name="citation_reference" content="citation_journal_title=Sci. Signal.; citation_title=Poly(ADP-ribose) (PAR) binding to apoptosis-inducing factor is critical for PAR polymerase-1-dependent cell death (parthanatos); citation_author=Y Wang; citation_volume=4; citation_publication_date=2011; citation_pages=ra20; citation_id=CR177"/> <meta name="citation_reference" content="citation_journal_title=Proc. Natl Acad. Sci. USA; citation_title=ADP-ribosyl-acceptor hydrolase 3 regulates poly (ADP-ribose) degradation and cell death during oxidative stress; citation_author=M Mashimo, J Kato, J Moss; citation_volume=110; citation_publication_date=2013; citation_pages=18964-18969; citation_doi=10.1073/pnas.1312783110; citation_id=CR178"/> <meta name="citation_reference" content="citation_journal_title=Nat. Med.; citation_title=Iduna protects the brain from glutamate excitotoxicity and stroke by interfering with poly(ADP-ribose) polymer-induced cell death; citation_author=SA Andrabi; citation_volume=17; citation_publication_date=2011; citation_pages=692-699; citation_doi=10.1038/nm.2387; citation_id=CR179"/> <meta name="citation_reference" content="citation_journal_title=Science; citation_title=A nuclease that mediates cell death induced by DNA damage and poly(ADP-ribose) polymerase-1; citation_author=Y. Wang, R. An, G. K. Umanah, H. Park, K. Nambiar, S. M. Eacker, B. Kim, L. Bao, M. M. Harraz, C. Chang, R. Chen, J. E. Wang, T.-I. Kam, J. S. Jeong, Z. Xie, S. Neifert, J. Qian, S. A. Andrabi, S. Blackshaw, H. Zhu, H. Song, G.-l. Ming, V. L. Dawson, T. M. Dawson; citation_volume=354; citation_issue=6308; citation_publication_date=2016; citation_pages=aad6872-aad6872; citation_doi=10.1126/science.aad6872; citation_id=CR180"/> <meta name="citation_reference" content="citation_journal_title=Cell Death Dis.; citation_title=AIF-independent parthanatos in the pathogenesis of dry age-related macular degeneration; citation_author=KH Jang; citation_volume=8; citation_publication_date=2017; citation_doi=10.1038/cddis.2016.437; citation_id=CR181"/> <meta name="citation_reference" content="citation_journal_title=Cell Res.; citation_title=ROS-induced DNA damage and PARP-1 are required for optimal induction of starvation-induced autophagy; citation_author=JM Rodriguez-Vargas; citation_volume=22; citation_publication_date=2012; citation_pages=1181-1198; citation_doi=10.1038/cr.2012.70; citation_id=CR182"/> <meta name="citation_reference" content="citation_journal_title=Brain Res.; citation_title=The role of PARP activation in glutamate-induced necroptosis in HT-22 cells; citation_author=X Xu; citation_volume=1343; citation_publication_date=2010; citation_pages=206-212; citation_doi=10.1016/j.brainres.2010.04.080; citation_id=CR183"/> <meta name="citation_reference" content="citation_journal_title=Cell; citation_title=A nonapoptotic cell death process, entosis, that occurs by cell-in-cell invasion; citation_author=M Overholtzer; citation_volume=131; citation_publication_date=2007; citation_pages=966-979; citation_doi=10.1016/j.cell.2007.10.040; citation_id=CR184"/> <meta name="citation_reference" content="citation_journal_title=Cell Rep; citation_title=Entosis Is Induced by Glucose Starvation; citation_author=JC Hamann; citation_volume=20; citation_publication_date=2017; citation_pages=201-210; citation_doi=10.1016/j.celrep.2017.06.037; citation_id=CR185"/> <meta name="citation_reference" content="Durgan, J. et al. Mitosis can drive cell cannibalism through entosis. Elife https://doi.org/10.7554/eLife.27134 (2017)."/> <meta name="citation_reference" content="citation_journal_title=Cancer Res.; citation_title=Serum-dependent “cannibalism” and autodestruction in cultures of human small cell carcinoma of the lung; citation_author=M Brouwer, L Ley, CA Feltkamp, J Elema, AP Jongsma; citation_volume=44; citation_publication_date=1984; citation_pages=2947-2951; citation_id=CR187"/> <meta name="citation_reference" content="citation_journal_title=Nat. Cell Biol.; citation_title=A non-genetic route to aneuploidy in human cancers; citation_author=M Krajcovic; citation_volume=13; citation_publication_date=2011; citation_pages=324-330; citation_doi=10.1038/ncb2174; citation_id=CR188"/> <meta name="citation_reference" content="citation_journal_title=Biochim. Biophys. Acta Mol. Cell Res.; citation_title=Cancer cell cannibalism: multiple triggers emerge for entosis; citation_author=J Durgan, O Florey; citation_volume=1865; citation_publication_date=2018; citation_pages=831-841; citation_doi=10.1016/j.bbamcr.2018.03.004; citation_id=CR189"/> <meta name="citation_reference" content="citation_journal_title=Biomed J; citation_title=Entosis: the emerging face of non-cell-autonomous type IV programmed death; citation_author=I Martins; citation_volume=40; citation_publication_date=2017; citation_pages=133-140; citation_doi=10.1016/j.bj.2017.05.001; citation_id=CR190"/> <meta name="citation_reference" content="citation_journal_title=Sci. Rep.; citation_title=Impaired formation of homotypic cell-in-cell structures in human tumor cells lacking alpha-catenin expression; citation_author=M Wang; citation_volume=5; citation_publication_date=2015; citation_doi=10.1038/srep12223; citation_id=CR191"/> <meta name="citation_reference" content="citation_journal_title=Cell Res.; citation_title=Induction of entosis by epithelial cadherin expression; citation_author=Q Sun, ES Cibas, H Huang, L Hodgson, M Overholtzer; citation_volume=24; citation_publication_date=2014; citation_pages=1288-1298; citation_doi=10.1038/cr.2014.137; citation_id=CR192"/> <meta name="citation_reference" content="citation_journal_title=Sci. Rep.; citation_title=Mesenchymal stem cells generate distinct functional hybrids in vitro via cell fusion or entosis; citation_author=F Sottile, F Aulicino, I Theka, MP Cosma; citation_volume=6; citation_publication_date=2016; citation_doi=10.1038/srep36863; citation_id=CR193"/> <meta name="citation_reference" content="citation_journal_title=Prostate; citation_title=Androgen receptor enhances entosis, a non-apoptotic cell death, through modulation of Rho/ROCK pathway in prostate cancer cells; citation_author=S Wen, Z Shang, S Zhu, C Chang, Y Niu; citation_volume=73; citation_publication_date=2013; citation_pages=1306-1315; citation_doi=10.1002/pros.22676; citation_id=CR194"/> <meta name="citation_reference" content="citation_journal_title=Cell Res.; citation_title=Competition between human cells by entosis; citation_author=Q Sun; citation_volume=24; citation_publication_date=2014; citation_pages=1299-1310; citation_doi=10.1038/cr.2014.138; citation_id=CR195"/> <meta name="citation_reference" content="citation_journal_title=Mol. Biol. Cell.; citation_title=Regulation of myosin activation during cell-cell contact formation by Par3-Lgl antagonism: entosis without matrix detachment; citation_author=Q Wan; citation_volume=23; citation_publication_date=2012; citation_pages=2076-2091; citation_doi=10.1091/mbc.e11-11-0940; citation_id=CR196"/> <meta name="citation_reference" content="citation_journal_title=J. Mol. Cell Biol.; citation_title=Aurora A orchestrates entosis by regulating a dynamic MCAK-TIP150 interaction; citation_author=P Xia; citation_volume=6; citation_publication_date=2014; citation_pages=240-254; citation_doi=10.1093/jmcb/mju016; citation_id=CR197"/> <meta name="citation_reference" content="citation_journal_title=J. Cell. Biol.; citation_title=MRTF transcription and Ezrin-dependent plasma membrane blebbing are required for entotic invasion; citation_author=LS Hinojosa, M Holst, C Baarlink, R Grosse; citation_volume=216; citation_publication_date=2017; citation_pages=3087-3095; citation_doi=10.1083/jcb.201702010; citation_id=CR198"/> <meta name="citation_reference" content="citation_journal_title=Cell Rep; citation_title=Entosis allows timely elimination of the luminal epithelial barrier for embryo implantation; citation_author=Y Li, X Sun, SK Dey; citation_volume=11; citation_publication_date=2015; citation_pages=358-365; citation_doi=10.1016/j.celrep.2015.03.035; citation_id=CR199"/> <meta name="citation_reference" content="citation_journal_title=J. Mol. Biol.; citation_title=LC3-associated phagocytosis and inflammation; citation_author=BL Heckmann, E Boada-Romero, LD Cunha, J Magne, DR Green; citation_volume=429; citation_publication_date=2017; citation_pages=3561-3576; citation_doi=10.1016/j.jmb.2017.08.012; citation_id=CR200"/> <meta name="citation_reference" content="citation_journal_title=Science; citation_title=Neutrophil extracellular traps kill bacteria; citation_author=V Brinkmann; citation_volume=303; citation_publication_date=2004; citation_pages=1532-1535; citation_doi=10.1126/science.1092385; citation_id=CR201"/> <meta name="citation_reference" content="citation_journal_title=Adv. Exp. Med. Biol.; citation_title=Reactive Oxygen Species, Granulocytes, and NETosis; citation_author=M Arazna, MP Pruchniak, U Demkow; citation_volume=836; citation_publication_date=2015; citation_pages=1-7; citation_id=CR202"/> <meta name="citation_reference" content="citation_journal_title=Front. Immunol.; citation_title=Intercellular interactions as regulators of NETosis; citation_author=NM Kazzaz, G Sule, JS Knight; citation_volume=7; citation_publication_date=2016; citation_pages=453; citation_doi=10.3389/fimmu.2016.00453; citation_id=CR203"/> <meta name="citation_reference" content="citation_journal_title=Cell Death Differ.; citation_title=Dying for a cause: NETosis, mechanisms behind an antimicrobial cell death modality; citation_author=Q Remijsen; citation_volume=18; citation_publication_date=2011; citation_pages=581-588; citation_doi=10.1038/cdd.2011.1; citation_id=CR204"/> <meta name="citation_reference" content="citation_journal_title=Semin. Immunopathol.; citation_title=Molecular mechanisms regulating NETosis in infection and disease; citation_author=N Branzk, V Papayannopoulos; citation_volume=35; citation_publication_date=2013; citation_pages=513-530; citation_doi=10.1007/s00281-013-0384-6; citation_id=CR205"/> <meta name="citation_reference" content="citation_journal_title=Science; citation_title=Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice; citation_author=Jean Albrengues, Mario A. Shields, David Ng, Chun Gwon Park, Alexandra Ambrico, Morgan E. Poindexter, Priya Upadhyay, Dale L. Uyeminami, Arnaud Pommier, Victoria Küttner, Emilis Bružas, Laura Maiorino, Carmelita Bautista, Ellese M. Carmona, Phyllis A. Gimotty, Douglas T. Fearon, Kenneth Chang, Scott K. Lyons, Kent E. Pinkerton, Lloyd C. Trotman, Michael S. Goldberg, Johannes T.-H. Yeh, Mikala Egeblad; citation_volume=361; citation_issue=6409; citation_publication_date=2018; citation_pages=eaao4227; citation_doi=10.1126/science.aao4227; citation_id=CR206"/> <meta name="citation_reference" content="citation_journal_title=Front. Cell. Dev. Biol.; citation_title=Autophagy in neutrophils: from granulopoiesis to neutrophil extracellular traps; citation_author=P Skendros, I Mitroulis, K Ritis; citation_volume=6; citation_publication_date=2018; citation_pages=109; citation_doi=10.3389/fcell.2018.00109; citation_id=CR207"/> <meta name="citation_reference" content="citation_journal_title=Cell Res.; citation_title=Neutrophil extracellular trap cell death requires both autophagy and superoxide generation; citation_author=Q Remijsen; citation_volume=21; citation_publication_date=2011; citation_pages=290-304; citation_doi=10.1038/cr.2010.150; citation_id=CR208"/> <meta name="citation_reference" content="citation_journal_title=Nat. Med.; citation_title=Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo; citation_author=BG Yipp; citation_volume=18; citation_publication_date=2012; citation_pages=1386-1393; citation_doi=10.1038/nm.2847; citation_id=CR209"/> <meta name="citation_reference" content="citation_journal_title=J. Exp. Med.; citation_title=PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps; citation_author=P Li; citation_volume=207; citation_publication_date=2010; citation_pages=1853-1862; citation_doi=10.1084/jem.20100239; citation_id=CR210"/> <meta name="citation_reference" content="citation_journal_title=PLoS One; citation_title=PAD4-mediated neutrophil extracellular trap formation is not required for immunity against influenza infection; citation_author=S Hemmers, JR Teijaro, S Arandjelovic, KA Mowen; citation_volume=6; citation_publication_date=2011; citation_pages=e22043; citation_doi=10.1371/journal.pone.0022043; citation_id=CR211"/> <meta name="citation_reference" content="citation_journal_title=PLoS One; citation_title=Neutrophil extracellular trap formation is associated with IL-1beta and autophagy-related signaling in gout; citation_author=I Mitroulis; citation_volume=6; citation_publication_date=2011; citation_pages=e29318; citation_doi=10.1371/journal.pone.0029318; citation_id=CR212"/> <meta name="citation_reference" content="citation_journal_title=Nat. Commun.; citation_title=Chromatin swelling drives neutrophil extracellular trap release; citation_author=E Neubert; citation_volume=9; citation_publication_date=2018; citation_doi=10.1038/s41467-018-06263-5; citation_id=CR213"/> <meta name="citation_reference" content="citation_journal_title=EBioMedicine; citation_title=Lactoferrin suppresses neutrophil extracellular traps release in inflammation; citation_author=K Okubo; citation_volume=10; citation_publication_date=2016; citation_pages=204-215; citation_doi=10.1016/j.ebiom.2016.07.012; citation_id=CR214"/> <meta name="citation_reference" content="citation_journal_title=J. Cell. Sci.; citation_title=Lysosomal cell death at a glance; citation_author=S Aits, M Jaattela; citation_volume=126; citation_publication_date=2013; citation_pages=1905-1912; citation_doi=10.1242/jcs.091181; citation_id=CR215"/> <meta name="citation_reference" content="citation_journal_title=Acta Medica (Hradec. Kralove); citation_title=Apoptosis and cell death (mechanisms, pharmacology and promise for the future); citation_author=J Franko, M Pomfy, T Prosbova; citation_volume=43; citation_publication_date=2000; citation_pages=63-68; citation_id=CR216"/> <meta name="citation_reference" content="citation_journal_title=Nat. Rev. Cancer; citation_title=Lysosomes and autophagy in cell death control; citation_author=G Kroemer, M Jaattela; citation_volume=5; citation_publication_date=2005; citation_pages=886-897; citation_doi=10.1038/nrc1738; citation_id=CR217"/> <meta name="citation_reference" content="citation_journal_title=Biochem. Biophys. Res. Commun.; citation_title=Ferroptosis is a lysosomal cell death process; citation_author=H Gao; citation_volume=503; citation_publication_date=2018; citation_pages=1550-1556; citation_doi=10.1016/j.bbrc.2018.07.078; citation_id=CR218"/> <meta name="citation_reference" content="citation_journal_title=Biochim. Biophys. Acta; citation_title=Lysosomes and lysosomal cathepsins in cell death; citation_author=U Repnik, V Stoka, V Turk, B Turk; citation_volume=1824; citation_publication_date=2012; citation_pages=22-33; citation_doi=10.1016/j.bbapap.2011.08.016; citation_id=CR219"/> <meta name="citation_reference" content="citation_journal_title=Nat. Cell Biol.; citation_title=Stat3 controls lysosomal-mediated cell death in vivo; citation_author=PA Kreuzaler; citation_volume=13; citation_publication_date=2011; citation_pages=303-309; citation_doi=10.1038/ncb2171; citation_id=CR220"/> <meta name="citation_reference" content="citation_journal_title=Oncogene; citation_title=Potential role for cathepsin D in p53-dependent tumor suppression and chemosensitivity; citation_author=GS Wu, P Saftig, C Peters, WS El-Deiry; citation_volume=16; citation_publication_date=1998; citation_pages=2177-2183; citation_doi=10.1038/sj.onc.1201755; citation_id=CR221"/> <meta name="citation_reference" content="citation_journal_title=EMBO J.; citation_title=NF-kappaB protects from the lysosomal pathway of cell death; citation_author=N Liu; citation_volume=22; citation_publication_date=2003; citation_pages=5313-5322; citation_doi=10.1093/emboj/cdg510; citation_id=CR222"/> <meta name="citation_reference" content="citation_journal_title=J. Biol. Chem.; citation_title=Loss of lysosomal ion channel transient receptor potential channel mucolipin-1 (TRPML1) leads to cathepsin B-dependent apoptosis; citation_author=GA Colletti; citation_volume=287; citation_publication_date=2012; citation_pages=8082-8091; citation_doi=10.1074/jbc.M111.285536; citation_id=CR223"/> <meta name="citation_reference" content="citation_journal_title=Antioxid. Redox. Signal.; citation_title=Lysosomal iron, iron chelation, and cell death; citation_author=A Terman, T Kurz; citation_volume=18; citation_publication_date=2013; citation_pages=888-898; citation_doi=10.1089/ars.2012.4885; citation_id=CR224"/> <meta name="citation_reference" content="citation_journal_title=Biochem. J.; citation_title=An essential role for functional lysosomes in ferroptosis of cancer cells; citation_author=S Torii; citation_volume=473; citation_publication_date=2016; citation_pages=769-777; citation_doi=10.1042/BJ20150658; citation_id=CR225"/> <meta name="citation_reference" content="citation_journal_title=J. Cell. Biol.; citation_title=The cell biology of disease: lysosomal storage disorders: the cellular impact of lysosomal dysfunction; citation_author=FM Platt, B Boland, AC Spoel; citation_volume=199; citation_publication_date=2012; citation_pages=723-734; citation_doi=10.1083/jcb.201208152; citation_id=CR226"/> <meta name="citation_reference" content="citation_journal_title=Ageing Res. Rev.; citation_title=Lysosomal cell death mechanisms in aging; citation_author=R Gomez-Sintes, MD Ledesma, P Boya; citation_volume=32; citation_publication_date=2016; citation_pages=150-168; citation_doi=10.1016/j.arr.2016.02.009; citation_id=CR227"/> <meta name="citation_reference" content="citation_journal_title=Nat. Rev. Mol. Cell Biol.; citation_title=Autophagy: from phenomenology to molecular understanding in less than a decade; citation_author=DJ Klionsky; citation_volume=8; citation_publication_date=2007; citation_pages=931-937; citation_doi=10.1038/nrm2245; citation_id=CR228"/> <meta name="citation_reference" content="citation_journal_title=Cell; citation_title=Biological functions of autophagy genes: a disease perspective; citation_author=B Levine, G Kroemer; citation_volume=176; citation_publication_date=2019; citation_pages=11-42; citation_doi=10.1016/j.cell.2018.09.048; citation_id=CR229"/> <meta name="citation_reference" content="citation_journal_title=Nat. Rev. Mol. Cell Biol.; citation_title=Mechanism and medical implications of mammalian autophagy; citation_author=I Dikic, Z Elazar; citation_volume=19; citation_publication_date=2018; citation_pages=349-364; citation_doi=10.1038/s41580-018-0003-4; citation_id=CR230"/> <meta name="citation_reference" content="citation_journal_title=Cell Death Differ.; citation_title=Autosis and autophagic cell death: the dark side of autophagy; citation_author=Y Liu, B Levine; citation_volume=22; citation_publication_date=2015; citation_pages=367-376; citation_doi=10.1038/cdd.2014.143; citation_id=CR231"/> <meta name="citation_reference" content="citation_journal_title=Journal of Cell Science; citation_title=Autophagy-dependent cell death – where, how and why a cell eats itself to death; citation_author=Shani Bialik, Santosh K. Dasari, Adi Kimchi; citation_volume=131; citation_issue=18; citation_publication_date=2018; citation_pages=jcs215152; citation_doi=10.1242/jcs.215152; citation_id=CR232"/> <meta name="citation_reference" content="citation_journal_title=Cell Death & Differentiation; citation_title=Autophagy-dependent cell death; citation_author=Donna Denton, Sharad Kumar; citation_volume=26; citation_issue=4; citation_publication_date=2018; citation_pages=605-616; citation_doi=10.1038/s41418-018-0252-y; citation_id=CR233"/> <meta name="citation_reference" content="citation_journal_title=Cell Death & Differentiation; citation_title=The good, the bad and the autophagosome: exploring unanswered questions of autophagy-dependent cell death; citation_author=Jurgen Kriel, Ben Loos; citation_volume=26; citation_issue=4; citation_publication_date=2019; citation_pages=640-652; citation_doi=10.1038/s41418-018-0267-4; citation_id=CR234"/> <meta name="citation_reference" content="citation_journal_title=Nat. Cell Biol.; citation_title=Autophagy variation within a cell population determines cell fate through selective degradation of Fap-1; citation_author=JM Gump; citation_volume=16; citation_publication_date=2014; citation_pages=47-54; citation_doi=10.1038/ncb2886; citation_id=CR235"/> <meta name="citation_reference" content="citation_journal_title=Oncogene; citation_title=A JNK-mediated autophagy pathway that triggers c-IAP degradation and necroptosis for anticancer chemotherapy; citation_author=W He; citation_volume=33; citation_publication_date=2014; citation_pages=3004-3013; citation_doi=10.1038/onc.2013.256; citation_id=CR236"/> <meta name="citation_reference" content="citation_journal_title=PLoS One; citation_title=Effects of iron overload on the activity of Na,K-ATPase and lipid profile of the human erythrocyte membrane; citation_author=L Sousa; citation_volume=10; citation_publication_date=2015; citation_pages=e0132852; citation_doi=10.1371/journal.pone.0132852; citation_id=CR237"/> <meta name="citation_reference" content="citation_journal_title=Gastroenterology; citation_title=JTC801 induces pH-dependent death specifically in cancer cells and slows growth of tumors in mice; citation_author=X Song; citation_volume=154; citation_publication_date=2018; citation_pages=1480-1493; citation_doi=10.1053/j.gastro.2017.12.004; citation_id=CR238"/> <meta name="citation_reference" content="citation_journal_title=J. Recept. Signal. Transduct. Res.; citation_title=JTC-801 exerts anti-proliferative effects in human osteosarcoma cells by inducing apoptosis; citation_author=CJ Zheng, LL Yang, J Liu, L Zhong; citation_volume=38; citation_publication_date=2018; citation_pages=133-140; citation_doi=10.1080/10799893.2018.1436561; citation_id=CR239"/> <meta name="citation_reference" content="citation_journal_title=Acta Clin. Belg.; citation_title=Metabolic alkalosis in the intensive care unit; citation_author=JM Pochet, PF Laterre, M Jadoul, O Devuyst; citation_volume=56; citation_publication_date=2001; citation_pages=2-9; citation_doi=10.1179/acb.2001.002; citation_id=CR240"/> <meta name="citation_reference" content="citation_journal_title=Nat. Immunol.; citation_title=Oxeiptosis, a ROS-induced caspase-independent apoptosis-like cell-death pathway; citation_author=C Holze; citation_volume=19; citation_publication_date=2018; citation_pages=130-140; citation_doi=10.1038/s41590-017-0013-y; citation_id=CR241"/> <meta name="citation_reference" content="citation_journal_title=Free. Radic. Res.; citation_title=Turning point in apoptosis/necrosis induced by hydrogen peroxide; citation_author=Y Saito; citation_volume=40; citation_publication_date=2006; citation_pages=619-630; citation_doi=10.1080/10715760600632552; citation_id=CR242"/> <meta name="citation_reference" content="citation_journal_title=Cell; citation_title=Selenium Utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis; citation_author=I Ingold; citation_volume=172; citation_publication_date=2018; citation_pages=409-422 e421; citation_doi=10.1016/j.cell.2017.11.048; citation_id=CR243"/> <meta name="citation_reference" content="citation_journal_title=J. Exp. Med.; citation_title=Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death; citation_author=N Casares; citation_volume=202; citation_publication_date=2005; citation_pages=1691-1701; citation_doi=10.1084/jem.20050915; citation_id=CR244"/> <meta name="citation_reference" content="citation_journal_title=Nat. Rev. Immunol.; citation_title=Immunogenic and tolerogenic cell death; citation_author=DR Green, T Ferguson, L Zitvogel, G Kroemer; citation_volume=9; citation_publication_date=2009; citation_pages=353-363; citation_doi=10.1038/nri2545; citation_id=CR245"/> <meta name="citation_reference" content="citation_journal_title=Nat. Med.; citation_title=Calreticulin exposure dictates the immunogenicity of cancer cell death; citation_author=M Obeid; citation_volume=13; citation_publication_date=2007; citation_pages=54-61; citation_doi=10.1038/nm1523; citation_id=CR246"/> <meta name="citation_reference" content="citation_journal_title=Nat. Rev. Immunol.; citation_title=Immunogenic cell death in cancer and infectious disease; citation_author=L Galluzzi, A Buque, O Kepp, L Zitvogel, G Kroemer; citation_volume=17; citation_publication_date=2017; citation_pages=97-111; citation_doi=10.1038/nri.2016.107; citation_id=CR247"/> <meta name="citation_reference" content="citation_journal_title=Immunol. Rev.; citation_title=PAMPs and DAMPs: signal 0s that spur autophagy and immunity; citation_author=D Tang, R Kang, CB Coyne, HJ Zeh, MT Lotze; citation_volume=249; citation_publication_date=2012; citation_pages=158-175; citation_doi=10.1111/j.1600-065X.2012.01146.x; citation_id=CR248"/> <meta name="citation_reference" content="citation_journal_title=Cell Death Dis.; citation_title=Strange attractors: DAMPs and autophagy link tumor cell death and immunity; citation_author=W Hou; citation_volume=4; citation_publication_date=2013; citation_doi=10.1038/cddis.2013.493; citation_id=CR249"/> <meta name="citation_reference" content="citation_journal_title=Science; citation_title=RIPK1 and NF-kappaB signaling in dying cells determines cross-priming of CD8(+) T cells; citation_author=N Yatim; citation_volume=350; citation_publication_date=2015; citation_pages=328-334; citation_doi=10.1126/science.aad0395; citation_id=CR250"/> <meta name="citation_reference" content="citation_journal_title=Cancer Cell.; citation_title=Extrinsic Phagocyte-dependent STING signaling dictates the immunogenicity of dying cells; citation_author=J Ahn, T Xia, A Rabasa Capote, D Betancourt, GN Barber; citation_volume=33; citation_publication_date=2018; citation_pages=862-873 e865; citation_doi=10.1016/j.ccell.2018.03.027; citation_id=CR251"/> <meta name="citation_reference" content="citation_journal_title=J. Exp. Med.; citation_title=Contribution of IL-17-producing gamma delta T cells to the efficacy of anticancer chemotherapy; citation_author=Y Ma; citation_volume=208; citation_publication_date=2011; citation_pages=491-503; citation_doi=10.1084/jem.20100269; citation_id=CR252"/> <meta name="citation_reference" content="citation_journal_title=Cell. Mol. Immunol.; citation_title=The RIP3-RIP1-NF-kappaB signaling axis is dispensable for necroptotic cells to elicit cross-priming of CD8(+) T cells; citation_author=J Ren; citation_volume=14; citation_publication_date=2017; citation_pages=639-642; citation_doi=10.1038/cmi.2017.31; citation_id=CR253"/> <meta name="citation_reference" content="citation_journal_title=Science; citation_title=Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice; citation_author=M Michaud; citation_volume=334; citation_publication_date=2011; citation_pages=1573-1577; citation_doi=10.1126/science.1208347; citation_id=CR254"/> <meta name="citation_reference" content="citation_journal_title=Science; citation_title=Chemotherapy-induced antitumor immunity requires formyl peptide receptor 1; citation_author=E Vacchelli; citation_volume=350; citation_publication_date=2015; citation_pages=972-978; citation_doi=10.1126/science.aad0779; citation_id=CR255"/> <meta name="citation_reference" content="citation_journal_title=Nat. Med.; citation_title=Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy; citation_author=L Apetoh; citation_volume=13; citation_publication_date=2007; citation_pages=1050-1059; citation_doi=10.1038/nm1622; citation_id=CR256"/> <meta name="citation_reference" content="citation_journal_title=Oncoimmunology; citation_title=TFAM is a novel mediator of immunogenic cancer cell death; citation_author=M Yang; citation_volume=7; citation_publication_date=2018; citation_pages=e1431086; citation_doi=10.1080/2162402X.2018.1431086; citation_id=CR257"/> <meta name="citation_reference" content="citation_journal_title=Mol. Aspects. Med.; citation_title=HMGB1 in health and disease; citation_author=R Kang; citation_volume=40; citation_publication_date=2014; citation_pages=1-116; citation_doi=10.1016/j.mam.2014.05.001; citation_id=CR258"/> <meta name="citation_reference" content="citation_journal_title=Immunity; citation_title=Induction of immunological tolerance by apoptotic cells requires caspase-dependent oxidation of high-mobility group box-1 protein; citation_author=H Kazama; citation_volume=29; citation_publication_date=2008; citation_pages=21-32; citation_doi=10.1016/j.immuni.2008.05.013; citation_id=CR259"/> <meta name="citation_reference" content="citation_journal_title=Dev. Cell.; citation_title=PINK1 and PARK2 suppress pancreatic tumorigenesis through control of mitochondrial iron-mediated immunometabolism; citation_author=C Li; citation_volume=46; citation_publication_date=2018; citation_pages=441-455 e448; citation_doi=10.1016/j.devcel.2018.07.012; citation_id=CR260"/> <meta name="citation_reference" content="citation_journal_title=Arterioscler. Thromb. Vasc. Biol.; citation_title=Proteolytic cleavage of high mobility group Box 1 protein by thrombin-thrombomodulin complexes; citation_author=T Ito; citation_volume=28; citation_publication_date=2008; citation_pages=1825-1830; citation_doi=10.1161/ATVBAHA.107.150631; citation_id=CR261"/> <meta name="citation_reference" content="citation_journal_title=Infect. Immun.; citation_title=Role of high-mobility group Box 1 protein and poly(ADP-ribose) polymerase 1 degradation in Chlamydia trachomatis-induced cytopathicity; citation_author=H Yu; citation_volume=78; citation_publication_date=2010; citation_pages=3288-3297; citation_doi=10.1128/IAI.01404-09; citation_id=CR262"/> <meta name="citation_reference" content="citation_journal_title=Front. Physiol.; citation_title=Oxidative stress-mediated HMGB1 biology; citation_author=Y Yu, D Tang, R Kang; citation_volume=6; citation_publication_date=2015; citation_pages=93; citation_doi=10.3389/fphys.2015.00093; citation_id=CR263"/> <meta name="citation_reference" content="citation_journal_title=Oncogene; citation_title=Control of apoptosis by p53; citation_author=JS Fridman, SW Lowe; citation_volume=22; citation_publication_date=2003; citation_pages=9030-9040; citation_doi=10.1038/sj.onc.1207116; citation_id=CR264"/> <meta name="citation_reference" content="Fujiki, K., Inamura, H., Sugaya, T. & Matsuoka, M. Blockade of ALK4/5 signaling suppresses cadmium- and erastin-induced cell death in renal proximal tubular epithelial cells via distinct signaling mechanisms. Cell Death Differ. https://doi.org/10.1038/s41418-019-0307-8 (2019)."/> <meta name="citation_reference" content="citation_journal_title=Biochem. Biophys. Res. Commun.; citation_title=FANCD2 protects against bone marrow injury from ferroptosis; citation_author=X Song; citation_volume=480; citation_publication_date=2016; citation_pages=443-449; citation_doi=10.1016/j.bbrc.2016.10.068; citation_id=CR266"/> <meta name="citation_reference" content="citation_journal_title=Nature; citation_title=NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis; citation_author=SW Alvarez; citation_volume=551; citation_publication_date=2017; citation_pages=639-643; citation_doi=10.1038/nature24637; citation_id=CR267"/> <meta name="citation_reference" content="citation_journal_title=J. Cell. Biol.; citation_title=The alpha6beta4 integrin promotes resistance to ferroptosis; citation_author=CW Brown, JJ Amante, HL Goel, AM Mercurio; citation_volume=216; citation_publication_date=2017; citation_pages=4287-4297; citation_doi=10.1083/jcb.201701136; citation_id=CR268"/> <meta name="citation_reference" content="citation_journal_title=Cancer Research; citation_title=The Deubiquitylase OTUB1 Mediates Ferroptosis via Stabilization of SLC7A11; citation_author=Tong Liu, Le Jiang, Omid Tavana, Wei Gu; citation_volume=79; citation_issue=8; citation_publication_date=2019; citation_pages=1913-1924; citation_doi=10.1158/0008-5472.CAN-18-3037; citation_id=CR269"/> <meta name="citation_reference" content="citation_journal_title=J. Biol. Chem.; citation_title=Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress; citation_author=T Yoneda; citation_volume=276; citation_publication_date=2001; citation_pages=13935-13940; citation_doi=10.1074/jbc.M010677200; citation_id=CR270"/> <meta name="citation_reference" content="citation_journal_title=J. Cell. Biol.; citation_title=Regulation of the expression and processing of caspase-12; citation_author=M Kalai; citation_volume=162; citation_publication_date=2003; citation_pages=457-467; citation_doi=10.1083/jcb.200303157; citation_id=CR271"/> <meta name="citation_reference" content="citation_journal_title=Redox Biol.; citation_title=Oxidized lipids activate autophagy in a JNK-dependent manner by stimulating the endoplasmic reticulum stress response; citation_author=P Haberzettl, BG Hill; citation_volume=1; citation_publication_date=2013; citation_pages=56-64; citation_doi=10.1016/j.redox.2012.10.003; citation_id=CR272"/> <meta name="citation_reference" content="citation_journal_title=Oxid. Med. Cell Longev.; citation_title=Oxidative stress-related parthanatos of circulating mononuclear leukocytes in heart failure; citation_author=T Barany; citation_volume=2017; citation_publication_date=2017; citation_pages=1249614; citation_doi=10.1155/2017/1249614; citation_id=CR273"/> <meta name="citation_reference" content="citation_journal_title=J. Lipid Res.; citation_title=2-Chlorofatty acids: lipid mediators of neutrophil extracellular trap formation; citation_author=END Palladino, LA Katunga, GR Kolar, DA Ford; citation_volume=59; citation_publication_date=2018; citation_pages=1424-1432; citation_doi=10.1194/jlr.M084731; citation_id=CR274"/> <meta name="citation_reference" content="citation_journal_title=Nature; citation_title=A role for mitochondria in NLRP3 inflammasome activation; citation_author=R Zhou, AS Yazdi, P Menu, J Tschopp; citation_volume=469; citation_publication_date=2011; citation_pages=221-225; citation_doi=10.1038/nature09663; citation_id=CR275"/> <meta name="citation_reference" content="citation_journal_title=Nat. Immunol.; citation_title=The diverse role of RIP kinases in necroptosis and inflammation; citation_author=J Silke, JA Rickard, M Gerlic; citation_volume=16; citation_publication_date=2015; citation_pages=689-697; citation_doi=10.1038/ni.3206; citation_id=CR276"/> <meta name="citation_reference" content="citation_journal_title=J. Immunol.; citation_title=Cutting edge: RIPK1 Kinase inactive mice are viable and protected from TNF-induced necroptosis in vivo; citation_author=A Polykratis; citation_volume=193; citation_publication_date=2014; citation_pages=1539-1543; citation_doi=10.4049/jimmunol.1400590; citation_id=CR277"/> <meta name="citation_reference" content="citation_journal_title=Cell Death Differ.; citation_title=RIPK3 deficiency or catalytically inactive RIPK1 provides greater benefit than MLKL deficiency in mouse models of inflammation and tissue injury; citation_author=K Newton; citation_volume=23; citation_publication_date=2016; citation_pages=1565-1576; citation_doi=10.1038/cdd.2016.46; citation_id=CR278"/> <meta name="citation_reference" content="citation_journal_title=J. Immunol.; citation_title=Cutting Edge: RIP1 kinase activity is dispensable for normal development but is a key regulator of inflammation in SHARPIN-deficient mice; citation_author=SB Berger; citation_volume=192; citation_publication_date=2014; citation_pages=5476-5480; citation_doi=10.4049/jimmunol.1400499; citation_id=CR279"/> <meta name="citation_reference" content="citation_journal_title=Immunol. Rev.; citation_title=The interplay of IKK, NF-kappaB and RIPK1 signaling in the regulation of cell death, tissue homeostasis and inflammation; citation_author=V Kondylis, S Kumari, K Vlantis, M Pasparakis; citation_volume=277; citation_publication_date=2017; citation_pages=113-127; citation_doi=10.1111/imr.12550; citation_id=CR280"/> <meta name="citation_reference" content="citation_journal_title=Cell. Mol. Life Sci.; citation_title=Poly-ubiquitination in TNFR1-mediated necroptosis; citation_author=Y Dondelinger, M Darding, MJ Bertrand, H Walczak; citation_volume=73; citation_publication_date=2016; citation_pages=2165-2176; citation_doi=10.1007/s00018-016-2191-4; citation_id=CR281"/> <meta name="citation_reference" content="citation_journal_title=Mol. Cell; citation_title=NF-kappaB-independent role of IKKalpha/IKKbeta in preventing RIPK1 kinase-dependent apoptotic and necroptotic cell death during TNF signaling; citation_author=Y Dondelinger; citation_volume=60; citation_publication_date=2015; citation_pages=63-76; citation_doi=10.1016/j.molcel.2015.07.032; citation_id=CR282"/> <meta name="citation_reference" content="citation_journal_title=Nat. Cell Biol.; citation_title=p38(MAPK)/MK2-dependent phosphorylation controls cytotoxic RIPK1 signalling in inflammation and infection; citation_author=MB Menon; citation_volume=19; citation_publication_date=2017; citation_pages=1248-1259; citation_doi=10.1038/ncb3614; citation_id=CR283"/> <meta name="citation_reference" content="citation_journal_title=Nat. Cell Biol.; citation_title=MK2 phosphorylation of RIPK1 regulates TNF-mediated cell death; citation_author=Y Dondelinger; citation_volume=19; citation_publication_date=2017; citation_pages=1237-1247; citation_doi=10.1038/ncb3608; citation_id=CR284"/> <meta name="citation_reference" content="citation_journal_title=Mol. Cell; citation_title=MK2 phosphorylates RIPK1 to prevent TNF-induced cell death; citation_author=I Jaco; citation_volume=66; citation_publication_date=2017; citation_pages=698-710 e695; citation_doi=10.1016/j.molcel.2017.05.003; citation_id=CR285"/> <meta name="citation_reference" content="citation_journal_title=Nat. Commun.; citation_title=Regulation of RIPK1 activation by TAK1-mediated phosphorylation dictates apoptosis and necroptosis; citation_author=J Geng; citation_volume=8; citation_publication_date=2017; citation_doi=10.1038/s41467-017-00406-w; citation_id=CR286"/> <meta name="citation_reference" content="citation_journal_title=Cell; citation_title=TBK1 suppresses RIPK1-driven apoptosis and inflammation during development and in aging; citation_author=D Xu; citation_volume=174; citation_publication_date=2018; citation_pages=1477-1491 e1419; citation_doi=10.1016/j.cell.2018.07.041; citation_id=CR287"/> <meta name="citation_reference" content="citation_journal_title=Trends Pharmacol. Sci.; citation_title=Complex pathologic roles of RIPK1 and RIPK3: moving beyond necroptosis; citation_author=KW Wegner, D Saleh, A Degterev; citation_volume=38; citation_publication_date=2017; citation_pages=202-225; citation_doi=10.1016/j.tips.2016.12.005; citation_id=CR288"/> <meta name="citation_reference" content="citation_journal_title=Scand. J. Immunol.; citation_title=Release of DNA from dead and dying lymphocyte and monocyte cell lines in vitro; citation_author=JJ Choi, CF Reich, DS Pisetsky; citation_volume=60; citation_publication_date=2004; citation_pages=159-166; citation_doi=10.1111/j.0300-9475.2004.01470.x; citation_id=CR289"/> <meta name="citation_reference" content="citation_journal_title=Nat. Immunol.; citation_title=Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing; citation_author=Q Chen, L Sun, ZJ Chen; citation_volume=17; citation_publication_date=2016; citation_pages=1142-1149; citation_doi=10.1038/ni.3558; citation_id=CR290"/> <meta name="citation_reference" content="citation_journal_title=Nat. Commun.; citation_title=Influenza A virus targets a cGAS-independent STING pathway that controls enveloped RNA viruses; citation_author=CK Holm; citation_volume=7; citation_publication_date=2016; citation_doi=10.1038/ncomms10680; citation_id=CR291"/> <meta name="citation_reference" content="citation_journal_title=J. Immunol.; citation_title=Brucella abortus triggers a cGAS-independent STING pathway to induce host protection that involves guanylate-binding proteins and inflammasome activation; citation_author=MM Costa Franco; citation_volume=200; citation_publication_date=2018; citation_pages=607-622; citation_doi=10.4049/jimmunol.1700725; citation_id=CR292"/> <meta name="citation_reference" content="citation_journal_title=J. Virol.; citation_title=Human cytomegalovirus induces the interferon response via the DNA sensor ZBP1; citation_author=VR DeFilippis, D Alvarado, T Sali, S Rothenburg, K Fruh; citation_volume=84; citation_publication_date=2010; citation_pages=585-598; citation_doi=10.1128/JVI.01748-09; citation_id=CR293"/> <meta name="citation_reference" content="citation_journal_title=Nat. Immunol.; citation_title=The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells; citation_author=Z Zhang; citation_volume=12; citation_publication_date=2011; citation_pages=959-965; citation_doi=10.1038/ni.2091; citation_id=CR294"/> <meta name="citation_reference" content="citation_journal_title=Proc. Natl Acad. Sci. USA; citation_title=DNA damage sensor MRE11 recognizes cytosolic double-stranded DNA and induces type I interferon by regulating STING trafficking; citation_author=T Kondo; citation_volume=110; citation_publication_date=2013; citation_pages=2969-2974; citation_doi=10.1073/pnas.1222694110; citation_id=CR295"/> <meta name="citation_reference" content="citation_journal_title=Nat. Immunol.; citation_title=IFI16 is an innate immune sensor for intracellular DNA; citation_author=L Unterholzner; citation_volume=11; citation_publication_date=2010; citation_pages=997-1004; citation_doi=10.1038/ni.1932; citation_id=CR296"/> <meta name="citation_reference" content="citation_journal_title=Science Translational Medicine; citation_title=ALK is a therapeutic target for lethal sepsis; citation_author=Ling Zeng, Rui Kang, Shan Zhu, Xiao Wang, Lizhi Cao, Haichao Wang, Timothy R. Billiar, Jianxin Jiang, Daolin Tang; citation_volume=9; citation_issue=412; citation_publication_date=2017; citation_pages=eaan5689; citation_doi=10.1126/scitranslmed.aan5689; citation_id=CR297"/> <meta name="citation_reference" content="citation_journal_title=Nat. Rev. Immunol.; citation_title=STING: infection, inflammation and cancer; citation_author=GN Barber; citation_volume=15; citation_publication_date=2015; citation_pages=760-770; citation_doi=10.1038/nri3921; citation_id=CR298"/> <meta name="citation_reference" content="citation_journal_title=Cell Rep; citation_title=STING-dependent signaling underlies IL-10 controlled inflammatory colitis; citation_author=J Ahn, S Son, SC Oliveira, GN Barber; citation_volume=21; citation_publication_date=2017; citation_pages=3873-3884; citation_doi=10.1016/j.celrep.2017.11.101; citation_id=CR299"/> <meta name="citation_reference" content="citation_journal_title=Proc. Natl Acad. Sci. USA; citation_title=STING manifests self DNA-dependent inflammatory disease; citation_author=J Ahn, D Gutman, S Saijo, GN Barber; citation_volume=109; citation_publication_date=2012; citation_pages=19386-19391; citation_doi=10.1073/pnas.1215006109; citation_id=CR300"/> <meta name="citation_reference" content="citation_journal_title=Nature; citation_title=Chromosomal instability drives metastasis through a cytosolic DNA response; citation_author=SF Bakhoum; citation_volume=553; citation_publication_date=2018; citation_pages=467-472; citation_doi=10.1038/nature25432; citation_id=CR301"/> <meta name="citation_reference" content="citation_journal_title=Nature; citation_title=Parkin and PINK1 mitigate STING-induced inflammation; citation_author=DA Sliter; citation_volume=561; citation_publication_date=2018; citation_pages=258-262; citation_doi=10.1038/s41586-018-0448-9; citation_id=CR302"/> <meta name="citation_reference" content="citation_journal_title=J. Immunol.; citation_title=Cutting edge: activation of STING in T cells induces type I IFN responses and cell death; citation_author=B Larkin; citation_volume=199; citation_publication_date=2017; citation_pages=397-402; citation_doi=10.4049/jimmunol.1601999; citation_id=CR303"/> <meta name="citation_reference" content="citation_journal_title=Nat. Commun.; citation_title=Signalling strength determines proapoptotic functions of STING; citation_author=MF Gulen; citation_volume=8; citation_publication_date=2017; citation_doi=10.1038/s41467-017-00573-w; citation_id=CR304"/> <meta name="citation_reference" content="citation_journal_title=Cell; citation_title=TheDNA inflammasome in human myeloid cells is initiated by a STING-cell death program upstream of NLRP3; citation_author=MM Gaidt; citation_volume=171; citation_publication_date=2017; citation_pages=1110-1124 e1118; citation_doi=10.1016/j.cell.2017.09.039; citation_id=CR305"/> <meta name="citation_reference" content="citation_journal_title=Cell; citation_title=LC3-Associated Phagocytosis in Myeloid Cells Promotes Tumor Immune Tolerance; citation_author=Larissa D. Cunha, Mao Yang, Robert Carter, Clifford Guy, Lacie Harris, Jeremy C. Crawford, Giovanni Quarato, Emilio Boada-Romero, Halime Kalkavan, Michael D.L. Johnson, Sivaraman Natarajan, Meghan E. Turnis, David Finkelstein, Joseph T. Opferman, Charles Gawad, Douglas R. Green; citation_volume=175; citation_issue=2; citation_publication_date=2018; citation_pages=429-441.e16; citation_doi=10.1016/j.cell.2018.08.061; citation_id=CR306"/> <meta name="citation_reference" content="citation_journal_title=Eur. J. Immunol.; citation_title=AIM2 inflammasome in infection, cancer, and autoimmunity: role in DNA sensing, inflammation, and innate immunity; citation_author=SM Man, R Karki, TD Kanneganti; citation_volume=46; citation_publication_date=2016; citation_pages=269-280; citation_doi=10.1002/eji.201545839; citation_id=CR307"/> <meta name="citation_reference" content="citation_journal_title=Nat. Med.; citation_title=Inflammasome-independent role of AIM2 in suppressing colon tumorigenesis via DNA-PK and Akt; citation_author=JE Wilson; citation_volume=21; citation_publication_date=2015; citation_pages=906-913; citation_doi=10.1038/nm.3908; citation_id=CR308"/> <meta name="citation_reference" content="citation_journal_title=Trends Immunol.; citation_title=ZBP1: innate sensor regulating cell death and inflammation; citation_author=T Kuriakose, TD Kanneganti; citation_volume=39; citation_publication_date=2018; citation_pages=123-134; citation_doi=10.1016/j.it.2017.11.002; citation_id=CR309"/> <meta name="citation_author" content="Tang, Daolin"/> <meta name="citation_author_institution" content="The Third Affiliated Hospital, Protein Modification and Degradation Lab, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China"/> <meta name="citation_author_institution" content="Department of Surgery, UT Southwestern Medical Center, Dallas, USA"/> <meta name="citation_author" content="Kang, Rui"/> <meta name="citation_author_institution" content="Department of Surgery, UT Southwestern Medical Center, Dallas, USA"/> <meta name="citation_author" content="Berghe, Tom Vanden"/> <meta name="citation_author_institution" content="Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium"/> <meta name="citation_author_institution" content="Department for Biomedical Molecular Biology, Ghent University, Ghent, Belgium"/> <meta name="citation_author_institution" content="Laboratory of Pathophysiology, Faculty of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium"/> <meta name="citation_author" content="Vandenabeele, Peter"/> <meta name="citation_author_institution" content="Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium"/> <meta name="citation_author_institution" content="Department for Biomedical Molecular Biology, Ghent University, Ghent, Belgium"/> <meta name="citation_author_institution" content="Methusalem program, Ghent University, Ghent, Belgium"/> <meta name="citation_author" content="Kroemer, Guido"/> <meta name="citation_author_institution" content="Université Paris Descartes, Sorbonne Paris Cité, Paris, France"/> <meta name="citation_author_institution" content="Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France"/> <meta name="citation_author_institution" content="Institut National de la Santé et de la Recherche Médicale, Paris, France"/> <meta name="citation_author_institution" content="Université Pierre et Marie Curie, Paris, France"/> <meta name="citation_author_institution" content="Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France"/> <meta name="citation_author_institution" content="Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France"/> <meta name="citation_author_institution" content="Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden"/> <meta name="access_endpoint" content="https://www.nature.com/platform/readcube-access"/> <meta name="twitter:site" content="@null"/> <meta name="twitter:card" content="summary_large_image"/> <meta name="twitter:image:alt" content="Content cover image"/> <meta name="twitter:title" content="The molecular machinery of regulated cell death"/> <meta name="twitter:description" content="Cell Research - The molecular machinery of regulated cell death"/> <meta name="twitter:image" content="https://media.springernature.com/full/springer-static/image/art%3A10.1038%2Fs41422-019-0164-5/MediaObjects/41422_2019_164_Fig1_HTML.png"/> <meta property="og:url" content="https://www.nature.com/articles/s41422-019-0164-5"/> <meta property="og:type" content="article"/> <meta property="og:site_name" content="Nature"/> <meta property="og:title" content="The molecular machinery of regulated cell death - Cell Research"/> <meta property="og:image" content="https://media.springernature.com/m685/springer-static/image/art%3A10.1038%2Fs41422-019-0164-5/MediaObjects/41422_2019_164_Fig1_HTML.png"/> <script> window.eligibleForRa21 = 'false'; </script> </head> <body class="article-page"> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-MRVXSHQ" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <div class="position-relative cleared z-index-50 background-white" data-test="top-containers"> <a class="c-skip-link" href="#content">Skip to main content</a> <div class="c-grade-c-banner u-hide"> <div class="c-grade-c-banner__container"> <p>Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.</p> </div> </div> <div class="u-hide u-show-following-ad"></div> <aside class="c-ad c-ad--728x90"> <div class="c-ad__inner" data-container-type="banner-advert"> <p class="c-ad__label">Advertisement</p> <div id="div-gpt-ad-top-1" class="div-gpt-ad advert leaderboard js-ad text-center hide-print grade-c-hide" data-ad-type="top" data-test="top-ad" data-pa11y-ignore data-gpt data-gpt-unitpath="/285/cr.nature.com/article" data-gpt-sizes="728x90" data-gpt-targeting="type=article;pos=top;artid=s41422-019-0164-5;doi=10.1038/s41422-019-0164-5;subjmeta=631,80,82,86;kwrd=Cell+death,Cell+signalling"> <noscript> <a href="//pubads.g.doubleclick.net/gampad/jump?iu=/285/cr.nature.com/article&sz=728x90&c=-1592151638&t=pos%3Dtop%26type%3Darticle%26artid%3Ds41422-019-0164-5%26doi%3D10.1038/s41422-019-0164-5%26subjmeta%3D631,80,82,86%26kwrd%3DCell+death,Cell+signalling"> <img data-test="gpt-advert-fallback-img" src="//pubads.g.doubleclick.net/gampad/ad?iu=/285/cr.nature.com/article&sz=728x90&c=-1592151638&t=pos%3Dtop%26type%3Darticle%26artid%3Ds41422-019-0164-5%26doi%3D10.1038/s41422-019-0164-5%26subjmeta%3D631,80,82,86%26kwrd%3DCell+death,Cell+signalling" alt="Advertisement" width="728" height="90"></a> </noscript> </div> </div> </aside> <header class="c-header" id="header" data-header data-track-component="nature-150-split-header" style="border-color:#79161b"> <div class="c-header__row"> <div class="c-header__container"> <div class="c-header__split"> <div class="c-header__logo-container"> <a href="/cr" data-track="click" data-track-action="home" data-track-label="image"> <picture class="c-header__logo"> <source srcset="https://media.springernature.com/full/nature-cms/uploads/product/cr/header-50f83ac048dfc1f2be1bb116afbb0140.svg" media="(min-width: 875px)"> <img src="https://media.springernature.com/full/nature-cms/uploads/product/cr/header-50f83ac048dfc1f2be1bb116afbb0140.svg" height="32" alt="Cell Research"> </picture> </a> </div> <ul class="c-header__menu c-header__menu--global"> <li class="c-header__item c-header__item--padding c-header__item--hide-md-max"> <a class="c-header__link" href="https://www.nature.com/siteindex" data-test="siteindex-link" data-track="click" data-track-action="open nature research index" data-track-label="link"> <span>View all journals</span> </a> </li> <li class="c-header__item c-header__item--padding c-header__item--pipe"> <a class="c-header__link c-header__link--search" href="#search-menu" data-header-expander data-test="search-link" data-track="click" data-track-action="open search tray" data-track-label="button"> <svg role="img" aria-hidden="true" focusable="false" height="22" width="22" viewBox="0 0 18 18" xmlns="http://www.w3.org/2000/svg"><path d="M16.48 15.455c.283.282.29.749.007 1.032a.738.738 0 01-1.032-.007l-3.045-3.044a7 7 0 111.026-1.026zM8 14A6 6 0 108 2a6 6 0 000 12z"/></svg><span>Search</span> </a> </li> <li class="c-header__item c-header__item--padding c-header__item--snid-account-widget c-header__item--pipe"> <a class="c-header__link eds-c-header__link" id="identity-account-widget" data-track="click_login" data-track-context="header" href='https://idp.nature.com/auth/personal/springernature?redirect_uri=https://www.nature.com/articles/s41422-019-0164-5?error=cookies_not_supported&code=1c8b4bd0-eab9-492c-b12f-5cf921362f7b'><span class="eds-c-header__widget-fragment-title">Log in</span></a> </li> </ul> </div> </div> </div> <div class="c-header__row"> <div class="c-header__container" data-test="navigation-row"> <div class="c-header__split"> <ul class="c-header__menu c-header__menu--journal"> <li class="c-header__item c-header__item--dropdown-menu" data-test="explore-content-button"> <a href="#explore" class="c-header__link" data-header-expander data-test="menu-button--explore" data-track="click" data-track-action="open explore expander" data-track-label="button"> <span><span class="c-header__show-text">Explore</span> content</span><svg role="img" aria-hidden="true" focusable="false" height="16" viewBox="0 0 16 16" width="16" xmlns="http://www.w3.org/2000/svg"><path d="m5.58578644 3-3.29289322-3.29289322c-.39052429-.39052429-.39052429-1.02368927 0-1.41421356s1.02368927-.39052429 1.41421356 0l4 4c.39052429.39052429.39052429 1.02368927 0 1.41421356l-4 4c-.39052429.39052429-1.02368927.39052429-1.41421356 0s-.39052429-1.02368927 0-1.41421356z" transform="matrix(0 1 -1 0 11 3)"/></svg> </a> </li> <li class="c-header__item c-header__item--dropdown-menu"> <a href="#about-the-journal" class="c-header__link" data-header-expander data-test="menu-button--about-the-journal" data-track="click" data-track-action="open about the journal expander" data-track-label="button"> <span>About <span class="c-header__show-text">the journal</span></span><svg role="img" aria-hidden="true" focusable="false" height="16" viewBox="0 0 16 16" width="16" xmlns="http://www.w3.org/2000/svg"><path d="m5.58578644 3-3.29289322-3.29289322c-.39052429-.39052429-.39052429-1.02368927 0-1.41421356s1.02368927-.39052429 1.41421356 0l4 4c.39052429.39052429.39052429 1.02368927 0 1.41421356l-4 4c-.39052429.39052429-1.02368927.39052429-1.41421356 0s-.39052429-1.02368927 0-1.41421356z" transform="matrix(0 1 -1 0 11 3)"/></svg> </a> </li> <li class="c-header__item c-header__item--dropdown-menu" data-test="publish-with-us-button"> <a href="#publish-with-us" class="c-header__link c-header__link--dropdown-menu" data-header-expander data-test="menu-button--publish" data-track="click" data-track-action="open publish with us expander" data-track-label="button"> <span>Publish <span class="c-header__show-text">with us</span></span><svg role="img" aria-hidden="true" focusable="false" height="16" viewBox="0 0 16 16" width="16" xmlns="http://www.w3.org/2000/svg"><path d="m5.58578644 3-3.29289322-3.29289322c-.39052429-.39052429-.39052429-1.02368927 0-1.41421356s1.02368927-.39052429 1.41421356 0l4 4c.39052429.39052429.39052429 1.02368927 0 1.41421356l-4 4c-.39052429.39052429-1.02368927.39052429-1.41421356 0s-.39052429-1.02368927 0-1.41421356z" transform="matrix(0 1 -1 0 11 3)"/></svg> </a> </li> </ul> <ul class="c-header__menu c-header__menu--hide-lg-max"> <li class="c-header__item"> <a class="c-header__link" href="https://idp.nature.com/auth/personal/springernature?redirect_uri=https%3A%2F%2Fwww.nature.com%2Fmy-account%2Falerts%2Fsubscribe-journal%3Flist-id%3D122%26journal-link%3Dhttps%253A%252F%252Fwww.nature.com%252Fcr%252F" rel="nofollow" data-track="click" data-track-action="Sign up for alerts" data-track-label="link (desktop site header)" data-track-external> <span>Sign up for alerts</span><svg role="img" aria-hidden="true" focusable="false" height="18" viewBox="0 0 18 18" width="18" xmlns="http://www.w3.org/2000/svg"><path d="m4 10h2.5c.27614237 0 .5.2238576.5.5s-.22385763.5-.5.5h-3.08578644l-1.12132034 1.1213203c-.18753638.1875364-.29289322.4418903-.29289322.7071068v.1715729h14v-.1715729c0-.2652165-.1053568-.5195704-.2928932-.7071068l-1.7071068-1.7071067v-3.4142136c0-2.76142375-2.2385763-5-5-5-2.76142375 0-5 2.23857625-5 5zm3 4c0 1.1045695.8954305 2 2 2s2-.8954305 2-2zm-5 0c-.55228475 0-1-.4477153-1-1v-.1715729c0-.530433.21071368-1.0391408.58578644-1.4142135l1.41421356-1.4142136v-3c0-3.3137085 2.6862915-6 6-6s6 2.6862915 6 6v3l1.4142136 1.4142136c.3750727.3750727.5857864.8837805.5857864 1.4142135v.1715729c0 .5522847-.4477153 1-1 1h-4c0 1.6568542-1.3431458 3-3 3-1.65685425 0-3-1.3431458-3-3z" fill="#222"/></svg> </a> </li> <li class="c-header__item c-header__item--pipe"> <a class="c-header__link" href="https://www.nature.com/cr.rss" data-track="click" data-track-action="rss feed" data-track-label="link"> <span>RSS feed</span> </a> </li> </ul> </div> </div> </div> </header> <nav class="u-mb-16" aria-label="breadcrumbs"> <div class="u-container"> <ol class="c-breadcrumbs" itemscope itemtype="https://schema.org/BreadcrumbList"> <li class="c-breadcrumbs__item" id="breadcrumb0" itemprop="itemListElement" itemscope itemtype="https://schema.org/ListItem"><a class="c-breadcrumbs__link" href="/" itemprop="item" data-track="click" data-track-action="breadcrumb" data-track-category="header" data-track-label="link:nature"><span itemprop="name">nature</span></a><meta itemprop="position" content="1"> <svg class="c-breadcrumbs__chevron" role="img" aria-hidden="true" focusable="false" height="10" viewBox="0 0 10 10" width="10" xmlns="http://www.w3.org/2000/svg"> <path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill="#666" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/> </svg> </li><li class="c-breadcrumbs__item" id="breadcrumb1" itemprop="itemListElement" itemscope itemtype="https://schema.org/ListItem"><a class="c-breadcrumbs__link" href="/cr" itemprop="item" data-track="click" data-track-action="breadcrumb" data-track-category="header" data-track-label="link:cell research"><span itemprop="name">cell research</span></a><meta itemprop="position" content="2"> <svg class="c-breadcrumbs__chevron" role="img" aria-hidden="true" focusable="false" height="10" viewBox="0 0 10 10" width="10" xmlns="http://www.w3.org/2000/svg"> <path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill="#666" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/> </svg> </li><li class="c-breadcrumbs__item" id="breadcrumb2" itemprop="itemListElement" itemscope itemtype="https://schema.org/ListItem"><a class="c-breadcrumbs__link" href="/cr/articles?type=review-article" itemprop="item" data-track="click" data-track-action="breadcrumb" data-track-category="header" data-track-label="link:review articles"><span itemprop="name">review articles</span></a><meta itemprop="position" content="3"> <svg class="c-breadcrumbs__chevron" role="img" aria-hidden="true" focusable="false" height="10" viewBox="0 0 10 10" width="10" xmlns="http://www.w3.org/2000/svg"> <path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill="#666" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/> </svg> </li><li class="c-breadcrumbs__item" id="breadcrumb3" itemprop="itemListElement" itemscope itemtype="https://schema.org/ListItem"> <span itemprop="name">article</span><meta itemprop="position" content="4"></li> </ol> </div> </nav> </div> <div class="u-container u-mt-32 u-mb-32 u-clearfix" id="content" data-component="article-container" data-container-type="article"> <main class="c-article-main-column u-float-left js-main-column" data-track-component="article body"> <div class="c-context-bar u-hide" data-test="context-bar" data-context-bar aria-hidden="true"> <div class="c-context-bar__container u-container" data-track-context="sticky banner"> <div class="c-context-bar__title"> The molecular machinery of regulated cell death </div> <div class="c-pdf-download u-clear-both js-pdf-download"> <a href="/articles/s41422-019-0164-5.pdf" class="u-button u-button--full-width u-button--primary u-justify-content-space-between c-pdf-download__link" data-article-pdf="true" data-readcube-pdf-url="true" data-test="download-pdf" data-draft-ignore="true" data-track="content_download" data-track-type="article pdf download" data-track-action="download pdf" data-track-label="link" data-track-external download> <span class="c-pdf-download__text">Download PDF</span> <svg aria-hidden="true" focusable="false" width="16" height="16" class="u-icon"><use xlink:href="#icon-download"/></svg> </a> </div> </div> </div> <article lang="en"> <div class="c-pdf-button__container u-mb-16 u-hide-at-lg js-context-bar-sticky-point-mobile"> <div class="c-pdf-container" data-track-context="article body"> <div class="c-pdf-download u-clear-both js-pdf-download"> <a href="/articles/s41422-019-0164-5.pdf" class="u-button u-button--full-width u-button--primary u-justify-content-space-between c-pdf-download__link" data-article-pdf="true" data-readcube-pdf-url="true" data-test="download-pdf" data-draft-ignore="true" data-track="content_download" data-track-type="article pdf download" data-track-action="download pdf" data-track-label="link" data-track-external download> <span class="c-pdf-download__text">Download PDF</span> <svg aria-hidden="true" focusable="false" width="16" height="16" class="u-icon"><use xlink:href="#icon-download"/></svg> </a> </div> </div> </div> <div class="c-article-header"> <header> <ul class="c-article-identifiers" data-test="article-identifier"> <li class="c-article-identifiers__item" data-test="article-category">Review Article</li> <li class="c-article-identifiers__item"> <a href="https://www.springernature.com/gp/open-research/about/the-fundamentals-of-open-access-and-open-research" data-track="click" data-track-action="open access" data-track-label="link" class="u-color-open-access" data-test="open-access">Open access</a> </li> <li class="c-article-identifiers__item">Published: <time datetime="2019-04-04">04 April 2019</time></li> </ul> <h1 class="c-article-title" data-test="article-title" data-article-title="">The molecular machinery of regulated cell death</h1> <ul class="c-article-author-list c-article-author-list--short" data-test="authors-list" data-component-authors-activator="authors-list"><li class="c-article-author-list__item"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Daolin-Tang-Aff1-Aff2" data-author-popup="auth-Daolin-Tang-Aff1-Aff2" data-author-search="Tang, Daolin" data-corresp-id="c1">Daolin Tang<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-mail-medium"></use></svg></a><sup class="u-js-hide"><a href="#Aff1">1</a>,<a href="#Aff2">2</a></sup><sup class="u-js-hide"> <a href="#na1">na1</a></sup>, </li><li class="c-article-author-list__item"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Rui-Kang-Aff2" data-author-popup="auth-Rui-Kang-Aff2" data-author-search="Kang, Rui">Rui Kang</a><sup class="u-js-hide"><a href="#Aff2">2</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Tom_Vanden-Berghe-Aff3-Aff4-Aff5" data-author-popup="auth-Tom_Vanden-Berghe-Aff3-Aff4-Aff5" data-author-search="Berghe, Tom Vanden">Tom Vanden Berghe</a><sup class="u-js-hide"><a href="#Aff3">3</a>,<a href="#Aff4">4</a>,<a href="#Aff5">5</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Peter-Vandenabeele-Aff3-Aff4-Aff6" data-author-popup="auth-Peter-Vandenabeele-Aff3-Aff4-Aff6" data-author-search="Vandenabeele, Peter">Peter Vandenabeele</a><span class="u-js-hide"> <a class="js-orcid" href="http://orcid.org/0000-0002-6669-8822"><span class="u-visually-hidden">ORCID: </span>orcid.org/0000-0002-6669-8822</a></span><sup class="u-js-hide"><a href="#Aff3">3</a>,<a href="#Aff4">4</a>,<a href="#Aff6">6</a></sup> & </li><li class="c-article-author-list__show-more" aria-label="Show all 5 authors for this article" title="Show all 5 authors for this article">…</li><li class="c-article-author-list__item"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Guido-Kroemer-Aff7-Aff8-Aff9-Aff10-Aff11-Aff12-Aff13" data-author-popup="auth-Guido-Kroemer-Aff7-Aff8-Aff9-Aff10-Aff11-Aff12-Aff13" data-author-search="Kroemer, Guido" data-corresp-id="c2">Guido Kroemer<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-mail-medium"></use></svg></a><sup class="u-js-hide"><a href="#Aff7">7</a>,<a href="#Aff8">8</a>,<a href="#Aff9">9</a>,<a href="#Aff10">10</a>,<a href="#Aff11">11</a>,<a href="#Aff12">12</a>,<a href="#Aff13">13</a></sup><sup class="u-js-hide"> <a href="#na1">na1</a></sup> </li></ul><button aria-expanded="false" class="c-article-author-list__button"><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-down-medium"></use></svg><span>Show authors</span></button> <p class="c-article-info-details" data-container-section="info"> <a data-test="journal-link" href="/cr" data-track="click" data-track-action="journal homepage" data-track-category="article body" data-track-label="link"><i data-test="journal-title">Cell Research</i></a> <b data-test="journal-volume"><span class="u-visually-hidden">volume</span> 29</b>, <span class="u-visually-hidden">pages </span>347–364 (<span data-test="article-publication-year">2019</span>)<a href="#citeas" class="c-article-info-details__cite-as u-hide-print" data-track="click" data-track-action="cite this article" data-track-label="link">Cite this article</a> </p> <div class="c-article-metrics-bar__wrapper u-clear-both"> <ul class="c-article-metrics-bar u-list-reset"> <li class=" c-article-metrics-bar__item" data-test="access-count"> <p class="c-article-metrics-bar__count">105k <span class="c-article-metrics-bar__label">Accesses</span></p> </li> <li class="c-article-metrics-bar__item" data-test="altmetric-score"> <p class="c-article-metrics-bar__count">27 <span class="c-article-metrics-bar__label">Altmetric</span></p> </li> <li class="c-article-metrics-bar__item"> <p class="c-article-metrics-bar__details"><a href="/articles/s41422-019-0164-5/metrics" data-track="click" data-track-action="view metrics" data-track-label="link" rel="nofollow">Metrics <span class="u-visually-hidden">details</span></a></p> </li> </ul> </div> </header> <div class="u-js-hide" data-component="article-subject-links"> <h3 class="c-article__sub-heading">Subjects</h3> <ul class="c-article-subject-list"> <li class="c-article-subject-list__subject"><a href="/subjects/cell-death" data-track="click" data-track-action="view subject" data-track-label="link">Cell death</a></li><li class="c-article-subject-list__subject"><a href="/subjects/cell-signalling" data-track="click" data-track-action="view subject" data-track-label="link">Cell signalling</a></li> </ul> </div> </div> <div class="c-article-body"> <section aria-labelledby="Abs1" data-title="Abstract" lang="en"><div class="c-article-section" id="Abs1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Abs1">Abstract</h2><div class="c-article-section__content" id="Abs1-content"><p>Cells may die from accidental cell death (ACD) or regulated cell death (RCD). ACD is a biologically uncontrolled process, whereas RCD involves tightly structured signaling cascades and molecularly defined effector mechanisms. A growing number of novel non-apoptotic forms of RCD have been identified and are increasingly being implicated in various human pathologies. Here, we critically review the current state of the art regarding non-apoptotic types of RCD, including necroptosis, pyroptosis, ferroptosis, entotic cell death, netotic cell death, parthanatos, lysosome-dependent cell death, autophagy-dependent cell death, alkaliptosis and oxeiptosis. The in-depth comprehension of each of these lethal subroutines and their intercellular consequences may uncover novel therapeutic targets for the avoidance of pathogenic cell loss.</p></div></div></section> <section aria-labelledby="inline-recommendations" data-title="Inline Recommendations" class="c-article-recommendations" data-track-component="inline-recommendations"> <h3 class="c-article-recommendations-title" id="inline-recommendations">Similar content being viewed by others</h3> <div class="c-article-recommendations-list"> <div class="c-article-recommendations-list__item"> <article class="c-article-recommendations-card" itemscope itemtype="http://schema.org/ScholarlyArticle"> <div class="c-article-recommendations-card__img"><img src="https://media.springernature.com/w215h120/springer-static/image/art%3A10.1038%2Fs12276-023-01078-x/MediaObjects/12276_2023_1078_Fig1_HTML.png" loading="lazy" alt=""></div> <div class="c-article-recommendations-card__main"> <h3 class="c-article-recommendations-card__heading" itemprop="name headline"> <a class="c-article-recommendations-card__link" itemprop="url" href="https://www.nature.com/articles/s12276-023-01078-x?fromPaywallRec=false" data-track="select_recommendations_1" data-track-context="inline recommendations" data-track-action="click recommendations inline - 1" data-track-label="10.1038/s12276-023-01078-x">Diversity and complexity of cell death: a historical review </a> </h3> <div class="c-article-meta-recommendations" data-test="recommendation-info"> <span class="c-article-meta-recommendations__item-type">Article</span> <span class="c-article-meta-recommendations__access-type">Open access</span> <span class="c-article-meta-recommendations__date">23 August 2023</span> </div> </div> </article> </div> <div class="c-article-recommendations-list__item"> <article class="c-article-recommendations-card" itemscope itemtype="http://schema.org/ScholarlyArticle"> <div class="c-article-recommendations-card__img"><img src="https://media.springernature.com/w215h120/springer-static/image/art%3A10.1038%2Fs41580-023-00689-6/MediaObjects/41580_2023_689_Fig1_HTML.png" loading="lazy" alt=""></div> <div class="c-article-recommendations-card__main"> <h3 class="c-article-recommendations-card__heading" itemprop="name headline"> <a class="c-article-recommendations-card__link" itemprop="url" href="https://www.nature.com/articles/s41580-023-00689-6?fromPaywallRec=false" data-track="select_recommendations_2" data-track-context="inline recommendations" data-track-action="click recommendations inline - 2" data-track-label="10.1038/s41580-023-00689-6">A guide to cell death pathways </a> </h3> <div class="c-article-meta-recommendations" data-test="recommendation-info"> <span class="c-article-meta-recommendations__item-type">Article</span> <span class="c-article-meta-recommendations__date">18 December 2023</span> </div> </div> </article> </div> <div class="c-article-recommendations-list__item"> <article class="c-article-recommendations-card" itemscope itemtype="http://schema.org/ScholarlyArticle"> <div class="c-article-recommendations-card__img"><img src="https://media.springernature.com/w215h120/springer-static/image/art%3A10.1038%2Fs41420-025-02328-9/MediaObjects/41420_2025_2328_Figa_HTML.png" loading="lazy" alt=""></div> <div class="c-article-recommendations-card__main"> <h3 class="c-article-recommendations-card__heading" itemprop="name headline"> <a class="c-article-recommendations-card__link" itemprop="url" href="https://www.nature.com/articles/s41420-025-02328-9?fromPaywallRec=false" data-track="select_recommendations_3" data-track-context="inline recommendations" data-track-action="click recommendations inline - 3" data-track-label="10.1038/s41420-025-02328-9">Insights on the crosstalk among different cell death mechanisms </a> </h3> <div class="c-article-meta-recommendations" data-test="recommendation-info"> <span class="c-article-meta-recommendations__item-type">Article</span> <span class="c-article-meta-recommendations__access-type">Open access</span> <span class="c-article-meta-recommendations__date">10 February 2025</span> </div> </div> </article> </div> </div> </section> <script> window.dataLayer = window.dataLayer || []; window.dataLayer.push({ recommendations: { recommender: 'semantic', model: 'specter', policy_id: 'NA', timestamp: 1741339786, embedded_user: 'null' } }); </script> <div class="main-content"> <section data-title="Introduction"><div class="c-article-section" id="Sec1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec1">Introduction</h2><div class="c-article-section__content" id="Sec1-content"><p>The scientific observation of regulated cell death (RCD) historically began in 1842 when Karl Vogt noticed dying cells in toads. However, the surge in RCD research only started when the term “apoptosis” was coined in 1972 by John Kerr, Andrew Wyllie, and Alastair Currie<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 1" title="Kerr, J. F., Wyllie, A. H. & Currie, A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239–257 (1972)." href="/articles/s41422-019-0164-5#ref-CR1" id="ref-link-section-d141354489e614">1</a></sup> (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41422-019-0164-5#Fig1">1</a>). Kerr et al. defined apoptosis as a form of programmed cell death (PCD) with morphological changes that differ from necrosis.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 1" title="Kerr, J. F., Wyllie, A. H. & Currie, A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239–257 (1972)." href="/articles/s41422-019-0164-5#ref-CR1" id="ref-link-section-d141354489e621">1</a></sup> Apoptosis and its dysregulation underlies various pathological and physiological processes, including cell homeostasis, tissue remodelling, and tumorigenesis.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2" title="Singh, R., Letai, A. & Sarosiek, K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat. Rev. Mol. Cell Biol. 20, 175–193 (2019)." href="/articles/s41422-019-0164-5#ref-CR2" id="ref-link-section-d141354489e625">2</a></sup> The identification of CED9 (also known as BCL2 in mammalian cells) and CED4 (also known as apoptotic peptidase-activating factor 1 [APAF1] in mammalian cells) from the studies of <i>Caenorhabditis elegans</i> development in the 1990s<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Hengartner, M. O., Ellis, R. E. & Horvitz, H. R. Caenorhabditis elegans gene ced-9 protects cells from programmed cell death. Nature 356, 494–499 (1992)." href="#ref-CR3" id="ref-link-section-d141354489e633">3</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Hengartner, M. O. & Horvitz, H. R. C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2. Cell 76, 665–676 (1994)." href="#ref-CR4" id="ref-link-section-d141354489e633_1">4</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 5" title="Yuan, J. & Horvitz, H. R. The Caenorhabditis elegans cell death gene ced-4 encodes a novel protein and is expressed during the period of extensive programmed cell death. Development 116, 309–320 (1992)." href="/articles/s41422-019-0164-5#ref-CR5" id="ref-link-section-d141354489e636">5</a></sup> marks the beginning of an era of molecular apoptosis research that triggered the rapid expansion of RCD research. The molecular mechanisms regulating apoptosis have been extensively investigated in multiple organisms over the last 30 years. It is now established that apoptosis consists of two major subtypes, namely extrinsic and intrinsic apoptosis (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41422-019-0164-5#Fig2">2</a>). Extrinsic apoptosis is mediated by membrane receptors, especially by death receptors (e.g., fas cell surface death receptor [FAS, also known as CD95] and TNF receptor superfamily member 1A [TNFRSF1A, also known as TNFR1]), and is driven by initiator caspases CASP8 (also known as caspase 8) and CASP10 (also known as caspase 10).<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 6" title="Schulze-Osthoff, K., Ferrari, D., Los, M., Wesselborg, S. & Peter, M. E. Apoptosis signaling by death receptors. Eur. J. Biochem. 254, 439–459 (1998)." href="/articles/s41422-019-0164-5#ref-CR6" id="ref-link-section-d141354489e643">6</a></sup> Alternatively, dependence receptors (e.g., unc-5 netrin receptor B [UNC5B, also known as UNC5H2] and DCC netrin 1 receptor [DCC]) may ignite extrinsic apoptosis via the activation of the initiator caspase CASP9 or dephosphorylation of death-associated protein kinase 1 (DAPK1, also known as DAPK) following the withdrawal of their ligands.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 7" title="Bredesen, D. E., Mehlen, P. & Rabizadeh, S. Apoptosis and dependence receptors: a molecular basis for cellular addiction. Physiol. Rev. 84, 411–430 (2004)." href="/articles/s41422-019-0164-5#ref-CR7" id="ref-link-section-d141354489e647">7</a></sup> In contrast, intrinsic apoptosis is ignited by mitochondrial outer membrane permeabilization (MOMP) that leads to the release of the mitochondrial proteins (e.g., cytochrome C, somatic [CYCS], diablo IAP-binding mitochondrial protein [DIABLO, also known as Smac], and HtrA serine peptidase 2 [HTRA2]) and subsequent activation of initiator caspase CASP9.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 8" title="Chipuk, J. E., Bouchier-Hayes, L. & Green, D. R. Mitochondrial outer membrane permeabilization during apoptosis: the innocent bystander scenario. Cell Death Differ. 13, 1396–1402 (2006)." href="/articles/s41422-019-0164-5#ref-CR8" id="ref-link-section-d141354489e651">8</a></sup> MOMP is tightly controlled by the BCL2 family, including pro-apoptotic (e.g., BCL2 associated X, apoptosis regulator [BAX], BCL2 antagonist/killer 1 [BAK1, also known as BAK]), and anti-apoptotic (e.g., BCL2 and BCL2 like 1 [BCL2L1, also known as BCL-XL]) members.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2" title="Singh, R., Letai, A. & Sarosiek, K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat. Rev. Mol. Cell Biol. 20, 175–193 (2019)." href="/articles/s41422-019-0164-5#ref-CR2" id="ref-link-section-d141354489e655">2</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 9" title="Czabotar, P. E., Lessene, G., Strasser, A. & Adams, J. M. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat. Rev. Mol. Cell Biol. 15, 49–63 (2014)." href="/articles/s41422-019-0164-5#ref-CR9" id="ref-link-section-d141354489e658">9</a></sup> Although caspase activation does not guarantee cell death, CASP3, CASP6, and CASP7 are considered as important executioners due to their function in substrate cleavage and the destruction of subcellular structures<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 10" title="McIlwain, D. R., Berger, T. & Mak, T. W. Caspase functions in cell death and disease. Cold Spring Harb. Perspect. Biol. 
 https://doi.org/10.1101/cshperspect.a026716
 
 (2015)." href="/articles/s41422-019-0164-5#ref-CR10" id="ref-link-section-d141354489e663">10</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 11" title="Galluzzi, L., Lopez-Soto, A., Kumar, S. & Kroemer, G. Caspases connect cell-death signaling to organismal homeostasis. Immunity 44, 221–231 (2016)." href="/articles/s41422-019-0164-5#ref-CR11" id="ref-link-section-d141354489e666">11</a></sup> (Box <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/articles/s41422-019-0164-5#Sec2">1</a>), culminating in the acquisition of the apoptotic morphotype.</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-1" data-title="Fig. 1"><figure><figcaption><b id="Fig1" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 1</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/articles/s41422-019-0164-5/figures/1" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41422-019-0164-5/MediaObjects/41422_2019_164_Fig1_HTML.png?as=webp"><img aria-describedby="Fig1" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41422-019-0164-5/MediaObjects/41422_2019_164_Fig1_HTML.png" alt="figure 1" loading="lazy" width="685" height="221"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-1-desc"><p>Timeline of the terms used in cell death research</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/articles/s41422-019-0164-5/figures/1" data-track-dest="link:Figure1 Full size image" aria-label="Full size image figure 1" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-2" data-title="Fig. 2"><figure><figcaption><b id="Fig2" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 2</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/articles/s41422-019-0164-5/figures/2" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41422-019-0164-5/MediaObjects/41422_2019_164_Fig2_HTML.png?as=webp"><img aria-describedby="Fig2" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41422-019-0164-5/MediaObjects/41422_2019_164_Fig2_HTML.png" alt="figure 2" loading="lazy" width="685" height="321"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-2-desc"><p>Extrinsic and intrinsic apoptosis. Extrinsic apoptosis is induced by the addition of death receptor ligands or by the withdrawal of dependence receptor ligands. CASP8 and CASP10 initiate death receptor-mediated extrinsic apoptosis, whereas CASP9 initiates the withdrawal of dependence receptor ligand-mediated extrinsic apoptosis. Pro-CASP8 and pro-CASP10 are enzymatically inactive until they interact with FADD (Fas-associated via death domain), which is activated upon binding to cell death receptors responding to their ligands. DNA damage, hypoxia, metabolic stress, and other factors can induce intrinsic apoptosis, which begins with MOMP and leads to the release of mitochondrial proteins (e.g., CYCS) into the cytosol. Cytosolic CYCS interacts with APAF1, which recruits pro-CASP9 to form the apoptosome. MOMP is tightly controlled by the BCL2 family, including its pro-apoptotic and anti-apoptotic members. CASP3, CASP6, and CASP7 are considered the common effector caspases for both extrinsic and intrinsic apoptosis. In addition, the extrinsic pathway can trigger intrinsic mitochondrial apoptosis through the generation of truncated BID (tBID) by activated CASP8. tBID can further translocate to mitochondria and cause MOMP through the activation of BAX and BAK1</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/articles/s41422-019-0164-5/figures/2" data-track-dest="link:Figure2 Full size image" aria-label="Full size image figure 2" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>Cell death may occur in multiple forms in response to different stresses, especially oxidative stress (Box <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/articles/s41422-019-0164-5#Sec3">2</a>). The loss of control over single or mixed types of cell death contributes to human diseases such as cancer, neurodegeneration, autoimmune diseases, and infectious diseases.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 12" title="Linkermann, A., Stockwell, B. R., Krautwald, S. & Anders, H. J. Regulated cell death and inflammation: an auto-amplification loop causes organ failure. Nat. Rev. Immunol. 14, 759–767 (2014)." href="/articles/s41422-019-0164-5#ref-CR12" id="ref-link-section-d141354489e713">12</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 13" title="Vanden Berghe, T., Linkermann, A., Jouan-Lanhouet, S., Walczak, H. & Vandenabeele, P. Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat. Rev. Mol. Cell Biol. 15, 135–147 (2014)." href="/articles/s41422-019-0164-5#ref-CR13" id="ref-link-section-d141354489e716">13</a></sup> During the past few decades, many novel forms of non-apoptotic RCD have been identified. In this review, we discuss our current understanding of the molecular machinery of each of the main types of non-apoptotic RCD, including necroptosis, pyroptosis, ferroptosis, entotic cell death, netotic cell death, parthanatos, lysosome-dependent cell death, autophagy-dependent cell death, alkaliptosis, and oxeiptosis, all of which can be inhibited by small-molecule compounds or drugs (Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/articles/s41422-019-0164-5#Tab1">1</a>). Finally, we describe the immunogenicity of cell death, which affects immune surveillance, inflammatory responses, tissue regeneration, and tumor therapy.</p><div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-1"><figure><figcaption class="c-article-table__figcaption"><b id="Tab1" data-test="table-caption">Table 1 Hallmarks of major types of RCD</b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/articles/s41422-019-0164-5/tables/1" aria-label="Full size table 1"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><div class="c-article-box" data-expandable-box-container="true"><div class="c-article-box__container" data-expandable-box="true" aria-hidden="true" id="box-Sec2"><h3 class="c-article-box__container-title u-h3 js-expandable-title" id="Sec2">Box 1 Caspases in cell death</h3><div class="c-article-box__content"><p>Caspases are a family of cysteine-dependent aspartate-specific proteases that play a critical role in the regulation of cell death, connecting to development, inflammation, and immunity.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 10" title="McIlwain, D. R., Berger, T. & Mak, T. W. Caspase functions in cell death and disease. Cold Spring Harb. Perspect. Biol. 
 https://doi.org/10.1101/cshperspect.a026716
 
 (2015)." href="/articles/s41422-019-0164-5#ref-CR10" id="ref-link-section-d141354489e1267">10</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 11" title="Galluzzi, L., Lopez-Soto, A., Kumar, S. & Kroemer, G. Caspases connect cell-death signaling to organismal homeostasis. Immunity 44, 221–231 (2016)." href="/articles/s41422-019-0164-5#ref-CR11" id="ref-link-section-d141354489e1270">11</a></sup> RCD is therefore categorized into two groups: caspase-dependent (e.g., apoptosis and pyroptosis) and caspase-independent RCD (e.g., necroptosis, ferroptosis, parthanatos, alkaliptosis, and oxeiptosis). In mammalian cells, caspases can be divided into four groups: initiator caspases (CASP2, CASP8, CASP9, and CASP10), effector caspases (CASP3, CASP6, and CASP7), inflammatory caspases (CASP1, CASP4, CASP5, CASP11, and CASP12), and the keratinization-relevant caspase (CASP14). Human CASP4 and CASP5 are functional orthologues of mouse CASP11 and CASP12, respectively. The mouse genome lacks CASP10.</p><p>Like many proteases, caspases initially exist as inactive zymogens, namely, procaspases. CASP8 and CASP10 have four domain structures, including the small subunit, large subunit, caspase activation and recruitment domain (CARD), and death effector domain (DED). CASP1, CASP2, CASP4, CASP5, CASP9, and CASP12 lack the DED motif, but contain other domains. In contrast, effector caspases (CASP3, CASP6, and CASP7) and CASP14 require cleavage by other caspases into small subunits and large subunits that assemble into active enzyme. These activated caspases can cleave substrates such as downstream caspases, cellular structural proteins, and immune molecules to cause cell death and inflammation. Caspases recognize at least four contiguous amino acids in their substrates, namely P4-P3-P2-P1. These substrates are cleaved by caspases after the C-terminal residue (P1), usually an Asp residue.</p><p>Initiator and effector caspases regulate apoptosis, whereas inflammatory caspases control pyroptosis. CASP3, CASP6, and CASP7 are essential executioner caspases in various types of apoptosis. They are usually activated by CASP8 and CASP9 in the extrinsic and intrinsic pathways, respectively. CASP8 coordinates the response to TNF in the induction of inflammation, apoptosis, and necroptosis. TNF is one of the most potent physiological inducers of the NF-κB pathway to transactivate genes coding for cytokines and pro-survival factors. This effect is achieved through the TNFRSF1A complex including FADD. Active CASP8 inactivates the TNFRSF1A complex activity by cleaving RIPK1, thus favoring the activation of CASP3 or CASP7 and subsequent apoptosis. In contrast, the inhibition of CASP8 by the pan-caspase inhibitor Z-VAD-FMK or genetic inactivation of either CASP8 or FADD leads to TNF-induced necroptosis via the activation of the RIPK1-RIPK3-MLKL pathway.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 19" title="Weinlich, R., Oberst, A., Beere, H. M. & Green, D. R. Necroptosis in development, inflammation and disease. Nat. Rev. Mol. Cell Biol. 18, 127–136 (2017)." href="/articles/s41422-019-0164-5#ref-CR19" id="ref-link-section-d141354489e1280">19</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 35" title="Vercammen, D. et al. Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor. J. Exp. Med. 187, 1477–1485 (1998)." href="/articles/s41422-019-0164-5#ref-CR35" id="ref-link-section-d141354489e1283">35</a></sup> CASP2 and CASP10 are alternative initiator caspases contributing to RCD under certain conditions, but the underlying mechanism remains unclear. CASP1, CASP4, CASP5, and CASP11 ignite pyroptosis by cleaving members of the gasdermin family, especially GSDMD, to induce pore formation and plasma membrane rupture.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 82" title="Chen, X. et al. Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis. Cell Res. 26, 1007–1020 (2016)." href="/articles/s41422-019-0164-5#ref-CR82" id="ref-link-section-d141354489e1287">82</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Ding, J. et al. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 535, 111–116 (2016)." href="#ref-CR99" id="ref-link-section-d141354489e1290">99</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Liu, X. et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 535, 153–158 (2016)." href="#ref-CR100" id="ref-link-section-d141354489e1290_1">100</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Kayagaki, N. et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526, 666–671 (2015)." href="#ref-CR101" id="ref-link-section-d141354489e1290_2">101</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Shi, J. et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526, 660–665 (2015)." href="#ref-CR102" id="ref-link-section-d141354489e1290_3">102</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 103" title="He, W. T. et al. Gasdermin D is an executor of pyroptosis and required for interleukin-1beta secretion. Cell Res. 25, 1285–1298 (2015)." href="/articles/s41422-019-0164-5#ref-CR103" id="ref-link-section-d141354489e1293">103</a></sup> CASP12 is involved in endoplasmic reticulum stress-associated RCD<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 270" title="Yoneda, T. et al. Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. J. Biol. Chem. 276, 13935–13940 (2001)." href="/articles/s41422-019-0164-5#ref-CR270" id="ref-link-section-d141354489e1297">270</a></sup> (although this finding did not result in follow-up papers and has been disputed<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 271" title="Kalai, M. et al. Regulation of the expression and processing of caspase-12. J. Cell. Biol. 162, 457–467 (2003)." href="/articles/s41422-019-0164-5#ref-CR271" id="ref-link-section-d141354489e1301">271</a></sup>) and functions as an anti-inflammatory regulator partly due to the inhibition of CASP1 inflammasome and the NF-κB pathway.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 10" title="McIlwain, D. R., Berger, T. & Mak, T. W. Caspase functions in cell death and disease. Cold Spring Harb. Perspect. Biol. 
 https://doi.org/10.1101/cshperspect.a026716
 
 (2015)." href="/articles/s41422-019-0164-5#ref-CR10" id="ref-link-section-d141354489e1305">10</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 11" title="Galluzzi, L., Lopez-Soto, A., Kumar, S. & Kroemer, G. Caspases connect cell-death signaling to organismal homeostasis. Immunity 44, 221–231 (2016)." href="/articles/s41422-019-0164-5#ref-CR11" id="ref-link-section-d141354489e1308">11</a></sup></p></div></div></div><div class="c-article-box" data-expandable-box-container="true"><div class="c-article-box__container" data-expandable-box="true" aria-hidden="true" id="box-Sec3"><h3 class="c-article-box__container-title u-h3 js-expandable-title" id="Sec3">Box 2 Oxidative stress in cell death</h3><div class="c-article-box__content"><p>Oxidative stress results from an imbalance between the production of ROS and the antioxidant capacity. ROS include superoxide anion (O<sub>2</sub><sup>•-</sup>), hydroxyl radical (<sup>•</sup>OH), H<sub>2</sub>O<sub>2</sub>, and singlet oxygen (<sup>1</sup>O<sub>2</sub>). O<sub>2</sub><sup>•-</sup> is the one-electron reduction, whereas H<sub>2</sub>O<sub>2</sub> is the two-electron reduction product of molecular oxygen. <sup>•</sup>OH, a major initiator of lipoperoxidation, can be produced from iron-mediated Fenton reactions or high-energy ionizing radiation. <sup>1</sup>O<sub>2</sub> is an atypical ROS that is produced by the irradiation of molecular oxygen in the presence of photosensitizer pigments. Apart from mitochondria, other subcellular structures or organelles, including the plasma membrane, endoplasmic reticulum, and peroxisomes contribute to the production of ROS.</p><p>The antioxidant system may rely on enzymatic and non-enzymatic reactions. The enzymatic system comprises superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), and glutathione-S-transferase (GST). SOD isoenzymes, which include SOD1 in the cytoplasm and nucleus, SOD2 in mitochondria, and SOD3 in the extracellular space, catalyse the dismutation of O<sub>2</sub><sup>•-</sup> into either O<sub>2</sub> or H<sub>2</sub>O<sub>2.</sub> CAT is mostly located in peroxisomes and is responsible for converting H<sub>2</sub>O<sub>2</sub> into water and oxygen. GPX has eight members (GPX1-GPX8) in mitochondria, cytoplasm, and nuclei, and it functions to reduce lipid hydroperoxides to alcohols and to reduce H<sub>2</sub>O<sub>2</sub> to H<sub>2</sub>O. The activity of GPX relies on the presence of the oligoelement selenium. GST detoxifies xenobiotic electrophilic substrates by conjugating them to reduced GSH. The major intracellular non-enzymatic antioxidants include GSH, metal-binding proteins, melatonin, bilirubin, and polyamines. GSH is considered as the most important endogenous antioxidant capable of directly interacting with ROS or electrophiles and by functioning as a cofactor for various enzymes, including GPX.</p><p>Oxidative damage is not only a cause, but also a consequence of various types of cell death. Excessive ROS can result in lipid peroxidation and damage to proteins and DNA. Peroxidation of membrane lipids not only leads to functional changes, but also causes structural damage, which finally results in cell rupture. Beyond its implication in apoptosis, lipid peroxidation is involved in various types of RCD such as ferroptosis,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 117" title="Dixon, S. J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060–1072 (2012)." href="/articles/s41422-019-0164-5#ref-CR117" id="ref-link-section-d141354489e1373">117</a></sup> pyroptosis,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 105" title="Kang, R. et al. Lipid peroxidation drives gasdermin D-mediated pyroptosis in lethal polymicrobial sepsis. Cell Host. Microbe. 24, 97–108 e104 (2018)." href="/articles/s41422-019-0164-5#ref-CR105" id="ref-link-section-d141354489e1377">105</a></sup> necroptosis,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 137" title="Canli, O. et al. Glutathione peroxidase 4 prevents necroptosis in mouse erythroid precursors. Blood 127, 139–148 (2016)." href="/articles/s41422-019-0164-5#ref-CR137" id="ref-link-section-d141354489e1381">137</a></sup> autophagy-dependent death,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 272" title="Haberzettl, P. & Hill, B. G. Oxidized lipids activate autophagy in a JNK-dependent manner by stimulating the endoplasmic reticulum stress response. Redox Biol. 1, 56–64 (2013)." href="/articles/s41422-019-0164-5#ref-CR272" id="ref-link-section-d141354489e1385">272</a></sup> parthanatos,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 273" title="Barany, T. et al. Oxidative stress-related parthanatos of circulating mononuclear leukocytes in heart failure. Oxid. Med. Cell Longev. 2017, 1249614 (2017)." href="/articles/s41422-019-0164-5#ref-CR273" id="ref-link-section-d141354489e1389">273</a></sup> and netotic cell death.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 274" title="Palladino, E. N. D., Katunga, L. A., Kolar, G. R. & Ford, D. A. 2-Chlorofatty acids: lipid mediators of neutrophil extracellular trap formation. J. Lipid Res. 59, 1424–1432 (2018)." href="/articles/s41422-019-0164-5#ref-CR274" id="ref-link-section-d141354489e1394">274</a></sup> DNA damage by oxidation is a major reason for genomic instability in the development of age-associated diseases. Apoptosis<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 13" title="Vanden Berghe, T., Linkermann, A., Jouan-Lanhouet, S., Walczak, H. & Vandenabeele, P. Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat. Rev. Mol. Cell Biol. 15, 135–147 (2014)." href="/articles/s41422-019-0164-5#ref-CR13" id="ref-link-section-d141354489e1398">13</a></sup> and parthanatos<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 180" title="Wang, Y. et al. A nuclease that mediates cell death induced by DNA damage and poly(ADP-ribose) polymerase-1. Science 
 https://doi.org/10.1126/science.aad6872
 
 (2016)." href="/articles/s41422-019-0164-5#ref-CR180" id="ref-link-section-d141354489e1402">180</a></sup> are usually associated with DNA damage. ROS may stimulate cell death pathways and trigger inflammation, resulting in inflammasome activation and pyroptosis.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 275" title="Zhou, R., Yazdi, A. S., Menu, P. & Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature 469, 221–225 (2011)." href="/articles/s41422-019-0164-5#ref-CR275" id="ref-link-section-d141354489e1406">275</a></sup> Therefore, the suppression of ROS could have crucial anti-inflammatory effects.</p></div></div></div></div></div></section><section data-title="Classification of cell death"><div class="c-article-section" id="Sec4-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec4">Classification of cell death</h2><div class="c-article-section__content" id="Sec4-content"><p>Early classifications of cell death modalities depended on the morphological and structural details of individual tissues and cells. Accordingly, Schweichel and Merker published in 1973 a morphological hallmark system for classifying cell death into types I, II, and III in prenatal tissues treated with various embryotoxic substances.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 14" title="Schweichel, J. U. & Merker, H. J. The morphology of various types of cell death in prenatal tissues. Teratology 7, 253–266 (1973)." href="/articles/s41422-019-0164-5#ref-CR14" id="ref-link-section-d141354489e1419">14</a></sup> Type I cell death corresponds to apoptosis, and is characterized by cell shrinkage (pyknosis), membrane blebbing, apoptotic body formation, DNA fragmentation (karyorrhexis), and chromatin condensation. Apoptosis was also termed “shrinkage necrosis,” a form of nonpathologic cell death, by John Kerr in 1971.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 15" title="Kerr, J. F. Shrinkage necrosis: a distinct mode of cellular death. J. Pathol. 105, 13–20 (1971)." href="/articles/s41422-019-0164-5#ref-CR15" id="ref-link-section-d141354489e1423">15</a></sup> Type II cell death is often referred to as autophagy-dependent cell death, with the formation of large-scale autophagic vacuolization-containing cytosolic materials and organelles. Although there is no doubt that autophagy promotes cell survival in most cases,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 16" title="Kroemer, G., Marino, G. & Levine, B. Autophagy and the integrated stress response. Mol. Cell 40, 280–293 (2010)." href="/articles/s41422-019-0164-5#ref-CR16" id="ref-link-section-d141354489e1427">16</a></sup> autophagy can also cause cell death, namely autophagy-dependent cell death, in specific circumstances.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 17" title="Liu, Y. et al. Autosis is a Na+,K+-ATPase-regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia-ischemia. Proc. Natl Acad. Sci. USA 110, 20364–20371 (2013)." href="/articles/s41422-019-0164-5#ref-CR17" id="ref-link-section-d141354489e1431">17</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 18" title="Nassour, J. et al. Autophagic cell death restricts chromosomal instability during replicative crisis. Nature 
 https://doi.org/10.1038/s41586-019-0885-0
 
 (2019)." href="/articles/s41422-019-0164-5#ref-CR18" id="ref-link-section-d141354489e1434">18</a></sup> Type III cell death, namely necrosis, is characterized by the loss of membrane integrity and swelling of subcellular organelles (oncosis). Necrosis has long been considered as an uncontrolled type of cell death. In contrast, regulated types of necrosis such as necroptosis occur in a controlled manner.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 12" title="Linkermann, A., Stockwell, B. R., Krautwald, S. & Anders, H. J. Regulated cell death and inflammation: an auto-amplification loop causes organ failure. Nat. Rev. Immunol. 14, 759–767 (2014)." href="/articles/s41422-019-0164-5#ref-CR12" id="ref-link-section-d141354489e1438">12</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 13" title="Vanden Berghe, T., Linkermann, A., Jouan-Lanhouet, S., Walczak, H. & Vandenabeele, P. Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat. Rev. Mol. Cell Biol. 15, 135–147 (2014)." href="/articles/s41422-019-0164-5#ref-CR13" id="ref-link-section-d141354489e1441">13</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 19" title="Weinlich, R., Oberst, A., Beere, H. M. & Green, D. R. Necroptosis in development, inflammation and disease. Nat. Rev. Mol. Cell Biol. 18, 127–136 (2017)." href="/articles/s41422-019-0164-5#ref-CR19" id="ref-link-section-d141354489e1444">19</a></sup></p><p>The current classification system of cell death has been updated by the Nomenclature Committee on Cell Death (NCCD), which formulates guidelines for the definition and interpretation of all aspects of cell death since 2005.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 20" title="Kroemer, G. et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death. Cell Death Differ. 12, 1463–1467 (2005). Suppl 2." href="/articles/s41422-019-0164-5#ref-CR20" id="ref-link-section-d141354489e1450">20</a></sup> The NCCD has released five position papers dealing with the classification of cell death (2005 and 2009),<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 20" title="Kroemer, G. et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death. Cell Death Differ. 12, 1463–1467 (2005). Suppl 2." href="/articles/s41422-019-0164-5#ref-CR20" id="ref-link-section-d141354489e1454">20</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 21" title="Kroemer, G. et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ. 16, 3–11 (2009)." href="/articles/s41422-019-0164-5#ref-CR21" id="ref-link-section-d141354489e1457">21</a></sup> the molecular definitions of cell death subroutines (2012),<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 22" title="Galluzzi, L. et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ. 19, 107–120 (2012)." href="/articles/s41422-019-0164-5#ref-CR22" id="ref-link-section-d141354489e1461">22</a></sup> essential versus accessory aspects of cell death (2015),<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 23" title="Galluzzi, L. et al. Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ. 22, 58–73 (2015)." href="/articles/s41422-019-0164-5#ref-CR23" id="ref-link-section-d141354489e1465">23</a></sup> and molecular mechanisms of cell death (2018).<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 24" title="Galluzzi, L. et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 25, 486–541 (2018)." href="/articles/s41422-019-0164-5#ref-CR24" id="ref-link-section-d141354489e1469">24</a></sup> Currently, cell death can be fundamentally divided into accidental cell death (ACD) and RCD, based on functional aspects.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 23" title="Galluzzi, L. et al. Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ. 22, 58–73 (2015)." href="/articles/s41422-019-0164-5#ref-CR23" id="ref-link-section-d141354489e1474">23</a></sup> ACD can be triggered by unexpected attack and injury that overwhelms any possible control mechanisms. In contrast, RCD involves precise signaling cascades, is executed by a set of defined effector molecules and has unique biochemical, functional, and immunological consequences (Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/articles/s41422-019-0164-5#Tab1">1</a>). RCD is also known as PCD when it occurs in physiological conditions.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 23" title="Galluzzi, L. et al. Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ. 22, 58–73 (2015)." href="/articles/s41422-019-0164-5#ref-CR23" id="ref-link-section-d141354489e1481">23</a></sup> Based on its molecular characteristics, RCD can be classified into multiple subroutines, a few of which have clear physiological bearing (like necroptosis and pyropotosis, which are observed during development and/or in the context of viral infections) while others (like ferroptosis, entotic cell death, netotic cell death, parthanatos, lysosome-dependent cell death, autophagy-dependent cell death, alkaliptosis, and oxeiptosis) are less well-studied and may actually be limited to cellular responses to specific toxins that do not reflect normal physiology. Here, we adopt the viewpoint that cell death involves some kind of “regulation” (hence “RCD”) as long as specific genetic or pharmacological manipulations are able to interrupt the lethal cascade-causing cellular dismantling in response to external stimuli.</p></div></div></section><section data-title="Necroptosis"><div class="c-article-section" id="Sec5-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec5">Necroptosis</h2><div class="c-article-section__content" id="Sec5-content"><p>Necroptosis, a programmed form of necrosis showing morphological features similar to necrosis,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 25" title="Pasparakis, M. & Vandenabeele, P. Necroptosis and its role in inflammation. Nature 517, 311–320 (2015)." href="/articles/s41422-019-0164-5#ref-CR25" id="ref-link-section-d141354489e1493">25</a></sup> was first observed in 1996 in pig kidney cells infected by the cowpox virus that expresses cytokine response modifier A (CrmA), a viral CASP1 and CASP8 inhibitor.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 26" title="Ray, C. A. & Pickup, D. J. The mode of death of pig kidney cells infected with cowpox virus is governed by the expression of the crmA gene. Virology 217, 384–391 (1996)." href="/articles/s41422-019-0164-5#ref-CR26" id="ref-link-section-d141354489e1497">26</a></sup> In 1998, this observation was extended when L-M cells (a mouse fibroblast cell line) were found to be strongly sensitized to tumor necrosis factor (TNF, also known as TNFα)-induced necrotic cell death, suggesting that CASP8 negatively controls this type of cell death.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 27" title="Laster, S. M., Wood, J. G. & Gooding, L. R. Tumor necrosis factor can induce both apoptic and necrotic forms of cell lysis. J. Immunol. 141, 2629–2634 (1988)." href="/articles/s41422-019-0164-5#ref-CR27" id="ref-link-section-d141354489e1501">27</a></sup> Today it is known that necroptosis can be triggered by multiple stimuli, including the activation of death receptors (e.g., FAS and TNFRSF1A),<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 28" title="Holler, N. et al. Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat. Immunol. 1, 489–495 (2000)." href="/articles/s41422-019-0164-5#ref-CR28" id="ref-link-section-d141354489e1505">28</a></sup> toll-like receptors (e.g., toll-like receptor 3 [TLR3] and TLR4),<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 29" title="He, S., Liang, Y., Shao, F. & Wang, X. Toll-like receptors activate programmed necrosis in macrophages through a receptor-interacting kinase-3-mediated pathway. Proc. Natl Acad. Sci. USA 108, 20054–20059 (2011)." href="/articles/s41422-019-0164-5#ref-CR29" id="ref-link-section-d141354489e1509">29</a></sup> nucleic acid sensors (e.g., Z-DNA–binding protein 1 [ZBP1, also known as DAI],<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 30" title="Upton, J. W., Kaiser, W. J. & Mocarski, E. S. DAI/ZBP1/DLM-1 complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA. Cell Host. Microbe. 11, 290–297 (2012)." href="/articles/s41422-019-0164-5#ref-CR30" id="ref-link-section-d141354489e1514">30</a></sup> retinoic acid receptor responder 3 [RARRES3, also known as RIG1],<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 31" title="Schock, S. N. et al. Induction of necroptotic cell death by viral activation of the RIG-I or STING pathway. Cell Death Differ. 24, 615–625 (2017)." href="/articles/s41422-019-0164-5#ref-CR31" id="ref-link-section-d141354489e1518">31</a></sup> transmembrane protein 173 [TMEM173, also known as STING]<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 32" title="Brault, M., Olsen, T. M., Martinez, J., Stetson, D. B. & Oberst, A. Intracellular nucleic acid sensing triggers necroptosis through synergistic type I IFN and TNF signaling. J. Immunol. 200, 2748–2756 (2018)." href="/articles/s41422-019-0164-5#ref-CR32" id="ref-link-section-d141354489e1522">32</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 33" title="Chen, D. et al. PUMA amplifies necroptosis signaling by activating cytosolic DNA sensors. Proc. Natl Acad. Sci. USA 115, 3930–3935 (2018)." href="/articles/s41422-019-0164-5#ref-CR33" id="ref-link-section-d141354489e1525">33</a></sup>), and adhesion receptors.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 34" title="Wang, X., He, Z., Liu, H., Yousefi, S. & Simon, H. U. Neutrophil necroptosis is triggered by ligation of adhesion molecules following GM-CSF priming. J. Immunol. 197, 4090–4100 (2016)." href="/articles/s41422-019-0164-5#ref-CR34" id="ref-link-section-d141354489e1529">34</a></sup> The same ligands (e.g., TNF, TNF superfamily member 10 [TNFSF10, also known as TRAIL], and Fas ligand [FASLG, also known as FasL or CD95L]) that ignite the extrinsic apoptosis pathway can trigger necroptosis when CASP8 activation at the death-inducing signaling complex (DISC) is prevented by means of caspase inhibitors (such as Z-VAD-FMK) or by the depletion of fas-associated via death domain (FADD).<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 35" title="Vercammen, D. et al. Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor. J. Exp. Med. 187, 1477–1485 (1998)." href="/articles/s41422-019-0164-5#ref-CR35" id="ref-link-section-d141354489e1533">35</a></sup></p><p>The era of molecular necroptosis research began in 2000 with the discovery of receptor-interacting serine/threonine kinase 1 (RIPK1) as a regulator of FASLG-induced necroptosis in T cells.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 28" title="Holler, N. et al. Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat. Immunol. 1, 489–495 (2000)." href="/articles/s41422-019-0164-5#ref-CR28" id="ref-link-section-d141354489e1539">28</a></sup> RIPK1 is indeed a multifunctional signal kinase at the crossroads between inflammation, immunity, cell stress, cell survival, and cell death (Box <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/articles/s41422-019-0164-5#Sec6">3</a>). Subsequently, the identification of the pharmacological RIPK1 inhibitor necrostatin-1 led to the coining of the term “necroptosis.”<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 36" title="Degterev, A. et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat. Chem. Biol. 1, 112–119 (2005)." href="/articles/s41422-019-0164-5#ref-CR36" id="ref-link-section-d141354489e1546">36</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 37" title="Degterev, A. et al. Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat. Chem. Biol. 4, 313–321 (2008)." href="/articles/s41422-019-0164-5#ref-CR37" id="ref-link-section-d141354489e1549">37</a></sup> Later, receptor-interacting serine/threonine kinase 3 (RIPK3) was unravelled as a downstream mediator of RIPK1 in death receptor-induced necroptosis.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Zhang, D. W. et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325, 332–336 (2009)." href="#ref-CR38" id="ref-link-section-d141354489e1553">38</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="He, S. et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell 137, 1100–1111 (2009)." href="#ref-CR39" id="ref-link-section-d141354489e1553_1">39</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 40" title="Cho, Y. S. et al. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137, 1112–1123 (2009)." href="/articles/s41422-019-0164-5#ref-CR40" id="ref-link-section-d141354489e1556">40</a></sup> The subsequent discovery of mixed lineage kinase domain-like pseudokinase (MLKL) as the effector of necroptosis has largely enhanced our understanding of the molecular process of necroptosis.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 41" title="Sun, L. et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148, 213–227 (2012)." href="/articles/s41422-019-0164-5#ref-CR41" id="ref-link-section-d141354489e1560">41</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 42" title="Zhao, J. et al. Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis. Proc. Natl Acad. Sci. USA 109, 5322–5327 (2012)." href="/articles/s41422-019-0164-5#ref-CR42" id="ref-link-section-d141354489e1563">42</a></sup></p><p>An array of signaling pathways facilitate RIPK3 activation in several distinct ways (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41422-019-0164-5#Fig3">3a</a>) involving the homotypic interaction of RIP homotypic interaction motif (RHIM) domain-containing receptors, adaptors and kinases (ZBP1, toll-like receptor adaptor molecule 1 [TICAM1, also known as TRIF], RIPK1, and RIPK3). These RHIM domains of RIPK1 and RIPK3 mediate the formation of large hetero-amyloid signaling complexes that are initiated by different ligands.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 43" title="Mompean, M. et al. The structure of the necrosome RIPK1-RIPK3 core, a human hetero-amyloid signaling complex. Cell 173, 1244–1253 e1210 (2018)." href="/articles/s41422-019-0164-5#ref-CR43" id="ref-link-section-d141354489e1572">43</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 44" title="Li, J. et al. The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis. Cell 150, 339–350 (2012)." href="/articles/s41422-019-0164-5#ref-CR44" id="ref-link-section-d141354489e1575">44</a></sup> First, death receptor ligands induce the RHIM-mediated binding of RIPK1 to RIPK3, triggering the formation of specific signaling complexes, the “necrosomes,” ultimately resulting in MLKL activation.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Zhang, D. W. et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325, 332–336 (2009)." href="#ref-CR38" id="ref-link-section-d141354489e1579">38</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="He, S. et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell 137, 1100–1111 (2009)." href="#ref-CR39" id="ref-link-section-d141354489e1579_1">39</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 40" title="Cho, Y. S. et al. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137, 1112–1123 (2009)." href="/articles/s41422-019-0164-5#ref-CR40" id="ref-link-section-d141354489e1582">40</a></sup> This process requires protein posttranslational modifications that are regulated by the ubiquitin ligase STIP1 homology and u-box containing protein 1 (STUB1, also known as CHIP),<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 45" title="Seo, J. et al. CHIP controls necroptosis through ubiquitylation- and lysosome-dependent degradation of RIPK3. Nat. Cell Biol. 18, 291–302 (2016)." href="/articles/s41422-019-0164-5#ref-CR45" id="ref-link-section-d141354489e1586">45</a></sup> the aurora kinase A (AURKA),<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 46" title="Xie, Y. et al. Inhibition of aurora kinase A induces necroptosis in pancreatic carcinoma. Gastroenterology 153, 1429–1443 e1425 (2017)." href="/articles/s41422-019-0164-5#ref-CR46" id="ref-link-section-d141354489e1590">46</a></sup> the protein phosphatase Mg<sup>2+</sup>/Mn<sup>2+</sup>-dependent 1B (PPM1B, also known as PP2CB),<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 47" title="Chen, W. et al. Ppm1b negatively regulates necroptosis through dephosphorylating Rip3. Nat. Cell Biol. 17, 434–444 (2015)." href="/articles/s41422-019-0164-5#ref-CR47" id="ref-link-section-d141354489e1599">47</a></sup> and the deubiquitinase TNF alpha-induced protein 3 (TNFAIP3, also known as A20).<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 48" title="Onizawa, M. et al. The ubiquitin-modifying enzyme A20 restricts ubiquitination of the kinase RIPK3 and protects cells from necroptosis. Nat. Immunol. 16, 618–627 (2015)." href="/articles/s41422-019-0164-5#ref-CR48" id="ref-link-section-d141354489e1603">48</a></sup> Second, TICAM1, but not RIPK1, is required for RIPK3-MLKL–dependent necroptosis in response to TLR ligands.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 29" title="He, S., Liang, Y., Shao, F. & Wang, X. Toll-like receptors activate programmed necrosis in macrophages through a receptor-interacting kinase-3-mediated pathway. Proc. Natl Acad. Sci. USA 108, 20054–20059 (2011)." href="/articles/s41422-019-0164-5#ref-CR29" id="ref-link-section-d141354489e1607">29</a></sup> Third, certain viruses can directly bind to RIPK3<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 49" title="Huang, Z. et al. RIP1/RIP3 binding to HSV-1 ICP6 initiates necroptosis to restrict virus propagation in mice. Cell Host. Microbe. 17, 229–242 (2015)." href="/articles/s41422-019-0164-5#ref-CR49" id="ref-link-section-d141354489e1611">49</a></sup> or promote the binding of the host protein ZBP1 to RIPK3 and subsequent MLKL activation.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 30" title="Upton, J. W., Kaiser, W. J. & Mocarski, E. S. DAI/ZBP1/DLM-1 complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA. Cell Host. Microbe. 11, 290–297 (2012)." href="/articles/s41422-019-0164-5#ref-CR30" id="ref-link-section-d141354489e1616">30</a></sup> Fourth, RIPK3 activation by interferon alpha receptor or adhesion receptor occurs through an alternative pathway that does not require RIPK1, TICAM1 nor ZBP1.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 34" title="Wang, X., He, Z., Liu, H., Yousefi, S. & Simon, H. U. Neutrophil necroptosis is triggered by ligation of adhesion molecules following GM-CSF priming. J. Immunol. 197, 4090–4100 (2016)." href="/articles/s41422-019-0164-5#ref-CR34" id="ref-link-section-d141354489e1620">34</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 50" title="Thapa, R. J. et al. Interferon-induced RIP1/RIP3-mediated necrosis requires PKR and is licensed by FADD and caspases. Proc. Natl Acad. Sci. USA 110, E3109–E3118 (2013)." href="/articles/s41422-019-0164-5#ref-CR50" id="ref-link-section-d141354489e1623">50</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 51" title="Robinson, N. et al. Type I interferon induces necroptosis in macrophages during infection with Salmonella enterica serovar Typhimurium. Nat. Immunol. 13, 954–962 (2012)." href="/articles/s41422-019-0164-5#ref-CR51" id="ref-link-section-d141354489e1626">51</a></sup></p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-3" data-title="Fig. 3"><figure><figcaption><b id="Fig3" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 3</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/articles/s41422-019-0164-5/figures/3" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41422-019-0164-5/MediaObjects/41422_2019_164_Fig3_HTML.png?as=webp"><img aria-describedby="Fig3" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41422-019-0164-5/MediaObjects/41422_2019_164_Fig3_HTML.png" alt="figure 3" loading="lazy" width="685" height="612"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-3-desc"><p>Core molecular mechanism of non-apoptotic regulated cell death. <b>a</b> RIPK3-stimulated MLKL is necessary for membrane rupture formation in necroptosis. Upstream elicitors include DR, TLR, and viruses, which induce RIPK3 activation through RIPK1, TICAM1, and ZBP1, respectively. In addition, RIPK3 is activated by AR via an unknown adaptor protein or kinases. <b>b</b> Pyroptosis is mostly driven by GSDMD after cleavage of this protein by CASP1 and CASP11 in response to PAMPs and DAMPs, or cytosolic LPS. <b>c</b> Ferroptosis is a form of cell death that relies on the balance between iron accumulation-induced ROS production and the antioxidant system during lipid peroxidation. The ACSL4-LPCAT3-ALOX15 pathway mediates lipid peroxidation. In contrast, several antioxidant systems, especially system xc<sup>-</sup> that includes the core components SLC7A11, GPX4, and NFE2L2, inhibit this process. <b>d</b> Parthanatos is a PARP1-dependent form of cell death that relies on the AIFM1-MIF pathway. <b>e</b> Entotic cell death is a form of cellular cannibalism through the activation of entosis followed by the engulfing and killing of cells through LAP and the lysosomal degradation pathway. RHOA, ROCK, myosin, and CDC42 are required for entosis. <b>f</b> Netotic cell death is driven by NET release, which is regulated by NADPH oxidase-mediated ROS production and histone citrullination. <b>g</b> Lysosome-dependent cell death is mediated by releasing hydrolytic enzymes (cathepsins) or iron upon LMP. <b>h</b> Autophagy-dependent cell death is driven by the molecular machinery of autophagy. <b>i</b> Alkaliptosis is driven by intracellular alkalinization after IKBKB-NF-κB pathway-dependent downregulation of CA9. <b>j</b> Oxeiptosis is an oxygen radical-induced form of cell death driven by the activation of the KEAP1-PGAM5-AIFM1 pathway</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/articles/s41422-019-0164-5/figures/3" data-track-dest="link:Figure3 Full size image" aria-label="Full size image figure 3" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>The phosphorylation of MLKL by RIPK3 at different residues in the C-terminal pseudokinase domain (S345/S347/T349 in mouse and S357/T358 in human) results in a conformational change and binding of inositolhexaphosphate (IP6) with positively charged patches in the N-terminal part of MLKL, followed by its recruitment to phosphatidylinosites, and insertion and multimerization in the plasma membrane, resulting in plasma membrane permeabilization.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 41" title="Sun, L. et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148, 213–227 (2012)." href="/articles/s41422-019-0164-5#ref-CR41" id="ref-link-section-d141354489e1683">41</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 42" title="Zhao, J. et al. Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis. Proc. Natl Acad. Sci. USA 109, 5322–5327 (2012)." href="/articles/s41422-019-0164-5#ref-CR42" id="ref-link-section-d141354489e1686">42</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Wang, H. et al. Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol. Cell 54, 133–146 (2014)." href="#ref-CR52" id="ref-link-section-d141354489e1689">52</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Dondelinger, Y. et al. MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates. Cell Rep 7, 971–981 (2014)." href="#ref-CR53" id="ref-link-section-d141354489e1689_1">53</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Hildebrand, J. M. et al. Activation of the pseudokinase MLKL unleashes the four-helix bundle domain to induce membrane localization and necroptotic cell death. Proc. Natl Acad. Sci. USA 111, 15072–15077 (2014)." href="#ref-CR54" id="ref-link-section-d141354489e1689_2">54</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Murphy, J. M. et al. The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity 39, 443–453 (2013)." href="#ref-CR55" id="ref-link-section-d141354489e1689_3">55</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 56" title="Chen, X. et al. Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death. Cell Res. 24, 105–121 (2014)." href="/articles/s41422-019-0164-5#ref-CR56" id="ref-link-section-d141354489e1692">56</a></sup> MLKL oligomerization and translocation to the plasma membrane can be enhanced by interactions with the molecular chaperone heat shock protein 90 alpha family class A member 1 (HSP90AA1, also known as HSP90)<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Zhao, X. M. et al. Hsp90 modulates the stability of MLKL and is required for TNF-induced necroptosis. Cell Death Dis. 7, e2089 (2016)." href="#ref-CR57" id="ref-link-section-d141354489e1696">57</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Li, D. et al. Natural product kongensin A is a non-canonical HSP90 inhibitor that blocks RIP3-dependent necroptosis. Cell Chem Biol 23, 257–266 (2016)." href="#ref-CR58" id="ref-link-section-d141354489e1696_1">58</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Jacobsen, A. V. et al. HSP90 activity is required for MLKL oligomerisation and membrane translocation and the induction of necroptotic cell death. Cell Death Dis. 7, e2051 (2016)." href="#ref-CR59" id="ref-link-section-d141354489e1696_2">59</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 60" title="Bigenzahn, J. W. et al. An inducible retroviral expression system for tandem affinity purification mass-spectrometry-based proteomics identifies mixed lineage kinase domain-like protein (MLKL) as an heat shock protein 90 (HSP90) client. Mol. Cell. Proteomics. 15, 1139–1150 (2016)." href="/articles/s41422-019-0164-5#ref-CR60" id="ref-link-section-d141354489e1699">60</a></sup> or by the local accumulation of inositol phosphates resulting from the activation of inositol phosphate kinase (e.g., inositol polyphosphate multikinase [IPMK] and inositol-tetrakisphosphate 1-kinase [ITPK1]).<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 61" title="Dovey, C. M. et al. MLKL requires the inositol phosphate code to execute necroptosis. Mol. Cell 70, 936–948 e937 (2018)." href="/articles/s41422-019-0164-5#ref-CR61" id="ref-link-section-d141354489e1703">61</a></sup> Strikingly, the endosomal sorting complexes required for transport (ESCRT)-III complex, a membrane scission machine, limits MLKL-mediated necroptosis and promotes membrane repair.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 62" title="Gong, Y. N. et al. ESCRT-III acts downstream of MLKL to regulate necroptotic cell death and its consequences. Cell 169, 286–300 e216 (2017)." href="/articles/s41422-019-0164-5#ref-CR62" id="ref-link-section-d141354489e1707">62</a></sup> MLKL has also been shown to regulate endosomal trafficking and extracellular vesicle generation.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 63" title="Yoon, S., Kovalenko, A., Bogdanov, K. & Wallach, D. MLKL, the protein that mediates necroptosis, also regulates endosomal trafficking and extracellular vesicle generation. Immunity 47, 51–65 e57 (2017)." href="/articles/s41422-019-0164-5#ref-CR63" id="ref-link-section-d141354489e1711">63</a></sup> Thus, a fine balance between membrane injury and repair ultimately decides cell fate in necroptosis.</p><p>Early studies have revealed that mitochondrial events such as the production of mitochondrial reactive oxygen species (ROS),<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 64" title="Vanden Berghe, T. et al. Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features. Cell Death Differ. 17, 922–930 (2010)." href="/articles/s41422-019-0164-5#ref-CR64" id="ref-link-section-d141354489e1719">64</a></sup> the activation of the mitochondrial phosphatase PGAM family member 5 (PGAM5, mitochondrial serine/threonine protein phosphatase), or the presence of a mitochondrial permeability transition may trigger necroptosis.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 65" title="Wang, Z., Jiang, H., Chen, S., Du, F. & Wang, X. The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways. Cell 148, 228–243 (2012)." href="/articles/s41422-019-0164-5#ref-CR65" id="ref-link-section-d141354489e1723">65</a></sup> How exactly mitochondrial ROS production contributes to necroptosis induction is still unsolved, but it may involve a redox sensing upstream of RIPK1 activation and RIPK3 recruitment.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 66" title="Zhang, Y. et al. RIP1 autophosphorylation is promoted by mitochondrial ROS and is essential for RIP3 recruitment into necrosome. Nat. Commun. 8, 14329 (2017)." href="/articles/s41422-019-0164-5#ref-CR66" id="ref-link-section-d141354489e1727">66</a></sup> A connection between aerobic metabolism and necroptosis sensitivity might exist, as evidenced by RIPK3-mediated positive regulation of glutaminolysis and pyruvate dehydrogenase activity.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 38" title="Zhang, D. W. et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325, 332–336 (2009)." href="/articles/s41422-019-0164-5#ref-CR38" id="ref-link-section-d141354489e1731">38</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 67" title="Yang, Z. et al. RIP3 targets pyruvate dehydrogenase complex to increase aerobic respiration in TNF-induced necroptosis. Nat. Cell Biol. 20, 186–197 (2018)." href="/articles/s41422-019-0164-5#ref-CR67" id="ref-link-section-d141354489e1734">67</a></sup> However, other studies demonstrate that mitochondria are dispensable for necroptosis induced by death receptor signaling using PGAM5 knockdown cells.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 55" title="Murphy, J. M. et al. The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity 39, 443–453 (2013)." href="/articles/s41422-019-0164-5#ref-CR55" id="ref-link-section-d141354489e1738">55</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 68" title="Remijsen, Q. et al. Depletion of RIPK3 or MLKL blocks TNF-driven necroptosis and switches towards a delayed RIPK1 kinase-dependent apoptosis. Cell Death Dis. 5, e1004 (2014)." href="/articles/s41422-019-0164-5#ref-CR68" id="ref-link-section-d141354489e1741">68</a></sup> It has also been suggested that the formation of necrosomes with RIPK1, RIPK3, and MLKL in the nucleus may increase MLKL activity in plasma membranes.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 69" title="Yoon, S., Bogdanov, K., Kovalenko, A. & Wallach, D. Necroptosis is preceded by nuclear translocation of the signaling proteins that induce it. Cell Death Differ. 23, 253–260 (2016)." href="/articles/s41422-019-0164-5#ref-CR69" id="ref-link-section-d141354489e1746">69</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 70" title="Weber, K., Roelandt, R., Bruggeman, I., Estornes, Y. & Vandenabeele, P. Nuclear RIPK3 and MLKL contribute to cytosolic necrosome formation and necroptosis. Commun Biol 1, 6 (2018)." href="/articles/s41422-019-0164-5#ref-CR70" id="ref-link-section-d141354489e1749">70</a></sup> Moreover, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-derived ROS have been implicated in necroptosis in neutrophils.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 71" title="Wang, X., Yousefi, S. & Simon, H. U. Necroptosis and neutrophil-associated disorders. Cell Death Dis. 9, 111 (2018)." href="/articles/s41422-019-0164-5#ref-CR71" id="ref-link-section-d141354489e1753">71</a></sup> The functional significance of different ROS sources in necroptosis and how they impact the signal transduction remain to be further investigated.</p><p>In conclusion, RIPK3 and its substrate MLKL are necessary for necroptosis, whereas upstream RIPK1 contributes to this process in some cases (e.g., death receptor activation). RIPK3, independent of its kinase activity and independent of MLKL, also plays a regulatory role in apoptosis<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 72" title="Newton, K. et al. Activity of protein kinase RIPK3 determines whether cells die by necroptosis or apoptosis. Science 343, 1357–1360 (2014)." href="/articles/s41422-019-0164-5#ref-CR72" id="ref-link-section-d141354489e1760">72</a></sup> and in NLRP3-inflammasome activation and pyroptosis.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 73" title="Lawlor, K. E. et al. RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL. Nat. Commun. 6, 6282 (2015)." href="/articles/s41422-019-0164-5#ref-CR73" id="ref-link-section-d141354489e1764">73</a></sup> Neither RIPK3 nor MLKL knockout mice show deficiency in embryogenesis, development, and homeostasis, suggesting no major role of necroptosis in nonchallenged conditions.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 74" title="Shan, B., Pan, H., Najafov, A. & Yuan, J. Necroptosis in development and diseases. Genes Dev. 32, 327–340 (2018)." href="/articles/s41422-019-0164-5#ref-CR74" id="ref-link-section-d141354489e1768">74</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 75" title="Dillon, C. P., Tummers, B., Baran, K. & Green, D. R. Developmental checkpoints guarded by regulated necrosis. Cell. Mol. Life Sci. 73, 2125–2136 (2016)." href="/articles/s41422-019-0164-5#ref-CR75" id="ref-link-section-d141354489e1771">75</a></sup> A role for necroptosis in development and homeostasis is only revealed in conditions of FADD or CASP8 deficiency, demonstrating the important checkpoint function of CASP8 in controlling necroptosis in vivo.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 74" title="Shan, B., Pan, H., Najafov, A. & Yuan, J. Necroptosis in development and diseases. Genes Dev. 32, 327–340 (2018)." href="/articles/s41422-019-0164-5#ref-CR74" id="ref-link-section-d141354489e1775">74</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 75" title="Dillon, C. P., Tummers, B., Baran, K. & Green, D. R. Developmental checkpoints guarded by regulated necrosis. Cell. Mol. Life Sci. 73, 2125–2136 (2016)." href="/articles/s41422-019-0164-5#ref-CR75" id="ref-link-section-d141354489e1778">75</a></sup> In contrast to the apparent absence of function during development and homeostasis, necroptosis is implicated in neurodegenerative diseases, chemotherapy responses, and tissue injury.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 76" title="Galluzzi, L., Kepp, O., Chan, F. K. & Kroemer, G. Necroptosis: mechanisms and relevance to disease. Annu. Rev. Pathol. 12, 103–130 (2017)." href="/articles/s41422-019-0164-5#ref-CR76" id="ref-link-section-d141354489e1782">76</a></sup> Of note, data obtained from conditional knockout mice should be favoured over the use of systemic knockout mice that were generated using different sources of ES cells (129, C57BL/6J, or C57BL/6N) to avoid phenotypic interference of passenger mutations.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 77" title="Vanden Berghe, T. et al. Passenger mutations confound interpretation of all genetically modified congenic mice. Immunity 43, 200–209 (2015)." href="/articles/s41422-019-0164-5#ref-CR77" id="ref-link-section-d141354489e1787">77</a></sup></p><div class="c-article-box" data-expandable-box-container="true"><div class="c-article-box__container" data-expandable-box="true" aria-hidden="true" id="box-Sec6"><h3 class="c-article-box__container-title u-h3 js-expandable-title" id="Sec6">Box 3 Regulation of RIPK1 in survival and cell death function</h3><div class="c-article-box__content"><p>When cells undergo cellular stress (endoplasmic reticulum stress, oxidative stress, DNA damage, pro-inflammatory stimuli) the default outcome is an adaptive response involving de novo expression of numerous genes and posttranslational modifications of target proteins (proteolysis, phosphorylation, and ubiquitylation) to maintain homeostasis or to induce cell death if the cellular stress remains unmitigated. RIPK1 is a central hub downstream of many cellular stress and immune receptor pathways such as TLR and TNF receptor family members, where it regulates the induction of pro-survival genes (e.g., BCL2, XIAP, and FLIP), inflammatory genes (cytokines and chemokines), and cell death through kinase-independent and kinase-dependent mechanisms.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 276" title="Silke, J., Rickard, J. A. & Gerlic, M. The diverse role of RIP kinases in necroptosis and inflammation. Nat. Immunol. 16, 689–697 (2015)." href="/articles/s41422-019-0164-5#ref-CR276" id="ref-link-section-d141354489e1797">276</a></sup> RIPK1 has two major faces. As a scaffold it recruits in an ubiquitylation-dependent way factors that initiate the activation of NF-κB and the MAPK cascade, and prevents CASP8-dependent apoptosis and RIPK3/MLKL-dependent necroptosis. As a kinase following its enzymatic activation, RIPK1 induces CASP8-mediated apoptosis and RIPK3/MLKL-mediated necroptosis. Transgenic knockin mice of kinase dead RIPK1 do not show a spontaneous phenotype but are resistant to TNF-induced systemic inflammatory response syndrome and show decreased pathogenesis in several inflammatory and degenerative diseases, suggesting that cell death may be an important etiologic factor in these pathologies.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 72" title="Newton, K. et al. Activity of protein kinase RIPK3 determines whether cells die by necroptosis or apoptosis. Science 343, 1357–1360 (2014)." href="/articles/s41422-019-0164-5#ref-CR72" id="ref-link-section-d141354489e1801">72</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Polykratis, A. et al. Cutting edge: RIPK1 Kinase inactive mice are viable and protected from TNF-induced necroptosis in vivo. J. Immunol. 193, 1539–1543 (2014)." href="#ref-CR277" id="ref-link-section-d141354489e1804">277</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Newton, K. et al. RIPK3 deficiency or catalytically inactive RIPK1 provides greater benefit than MLKL deficiency in mouse models of inflammation and tissue injury. Cell Death Differ. 23, 1565–1576 (2016)." href="#ref-CR278" id="ref-link-section-d141354489e1804_1">278</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 279" title="Berger, S. B. et al. Cutting Edge: RIP1 kinase activity is dispensable for normal development but is a key regulator of inflammation in SHARPIN-deficient mice. J. Immunol. 192, 5476–5480 (2014)." href="/articles/s41422-019-0164-5#ref-CR279" id="ref-link-section-d141354489e1807">279</a></sup> On the other hand, kinase dead RIPK1 knockin mice show increased sensitivity to infection, demonstrating the importance of RIPK1-driven cell death in immunosurveillance.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 277" title="Polykratis, A. et al. Cutting edge: RIPK1 Kinase inactive mice are viable and protected from TNF-induced necroptosis in vivo. J. Immunol. 193, 1539–1543 (2014)." href="/articles/s41422-019-0164-5#ref-CR277" id="ref-link-section-d141354489e1811">277</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 279" title="Berger, S. B. et al. Cutting Edge: RIP1 kinase activity is dispensable for normal development but is a key regulator of inflammation in SHARPIN-deficient mice. J. Immunol. 192, 5476–5480 (2014)." href="/articles/s41422-019-0164-5#ref-CR279" id="ref-link-section-d141354489e1814">279</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 280" title="Kondylis, V., Kumari, S., Vlantis, K. & Pasparakis, M. The interplay of IKK, NF-kappaB and RIPK1 signaling in the regulation of cell death, tissue homeostasis and inflammation. Immunol. Rev. 277, 113–127 (2017)." href="/articles/s41422-019-0164-5#ref-CR280" id="ref-link-section-d141354489e1817">280</a></sup> What determines the switch between the RIPK1 scaffold and kinase functions that have such an impact on pathophysiological conditions? The most detailed insights into the regulation of these two opposing functions of RIPK1 were obtained from studying TNF-induced signaling pathways. TNF binding to TNFRSF1A causes in the first instance the formation of a receptor-associated complex I containing TRADD, RIPK1, and E3 ligases (TRAF2, cIAP1/2, and LUBAC), adding K63 and linear ubiquityl chains on RIPK1. This network of polyubiquityl chains forms a platform that recruits the IKK complex and MAP3K7/TAK1 complex controlling the NF-κB and MAPK signaling pathways and leading to pro-survival and pro-inflammatory gene induction.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 281" title="Dondelinger, Y., Darding, M., Bertrand, M. J. & Walczak, H. Poly-ubiquitination in TNFR1-mediated necroptosis. Cell. Mol. Life Sci. 73, 2165–2176 (2016)." href="/articles/s41422-019-0164-5#ref-CR281" id="ref-link-section-d141354489e1821">281</a></sup> However, recently it was found that both IKK and MAPKAPK2/MK2 (activated by the TAK1/p38 MAPK axis) phosphorylate RIPK1 at distinct sites, preventing its catalytic autoactivation.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Dondelinger, Y. et al. NF-kappaB-independent role of IKKalpha/IKKbeta in preventing RIPK1 kinase-dependent apoptotic and necroptotic cell death during TNF signaling. Mol. Cell 60, 63–76 (2015)." href="#ref-CR282" id="ref-link-section-d141354489e1825">282</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Menon, M. B. et al. p38(MAPK)/MK2-dependent phosphorylation controls cytotoxic RIPK1 signalling in inflammation and infection. Nat. Cell Biol. 19, 1248–1259 (2017)." href="#ref-CR283" id="ref-link-section-d141354489e1825_1">283</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Dondelinger, Y. et al. MK2 phosphorylation of RIPK1 regulates TNF-mediated cell death. Nat. Cell Biol. 19, 1237–1247 (2017)." href="#ref-CR284" id="ref-link-section-d141354489e1825_2">284</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Jaco, I. et al. MK2 phosphorylates RIPK1 to prevent TNF-induced cell death. Mol. Cell 66, 698–710 e695 (2017)." href="#ref-CR285" id="ref-link-section-d141354489e1825_3">285</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 286" title="Geng, J. et al. Regulation of RIPK1 activation by TAK1-mediated phosphorylation dictates apoptosis and necroptosis. Nat. Commun. 8, 359 (2017)." href="/articles/s41422-019-0164-5#ref-CR286" id="ref-link-section-d141354489e1828">286</a></sup> When these phosphorylation-dependent brakes are absent, RIPK1 is recruited in complex II and will by default propagate apoptosis (complex IIb) or, in conditions of CASP8 deficiency, trigger RIPK1/RIPK3 necrosome formation and necroptosis. TBK1, a master integrator of stress and immune receptor signaling, also leads to the inactivation of RIPK1 kinase activity, suggesting that RIPK1 survival regulation goes beyond TNF signaling.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 287" title="Xu, D. et al. TBK1 suppresses RIPK1-driven apoptosis and inflammation during development and in aging. Cell 174, 1477–1491 e1419 (2018)." href="/articles/s41422-019-0164-5#ref-CR287" id="ref-link-section-d141354489e1833">287</a></sup> As a consequence, conditions of the absence or inhibition of IAPs or LUBAC, absence of NEMO, inhibition of IKK, MAP3K7, or TBK1 strongly favor the catalytic autoactivation of RIPK1.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 280" title="Kondylis, V., Kumari, S., Vlantis, K. & Pasparakis, M. The interplay of IKK, NF-kappaB and RIPK1 signaling in the regulation of cell death, tissue homeostasis and inflammation. Immunol. Rev. 277, 113–127 (2017)." href="/articles/s41422-019-0164-5#ref-CR280" id="ref-link-section-d141354489e1837">280</a></sup> It is hypothesized that pathological conditions, by regulating these survival checkpoints, may lead to enhanced sensitization of RIPK1-dependent apoptosis and necroptosis, contributing to inflammatory and degenerative diseases.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 288" title="Wegner, K. W., Saleh, D. & Degterev, A. Complex pathologic roles of RIPK1 and RIPK3: moving beyond necroptosis. Trends Pharmacol. Sci. 38, 202–225 (2017)." href="/articles/s41422-019-0164-5#ref-CR288" id="ref-link-section-d141354489e1841">288</a></sup></p></div></div></div></div></div></section><section data-title="Pyroptosis"><div class="c-article-section" id="Sec7-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec7">Pyroptosis</h2><div class="c-article-section__content" id="Sec7-content"><p>Pyroptosis is a form of RCD driven by the activation of inflammasome, a cytosolic multiprotein complex responsible for the release of interleukin (IL) 1 family members (e.g., interleukin-1β [IL1B] and IL18), the formation of ASC (apoptosis-associated speck-like protein containing a CARD, also called PYCARD or PYRIN and CARD domain-containing) specks, and the activation of pro-inflammatory caspases. The term pyroptosis was coined by Brad Cookson and coworkers<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 78" title="Fink, S. L. & Cookson, B. T. Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect. Immun. 73, 1907–1916 (2005)." href="/articles/s41422-019-0164-5#ref-CR78" id="ref-link-section-d141354489e1853">78</a></sup> to describe CASP1-dependent PCD in macrophages infected by <i>Salmonella</i> or <i>Shigella</i> and associated with the release of IL1B (IL1 was historically called leukocytic pyrogen, inspiring the name pyroptosis).<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 79" title="Brennan, M. A. & Cookson, B. T. Salmonella induces macrophage death by caspase-1-dependent necrosis. Mol. Microbiol. 38, 31–40 (2000)." href="/articles/s41422-019-0164-5#ref-CR79" id="ref-link-section-d141354489e1863">79</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 80" title="Hersh, D. et al. The Salmonella invasin SipB induces macrophage apoptosis by binding to caspase-1. Proc. Natl Acad. Sci. USA 96, 2396–2401 (1999)." href="/articles/s41422-019-0164-5#ref-CR80" id="ref-link-section-d141354489e1866">80</a></sup> CASP1 mediates the proteolytic processing of pro-IL1B and pro-IL18 into mature IL1B and IL18, respectively. This type of inflammatory cell death can be triggered by the activation of CASP1 or CASP11 in mice (the latter corresponding to CASP4 and CASP5 in humans) in macrophages, monocytes and other cells<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 81" title="Broz, P. & Dixit, V. M. Inflammasomes: mechanism of assembly, regulation and signalling. Nat. Rev. Immunol. 16, 407–420 (2016)." href="/articles/s41422-019-0164-5#ref-CR81" id="ref-link-section-d141354489e1870">81</a></sup> (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41422-019-0164-5#Fig3">3b</a>). Pyroptosis is morphologically distinct from apoptosis. Pyroptosis is characterized by the absence of DNA fragmentation in vitro, but by the presence of nuclear condensation coupled to cell swelling and the formation of large bubbles at the plasma membrane that eventually ruptures.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 82" title="Chen, X. et al. Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis. Cell Res. 26, 1007–1020 (2016)." href="/articles/s41422-019-0164-5#ref-CR82" id="ref-link-section-d141354489e1878">82</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 83" title="Rathkey, J. K. et al. Chemical disruption of the pyroptotic pore-forming protein gasdermin D inhibits inflammatory cell death and sepsis. Sci. Immunol. 
 https://doi.org/10.1126/sciimmunol.aat2738
 
 (2018)." href="/articles/s41422-019-0164-5#ref-CR83" id="ref-link-section-d141354489e1881">83</a></sup></p><p>The activation of inflammasomes in macrophages or monocytes requires two signals: a priming signal (that may be mediated by TLR ligands and IFN signaling) that induces the transcriptional upregulation of inflammasome components through nuclear factor of κB (NF-κB), and then a sensing signal (e.g., adenosine triphosphate [ATP] and lipopolysaccharide [LPS]) that triggers pro-inflammatory caspase-mediated pyroptosis. Inflammasomes that include canonical and noncanonical types can be activated in the context of infection, tissue injury, or metabolic imbalances.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 81" title="Broz, P. & Dixit, V. M. Inflammasomes: mechanism of assembly, regulation and signalling. Nat. Rev. Immunol. 16, 407–420 (2016)." href="/articles/s41422-019-0164-5#ref-CR81" id="ref-link-section-d141354489e1887">81</a></sup> Canonical CASP1-dependent inflammasomes are divided into two subtypes, Nod-like receptors (NLR, e.g., NLR family pyrin domain-containing 1 [NLRP1], NLRP2, NLRP3, NLRP6, NLRP7, NLR family CARD domain-containing 4 [NLRC4]) and non-NLR (e.g., absent in melanoma 2 [AIM2]). They can be selectively activated by pathogen-associated molecular patterns (PAMPs), damage-associated molecular patterns (DAMPs), or other immune challenges. For example, NLRP3, the most intensively studied inflammasome, can be activated by a wide range of inflammatory stimuli such as bacterial peptidoglycans, extracellular ATP, and uric acid crystals, facilitated by the kinase NIMA-related kinase 7 (NEK7).<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 84" title="He, Y., Zeng, M. Y., Yang, D., Motro, B. & Nunez, G. NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux. Nature 530, 354–357 (2016)." href="/articles/s41422-019-0164-5#ref-CR84" id="ref-link-section-d141354489e1891">84</a></sup> The non-NLR inflammasome involving AIM2 is activated by cytosolic double-stranded DNA from bacteria or host cells.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 85" title="Fernandes-Alnemri, T. et al. The AIM2 inflammasome is critical for innate immunity to Francisella tularensis. Nat. Immunol. 11, 385–393 (2010)." href="/articles/s41422-019-0164-5#ref-CR85" id="ref-link-section-d141354489e1895">85</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 86" title="Rathinam, V. A. et al. The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat. Immunol. 11, 395–402 (2010)." href="/articles/s41422-019-0164-5#ref-CR86" id="ref-link-section-d141354489e1898">86</a></sup> The CASP11-dependent noncanonical inflammasome is activated by cytosolic LPS from invading Gram-negative bacteria in macrophages, monocytes, or other cells.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 87" title="Kayagaki, N. et al. Non-canonical inflammasome activation targets caspase-11. Nature 479, 117–121 (2011)." href="/articles/s41422-019-0164-5#ref-CR87" id="ref-link-section-d141354489e1902">87</a></sup> Lipid A moiety is required for cytosolic LPS binding to CASP11’s CARD domain, which causes CASP11 oligomerization.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 88" title="Shi, J. et al. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514, 187–192 (2014)." href="/articles/s41422-019-0164-5#ref-CR88" id="ref-link-section-d141354489e1906">88</a></sup> TLR4, a cell membrane receptor for LPS, is not required for cytosolic LPS-induced CASP11 activation.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 89" title="Hagar, J. A., Powell, D. A., Aachoui, Y., Ernst, R. K. & Miao, E. A. Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science 341, 1250–1253 (2013)." href="/articles/s41422-019-0164-5#ref-CR89" id="ref-link-section-d141354489e1911">89</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 90" title="Kayagaki, N. et al. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science 341, 1246–1249 (2013)." href="/articles/s41422-019-0164-5#ref-CR90" id="ref-link-section-d141354489e1914">90</a></sup> The cytoplasmic delivery of LPS requires the release of bacterial outer membrane vesicles (OMVs) by Gram-negative bacteria<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 91" title="Vanaja, S. K. et al. Bacterial outer membrane vesicles mediate cytosolic localization of LPS and caspase-11 activation. Cell 165, 1106–1119 (2016)." href="/articles/s41422-019-0164-5#ref-CR91" id="ref-link-section-d141354489e1918">91</a></sup> or the binding of LPS with high-mobility group Box <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/articles/s41422-019-0164-5#Sec2">1</a> (HMGB1).<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 92" title="Deng, M. et al. The endotoxin delivery protein HMGB1 mediates caspase-11-dependent lethality in sepsis. Immunity 49, 740–753 e747 (2018)." href="/articles/s41422-019-0164-5#ref-CR92" id="ref-link-section-d141354489e1925">92</a></sup> The interplay between canonical (e.g., NLRP3- and AIM2-dependent) and noncanonical inflammasome pathways can amplify the inflammatory response and pyroptosis.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 93" title="Rathinam, V. A. et al. TRIF licenses caspase-11-dependent NLRP3 inflammasome activation by gram-negative bacteria. Cell 150, 606–619 (2012)." href="/articles/s41422-019-0164-5#ref-CR93" id="ref-link-section-d141354489e1929">93</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 94" title="Man, S. M. et al. IRGB10 Liberates Bacterial Ligands For Sensing by the AIM2 and Caspase-11-NLRP3 Inflammasomes. Cell 167, 382–396 e317 (2016)." href="/articles/s41422-019-0164-5#ref-CR94" id="ref-link-section-d141354489e1932">94</a></sup> Although eukaryotic translation initiation factor 2 alpha kinase 2 (EIF2AK2)/PKR and glycolysis may participate in CASP1-dependent inflammasome activation under certain conditions,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Lu, B. et al. Novel role of PKR in inflammasome activation and HMGB1 release. Nature 488, 670–674 (2012)." href="#ref-CR95" id="ref-link-section-d141354489e1936">95</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Xie, M. et al. PKM2-dependent glycolysis promotes NLRP3 and AIM2 inflammasome activation. Nat. Commun. 7, 13280 (2016)." href="#ref-CR96" id="ref-link-section-d141354489e1936_1">96</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Yang, L. et al. PKM2 regulates the Warburg effect and promotes HMGB1 release in sepsis. Nat. Commun. 5, 4436 (2014)." href="#ref-CR97" id="ref-link-section-d141354489e1936_2">97</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 98" title="Moon, J. S. et al. mTORC1-Induced HK1-dependent glycolysis regulates NLRP3 inflammasome activation. Cell Rep 12, 102–115 (2015)." href="/articles/s41422-019-0164-5#ref-CR98" id="ref-link-section-d141354489e1939">98</a></sup> their roles in CASP11 inflammasome remain unclear.</p><p>Several recent breakthroughs indicate that gasdermin D (GSDMD) is the key effector of pyroptosis<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 82" title="Chen, X. et al. Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis. Cell Res. 26, 1007–1020 (2016)." href="/articles/s41422-019-0164-5#ref-CR82" id="ref-link-section-d141354489e1946">82</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Ding, J. et al. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 535, 111–116 (2016)." href="#ref-CR99" id="ref-link-section-d141354489e1949">99</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Liu, X. et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 535, 153–158 (2016)." href="#ref-CR100" id="ref-link-section-d141354489e1949_1">100</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Kayagaki, N. et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526, 666–671 (2015)." href="#ref-CR101" id="ref-link-section-d141354489e1949_2">101</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Shi, J. et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526, 660–665 (2015)." href="#ref-CR102" id="ref-link-section-d141354489e1949_3">102</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 103" title="He, W. T. et al. Gasdermin D is an executor of pyroptosis and required for interleukin-1beta secretion. Cell Res. 25, 1285–1298 (2015)." href="/articles/s41422-019-0164-5#ref-CR103" id="ref-link-section-d141354489e1952">103</a></sup> (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41422-019-0164-5#Fig3">3b</a>). GSDMD is cleaved by CASP11 or CASP1 to produce a 22 kDa C- (GSDMD-C) and a 3l kDa N-terminal fragment (GSDMD-N).<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Kayagaki, N. et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526, 666–671 (2015)." href="#ref-CR101" id="ref-link-section-d141354489e1959">101</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Shi, J. et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526, 660–665 (2015)." href="#ref-CR102" id="ref-link-section-d141354489e1959_1">102</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 103" title="He, W. T. et al. Gasdermin D is an executor of pyroptosis and required for interleukin-1beta secretion. Cell Res. 25, 1285–1298 (2015)." href="/articles/s41422-019-0164-5#ref-CR103" id="ref-link-section-d141354489e1962">103</a></sup> CASP11 auto-cleavage at the inter-subunit linker is essential for optimal catalytic activity and subsequent GSDMD cleavage.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 104" title="Lee, B. L. et al. Caspase-11 auto-proteolysis is crucial for noncanonical inflammasome activation. J. Exp. Med. 215, 2279–2288 (2018)." href="/articles/s41422-019-0164-5#ref-CR104" id="ref-link-section-d141354489e1966">104</a></sup> Once formed, GSDMD-N translocates to the inner leaflet of the plasma membrane and binds phospholipids, thus inducing the formation of pores that ultimately cause membrane lysis.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 99" title="Ding, J. et al. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 535, 111–116 (2016)." href="/articles/s41422-019-0164-5#ref-CR99" id="ref-link-section-d141354489e1970">99</a></sup> In contrast, GSDMD-C inhibits GSDMD-N activity.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 99" title="Ding, J. et al. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 535, 111–116 (2016)." href="/articles/s41422-019-0164-5#ref-CR99" id="ref-link-section-d141354489e1975">99</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 100" title="Liu, X. et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 535, 153–158 (2016)." href="/articles/s41422-019-0164-5#ref-CR100" id="ref-link-section-d141354489e1978">100</a></sup> While deficiency of the phospholipid hydroperoxidase glutathione peroxidase 4 (GPX4) in myeloid-derived cells increases CASP1- or CASP11-mediated GSDMD-N production, pyroptosis, and lethality after cecal ligation and puncture (CLP)-induced sepsis, the pharmacological inhibition of phospholipid hydrolysing enzyme phospholipase C gamma 1 (PLCG1) strongly protects against pyroptosis and CLP-induced septic death,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 105" title="Kang, R. et al. Lipid peroxidation drives gasdermin D-mediated pyroptosis in lethal polymicrobial sepsis. Cell Host. Microbe. 24, 97–108 e104 (2018)." href="/articles/s41422-019-0164-5#ref-CR105" id="ref-link-section-d141354489e1982">105</a></sup> indicating that lipid peroxidation promotes pyroptosis. Protein kinase A (PKA) is a major cyclic adenosine monophosphate (cAMP) effector to directly block CASP11-mediated GSDMD-N production in macrophages.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 106" title="Chen, R. et al. cAMP metabolism controls caspase-11 inflammasome activation and pyroptosis in sepsis. Sci. Adv. 
 https://doi.org/10.1126/sciadv.1601167
 
 (2019)." href="/articles/s41422-019-0164-5#ref-CR106" id="ref-link-section-d141354489e1986">106</a></sup> Like necroptosis, ESCRT-III is also recruited to the plasma membrane to trigger membrane repair upon GSDMD activation.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 107" title="Ruhl, S. et al. ESCRT-dependent membrane repair negatively regulates pyroptosis downstream of GSDMD activation. Science 362, 956–960 (2018)." href="/articles/s41422-019-0164-5#ref-CR107" id="ref-link-section-d141354489e1990">107</a></sup> Other members of the gasdermin family (GSDMA, GSDMB, GSDMC, GSDME/DFNA5, and GSDMA3) have similar functions in membrane-disrupting cytotoxicity.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 99" title="Ding, J. et al. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 535, 111–116 (2016)." href="/articles/s41422-019-0164-5#ref-CR99" id="ref-link-section-d141354489e1994">99</a></sup> It has been shown that following the blockage or deficiency of the bona fide pyroptosis pathway (ASC-CASP1/4), the induction of pyroptosis can be engaged through mechanisms such as CASP8-GSDMD<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 108" title="Orning, P. et al. Pathogen blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin D and cell death. Science 362, 1064–1069 (2018)." href="/articles/s41422-019-0164-5#ref-CR108" id="ref-link-section-d141354489e1998">108</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 109" title="Sarhan, J. et al. Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during Yersinia infection. Proc. Natl Acad. Sci. USA 115, E10888–E10897 (2018)." href="/articles/s41422-019-0164-5#ref-CR109" id="ref-link-section-d141354489e2001">109</a></sup> and CASP3-GSDME,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 110" title="Wang, Y. et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature 547, 99–103 (2017)." href="/articles/s41422-019-0164-5#ref-CR110" id="ref-link-section-d141354489e2006">110</a></sup> although the contribution of these alternative pathways to pyroptosis elicited by different triggers remains to be established in vivo.</p><p>Neutrophil elastase (ELANE), one of the antibacterial serine proteases, triggers GSDMD cleavage at a site that is closer to the N-terminus than the caspase cleavage site.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 111" title="Kambara, H. et al. Gasdermin D exerts anti-inflammatory effects by promoting neutrophil death. Cell Rep 22, 2924–2936 (2018)." href="/articles/s41422-019-0164-5#ref-CR111" id="ref-link-section-d141354489e2013">111</a></sup> Elastase-mediated GSDMD-N production induces neutrophil death as well as the formation of neutrophil extracellular traps (NETs) to intercept invading microorganisms.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 112" title="Sollberger, G. et al. Gasdermin D plays a vital role in the generation of neutrophil extracellular traps. Sci. Immunol. 
 https://doi.org/10.1126/sciimmunol.aar6689
 
 (2018)." href="/articles/s41422-019-0164-5#ref-CR112" id="ref-link-section-d141354489e2017">112</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 113" title="Chen, K. W. et al. Noncanonical inflammasome signaling elicits gasdermin D-dependent neutrophil extracellular traps. Sci. Immunol. 
 https://doi.org/10.1126/sciimmunol.aar6676
 
 (2018)." href="/articles/s41422-019-0164-5#ref-CR113" id="ref-link-section-d141354489e2020">113</a></sup> In addition, GSDMD-N can directly lyse bacteria (such as <i>Escherichia coli, Staphylococcus aureus</i>, and <i>Listeria monocytogenes</i>) after binding to cardiolipin and forming pores in their membranes.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 100" title="Liu, X. et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 535, 153–158 (2016)." href="/articles/s41422-019-0164-5#ref-CR100" id="ref-link-section-d141354489e2030">100</a></sup> CASP1 and CASP11 also play a pyroptosis-independent role in antibacterial host defence. The formation of GSDMD pores can directly trigger IL1B secretion by macrophages before the cells undergo pyroptosis,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 114" title="Evavold, C. L. et al. The pore-forming protein gasdermin D regulates interleukin-1 secretion from living macrophages. Immunity 48, 35–44 e36 (2018)." href="/articles/s41422-019-0164-5#ref-CR114" id="ref-link-section-d141354489e2035">114</a></sup> indicating that distinct activation thresholds may control the active IL1B release by live cells and its passive shedding from dead cells once the cell explodes. The dynamics of pore formation and interaction with ion channels allow the existence of different stages and extents of plasma membrane permeabilization, resulting in the release of IL1B prior to spilling of DAMPs following full permeabilization.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 115" title="de Vasconcelos, N. M., Van Opdenbosch, N., Van Gorp, H., Parthoens, E. & Lamkanfi, M. Single-cell analysis of pyroptosis dynamics reveals conserved GSDMD-mediated subcellular events that precede plasma membrane rupture. Cell Death Differ. 
 https://doi.org/10.1038/s41418-018-0106-7
 
 (2018)." href="/articles/s41422-019-0164-5#ref-CR115" id="ref-link-section-d141354489e2039">115</a></sup></p><p>In summary, pyroptosis is a form of GSDMD-mediated RCD that plays a cell type-dependent role in inflammation and immunity. Of note, the first <i>Casp1</i><sup><i>-/-</i></sup> mice were established from 129 embryonic stem cells carrying an inactivating passenger mutation of the <i>Casp11</i> locus.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 87" title="Kayagaki, N. et al. Non-canonical inflammasome activation targets caspase-11. Nature 479, 117–121 (2011)." href="/articles/s41422-019-0164-5#ref-CR87" id="ref-link-section-d141354489e2055">87</a></sup> Thus, the phenotype reported for <i>Casp1</i><sup><i>-/-</i></sup> mice actually results from deficiencies in both CASP1 and CASP11. Novel individual or combined transgenic mice are required to distinguish the contributions of CASP1 and CASP11 to pyroptotic signaling in a variety of different diseases that were studied in the past using the unintended double knockout.</p></div></div></section><section data-title="Ferroptosis"><div class="c-article-section" id="Sec8-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec8">Ferroptosis</h2><div class="c-article-section__content" id="Sec8-content"><p>Ferroptosis is an iron- and lipotoxicity-dependent form of RCD. It was originally observed in 2003 using erastin (a cell-permeable compound from high-content screening) to selectively kill genetically-engineered cells with an oncogenic RAS mutation, but not normal cells<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 116" title="Dolma, S., Lessnick, S. L., Hahn, W. C. & Stockwell, B. R. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell. 3, 285–296 (2003)." href="/articles/s41422-019-0164-5#ref-CR116" id="ref-link-section-d141354489e2073">116</a></sup> In 2012, the term ferroptosis was formally used by Brent Stockwell to describe an iron-dependent form of non-apoptotic RCD induced by erastin.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 117" title="Dixon, S. J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060–1072 (2012)." href="/articles/s41422-019-0164-5#ref-CR117" id="ref-link-section-d141354489e2077">117</a></sup> The morphology of erastin-induced ferroptotic cells is characterized by dysmorphic small mitochondria with decreased crista, as well as condensed, ruptured outer membranes,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 117" title="Dixon, S. J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060–1072 (2012)." href="/articles/s41422-019-0164-5#ref-CR117" id="ref-link-section-d141354489e2081">117</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 118" title="Friedmann Angeli, J. P. et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat. Cell Biol. 16, 1180–1191 (2014)." href="/articles/s41422-019-0164-5#ref-CR118" id="ref-link-section-d141354489e2084">118</a></sup> which might be under control of the pro-apoptotic BCL2 family members such as BH3-interacting domain death agonist (BID)<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 119" title="Neitemeier, S. et al. BID links ferroptosis to mitochondrial cell death pathways. Redox Biol. 12, 558–570 (2017)." href="/articles/s41422-019-0164-5#ref-CR119" id="ref-link-section-d141354489e2088">119</a></sup> and BCL2-binding component 3 (BBC3, also known as PUMA),<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 120" title="Hong, S. H. et al. Molecular crosstalk between ferroptosis and apoptosis: emerging role of ER stress-induced p53-independent PUMA expression. Oncotarget 8, 115164–115178 (2017)." href="/articles/s41422-019-0164-5#ref-CR120" id="ref-link-section-d141354489e2092">120</a></sup> but not BAX or BAK1.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 117" title="Dixon, S. J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060–1072 (2012)." href="/articles/s41422-019-0164-5#ref-CR117" id="ref-link-section-d141354489e2097">117</a></sup> Mechanistically, these dying cells do not display any hallmarks of apoptosis or necroptosis.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 117" title="Dixon, S. J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060–1072 (2012)." href="/articles/s41422-019-0164-5#ref-CR117" id="ref-link-section-d141354489e2101">117</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 118" title="Friedmann Angeli, J. P. et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat. Cell Biol. 16, 1180–1191 (2014)." href="/articles/s41422-019-0164-5#ref-CR118" id="ref-link-section-d141354489e2104">118</a></sup> Instead, ferroptosis occurs via an iron-catalyzed process of lipid peroxidation initiated through non-enzymatic (Fenton reactions) and enzymatic mechanisms (lipoxygenases) (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41422-019-0164-5#Fig3">3c</a>). Polyunsaturated fatty acids (PUFAs) are the prime targets of lipid peroxidation of membranes.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 121" title="Yang, W. S. et al. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc. Natl Acad. Sci. USA 113, E4966–E4975 (2016)." href="/articles/s41422-019-0164-5#ref-CR121" id="ref-link-section-d141354489e2111">121</a></sup> The deleterious effects of lipid peroxidation in ferroptosis execution can be neutralized by lipophilic radical traps such as vitamin E, ferrostatin-1, and liproxstatin-1.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 117" title="Dixon, S. J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060–1072 (2012)." href="/articles/s41422-019-0164-5#ref-CR117" id="ref-link-section-d141354489e2115">117</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 118" title="Friedmann Angeli, J. P. et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat. Cell Biol. 16, 1180–1191 (2014)." href="/articles/s41422-019-0164-5#ref-CR118" id="ref-link-section-d141354489e2118">118</a></sup> The mechanistic consequences of uncontrolled lipid peroxidation leading to ferroptotic cell death are still elusive. Using molecular dynamics models, it is hypothesized that membrane thinning and increased curvature drives a vicious cycle of access by oxidants, which ultimately destabilizes the membrane leading to pore and micelle formation.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 122" title="Feng, H. & Stockwell, B. R. Unsolved mysteries: how does lipid peroxidation cause ferroptosis? PLoS Biol. 16, e2006203 (2018)." href="/articles/s41422-019-0164-5#ref-CR122" id="ref-link-section-d141354489e2122">122</a></sup> Additionally, lipid hydroperoxides decompose to reactive toxic aldehydes such as 4-hydroxy-2-nonenals or malondialdehydes, which may inactivate proteins through crosslinking<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 122" title="Feng, H. & Stockwell, B. R. Unsolved mysteries: how does lipid peroxidation cause ferroptosis? PLoS Biol. 16, e2006203 (2018)." href="/articles/s41422-019-0164-5#ref-CR122" id="ref-link-section-d141354489e2127">122</a></sup>.</p><p>Essentially, ferroptosis can be induced in a canonical way by either inactivating GPX4, the major protective mechanism of biomembranes against peroxidation damage, or in a noncanonical way by increasing the labile iron pool. Two mechanisms have been described to inactivate GPX4: (1) an indirect way by the deprivation of the cofactor glutathione (GSH) through the depletion of the precursor Cys, as a result of the inhibition of the cystine/glutamate antiporter system xc<sup>-117</sup> or the transsulfuration pathway,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 123" title="Hayano, M., Yang, W. S., Corn, C. K., Pagano, N. C. & Stockwell, B. R. Loss of cysteinyl-tRNA synthetase (CARS) induces the transsulfuration pathway and inhibits ferroptosis induced by cystine deprivation. Cell Death Differ. 23, 270–278 (2016)." href="/articles/s41422-019-0164-5#ref-CR123" id="ref-link-section-d141354489e2136">123</a></sup> and (2) a direct way by binding and inactivating GPX4 by compounds such as RSL3, ML162, FINO<sub>2</sub>, withaferin A, or the FDA-approved anticancer agent altretamine.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 121" title="Yang, W. S. et al. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc. Natl Acad. Sci. USA 113, E4966–E4975 (2016)." href="/articles/s41422-019-0164-5#ref-CR121" id="ref-link-section-d141354489e2142">121</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Yang, W. S. et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 156, 317–331 (2014)." href="#ref-CR124" id="ref-link-section-d141354489e2145">124</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Woo, J. H. et al. Elucidating compound mechanism of action by network perturbation analysis. Cell 162, 441–451 (2015)." href="#ref-CR125" id="ref-link-section-d141354489e2145_1">125</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Weiwer, M. et al. Development of small-molecule probes that selectively kill cells induced to express mutant RAS. Bioorg. Med. Chem. Lett. 22, 1822–1826 (2012)." href="#ref-CR126" id="ref-link-section-d141354489e2145_2">126</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Cao, J. Y. & Dixon, S. J. Mechanisms of ferroptosis. Cell. Mol. Life Sci. 73, 2195–2209 (2016)." href="#ref-CR127" id="ref-link-section-d141354489e2145_3">127</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Gaschler, M. M. et al. FINO2 initiates ferroptosis through GPX4 inactivation and iron oxidation. Nat. Chem. Biol. 14, 507–515 (2018)." href="#ref-CR128" id="ref-link-section-d141354489e2145_4">128</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 129" title="Hassannia, B. et al. Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma. J. Clin. Invest. 128, 3341–3355 (2018)." href="/articles/s41422-019-0164-5#ref-CR129" id="ref-link-section-d141354489e2148">129</a></sup> In addition, recent findings have proposed a noncanonical ferroptosis induction pathway upon iron overload using, for example, iron chloride, hemoglobin, hemin, or ferrous ammonium sulfate, which suffices to induce ferroptosis.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 129" title="Hassannia, B. et al. Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma. J. Clin. Invest. 128, 3341–3355 (2018)." href="/articles/s41422-019-0164-5#ref-CR129" id="ref-link-section-d141354489e2152">129</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 130" title="Li, Q. et al. Inhibition of neuronal ferroptosis protects hemorrhagic brain. JCI Insight 2, e90777 (2017)." href="/articles/s41422-019-0164-5#ref-CR130" id="ref-link-section-d141354489e2155">130</a></sup> CDGSH iron sulphur domain 1 (CISD1), a mitochondrial iron export protein, also inhibits ferroptosis by preventing mitochondrial iron accumulation and ROS production.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 131" title="Yuan, H., Li, X., Zhang, X., Kang, R. & Tang, D. CISD1 inhibits ferroptosis by protection against mitochondrial lipid peroxidation. Biochem. Biophys. Res. Commun. 478, 838–844 (2016)." href="/articles/s41422-019-0164-5#ref-CR131" id="ref-link-section-d141354489e2160">131</a></sup> The mitochondrial outer membrane proteins voltage-dependent anion channel 2 (VDAC2) and VDAC3 have been identified as direct targets of erastin that modulate mitochondrial function and contribute to ferroptosis.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 132" title="Yagoda, N. et al. RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature 447, 864–868 (2007)." href="/articles/s41422-019-0164-5#ref-CR132" id="ref-link-section-d141354489e2164">132</a></sup> However, the contribution of mitochondria to ferroptosis remains controversial and may be context-dependent.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 133" title="Gao, M. et al. Role of mitochondria in ferroptosis. Mol. Cell 73, 354–363 e353 (2019)." href="/articles/s41422-019-0164-5#ref-CR133" id="ref-link-section-d141354489e2168">133</a></sup></p><p>System xc<sup>-</sup> is composed of a regulatory subunit solute carrier family 3 member 2 (SLC3A2) and a catalytic subunit solute carrier family 7 member 11 (SLC7A11). This complex promotes the exchange of extracellular cystine and intracellular glutamate across the plasma membrane. Cystine in the cell is reduced to cysteine, which is required for the production of GSH. GPX4 uses GSH to eliminate the production of phospholipid hydroperoxides (PLOOH), the major mediator of chain reactions in lipoxygenases (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41422-019-0164-5#Fig3">3c</a>). System xc<sup>-</sup> inhibitors (e.g., erastin, sulfasalazine, sorafenib, and glutamate) are considered as class I ferroptosis inducers (FINs), whereas direct GPX4 inhibitors are referred to class II FINs.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 134" title="Xie, Y. et al. Ferroptosis: process and function. Cell Death Differ. 23, 369–379 (2016)." href="/articles/s41422-019-0164-5#ref-CR134" id="ref-link-section-d141354489e2181">134</a></sup> Of note, GPX4 depletion was also shown to confer sensitivity to apoptosis,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 135" title="Seiler, A. et al. Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death. Cell Metab. 8, 237–248 (2008)." href="/articles/s41422-019-0164-5#ref-CR135" id="ref-link-section-d141354489e2185">135</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 136" title="Ran, Q. et al. Embryonic fibroblasts from Gpx4+/- mice: a novel model for studying the role of membrane peroxidation in biological processes. Free Radic. Biol. Med. 35, 1101–1109 (2003)." href="/articles/s41422-019-0164-5#ref-CR136" id="ref-link-section-d141354489e2188">136</a></sup> necroptosis,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 137" title="Canli, O. et al. Glutathione peroxidase 4 prevents necroptosis in mouse erythroid precursors. Blood 127, 139–148 (2016)." href="/articles/s41422-019-0164-5#ref-CR137" id="ref-link-section-d141354489e2193">137</a></sup> and pyroptosis.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 105" title="Kang, R. et al. Lipid peroxidation drives gasdermin D-mediated pyroptosis in lethal polymicrobial sepsis. Cell Host. Microbe. 24, 97–108 e104 (2018)." href="/articles/s41422-019-0164-5#ref-CR105" id="ref-link-section-d141354489e2197">105</a></sup> These findings suggest that lipid peroxidation can accelerate an array of distinct RCD modalities.</p><p>The likelihood of ferroptosis is determined by the balance between iron accumulation-induced ROS production and the antioxidant system that avoids lipid peroxidation (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41422-019-0164-5#Fig3">3c</a>). Increased iron uptake by transferrin receptor (TFRC, also known as TFR1) and reduced iron export by ferroportin favor oxidative damage and ferroptosis.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 138" title="Yang, W. S. & Stockwell, B. R. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem. Biol. 15, 234–245 (2008)." href="/articles/s41422-019-0164-5#ref-CR138" id="ref-link-section-d141354489e2207">138</a></sup> Lipid peroxidation is influenced by several lipids and enzymes. Thus, the oxidation of PUFAs, including arachidonic acid (AA), by a catalytic pathway involving acyl-CoA synthetase long chain family member 4 (ACSL4), lysophosphatidylcholine acyltransferase 3 (LPCAT3), and arachidonate lipoxygenases (ALOXs, especially ALOX15) is required for lipotoxicity in ferroptosis.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 121" title="Yang, W. S. et al. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc. Natl Acad. Sci. USA 113, E4966–E4975 (2016)." href="/articles/s41422-019-0164-5#ref-CR121" id="ref-link-section-d141354489e2211">121</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Doll, S. et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat. Chem. Biol. 13, 91–98 (2017)." href="#ref-CR139" id="ref-link-section-d141354489e2214">139</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Kagan, V. E. et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat. Chem. Biol. 13, 81–90 (2017)." href="#ref-CR140" id="ref-link-section-d141354489e2214_1">140</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Yuan, H., Li, X., Zhang, X., Kang, R. & Tang, D. Identification of ACSL4 as a biomarker and contributor of ferroptosis. Biochem. Biophys. Res. Commun. 478, 1338–1343 (2016)." href="#ref-CR141" id="ref-link-section-d141354489e2214_2">141</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 142" title="Wenzel, S. E. et al. PEBP1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals. Cell 171, 628–641 e626 (2017)." href="/articles/s41422-019-0164-5#ref-CR142" id="ref-link-section-d141354489e2217">142</a></sup> Phosphatidylethanolamine binding protein 1 (PEBP1, also known as RKIP), a scaffold protein inhibitor of protein kinase cascades, is required for the enzymatic activity of ALOX15 in ferroptosis.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 142" title="Wenzel, S. E. et al. PEBP1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals. Cell 171, 628–641 e626 (2017)." href="/articles/s41422-019-0164-5#ref-CR142" id="ref-link-section-d141354489e2221">142</a></sup> The upregulation of ACSL4, but not other ACSL members, seems to be a marker of ferroptosis.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 141" title="Yuan, H., Li, X., Zhang, X., Kang, R. & Tang, D. Identification of ACSL4 as a biomarker and contributor of ferroptosis. Biochem. Biophys. Res. Commun. 478, 1338–1343 (2016)." href="/articles/s41422-019-0164-5#ref-CR141" id="ref-link-section-d141354489e2225">141</a></sup> In addition to system xc<sup>-</sup>and GPX4, several integrated antioxidant and pro-survival proteins such as the transcription factor nuclear factor, erythroid 2 like 2 (NFE2L2, also known as NRF2)<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 143" title="Sun, X. et al. Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology 63, 173–184 (2016)." href="/articles/s41422-019-0164-5#ref-CR143" id="ref-link-section-d141354489e2232">143</a></sup> and certain heat shock proteins (HSPs),<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 144" title="Sun, X. et al. HSPB1 as a novel regulator of ferroptotic cancer cell death. Oncogene 34, 5617–5625 (2015)." href="/articles/s41422-019-0164-5#ref-CR144" id="ref-link-section-d141354489e2236">144</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 145" title="Zhu, S. et al. HSPA5 regulates ferroptotic cell death in cancer cells. Cancer Res. 77, 2064–2077 (2017)." href="/articles/s41422-019-0164-5#ref-CR145" id="ref-link-section-d141354489e2239">145</a></sup> can inhibit lipid peroxidation in ferroptosis. In contrast, ROS generated during glutaminase 2 (GLS2)-mediated glutaminolysis may promote ferroptosis.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 146" title="Gao, M., Monian, P., Quadri, N., Ramasamy, R. & Jiang, X. Glutaminolysis and transferrin regulate ferroptosis. Mol. Cell 59, 298–308 (2015)." href="/articles/s41422-019-0164-5#ref-CR146" id="ref-link-section-d141354489e2243">146</a></sup></p><p>NFE2L2 is a key transcription factor that regulates antioxidant defence or detoxification in the context of various stressors. NFE2L2-mediated transactivation of metallothionein 1G (MT1G, a cysteine-rich protein with a high affinity for divalent heavy metal ions), SLC7A11, and heme oxygenase 1 (HMOX1) limits ferroptosis.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 143" title="Sun, X. et al. Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology 63, 173–184 (2016)." href="/articles/s41422-019-0164-5#ref-CR143" id="ref-link-section-d141354489e2250">143</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 147" title="Sun, X. et al. Metallothionein-1G facilitates sorafenib resistance through inhibition of ferroptosis. Hepatology 64, 488–500 (2016)." href="/articles/s41422-019-0164-5#ref-CR147" id="ref-link-section-d141354489e2253">147</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 148" title="Chen, D. et al. NRF2 is a major target of ARF in p53-independent tumor suppression. Mol. Cell 68, 224–232 e224 (2017)." href="/articles/s41422-019-0164-5#ref-CR148" id="ref-link-section-d141354489e2256">148</a></sup> However, upon excessive activation of NRF2, HMOX1 gets hyperactivated and induces ferroptosis through increasing the labile iron pool upon metabolizing heme.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 129" title="Hassannia, B. et al. Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma. J. Clin. Invest. 128, 3341–3355 (2018)." href="/articles/s41422-019-0164-5#ref-CR129" id="ref-link-section-d141354489e2260">129</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 149" title="Chang, L. C. et al. Heme oxygenase-1 mediates BAY 11-7085 induced ferroptosis. Cancer Lett. 416, 124–137 (2018)." href="/articles/s41422-019-0164-5#ref-CR149" id="ref-link-section-d141354489e2263">149</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 150" title="Kwon, M. Y., Park, E., Lee, S. J. & Chung, S. W. Heme oxygenase-1 accelerates erastin-induced ferroptotic cell death. Oncotarget 6, 24393–24403 (2015)." href="/articles/s41422-019-0164-5#ref-CR150" id="ref-link-section-d141354489e2266">150</a></sup> Thus, the protective effect of HMOX1 is attributed to its antioxidant activity, while its toxic effect is mediated through the generation of ferrous iron that might boost Fenton-mediated decomposition of peroxides in case of insufficient buffering capacity by ferritin.</p><p>The tumor suppressor tumor protein p53 (TP53)<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 151" title="Jiang, L. et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature 520, 57–62 (2015)." href="/articles/s41422-019-0164-5#ref-CR151" id="ref-link-section-d141354489e2273">151</a></sup> and BRCA1-associated protein 1 (BAP1)<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 152" title="Zhang, Y. et al. BAP1 links metabolic regulation of ferroptosis to tumour suppression. Nat. Cell Biol. 
 https://doi.org/10.1038/s41556-018-0178-0
 
 (2018)." href="/articles/s41422-019-0164-5#ref-CR152" id="ref-link-section-d141354489e2277">152</a></sup> can promote ferroptosis through the downregulation of SLC7A11 via transcriptional and epigenetic mechanisms, respectively. TP53 may also suppress ferroptosis by directly inhibiting the enzymatic activity of membrane-bound glycoprotein dipeptidyl peptidase 4 (DPP4, also known as CD26)<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 153" title="Xie, Y. et al. The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity. Cell Rep 20, 1692–1704 (2017)." href="/articles/s41422-019-0164-5#ref-CR153" id="ref-link-section-d141354489e2281">153</a></sup> or by increasing the expression of cell-cycle regulator cyclin-dependent kinase inhibitor 1A (CDKN1A, also known as p21).<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 154" title="Tarangelo, A. et al. p53 suppresses metabolic stress-induced ferroptosis in cancer cells. Cell Rep 22, 569–575 (2018)." href="/articles/s41422-019-0164-5#ref-CR154" id="ref-link-section-d141354489e2285">154</a></sup> This has been observed in some cancers, in particular colorectal carcinoma, suggesting a context-dependent role of TP53 in the regulation of ferroptosis.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 155" title="Kang, R., Kroemer, G. & Tang, D. The tumor suppressor protein p53 and the ferroptosis network. Free Radic. Biol. Med. 
 https://doi.org/10.1016/j.freeradbiomed.2018.05.074
 
 (2018)." href="/articles/s41422-019-0164-5#ref-CR155" id="ref-link-section-d141354489e2289">155</a></sup> An African-specific coding region variant of TP53, namely Pro47Ser, also affects ferroptosis senstivity and tumor supression.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 156" title="Jennis, M. et al. An African-specific polymorphism in the TP53 gene impairs p53 tumor suppressor function in a mouse model. Genes Dev. 30, 918–930 (2016)." href="/articles/s41422-019-0164-5#ref-CR156" id="ref-link-section-d141354489e2294">156</a></sup></p><p>HSPs are a family of highly conserved molecular chaperones that are expressed in response to environmental stresses and render cells resistant to different types of cell death, including ferroptosis. In particular, heat shock protein family B [small] member (HSPB1, also known as HSP25 or HSP27)-mediated actin cytoskeleton protection inhibits ferroptosis via reducing iron uptake and subsequent oxidative injury.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 144" title="Sun, X. et al. HSPB1 as a novel regulator of ferroptotic cancer cell death. Oncogene 34, 5617–5625 (2015)." href="/articles/s41422-019-0164-5#ref-CR144" id="ref-link-section-d141354489e2300">144</a></sup> Heat shock protein family A [Hsp70] member 5 (HSPA5, also known as BIP or GRP78), an endoplasmic reticulum (ER)-sessile chaperone, binds and stabilizes GPX4, thus indirectly counteracting lipid peroxidation in ferroptosis.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 145" title="Zhu, S. et al. HSPA5 regulates ferroptotic cell death in cancer cells. Cancer Res. 77, 2064–2077 (2017)." href="/articles/s41422-019-0164-5#ref-CR145" id="ref-link-section-d141354489e2304">145</a></sup> However, 2-amino-5-chloro-N,3-dimethylbenzamide (CDDO), an HSP90 inhibitor, can inhibit ferroptosis in cancer cells, indicating that HSP90 may play a different role in ferroptosis.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 157" title="Wu, Z. et al. Chaperone-mediated autophagy is involved in the execution of ferroptosis. Proc. Natl Acad. Sci. USA 116, 2996–3005 (2019)." href="/articles/s41422-019-0164-5#ref-CR157" id="ref-link-section-d141354489e2308">157</a></sup></p><p>The term “autophagy-dependent cell death” was originally used to describe cell death associated with autophagy based on morphological observation.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 14" title="Schweichel, J. U. & Merker, H. J. The morphology of various types of cell death in prenatal tissues. Teratology 7, 253–266 (1973)." href="/articles/s41422-019-0164-5#ref-CR14" id="ref-link-section-d141354489e2314">14</a></sup> It is now defined by the NCCD as a type of RCD that can be blocked by the suppression of autophagy.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 24" title="Galluzzi, L. et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 25, 486–541 (2018)." href="/articles/s41422-019-0164-5#ref-CR24" id="ref-link-section-d141354489e2318">24</a></sup> Recent findings indicate that ferroptosis induction is coupled to an increase in the turnover of lipidated microtubule-associated protein 1 light chain 3 beta (MAP1LC3B, also known as LC3, a marker of autophagosome) as well as the fusion of the autophagosome with lysosomes (namely, autolysosome formation, an important stage of autophagic flux), consistent with the notion that lipid oxidation stimulates autophagy.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 158" title="Gao, M. et al. Ferroptosis is an autophagic cell death process. Cell Res. 26, 1021–1032 (2016)." href="/articles/s41422-019-0164-5#ref-CR158" id="ref-link-section-d141354489e2322">158</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 159" title="Hou, W. et al. Autophagy promotes ferroptosis by degradation of ferritin. Autophagy. 12, 1425–1428 (2016)." href="/articles/s41422-019-0164-5#ref-CR159" id="ref-link-section-d141354489e2325">159</a></sup> The genetic depletion of core autophagy effector molecules such as autophagy-related 5 (ATG5) and ATG7 block cell death by ferroptosis.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 158" title="Gao, M. et al. Ferroptosis is an autophagic cell death process. Cell Res. 26, 1021–1032 (2016)." href="/articles/s41422-019-0164-5#ref-CR158" id="ref-link-section-d141354489e2329">158</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 159" title="Hou, W. et al. Autophagy promotes ferroptosis by degradation of ferritin. Autophagy. 12, 1425–1428 (2016)." href="/articles/s41422-019-0164-5#ref-CR159" id="ref-link-section-d141354489e2332">159</a></sup> Tat-Beclin 1, a strong direct inducer of autophagy, also enhances ferroptosis in cancer cells.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 160" title="Song, X. et al. AMPK-mediated BECN1 phosphorylation promotes ferroptosis by directly blocking system Xc(-) activity. Curr. Biol. 28, 2388–2399 e2385 (2018)." href="/articles/s41422-019-0164-5#ref-CR160" id="ref-link-section-d141354489e2336">160</a></sup> The molecular mechanisms through which autophagy may contribute to ferroptotic demise may involve multiple pathways,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 161" title="Zhou, B. et al. Ferroptosis is a type of autophagy-dependent cell death. Sem. Cancer Biol. pii: S1044-579X(19)30006-9. 
 https://doi.org/10.1016/j.semcancer.2019.03.002
 
 (2019)." href="/articles/s41422-019-0164-5#ref-CR161" id="ref-link-section-d141354489e2341">161</a></sup> such as the degradation of ferritin via nuclear receptor coactivator 4 (NCOA4)-dependent ferritinophagy (e.g., ferritin-specific autophagy),<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 158" title="Gao, M. et al. Ferroptosis is an autophagic cell death process. Cell Res. 26, 1021–1032 (2016)." href="/articles/s41422-019-0164-5#ref-CR158" id="ref-link-section-d141354489e2345">158</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 159" title="Hou, W. et al. Autophagy promotes ferroptosis by degradation of ferritin. Autophagy. 12, 1425–1428 (2016)." href="/articles/s41422-019-0164-5#ref-CR159" id="ref-link-section-d141354489e2348">159</a></sup> the inhibition of system xc<sup>-</sup> activity via the formation of a BECN1-SLC7A11 protein complex,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 160" title="Song, X. et al. AMPK-mediated BECN1 phosphorylation promotes ferroptosis by directly blocking system Xc(-) activity. Curr. Biol. 28, 2388–2399 e2385 (2018)." href="/articles/s41422-019-0164-5#ref-CR160" id="ref-link-section-d141354489e2354">160</a></sup> and the degradation of lipid droplets via ras-associated protein RAB7 (RAB7A)-dependent lipophagy.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 162" title="Bai, Y. et al. Lipid storage and lipophagy regulates ferroptosis. Biochem. Biophys. Res. Commun. 508, 997–1003 (2019)." href="/articles/s41422-019-0164-5#ref-CR162" id="ref-link-section-d141354489e2358">162</a></sup> In addition, chaperone-mediated autophagy promotes GPX4 degradation and subsequent ferroptosis.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 157" title="Wu, Z. et al. Chaperone-mediated autophagy is involved in the execution of ferroptosis. Proc. Natl Acad. Sci. USA 116, 2996–3005 (2019)." href="/articles/s41422-019-0164-5#ref-CR157" id="ref-link-section-d141354489e2362">157</a></sup></p><p>In summary, ferroptosis is an non-apoptotic form of RCD driven by iron accumulation and lipid peroxidation, which can also involve autophagic processes, depending on the trigger.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 163" title="Kang, R. & Tang, D. Autophagy and ferroptosis - what’s the connection? Curr Pathobiol Rep 5, 153–159 (2017)." href="/articles/s41422-019-0164-5#ref-CR163" id="ref-link-section-d141354489e2368">163</a></sup> Excessive ferroptosis is likely to occur in certain human diseases, especially neurodegenerative and iron overload disorders, calling for its therapeutic suppression.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 164" title="Stockwell, B. R. et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171, 273–285 (2017)." href="/articles/s41422-019-0164-5#ref-CR164" id="ref-link-section-d141354489e2372">164</a></sup> In contrast, the induction of ferroptosis constitutes a potential strategy in cancer therapy.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 164" title="Stockwell, B. R. et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171, 273–285 (2017)." href="/articles/s41422-019-0164-5#ref-CR164" id="ref-link-section-d141354489e2376">164</a></sup> Note that almost 30 years ago a calcium-dependent non-apoptotic form of neuronal cell death, glutamate-induced toxicity, was coined as oxytosis that could be initiated by system xc<sup>-</sup> inhibition and GSH depletion,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 165" title="Tan, S., Schubert, D. & Maher, P. Oxytosis: a novel form of programmed cell death. Curr. Top. Med. Chem. 1, 497–506 (2001)." href="/articles/s41422-019-0164-5#ref-CR165" id="ref-link-section-d141354489e2382">165</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 166" title="Murphy, T. H., Malouf, A. T., Sastre, A., Schnaar, R. L. & Coyle, J. T. Calcium-dependent glutamate cytotoxicity in a neuronal cell line. Brain Res. 444, 325–332 (1988)." href="/articles/s41422-019-0164-5#ref-CR166" id="ref-link-section-d141354489e2385">166</a></sup> and it was recently suggested that oxytosis and ferroptosis should be regarded as the same or at least a highly overlapping cell death pathway.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 167" title="Lewerenz, J., Ates, G., Methner, A., Conrad, M. & Maher, P. Oxytosis/ferroptosis-(Re-) emerging roles for oxidative stress-dependent non-apoptotic cell death in diseases of the central nervous system. Front. Neurosci. 12, 214 (2018)." href="/articles/s41422-019-0164-5#ref-CR167" id="ref-link-section-d141354489e2390">167</a></sup> That said, it remains to be determined whether ferroptosis is involved in “normal” physiology (e.g., development) or whether it only occurs in the context of pathologogical distortions (e.g., tissue injury) or pharmacological manipulations (e.g., anticancer therapy). Further evidence is required to understand this point. This general caveat applies to all modalities of RCD that are discussed below.</p></div></div></section><section data-title="Parthanatos"><div class="c-article-section" id="Sec9-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec9">Parthanatos</h2><div class="c-article-section__content" id="Sec9-content"><p>Parthanatos is a poly [ADP-Ribose] polymerase 1 (PARP1)-dependent RCD that is activated by oxidative stress-induced DNA damage and chromatinolysis (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41422-019-0164-5#Fig3">3d</a>). The term was coined by Valina and Ted Dawson in 2009.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 168" title="David, K. K., Andrabi, S. A., Dawson, T. M. & Dawson, V. L. Parthanatos, a messenger of death. Front. Biosci. (Landmark Ed) 14, 1116–1128 (2009)." href="/articles/s41422-019-0164-5#ref-CR168" id="ref-link-section-d141354489e2406">168</a></sup> Unlike apoptosis, parthanatotic cell death occurs without the formation of an apoptotic body and small-size DNA fragments.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 169" title="Delettre, C. et al. AIFsh, a novel apoptosis-inducing factor (AIF) pro-apoptotic isoform with potential pathological relevance in human cancer. J. Biol. Chem. 281, 6413–6427 (2006)." href="/articles/s41422-019-0164-5#ref-CR169" id="ref-link-section-d141354489e2410">169</a></sup> Parthanatos also occurs in the absence of cell swelling, but is accompanied by plasma membrane rupture.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 170" title="Wang, H. et al. Apoptosis-inducing factor substitutes for caspase executioners in NMDA-triggered excitotoxic neuronal death. J. Neurosci. 24, 10963–10973 (2004)." href="/articles/s41422-019-0164-5#ref-CR170" id="ref-link-section-d141354489e2414">170</a></sup> PARP1 is a chromatin-associated nuclear protein that plays a critical role in the repair of DNA single-strand or double-strand breaks. PARP1 can recognize DNA breaks and use nicotinamide adenine dinucleotide (NAD<sup>+</sup>) and ATP to trigger poly (ADP-ribose)-sylation. The cleavage-mediated inactivation of PARP1 by caspases has been considered as a marker of apoptotic cell death.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 171" title="Nicholson, D. W. et al. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376, 37–43 (1995)." href="/articles/s41422-019-0164-5#ref-CR171" id="ref-link-section-d141354489e2421">171</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 172" title="Tewari, M. et al. Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell 81, 801–809 (1995)." href="/articles/s41422-019-0164-5#ref-CR172" id="ref-link-section-d141354489e2424">172</a></sup> In contrast, 8-oxo-7,8-dihydroguanine, the common DNA base modification resulting from oxidative injury (e.g., ROS, ultraviolet light, and alkylating agents), triggers PARP1 hyperactivation.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 173" title="Wang, R. et al. OGG1-initiated base excision repair exacerbates oxidative stress-induced parthanatos. Cell Death Dis. 9, 628 (2018)." href="/articles/s41422-019-0164-5#ref-CR173" id="ref-link-section-d141354489e2428">173</a></sup> Hyperactivated PARP1 mediates parthanatos through at least two mechanisms, namely, the depletion of NAD<sup>+</sup> and ATP (as it occurs during necrosis) and the dissipation of the mitochondrial inner transmembrane potential (an event commonly associated with apoptosis).<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 174" title="Andrabi, S. A., Dawson, T. M. & Dawson, V. L. Mitochondrial and nuclear cross talk in cell death: parthanatos. Ann. N. Y. Acad. Sci. 1147, 233–241 (2008)." href="/articles/s41422-019-0164-5#ref-CR174" id="ref-link-section-d141354489e2434">174</a></sup></p><p>Mechanistically, apoptosis-inducing factor mitochondria-associated 1 (AIFM1, also known as AIF),<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 175" title="Susin, S. A. et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397, 441–446 (1999)." href="/articles/s41422-019-0164-5#ref-CR175" id="ref-link-section-d141354489e2440">175</a></sup> but not caspases and apoptotic DNase endonuclease G (ENDOG), is required for parthanatos execution.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 176" title="Yu, S. W. et al. Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 297, 259–263 (2002)." href="/articles/s41422-019-0164-5#ref-CR176" id="ref-link-section-d141354489e2444">176</a></sup> Hyperactive PARP1 binds AIFM1, which leads to AIFM1 release from mitochondria into the nucleus to produce parthanatotic chromatinolysis.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 177" title="Wang, Y. et al. Poly(ADP-ribose) (PAR) binding to apoptosis-inducing factor is critical for PAR polymerase-1-dependent cell death (parthanatos). Sci. Signal. 4, ra20 (2011)." href="/articles/s41422-019-0164-5#ref-CR177" id="ref-link-section-d141354489e2448">177</a></sup> This process can be negatively controlled by blocking PARP1 activity via the poly (ADP-ribose)-degrading protein ADP-ribosylhydrolase-like 2 (ADPRHL2, also known as ARH3)<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 178" title="Mashimo, M., Kato, J. & Moss, J. ADP-ribosyl-acceptor hydrolase 3 regulates poly (ADP-ribose) degradation and cell death during oxidative stress. Proc. Natl Acad. Sci. USA 110, 18964–18969 (2013)." href="/articles/s41422-019-0164-5#ref-CR178" id="ref-link-section-d141354489e2452">178</a></sup> and the poly (ADP-ribose)-binding protein ring finger protein 146 (RNF146, also known as IDUNA),<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 179" title="Andrabi, S. A. et al. Iduna protects the brain from glutamate excitotoxicity and stroke by interfering with poly(ADP-ribose) polymer-induced cell death. Nat. Med. 17, 692–699 (2011)." href="/articles/s41422-019-0164-5#ref-CR179" id="ref-link-section-d141354489e2456">179</a></sup> whereas it is positively regulated by enhancing PARP1 activity by the DNA glycosylase enzyme 8-oxoguanine DNA glycosylase (OGG1).<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 173" title="Wang, R. et al. OGG1-initiated base excision repair exacerbates oxidative stress-induced parthanatos. Cell Death Dis. 9, 628 (2018)." href="/articles/s41422-019-0164-5#ref-CR173" id="ref-link-section-d141354489e2461">173</a></sup> More recently, macrophage migration inhibitory factor (MIF) has been identified as an AIFM1-binding protein with nuclease activity to produce large DNA fragments in the induction of parthanatos.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 180" title="Wang, Y. et al. A nuclease that mediates cell death induced by DNA damage and poly(ADP-ribose) polymerase-1. Science 
 https://doi.org/10.1126/science.aad6872
 
 (2016)." href="/articles/s41422-019-0164-5#ref-CR180" id="ref-link-section-d141354489e2465">180</a></sup> AIFM1-independent parthanatos may also occur in some conditions such as dry macular degeneration.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 181" title="Jang, K. H. et al. AIF-independent parthanatos in the pathogenesis of dry age-related macular degeneration. Cell Death Dis. 8, e2526 (2017)." href="/articles/s41422-019-0164-5#ref-CR181" id="ref-link-section-d141354489e2469">181</a></sup> The interplay between AIFM1-dependent and -independent parthanatos with other RCDs such as autophagy-dependent cell death<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 182" title="Rodriguez-Vargas, J. M. et al. ROS-induced DNA damage and PARP-1 are required for optimal induction of starvation-induced autophagy. Cell Res. 22, 1181–1198 (2012)." href="/articles/s41422-019-0164-5#ref-CR182" id="ref-link-section-d141354489e2473">182</a></sup> and necroptosis<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 183" title="Xu, X. et al. The role of PARP activation in glutamate-induced necroptosis in HT-22 cells. Brain Res. 1343, 206–212 (2010)." href="/articles/s41422-019-0164-5#ref-CR183" id="ref-link-section-d141354489e2477">183</a></sup> may be involved in various types of oxidative DNA damage-associated diseases, including neurodegenerative disease, myocardial infarction, and diabetes.</p></div></div></section><section data-title="Entotic cell death"><div class="c-article-section" id="Sec10-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec10">Entotic cell death</h2><div class="c-article-section__content" id="Sec10-content"><p>Entotic cell death is a form of cell cannibalism in which one cell engulfs and kills another cell. The term entosis was coined in 2007 by Joan Brugge.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 184" title="Overholtzer, M. et al. A nonapoptotic cell death process, entosis, that occurs by cell-in-cell invasion. Cell 131, 966–979 (2007)." href="/articles/s41422-019-0164-5#ref-CR184" id="ref-link-section-d141354489e2489">184</a></sup> Entosis and entotic cell death occur mostly in epithelial tumor cells in the contexts of aberrant proliferation,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 184" title="Overholtzer, M. et al. A nonapoptotic cell death process, entosis, that occurs by cell-in-cell invasion. Cell 131, 966–979 (2007)." href="/articles/s41422-019-0164-5#ref-CR184" id="ref-link-section-d141354489e2493">184</a></sup> glucose starvation,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 185" title="Hamann, J. C. et al. Entosis Is Induced by Glucose Starvation. Cell Rep 20, 201–210 (2017)." href="/articles/s41422-019-0164-5#ref-CR185" id="ref-link-section-d141354489e2497">185</a></sup> matrix deadhesion,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 184" title="Overholtzer, M. et al. A nonapoptotic cell death process, entosis, that occurs by cell-in-cell invasion. Cell 131, 966–979 (2007)." href="/articles/s41422-019-0164-5#ref-CR184" id="ref-link-section-d141354489e2501">184</a></sup> or mitotic stress.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 186" title="Durgan, J. et al. Mitosis can drive cell cannibalism through entosis. Elife 
 https://doi.org/10.7554/eLife.27134
 
 (2017)." href="/articles/s41422-019-0164-5#ref-CR186" id="ref-link-section-d141354489e2505">186</a></sup> Entosis is characterized by the formation of cell-in-cell structures,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 184" title="Overholtzer, M. et al. A nonapoptotic cell death process, entosis, that occurs by cell-in-cell invasion. Cell 131, 966–979 (2007)." href="/articles/s41422-019-0164-5#ref-CR184" id="ref-link-section-d141354489e2510">184</a></sup> which have also been observed in the urine and ascites from tumor patients.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 187" title="Brouwer, M., de Ley, L., Feltkamp, C. A., Elema, J. & Jongsma, A. P. Serum-dependent “cannibalism” and autodestruction in cultures of human small cell carcinoma of the lung. Cancer Res. 44, 2947–2951 (1984)." href="/articles/s41422-019-0164-5#ref-CR187" id="ref-link-section-d141354489e2514">187</a></sup> Entosis plays an ambiguous role in tumorigenesis, since it may trigger aneuploidy in engulfing cells<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 188" title="Krajcovic, M. et al. A non-genetic route to aneuploidy in human cancers. Nat. Cell Biol. 13, 324–330 (2011)." href="/articles/s41422-019-0164-5#ref-CR188" id="ref-link-section-d141354489e2518">188</a></sup> and provide nutritional support for tumor growth,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 185" title="Hamann, J. C. et al. Entosis Is Induced by Glucose Starvation. Cell Rep 20, 201–210 (2017)." href="/articles/s41422-019-0164-5#ref-CR185" id="ref-link-section-d141354489e2522">185</a></sup> but may also mediate the removal of cancer cells by healthy neighbouring cells.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 186" title="Durgan, J. et al. Mitosis can drive cell cannibalism through entosis. Elife 
 https://doi.org/10.7554/eLife.27134
 
 (2017)." href="/articles/s41422-019-0164-5#ref-CR186" id="ref-link-section-d141354489e2526">186</a></sup></p><p>Although their underlying mechanisms are not well-understood, cell adhesion and cytoskeletal rearrangement pathways play a central role in the control of entosis induction.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 189" title="Durgan, J. & Florey, O. Cancer cell cannibalism: multiple triggers emerge for entosis. Biochim. Biophys. Acta Mol. Cell Res. 1865, 831–841 (2018)." href="/articles/s41422-019-0164-5#ref-CR189" id="ref-link-section-d141354489e2532">189</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 190" title="Martins, I. et al. Entosis: the emerging face of non-cell-autonomous type IV programmed death. Biomed J 40, 133–140 (2017)." href="/articles/s41422-019-0164-5#ref-CR190" id="ref-link-section-d141354489e2535">190</a></sup> The invasion of a live cell into a neighbouring cell during entosis requires the formation of adherent junctions, which is mediated by adhesion proteins cadherin 1 (CDH1, also known as E-cadherin) and catenin alpha 1 (CTNNA1), but not integrin receptors.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 184" title="Overholtzer, M. et al. A nonapoptotic cell death process, entosis, that occurs by cell-in-cell invasion. Cell 131, 966–979 (2007)." href="/articles/s41422-019-0164-5#ref-CR184" id="ref-link-section-d141354489e2539">184</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 191" title="Wang, M. et al. Impaired formation of homotypic cell-in-cell structures in human tumor cells lacking alpha-catenin expression. Sci. Rep. 5, 12223 (2015)." href="/articles/s41422-019-0164-5#ref-CR191" id="ref-link-section-d141354489e2542">191</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 192" title="Sun, Q., Cibas, E. S., Huang, H., Hodgson, L. & Overholtzer, M. Induction of entosis by epithelial cadherin expression. Cell Res. 24, 1288–1298 (2014)." href="/articles/s41422-019-0164-5#ref-CR192" id="ref-link-section-d141354489e2545">192</a></sup> Both intact actin and microtubules are required for cytoskeletal rearrangement during entosis. In particular, actomyosin, the actin-myosin complex in the cytoskeleton, is essential for the formation of cell-in-cell structures in entosis. The generation and activity of actomyosin is spatiotemporally controlled by ras homolog family member A (RHOA), rho-associated coiled-coil containing protein kinase (ROCK), and the myosin pathway<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 184" title="Overholtzer, M. et al. A nonapoptotic cell death process, entosis, that occurs by cell-in-cell invasion. Cell 131, 966–979 (2007)." href="/articles/s41422-019-0164-5#ref-CR184" id="ref-link-section-d141354489e2549">184</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 185" title="Hamann, J. C. et al. Entosis Is Induced by Glucose Starvation. Cell Rep 20, 201–210 (2017)." href="/articles/s41422-019-0164-5#ref-CR185" id="ref-link-section-d141354489e2552">185</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Sun, Q., Cibas, E. S., Huang, H., Hodgson, L. & Overholtzer, M. Induction of entosis by epithelial cadherin expression. Cell Res. 24, 1288–1298 (2014)." href="#ref-CR192" id="ref-link-section-d141354489e2555">192</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Sottile, F., Aulicino, F., Theka, I. & Cosma, M. P. Mesenchymal stem cells generate distinct functional hybrids in vitro via cell fusion or entosis. Sci. Rep. 6, 36863 (2016)." href="#ref-CR193" id="ref-link-section-d141354489e2555_1">193</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Wen, S., Shang, Z., Zhu, S., Chang, C. & Niu, Y. Androgen receptor enhances entosis, a non-apoptotic cell death, through modulation of Rho/ROCK pathway in prostate cancer cells. Prostate 73, 1306–1315 (2013)." href="#ref-CR194" id="ref-link-section-d141354489e2555_2">194</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Sun, Q. et al. Competition between human cells by entosis. Cell Res. 24, 1299–1310 (2014)." href="#ref-CR195" id="ref-link-section-d141354489e2555_3">195</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 196" title="Wan, Q. et al. Regulation of myosin activation during cell-cell contact formation by Par3-Lgl antagonism: entosis without matrix detachment. Mol. Biol. Cell. 23, 2076–2091 (2012)." href="/articles/s41422-019-0164-5#ref-CR196" id="ref-link-section-d141354489e2558">196</a></sup> (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41422-019-0164-5#Fig3">3e</a>). Consequently, pharmacologically targeting these core pathways by inhibitors such as C3-toxin, Y-27632, and blebbistatin diminishes entosis in vitro and in vivo.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 189" title="Durgan, J. & Florey, O. Cancer cell cannibalism: multiple triggers emerge for entosis. Biochim. Biophys. Acta Mol. Cell Res. 1865, 831–841 (2018)." href="/articles/s41422-019-0164-5#ref-CR189" id="ref-link-section-d141354489e2565">189</a></sup></p><p>In addition to cell adhesion and cytoskeletal rearrangement pathways, other signaling molecules and regulators are also involved in the regulation of entosis through different mechanisms.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 189" title="Durgan, J. & Florey, O. Cancer cell cannibalism: multiple triggers emerge for entosis. Biochim. Biophys. Acta Mol. Cell Res. 1865, 831–841 (2018)." href="/articles/s41422-019-0164-5#ref-CR189" id="ref-link-section-d141354489e2571">189</a></sup> For example, cell division cycle 42 (CDC42) depletion enhances changes in mitotic morphology and subsequent entosis.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 186" title="Durgan, J. et al. Mitosis can drive cell cannibalism through entosis. Elife 
 https://doi.org/10.7554/eLife.27134
 
 (2017)." href="/articles/s41422-019-0164-5#ref-CR186" id="ref-link-section-d141354489e2575">186</a></sup> AURKA<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 197" title="Xia, P. et al. Aurora A orchestrates entosis by regulating a dynamic MCAK-TIP150 interaction. J. Mol. Cell Biol. 6, 240–254 (2014)." href="/articles/s41422-019-0164-5#ref-CR197" id="ref-link-section-d141354489e2579">197</a></sup> and the AMP-activated protein kinase (AMPK)<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 185" title="Hamann, J. C. et al. Entosis Is Induced by Glucose Starvation. Cell Rep 20, 201–210 (2017)." href="/articles/s41422-019-0164-5#ref-CR185" id="ref-link-section-d141354489e2583">185</a></sup> promote entosis through the control of microtubule plasticity or energy metabolism, respectively. The chromatin-binding protein nuclear protein 1 (NUPR1, also known as P8), a transcriptional regulator, negatively regulates entosis through modulating AURKA activity or autophagy.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 198" title="Hinojosa, L. S., Holst, M., Baarlink, C. & Grosse, R. MRTF transcription and Ezrin-dependent plasma membrane blebbing are required for entotic invasion. J. Cell. Biol. 216, 3087–3095 (2017)." href="/articles/s41422-019-0164-5#ref-CR198" id="ref-link-section-d141354489e2587">198</a></sup></p><p>The possible fates of the engulfed cells include cell division, release, or death. Entotic cell death involves the digestion of the engulfed cells by the host cells, which requires LC3-associated phagocytosis (LAP) and the cathepsin B (CTSB)-mediated lysosomal degradation pathway<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 189" title="Durgan, J. & Florey, O. Cancer cell cannibalism: multiple triggers emerge for entosis. Biochim. Biophys. Acta Mol. Cell Res. 1865, 831–841 (2018)." href="/articles/s41422-019-0164-5#ref-CR189" id="ref-link-section-d141354489e2593">189</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 190" title="Martins, I. et al. Entosis: the emerging face of non-cell-autonomous type IV programmed death. Biomed J 40, 133–140 (2017)." href="/articles/s41422-019-0164-5#ref-CR190" id="ref-link-section-d141354489e2596">190</a></sup> (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41422-019-0164-5#Fig3">3e</a>). However, entosis does not involve apoptosis effector caspases and is not regulated by proteins of the BCL2 family.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 189" title="Durgan, J. & Florey, O. Cancer cell cannibalism: multiple triggers emerge for entosis. Biochim. Biophys. Acta Mol. Cell Res. 1865, 831–841 (2018)." href="/articles/s41422-019-0164-5#ref-CR189" id="ref-link-section-d141354489e2603">189</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 199" title="Li, Y., Sun, X. & Dey, S. K. Entosis allows timely elimination of the luminal epithelial barrier for embryo implantation. Cell Rep 11, 358–365 (2015)." href="/articles/s41422-019-0164-5#ref-CR199" id="ref-link-section-d141354489e2606">199</a></sup> LAP bridges phagocytosis and autophagy; this process is regulated by the core LC3 lipidation machinery (e.g., ATG5, ATG7, class III phosphatidylinositol 3-kinase complex [e.g., phosphatidylinositol 3-kinase catalytic subunit type 3 (PI3KC3), also known as VPS34], phosphoinositide-3-kinase regulatory subunit 4 [PIK3R4, also known as VPS15], and BECN1), cytochrome B-245 beta chain (CYBB, also known as NOX2)-mediated ROS production, other autophagy regulators (e.g., UV radiation resistance-associated [UVRAG] and RUN domain and cysteine-rich domain-containing beclin 1 interacting protein [RUBCN, also known as Rubicon]).<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 200" title="Heckmann, B. L., Boada-Romero, E., Cunha, L. D., Magne, J. & Green, D. R. LC3-associated phagocytosis and inflammation. J. Mol. Biol. 429, 3561–3576 (2017)." href="/articles/s41422-019-0164-5#ref-CR200" id="ref-link-section-d141354489e2610">200</a></sup> Entosis is often observed in neoplasia and its frequency correlates with tumor stage, calling for a further in-depth evaluation of the possibility of targeting this phenomenon. However, at this stage, there are no reagents available that would allow us to inhibit or induce entosis in a selective fashion, i.e., without influencing other cell death modalities.</p></div></div></section><section data-title="Netotic cell death"><div class="c-article-section" id="Sec11-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec11">Netotic cell death</h2><div class="c-article-section__content" id="Sec11-content"><p>Netotic cell death is a form of RCD driven by NET release. NETs are extracellular net-like DNA-protein structures released by cells in response to infection or injury. NET formation and release, or NETosis, was first observed in neutrophils upon exposure to phorbol myristate acetate or IL8 by Arturo Zychlinsky’s lab in 2004.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 201" title="Brinkmann, V. et al. Neutrophil extracellular traps kill bacteria. Science 303, 1532–1535 (2004)." href="/articles/s41422-019-0164-5#ref-CR201" id="ref-link-section-d141354489e2622">201</a></sup> NETs can also be generated by other leukocyte populations (e.g., mast cells, eosinophils, and basophils), epithelial cells, and cancer cells in response to various stresses.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Arazna, M., Pruchniak, M. P. & Demkow, U. Reactive Oxygen Species, Granulocytes, and NETosis. Adv. Exp. Med. Biol. 836, 1–7 (2015)." href="#ref-CR202" id="ref-link-section-d141354489e2626">202</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Kazzaz, N. M., Sule, G. & Knight, J. S. Intercellular interactions as regulators of NETosis. Front. Immunol. 7, 453 (2016)." href="#ref-CR203" id="ref-link-section-d141354489e2626_1">203</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 204" title="Remijsen, Q. et al. Dying for a cause: NETosis, mechanisms behind an antimicrobial cell death modality. Cell Death Differ. 18, 581–588 (2011)." href="/articles/s41422-019-0164-5#ref-CR204" id="ref-link-section-d141354489e2629">204</a></sup> Elevated NETosis not only acts against the spread of infection by trapping pathogenic microorganisms (e.g., bacteria and viruses), but also promotes DAMP release, thus possibly contributing to the pathogenesis of autoimmune disorders (e.g., systemic lupus erythematosus, rheumatoid arthritis, asthma, vessel vasculitis, and psoriasis), ischemia-reperfusion injury, and tumor development.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 205" title="Branzk, N. & Papayannopoulos, V. Molecular mechanisms regulating NETosis in infection and disease. Semin. Immunopathol. 35, 513–530 (2013)." href="/articles/s41422-019-0164-5#ref-CR205" id="ref-link-section-d141354489e2633">205</a></sup> A recent study indicates that inflammation-associated NET production can awaken nearby dormant cancer cells to redivide.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 206" title="Albrengues, J. et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science 
 https://doi.org/10.1126/science.aao4227
 
 (2018)." href="/articles/s41422-019-0164-5#ref-CR206" id="ref-link-section-d141354489e2637">206</a></sup> This effect may rely on the degradation of laminins, a major adhesive component of basement membranes<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 206" title="Albrengues, J. et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science 
 https://doi.org/10.1126/science.aao4227
 
 (2018)." href="/articles/s41422-019-0164-5#ref-CR206" id="ref-link-section-d141354489e2641">206</a></sup>; however, this needs further mechanistic exploration.</p><p>NETosis is a dynamic process and relies on multiple signals and steps including NADPH oxidase-mediated ROS production, autophagy, the release and translocation of granular enzymes (e.g., elastase, neutrophil expressed [ELANE], matrix metalloproteinase [MMP], and myeloperoxidase [MPO]) and peptides from the cathelecidin family (e.g., cathelicidin antimicrobial peptide [CAMP, also known as LL37]) from the cytosol to the nucleus.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 207" title="Skendros, P., Mitroulis, I. & Ritis, K. Autophagy in neutrophils: from granulopoiesis to neutrophil extracellular traps. Front. Cell. Dev. Biol. 6, 109 (2018)." href="/articles/s41422-019-0164-5#ref-CR207" id="ref-link-section-d141354489e2648">207</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 208" title="Remijsen, Q. et al. Neutrophil extracellular trap cell death requires both autophagy and superoxide generation. Cell Res. 21, 290–304 (2011)." href="/articles/s41422-019-0164-5#ref-CR208" id="ref-link-section-d141354489e2651">208</a></sup> This is followed by histone citrullination, favoring chromatin decondensation, the destruction of the nuclear envelope, and the release of chromatin fibres<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 209" title="Yipp, B. G. et al. Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nat. Med. 18, 1386–1393 (2012)." href="/articles/s41422-019-0164-5#ref-CR209" id="ref-link-section-d141354489e2655">209</a></sup> (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41422-019-0164-5#Fig3">3f</a>). Peptidyl arginine deiminase 4 (PADI4, also known as PAD4) is the enzyme responsible for catalyzing the conversion of arginine to citrullin residues in histones.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 210" title="Li, P. et al. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J. Exp. Med. 207, 1853–1862 (2010)." href="/articles/s41422-019-0164-5#ref-CR210" id="ref-link-section-d141354489e2662">210</a></sup> A recently discovered pathway of PADI4-independent NETosis<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 211" title="Hemmers, S., Teijaro, J. R., Arandjelovic, S. & Mowen, K. A. PAD4-mediated neutrophil extracellular trap formation is not required for immunity against influenza infection. PLoS ONE 6, e22043 (2011)." href="/articles/s41422-019-0164-5#ref-CR211" id="ref-link-section-d141354489e2666">211</a></sup> may occur downstream of death signals that are normally involved in other types of RCD such as pyroptosis, necroptosis, and autophagy-dependent cell death.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 212" title="Mitroulis, I. et al. Neutrophil extracellular trap formation is associated with IL-1beta and autophagy-related signaling in gout. PLoS ONE 6, e29318 (2011)." href="/articles/s41422-019-0164-5#ref-CR212" id="ref-link-section-d141354489e2671">212</a></sup> The alterations of cell surface associated to netotic cell death are initiated by entropic swelling of chromatin through a yet elusive mechanism.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 213" title="Neubert, E. et al. Chromatin swelling drives neutrophil extracellular trap release. Nat. Commun. 9, 3767 (2018)." href="/articles/s41422-019-0164-5#ref-CR213" id="ref-link-section-d141354489e2675">213</a></sup> Of note, lactoferrin, a component of neutrophil granules, can block netotic cell death and inflammation both in vitro and in vivo.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 214" title="Okubo, K. et al. Lactoferrin suppresses neutrophil extracellular traps release in inflammation. EBioMedicine 10, 204–215 (2016)." href="/articles/s41422-019-0164-5#ref-CR214" id="ref-link-section-d141354489e2679">214</a></sup> In addition to the key role of GSDMD in pyroptosis, GSDMD is also involved in the induction of NETosis to digest the pathogen,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 112" title="Sollberger, G. et al. Gasdermin D plays a vital role in the generation of neutrophil extracellular traps. Sci. Immunol. 
 https://doi.org/10.1126/sciimmunol.aar6689
 
 (2018)." href="/articles/s41422-019-0164-5#ref-CR112" id="ref-link-section-d141354489e2683">112</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 113" title="Chen, K. W. et al. Noncanonical inflammasome signaling elicits gasdermin D-dependent neutrophil extracellular traps. Sci. Immunol. 
 https://doi.org/10.1126/sciimmunol.aar6676
 
 (2018)." href="/articles/s41422-019-0164-5#ref-CR113" id="ref-link-section-d141354489e2686">113</a></sup> indicating a crosstalk between pyroptosis and NETosis pathways in the innate immunity.</p></div></div></section><section data-title="Lysosome-dependent cell death"><div class="c-article-section" id="Sec12-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec12">Lysosome-dependent cell death</h2><div class="c-article-section__content" id="Sec12-content"><p>Lysosome-dependent cell death (LCD), also known as lysosomal cell death, is a type of RCD mediated by hydrolytic enzymes that are released into the cytosol after lysosomal membrane permeabilization (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41422-019-0164-5#Fig3">3g</a>).<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 215" title="Aits, S. & Jaattela, M. Lysosomal cell death at a glance. J. Cell. Sci. 126, 1905–1912 (2013)." href="/articles/s41422-019-0164-5#ref-CR215" id="ref-link-section-d141354489e2701">215</a></sup> The idea of LCD was first expressed by Christian de Duve, who discovered lysosomes as the cellular degradation machinery in 1955, and the term “lysosomal cell death” was coined in 2000.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 216" title="Franko, J., Pomfy, M. & Prosbova, T. Apoptosis and cell death (mechanisms, pharmacology and promise for the future). Acta Medica (Hradec. Kralove) 43, 63–68 (2000)." href="/articles/s41422-019-0164-5#ref-CR216" id="ref-link-section-d141354489e2705">216</a></sup> Lysosomes are acidic cellular organelles that can degrade a variety of heterophagic and autophagic cargos, including unused intracellular macromolecules (nucleic acids, proteins, lipids, and carbohydrates), entire organelles (e.g., mitochondria), and invading pathogens.</p><p>Lysosomes become leaky when cells are exposed to lysosomotropic detergents (e.g., O-methyl-serine dodecylamide hydrochloride), dipeptide methyl esters (e.g., Leu-Leu-OMe), lipid metabolites (e.g., sphingosine and phosphatidic acid), and ROS.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 215" title="Aits, S. & Jaattela, M. Lysosomal cell death at a glance. J. Cell. Sci. 126, 1905–1912 (2013)." href="/articles/s41422-019-0164-5#ref-CR215" id="ref-link-section-d141354489e2712">215</a></sup> Lysosomal membrane permeabilization may also amplify or initiate cell death signaling in the context of apoptosis, autophagy-dependent cell death, and ferroptosis.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 217" title="Kroemer, G. & Jaattela, M. Lysosomes and autophagy in cell death control. Nat. Rev. Cancer 5, 886–897 (2005)." href="/articles/s41422-019-0164-5#ref-CR217" id="ref-link-section-d141354489e2716">217</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 218" title="Gao, H. et al. Ferroptosis is a lysosomal cell death process. Biochem. Biophys. Res. Commun. 503, 1550–1556 (2018)." href="/articles/s41422-019-0164-5#ref-CR218" id="ref-link-section-d141354489e2719">218</a></sup></p><p>Among lysosomal hydrolases, cathepsins (a large family of cysteine peptidases) play a major role in LCD. Different cathepsins are responsible for the initiation and execution of LCD, depending on the context of lysosomal membrane permeabilization.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 219" title="Repnik, U., Stoka, V., Turk, V. & Turk, B. Lysosomes and lysosomal cathepsins in cell death. Biochim. Biophys. Acta 1824, 22–33 (2012)." href="/articles/s41422-019-0164-5#ref-CR219" id="ref-link-section-d141354489e2725">219</a></sup> The transcription factors signal transducer and activator of transcription 3 (STAT3)<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 220" title="Kreuzaler, P. A. et al. Stat3 controls lysosomal-mediated cell death in vivo. Nat. Cell Biol. 13, 303–309 (2011)." href="/articles/s41422-019-0164-5#ref-CR220" id="ref-link-section-d141354489e2729">220</a></sup> and TP53<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 221" title="Wu, G. S., Saftig, P., Peters, C. & El-Deiry, W. S. Potential role for cathepsin D in p53-dependent tumor suppression and chemosensitivity. Oncogene 16, 2177–2183 (1998)." href="/articles/s41422-019-0164-5#ref-CR221" id="ref-link-section-d141354489e2733">221</a></sup> may favor LCD induction through the selective upregulation of cathepsins (e.g., CTSB, cathepsin L [CTSL] and cathepsin D [CTSD]) expression. In contrast, the NF-κB–elicited expression of serpin family A member 3 (SERPINA3) results in the inhibition of CTSB and CTSL.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 222" title="Liu, N. et al. NF-kappaB protects from the lysosomal pathway of cell death. EMBO J. 22, 5313–5322 (2003)." href="/articles/s41422-019-0164-5#ref-CR222" id="ref-link-section-d141354489e2737">222</a></sup> Moreover, the suppression of mucolipin 1, an ion channel in the lysosome (MCOLN1, also known as TRPML1) results in a lysosomal trafficking defect, which promotes CTSB release and consequent LCD.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 223" title="Colletti, G. A. et al. Loss of lysosomal ion channel transient receptor potential channel mucolipin-1 (TRPML1) leads to cathepsin B-dependent apoptosis. J. Biol. Chem. 287, 8082–8091 (2012)." href="/articles/s41422-019-0164-5#ref-CR223" id="ref-link-section-d141354489e2741">223</a></sup></p><p>Blocking cathepsin expression or activity can block LCD. However, cathepsins are not the sole effectors of LCD because lysosomes store abundant iron, meaning that lysosomal membrane permeabilization can result in the release of this toxic metal into the cytosol,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 224" title="Terman, A. & Kurz, T. Lysosomal iron, iron chelation, and cell death. Antioxid. Redox. Signal. 18, 888–898 (2013)." href="/articles/s41422-019-0164-5#ref-CR224" id="ref-link-section-d141354489e2747">224</a></sup> thus contributing to ferroptosis.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 218" title="Gao, H. et al. Ferroptosis is a lysosomal cell death process. Biochem. Biophys. Res. Commun. 503, 1550–1556 (2018)." href="/articles/s41422-019-0164-5#ref-CR218" id="ref-link-section-d141354489e2751">218</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 225" title="Torii, S. et al. An essential role for functional lysosomes in ferroptosis of cancer cells. Biochem. J. 473, 769–777 (2016)." href="/articles/s41422-019-0164-5#ref-CR225" id="ref-link-section-d141354489e2754">225</a></sup> Impaired lysosomal degradation and the LCD pathway are associated with increased oxidative injury and contribute to lysosomal storage disorders and age-associated diseases.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 226" title="Platt, F. M., Boland, B. & van der Spoel, A. C. The cell biology of disease: lysosomal storage disorders: the cellular impact of lysosomal dysfunction. J. Cell. Biol. 199, 723–734 (2012)." href="/articles/s41422-019-0164-5#ref-CR226" id="ref-link-section-d141354489e2758">226</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 227" title="Gomez-Sintes, R., Ledesma, M. D. & Boya, P. Lysosomal cell death mechanisms in aging. Ageing Res. Rev. 32, 150–168 (2016)." href="/articles/s41422-019-0164-5#ref-CR227" id="ref-link-section-d141354489e2761">227</a></sup> Based on the cellular context, LCD can adopt necrotic, apoptotic, autophagic, or ferroptotic-like features, adding complexity to this cell death pathway.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 215" title="Aits, S. & Jaattela, M. Lysosomal cell death at a glance. J. Cell. Sci. 126, 1905–1912 (2013)." href="/articles/s41422-019-0164-5#ref-CR215" id="ref-link-section-d141354489e2765">215</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 217" title="Kroemer, G. & Jaattela, M. Lysosomes and autophagy in cell death control. Nat. Rev. Cancer 5, 886–897 (2005)." href="/articles/s41422-019-0164-5#ref-CR217" id="ref-link-section-d141354489e2768">217</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 218" title="Gao, H. et al. Ferroptosis is a lysosomal cell death process. Biochem. Biophys. Res. Commun. 503, 1550–1556 (2018)." href="/articles/s41422-019-0164-5#ref-CR218" id="ref-link-section-d141354489e2771">218</a></sup></p></div></div></section><section data-title="Autophagy-dependent cell death"><div class="c-article-section" id="Sec13-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec13">Autophagy-dependent cell death</h2><div class="c-article-section__content" id="Sec13-content"><p>Autophagy-dependent cell death is a type of RCD driven by the molecular machinery of autophagy (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41422-019-0164-5#Fig3">3h</a>). Macroautophagy (hereafter called “autophagy”) is an evolutionarily conserved degradation pathway and has been implicated in human disease and aging.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 228" title="Klionsky, D. J. Autophagy: from phenomenology to molecular understanding in less than a decade. Nat. Rev. Mol. Cell Biol. 8, 931–937 (2007)." href="/articles/s41422-019-0164-5#ref-CR228" id="ref-link-section-d141354489e2785">228</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 229" title="Levine, B. & Kroemer, G. Biological functions of autophagy genes: a disease perspective. Cell 176, 11–42 (2019)." href="/articles/s41422-019-0164-5#ref-CR229" id="ref-link-section-d141354489e2788">229</a></sup> The process of autophagy involves the sequential formation of three unique membrane structures, namely the phagophore, autophagosome, and autolysosome. Over 40 autophagy-related genes/proteins (ATGs) play key roles in autophagic membrane dynamics and processes.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 230" title="Dikic, I. & Elazar, Z. Mechanism and medical implications of mammalian autophagy. Nat. Rev. Mol. Cell Biol. 19, 349–364 (2018)." href="/articles/s41422-019-0164-5#ref-CR230" id="ref-link-section-d141354489e2792">230</a></sup></p><p>As a dynamic recycling system, the bulk and nonselective autophagy process is generally considered as a pro-survival mechanism in response to multiple types of cellular stresses.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 16" title="Kroemer, G., Marino, G. & Levine, B. Autophagy and the integrated stress response. Mol. Cell 40, 280–293 (2010)." href="/articles/s41422-019-0164-5#ref-CR16" id="ref-link-section-d141354489e2798">16</a></sup> Nevertheless, autophagy can selectively degrade pro-survival proteins related to other types of RCD, thereby tipping the balance from life to death.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Liu, Y. & Levine, B. Autosis and autophagic cell death: the dark side of autophagy. Cell Death Differ. 22, 367–376 (2015)." href="#ref-CR231" id="ref-link-section-d141354489e2802">231</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Bialik, S., Dasari, S. K. & Kimchi, A. Autophagy-dependent cell death—where, how and why a cell eats itself to death. J. Cell. Sci. 
 https://doi.org/10.1242/jcs.215152
 
 (2018)." href="#ref-CR232" id="ref-link-section-d141354489e2802_1">232</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Denton, D. & Kumar, S. Autophagy-dependent cell death. Cell Death Differ. 
 https://doi.org/10.1038/s41418-018-0252-y
 
 (2018)." href="#ref-CR233" id="ref-link-section-d141354489e2802_2">233</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 234" title="Kriel, J. & Loos, B. The good, the bad and the autophagosome: exploring unanswered questions of autophagy-dependent cell death. Cell Death Differ. 
 https://doi.org/10.1038/s41418-018-0267-4
 
 (2019)." href="/articles/s41422-019-0164-5#ref-CR234" id="ref-link-section-d141354489e2805">234</a></sup> Ferritinophagy causes ferroptosis due to the selective degradation of ferritin (an iron storage protein), consequently causing iron release and oxidative injury.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 158" title="Gao, M. et al. Ferroptosis is an autophagic cell death process. Cell Res. 26, 1021–1032 (2016)." href="/articles/s41422-019-0164-5#ref-CR158" id="ref-link-section-d141354489e2809">158</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 159" title="Hou, W. et al. Autophagy promotes ferroptosis by degradation of ferritin. Autophagy. 12, 1425–1428 (2016)." href="/articles/s41422-019-0164-5#ref-CR159" id="ref-link-section-d141354489e2812">159</a></sup> The degradation of protein tyrosine phosphatase, nonreceptor type 13 (PTPN13, a negative regulator of extrinsic apoptosis)<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 235" title="Gump, J. M. et al. Autophagy variation within a cell population determines cell fate through selective degradation of Fap-1. Nat. Cell Biol. 16, 47–54 (2014)." href="/articles/s41422-019-0164-5#ref-CR235" id="ref-link-section-d141354489e2816">235</a></sup> favors apoptosis, while autophagic digestion of baculoregulator repeat containing 2 (BIRC2, also known as cIAP1, a negative regulator of necroptosis)<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 236" title="He, W. et al. A JNK-mediated autophagy pathway that triggers c-IAP degradation and necroptosis for anticancer chemotherapy. Oncogene 33, 3004–3013 (2014)." href="/articles/s41422-019-0164-5#ref-CR236" id="ref-link-section-d141354489e2820">236</a></sup> facilitates the ignition of necroptosis.</p><p>In 2013, Beth Levine described “autosis” as a subtype of autophagy-dependent cell death induced by nutrient deprivation or by Tat-Beclin 1, an autophagy-inducing peptide fusing amino acids from BECN1 and HIV Tat protein.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 17" title="Liu, Y. et al. Autosis is a Na+,K+-ATPase-regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia-ischemia. Proc. Natl Acad. Sci. USA 110, 20364–20371 (2013)." href="/articles/s41422-019-0164-5#ref-CR17" id="ref-link-section-d141354489e2827">17</a></sup> Autosis is morphologically characterized by enhanced cell-substrate adherence, fragmented or vanished ER structure, focal swelling of the perinuclear space, and mild chromatin condensation.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 17" title="Liu, Y. et al. Autosis is a Na+,K+-ATPase-regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia-ischemia. Proc. Natl Acad. Sci. USA 110, 20364–20371 (2013)." href="/articles/s41422-019-0164-5#ref-CR17" id="ref-link-section-d141354489e2831">17</a></sup> At the molecular level, Tat-Beclin 1–induced autosis can be inhibited by blocking upstream Na<sup>+</sup>/K<sup>+</sup>-ATPase, a plasma pump linking ion homeostasis and ER stress.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 17" title="Liu, Y. et al. Autosis is a Na+,K+-ATPase-regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia-ischemia. Proc. Natl Acad. Sci. USA 110, 20364–20371 (2013)." href="/articles/s41422-019-0164-5#ref-CR17" id="ref-link-section-d141354489e2839">17</a></sup> Interestingly, iron overload stimulates Na<sup>+</sup>/K<sup>+</sup>-ATPase activity in the human erythrocyte membrane,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 237" title="Sousa, L. et al. Effects of iron overload on the activity of Na,K-ATPase and lipid profile of the human erythrocyte membrane. PLoS ONE 10, e0132852 (2015)." href="/articles/s41422-019-0164-5#ref-CR237" id="ref-link-section-d141354489e2848">237</a></sup> which may lead to ferroptosis. However, the exact relationship between autosis and ferroptosis remains to be determined.</p><p>Autophagy-dependent cell death probably plays a pathogenic role in neurotoxicity and hypoxia-ischemia-induced neuronal death,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Bialik, S., Dasari, S. K. & Kimchi, A. Autophagy-dependent cell death—where, how and why a cell eats itself to death. J. Cell. Sci. 
 https://doi.org/10.1242/jcs.215152
 
 (2018)." href="#ref-CR232" id="ref-link-section-d141354489e2855">232</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Denton, D. & Kumar, S. Autophagy-dependent cell death. Cell Death Differ. 
 https://doi.org/10.1038/s41418-018-0252-y
 
 (2018)." href="#ref-CR233" id="ref-link-section-d141354489e2855_1">233</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 234" title="Kriel, J. & Loos, B. The good, the bad and the autophagosome: exploring unanswered questions of autophagy-dependent cell death. Cell Death Differ. 
 https://doi.org/10.1038/s41418-018-0267-4
 
 (2019)." href="/articles/s41422-019-0164-5#ref-CR234" id="ref-link-section-d141354489e2858">234</a></sup> indicating that this type of RCD can possibly be targeted for neuroprotection.</p></div></div></section><section data-title="Alkaliptosis"><div class="c-article-section" id="Sec14-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec14">Alkaliptosis</h2><div class="c-article-section__content" id="Sec14-content"><p>Alkaliptosis is a novel type of RCD driven by intracellular alkalinisation.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 238" title="Song, X. et al. JTC801 induces pH-dependent death specifically in cancer cells and slows growth of tumors in mice. Gastroenterology 154, 1480–1493 (2018)." href="/articles/s41422-019-0164-5#ref-CR238" id="ref-link-section-d141354489e2870">238</a></sup> The word “alkaliptosis” was termed in 2018 by our group.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 238" title="Song, X. et al. JTC801 induces pH-dependent death specifically in cancer cells and slows growth of tumors in mice. Gastroenterology 154, 1480–1493 (2018)." href="/articles/s41422-019-0164-5#ref-CR238" id="ref-link-section-d141354489e2874">238</a></sup> A screen of small-molecule compound library targeting G-protein coupled receptors (GPCR) for cytotoxic activity on a human pancreatic cancer cell line led to the idenfication of JTC801. The latter is an opioid analgesic drug that efficiently kills a panel of human pancreas, kidney, prostate, skin, and brain cancer cell lines,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 238" title="Song, X. et al. JTC801 induces pH-dependent death specifically in cancer cells and slows growth of tumors in mice. Gastroenterology 154, 1480–1493 (2018)." href="/articles/s41422-019-0164-5#ref-CR238" id="ref-link-section-d141354489e2878">238</a></sup> and these cytotoxic effects were not related to apoptosis, necroptosis, autophagy, or ferroptosis, because genetically or pharmacologically blocking these forms of RCD failed to reverse JTC801-induced cell death.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 238" title="Song, X. et al. JTC801 induces pH-dependent death specifically in cancer cells and slows growth of tumors in mice. Gastroenterology 154, 1480–1493 (2018)." href="/articles/s41422-019-0164-5#ref-CR238" id="ref-link-section-d141354489e2882">238</a></sup> In contrast, the inhibition of intracellular alkalinization by N-acetyl cysteine, N-acetyl alanine acid, and acidic culture media blocked JTC801-induced cell death.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 238" title="Song, X. et al. JTC801 induces pH-dependent death specifically in cancer cells and slows growth of tumors in mice. Gastroenterology 154, 1480–1493 (2018)." href="/articles/s41422-019-0164-5#ref-CR238" id="ref-link-section-d141354489e2886">238</a></sup> At the molecular levels, alkaliptosis requires inhibitor of nuclear factor kappa B kinase subunit beta (IKBKB, also known as IKKβ)-NF-κB pathway-dependent downregulation of carbonic anhydrase 9 (CA9), an enzyme participating in pH regulation (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41422-019-0164-5#Fig3">3i</a>). Opioid-related nociceptin receptor 1 (OPRL1), the target that accounts for the analgesic activity of JTC801, is dispensable for alkaliptosis.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 238" title="Song, X. et al. JTC801 induces pH-dependent death specifically in cancer cells and slows growth of tumors in mice. Gastroenterology 154, 1480–1493 (2018)." href="/articles/s41422-019-0164-5#ref-CR238" id="ref-link-section-d141354489e2894">238</a></sup> Of note, JTC801 has also been reported to induce apoptosis in human osteosarcoma cells,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 239" title="Zheng, C. J., Yang, L. L., Liu, J. & Zhong, L. JTC-801 exerts anti-proliferative effects in human osteosarcoma cells by inducing apoptosis. J. Recept. Signal. Transduct. Res. 38, 133–140 (2018)." href="/articles/s41422-019-0164-5#ref-CR239" id="ref-link-section-d141354489e2898">239</a></sup> suggesting that the type of RCD triggered by JTC801 depends on the cellular context.</p><p>It should be noted that the pathological significance of alkaliptosis in human disease remains fully elusive although metabolic alkalosis is a unique acid-base disorder with kidney or lung injury.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 240" title="Pochet, J. M., Laterre, P. F., Jadoul, M. & Devuyst, O. Metabolic alkalosis in the intensive care unit. Acta Clin. Belg. 56, 2–9 (2001)." href="/articles/s41422-019-0164-5#ref-CR240" id="ref-link-section-d141354489e2905">240</a></sup> The significance of the core effector molecules of alkaliptosis also remains unclear.</p></div></div></section><section data-title="Oxeiptosis"><div class="c-article-section" id="Sec15-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec15">Oxeiptosis</h2><div class="c-article-section__content" id="Sec15-content"><p>Oxeiptosis is a novel oxygen radical-induced caspase-independent RCD driven by the activation of the KEAP1-PGAM5-AIFM1 pathway (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41422-019-0164-5#Fig3">3j</a>).<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 241" title="Holze, C. et al. Oxeiptosis, a ROS-induced caspase-independent apoptosis-like cell-death pathway. Nat. Immunol. 19, 130–140 (2018)." href="/articles/s41422-019-0164-5#ref-CR241" id="ref-link-section-d141354489e2921">241</a></sup> This term was introduced in 2018 by Andreas Pichlmair’s lab in a study reporting on the response of mice to ozone and that of cultured fibroblasts and epithelial cells to hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>).<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 241" title="Holze, C. et al. Oxeiptosis, a ROS-induced caspase-independent apoptosis-like cell-death pathway. Nat. Immunol. 19, 130–140 (2018)." href="/articles/s41422-019-0164-5#ref-CR241" id="ref-link-section-d141354489e2929">241</a></sup> Ozone- or H<sub>2</sub>O<sub>2</sub>-induced oxeiptosis is independent of apoptotic or pyroptotic caspases, necroptosis, autophagy, and ferroptosis.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 241" title="Holze, C. et al. Oxeiptosis, a ROS-induced caspase-independent apoptosis-like cell-death pathway. Nat. Immunol. 19, 130–140 (2018)." href="/articles/s41422-019-0164-5#ref-CR241" id="ref-link-section-d141354489e2938">241</a></sup> The KEAP1-NFE2L2 pathway has been known to mediate cytoprotective responses to oxidative injury.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 241" title="Holze, C. et al. Oxeiptosis, a ROS-induced caspase-independent apoptosis-like cell-death pathway. Nat. Immunol. 19, 130–140 (2018)." href="/articles/s41422-019-0164-5#ref-CR241" id="ref-link-section-d141354489e2942">241</a></sup> However, hyperactivated KEAP1 can mediate H<sub>2</sub>O<sub>2</sub>-induced oxeiptosis in an NFE2L2-independent manner,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 241" title="Holze, C. et al. Oxeiptosis, a ROS-induced caspase-independent apoptosis-like cell-death pathway. Nat. Immunol. 19, 130–140 (2018)." href="/articles/s41422-019-0164-5#ref-CR241" id="ref-link-section-d141354489e2951">241</a></sup> through a pathway that involves KEAP1 interaction partner PGAM5, a mitochondrial serine-threonine phosphatase that dephosphorylates AIFM1 at Ser116.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 241" title="Holze, C. et al. Oxeiptosis, a ROS-induced caspase-independent apoptosis-like cell-death pathway. Nat. Immunol. 19, 130–140 (2018)." href="/articles/s41422-019-0164-5#ref-CR241" id="ref-link-section-d141354489e2955">241</a></sup> Unlike AIFM1-mediated caspase-independent apoptosis and parthanatos, dephosphorylated AIFM1-mediated oxeiptosis does not require the translocation of AIFM1 from mitochondria to the nucleus.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 241" title="Holze, C. et al. Oxeiptosis, a ROS-induced caspase-independent apoptosis-like cell-death pathway. Nat. Immunol. 19, 130–140 (2018)." href="/articles/s41422-019-0164-5#ref-CR241" id="ref-link-section-d141354489e2959">241</a></sup> In vivo, <i>Pgam5</i><sup><i>–/–</i></sup> mice are more sensitive to inflammation and injury following ozone treatment or viral infection, indicating that oxeiptosis may suppress inflammation.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 241" title="Holze, C. et al. Oxeiptosis, a ROS-induced caspase-independent apoptosis-like cell-death pathway. Nat. Immunol. 19, 130–140 (2018)." href="/articles/s41422-019-0164-5#ref-CR241" id="ref-link-section-d141354489e2969">241</a></sup> However, it remains an open conundrum how H<sub>2</sub>O<sub>2</sub> may induce so many different cell death modalities including oxeiptosis,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 241" title="Holze, C. et al. Oxeiptosis, a ROS-induced caspase-independent apoptosis-like cell-death pathway. Nat. Immunol. 19, 130–140 (2018)." href="/articles/s41422-019-0164-5#ref-CR241" id="ref-link-section-d141354489e2978">241</a></sup> apoptosis,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 242" title="Saito, Y. et al. Turning point in apoptosis/necrosis induced by hydrogen peroxide. Free. Radic. Res. 40, 619–630 (2006)." href="/articles/s41422-019-0164-5#ref-CR242" id="ref-link-section-d141354489e2982">242</a></sup> necrosis,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 242" title="Saito, Y. et al. Turning point in apoptosis/necrosis induced by hydrogen peroxide. Free. Radic. Res. 40, 619–630 (2006)." href="/articles/s41422-019-0164-5#ref-CR242" id="ref-link-section-d141354489e2986">242</a></sup> and ferroptosis.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 243" title="Ingold, I. et al. Selenium Utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis. Cell 172, 409–422 e421 (2018)." href="/articles/s41422-019-0164-5#ref-CR243" id="ref-link-section-d141354489e2990">243</a></sup> Understanding the location- and modification-dependent role of AIFM1 may help us to distinguish these different types of RCD. The role of oxeiptosis in pathological cell death in human diseases also remains largely unknown.</p></div></div></section><section data-title="Immunological consequences of cell death"><div class="c-article-section" id="Sec16-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec16">Immunological consequences of cell death</h2><div class="c-article-section__content" id="Sec16-content"><p>Cell death induced by stimuli may occur in a way that the immune system is alerted, triggering immunity against dead-cell antigens. This “immunogenic cell death” (ICD), a term coined in 2005,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 244" title="Casares, N. et al. Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J. Exp. Med. 202, 1691–1701 (2005)." href="/articles/s41422-019-0164-5#ref-CR244" id="ref-link-section-d141354489e3002">244</a></sup> contrasts with silent efferocytosis, in which dying and dead cells are cleared by phagocytosis without any inflammatory or immune reaction, as well as with tolerogenic cell death (TCD) that actively inhibits immune responses.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 245" title="Green, D. R., Ferguson, T., Zitvogel, L. & Kroemer, G. Immunogenic and tolerogenic cell death. Nat. Rev. Immunol. 9, 353–363 (2009)." href="/articles/s41422-019-0164-5#ref-CR245" id="ref-link-section-d141354489e3006">245</a></sup> Although apoptosis has generally been considered as a TCD, accumulating evidence suggests that apoptosis can be an ICD when induced under certain conditions.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 246" title="Obeid, M. et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat. Med. 13, 54–61 (2007)." href="/articles/s41422-019-0164-5#ref-CR246" id="ref-link-section-d141354489e3010">246</a></sup> An acute or chronic inflammatory response elicited by dying cells not only promotes tissue regeneration and limits infection, but may also cause tissue injury and disease.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 247" title="Galluzzi, L., Buque, A., Kepp, O., Zitvogel, L. & Kroemer, G. Immunogenic cell death in cancer and infectious disease. Nat. Rev. Immunol. 17, 97–111 (2017)." href="/articles/s41422-019-0164-5#ref-CR247" id="ref-link-section-d141354489e3014">247</a></sup> Given the fundamental role of inflammation in a variety of human diseases, it is important to understand the key mediators and pathways that drive this response.</p><p>There is no doubt that the release of DAMPs by dead or dying cells is an important factor regulating the balance between ICD and TCD. The immune system can recognize two types of danger signals.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 248" title="Tang, D., Kang, R., Coyne, C. B., Zeh, H. J. & Lotze, M. T. PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol. Rev. 249, 158–175 (2012)." href="/articles/s41422-019-0164-5#ref-CR248" id="ref-link-section-d141354489e3021">248</a></sup> PAMPs from microbes are recognized by pattern recognition receptors (PRRs). Endogenous DAMPs, which act on the same PRRs as the PAMPs, can be proteins (e.g., HMGB1, histones, and transcription factor A, mitochondrial [TFAM]) and nonproteaceous entities (e.g., DNA, RNA, and extracellular ATP). The release of DAMPs is a hallmark of various types of cell death, although they may exhibit distinct expression profiles in response to different stimuli.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 249" title="Hou, W. et al. Strange attractors: DAMPs and autophagy link tumor cell death and immunity. Cell Death Dis. 4, e966 (2013)." href="/articles/s41422-019-0164-5#ref-CR249" id="ref-link-section-d141354489e3025">249</a></sup> DAMPs activate different PRRs, such as TLRs, advanced glycosylation end-product specific receptor (AGER, also known as RAGE), and DNA sensors (Box <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/articles/s41422-019-0164-5#Sec17">4</a>) that are widely expressed in leukocytes and other cell types.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 248" title="Tang, D., Kang, R., Coyne, C. B., Zeh, H. J. & Lotze, M. T. PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol. Rev. 249, 158–175 (2012)." href="/articles/s41422-019-0164-5#ref-CR248" id="ref-link-section-d141354489e3032">248</a></sup> A number of inflammation-related pathways, involving for example the RIPK1-NF-κB,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 250" title="Yatim, N. et al. RIPK1 and NF-kappaB signaling in dying cells determines cross-priming of CD8(+) T cells. Science 350, 328–334 (2015)." href="/articles/s41422-019-0164-5#ref-CR250" id="ref-link-section-d141354489e3036">250</a></sup> DNA-TMEM173 (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41422-019-0164-5#Fig4">4</a>),<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 251" title="Ahn, J., Xia, T., Rabasa Capote, A., Betancourt, D. & Barber, G. N. Extrinsic Phagocyte-dependent STING signaling dictates the immunogenicity of dying cells. Cancer Cell. 33, 862–873 e865 (2018)." href="/articles/s41422-019-0164-5#ref-CR251" id="ref-link-section-d141354489e3044">251</a></sup> and IL-17A–IL-17R<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 252" title="Ma, Y. et al. Contribution of IL-17-producing gamma delta T cells to the efficacy of anticancer chemotherapy. J. Exp. Med. 208, 491–503 (2011)." href="/articles/s41422-019-0164-5#ref-CR252" id="ref-link-section-d141354489e3048">252</a></sup> pathways have been documented to mediate the ICD-associated immune response. However, another study suggests that the immunogenicity of necroptotic cells does not correlate with the activation of the RIPK3-RIPK1-NF-κB pathway.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 253" title="Ren, J. et al. The RIP3-RIP1-NF-kappaB signaling axis is dispensable for necroptotic cells to elicit cross-priming of CD8(+) T cells. Cell. Mol. Immunol. 14, 639–642 (2017)." href="/articles/s41422-019-0164-5#ref-CR253" id="ref-link-section-d141354489e3052">253</a></sup></p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-4" data-title="Fig. 4"><figure><figcaption><b id="Fig4" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 4</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/articles/s41422-019-0164-5/figures/4" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41422-019-0164-5/MediaObjects/41422_2019_164_Fig4_HTML.png?as=webp"><img aria-describedby="Fig4" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41422-019-0164-5/MediaObjects/41422_2019_164_Fig4_HTML.png" alt="figure 4" loading="lazy" width="685" height="556"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-4-desc"><p>Central role of TMEM173 in inflammation, immunity, and cell death. TMEM173 can be activated by cytosolic DNA sensors (e.g., CGAS, DDX41, MRE11, and IFI16), or cell surface receptors (e.g., ALK and EGFR) in response to various DNAs from the pathogen and host. The activation of STING not only promotes inflammation and the immune response through TBK1-mediated transcription factor activation, but also ignites various cell death pathways, including apoptosis, necroptosis, pyroptosis, and lysosome-dependent cell death</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/articles/s41422-019-0164-5/figures/4" data-track-dest="link:Figure4 Full size image" aria-label="Full size image figure 4" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>The pathophysiological role of ICD has amply been documented in the context of chemotherapy-induced anticancer immune responses.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 244" title="Casares, N. et al. Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J. Exp. Med. 202, 1691–1701 (2005)." href="/articles/s41422-019-0164-5#ref-CR244" id="ref-link-section-d141354489e3075">244</a></sup> Several cytotoxic antineoplastics stimulate the immune system by stressing and killing cancer cells in a way that results in the exposure of DAMPs such as calreticulin<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 246" title="Obeid, M. et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat. Med. 13, 54–61 (2007)." href="/articles/s41422-019-0164-5#ref-CR246" id="ref-link-section-d141354489e3079">246</a></sup> at the surface or the release of DAMPs such as ATP,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 254" title="Michaud, M. et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 334, 1573–1577 (2011)." href="/articles/s41422-019-0164-5#ref-CR254" id="ref-link-section-d141354489e3083">254</a></sup> annexin A1,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 255" title="Vacchelli, E. et al. Chemotherapy-induced antitumor immunity requires formyl peptide receptor 1. Science 350, 972–978 (2015)." href="/articles/s41422-019-0164-5#ref-CR255" id="ref-link-section-d141354489e3087">255</a></sup> HMGB1,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 256" title="Apetoh, L. et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat. Med. 13, 1050–1059 (2007)." href="/articles/s41422-019-0164-5#ref-CR256" id="ref-link-section-d141354489e3091">256</a></sup> and TFAM<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 257" title="Yang, M. et al. TFAM is a novel mediator of immunogenic cancer cell death. Oncoimmunology 7, e1431086 (2018)." href="/articles/s41422-019-0164-5#ref-CR257" id="ref-link-section-d141354489e3096">257</a></sup> into the extracellular space. ICD may occur in the context of apoptosis and necroptosis, meaning that the immunological consequences are not tied to the cell death modality itself but rather to the exposure/release of DAMPs that may occur as a consequence of premortem stress responses.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 247" title="Galluzzi, L., Buque, A., Kepp, O., Zitvogel, L. & Kroemer, G. Immunogenic cell death in cancer and infectious disease. Nat. Rev. Immunol. 17, 97–111 (2017)." href="/articles/s41422-019-0164-5#ref-CR247" id="ref-link-section-d141354489e3100">247</a></sup> Thus, calreticulin exposure is tied to a partial endoplasmic reticulum stress response,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 246" title="Obeid, M. et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat. Med. 13, 54–61 (2007)." href="/articles/s41422-019-0164-5#ref-CR246" id="ref-link-section-d141354489e3104">246</a></sup> while ATP release occurs through an autophagy-dependent mechanism.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 254" title="Michaud, M. et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 334, 1573–1577 (2011)." href="/articles/s41422-019-0164-5#ref-CR254" id="ref-link-section-d141354489e3108">254</a></sup> ICD of malignant cells favors the cross-presentation of tumor-associated antigens by dendritic cells, resulting in the induction of cytotoxic T lymphocytes that then play an essential role in keeping tumors in check.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 247" title="Galluzzi, L., Buque, A., Kepp, O., Zitvogel, L. & Kroemer, G. Immunogenic cell death in cancer and infectious disease. Nat. Rev. Immunol. 17, 97–111 (2017)." href="/articles/s41422-019-0164-5#ref-CR247" id="ref-link-section-d141354489e3112">247</a></sup> In addition to cancer, ICD is also implicated in infectious disease.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 247" title="Galluzzi, L., Buque, A., Kepp, O., Zitvogel, L. & Kroemer, G. Immunogenic cell death in cancer and infectious disease. Nat. Rev. Immunol. 17, 97–111 (2017)." href="/articles/s41422-019-0164-5#ref-CR247" id="ref-link-section-d141354489e3116">247</a></sup></p><p>It is interesting to note that the redox status of DAMPs may affect their immune activity as this has been exemplified for HMGB1, a protein that is usually present in the nucleus yet can translocate to the cytoplasm and undergo cell death-associated release. Extracellular HMGB1 remarkably initiates, amplifies, and perpetuates the inflammatory response if it is nonoxidized.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 258" title="Kang, R. et al. HMGB1 in health and disease. Mol. Aspects. Med. 40, 1–116 (2014)." href="/articles/s41422-019-0164-5#ref-CR258" id="ref-link-section-d141354489e3122">258</a></sup> However, the oxidized form of HMGB1 favors the induction of immune tolerance in antigen-presenting cells<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 259" title="Kazama, H. et al. Induction of immunological tolerance by apoptotic cells requires caspase-dependent oxidation of high-mobility group box-1 protein. Immunity 29, 21–32 (2008)." href="/articles/s41422-019-0164-5#ref-CR259" id="ref-link-section-d141354489e3126">259</a></sup> and may also promote the expression of immune checkpoint molecules (such as CD274, also known as PD-L1) to limit anticancer immunity.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 260" title="Li, C. et al. PINK1 and PARK2 suppress pancreatic tumorigenesis through control of mitochondrial iron-mediated immunometabolism. Dev. Cell. 46, 441–455 e448 (2018)." href="/articles/s41422-019-0164-5#ref-CR260" id="ref-link-section-d141354489e3130">260</a></sup> The proteolytic cleavage or degradation of HMGB1 also limits its immunostimulatory activity under some conditions.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 261" title="Ito, T. et al. Proteolytic cleavage of high mobility group Box 1 protein by thrombin-thrombomodulin complexes. Arterioscler. Thromb. Vasc. Biol. 28, 1825–1830 (2008)." href="/articles/s41422-019-0164-5#ref-CR261" id="ref-link-section-d141354489e3134">261</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 262" title="Yu, H. et al. Role of high-mobility group Box 1 protein and poly(ADP-ribose) polymerase 1 degradation in Chlamydia trachomatis-induced cytopathicity. Infect. Immun. 78, 3288–3297 (2010)." href="/articles/s41422-019-0164-5#ref-CR262" id="ref-link-section-d141354489e3137">262</a></sup> Thus, HMGB1 may act as a tightly controlled universal DAMP that mediates both ICD and TCD depending on its abundance and oxidation status.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 263" title="Yu, Y., Tang, D. & Kang, R. Oxidative stress-mediated HMGB1 biology. Front. Physiol. 6, 93 (2015)." href="/articles/s41422-019-0164-5#ref-CR263" id="ref-link-section-d141354489e3141">263</a></sup></p><p>In spite of the wealth of information on the rules governing the immunological consequences of cell death, a systematic exploration of non-apoptotic RCD subroutines with respect to their immunogenicity is still elusive.</p><div class="c-article-box" data-expandable-box-container="true"><div class="c-article-box__container" data-expandable-box="true" aria-hidden="true" id="box-Sec17"><h3 class="c-article-box__container-title u-h3 js-expandable-title" id="Sec17">Box 4 DNA sensors in cell death</h3><div class="c-article-box__content"><p>The release of genomic or mitochondrial DNA into the cytoplasm or into the extracellular space is a hallmark of RCD.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 289" title="Choi, J. J., Reich, C. F. 3rd & Pisetsky, D. S. Release of DNA from dead and dying lymphocyte and monocyte cell lines in vitro. Scand. J. Immunol. 60, 159–166 (2004)." href="/articles/s41422-019-0164-5#ref-CR289" id="ref-link-section-d141354489e3155">289</a></sup> Emerging evidence has revealed that TMEM173 (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41422-019-0164-5#Fig4">4</a>), AIM2, and ZBP1 are major DNA-sensing pathways in the regulation of inflammatory and immune responses. TMEM173 is an endoplasmic reticulum protein and recognizes various DNA products from bacteria, viruses, and dead or dying host cells through both CGAS (also known as cGAS)-dependent and -independent pathways.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Chen, Q., Sun, L. & Chen, Z. J. Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat. Immunol. 17, 1142–1149 (2016)." href="#ref-CR290" id="ref-link-section-d141354489e3162">290</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Holm, C. K. et al. Influenza A virus targets a cGAS-independent STING pathway that controls enveloped RNA viruses. Nat. Commun. 7, 10680 (2016)." href="#ref-CR291" id="ref-link-section-d141354489e3162_1">291</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 292" title="Costa Franco, M. M. et al. Brucella abortus triggers a cGAS-independent STING pathway to induce host protection that involves guanylate-binding proteins and inflammasome activation. J. Immunol. 200, 607–622 (2018)." href="/articles/s41422-019-0164-5#ref-CR292" id="ref-link-section-d141354489e3165">292</a></sup> In addition, the activation of other cytosolic nucleic acid sensors (DDX41, MRE11, IFI16, and ZBP1)<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="DeFilippis, V. R., Alvarado, D., Sali, T., Rothenburg, S. & Fruh, K. Human cytomegalovirus induces the interferon response via the DNA sensor ZBP1. J. Virol. 84, 585–598 (2010)." href="#ref-CR293" id="ref-link-section-d141354489e3169">293</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Zhang, Z. et al. The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nat. Immunol. 12, 959–965 (2011)." href="#ref-CR294" id="ref-link-section-d141354489e3169_1">294</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Kondo, T. et al. DNA damage sensor MRE11 recognizes cytosolic double-stranded DNA and induces type I interferon by regulating STING trafficking. Proc. Natl Acad. Sci. USA 110, 2969–2974 (2013)." href="#ref-CR295" id="ref-link-section-d141354489e3169_2">295</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 296" title="Unterholzner, L. et al. IFI16 is an innate immune sensor for intracellular DNA. Nat. Immunol. 11, 997–1004 (2010)." href="/articles/s41422-019-0164-5#ref-CR296" id="ref-link-section-d141354489e3172">296</a></sup> as well as membrane receptors (ALK receptor tyrosine kinase [ALK] and epidermal growth factor receptor [EGFR])<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 297" title="Zeng, L. et al. ALK is a therapeutic target for lethal sepsis. Sci. Transl. Med. 
 https://doi.org/10.1126/scitranslmed.aan5689
 
 (2017)." href="/articles/s41422-019-0164-5#ref-CR297" id="ref-link-section-d141354489e3176">297</a></sup> can function as upstream signals to initiate TMEM173 activation in response to xenogenic DNA from pathogens or ectopic DNA from the host. Mechanistically, TMEM173 binds to TBK1 and then triggers the activation of transcription factors such as interferon regulatory factor 3 (IRF3), NF-κB, and signal transducer and activator of transcription 6 (STAT6), thus promoting type I IFN and cytokine production and the consequent inflammation and immune responses.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 298" title="Barber, G. N. STING: infection, inflammation and cancer. Nat. Rev. Immunol. 15, 760–770 (2015)." href="/articles/s41422-019-0164-5#ref-CR298" id="ref-link-section-d141354489e3181">298</a></sup> TMEM173 knockout mice are resistant to lethal infection,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 297" title="Zeng, L. et al. ALK is a therapeutic target for lethal sepsis. Sci. Transl. Med. 
 https://doi.org/10.1126/scitranslmed.aan5689
 
 (2017)." href="/articles/s41422-019-0164-5#ref-CR297" id="ref-link-section-d141354489e3185">297</a></sup> sterile inflammation,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 299" title="Ahn, J., Son, S., Oliveira, S. C. & Barber, G. N. STING-dependent signaling underlies IL-10 controlled inflammatory colitis. Cell Rep 21, 3873–3884 (2017)." href="/articles/s41422-019-0164-5#ref-CR299" id="ref-link-section-d141354489e3189">299</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 300" title="Ahn, J., Gutman, D., Saijo, S. & Barber, G. N. STING manifests self DNA-dependent inflammatory disease. Proc. Natl Acad. Sci. USA 109, 19386–19391 (2012)." href="/articles/s41422-019-0164-5#ref-CR300" id="ref-link-section-d141354489e3192">300</a></sup> and inflammation-driven carcinogenesis and tumor metastasis,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 301" title="Bakhoum, S. F. et al. Chromosomal instability drives metastasis through a cytosolic DNA response. Nature 553, 467–472 (2018)." href="/articles/s41422-019-0164-5#ref-CR301" id="ref-link-section-d141354489e3196">301</a></sup> as well as to inflammation-driven age-associated diseases.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 302" title="Sliter, D. A. et al. Parkin and PINK1 mitigate STING-induced inflammation. Nature 561, 258–262 (2018)." href="/articles/s41422-019-0164-5#ref-CR302" id="ref-link-section-d141354489e3200">302</a></sup> At least in some settings, the excessive activation of TMEM173 in T lymphocytes and myeloid cells can cause apoptosis, necroptosis, pyroptosis or LCD, although the role of TBK1 in these settings remains unidentified.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Larkin, B. et al. Cutting edge: activation of STING in T cells induces type I IFN responses and cell death. J. Immunol. 199, 397–402 (2017)." href="#ref-CR303" id="ref-link-section-d141354489e3204">303</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Gulen, M. F. et al. Signalling strength determines proapoptotic functions of STING. Nat. Commun. 8, 427 (2017)." href="#ref-CR304" id="ref-link-section-d141354489e3204_1">304</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 305" title="Gaidt, M. M. et al. TheDNA inflammasome in human myeloid cells is initiated by a STING-cell death program upstream of NLRP3. Cell 171, 1110–1124 e1118 (2017)." href="/articles/s41422-019-0164-5#ref-CR305" id="ref-link-section-d141354489e3207">305</a></sup> Moreover, TMEM173 contributes to the ICD-mediated antitumor immune response.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 251" title="Ahn, J., Xia, T., Rabasa Capote, A., Betancourt, D. & Barber, G. N. Extrinsic Phagocyte-dependent STING signaling dictates the immunogenicity of dying cells. Cancer Cell. 33, 862–873 e865 (2018)." href="/articles/s41422-019-0164-5#ref-CR251" id="ref-link-section-d141354489e3212">251</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 306" title="Cunha, L. D. et al. LC3-associated phagocytosis in myeloid cells promotes tumor immune tolerance. Cell 
 https://doi.org/10.1016/j.cell.2018.08.061
 
 (2018)." href="/articles/s41422-019-0164-5#ref-CR306" id="ref-link-section-d141354489e3215">306</a></sup> These observations point to TMEM173 as an important DNA sensor that acts both in immune and non-immune cells.</p><p>AIM2 was originally identified as a receptor of pathogen double-stranded DNA from <i>Francisella</i>, <i>Listeria</i>, <i>Mycobacterium</i>, mouse cytomegalovirus, vaccinia virus, <i>Aspergillus</i>, and <i>Plasmodium</i> species. AIM2 may also detect cytoplasmic or nuclear self-DNA from necrotic cells for inflammation activation and pyroptosis, thus contributing to autoimmune and inflammatory diseases such as dermatitis, arthritis, pancreatitis and radiation-induced inflammation.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 307" title="Man, S. M., Karki, R. & Kanneganti, T. D. AIM2 inflammasome in infection, cancer, and autoimmunity: role in DNA sensing, inflammation, and innate immunity. Eur. J. Immunol. 46, 269–280 (2016)." href="/articles/s41422-019-0164-5#ref-CR307" id="ref-link-section-d141354489e3238">307</a></sup> AIM2 may promote or limit tumor development in a cancer type-dependent fashion.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 260" title="Li, C. et al. PINK1 and PARK2 suppress pancreatic tumorigenesis through control of mitochondrial iron-mediated immunometabolism. Dev. Cell. 46, 441–455 e448 (2018)." href="/articles/s41422-019-0164-5#ref-CR260" id="ref-link-section-d141354489e3242">260</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 308" title="Wilson, J. E. et al. Inflammasome-independent role of AIM2 in suppressing colon tumorigenesis via DNA-PK and Akt. Nat. Med. 21, 906–913 (2015)." href="/articles/s41422-019-0164-5#ref-CR308" id="ref-link-section-d141354489e3245">308</a></sup></p><p>ZBP1 acts as a cytosolic sensor for viral DNA or RNA and stimulates inflammatory and immune response through the activation of RIPK3-MLKL–dependent necroptosis, as well as the TMEM173 pathway.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 309" title="Kuriakose, T. & Kanneganti, T. D. ZBP1: innate sensor regulating cell death and inflammation. Trends Immunol. 39, 123–134 (2018)." href="/articles/s41422-019-0164-5#ref-CR309" id="ref-link-section-d141354489e3251">309</a></sup> Nonetheless, the role of ZBP1 in tumor immunity remains unclear.</p></div></div></div></div></div></section><section data-title="Conclusions and perspectives"><div class="c-article-section" id="Sec18-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec18">Conclusions and perspectives</h2><div class="c-article-section__content" id="Sec18-content"><p>RCD occurs through a variety of subroutines that cause cells to be dismantled in different ways, hence producing distinct morphological changes and immunological consequences. In spite of this “biodiversity,” the evolutionary relationship between distinct RCD pathways remains unknown. Oxidative stress can lead to various types of RCD, while the sources of ROS as well as the efficacy of antioxidant defences are context-dependent. It will be important to assemble a standard panel of biomarkers and functional tests including genetic and pharmacological inhibition studies to accurately distinguish between different forms of RCD that may occur in a “pure” form or in “mixed” variants, in which distinct lethal subroutines come into action in a parallel and sometimes hierarchized fashion. It is well known that the suppression of apoptosis by caspase inhibition may reveal necroptotic pathways, and similar backup systems might come into action when other cell death modalities are inhibited. It is plausible that RCD does not only play a housekeeping role in maintaining organismal homeostasis, and that it may play a major role in unwarranted cellular demise. The release of DAMPs during RCD provides potent signals to stimulate local inflammatory or systemic immune responses. The development of novel drugs for selectively intercepting (or, in sharp contrast, activating) the RCD pathway holds great promise for preventing and treating human diseases in which cell loss must be avoided (or when the elimination of malignant cells is a therapeutic goal). More research on RCD is needed to define the interplay between distinct cell death signaling pathways, identify unique molecular effectors for each type of RCD, and evaluate pro-survival or reprogramming mechanisms against RCD. In addition, more research is needed to define the critical point of no return of each RCD subroutine and to investigate the role of excessive or deficient RCD in human disease.</p></div></div></section> </div> <div class="u-mt-32"> <div id="MagazineFulltextArticleBodySuffix"><section aria-labelledby="Bib1" data-title="References"><div class="c-article-section" id="Bib1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Bib1">References</h2><div class="c-article-section__content" id="Bib1-content"><div data-container-section="references"><ol class="c-article-references" data-track-component="outbound reference" data-track-context="references section"><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="1."><p class="c-article-references__text" id="ref-CR1">Kerr, J. F., Wyllie, A. H. & Currie, A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. <i>Br. J. Cancer</i> <b>26</b>, 239–257 (1972).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/bjc.1972.33" data-track-item_id="10.1038/bjc.1972.33" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fbjc.1972.33" aria-label="Article reference 1" data-doi="10.1038/bjc.1972.33">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:STN:280:DyaE3s%2FgsFSksw%3D%3D" aria-label="CAS reference 1">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4561027" aria-label="PubMed reference 1">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2008650" aria-label="PubMed Central reference 1">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 1" href="http://scholar.google.com/scholar_lookup?&title=Apoptosis%3A%20a%20basic%20biological%20phenomenon%20with%20wide-ranging%20implications%20in%20tissue%20kinetics&journal=Br.%20J.%20Cancer&doi=10.1038%2Fbjc.1972.33&volume=26&pages=239-257&publication_year=1972&author=Kerr%2CJF&author=Wyllie%2CAH&author=Currie%2CAR"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="2."><p class="c-article-references__text" id="ref-CR2">Singh, R., Letai, A. & Sarosiek, K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. <i>Nat. Rev. Mol. Cell Biol.</i> <b>20</b>, 175–193 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41580-018-0089-8" data-track-item_id="10.1038/s41580-018-0089-8" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41580-018-0089-8" aria-label="Article reference 2" data-doi="10.1038/s41580-018-0089-8">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1MXmtVOrsb0%3D" aria-label="CAS reference 2">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30655609" aria-label="PubMed reference 2">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7325303" aria-label="PubMed Central reference 2">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 2" href="http://scholar.google.com/scholar_lookup?&title=Regulation%20of%20apoptosis%20in%20health%20and%20disease%3A%20the%20balancing%20act%20of%20BCL-2%20family%20proteins&journal=Nat.%20Rev.%20Mol.%20Cell%20Biol.&doi=10.1038%2Fs41580-018-0089-8&volume=20&pages=175-193&publication_year=2019&author=Singh%2CR&author=Letai%2CA&author=Sarosiek%2CK"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="3."><p class="c-article-references__text" id="ref-CR3">Hengartner, M. O., Ellis, R. E. & Horvitz, H. R. Caenorhabditis elegans gene ced-9 protects cells from programmed cell death. <i>Nature</i> <b>356</b>, 494–499 (1992).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/356494a0" data-track-item_id="10.1038/356494a0" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2F356494a0" aria-label="Article reference 3" data-doi="10.1038/356494a0">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DyaK38XisV2rtLs%3D" aria-label="CAS reference 3">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1560823" aria-label="PubMed reference 3">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 3" href="http://scholar.google.com/scholar_lookup?&title=Caenorhabditis%20elegans%20gene%20ced-9%20protects%20cells%20from%20programmed%20cell%20death&journal=Nature&doi=10.1038%2F356494a0&volume=356&pages=494-499&publication_year=1992&author=Hengartner%2CMO&author=Ellis%2CRE&author=Horvitz%2CHR"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="4."><p class="c-article-references__text" id="ref-CR4">Hengartner, M. O. & Horvitz, H. R. C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2. <i>Cell</i> <b>76</b>, 665–676 (1994).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/0092-8674(94)90506-1" data-track-item_id="10.1016/0092-8674(94)90506-1" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2F0092-8674%2894%2990506-1" aria-label="Article reference 4" data-doi="10.1016/0092-8674(94)90506-1">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DyaK2cXis1altbs%3D" aria-label="CAS reference 4">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7907274" aria-label="PubMed reference 4">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 4" href="http://scholar.google.com/scholar_lookup?&title=C.%20elegans%20cell%20survival%20gene%20ced-9%20encodes%20a%20functional%20homolog%20of%20the%20mammalian%20proto-oncogene%20bcl-2&journal=Cell&doi=10.1016%2F0092-8674%2894%2990506-1&volume=76&pages=665-676&publication_year=1994&author=Hengartner%2CMO&author=Horvitz%2CHR"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="5."><p class="c-article-references__text" id="ref-CR5">Yuan, J. & Horvitz, H. R. The Caenorhabditis elegans cell death gene ced-4 encodes a novel protein and is expressed during the period of extensive programmed cell death. <i>Development</i> <b>116</b>, 309–320 (1992).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DyaK3sXltFShsbc%3D" aria-label="CAS reference 5">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1286611" aria-label="PubMed reference 5">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 5" href="http://scholar.google.com/scholar_lookup?&title=The%20Caenorhabditis%20elegans%20cell%20death%20gene%20ced-4%20encodes%20a%20novel%20protein%20and%20is%20expressed%20during%20the%20period%20of%20extensive%20programmed%20cell%20death&journal=Development&volume=116&pages=309-320&publication_year=1992&author=Yuan%2CJ&author=Horvitz%2CHR"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="6."><p class="c-article-references__text" id="ref-CR6">Schulze-Osthoff, K., Ferrari, D., Los, M., Wesselborg, S. & Peter, M. E. Apoptosis signaling by death receptors. <i>Eur. J. Biochem.</i> <b>254</b>, 439–459 (1998).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1046/j.1432-1327.1998.2540439.x" data-track-item_id="10.1046/j.1432-1327.1998.2540439.x" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1046%2Fj.1432-1327.1998.2540439.x" aria-label="Article reference 6" data-doi="10.1046/j.1432-1327.1998.2540439.x">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DyaK1cXktlertrw%3D" aria-label="CAS reference 6">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9688254" aria-label="PubMed reference 6">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 6" href="http://scholar.google.com/scholar_lookup?&title=Apoptosis%20signaling%20by%20death%20receptors&journal=Eur.%20J.%20Biochem.&doi=10.1046%2Fj.1432-1327.1998.2540439.x&volume=254&pages=439-459&publication_year=1998&author=Schulze-Osthoff%2CK&author=Ferrari%2CD&author=Los%2CM&author=Wesselborg%2CS&author=Peter%2CME"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="7."><p class="c-article-references__text" id="ref-CR7">Bredesen, D. E., Mehlen, P. & Rabizadeh, S. Apoptosis and dependence receptors: a molecular basis for cellular addiction. <i>Physiol. Rev.</i> <b>84</b>, 411–430 (2004).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1152/physrev.00027.2003" data-track-item_id="10.1152/physrev.00027.2003" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1152%2Fphysrev.00027.2003" aria-label="Article reference 7" data-doi="10.1152/physrev.00027.2003">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD2cXjtlCktLs%3D" aria-label="CAS reference 7">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15044679" aria-label="PubMed reference 7">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 7" href="http://scholar.google.com/scholar_lookup?&title=Apoptosis%20and%20dependence%20receptors%3A%20a%20molecular%20basis%20for%20cellular%20addiction&journal=Physiol.%20Rev.&doi=10.1152%2Fphysrev.00027.2003&volume=84&pages=411-430&publication_year=2004&author=Bredesen%2CDE&author=Mehlen%2CP&author=Rabizadeh%2CS"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="8."><p class="c-article-references__text" id="ref-CR8">Chipuk, J. E., Bouchier-Hayes, L. & Green, D. R. Mitochondrial outer membrane permeabilization during apoptosis: the innocent bystander scenario. <i>Cell Death Differ.</i> <b>13</b>, 1396–1402 (2006).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/sj.cdd.4401963" data-track-item_id="10.1038/sj.cdd.4401963" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fsj.cdd.4401963" aria-label="Article reference 8" data-doi="10.1038/sj.cdd.4401963">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD28XmvFaitLo%3D" aria-label="CAS reference 8">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16710362" aria-label="PubMed reference 8">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 8" href="http://scholar.google.com/scholar_lookup?&title=Mitochondrial%20outer%20membrane%20permeabilization%20during%20apoptosis%3A%20the%20innocent%20bystander%20scenario&journal=Cell%20Death%20Differ.&doi=10.1038%2Fsj.cdd.4401963&volume=13&pages=1396-1402&publication_year=2006&author=Chipuk%2CJE&author=Bouchier-Hayes%2CL&author=Green%2CDR"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="9."><p class="c-article-references__text" id="ref-CR9">Czabotar, P. E., Lessene, G., Strasser, A. & Adams, J. M. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. <i>Nat. Rev. Mol. Cell Biol.</i> <b>15</b>, 49–63 (2014).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nrm3722" data-track-item_id="10.1038/nrm3722" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnrm3722" aria-label="Article reference 9" data-doi="10.1038/nrm3722">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3sXhvFOjsbvI" aria-label="CAS reference 9">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=24355989" aria-label="PubMed reference 9">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 9" href="http://scholar.google.com/scholar_lookup?&title=Control%20of%20apoptosis%20by%20the%20BCL-2%20protein%20family%3A%20implications%20for%20physiology%20and%20therapy&journal=Nat.%20Rev.%20Mol.%20Cell%20Biol.&doi=10.1038%2Fnrm3722&volume=15&pages=49-63&publication_year=2014&author=Czabotar%2CPE&author=Lessene%2CG&author=Strasser%2CA&author=Adams%2CJM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="10."><p class="c-article-references__text" id="ref-CR10">McIlwain, D. R., Berger, T. & Mak, T. W. Caspase functions in cell death and disease. <i>Cold Spring Harb. Perspect. Biol</i>. <a href="https://doi.org/10.1101/cshperspect.a026716" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1101/cshperspect.a026716">https://doi.org/10.1101/cshperspect.a026716</a> (2015).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1101/cshperspect.a026716" data-track-item_id="10.1101/cshperspect.a026716" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1101%2Fcshperspect.a026716" aria-label="Article reference 10" data-doi="10.1101/cshperspect.a026716">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25833847" aria-label="PubMed reference 10">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4382736" aria-label="PubMed Central reference 10">PubMed Central</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28XhsFOisLnK" aria-label="CAS reference 10">CAS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 10" href="http://scholar.google.com/scholar_lookup?&title=Caspase%20Functions%20in%20Cell%20Death%20and%20Disease%3A%20Figure%201&journal=Cold%20Spring%20Harbor%20Perspectives%20in%20Biology&doi=10.1101%2Fcshperspect.a026716&volume=7&issue=4&publication_year=2015&author=McIlwain%2CDavid%20R.&author=Berger%2CThorsten&author=Mak%2CTak%20W."> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="11."><p class="c-article-references__text" id="ref-CR11">Galluzzi, L., Lopez-Soto, A., Kumar, S. & Kroemer, G. Caspases connect cell-death signaling to organismal homeostasis. <i>Immunity</i> <b>44</b>, 221–231 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.immuni.2016.01.020" data-track-item_id="10.1016/j.immuni.2016.01.020" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.immuni.2016.01.020" aria-label="Article reference 11" data-doi="10.1016/j.immuni.2016.01.020">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28XjtVCmsLw%3D" aria-label="CAS reference 11">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26885855" aria-label="PubMed reference 11">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 11" href="http://scholar.google.com/scholar_lookup?&title=Caspases%20connect%20cell-death%20signaling%20to%20organismal%20homeostasis&journal=Immunity&doi=10.1016%2Fj.immuni.2016.01.020&volume=44&pages=221-231&publication_year=2016&author=Galluzzi%2CL&author=Lopez-Soto%2CA&author=Kumar%2CS&author=Kroemer%2CG"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="12."><p class="c-article-references__text" id="ref-CR12">Linkermann, A., Stockwell, B. R., Krautwald, S. & Anders, H. J. Regulated cell death and inflammation: an auto-amplification loop causes organ failure. <i>Nat. Rev. Immunol.</i> <b>14</b>, 759–767 (2014).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nri3743" data-track-item_id="10.1038/nri3743" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnri3743" aria-label="Article reference 12" data-doi="10.1038/nri3743">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2cXhslKmu73J" aria-label="CAS reference 12">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25324125" aria-label="PubMed reference 12">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 12" href="http://scholar.google.com/scholar_lookup?&title=Regulated%20cell%20death%20and%20inflammation%3A%20an%20auto-amplification%20loop%20causes%20organ%20failure&journal=Nat.%20Rev.%20Immunol.&doi=10.1038%2Fnri3743&volume=14&pages=759-767&publication_year=2014&author=Linkermann%2CA&author=Stockwell%2CBR&author=Krautwald%2CS&author=Anders%2CHJ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="13."><p class="c-article-references__text" id="ref-CR13">Vanden Berghe, T., Linkermann, A., Jouan-Lanhouet, S., Walczak, H. & Vandenabeele, P. Regulated necrosis: the expanding network of non-apoptotic cell death pathways. <i>Nat. Rev. Mol. Cell Biol.</i> <b>15</b>, 135–147 (2014).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nrm3737" data-track-item_id="10.1038/nrm3737" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnrm3737" aria-label="Article reference 13" data-doi="10.1038/nrm3737">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2cXhtFOjt7w%3D" aria-label="CAS reference 13">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=24452471" aria-label="PubMed reference 13">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 13" href="http://scholar.google.com/scholar_lookup?&title=Regulated%20necrosis%3A%20the%20expanding%20network%20of%20non-apoptotic%20cell%20death%20pathways&journal=Nat.%20Rev.%20Mol.%20Cell%20Biol.&doi=10.1038%2Fnrm3737&volume=15&pages=135-147&publication_year=2014&author=Vanden%20Berghe%2CT&author=Linkermann%2CA&author=Jouan-Lanhouet%2CS&author=Walczak%2CH&author=Vandenabeele%2CP"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="14."><p class="c-article-references__text" id="ref-CR14">Schweichel, J. U. & Merker, H. J. The morphology of various types of cell death in prenatal tissues. <i>Teratology</i> <b>7</b>, 253–266 (1973).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1002/tera.1420070306" data-track-item_id="10.1002/tera.1420070306" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1002%2Ftera.1420070306" aria-label="Article reference 14" data-doi="10.1002/tera.1420070306">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:STN:280:DyaE287jtVCksA%3D%3D" aria-label="CAS reference 14">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4807128" aria-label="PubMed reference 14">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 14" href="http://scholar.google.com/scholar_lookup?&title=The%20morphology%20of%20various%20types%20of%20cell%20death%20in%20prenatal%20tissues&journal=Teratology&doi=10.1002%2Ftera.1420070306&volume=7&pages=253-266&publication_year=1973&author=Schweichel%2CJU&author=Merker%2CHJ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="15."><p class="c-article-references__text" id="ref-CR15">Kerr, J. F. Shrinkage necrosis: a distinct mode of cellular death. <i>J. Pathol.</i> <b>105</b>, 13–20 (1971).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1002/path.1711050103" data-track-item_id="10.1002/path.1711050103" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1002%2Fpath.1711050103" aria-label="Article reference 15" data-doi="10.1002/path.1711050103">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:STN:280:DyaE38%2FmvVyhug%3D%3D" aria-label="CAS reference 15">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4108566" aria-label="PubMed reference 15">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 15" href="http://scholar.google.com/scholar_lookup?&title=Shrinkage%20necrosis%3A%20a%20distinct%20mode%20of%20cellular%20death&journal=J.%20Pathol.&doi=10.1002%2Fpath.1711050103&volume=105&pages=13-20&publication_year=1971&author=Kerr%2CJF"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="16."><p class="c-article-references__text" id="ref-CR16">Kroemer, G., Marino, G. & Levine, B. Autophagy and the integrated stress response. <i>Mol. Cell</i> <b>40</b>, 280–293 (2010).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.molcel.2010.09.023" data-track-item_id="10.1016/j.molcel.2010.09.023" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.molcel.2010.09.023" aria-label="Article reference 16" data-doi="10.1016/j.molcel.2010.09.023">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3cXhtlCjtr%2FM" aria-label="CAS reference 16">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20965422" aria-label="PubMed reference 16">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3127250" aria-label="PubMed Central reference 16">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 16" href="http://scholar.google.com/scholar_lookup?&title=Autophagy%20and%20the%20integrated%20stress%20response&journal=Mol.%20Cell&doi=10.1016%2Fj.molcel.2010.09.023&volume=40&pages=280-293&publication_year=2010&author=Kroemer%2CG&author=Marino%2CG&author=Levine%2CB"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="17."><p class="c-article-references__text" id="ref-CR17">Liu, Y. et al. Autosis is a Na+,K+-ATPase-regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia-ischemia. <i>Proc. Natl Acad. Sci. USA</i> <b>110</b>, 20364–20371 (2013).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1073/pnas.1319661110" data-track-item_id="10.1073/pnas.1319661110" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1073%2Fpnas.1319661110" aria-label="Article reference 17" data-doi="10.1073/pnas.1319661110">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2cXnsVKmsA%3D%3D" aria-label="CAS reference 17">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=24277826" aria-label="PubMed reference 17">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3870705" aria-label="PubMed Central reference 17">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 17" href="http://scholar.google.com/scholar_lookup?&title=Autosis%20is%20a%20Na%2B%2CK%2B-ATPase-regulated%20form%20of%20cell%20death%20triggered%20by%20autophagy-inducing%20peptides%2C%20starvation%2C%20and%20hypoxia-ischemia&journal=Proc.%20Natl%20Acad.%20Sci.%20USA&doi=10.1073%2Fpnas.1319661110&volume=110&pages=20364-20371&publication_year=2013&author=Liu%2CY"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="18."><p class="c-article-references__text" id="ref-CR18">Nassour, J. et al. Autophagic cell death restricts chromosomal instability during replicative crisis. <i>Nature</i> <a href="https://doi.org/10.1038/s41586-019-0885-0" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1038/s41586-019-0885-0">https://doi.org/10.1038/s41586-019-0885-0</a> (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41586-019-0885-0" data-track-item_id="10.1038/s41586-019-0885-0" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41586-019-0885-0" aria-label="Article reference 18" data-doi="10.1038/s41586-019-0885-0">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1MXmtVyjtLw%3D" aria-label="CAS reference 18">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30675059" aria-label="PubMed reference 18">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6557118" aria-label="PubMed Central reference 18">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 18" href="http://scholar.google.com/scholar_lookup?&title=Autophagic%20cell%20death%20restricts%20chromosomal%20instability%20during%20replicative%20crisis&journal=Nature&doi=10.1038%2Fs41586-019-0885-0&volume=565&issue=7741&pages=659-663&publication_year=2019&author=Nassour%2CJoe&author=Radford%2CRobert&author=Correia%2CAdriana&author=Fust%C3%A9%2CJavier%20Miralles&author=Schoell%2CBrigitte&author=Jauch%2CAnna&author=Shaw%2CReuben%20J.&author=Karlseder%2CJan"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="19."><p class="c-article-references__text" id="ref-CR19">Weinlich, R., Oberst, A., Beere, H. M. & Green, D. R. Necroptosis in development, inflammation and disease. <i>Nat. Rev. Mol. Cell Biol.</i> <b>18</b>, 127–136 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nrm.2016.149" data-track-item_id="10.1038/nrm.2016.149" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnrm.2016.149" aria-label="Article reference 19" data-doi="10.1038/nrm.2016.149">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28XitFahtrrJ" aria-label="CAS reference 19">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27999438" aria-label="PubMed reference 19">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 19" href="http://scholar.google.com/scholar_lookup?&title=Necroptosis%20in%20development%2C%20inflammation%20and%20disease&journal=Nat.%20Rev.%20Mol.%20Cell%20Biol.&doi=10.1038%2Fnrm.2016.149&volume=18&pages=127-136&publication_year=2017&author=Weinlich%2CR&author=Oberst%2CA&author=Beere%2CHM&author=Green%2CDR"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="20."><p class="c-article-references__text" id="ref-CR20">Kroemer, G. et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death. <i>Cell Death Differ.</i> <b>12</b>, 1463–1467 (2005). <b>Suppl 2</b>.</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/sj.cdd.4401724" data-track-item_id="10.1038/sj.cdd.4401724" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fsj.cdd.4401724" aria-label="Article reference 20" data-doi="10.1038/sj.cdd.4401724">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD2MXhtFCjt7%2FN" aria-label="CAS reference 20">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16247491" aria-label="PubMed reference 20">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 20" href="http://scholar.google.com/scholar_lookup?&title=Classification%20of%20cell%20death%3A%20recommendations%20of%20the%20Nomenclature%20Committee%20on%20Cell%20Death&journal=Cell%20Death%20Differ.&doi=10.1038%2Fsj.cdd.4401724&volume=12&pages=1463-1467&publication_year=2005&author=Kroemer%2CG"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="21."><p class="c-article-references__text" id="ref-CR21">Kroemer, G. et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. <i>Cell Death Differ.</i> <b>16</b>, 3–11 (2009).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/cdd.2008.150" data-track-item_id="10.1038/cdd.2008.150" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fcdd.2008.150" aria-label="Article reference 21" data-doi="10.1038/cdd.2008.150">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD1cXhsV2it7%2FK" aria-label="CAS reference 21">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18846107" aria-label="PubMed reference 21">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 21" href="http://scholar.google.com/scholar_lookup?&title=Classification%20of%20cell%20death%3A%20recommendations%20of%20the%20Nomenclature%20Committee%20on%20Cell%20Death%202009&journal=Cell%20Death%20Differ.&doi=10.1038%2Fcdd.2008.150&volume=16&pages=3-11&publication_year=2009&author=Kroemer%2CG"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="22."><p class="c-article-references__text" id="ref-CR22">Galluzzi, L. et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. <i>Cell Death Differ.</i> <b>19</b>, 107–120 (2012).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/cdd.2011.96" data-track-item_id="10.1038/cdd.2011.96" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fcdd.2011.96" aria-label="Article reference 22" data-doi="10.1038/cdd.2011.96">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC38XislOmt7g%3D" aria-label="CAS reference 22">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=21760595" aria-label="PubMed reference 22">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 22" href="http://scholar.google.com/scholar_lookup?&title=Molecular%20definitions%20of%20cell%20death%20subroutines%3A%20recommendations%20of%20the%20Nomenclature%20Committee%20on%20Cell%20Death%202012&journal=Cell%20Death%20Differ.&doi=10.1038%2Fcdd.2011.96&volume=19&pages=107-120&publication_year=2012&author=Galluzzi%2CL"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="23."><p class="c-article-references__text" id="ref-CR23">Galluzzi, L. et al. Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. <i>Cell Death Differ.</i> <b>22</b>, 58–73 (2015).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/cdd.2014.137" data-track-item_id="10.1038/cdd.2014.137" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fcdd.2014.137" aria-label="Article reference 23" data-doi="10.1038/cdd.2014.137">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2cXhsFOksrjF" aria-label="CAS reference 23">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25236395" aria-label="PubMed reference 23">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 23" href="http://scholar.google.com/scholar_lookup?&title=Essential%20versus%20accessory%20aspects%20of%20cell%20death%3A%20recommendations%20of%20the%20NCCD%202015&journal=Cell%20Death%20Differ.&doi=10.1038%2Fcdd.2014.137&volume=22&pages=58-73&publication_year=2015&author=Galluzzi%2CL"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="24."><p class="c-article-references__text" id="ref-CR24">Galluzzi, L. et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. <i>Cell Death Differ.</i> <b>25</b>, 486–541 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41418-017-0012-4" data-track-item_id="10.1038/s41418-017-0012-4" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41418-017-0012-4" aria-label="Article reference 24" data-doi="10.1038/s41418-017-0012-4">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29362479" aria-label="PubMed reference 24">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5864239" aria-label="PubMed Central reference 24">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 24" href="http://scholar.google.com/scholar_lookup?&title=Molecular%20mechanisms%20of%20cell%20death%3A%20recommendations%20of%20the%20Nomenclature%20Committee%20on%20Cell%20Death%202018&journal=Cell%20Death%20Differ.&doi=10.1038%2Fs41418-017-0012-4&volume=25&pages=486-541&publication_year=2018&author=Galluzzi%2CL"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="25."><p class="c-article-references__text" id="ref-CR25">Pasparakis, M. & Vandenabeele, P. Necroptosis and its role in inflammation. <i>Nature</i> <b>517</b>, 311–320 (2015).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nature14191" data-track-item_id="10.1038/nature14191" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnature14191" aria-label="Article reference 25" data-doi="10.1038/nature14191">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2MXpvV2mtA%3D%3D" aria-label="CAS reference 25">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25592536" aria-label="PubMed reference 25">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 25" href="http://scholar.google.com/scholar_lookup?&title=Necroptosis%20and%20its%20role%20in%20inflammation&journal=Nature&doi=10.1038%2Fnature14191&volume=517&pages=311-320&publication_year=2015&author=Pasparakis%2CM&author=Vandenabeele%2CP"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="26."><p class="c-article-references__text" id="ref-CR26">Ray, C. A. & Pickup, D. J. The mode of death of pig kidney cells infected with cowpox virus is governed by the expression of the crmA gene. <i>Virology</i> <b>217</b>, 384–391 (1996).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1006/viro.1996.0128" data-track-item_id="10.1006/viro.1996.0128" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1006%2Fviro.1996.0128" aria-label="Article reference 26" data-doi="10.1006/viro.1996.0128">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DyaK28XhsVWhsbk%3D" aria-label="CAS reference 26">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8599227" aria-label="PubMed reference 26">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 26" href="http://scholar.google.com/scholar_lookup?&title=The%20mode%20of%20death%20of%20pig%20kidney%20cells%20infected%20with%20cowpox%20virus%20is%20governed%20by%20the%20expression%20of%20the%20crmA%20gene&journal=Virology&doi=10.1006%2Fviro.1996.0128&volume=217&pages=384-391&publication_year=1996&author=Ray%2CCA&author=Pickup%2CDJ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="27."><p class="c-article-references__text" id="ref-CR27">Laster, S. M., Wood, J. G. & Gooding, L. R. Tumor necrosis factor can induce both apoptic and necrotic forms of cell lysis. <i>J. Immunol.</i> <b>141</b>, 2629–2634 (1988).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DyaL1cXmtV2ntrs%3D" aria-label="CAS reference 27">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3171180" aria-label="PubMed reference 27">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 27" href="http://scholar.google.com/scholar_lookup?&title=Tumor%20necrosis%20factor%20can%20induce%20both%20apoptic%20and%20necrotic%20forms%20of%20cell%20lysis&journal=J.%20Immunol.&volume=141&pages=2629-2634&publication_year=1988&author=Laster%2CSM&author=Wood%2CJG&author=Gooding%2CLR"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="28."><p class="c-article-references__text" id="ref-CR28">Holler, N. et al. Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. <i>Nat. Immunol.</i> <b>1</b>, 489–495 (2000).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/82732" data-track-item_id="10.1038/82732" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2F82732" aria-label="Article reference 28" data-doi="10.1038/82732">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD3cXoslyru74%3D" aria-label="CAS reference 28">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11101870" aria-label="PubMed reference 28">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 28" href="http://scholar.google.com/scholar_lookup?&title=Fas%20triggers%20an%20alternative%2C%20caspase-8-independent%20cell%20death%20pathway%20using%20the%20kinase%20RIP%20as%20effector%20molecule&journal=Nat.%20Immunol.&doi=10.1038%2F82732&volume=1&pages=489-495&publication_year=2000&author=Holler%2CN"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="29."><p class="c-article-references__text" id="ref-CR29">He, S., Liang, Y., Shao, F. & Wang, X. Toll-like receptors activate programmed necrosis in macrophages through a receptor-interacting kinase-3-mediated pathway. <i>Proc. Natl Acad. Sci. USA</i> <b>108</b>, 20054–20059 (2011).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1073/pnas.1116302108" data-track-item_id="10.1073/pnas.1116302108" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1073%2Fpnas.1116302108" aria-label="Article reference 29" data-doi="10.1073/pnas.1116302108">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3MXhs12gtbbI" aria-label="CAS reference 29">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22123964" aria-label="PubMed reference 29">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3250173" aria-label="PubMed Central reference 29">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 29" href="http://scholar.google.com/scholar_lookup?&title=Toll-like%20receptors%20activate%20programmed%20necrosis%20in%20macrophages%20through%20a%20receptor-interacting%20kinase-3-mediated%20pathway&journal=Proc.%20Natl%20Acad.%20Sci.%20USA&doi=10.1073%2Fpnas.1116302108&volume=108&pages=20054-20059&publication_year=2011&author=He%2CS&author=Liang%2CY&author=Shao%2CF&author=Wang%2CX"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="30."><p class="c-article-references__text" id="ref-CR30">Upton, J. W., Kaiser, W. J. & Mocarski, E. S. DAI/ZBP1/DLM-1 complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA. <i>Cell Host. Microbe.</i> <b>11</b>, 290–297 (2012).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.chom.2012.01.016" data-track-item_id="10.1016/j.chom.2012.01.016" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.chom.2012.01.016" aria-label="Article reference 30" data-doi="10.1016/j.chom.2012.01.016">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC38XjvFOjs7o%3D" aria-label="CAS reference 30">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22423968" aria-label="PubMed reference 30">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3531981" aria-label="PubMed Central reference 30">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 30" href="http://scholar.google.com/scholar_lookup?&title=DAI%2FZBP1%2FDLM-1%20complexes%20with%20RIP3%20to%20mediate%20virus-induced%20programmed%20necrosis%20that%20is%20targeted%20by%20murine%20cytomegalovirus%20vIRA&journal=Cell%20Host.%20Microbe.&doi=10.1016%2Fj.chom.2012.01.016&volume=11&pages=290-297&publication_year=2012&author=Upton%2CJW&author=Kaiser%2CWJ&author=Mocarski%2CES"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="31."><p class="c-article-references__text" id="ref-CR31">Schock, S. N. et al. Induction of necroptotic cell death by viral activation of the RIG-I or STING pathway. <i>Cell Death Differ.</i> <b>24</b>, 615–625 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/cdd.2016.153" data-track-item_id="10.1038/cdd.2016.153" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fcdd.2016.153" aria-label="Article reference 31" data-doi="10.1038/cdd.2016.153">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXltVersQ%3D%3D" aria-label="CAS reference 31">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28060376" aria-label="PubMed reference 31">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5384020" aria-label="PubMed Central reference 31">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 31" href="http://scholar.google.com/scholar_lookup?&title=Induction%20of%20necroptotic%20cell%20death%20by%20viral%20activation%20of%20the%20RIG-I%20or%20STING%20pathway&journal=Cell%20Death%20Differ.&doi=10.1038%2Fcdd.2016.153&volume=24&pages=615-625&publication_year=2017&author=Schock%2CSN"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="32."><p class="c-article-references__text" id="ref-CR32">Brault, M., Olsen, T. M., Martinez, J., Stetson, D. B. & Oberst, A. Intracellular nucleic acid sensing triggers necroptosis through synergistic type I IFN and TNF signaling. <i>J. Immunol.</i> <b>200</b>, 2748–2756 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.4049/jimmunol.1701492" data-track-item_id="10.4049/jimmunol.1701492" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.4049%2Fjimmunol.1701492" aria-label="Article reference 32" data-doi="10.4049/jimmunol.1701492">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXntFOmtLk%3D" aria-label="CAS reference 32">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29540580" aria-label="PubMed reference 32">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 32" href="http://scholar.google.com/scholar_lookup?&title=Intracellular%20nucleic%20acid%20sensing%20triggers%20necroptosis%20through%20synergistic%20type%20I%20IFN%20and%20TNF%20signaling&journal=J.%20Immunol.&doi=10.4049%2Fjimmunol.1701492&volume=200&pages=2748-2756&publication_year=2018&author=Brault%2CM&author=Olsen%2CTM&author=Martinez%2CJ&author=Stetson%2CDB&author=Oberst%2CA"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="33."><p class="c-article-references__text" id="ref-CR33">Chen, D. et al. PUMA amplifies necroptosis signaling by activating cytosolic DNA sensors. <i>Proc. Natl Acad. Sci. USA</i> <b>115</b>, 3930–3935 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1073/pnas.1717190115" data-track-item_id="10.1073/pnas.1717190115" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1073%2Fpnas.1717190115" aria-label="Article reference 33" data-doi="10.1073/pnas.1717190115">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXht1Gqt7fN" aria-label="CAS reference 33">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29581256" aria-label="PubMed reference 33">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5899441" aria-label="PubMed Central reference 33">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 33" href="http://scholar.google.com/scholar_lookup?&title=PUMA%20amplifies%20necroptosis%20signaling%20by%20activating%20cytosolic%20DNA%20sensors&journal=Proc.%20Natl%20Acad.%20Sci.%20USA&doi=10.1073%2Fpnas.1717190115&volume=115&pages=3930-3935&publication_year=2018&author=Chen%2CD"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="34."><p class="c-article-references__text" id="ref-CR34">Wang, X., He, Z., Liu, H., Yousefi, S. & Simon, H. U. Neutrophil necroptosis is triggered by ligation of adhesion molecules following GM-CSF priming. <i>J. Immunol.</i> <b>197</b>, 4090–4100 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.4049/jimmunol.1600051" data-track-item_id="10.4049/jimmunol.1600051" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.4049%2Fjimmunol.1600051" aria-label="Article reference 34" data-doi="10.4049/jimmunol.1600051">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28Xhslygt7vJ" aria-label="CAS reference 34">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27815445" aria-label="PubMed reference 34">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 34" href="http://scholar.google.com/scholar_lookup?&title=Neutrophil%20necroptosis%20is%20triggered%20by%20ligation%20of%20adhesion%20molecules%20following%20GM-CSF%20priming&journal=J.%20Immunol.&doi=10.4049%2Fjimmunol.1600051&volume=197&pages=4090-4100&publication_year=2016&author=Wang%2CX&author=He%2CZ&author=Liu%2CH&author=Yousefi%2CS&author=Simon%2CHU"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="35."><p class="c-article-references__text" id="ref-CR35">Vercammen, D. et al. Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor. <i>J. Exp. Med.</i> <b>187</b>, 1477–1485 (1998).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1084/jem.187.9.1477" data-track-item_id="10.1084/jem.187.9.1477" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1084%2Fjem.187.9.1477" aria-label="Article reference 35" data-doi="10.1084/jem.187.9.1477">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DyaK1cXivVGjur8%3D" aria-label="CAS reference 35">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9565639" aria-label="PubMed reference 35">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2212268" aria-label="PubMed Central reference 35">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 35" href="http://scholar.google.com/scholar_lookup?&title=Inhibition%20of%20caspases%20increases%20the%20sensitivity%20of%20L929%20cells%20to%20necrosis%20mediated%20by%20tumor%20necrosis%20factor&journal=J.%20Exp.%20Med.&doi=10.1084%2Fjem.187.9.1477&volume=187&pages=1477-1485&publication_year=1998&author=Vercammen%2CD"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="36."><p class="c-article-references__text" id="ref-CR36">Degterev, A. et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. <i>Nat. Chem. Biol.</i> <b>1</b>, 112–119 (2005).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nchembio711" data-track-item_id="10.1038/nchembio711" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnchembio711" aria-label="Article reference 36" data-doi="10.1038/nchembio711">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD2MXls1OmsLg%3D" aria-label="CAS reference 36">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16408008" aria-label="PubMed reference 36">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 36" href="http://scholar.google.com/scholar_lookup?&title=Chemical%20inhibitor%20of%20nonapoptotic%20cell%20death%20with%20therapeutic%20potential%20for%20ischemic%20brain%20injury&journal=Nat.%20Chem.%20Biol.&doi=10.1038%2Fnchembio711&volume=1&pages=112-119&publication_year=2005&author=Degterev%2CA"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="37."><p class="c-article-references__text" id="ref-CR37">Degterev, A. et al. Identification of RIP1 kinase as a specific cellular target of necrostatins. <i>Nat. Chem. Biol.</i> <b>4</b>, 313–321 (2008).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nchembio.83" data-track-item_id="10.1038/nchembio.83" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnchembio.83" aria-label="Article reference 37" data-doi="10.1038/nchembio.83">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD1cXkvVSmtL0%3D" aria-label="CAS reference 37">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18408713" aria-label="PubMed reference 37">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5434866" aria-label="PubMed Central reference 37">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 37" href="http://scholar.google.com/scholar_lookup?&title=Identification%20of%20RIP1%20kinase%20as%20a%20specific%20cellular%20target%20of%20necrostatins&journal=Nat.%20Chem.%20Biol.&doi=10.1038%2Fnchembio.83&volume=4&pages=313-321&publication_year=2008&author=Degterev%2CA"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="38."><p class="c-article-references__text" id="ref-CR38">Zhang, D. W. et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. <i>Science</i> <b>325</b>, 332–336 (2009).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1126/science.1172308" data-track-item_id="10.1126/science.1172308" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1126%2Fscience.1172308" aria-label="Article reference 38" data-doi="10.1126/science.1172308">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD1MXos1Sqt7Y%3D" aria-label="CAS reference 38">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19498109" aria-label="PubMed reference 38">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 38" href="http://scholar.google.com/scholar_lookup?&title=RIP3%2C%20an%20energy%20metabolism%20regulator%20that%20switches%20TNF-induced%20cell%20death%20from%20apoptosis%20to%20necrosis&journal=Science&doi=10.1126%2Fscience.1172308&volume=325&pages=332-336&publication_year=2009&author=Zhang%2CDW"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="39."><p class="c-article-references__text" id="ref-CR39">He, S. et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. <i>Cell</i> <b>137</b>, 1100–1111 (2009).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.cell.2009.05.021" data-track-item_id="10.1016/j.cell.2009.05.021" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.cell.2009.05.021" aria-label="Article reference 39" data-doi="10.1016/j.cell.2009.05.021">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD1MXps1eiu70%3D" aria-label="CAS reference 39">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19524512" aria-label="PubMed reference 39">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 39" href="http://scholar.google.com/scholar_lookup?&title=Receptor%20interacting%20protein%20kinase-3%20determines%20cellular%20necrotic%20response%20to%20TNF-alpha&journal=Cell&doi=10.1016%2Fj.cell.2009.05.021&volume=137&pages=1100-1111&publication_year=2009&author=He%2CS"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="40."><p class="c-article-references__text" id="ref-CR40">Cho, Y. S. et al. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. <i>Cell</i> <b>137</b>, 1112–1123 (2009).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.cell.2009.05.037" data-track-item_id="10.1016/j.cell.2009.05.037" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.cell.2009.05.037" aria-label="Article reference 40" data-doi="10.1016/j.cell.2009.05.037">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD1MXps1eiu7o%3D" aria-label="CAS reference 40">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19524513" aria-label="PubMed reference 40">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2727676" aria-label="PubMed Central reference 40">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 40" href="http://scholar.google.com/scholar_lookup?&title=Phosphorylation-driven%20assembly%20of%20the%20RIP1-RIP3%20complex%20regulates%20programmed%20necrosis%20and%20virus-induced%20inflammation&journal=Cell&doi=10.1016%2Fj.cell.2009.05.037&volume=137&pages=1112-1123&publication_year=2009&author=Cho%2CYS"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="41."><p class="c-article-references__text" id="ref-CR41">Sun, L. et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. <i>Cell</i> <b>148</b>, 213–227 (2012).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.cell.2011.11.031" data-track-item_id="10.1016/j.cell.2011.11.031" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.cell.2011.11.031" aria-label="Article reference 41" data-doi="10.1016/j.cell.2011.11.031">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC38XhtFKgsLY%3D" aria-label="CAS reference 41">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22265413" aria-label="PubMed reference 41">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 41" href="http://scholar.google.com/scholar_lookup?&title=Mixed%20lineage%20kinase%20domain-like%20protein%20mediates%20necrosis%20signaling%20downstream%20of%20RIP3%20kinase&journal=Cell&doi=10.1016%2Fj.cell.2011.11.031&volume=148&pages=213-227&publication_year=2012&author=Sun%2CL"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="42."><p class="c-article-references__text" id="ref-CR42">Zhao, J. et al. Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis. <i>Proc. Natl Acad. Sci. USA</i> <b>109</b>, 5322–5327 (2012).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1073/pnas.1200012109" data-track-item_id="10.1073/pnas.1200012109" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1073%2Fpnas.1200012109" aria-label="Article reference 42" data-doi="10.1073/pnas.1200012109">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC38XlslOjs70%3D" aria-label="CAS reference 42">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22421439" aria-label="PubMed reference 42">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3325682" aria-label="PubMed Central reference 42">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 42" href="http://scholar.google.com/scholar_lookup?&title=Mixed%20lineage%20kinase%20domain-like%20is%20a%20key%20receptor%20interacting%20protein%203%20downstream%20component%20of%20TNF-induced%20necrosis&journal=Proc.%20Natl%20Acad.%20Sci.%20USA&doi=10.1073%2Fpnas.1200012109&volume=109&pages=5322-5327&publication_year=2012&author=Zhao%2CJ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="43."><p class="c-article-references__text" id="ref-CR43">Mompean, M. et al. The structure of the necrosome RIPK1-RIPK3 core, a human hetero-amyloid signaling complex. <i>Cell</i> <b>173</b>, 1244–1253 e1210 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.cell.2018.03.032" data-track-item_id="10.1016/j.cell.2018.03.032" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.cell.2018.03.032" aria-label="Article reference 43" data-doi="10.1016/j.cell.2018.03.032">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXotFejtrw%3D" aria-label="CAS reference 43">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29681455" aria-label="PubMed reference 43">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6002806" aria-label="PubMed Central reference 43">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 43" href="http://scholar.google.com/scholar_lookup?&title=The%20structure%20of%20the%20necrosome%20RIPK1-RIPK3%20core%2C%20a%20human%20hetero-amyloid%20signaling%20complex&journal=Cell&doi=10.1016%2Fj.cell.2018.03.032&volume=173&pages=1244-1253%20e1210&publication_year=2018&author=Mompean%2CM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="44."><p class="c-article-references__text" id="ref-CR44">Li, J. et al. The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis. <i>Cell</i> <b>150</b>, 339–350 (2012).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.cell.2012.06.019" data-track-item_id="10.1016/j.cell.2012.06.019" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.cell.2012.06.019" aria-label="Article reference 44" data-doi="10.1016/j.cell.2012.06.019">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC38XhtVymsb%2FK" aria-label="CAS reference 44">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22817896" aria-label="PubMed reference 44">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3664196" aria-label="PubMed Central reference 44">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 44" href="http://scholar.google.com/scholar_lookup?&title=The%20RIP1%2FRIP3%20necrosome%20forms%20a%20functional%20amyloid%20signaling%20complex%20required%20for%20programmed%20necrosis&journal=Cell&doi=10.1016%2Fj.cell.2012.06.019&volume=150&pages=339-350&publication_year=2012&author=Li%2CJ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="45."><p class="c-article-references__text" id="ref-CR45">Seo, J. et al. CHIP controls necroptosis through ubiquitylation- and lysosome-dependent degradation of RIPK3. <i>Nat. Cell Biol.</i> <b>18</b>, 291–302 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/ncb3314" data-track-item_id="10.1038/ncb3314" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fncb3314" aria-label="Article reference 45" data-doi="10.1038/ncb3314">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28XivFKgt78%3D" aria-label="CAS reference 45">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26900751" aria-label="PubMed reference 45">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 45" href="http://scholar.google.com/scholar_lookup?&title=CHIP%20controls%20necroptosis%20through%20ubiquitylation-%20and%20lysosome-dependent%20degradation%20of%20RIPK3&journal=Nat.%20Cell%20Biol.&doi=10.1038%2Fncb3314&volume=18&pages=291-302&publication_year=2016&author=Seo%2CJ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="46."><p class="c-article-references__text" id="ref-CR46">Xie, Y. et al. Inhibition of aurora kinase A induces necroptosis in pancreatic carcinoma. <i>Gastroenterology</i> <b>153</b>, 1429–1443 e1425 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1053/j.gastro.2017.07.036" data-track-item_id="10.1053/j.gastro.2017.07.036" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1053%2Fj.gastro.2017.07.036" aria-label="Article reference 46" data-doi="10.1053/j.gastro.2017.07.036">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXhslChtr%2FK" aria-label="CAS reference 46">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28764929" aria-label="PubMed reference 46">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 46" href="http://scholar.google.com/scholar_lookup?&title=Inhibition%20of%20aurora%20kinase%20A%20induces%20necroptosis%20in%20pancreatic%20carcinoma&journal=Gastroenterology&doi=10.1053%2Fj.gastro.2017.07.036&volume=153&pages=1429-1443%20e1425&publication_year=2017&author=Xie%2CY"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="47."><p class="c-article-references__text" id="ref-CR47">Chen, W. et al. Ppm1b negatively regulates necroptosis through dephosphorylating Rip3. <i>Nat. Cell Biol.</i> <b>17</b>, 434–444 (2015).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/ncb3120" data-track-item_id="10.1038/ncb3120" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fncb3120" aria-label="Article reference 47" data-doi="10.1038/ncb3120">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2MXjvFOns74%3D" aria-label="CAS reference 47">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25751141" aria-label="PubMed reference 47">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4523090" aria-label="PubMed Central reference 47">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 47" href="http://scholar.google.com/scholar_lookup?&title=Ppm1b%20negatively%20regulates%20necroptosis%20through%20dephosphorylating%20Rip3&journal=Nat.%20Cell%20Biol.&doi=10.1038%2Fncb3120&volume=17&pages=434-444&publication_year=2015&author=Chen%2CW"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="48."><p class="c-article-references__text" id="ref-CR48">Onizawa, M. et al. The ubiquitin-modifying enzyme A20 restricts ubiquitination of the kinase RIPK3 and protects cells from necroptosis. <i>Nat. Immunol.</i> <b>16</b>, 618–627 (2015).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/ni.3172" data-track-item_id="10.1038/ni.3172" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fni.3172" aria-label="Article reference 48" data-doi="10.1038/ni.3172">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2MXns1Kgs7k%3D" aria-label="CAS reference 48">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25939025" aria-label="PubMed reference 48">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4439357" aria-label="PubMed Central reference 48">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 48" href="http://scholar.google.com/scholar_lookup?&title=The%20ubiquitin-modifying%20enzyme%20A20%20restricts%20ubiquitination%20of%20the%20kinase%20RIPK3%20and%20protects%20cells%20from%20necroptosis&journal=Nat.%20Immunol.&doi=10.1038%2Fni.3172&volume=16&pages=618-627&publication_year=2015&author=Onizawa%2CM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="49."><p class="c-article-references__text" id="ref-CR49">Huang, Z. et al. RIP1/RIP3 binding to HSV-1 ICP6 initiates necroptosis to restrict virus propagation in mice. <i>Cell Host. Microbe.</i> <b>17</b>, 229–242 (2015).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.chom.2015.01.002" data-track-item_id="10.1016/j.chom.2015.01.002" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.chom.2015.01.002" aria-label="Article reference 49" data-doi="10.1016/j.chom.2015.01.002">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2MXitVymtLo%3D" aria-label="CAS reference 49">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25674982" aria-label="PubMed reference 49">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 49" href="http://scholar.google.com/scholar_lookup?&title=RIP1%2FRIP3%20binding%20to%20HSV-1%20ICP6%20initiates%20necroptosis%20to%20restrict%20virus%20propagation%20in%20mice&journal=Cell%20Host.%20Microbe.&doi=10.1016%2Fj.chom.2015.01.002&volume=17&pages=229-242&publication_year=2015&author=Huang%2CZ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="50."><p class="c-article-references__text" id="ref-CR50">Thapa, R. J. et al. Interferon-induced RIP1/RIP3-mediated necrosis requires PKR and is licensed by FADD and caspases. <i>Proc. Natl Acad. Sci. USA</i> <b>110</b>, E3109–E3118 (2013).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1073/pnas.1301218110" data-track-item_id="10.1073/pnas.1301218110" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1073%2Fpnas.1301218110" aria-label="Article reference 50" data-doi="10.1073/pnas.1301218110">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3sXhtlCrtbfI" aria-label="CAS reference 50">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=23898178" aria-label="PubMed reference 50">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3746924" aria-label="PubMed Central reference 50">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 50" href="http://scholar.google.com/scholar_lookup?&title=Interferon-induced%20RIP1%2FRIP3-mediated%20necrosis%20requires%20PKR%20and%20is%20licensed%20by%20FADD%20and%20caspases&journal=Proc.%20Natl%20Acad.%20Sci.%20USA&doi=10.1073%2Fpnas.1301218110&volume=110&pages=E3109-E3118&publication_year=2013&author=Thapa%2CRJ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="51."><p class="c-article-references__text" id="ref-CR51">Robinson, N. et al. Type I interferon induces necroptosis in macrophages during infection with Salmonella enterica serovar Typhimurium. <i>Nat. Immunol.</i> <b>13</b>, 954–962 (2012).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/ni.2397" data-track-item_id="10.1038/ni.2397" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fni.2397" aria-label="Article reference 51" data-doi="10.1038/ni.2397">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC38Xht1GhsbzK" aria-label="CAS reference 51">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22922364" aria-label="PubMed reference 51">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4005791" aria-label="PubMed Central reference 51">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 51" href="http://scholar.google.com/scholar_lookup?&title=Type%20I%20interferon%20induces%20necroptosis%20in%20macrophages%20during%20infection%20with%20Salmonella%20enterica%20serovar%20Typhimurium&journal=Nat.%20Immunol.&doi=10.1038%2Fni.2397&volume=13&pages=954-962&publication_year=2012&author=Robinson%2CN"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="52."><p class="c-article-references__text" id="ref-CR52">Wang, H. et al. Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. <i>Mol. Cell</i> <b>54</b>, 133–146 (2014).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.molcel.2014.03.003" data-track-item_id="10.1016/j.molcel.2014.03.003" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.molcel.2014.03.003" aria-label="Article reference 52" data-doi="10.1016/j.molcel.2014.03.003">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2cXls1emsro%3D" aria-label="CAS reference 52">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=24703947" aria-label="PubMed reference 52">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 52" href="http://scholar.google.com/scholar_lookup?&title=Mixed%20lineage%20kinase%20domain-like%20protein%20MLKL%20causes%20necrotic%20membrane%20disruption%20upon%20phosphorylation%20by%20RIP3&journal=Mol.%20Cell&doi=10.1016%2Fj.molcel.2014.03.003&volume=54&pages=133-146&publication_year=2014&author=Wang%2CH"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="53."><p class="c-article-references__text" id="ref-CR53">Dondelinger, Y. et al. MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates. <i>Cell Rep</i> <b>7</b>, 971–981 (2014).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.celrep.2014.04.026" data-track-item_id="10.1016/j.celrep.2014.04.026" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.celrep.2014.04.026" aria-label="Article reference 53" data-doi="10.1016/j.celrep.2014.04.026">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2cXnslGnu78%3D" aria-label="CAS reference 53">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=24813885" aria-label="PubMed reference 53">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 53" href="http://scholar.google.com/scholar_lookup?&title=MLKL%20compromises%20plasma%20membrane%20integrity%20by%20binding%20to%20phosphatidylinositol%20phosphates&journal=Cell%20Rep&doi=10.1016%2Fj.celrep.2014.04.026&volume=7&pages=971-981&publication_year=2014&author=Dondelinger%2CY"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="54."><p class="c-article-references__text" id="ref-CR54">Hildebrand, J. M. et al. Activation of the pseudokinase MLKL unleashes the four-helix bundle domain to induce membrane localization and necroptotic cell death. <i>Proc. Natl Acad. Sci. USA</i> <b>111</b>, 15072–15077 (2014).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1073/pnas.1408987111" data-track-item_id="10.1073/pnas.1408987111" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1073%2Fpnas.1408987111" aria-label="Article reference 54" data-doi="10.1073/pnas.1408987111">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2cXhs1yhtLnJ" aria-label="CAS reference 54">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25288762" aria-label="PubMed reference 54">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4210347" aria-label="PubMed Central reference 54">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 54" href="http://scholar.google.com/scholar_lookup?&title=Activation%20of%20the%20pseudokinase%20MLKL%20unleashes%20the%20four-helix%20bundle%20domain%20to%20induce%20membrane%20localization%20and%20necroptotic%20cell%20death&journal=Proc.%20Natl%20Acad.%20Sci.%20USA&doi=10.1073%2Fpnas.1408987111&volume=111&pages=15072-15077&publication_year=2014&author=Hildebrand%2CJM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="55."><p class="c-article-references__text" id="ref-CR55">Murphy, J. M. et al. The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. <i>Immunity</i> <b>39</b>, 443–453 (2013).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.immuni.2013.06.018" data-track-item_id="10.1016/j.immuni.2013.06.018" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.immuni.2013.06.018" aria-label="Article reference 55" data-doi="10.1016/j.immuni.2013.06.018">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3sXhtl2ktLnJ" aria-label="CAS reference 55">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=24012422" aria-label="PubMed reference 55">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 55" href="http://scholar.google.com/scholar_lookup?&title=The%20pseudokinase%20MLKL%20mediates%20necroptosis%20via%20a%20molecular%20switch%20mechanism&journal=Immunity&doi=10.1016%2Fj.immuni.2013.06.018&volume=39&pages=443-453&publication_year=2013&author=Murphy%2CJM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="56."><p class="c-article-references__text" id="ref-CR56">Chen, X. et al. Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death. <i>Cell Res.</i> <b>24</b>, 105–121 (2014).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/cr.2013.171" data-track-item_id="10.1038/cr.2013.171" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fcr.2013.171" aria-label="Article reference 56" data-doi="10.1038/cr.2013.171">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2cXpsVyr" aria-label="CAS reference 56">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=24366341" aria-label="PubMed reference 56">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 56" href="http://scholar.google.com/scholar_lookup?&title=Translocation%20of%20mixed%20lineage%20kinase%20domain-like%20protein%20to%20plasma%20membrane%20leads%20to%20necrotic%20cell%20death&journal=Cell%20Res.&doi=10.1038%2Fcr.2013.171&volume=24&pages=105-121&publication_year=2014&author=Chen%2CX"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="57."><p class="c-article-references__text" id="ref-CR57">Zhao, X. M. et al. Hsp90 modulates the stability of MLKL and is required for TNF-induced necroptosis. <i>Cell Death Dis.</i> <b>7</b>, e2089 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/cddis.2015.390" data-track-item_id="10.1038/cddis.2015.390" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fcddis.2015.390" aria-label="Article reference 57" data-doi="10.1038/cddis.2015.390">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28Xis1altLc%3D" aria-label="CAS reference 57">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26866270" aria-label="PubMed reference 57">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4849146" aria-label="PubMed Central reference 57">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 57" href="http://scholar.google.com/scholar_lookup?&title=Hsp90%20modulates%20the%20stability%20of%20MLKL%20and%20is%20required%20for%20TNF-induced%20necroptosis&journal=Cell%20Death%20Dis.&doi=10.1038%2Fcddis.2015.390&volume=7&publication_year=2016&author=Zhao%2CXM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="58."><p class="c-article-references__text" id="ref-CR58">Li, D. et al. Natural product kongensin A is a non-canonical HSP90 inhibitor that blocks RIP3-dependent necroptosis. <i>Cell Chem Biol</i> <b>23</b>, 257–266 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.chembiol.2015.08.018" data-track-item_id="10.1016/j.chembiol.2015.08.018" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.chembiol.2015.08.018" aria-label="Article reference 58" data-doi="10.1016/j.chembiol.2015.08.018">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28XntlSqt78%3D" aria-label="CAS reference 58">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27028885" aria-label="PubMed reference 58">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 58" href="http://scholar.google.com/scholar_lookup?&title=Natural%20product%20kongensin%20A%20is%20a%20non-canonical%20HSP90%20inhibitor%20that%20blocks%20RIP3-dependent%20necroptosis&journal=Cell%20Chem%20Biol&doi=10.1016%2Fj.chembiol.2015.08.018&volume=23&pages=257-266&publication_year=2016&author=Li%2CD"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="59."><p class="c-article-references__text" id="ref-CR59">Jacobsen, A. V. et al. HSP90 activity is required for MLKL oligomerisation and membrane translocation and the induction of necroptotic cell death. <i>Cell Death Dis.</i> <b>7</b>, e2051 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/cddis.2015.386" data-track-item_id="10.1038/cddis.2015.386" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fcddis.2015.386" aria-label="Article reference 59" data-doi="10.1038/cddis.2015.386">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:STN:280:DC%2BC28nhsVChtQ%3D%3D" aria-label="CAS reference 59">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26775703" aria-label="PubMed reference 59">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4816171" aria-label="PubMed Central reference 59">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 59" href="http://scholar.google.com/scholar_lookup?&title=HSP90%20activity%20is%20required%20for%20MLKL%20oligomerisation%20and%20membrane%20translocation%20and%20the%20induction%20of%20necroptotic%20cell%20death&journal=Cell%20Death%20Dis.&doi=10.1038%2Fcddis.2015.386&volume=7&publication_year=2016&author=Jacobsen%2CAV"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="60."><p class="c-article-references__text" id="ref-CR60">Bigenzahn, J. W. et al. An inducible retroviral expression system for tandem affinity purification mass-spectrometry-based proteomics identifies mixed lineage kinase domain-like protein (MLKL) as an heat shock protein 90 (HSP90) client. <i>Mol. Cell. Proteomics.</i> <b>15</b>, 1139–1150 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1074/mcp.O115.055350" data-track-item_id="10.1074/mcp.O115.055350" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1074%2Fmcp.O115.055350" aria-label="Article reference 60" data-doi="10.1074/mcp.O115.055350">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28XjsVGru78%3D" aria-label="CAS reference 60">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26933192" aria-label="PubMed reference 60">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 60" href="http://scholar.google.com/scholar_lookup?&title=An%20inducible%20retroviral%20expression%20system%20for%20tandem%20affinity%20purification%20mass-spectrometry-based%20proteomics%20identifies%20mixed%20lineage%20kinase%20domain-like%20protein%20%28MLKL%29%20as%20an%20heat%20shock%20protein%2090%20%28HSP90%29%20client&journal=Mol.%20Cell.%20Proteomics.&doi=10.1074%2Fmcp.O115.055350&volume=15&pages=1139-1150&publication_year=2016&author=Bigenzahn%2CJW"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="61."><p class="c-article-references__text" id="ref-CR61">Dovey, C. M. et al. MLKL requires the inositol phosphate code to execute necroptosis. <i>Mol. Cell</i> <b>70</b>, 936–948 e937 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.molcel.2018.05.010" data-track-item_id="10.1016/j.molcel.2018.05.010" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.molcel.2018.05.010" aria-label="Article reference 61" data-doi="10.1016/j.molcel.2018.05.010">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXhtV2lurjP" aria-label="CAS reference 61">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29883610" aria-label="PubMed reference 61">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5994928" aria-label="PubMed Central reference 61">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 61" href="http://scholar.google.com/scholar_lookup?&title=MLKL%20requires%20the%20inositol%20phosphate%20code%20to%20execute%20necroptosis&journal=Mol.%20Cell&doi=10.1016%2Fj.molcel.2018.05.010&volume=70&pages=936-948%20e937&publication_year=2018&author=Dovey%2CCM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="62."><p class="c-article-references__text" id="ref-CR62">Gong, Y. N. et al. ESCRT-III acts downstream of MLKL to regulate necroptotic cell death and its consequences. <i>Cell</i> <b>169</b>, 286–300 e216 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.cell.2017.03.020" data-track-item_id="10.1016/j.cell.2017.03.020" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.cell.2017.03.020" aria-label="Article reference 62" data-doi="10.1016/j.cell.2017.03.020">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXlvVKiu7c%3D" aria-label="CAS reference 62">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28388412" aria-label="PubMed reference 62">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5443414" aria-label="PubMed Central reference 62">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 62" href="http://scholar.google.com/scholar_lookup?&title=ESCRT-III%20acts%20downstream%20of%20MLKL%20to%20regulate%20necroptotic%20cell%20death%20and%20its%20consequences&journal=Cell&doi=10.1016%2Fj.cell.2017.03.020&volume=169&pages=286-300%20e216&publication_year=2017&author=Gong%2CYN"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="63."><p class="c-article-references__text" id="ref-CR63">Yoon, S., Kovalenko, A., Bogdanov, K. & Wallach, D. MLKL, the protein that mediates necroptosis, also regulates endosomal trafficking and extracellular vesicle generation. <i>Immunity</i> <b>47</b>, 51–65 e57 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.immuni.2017.06.001" data-track-item_id="10.1016/j.immuni.2017.06.001" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.immuni.2017.06.001" aria-label="Article reference 63" data-doi="10.1016/j.immuni.2017.06.001">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXhtVyhur%2FE" aria-label="CAS reference 63">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28666573" aria-label="PubMed reference 63">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 63" href="http://scholar.google.com/scholar_lookup?&title=MLKL%2C%20the%20protein%20that%20mediates%20necroptosis%2C%20also%20regulates%20endosomal%20trafficking%20and%20extracellular%20vesicle%20generation&journal=Immunity&doi=10.1016%2Fj.immuni.2017.06.001&volume=47&pages=51-65%20e57&publication_year=2017&author=Yoon%2CS&author=Kovalenko%2CA&author=Bogdanov%2CK&author=Wallach%2CD"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="64."><p class="c-article-references__text" id="ref-CR64">Vanden Berghe, T. et al. Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features. <i>Cell Death Differ.</i> <b>17</b>, 922–930 (2010).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/cdd.2009.184" data-track-item_id="10.1038/cdd.2009.184" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fcdd.2009.184" aria-label="Article reference 64" data-doi="10.1038/cdd.2009.184">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3cXlslygsrg%3D" aria-label="CAS reference 64">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20010783" aria-label="PubMed reference 64">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 64" href="http://scholar.google.com/scholar_lookup?&title=Necroptosis%2C%20necrosis%20and%20secondary%20necrosis%20converge%20on%20similar%20cellular%20disintegration%20features&journal=Cell%20Death%20Differ.&doi=10.1038%2Fcdd.2009.184&volume=17&pages=922-930&publication_year=2010&author=Vanden%20Berghe%2CT"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="65."><p class="c-article-references__text" id="ref-CR65">Wang, Z., Jiang, H., Chen, S., Du, F. & Wang, X. The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways. <i>Cell</i> <b>148</b>, 228–243 (2012).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.cell.2011.11.030" data-track-item_id="10.1016/j.cell.2011.11.030" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.cell.2011.11.030" aria-label="Article reference 65" data-doi="10.1016/j.cell.2011.11.030">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC38XhtFKgsLc%3D" aria-label="CAS reference 65">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22265414" aria-label="PubMed reference 65">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 65" href="http://scholar.google.com/scholar_lookup?&title=The%20mitochondrial%20phosphatase%20PGAM5%20functions%20at%20the%20convergence%20point%20of%20multiple%20necrotic%20death%20pathways&journal=Cell&doi=10.1016%2Fj.cell.2011.11.030&volume=148&pages=228-243&publication_year=2012&author=Wang%2CZ&author=Jiang%2CH&author=Chen%2CS&author=Du%2CF&author=Wang%2CX"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="66."><p class="c-article-references__text" id="ref-CR66">Zhang, Y. et al. RIP1 autophosphorylation is promoted by mitochondrial ROS and is essential for RIP3 recruitment into necrosome. <i>Nat. Commun.</i> <b>8</b>, 14329 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/ncomms14329" data-track-item_id="10.1038/ncomms14329" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fncomms14329" aria-label="Article reference 66" data-doi="10.1038/ncomms14329">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXisVehurY%3D" aria-label="CAS reference 66">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28176780" aria-label="PubMed reference 66">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5309790" aria-label="PubMed Central reference 66">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 66" href="http://scholar.google.com/scholar_lookup?&title=RIP1%20autophosphorylation%20is%20promoted%20by%20mitochondrial%20ROS%20and%20is%20essential%20for%20RIP3%20recruitment%20into%20necrosome&journal=Nat.%20Commun.&doi=10.1038%2Fncomms14329&volume=8&publication_year=2017&author=Zhang%2CY"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="67."><p class="c-article-references__text" id="ref-CR67">Yang, Z. et al. RIP3 targets pyruvate dehydrogenase complex to increase aerobic respiration in TNF-induced necroptosis. <i>Nat. Cell Biol.</i> <b>20</b>, 186–197 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41556-017-0022-y" data-track-item_id="10.1038/s41556-017-0022-y" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41556-017-0022-y" aria-label="Article reference 67" data-doi="10.1038/s41556-017-0022-y">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXkslGisL8%3D" aria-label="CAS reference 67">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29358703" aria-label="PubMed reference 67">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 67" href="http://scholar.google.com/scholar_lookup?&title=RIP3%20targets%20pyruvate%20dehydrogenase%20complex%20to%20increase%20aerobic%20respiration%20in%20TNF-induced%20necroptosis&journal=Nat.%20Cell%20Biol.&doi=10.1038%2Fs41556-017-0022-y&volume=20&pages=186-197&publication_year=2018&author=Yang%2CZ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="68."><p class="c-article-references__text" id="ref-CR68">Remijsen, Q. et al. Depletion of RIPK3 or MLKL blocks TNF-driven necroptosis and switches towards a delayed RIPK1 kinase-dependent apoptosis. <i>Cell Death Dis.</i> <b>5</b>, e1004 (2014).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/cddis.2013.531" data-track-item_id="10.1038/cddis.2013.531" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fcddis.2013.531" aria-label="Article reference 68" data-doi="10.1038/cddis.2013.531">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:STN:280:DC%2BC2czmtlKruw%3D%3D" aria-label="CAS reference 68">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=24434512" aria-label="PubMed reference 68">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4040672" aria-label="PubMed Central reference 68">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 68" href="http://scholar.google.com/scholar_lookup?&title=Depletion%20of%20RIPK3%20or%20MLKL%20blocks%20TNF-driven%20necroptosis%20and%20switches%20towards%20a%20delayed%20RIPK1%20kinase-dependent%20apoptosis&journal=Cell%20Death%20Dis.&doi=10.1038%2Fcddis.2013.531&volume=5&publication_year=2014&author=Remijsen%2CQ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="69."><p class="c-article-references__text" id="ref-CR69">Yoon, S., Bogdanov, K., Kovalenko, A. & Wallach, D. Necroptosis is preceded by nuclear translocation of the signaling proteins that induce it. <i>Cell Death Differ.</i> <b>23</b>, 253–260 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/cdd.2015.92" data-track-item_id="10.1038/cdd.2015.92" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fcdd.2015.92" aria-label="Article reference 69" data-doi="10.1038/cdd.2015.92">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2MXht1WrtbzK" aria-label="CAS reference 69">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26184911" aria-label="PubMed reference 69">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 69" href="http://scholar.google.com/scholar_lookup?&title=Necroptosis%20is%20preceded%20by%20nuclear%20translocation%20of%20the%20signaling%20proteins%20that%20induce%20it&journal=Cell%20Death%20Differ.&doi=10.1038%2Fcdd.2015.92&volume=23&pages=253-260&publication_year=2016&author=Yoon%2CS&author=Bogdanov%2CK&author=Kovalenko%2CA&author=Wallach%2CD"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="70."><p class="c-article-references__text" id="ref-CR70">Weber, K., Roelandt, R., Bruggeman, I., Estornes, Y. & Vandenabeele, P. Nuclear RIPK3 and MLKL contribute to cytosolic necrosome formation and necroptosis. <i>Commun Biol</i> <b>1</b>, 6 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s42003-017-0007-1" data-track-item_id="10.1038/s42003-017-0007-1" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs42003-017-0007-1" aria-label="Article reference 70" data-doi="10.1038/s42003-017-0007-1">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30271893" aria-label="PubMed reference 70">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6123744" aria-label="PubMed Central reference 70">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 70" href="http://scholar.google.com/scholar_lookup?&title=Nuclear%20RIPK3%20and%20MLKL%20contribute%20to%20cytosolic%20necrosome%20formation%20and%20necroptosis&journal=Commun%20Biol&doi=10.1038%2Fs42003-017-0007-1&volume=1&publication_year=2018&author=Weber%2CK&author=Roelandt%2CR&author=Bruggeman%2CI&author=Estornes%2CY&author=Vandenabeele%2CP"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="71."><p class="c-article-references__text" id="ref-CR71">Wang, X., Yousefi, S. & Simon, H. U. Necroptosis and neutrophil-associated disorders. <i>Cell Death Dis.</i> <b>9</b>, 111 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41419-017-0058-8" data-track-item_id="10.1038/s41419-017-0058-8" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41419-017-0058-8" aria-label="Article reference 71" data-doi="10.1038/s41419-017-0058-8">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29371616" aria-label="PubMed reference 71">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5833577" aria-label="PubMed Central reference 71">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 71" href="http://scholar.google.com/scholar_lookup?&title=Necroptosis%20and%20neutrophil-associated%20disorders&journal=Cell%20Death%20Dis.&doi=10.1038%2Fs41419-017-0058-8&volume=9&publication_year=2018&author=Wang%2CX&author=Yousefi%2CS&author=Simon%2CHU"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="72."><p class="c-article-references__text" id="ref-CR72">Newton, K. et al. Activity of protein kinase RIPK3 determines whether cells die by necroptosis or apoptosis. <i>Science</i> <b>343</b>, 1357–1360 (2014).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1126/science.1249361" data-track-item_id="10.1126/science.1249361" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1126%2Fscience.1249361" aria-label="Article reference 72" data-doi="10.1126/science.1249361">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2cXktl2gs7g%3D" aria-label="CAS reference 72">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=24557836" aria-label="PubMed reference 72">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 72" href="http://scholar.google.com/scholar_lookup?&title=Activity%20of%20protein%20kinase%20RIPK3%20determines%20whether%20cells%20die%20by%20necroptosis%20or%20apoptosis&journal=Science&doi=10.1126%2Fscience.1249361&volume=343&pages=1357-1360&publication_year=2014&author=Newton%2CK"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="73."><p class="c-article-references__text" id="ref-CR73">Lawlor, K. E. et al. RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL. <i>Nat. Commun.</i> <b>6</b>, 6282 (2015).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/ncomms7282" data-track-item_id="10.1038/ncomms7282" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fncomms7282" aria-label="Article reference 73" data-doi="10.1038/ncomms7282">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2MXhtF2itLrK" aria-label="CAS reference 73">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25693118" aria-label="PubMed reference 73">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 73" href="http://scholar.google.com/scholar_lookup?&title=RIPK3%20promotes%20cell%20death%20and%20NLRP3%20inflammasome%20activation%20in%20the%20absence%20of%20MLKL&journal=Nat.%20Commun.&doi=10.1038%2Fncomms7282&volume=6&publication_year=2015&author=Lawlor%2CKE"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="74."><p class="c-article-references__text" id="ref-CR74">Shan, B., Pan, H., Najafov, A. & Yuan, J. Necroptosis in development and diseases. <i>Genes Dev.</i> <b>32</b>, 327–340 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1101/gad.312561.118" data-track-item_id="10.1101/gad.312561.118" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1101%2Fgad.312561.118" aria-label="Article reference 74" data-doi="10.1101/gad.312561.118">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXpsVSmsb8%3D" aria-label="CAS reference 74">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29593066" aria-label="PubMed reference 74">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5900707" aria-label="PubMed Central reference 74">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 74" href="http://scholar.google.com/scholar_lookup?&title=Necroptosis%20in%20development%20and%20diseases&journal=Genes%20Dev.&doi=10.1101%2Fgad.312561.118&volume=32&pages=327-340&publication_year=2018&author=Shan%2CB&author=Pan%2CH&author=Najafov%2CA&author=Yuan%2CJ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="75."><p class="c-article-references__text" id="ref-CR75">Dillon, C. P., Tummers, B., Baran, K. & Green, D. R. Developmental checkpoints guarded by regulated necrosis. <i>Cell. Mol. Life Sci.</i> <b>73</b>, 2125–2136 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s00018-016-2188-z" data-track-item_id="10.1007/s00018-016-2188-z" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s00018-016-2188-z" aria-label="Article reference 75" data-doi="10.1007/s00018-016-2188-z">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28Xlslektb0%3D" aria-label="CAS reference 75">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27056574" aria-label="PubMed reference 75">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 75" href="http://scholar.google.com/scholar_lookup?&title=Developmental%20checkpoints%20guarded%20by%20regulated%20necrosis&journal=Cell.%20Mol.%20Life%20Sci.&doi=10.1007%2Fs00018-016-2188-z&volume=73&pages=2125-2136&publication_year=2016&author=Dillon%2CCP&author=Tummers%2CB&author=Baran%2CK&author=Green%2CDR"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="76."><p class="c-article-references__text" id="ref-CR76">Galluzzi, L., Kepp, O., Chan, F. K. & Kroemer, G. Necroptosis: mechanisms and relevance to disease. <i>Annu. Rev. Pathol.</i> <b>12</b>, 103–130 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1146/annurev-pathol-052016-100247" data-track-item_id="10.1146/annurev-pathol-052016-100247" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1146%2Fannurev-pathol-052016-100247" aria-label="Article reference 76" data-doi="10.1146/annurev-pathol-052016-100247">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28XitVyis7rL" aria-label="CAS reference 76">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27959630" aria-label="PubMed reference 76">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 76" href="http://scholar.google.com/scholar_lookup?&title=Necroptosis%3A%20mechanisms%20and%20relevance%20to%20disease&journal=Annu.%20Rev.%20Pathol.&doi=10.1146%2Fannurev-pathol-052016-100247&volume=12&pages=103-130&publication_year=2017&author=Galluzzi%2CL&author=Kepp%2CO&author=Chan%2CFK&author=Kroemer%2CG"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="77."><p class="c-article-references__text" id="ref-CR77">Vanden Berghe, T. et al. Passenger mutations confound interpretation of all genetically modified congenic mice. <i>Immunity</i> <b>43</b>, 200–209 (2015).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.immuni.2015.06.011" data-track-item_id="10.1016/j.immuni.2015.06.011" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.immuni.2015.06.011" aria-label="Article reference 77" data-doi="10.1016/j.immuni.2015.06.011">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2MXhtFehtbjK" aria-label="CAS reference 77">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26163370" aria-label="PubMed reference 77">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 77" href="http://scholar.google.com/scholar_lookup?&title=Passenger%20mutations%20confound%20interpretation%20of%20all%20genetically%20modified%20congenic%20mice&journal=Immunity&doi=10.1016%2Fj.immuni.2015.06.011&volume=43&pages=200-209&publication_year=2015&author=Vanden%20Berghe%2CT"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="78."><p class="c-article-references__text" id="ref-CR78">Fink, S. L. & Cookson, B. T. Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. <i>Infect. Immun.</i> <b>73</b>, 1907–1916 (2005).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1128/IAI.73.4.1907-1916.2005" data-track-item_id="10.1128/IAI.73.4.1907-1916.2005" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1128%2FIAI.73.4.1907-1916.2005" aria-label="Article reference 78" data-doi="10.1128/IAI.73.4.1907-1916.2005">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD2MXjtFygt78%3D" aria-label="CAS reference 78">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15784530" aria-label="PubMed reference 78">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1087413" aria-label="PubMed Central reference 78">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 78" href="http://scholar.google.com/scholar_lookup?&title=Apoptosis%2C%20pyroptosis%2C%20and%20necrosis%3A%20mechanistic%20description%20of%20dead%20and%20dying%20eukaryotic%20cells&journal=Infect.%20Immun.&doi=10.1128%2FIAI.73.4.1907-1916.2005&volume=73&pages=1907-1916&publication_year=2005&author=Fink%2CSL&author=Cookson%2CBT"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="79."><p class="c-article-references__text" id="ref-CR79">Brennan, M. A. & Cookson, B. T. Salmonella induces macrophage death by caspase-1-dependent necrosis. <i>Mol. Microbiol.</i> <b>38</b>, 31–40 (2000).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1046/j.1365-2958.2000.02103.x" data-track-item_id="10.1046/j.1365-2958.2000.02103.x" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1046%2Fj.1365-2958.2000.02103.x" aria-label="Article reference 79" data-doi="10.1046/j.1365-2958.2000.02103.x">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD3cXnsVejsro%3D" aria-label="CAS reference 79">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11029688" aria-label="PubMed reference 79">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 79" href="http://scholar.google.com/scholar_lookup?&title=Salmonella%20induces%20macrophage%20death%20by%20caspase-1-dependent%20necrosis&journal=Mol.%20Microbiol.&doi=10.1046%2Fj.1365-2958.2000.02103.x&volume=38&pages=31-40&publication_year=2000&author=Brennan%2CMA&author=Cookson%2CBT"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="80."><p class="c-article-references__text" id="ref-CR80">Hersh, D. et al. The Salmonella invasin SipB induces macrophage apoptosis by binding to caspase-1. <i>Proc. Natl Acad. Sci. USA</i> <b>96</b>, 2396–2401 (1999).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1073/pnas.96.5.2396" data-track-item_id="10.1073/pnas.96.5.2396" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1073%2Fpnas.96.5.2396" aria-label="Article reference 80" data-doi="10.1073/pnas.96.5.2396">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DyaK1MXhvVSqtbw%3D" aria-label="CAS reference 80">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10051653" aria-label="PubMed reference 80">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC26795" aria-label="PubMed Central reference 80">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 80" href="http://scholar.google.com/scholar_lookup?&title=The%20Salmonella%20invasin%20SipB%20induces%20macrophage%20apoptosis%20by%20binding%20to%20caspase-1&journal=Proc.%20Natl%20Acad.%20Sci.%20USA&doi=10.1073%2Fpnas.96.5.2396&volume=96&pages=2396-2401&publication_year=1999&author=Hersh%2CD"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="81."><p class="c-article-references__text" id="ref-CR81">Broz, P. & Dixit, V. M. Inflammasomes: mechanism of assembly, regulation and signalling. <i>Nat. Rev. Immunol.</i> <b>16</b>, 407–420 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nri.2016.58" data-track-item_id="10.1038/nri.2016.58" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnri.2016.58" aria-label="Article reference 81" data-doi="10.1038/nri.2016.58">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28Xps1Srt7k%3D" aria-label="CAS reference 81">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27291964" aria-label="PubMed reference 81">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 81" href="http://scholar.google.com/scholar_lookup?&title=Inflammasomes%3A%20mechanism%20of%20assembly%2C%20regulation%20and%20signalling&journal=Nat.%20Rev.%20Immunol.&doi=10.1038%2Fnri.2016.58&volume=16&pages=407-420&publication_year=2016&author=Broz%2CP&author=Dixit%2CVM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="82."><p class="c-article-references__text" id="ref-CR82">Chen, X. et al. Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis. <i>Cell Res.</i> <b>26</b>, 1007–1020 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/cr.2016.100" data-track-item_id="10.1038/cr.2016.100" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fcr.2016.100" aria-label="Article reference 82" data-doi="10.1038/cr.2016.100">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28XhsVels7zE" aria-label="CAS reference 82">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27573174" aria-label="PubMed reference 82">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5034106" aria-label="PubMed Central reference 82">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 82" href="http://scholar.google.com/scholar_lookup?&title=Pyroptosis%20is%20driven%20by%20non-selective%20gasdermin-D%20pore%20and%20its%20morphology%20is%20different%20from%20MLKL%20channel-mediated%20necroptosis&journal=Cell%20Res.&doi=10.1038%2Fcr.2016.100&volume=26&pages=1007-1020&publication_year=2016&author=Chen%2CX"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="83."><p class="c-article-references__text" id="ref-CR83">Rathkey, J. K. et al. Chemical disruption of the pyroptotic pore-forming protein gasdermin D inhibits inflammatory cell death and sepsis. <i>Sci. Immunol</i>. <a href="https://doi.org/10.1126/sciimmunol.aat2738" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1126/sciimmunol.aat2738">https://doi.org/10.1126/sciimmunol.aat2738</a> (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1126/sciimmunol.aat2738" data-track-item_id="10.1126/sciimmunol.aat2738" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1126%2Fsciimmunol.aat2738" aria-label="Article reference 83" data-doi="10.1126/sciimmunol.aat2738">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30143556" aria-label="PubMed reference 83">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6462819" aria-label="PubMed Central reference 83">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 83" href="http://scholar.google.com/scholar_lookup?&title=Chemical%20disruption%20of%20the%20pyroptotic%20pore-forming%20protein%20gasdermin%20D%20inhibits%20inflammatory%20cell%20death%20and%20sepsis&journal=Science%20Immunology&doi=10.1126%2Fsciimmunol.aat2738&volume=3&issue=26&publication_year=2018&author=Rathkey%2CJoseph%20K.&author=Zhao%2CJunjie&author=Liu%2CZhonghua&author=Chen%2CYinghua&author=Yang%2CJie&author=Kondolf%2CHannah%20C.&author=Benson%2CBryan%20L.&author=Chirieleison%2CSteven%20M.&author=Huang%2CAlex%20Y.&author=Dubyak%2CGeorge%20R.&author=Xiao%2CTsan%20S.&author=Li%2CXiaoxia&author=Abbott%2CDerek%20W."> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="84."><p class="c-article-references__text" id="ref-CR84">He, Y., Zeng, M. Y., Yang, D., Motro, B. & Nunez, G. NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux. <i>Nature</i> <b>530</b>, 354–357 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nature16959" data-track-item_id="10.1038/nature16959" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnature16959" aria-label="Article reference 84" data-doi="10.1038/nature16959">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28XhsFyitbY%3D" aria-label="CAS reference 84">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26814970" aria-label="PubMed reference 84">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4810788" aria-label="PubMed Central reference 84">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 84" href="http://scholar.google.com/scholar_lookup?&title=NEK7%20is%20an%20essential%20mediator%20of%20NLRP3%20activation%20downstream%20of%20potassium%20efflux&journal=Nature&doi=10.1038%2Fnature16959&volume=530&pages=354-357&publication_year=2016&author=He%2CY&author=Zeng%2CMY&author=Yang%2CD&author=Motro%2CB&author=Nunez%2CG"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="85."><p class="c-article-references__text" id="ref-CR85">Fernandes-Alnemri, T. et al. The AIM2 inflammasome is critical for innate immunity to Francisella tularensis. <i>Nat. Immunol.</i> <b>11</b>, 385–393 (2010).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/ni.1859" data-track-item_id="10.1038/ni.1859" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fni.1859" aria-label="Article reference 85" data-doi="10.1038/ni.1859">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3cXjvFartro%3D" aria-label="CAS reference 85">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20351693" aria-label="PubMed reference 85">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3111085" aria-label="PubMed Central reference 85">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 85" href="http://scholar.google.com/scholar_lookup?&title=The%20AIM2%20inflammasome%20is%20critical%20for%20innate%20immunity%20to%20Francisella%20tularensis&journal=Nat.%20Immunol.&doi=10.1038%2Fni.1859&volume=11&pages=385-393&publication_year=2010&author=Fernandes-Alnemri%2CT"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="86."><p class="c-article-references__text" id="ref-CR86">Rathinam, V. A. et al. The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. <i>Nat. Immunol.</i> <b>11</b>, 395–402 (2010).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/ni.1864" data-track-item_id="10.1038/ni.1864" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fni.1864" aria-label="Article reference 86" data-doi="10.1038/ni.1864">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3cXjvFartrs%3D" aria-label="CAS reference 86">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20351692" aria-label="PubMed reference 86">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2887480" aria-label="PubMed Central reference 86">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 86" href="http://scholar.google.com/scholar_lookup?&title=The%20AIM2%20inflammasome%20is%20essential%20for%20host%20defense%20against%20cytosolic%20bacteria%20and%20DNA%20viruses&journal=Nat.%20Immunol.&doi=10.1038%2Fni.1864&volume=11&pages=395-402&publication_year=2010&author=Rathinam%2CVA"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="87."><p class="c-article-references__text" id="ref-CR87">Kayagaki, N. et al. Non-canonical inflammasome activation targets caspase-11. <i>Nature</i> <b>479</b>, 117–121 (2011).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nature10558" data-track-item_id="10.1038/nature10558" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnature10558" aria-label="Article reference 87" data-doi="10.1038/nature10558">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3MXhtlWksr7E" aria-label="CAS reference 87">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22002608" aria-label="PubMed reference 87">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 87" href="http://scholar.google.com/scholar_lookup?&title=Non-canonical%20inflammasome%20activation%20targets%20caspase-11&journal=Nature&doi=10.1038%2Fnature10558&volume=479&pages=117-121&publication_year=2011&author=Kayagaki%2CN"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="88."><p class="c-article-references__text" id="ref-CR88">Shi, J. et al. Inflammatory caspases are innate immune receptors for intracellular LPS. <i>Nature</i> <b>514</b>, 187–192 (2014).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nature13683" data-track-item_id="10.1038/nature13683" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnature13683" aria-label="Article reference 88" data-doi="10.1038/nature13683">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2cXhslaqs77F" aria-label="CAS reference 88">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25119034" aria-label="PubMed reference 88">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 88" href="http://scholar.google.com/scholar_lookup?&title=Inflammatory%20caspases%20are%20innate%20immune%20receptors%20for%20intracellular%20LPS&journal=Nature&doi=10.1038%2Fnature13683&volume=514&pages=187-192&publication_year=2014&author=Shi%2CJ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="89."><p class="c-article-references__text" id="ref-CR89">Hagar, J. A., Powell, D. A., Aachoui, Y., Ernst, R. K. & Miao, E. A. Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. <i>Science</i> <b>341</b>, 1250–1253 (2013).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1126/science.1240988" data-track-item_id="10.1126/science.1240988" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1126%2Fscience.1240988" aria-label="Article reference 89" data-doi="10.1126/science.1240988">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3sXhsVWrs7nF" aria-label="CAS reference 89">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=24031018" aria-label="PubMed reference 89">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3931427" aria-label="PubMed Central reference 89">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 89" href="http://scholar.google.com/scholar_lookup?&title=Cytoplasmic%20LPS%20activates%20caspase-11%3A%20implications%20in%20TLR4-independent%20endotoxic%20shock&journal=Science&doi=10.1126%2Fscience.1240988&volume=341&pages=1250-1253&publication_year=2013&author=Hagar%2CJA&author=Powell%2CDA&author=Aachoui%2CY&author=Ernst%2CRK&author=Miao%2CEA"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="90."><p class="c-article-references__text" id="ref-CR90">Kayagaki, N. et al. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. <i>Science</i> <b>341</b>, 1246–1249 (2013).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1126/science.1240248" data-track-item_id="10.1126/science.1240248" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1126%2Fscience.1240248" aria-label="Article reference 90" data-doi="10.1126/science.1240248">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3sXhsVWrs7nE" aria-label="CAS reference 90">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=23887873" aria-label="PubMed reference 90">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 90" href="http://scholar.google.com/scholar_lookup?&title=Noncanonical%20inflammasome%20activation%20by%20intracellular%20LPS%20independent%20of%20TLR4&journal=Science&doi=10.1126%2Fscience.1240248&volume=341&pages=1246-1249&publication_year=2013&author=Kayagaki%2CN"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="91."><p class="c-article-references__text" id="ref-CR91">Vanaja, S. K. et al. Bacterial outer membrane vesicles mediate cytosolic localization of LPS and caspase-11 activation. <i>Cell</i> <b>165</b>, 1106–1119 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.cell.2016.04.015" data-track-item_id="10.1016/j.cell.2016.04.015" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.cell.2016.04.015" aria-label="Article reference 91" data-doi="10.1016/j.cell.2016.04.015">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28XnsFWksLs%3D" aria-label="CAS reference 91">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27156449" aria-label="PubMed reference 91">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4874922" aria-label="PubMed Central reference 91">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 91" href="http://scholar.google.com/scholar_lookup?&title=Bacterial%20outer%20membrane%20vesicles%20mediate%20cytosolic%20localization%20of%20LPS%20and%20caspase-11%20activation&journal=Cell&doi=10.1016%2Fj.cell.2016.04.015&volume=165&pages=1106-1119&publication_year=2016&author=Vanaja%2CSK"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="92."><p class="c-article-references__text" id="ref-CR92">Deng, M. et al. The endotoxin delivery protein HMGB1 mediates caspase-11-dependent lethality in sepsis. <i>Immunity</i> <b>49</b>, 740–753 e747 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.immuni.2018.08.016" data-track-item_id="10.1016/j.immuni.2018.08.016" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.immuni.2018.08.016" aria-label="Article reference 92" data-doi="10.1016/j.immuni.2018.08.016">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXhvVOqsb%2FM" aria-label="CAS reference 92">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30314759" aria-label="PubMed reference 92">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6300139" aria-label="PubMed Central reference 92">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 92" href="http://scholar.google.com/scholar_lookup?&title=The%20endotoxin%20delivery%20protein%20HMGB1%20mediates%20caspase-11-dependent%20lethality%20in%20sepsis&journal=Immunity&doi=10.1016%2Fj.immuni.2018.08.016&volume=49&pages=740-753%20e747&publication_year=2018&author=Deng%2CM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="93."><p class="c-article-references__text" id="ref-CR93">Rathinam, V. A. et al. TRIF licenses caspase-11-dependent NLRP3 inflammasome activation by gram-negative bacteria. <i>Cell</i> <b>150</b>, 606–619 (2012).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.cell.2012.07.007" data-track-item_id="10.1016/j.cell.2012.07.007" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.cell.2012.07.007" aria-label="Article reference 93" data-doi="10.1016/j.cell.2012.07.007">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC38XhtVOltr3E" aria-label="CAS reference 93">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22819539" aria-label="PubMed reference 93">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660860" aria-label="PubMed Central reference 93">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 93" href="http://scholar.google.com/scholar_lookup?&title=TRIF%20licenses%20caspase-11-dependent%20NLRP3%20inflammasome%20activation%20by%20gram-negative%20bacteria&journal=Cell&doi=10.1016%2Fj.cell.2012.07.007&volume=150&pages=606-619&publication_year=2012&author=Rathinam%2CVA"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="94."><p class="c-article-references__text" id="ref-CR94">Man, S. M. et al. IRGB10 Liberates Bacterial Ligands For Sensing by the AIM2 and Caspase-11-NLRP3 Inflammasomes. <i>Cell</i> <b>167</b>, 382–396 e317 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.cell.2016.09.012" data-track-item_id="10.1016/j.cell.2016.09.012" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.cell.2016.09.012" aria-label="Article reference 94" data-doi="10.1016/j.cell.2016.09.012">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28XhsF2qtLbK" aria-label="CAS reference 94">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27693356" aria-label="PubMed reference 94">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5074697" aria-label="PubMed Central reference 94">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 94" href="http://scholar.google.com/scholar_lookup?&title=IRGB10%20Liberates%20Bacterial%20Ligands%20For%20Sensing%20by%20the%20AIM2%20and%20Caspase-11-NLRP3%20Inflammasomes&journal=Cell&doi=10.1016%2Fj.cell.2016.09.012&volume=167&pages=382-396%20e317&publication_year=2016&author=Man%2CSM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="95."><p class="c-article-references__text" id="ref-CR95">Lu, B. et al. Novel role of PKR in inflammasome activation and HMGB1 release. <i>Nature</i> <b>488</b>, 670–674 (2012).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nature11290" data-track-item_id="10.1038/nature11290" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnature11290" aria-label="Article reference 95" data-doi="10.1038/nature11290">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC38XhtFWmsLbF" aria-label="CAS reference 95">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22801494" aria-label="PubMed reference 95">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4163918" aria-label="PubMed Central reference 95">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 95" href="http://scholar.google.com/scholar_lookup?&title=Novel%20role%20of%20PKR%20in%20inflammasome%20activation%20and%20HMGB1%20release&journal=Nature&doi=10.1038%2Fnature11290&volume=488&pages=670-674&publication_year=2012&author=Lu%2CB"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="96."><p class="c-article-references__text" id="ref-CR96">Xie, M. et al. PKM2-dependent glycolysis promotes NLRP3 and AIM2 inflammasome activation. <i>Nat. Commun.</i> <b>7</b>, 13280 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/ncomms13280" data-track-item_id="10.1038/ncomms13280" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fncomms13280" aria-label="Article reference 96" data-doi="10.1038/ncomms13280">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28XhslGrtLrO" aria-label="CAS reference 96">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27779186" aria-label="PubMed reference 96">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5093342" aria-label="PubMed Central reference 96">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 96" href="http://scholar.google.com/scholar_lookup?&title=PKM2-dependent%20glycolysis%20promotes%20NLRP3%20and%20AIM2%20inflammasome%20activation&journal=Nat.%20Commun.&doi=10.1038%2Fncomms13280&volume=7&publication_year=2016&author=Xie%2CM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="97."><p class="c-article-references__text" id="ref-CR97">Yang, L. et al. PKM2 regulates the Warburg effect and promotes HMGB1 release in sepsis. <i>Nat. Commun.</i> <b>5</b>, 4436 (2014).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/ncomms5436" data-track-item_id="10.1038/ncomms5436" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fncomms5436" aria-label="Article reference 97" data-doi="10.1038/ncomms5436">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2MXksVCiu7k%3D" aria-label="CAS reference 97">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25019241" aria-label="PubMed reference 97">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 97" href="http://scholar.google.com/scholar_lookup?&title=PKM2%20regulates%20the%20Warburg%20effect%20and%20promotes%20HMGB1%20release%20in%20sepsis&journal=Nat.%20Commun.&doi=10.1038%2Fncomms5436&volume=5&publication_year=2014&author=Yang%2CL"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="98."><p class="c-article-references__text" id="ref-CR98">Moon, J. S. et al. mTORC1-Induced HK1-dependent glycolysis regulates NLRP3 inflammasome activation. <i>Cell Rep</i> <b>12</b>, 102–115 (2015).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.celrep.2015.05.046" data-track-item_id="10.1016/j.celrep.2015.05.046" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.celrep.2015.05.046" aria-label="Article reference 98" data-doi="10.1016/j.celrep.2015.05.046">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2MXhtV2itbjF" aria-label="CAS reference 98">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26119735" aria-label="PubMed reference 98">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4858438" aria-label="PubMed Central reference 98">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 98" href="http://scholar.google.com/scholar_lookup?&title=mTORC1-Induced%20HK1-dependent%20glycolysis%20regulates%20NLRP3%20inflammasome%20activation&journal=Cell%20Rep&doi=10.1016%2Fj.celrep.2015.05.046&volume=12&pages=102-115&publication_year=2015&author=Moon%2CJS"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="99."><p class="c-article-references__text" id="ref-CR99">Ding, J. et al. Pore-forming activity and structural autoinhibition of the gasdermin family. <i>Nature</i> <b>535</b>, 111–116 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nature18590" data-track-item_id="10.1038/nature18590" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnature18590" aria-label="Article reference 99" data-doi="10.1038/nature18590">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28XpsVCqsLo%3D" aria-label="CAS reference 99">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27281216" aria-label="PubMed reference 99">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 99" href="http://scholar.google.com/scholar_lookup?&title=Pore-forming%20activity%20and%20structural%20autoinhibition%20of%20the%20gasdermin%20family&journal=Nature&doi=10.1038%2Fnature18590&volume=535&pages=111-116&publication_year=2016&author=Ding%2CJ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="100."><p class="c-article-references__text" id="ref-CR100">Liu, X. et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. <i>Nature</i> <b>535</b>, 153–158 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nature18629" data-track-item_id="10.1038/nature18629" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnature18629" aria-label="Article reference 100" data-doi="10.1038/nature18629">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28XhtFensL7K" aria-label="CAS reference 100">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27383986" aria-label="PubMed reference 100">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5539988" aria-label="PubMed Central reference 100">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 100" href="http://scholar.google.com/scholar_lookup?&title=Inflammasome-activated%20gasdermin%20D%20causes%20pyroptosis%20by%20forming%20membrane%20pores&journal=Nature&doi=10.1038%2Fnature18629&volume=535&pages=153-158&publication_year=2016&author=Liu%2CX"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="101."><p class="c-article-references__text" id="ref-CR101">Kayagaki, N. et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. <i>Nature</i> <b>526</b>, 666–671 (2015).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nature15541" data-track-item_id="10.1038/nature15541" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnature15541" aria-label="Article reference 101" data-doi="10.1038/nature15541">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2MXhslCnu77N" aria-label="CAS reference 101">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26375259" aria-label="PubMed reference 101">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 101" href="http://scholar.google.com/scholar_lookup?&title=Caspase-11%20cleaves%20gasdermin%20D%20for%20non-canonical%20inflammasome%20signalling&journal=Nature&doi=10.1038%2Fnature15541&volume=526&pages=666-671&publication_year=2015&author=Kayagaki%2CN"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="102."><p class="c-article-references__text" id="ref-CR102">Shi, J. et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. <i>Nature</i> <b>526</b>, 660–665 (2015).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nature15514" data-track-item_id="10.1038/nature15514" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnature15514" aria-label="Article reference 102" data-doi="10.1038/nature15514">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2MXhsFersL3M" aria-label="CAS reference 102">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26375003" aria-label="PubMed reference 102">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 102" href="http://scholar.google.com/scholar_lookup?&title=Cleavage%20of%20GSDMD%20by%20inflammatory%20caspases%20determines%20pyroptotic%20cell%20death&journal=Nature&doi=10.1038%2Fnature15514&volume=526&pages=660-665&publication_year=2015&author=Shi%2CJ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="103."><p class="c-article-references__text" id="ref-CR103">He, W. T. et al. Gasdermin D is an executor of pyroptosis and required for interleukin-1beta secretion. <i>Cell Res.</i> <b>25</b>, 1285–1298 (2015).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/cr.2015.139" data-track-item_id="10.1038/cr.2015.139" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fcr.2015.139" aria-label="Article reference 103" data-doi="10.1038/cr.2015.139">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2MXhvFGntLnI" aria-label="CAS reference 103">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26611636" aria-label="PubMed reference 103">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4670995" aria-label="PubMed Central reference 103">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 103" href="http://scholar.google.com/scholar_lookup?&title=Gasdermin%20D%20is%20an%20executor%20of%20pyroptosis%20and%20required%20for%20interleukin-1beta%20secretion&journal=Cell%20Res.&doi=10.1038%2Fcr.2015.139&volume=25&pages=1285-1298&publication_year=2015&author=He%2CWT"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="104."><p class="c-article-references__text" id="ref-CR104">Lee, B. L. et al. Caspase-11 auto-proteolysis is crucial for noncanonical inflammasome activation. <i>J. Exp. Med.</i> <b>215</b>, 2279–2288 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1084/jem.20180589" data-track-item_id="10.1084/jem.20180589" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1084%2Fjem.20180589" aria-label="Article reference 104" data-doi="10.1084/jem.20180589">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXitVKmtLbP" aria-label="CAS reference 104">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30135078" aria-label="PubMed reference 104">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6122968" aria-label="PubMed Central reference 104">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 104" href="http://scholar.google.com/scholar_lookup?&title=Caspase-11%20auto-proteolysis%20is%20crucial%20for%20noncanonical%20inflammasome%20activation&journal=J.%20Exp.%20Med.&doi=10.1084%2Fjem.20180589&volume=215&pages=2279-2288&publication_year=2018&author=Lee%2CBL"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="105."><p class="c-article-references__text" id="ref-CR105">Kang, R. et al. Lipid peroxidation drives gasdermin D-mediated pyroptosis in lethal polymicrobial sepsis. <i>Cell Host. Microbe.</i> <b>24</b>, 97–108 e104 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.chom.2018.05.009" data-track-item_id="10.1016/j.chom.2018.05.009" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.chom.2018.05.009" aria-label="Article reference 105" data-doi="10.1016/j.chom.2018.05.009">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXhtFyms7%2FI" aria-label="CAS reference 105">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29937272" aria-label="PubMed reference 105">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6043361" aria-label="PubMed Central reference 105">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 105" href="http://scholar.google.com/scholar_lookup?&title=Lipid%20peroxidation%20drives%20gasdermin%20D-mediated%20pyroptosis%20in%20lethal%20polymicrobial%20sepsis&journal=Cell%20Host.%20Microbe.&doi=10.1016%2Fj.chom.2018.05.009&volume=24&pages=97-108%20e104&publication_year=2018&author=Kang%2CR"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="106."><p class="c-article-references__text" id="ref-CR106">Chen, R. et al. cAMP metabolism controls caspase-11 inflammasome activation and pyroptosis in sepsis. <i>Sci. Adv</i>. <a href="https://doi.org/10.1126/sciadv.1601167" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1126/sciadv.1601167">https://doi.org/10.1126/sciadv.1601167</a> (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1126/sciadv.1601167" data-track-item_id="10.1126/sciadv.1601167" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1126%2Fsciadv.1601167" aria-label="Article reference 106" data-doi="10.1126/sciadv.1601167">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27617292" aria-label="PubMed reference 106">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5010369" aria-label="PubMed Central reference 106">PubMed Central</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXltVWisb4%3D" aria-label="CAS reference 106">CAS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 106" href="http://scholar.google.com/scholar_lookup?&title=A%20C9ORF72%2FSMCR8-containing%20complex%20regulates%20ULK1%20and%20plays%20a%20dual%20role%20in%20autophagy&journal=Science%20Advances&doi=10.1126%2Fsciadv.1601167&volume=2&issue=9&publication_year=2016&author=Yang%2CMei&author=Liang%2CChen&author=Swaminathan%2CKunchithapadam&author=Herrlinger%2CStephanie&author=Lai%2CFan&author=Shiekhattar%2CRamin&author=Chen%2CJian-Fu"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="107."><p class="c-article-references__text" id="ref-CR107">Ruhl, S. et al. ESCRT-dependent membrane repair negatively regulates pyroptosis downstream of GSDMD activation. <i>Science</i> <b>362</b>, 956–960 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1126/science.aar7607" data-track-item_id="10.1126/science.aar7607" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1126%2Fscience.aar7607" aria-label="Article reference 107" data-doi="10.1126/science.aar7607">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30467171" aria-label="PubMed reference 107">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXit1CitbzE" aria-label="CAS reference 107">CAS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 107" href="http://scholar.google.com/scholar_lookup?&title=ESCRT-dependent%20membrane%20repair%20negatively%20regulates%20pyroptosis%20downstream%20of%20GSDMD%20activation&journal=Science&doi=10.1126%2Fscience.aar7607&volume=362&pages=956-960&publication_year=2018&author=Ruhl%2CS"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="108."><p class="c-article-references__text" id="ref-CR108">Orning, P. et al. Pathogen blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin D and cell death. <i>Science</i> <b>362</b>, 1064–1069 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1126/science.aau2818" data-track-item_id="10.1126/science.aau2818" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1126%2Fscience.aau2818" aria-label="Article reference 108" data-doi="10.1126/science.aau2818">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXitlWhtLjF" aria-label="CAS reference 108">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30361383" aria-label="PubMed reference 108">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6522129" aria-label="PubMed Central reference 108">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 108" href="http://scholar.google.com/scholar_lookup?&title=Pathogen%20blockade%20of%20TAK1%20triggers%20caspase-8-dependent%20cleavage%20of%20gasdermin%20D%20and%20cell%20death&journal=Science&doi=10.1126%2Fscience.aau2818&volume=362&pages=1064-1069&publication_year=2018&author=Orning%2CP"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="109."><p class="c-article-references__text" id="ref-CR109">Sarhan, J. et al. Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during Yersinia infection. <i>Proc. Natl Acad. Sci. USA</i> <b>115</b>, E10888–E10897 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1073/pnas.1809548115" data-track-item_id="10.1073/pnas.1809548115" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1073%2Fpnas.1809548115" aria-label="Article reference 109" data-doi="10.1073/pnas.1809548115">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXit1SgtL7P" aria-label="CAS reference 109">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30381458" aria-label="PubMed reference 109">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6243247" aria-label="PubMed Central reference 109">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 109" href="http://scholar.google.com/scholar_lookup?&title=Caspase-8%20induces%20cleavage%20of%20gasdermin%20D%20to%20elicit%20pyroptosis%20during%20Yersinia%20infection&journal=Proc.%20Natl%20Acad.%20Sci.%20USA&doi=10.1073%2Fpnas.1809548115&volume=115&pages=E10888-E10897&publication_year=2018&author=Sarhan%2CJ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="110."><p class="c-article-references__text" id="ref-CR110">Wang, Y. et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. <i>Nature</i> <b>547</b>, 99–103 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nature22393" data-track-item_id="10.1038/nature22393" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnature22393" aria-label="Article reference 110" data-doi="10.1038/nature22393">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXhtFaqt7nN" aria-label="CAS reference 110">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28459430" aria-label="PubMed reference 110">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 110" href="http://scholar.google.com/scholar_lookup?&title=Chemotherapy%20drugs%20induce%20pyroptosis%20through%20caspase-3%20cleavage%20of%20a%20gasdermin&journal=Nature&doi=10.1038%2Fnature22393&volume=547&pages=99-103&publication_year=2017&author=Wang%2CY"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="111."><p class="c-article-references__text" id="ref-CR111">Kambara, H. et al. Gasdermin D exerts anti-inflammatory effects by promoting neutrophil death. <i>Cell Rep</i> <b>22</b>, 2924–2936 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.celrep.2018.02.067" data-track-item_id="10.1016/j.celrep.2018.02.067" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.celrep.2018.02.067" aria-label="Article reference 111" data-doi="10.1016/j.celrep.2018.02.067">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXkslSgtrs%3D" aria-label="CAS reference 111">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29539421" aria-label="PubMed reference 111">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5878047" aria-label="PubMed Central reference 111">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 111" href="http://scholar.google.com/scholar_lookup?&title=Gasdermin%20D%20exerts%20anti-inflammatory%20effects%20by%20promoting%20neutrophil%20death&journal=Cell%20Rep&doi=10.1016%2Fj.celrep.2018.02.067&volume=22&pages=2924-2936&publication_year=2018&author=Kambara%2CH"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="112."><p class="c-article-references__text" id="ref-CR112">Sollberger, G. et al. Gasdermin D plays a vital role in the generation of neutrophil extracellular traps. <i>Sci. Immunol</i>. <a href="https://doi.org/10.1126/sciimmunol.aar6689" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1126/sciimmunol.aar6689">https://doi.org/10.1126/sciimmunol.aar6689</a> (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1126/sciimmunol.aar6689" data-track-item_id="10.1126/sciimmunol.aar6689" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1126%2Fsciimmunol.aar6689" aria-label="Article reference 112" data-doi="10.1126/sciimmunol.aar6689">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30143555" aria-label="PubMed reference 112">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 112" href="http://scholar.google.com/scholar_lookup?&title=Gasdermin%20D%20plays%20a%20vital%20role%20in%20the%20generation%20of%20neutrophil%20extracellular%20traps&journal=Science%20Immunology&doi=10.1126%2Fsciimmunol.aar6689&volume=3&issue=26&publication_year=2018&author=Sollberger%2CGabriel&author=Choidas%2CAxel&author=Burn%2CGarth%20Lawrence&author=Habenberger%2CPeter&author=Di%20Lucrezia%2CRaffaella&author=Kordes%2CSusanne&author=Menninger%2CSascha&author=Eickhoff%2CJan&author=Nussbaumer%2CPeter&author=Klebl%2CBert&author=Kr%C3%BCger%2CRenate&author=Herzig%2CAlf&author=Zychlinsky%2CArturo"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="113."><p class="c-article-references__text" id="ref-CR113">Chen, K. W. et al. Noncanonical inflammasome signaling elicits gasdermin D-dependent neutrophil extracellular traps. <i>Sci. Immunol</i>. <a href="https://doi.org/10.1126/sciimmunol.aar6676" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1126/sciimmunol.aar6676">https://doi.org/10.1126/sciimmunol.aar6676</a> (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1126/sciimmunol.aar6676" data-track-item_id="10.1126/sciimmunol.aar6676" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1126%2Fsciimmunol.aar6676" aria-label="Article reference 113" data-doi="10.1126/sciimmunol.aar6676">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30143554" aria-label="PubMed reference 113">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 113" href="http://scholar.google.com/scholar_lookup?&title=Noncanonical%20inflammasome%20signaling%20elicits%20gasdermin%20D%E2%80%93dependent%20neutrophil%20extracellular%20traps&journal=Science%20Immunology&doi=10.1126%2Fsciimmunol.aar6676&volume=3&issue=26&publication_year=2018&author=Chen%2CKaiwen%20W.&author=Monteleone%2CMercedes&author=Boucher%2CDave&author=Sollberger%2CGabriel&author=Ramnath%2CDivya&author=Condon%2CNicholas%20D.&author=von%20Pein%2CJessica%20B.&author=Broz%2CPetr&author=Sweet%2CMatthew%20J.&author=Schroder%2CKate"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="114."><p class="c-article-references__text" id="ref-CR114">Evavold, C. L. et al. The pore-forming protein gasdermin D regulates interleukin-1 secretion from living macrophages. <i>Immunity</i> <b>48</b>, 35–44 e36 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.immuni.2017.11.013" data-track-item_id="10.1016/j.immuni.2017.11.013" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.immuni.2017.11.013" aria-label="Article reference 114" data-doi="10.1016/j.immuni.2017.11.013">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXhvVOrurnN" aria-label="CAS reference 114">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29195811" aria-label="PubMed reference 114">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 114" href="http://scholar.google.com/scholar_lookup?&title=The%20pore-forming%20protein%20gasdermin%20D%20regulates%20interleukin-1%20secretion%20from%20living%20macrophages&journal=Immunity&doi=10.1016%2Fj.immuni.2017.11.013&volume=48&pages=35-44%20e36&publication_year=2018&author=Evavold%2CCL"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="115."><p class="c-article-references__text" id="ref-CR115">de Vasconcelos, N. M., Van Opdenbosch, N., Van Gorp, H., Parthoens, E. & Lamkanfi, M. Single-cell analysis of pyroptosis dynamics reveals conserved GSDMD-mediated subcellular events that precede plasma membrane rupture. <i>Cell Death Differ</i>. <a href="https://doi.org/10.1038/s41418-018-0106-7" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1038/s41418-018-0106-7">https://doi.org/10.1038/s41418-018-0106-7</a> (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41418-018-0106-7" data-track-item_id="10.1038/s41418-018-0106-7" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41418-018-0106-7" aria-label="Article reference 115" data-doi="10.1038/s41418-018-0106-7">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXnvFClsrg%3D" aria-label="CAS reference 115">CAS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 115" href="http://scholar.google.com/scholar_lookup?&title=Single-cell%20analysis%20of%20pyroptosis%20dynamics%20reveals%20conserved%20GSDMD-mediated%20subcellular%20events%20that%20precede%20plasma%20membrane%20rupture&journal=Cell%20Death%20%26%20Differentiation&doi=10.1038%2Fs41418-018-0106-7&volume=26&issue=1&pages=146-161&publication_year=2018&author=de%20Vasconcelos%2CNathalia%20M.&author=Van%20Opdenbosch%2CNina&author=Van%20Gorp%2CHanne&author=Parthoens%2CEef&author=Lamkanfi%2CMohamed"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="116."><p class="c-article-references__text" id="ref-CR116">Dolma, S., Lessnick, S. L., Hahn, W. C. & Stockwell, B. R. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. <i>Cancer Cell.</i> <b>3</b>, 285–296 (2003).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/S1535-6108(03)00050-3" data-track-item_id="10.1016/S1535-6108(03)00050-3" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2FS1535-6108%2803%2900050-3" aria-label="Article reference 116" data-doi="10.1016/S1535-6108(03)00050-3">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD3sXislOrtbk%3D" aria-label="CAS reference 116">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12676586" aria-label="PubMed reference 116">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 116" href="http://scholar.google.com/scholar_lookup?&title=Identification%20of%20genotype-selective%20antitumor%20agents%20using%20synthetic%20lethal%20chemical%20screening%20in%20engineered%20human%20tumor%20cells&journal=Cancer%20Cell.&doi=10.1016%2FS1535-6108%2803%2900050-3&volume=3&pages=285-296&publication_year=2003&author=Dolma%2CS&author=Lessnick%2CSL&author=Hahn%2CWC&author=Stockwell%2CBR"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="117."><p class="c-article-references__text" id="ref-CR117">Dixon, S. J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. <i>Cell</i> <b>149</b>, 1060–1072 (2012).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.cell.2012.03.042" data-track-item_id="10.1016/j.cell.2012.03.042" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.cell.2012.03.042" aria-label="Article reference 117" data-doi="10.1016/j.cell.2012.03.042">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC38XnslSntrw%3D" aria-label="CAS reference 117">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22632970" aria-label="PubMed reference 117">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3367386" aria-label="PubMed Central reference 117">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 117" href="http://scholar.google.com/scholar_lookup?&title=Ferroptosis%3A%20an%20iron-dependent%20form%20of%20nonapoptotic%20cell%20death&journal=Cell&doi=10.1016%2Fj.cell.2012.03.042&volume=149&pages=1060-1072&publication_year=2012&author=Dixon%2CSJ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="118."><p class="c-article-references__text" id="ref-CR118">Friedmann Angeli, J. P. et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. <i>Nat. Cell Biol.</i> <b>16</b>, 1180–1191 (2014).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/ncb3064" data-track-item_id="10.1038/ncb3064" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fncb3064" aria-label="Article reference 118" data-doi="10.1038/ncb3064">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2cXhvFKlsrrF" aria-label="CAS reference 118">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25402683" aria-label="PubMed reference 118">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 118" href="http://scholar.google.com/scholar_lookup?&title=Inactivation%20of%20the%20ferroptosis%20regulator%20Gpx4%20triggers%20acute%20renal%20failure%20in%20mice&journal=Nat.%20Cell%20Biol.&doi=10.1038%2Fncb3064&volume=16&pages=1180-1191&publication_year=2014&author=Friedmann%20Angeli%2CJP"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="119."><p class="c-article-references__text" id="ref-CR119">Neitemeier, S. et al. BID links ferroptosis to mitochondrial cell death pathways. <i>Redox Biol.</i> <b>12</b>, 558–570 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.redox.2017.03.007" data-track-item_id="10.1016/j.redox.2017.03.007" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.redox.2017.03.007" aria-label="Article reference 119" data-doi="10.1016/j.redox.2017.03.007">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXlsFams7g%3D" aria-label="CAS reference 119">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28384611" aria-label="PubMed reference 119">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5382034" aria-label="PubMed Central reference 119">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 119" href="http://scholar.google.com/scholar_lookup?&title=BID%20links%20ferroptosis%20to%20mitochondrial%20cell%20death%20pathways&journal=Redox%20Biol.&doi=10.1016%2Fj.redox.2017.03.007&volume=12&pages=558-570&publication_year=2017&author=Neitemeier%2CS"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="120."><p class="c-article-references__text" id="ref-CR120">Hong, S. H. et al. Molecular crosstalk between ferroptosis and apoptosis: emerging role of ER stress-induced p53-independent PUMA expression. <i>Oncotarget</i> <b>8</b>, 115164–115178 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29383150" aria-label="PubMed reference 120">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5777762" aria-label="PubMed Central reference 120">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 120" href="http://scholar.google.com/scholar_lookup?&title=Molecular%20crosstalk%20between%20ferroptosis%20and%20apoptosis%3A%20emerging%20role%20of%20ER%20stress-induced%20p53-independent%20PUMA%20expression&journal=Oncotarget&volume=8&pages=115164-115178&publication_year=2017&author=Hong%2CSH"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="121."><p class="c-article-references__text" id="ref-CR121">Yang, W. S. et al. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. <i>Proc. Natl Acad. Sci. USA</i> <b>113</b>, E4966–E4975 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1073/pnas.1603244113" data-track-item_id="10.1073/pnas.1603244113" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1073%2Fpnas.1603244113" aria-label="Article reference 121" data-doi="10.1073/pnas.1603244113">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28XhtlSlsrnK" aria-label="CAS reference 121">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27506793" aria-label="PubMed reference 121">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5003261" aria-label="PubMed Central reference 121">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 121" href="http://scholar.google.com/scholar_lookup?&title=Peroxidation%20of%20polyunsaturated%20fatty%20acids%20by%20lipoxygenases%20drives%20ferroptosis&journal=Proc.%20Natl%20Acad.%20Sci.%20USA&doi=10.1073%2Fpnas.1603244113&volume=113&pages=E4966-E4975&publication_year=2016&author=Yang%2CWS"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="122."><p class="c-article-references__text" id="ref-CR122">Feng, H. & Stockwell, B. R. Unsolved mysteries: how does lipid peroxidation cause ferroptosis? <i>PLoS Biol.</i> <b>16</b>, e2006203 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1371/journal.pbio.2006203" data-track-item_id="10.1371/journal.pbio.2006203" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1371%2Fjournal.pbio.2006203" aria-label="Article reference 122" data-doi="10.1371/journal.pbio.2006203">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29795546" aria-label="PubMed reference 122">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5991413" aria-label="PubMed Central reference 122">PubMed Central</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXitVSmsr%2FL" aria-label="CAS reference 122">CAS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 122" href="http://scholar.google.com/scholar_lookup?&title=Unsolved%20mysteries%3A%20how%20does%20lipid%20peroxidation%20cause%20ferroptosis%3F&journal=PLoS%20Biol.&doi=10.1371%2Fjournal.pbio.2006203&volume=16&publication_year=2018&author=Feng%2CH&author=Stockwell%2CBR"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="123."><p class="c-article-references__text" id="ref-CR123">Hayano, M., Yang, W. S., Corn, C. K., Pagano, N. C. & Stockwell, B. R. Loss of cysteinyl-tRNA synthetase (CARS) induces the transsulfuration pathway and inhibits ferroptosis induced by cystine deprivation. <i>Cell Death Differ.</i> <b>23</b>, 270–278 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/cdd.2015.93" data-track-item_id="10.1038/cdd.2015.93" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fcdd.2015.93" aria-label="Article reference 123" data-doi="10.1038/cdd.2015.93">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2MXht1WrtbzE" aria-label="CAS reference 123">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26184909" aria-label="PubMed reference 123">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 123" href="http://scholar.google.com/scholar_lookup?&title=Loss%20of%20cysteinyl-tRNA%20synthetase%20%28CARS%29%20induces%20the%20transsulfuration%20pathway%20and%20inhibits%20ferroptosis%20induced%20by%20cystine%20deprivation&journal=Cell%20Death%20Differ.&doi=10.1038%2Fcdd.2015.93&volume=23&pages=270-278&publication_year=2016&author=Hayano%2CM&author=Yang%2CWS&author=Corn%2CCK&author=Pagano%2CNC&author=Stockwell%2CBR"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="124."><p class="c-article-references__text" id="ref-CR124">Yang, W. S. et al. Regulation of ferroptotic cancer cell death by GPX4. <i>Cell</i> <b>156</b>, 317–331 (2014).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.cell.2013.12.010" data-track-item_id="10.1016/j.cell.2013.12.010" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.cell.2013.12.010" aria-label="Article reference 124" data-doi="10.1016/j.cell.2013.12.010">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2cXhtF2is70%3D" aria-label="CAS reference 124">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=24439385" aria-label="PubMed reference 124">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4076414" aria-label="PubMed Central reference 124">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 124" href="http://scholar.google.com/scholar_lookup?&title=Regulation%20of%20ferroptotic%20cancer%20cell%20death%20by%20GPX4&journal=Cell&doi=10.1016%2Fj.cell.2013.12.010&volume=156&pages=317-331&publication_year=2014&author=Yang%2CWS"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="125."><p class="c-article-references__text" id="ref-CR125">Woo, J. H. et al. Elucidating compound mechanism of action by network perturbation analysis. <i>Cell</i> <b>162</b>, 441–451 (2015).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.cell.2015.05.056" data-track-item_id="10.1016/j.cell.2015.05.056" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.cell.2015.05.056" aria-label="Article reference 125" data-doi="10.1016/j.cell.2015.05.056">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2MXht1KgtLrP" aria-label="CAS reference 125">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26186195" aria-label="PubMed reference 125">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4506491" aria-label="PubMed Central reference 125">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 125" href="http://scholar.google.com/scholar_lookup?&title=Elucidating%20compound%20mechanism%20of%20action%20by%20network%20perturbation%20analysis&journal=Cell&doi=10.1016%2Fj.cell.2015.05.056&volume=162&pages=441-451&publication_year=2015&author=Woo%2CJH"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="126."><p class="c-article-references__text" id="ref-CR126">Weiwer, M. et al. Development of small-molecule probes that selectively kill cells induced to express mutant RAS. <i>Bioorg. Med. Chem. Lett.</i> <b>22</b>, 1822–1826 (2012).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.bmcl.2011.09.047" data-track-item_id="10.1016/j.bmcl.2011.09.047" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.bmcl.2011.09.047" aria-label="Article reference 126" data-doi="10.1016/j.bmcl.2011.09.047">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC38XhslCltbk%3D" aria-label="CAS reference 126">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22297109" aria-label="PubMed reference 126">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 126" href="http://scholar.google.com/scholar_lookup?&title=Development%20of%20small-molecule%20probes%20that%20selectively%20kill%20cells%20induced%20to%20express%20mutant%20RAS&journal=Bioorg.%20Med.%20Chem.%20Lett.&doi=10.1016%2Fj.bmcl.2011.09.047&volume=22&pages=1822-1826&publication_year=2012&author=Weiwer%2CM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="127."><p class="c-article-references__text" id="ref-CR127">Cao, J. Y. & Dixon, S. J. Mechanisms of ferroptosis. <i>Cell. Mol. Life Sci.</i> <b>73</b>, 2195–2209 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s00018-016-2194-1" data-track-item_id="10.1007/s00018-016-2194-1" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s00018-016-2194-1" aria-label="Article reference 127" data-doi="10.1007/s00018-016-2194-1">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28XlsValurw%3D" aria-label="CAS reference 127">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27048822" aria-label="PubMed reference 127">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4887533" aria-label="PubMed Central reference 127">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 127" href="http://scholar.google.com/scholar_lookup?&title=Mechanisms%20of%20ferroptosis&journal=Cell.%20Mol.%20Life%20Sci.&doi=10.1007%2Fs00018-016-2194-1&volume=73&pages=2195-2209&publication_year=2016&author=Cao%2CJY&author=Dixon%2CSJ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="128."><p class="c-article-references__text" id="ref-CR128">Gaschler, M. M. et al. FINO2 initiates ferroptosis through GPX4 inactivation and iron oxidation. <i>Nat. Chem. Biol.</i> <b>14</b>, 507–515 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41589-018-0031-6" data-track-item_id="10.1038/s41589-018-0031-6" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41589-018-0031-6" aria-label="Article reference 128" data-doi="10.1038/s41589-018-0031-6">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXosFGmsbY%3D" aria-label="CAS reference 128">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29610484" aria-label="PubMed reference 128">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5899674" aria-label="PubMed Central reference 128">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 128" href="http://scholar.google.com/scholar_lookup?&title=FINO2%20initiates%20ferroptosis%20through%20GPX4%20inactivation%20and%20iron%20oxidation&journal=Nat.%20Chem.%20Biol.&doi=10.1038%2Fs41589-018-0031-6&volume=14&pages=507-515&publication_year=2018&author=Gaschler%2CMM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="129."><p class="c-article-references__text" id="ref-CR129">Hassannia, B. et al. Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma. <i>J. Clin. Invest.</i> <b>128</b>, 3341–3355 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1172/JCI99032" data-track-item_id="10.1172/JCI99032" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1172%2FJCI99032" aria-label="Article reference 129" data-doi="10.1172/JCI99032">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29939160" aria-label="PubMed reference 129">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6063467" aria-label="PubMed Central reference 129">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 129" href="http://scholar.google.com/scholar_lookup?&title=Nano-targeted%20induction%20of%20dual%20ferroptotic%20mechanisms%20eradicates%20high-risk%20neuroblastoma&journal=J.%20Clin.%20Invest.&doi=10.1172%2FJCI99032&volume=128&pages=3341-3355&publication_year=2018&author=Hassannia%2CB"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="130."><p class="c-article-references__text" id="ref-CR130">Li, Q. et al. Inhibition of neuronal ferroptosis protects hemorrhagic brain. <i>JCI Insight</i> <b>2</b>, e90777 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1172/jci.insight.90777" data-track-item_id="10.1172/jci.insight.90777" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1172%2Fjci.insight.90777" aria-label="Article reference 130" data-doi="10.1172/jci.insight.90777">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28405617" aria-label="PubMed reference 130">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5374066" aria-label="PubMed Central reference 130">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 130" href="http://scholar.google.com/scholar_lookup?&title=Inhibition%20of%20neuronal%20ferroptosis%20protects%20hemorrhagic%20brain&journal=JCI%20Insight&doi=10.1172%2Fjci.insight.90777&volume=2&publication_year=2017&author=Li%2CQ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="131."><p class="c-article-references__text" id="ref-CR131">Yuan, H., Li, X., Zhang, X., Kang, R. & Tang, D. CISD1 inhibits ferroptosis by protection against mitochondrial lipid peroxidation. <i>Biochem. Biophys. Res. Commun.</i> <b>478</b>, 838–844 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.bbrc.2016.08.034" data-track-item_id="10.1016/j.bbrc.2016.08.034" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.bbrc.2016.08.034" aria-label="Article reference 131" data-doi="10.1016/j.bbrc.2016.08.034">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28Xhtlagt7jF" aria-label="CAS reference 131">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27510639" aria-label="PubMed reference 131">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 131" href="http://scholar.google.com/scholar_lookup?&title=CISD1%20inhibits%20ferroptosis%20by%20protection%20against%20mitochondrial%20lipid%20peroxidation&journal=Biochem.%20Biophys.%20Res.%20Commun.&doi=10.1016%2Fj.bbrc.2016.08.034&volume=478&pages=838-844&publication_year=2016&author=Yuan%2CH&author=Li%2CX&author=Zhang%2CX&author=Kang%2CR&author=Tang%2CD"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="132."><p class="c-article-references__text" id="ref-CR132">Yagoda, N. et al. RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. <i>Nature</i> <b>447</b>, 864–868 (2007).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nature05859" data-track-item_id="10.1038/nature05859" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnature05859" aria-label="Article reference 132" data-doi="10.1038/nature05859">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17568748" aria-label="PubMed reference 132">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3047570" aria-label="PubMed Central reference 132">PubMed Central</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD2sXms1WjsL0%3D" aria-label="CAS reference 132">CAS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 132" href="http://scholar.google.com/scholar_lookup?&title=RAS-RAF-MEK-dependent%20oxidative%20cell%20death%20involving%20voltage-dependent%20anion%20channels&journal=Nature&doi=10.1038%2Fnature05859&volume=447&pages=864-868&publication_year=2007&author=Yagoda%2CN"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="133."><p class="c-article-references__text" id="ref-CR133">Gao, M. et al. Role of mitochondria in ferroptosis. <i>Mol. Cell</i> <b>73</b>, 354–363 e353 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.molcel.2018.10.042" data-track-item_id="10.1016/j.molcel.2018.10.042" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.molcel.2018.10.042" aria-label="Article reference 133" data-doi="10.1016/j.molcel.2018.10.042">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXisF2ks7fI" aria-label="CAS reference 133">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30581146" aria-label="PubMed reference 133">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 133" href="http://scholar.google.com/scholar_lookup?&title=Role%20of%20mitochondria%20in%20ferroptosis&journal=Mol.%20Cell&doi=10.1016%2Fj.molcel.2018.10.042&volume=73&pages=354-363%20e353&publication_year=2019&author=Gao%2CM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="134."><p class="c-article-references__text" id="ref-CR134">Xie, Y. et al. Ferroptosis: process and function. <i>Cell Death Differ.</i> <b>23</b>, 369–379 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/cdd.2015.158" data-track-item_id="10.1038/cdd.2015.158" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fcdd.2015.158" aria-label="Article reference 134" data-doi="10.1038/cdd.2015.158">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28Xhsl2jtbk%3D" aria-label="CAS reference 134">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26794443" aria-label="PubMed reference 134">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5072448" aria-label="PubMed Central reference 134">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 134" href="http://scholar.google.com/scholar_lookup?&title=Ferroptosis%3A%20process%20and%20function&journal=Cell%20Death%20Differ.&doi=10.1038%2Fcdd.2015.158&volume=23&pages=369-379&publication_year=2016&author=Xie%2CY"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="135."><p class="c-article-references__text" id="ref-CR135">Seiler, A. et al. Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death. <i>Cell Metab.</i> <b>8</b>, 237–248 (2008).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.cmet.2008.07.005" data-track-item_id="10.1016/j.cmet.2008.07.005" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.cmet.2008.07.005" aria-label="Article reference 135" data-doi="10.1016/j.cmet.2008.07.005">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD1cXhtFeju77K" aria-label="CAS reference 135">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18762024" aria-label="PubMed reference 135">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 135" href="http://scholar.google.com/scholar_lookup?&title=Glutathione%20peroxidase%204%20senses%20and%20translates%20oxidative%20stress%20into%2012%2F15-lipoxygenase%20dependent-%20and%20AIF-mediated%20cell%20death&journal=Cell%20Metab.&doi=10.1016%2Fj.cmet.2008.07.005&volume=8&pages=237-248&publication_year=2008&author=Seiler%2CA"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="136."><p class="c-article-references__text" id="ref-CR136">Ran, Q. et al. Embryonic fibroblasts from Gpx4+/- mice: a novel model for studying the role of membrane peroxidation in biological processes. <i>Free Radic. Biol. Med.</i> <b>35</b>, 1101–1109 (2003).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/S0891-5849(03)00466-0" data-track-item_id="10.1016/S0891-5849(03)00466-0" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2FS0891-5849%2803%2900466-0" aria-label="Article reference 136" data-doi="10.1016/S0891-5849(03)00466-0">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD3sXot12jtLw%3D" aria-label="CAS reference 136">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14572612" aria-label="PubMed reference 136">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 136" href="http://scholar.google.com/scholar_lookup?&title=Embryonic%20fibroblasts%20from%20Gpx4%2B%2F-%20mice%3A%20a%20novel%20model%20for%20studying%20the%20role%20of%20membrane%20peroxidation%20in%20biological%20processes&journal=Free%20Radic.%20Biol.%20Med.&doi=10.1016%2FS0891-5849%2803%2900466-0&volume=35&pages=1101-1109&publication_year=2003&author=Ran%2CQ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="137."><p class="c-article-references__text" id="ref-CR137">Canli, O. et al. Glutathione peroxidase 4 prevents necroptosis in mouse erythroid precursors. <i>Blood</i> <b>127</b>, 139–148 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1182/blood-2015-06-654194" data-track-item_id="10.1182/blood-2015-06-654194" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1182%2Fblood-2015-06-654194" aria-label="Article reference 137" data-doi="10.1182/blood-2015-06-654194">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28XhtVylt7jE" aria-label="CAS reference 137">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26463424" aria-label="PubMed reference 137">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4705604" aria-label="PubMed Central reference 137">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 137" href="http://scholar.google.com/scholar_lookup?&title=Glutathione%20peroxidase%204%20prevents%20necroptosis%20in%20mouse%20erythroid%20precursors&journal=Blood&doi=10.1182%2Fblood-2015-06-654194&volume=127&pages=139-148&publication_year=2016&author=Canli%2CO"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="138."><p class="c-article-references__text" id="ref-CR138">Yang, W. S. & Stockwell, B. R. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. <i>Chem. Biol.</i> <b>15</b>, 234–245 (2008).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.chembiol.2008.02.010" data-track-item_id="10.1016/j.chembiol.2008.02.010" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.chembiol.2008.02.010" aria-label="Article reference 138" data-doi="10.1016/j.chembiol.2008.02.010">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD1cXjs1Klsrs%3D" aria-label="CAS reference 138">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18355723" aria-label="PubMed reference 138">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2683762" aria-label="PubMed Central reference 138">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 138" href="http://scholar.google.com/scholar_lookup?&title=Synthetic%20lethal%20screening%20identifies%20compounds%20activating%20iron-dependent%2C%20nonapoptotic%20cell%20death%20in%20oncogenic-RAS-harboring%20cancer%20cells&journal=Chem.%20Biol.&doi=10.1016%2Fj.chembiol.2008.02.010&volume=15&pages=234-245&publication_year=2008&author=Yang%2CWS&author=Stockwell%2CBR"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="139."><p class="c-article-references__text" id="ref-CR139">Doll, S. et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. <i>Nat. Chem. Biol.</i> <b>13</b>, 91–98 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nchembio.2239" data-track-item_id="10.1038/nchembio.2239" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnchembio.2239" aria-label="Article reference 139" data-doi="10.1038/nchembio.2239">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28XhvVGgtLrL" aria-label="CAS reference 139">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27842070" aria-label="PubMed reference 139">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 139" href="http://scholar.google.com/scholar_lookup?&title=ACSL4%20dictates%20ferroptosis%20sensitivity%20by%20shaping%20cellular%20lipid%20composition&journal=Nat.%20Chem.%20Biol.&doi=10.1038%2Fnchembio.2239&volume=13&pages=91-98&publication_year=2017&author=Doll%2CS"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="140."><p class="c-article-references__text" id="ref-CR140">Kagan, V. E. et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. <i>Nat. Chem. Biol.</i> <b>13</b>, 81–90 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nchembio.2238" data-track-item_id="10.1038/nchembio.2238" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnchembio.2238" aria-label="Article reference 140" data-doi="10.1038/nchembio.2238">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28XhvVGgtLrE" aria-label="CAS reference 140">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27842066" aria-label="PubMed reference 140">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 140" href="http://scholar.google.com/scholar_lookup?&title=Oxidized%20arachidonic%20and%20adrenic%20PEs%20navigate%20cells%20to%20ferroptosis&journal=Nat.%20Chem.%20Biol.&doi=10.1038%2Fnchembio.2238&volume=13&pages=81-90&publication_year=2017&author=Kagan%2CVE"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="141."><p class="c-article-references__text" id="ref-CR141">Yuan, H., Li, X., Zhang, X., Kang, R. & Tang, D. Identification of ACSL4 as a biomarker and contributor of ferroptosis. <i>Biochem. Biophys. Res. Commun.</i> <b>478</b>, 1338–1343 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.bbrc.2016.08.124" data-track-item_id="10.1016/j.bbrc.2016.08.124" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.bbrc.2016.08.124" aria-label="Article reference 141" data-doi="10.1016/j.bbrc.2016.08.124">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28XhsVehurnM" aria-label="CAS reference 141">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27565726" aria-label="PubMed reference 141">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 141" href="http://scholar.google.com/scholar_lookup?&title=Identification%20of%20ACSL4%20as%20a%20biomarker%20and%20contributor%20of%20ferroptosis&journal=Biochem.%20Biophys.%20Res.%20Commun.&doi=10.1016%2Fj.bbrc.2016.08.124&volume=478&pages=1338-1343&publication_year=2016&author=Yuan%2CH&author=Li%2CX&author=Zhang%2CX&author=Kang%2CR&author=Tang%2CD"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="142."><p class="c-article-references__text" id="ref-CR142">Wenzel, S. E. et al. PEBP1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals. <i>Cell</i> <b>171</b>, 628–641 e626 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.cell.2017.09.044" data-track-item_id="10.1016/j.cell.2017.09.044" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.cell.2017.09.044" aria-label="Article reference 142" data-doi="10.1016/j.cell.2017.09.044">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXhs12lt7vE" aria-label="CAS reference 142">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29053969" aria-label="PubMed reference 142">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5683852" aria-label="PubMed Central reference 142">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 142" href="http://scholar.google.com/scholar_lookup?&title=PEBP1%20wardens%20ferroptosis%20by%20enabling%20lipoxygenase%20generation%20of%20lipid%20death%20signals&journal=Cell&doi=10.1016%2Fj.cell.2017.09.044&volume=171&pages=628-641%20e626&publication_year=2017&author=Wenzel%2CSE"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="143."><p class="c-article-references__text" id="ref-CR143">Sun, X. et al. Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. <i>Hepatology</i> <b>63</b>, 173–184 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1002/hep.28251" data-track-item_id="10.1002/hep.28251" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1002%2Fhep.28251" aria-label="Article reference 143" data-doi="10.1002/hep.28251">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2MXitV2jtrzK" aria-label="CAS reference 143">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26403645" aria-label="PubMed reference 143">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 143" href="http://scholar.google.com/scholar_lookup?&title=Activation%20of%20the%20p62-Keap1-NRF2%20pathway%20protects%20against%20ferroptosis%20in%20hepatocellular%20carcinoma%20cells&journal=Hepatology&doi=10.1002%2Fhep.28251&volume=63&pages=173-184&publication_year=2016&author=Sun%2CX"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="144."><p class="c-article-references__text" id="ref-CR144">Sun, X. et al. HSPB1 as a novel regulator of ferroptotic cancer cell death. <i>Oncogene</i> <b>34</b>, 5617–5625 (2015).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/onc.2015.32" data-track-item_id="10.1038/onc.2015.32" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fonc.2015.32" aria-label="Article reference 144" data-doi="10.1038/onc.2015.32">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2MXjs1Grsbo%3D" aria-label="CAS reference 144">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25728673" aria-label="PubMed reference 144">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4640181" aria-label="PubMed Central reference 144">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 144" href="http://scholar.google.com/scholar_lookup?&title=HSPB1%20as%20a%20novel%20regulator%20of%20ferroptotic%20cancer%20cell%20death&journal=Oncogene&doi=10.1038%2Fonc.2015.32&volume=34&pages=5617-5625&publication_year=2015&author=Sun%2CX"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="145."><p class="c-article-references__text" id="ref-CR145">Zhu, S. et al. HSPA5 regulates ferroptotic cell death in cancer cells. <i>Cancer Res.</i> <b>77</b>, 2064–2077 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1158/0008-5472.CAN-16-1979" data-track-item_id="10.1158/0008-5472.CAN-16-1979" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1158%2F0008-5472.CAN-16-1979" aria-label="Article reference 145" data-doi="10.1158/0008-5472.CAN-16-1979">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXlvFOqur0%3D" aria-label="CAS reference 145">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28130223" aria-label="PubMed reference 145">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5392369" aria-label="PubMed Central reference 145">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 145" href="http://scholar.google.com/scholar_lookup?&title=HSPA5%20regulates%20ferroptotic%20cell%20death%20in%20cancer%20cells&journal=Cancer%20Res.&doi=10.1158%2F0008-5472.CAN-16-1979&volume=77&pages=2064-2077&publication_year=2017&author=Zhu%2CS"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="146."><p class="c-article-references__text" id="ref-CR146">Gao, M., Monian, P., Quadri, N., Ramasamy, R. & Jiang, X. Glutaminolysis and transferrin regulate ferroptosis. <i>Mol. Cell</i> <b>59</b>, 298–308 (2015).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.molcel.2015.06.011" data-track-item_id="10.1016/j.molcel.2015.06.011" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.molcel.2015.06.011" aria-label="Article reference 146" data-doi="10.1016/j.molcel.2015.06.011">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2MXhtFCqtbbK" aria-label="CAS reference 146">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26166707" aria-label="PubMed reference 146">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4506736" aria-label="PubMed Central reference 146">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 146" href="http://scholar.google.com/scholar_lookup?&title=Glutaminolysis%20and%20transferrin%20regulate%20ferroptosis&journal=Mol.%20Cell&doi=10.1016%2Fj.molcel.2015.06.011&volume=59&pages=298-308&publication_year=2015&author=Gao%2CM&author=Monian%2CP&author=Quadri%2CN&author=Ramasamy%2CR&author=Jiang%2CX"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="147."><p class="c-article-references__text" id="ref-CR147">Sun, X. et al. Metallothionein-1G facilitates sorafenib resistance through inhibition of ferroptosis. <i>Hepatology</i> <b>64</b>, 488–500 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1002/hep.28574" data-track-item_id="10.1002/hep.28574" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1002%2Fhep.28574" aria-label="Article reference 147" data-doi="10.1002/hep.28574">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28Xht1SmtLvF" aria-label="CAS reference 147">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27015352" aria-label="PubMed reference 147">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 147" href="http://scholar.google.com/scholar_lookup?&title=Metallothionein-1G%20facilitates%20sorafenib%20resistance%20through%20inhibition%20of%20ferroptosis&journal=Hepatology&doi=10.1002%2Fhep.28574&volume=64&pages=488-500&publication_year=2016&author=Sun%2CX"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="148."><p class="c-article-references__text" id="ref-CR148">Chen, D. et al. NRF2 is a major target of ARF in p53-independent tumor suppression. <i>Mol. Cell</i> <b>68</b>, 224–232 e224 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.molcel.2017.09.009" data-track-item_id="10.1016/j.molcel.2017.09.009" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.molcel.2017.09.009" aria-label="Article reference 148" data-doi="10.1016/j.molcel.2017.09.009">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXhs1Wqs77O" aria-label="CAS reference 148">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28985506" aria-label="PubMed reference 148">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5683418" aria-label="PubMed Central reference 148">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 148" href="http://scholar.google.com/scholar_lookup?&title=NRF2%20is%20a%20major%20target%20of%20ARF%20in%20p53-independent%20tumor%20suppression&journal=Mol.%20Cell&doi=10.1016%2Fj.molcel.2017.09.009&volume=68&pages=224-232%20e224&publication_year=2017&author=Chen%2CD"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="149."><p class="c-article-references__text" id="ref-CR149">Chang, L. C. et al. Heme oxygenase-1 mediates BAY 11-7085 induced ferroptosis. <i>Cancer Lett.</i> <b>416</b>, 124–137 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.canlet.2017.12.025" data-track-item_id="10.1016/j.canlet.2017.12.025" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.canlet.2017.12.025" aria-label="Article reference 149" data-doi="10.1016/j.canlet.2017.12.025">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXhs1yktQ%3D%3D" aria-label="CAS reference 149">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29274359" aria-label="PubMed reference 149">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 149" href="http://scholar.google.com/scholar_lookup?&title=Heme%20oxygenase-1%20mediates%20BAY%2011-7085%20induced%20ferroptosis&journal=Cancer%20Lett.&doi=10.1016%2Fj.canlet.2017.12.025&volume=416&pages=124-137&publication_year=2018&author=Chang%2CLC"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="150."><p class="c-article-references__text" id="ref-CR150">Kwon, M. Y., Park, E., Lee, S. J. & Chung, S. W. Heme oxygenase-1 accelerates erastin-induced ferroptotic cell death. <i>Oncotarget</i> <b>6</b>, 24393–24403 (2015).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26405158" aria-label="PubMed reference 150">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4695193" aria-label="PubMed Central reference 150">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 150" href="http://scholar.google.com/scholar_lookup?&title=Heme%20oxygenase-1%20accelerates%20erastin-induced%20ferroptotic%20cell%20death&journal=Oncotarget&volume=6&pages=24393-24403&publication_year=2015&author=Kwon%2CMY&author=Park%2CE&author=Lee%2CSJ&author=Chung%2CSW"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="151."><p class="c-article-references__text" id="ref-CR151">Jiang, L. et al. Ferroptosis as a p53-mediated activity during tumour suppression. <i>Nature</i> <b>520</b>, 57–62 (2015).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nature14344" data-track-item_id="10.1038/nature14344" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnature14344" aria-label="Article reference 151" data-doi="10.1038/nature14344">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2MXltVSisLw%3D" aria-label="CAS reference 151">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25799988" aria-label="PubMed reference 151">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4455927" aria-label="PubMed Central reference 151">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 151" href="http://scholar.google.com/scholar_lookup?&title=Ferroptosis%20as%20a%20p53-mediated%20activity%20during%20tumour%20suppression&journal=Nature&doi=10.1038%2Fnature14344&volume=520&pages=57-62&publication_year=2015&author=Jiang%2CL"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="152."><p class="c-article-references__text" id="ref-CR152">Zhang, Y. et al. BAP1 links metabolic regulation of ferroptosis to tumour suppression. <i>Nat. Cell Biol</i>. <a href="https://doi.org/10.1038/s41556-018-0178-0" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1038/s41556-018-0178-0">https://doi.org/10.1038/s41556-018-0178-0</a> (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41556-018-0178-0" data-track-item_id="10.1038/s41556-018-0178-0" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41556-018-0178-0" aria-label="Article reference 152" data-doi="10.1038/s41556-018-0178-0">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXhslSnt7rL" aria-label="CAS reference 152">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30202049" aria-label="PubMed reference 152">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6170713" aria-label="PubMed Central reference 152">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 152" href="http://scholar.google.com/scholar_lookup?&title=BAP1%20links%20metabolic%20regulation%20of%20ferroptosis%20to%20tumour%20suppression&journal=Nature%20Cell%20Biology&doi=10.1038%2Fs41556-018-0178-0&volume=20&issue=10&pages=1181-1192&publication_year=2018&author=Zhang%2CYilei&author=Shi%2CJiejun&author=Liu%2CXiaoguang&author=Feng%2CLi&author=Gong%2CZihua&author=Koppula%2CPranavi&author=Sirohi%2CKapil&author=Li%2CXu&author=Wei%2CYongkun&author=Lee%2CHyemin&author=Zhuang%2CLi&author=Chen%2CGang&author=Xiao%2CZhen-Dong&author=Hung%2CMien-Chie&author=Chen%2CJunjie&author=Huang%2CPeng&author=Li%2CWei&author=Gan%2CBoyi"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="153."><p class="c-article-references__text" id="ref-CR153">Xie, Y. et al. The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity. <i>Cell Rep</i> <b>20</b>, 1692–1704 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.celrep.2017.07.055" data-track-item_id="10.1016/j.celrep.2017.07.055" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.celrep.2017.07.055" aria-label="Article reference 153" data-doi="10.1016/j.celrep.2017.07.055">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXhtlClsL7N" aria-label="CAS reference 153">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28813679" aria-label="PubMed reference 153">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 153" href="http://scholar.google.com/scholar_lookup?&title=The%20tumor%20suppressor%20p53%20limits%20ferroptosis%20by%20blocking%20DPP4%20activity&journal=Cell%20Rep&doi=10.1016%2Fj.celrep.2017.07.055&volume=20&pages=1692-1704&publication_year=2017&author=Xie%2CY"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="154."><p class="c-article-references__text" id="ref-CR154">Tarangelo, A. et al. p53 suppresses metabolic stress-induced ferroptosis in cancer cells. <i>Cell Rep</i> <b>22</b>, 569–575 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.celrep.2017.12.077" data-track-item_id="10.1016/j.celrep.2017.12.077" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.celrep.2017.12.077" aria-label="Article reference 154" data-doi="10.1016/j.celrep.2017.12.077">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXhvFahtbY%3D" aria-label="CAS reference 154">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29346757" aria-label="PubMed reference 154">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5791910" aria-label="PubMed Central reference 154">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 154" href="http://scholar.google.com/scholar_lookup?&title=p53%20suppresses%20metabolic%20stress-induced%20ferroptosis%20in%20cancer%20cells&journal=Cell%20Rep&doi=10.1016%2Fj.celrep.2017.12.077&volume=22&pages=569-575&publication_year=2018&author=Tarangelo%2CA"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="155."><p class="c-article-references__text" id="ref-CR155">Kang, R., Kroemer, G. & Tang, D. The tumor suppressor protein p53 and the ferroptosis network. <i>Free Radic. Biol. Med.</i> <a href="https://doi.org/10.1016/j.freeradbiomed.2018.05.074" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/j.freeradbiomed.2018.05.074">https://doi.org/10.1016/j.freeradbiomed.2018.05.074</a> (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.freeradbiomed.2018.05.074" data-track-item_id="10.1016/j.freeradbiomed.2018.05.074" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.freeradbiomed.2018.05.074" aria-label="Article reference 155" data-doi="10.1016/j.freeradbiomed.2018.05.074">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXhtVeltrfI" aria-label="CAS reference 155">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29800655" aria-label="PubMed reference 155">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 155" href="http://scholar.google.com/scholar_lookup?&title=The%20tumor%20suppressor%20protein%20p53%20and%20the%20ferroptosis%20network&journal=Free%20Radical%20Biology%20and%20Medicine&doi=10.1016%2Fj.freeradbiomed.2018.05.074&volume=133&pages=162-168&publication_year=2019&author=Kang%2CRui&author=Kroemer%2CGuido&author=Tang%2CDaolin"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="156."><p class="c-article-references__text" id="ref-CR156">Jennis, M. et al. An African-specific polymorphism in the TP53 gene impairs p53 tumor suppressor function in a mouse model. <i>Genes Dev.</i> <b>30</b>, 918–930 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1101/gad.275891.115" data-track-item_id="10.1101/gad.275891.115" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1101%2Fgad.275891.115" aria-label="Article reference 156" data-doi="10.1101/gad.275891.115">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28XhsFWltLzE" aria-label="CAS reference 156">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27034505" aria-label="PubMed reference 156">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4840298" aria-label="PubMed Central reference 156">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 156" href="http://scholar.google.com/scholar_lookup?&title=An%20African-specific%20polymorphism%20in%20the%20TP53%20gene%20impairs%20p53%20tumor%20suppressor%20function%20in%20a%20mouse%20model&journal=Genes%20Dev.&doi=10.1101%2Fgad.275891.115&volume=30&pages=918-930&publication_year=2016&author=Jennis%2CM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="157."><p class="c-article-references__text" id="ref-CR157">Wu, Z. et al. Chaperone-mediated autophagy is involved in the execution of ferroptosis. <i>Proc. Natl Acad. Sci. USA</i> <b>116</b>, 2996–3005 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1073/pnas.1819728116" data-track-item_id="10.1073/pnas.1819728116" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1073%2Fpnas.1819728116" aria-label="Article reference 157" data-doi="10.1073/pnas.1819728116">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1MXjtlCls7Y%3D" aria-label="CAS reference 157">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30718432" aria-label="PubMed reference 157">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6386716" aria-label="PubMed Central reference 157">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 157" href="http://scholar.google.com/scholar_lookup?&title=Chaperone-mediated%20autophagy%20is%20involved%20in%20the%20execution%20of%20ferroptosis&journal=Proc.%20Natl%20Acad.%20Sci.%20USA&doi=10.1073%2Fpnas.1819728116&volume=116&pages=2996-3005&publication_year=2019&author=Wu%2CZ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="158."><p class="c-article-references__text" id="ref-CR158">Gao, M. et al. Ferroptosis is an autophagic cell death process. <i>Cell Res.</i> <b>26</b>, 1021–1032 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/cr.2016.95" data-track-item_id="10.1038/cr.2016.95" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fcr.2016.95" aria-label="Article reference 158" data-doi="10.1038/cr.2016.95">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28XhtlGmsbrL" aria-label="CAS reference 158">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27514700" aria-label="PubMed reference 158">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5034113" aria-label="PubMed Central reference 158">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 158" href="http://scholar.google.com/scholar_lookup?&title=Ferroptosis%20is%20an%20autophagic%20cell%20death%20process&journal=Cell%20Res.&doi=10.1038%2Fcr.2016.95&volume=26&pages=1021-1032&publication_year=2016&author=Gao%2CM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="159."><p class="c-article-references__text" id="ref-CR159">Hou, W. et al. Autophagy promotes ferroptosis by degradation of ferritin. <i>Autophagy.</i> <b>12</b>, 1425–1428 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1080/15548627.2016.1187366" data-track-item_id="10.1080/15548627.2016.1187366" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1080%2F15548627.2016.1187366" aria-label="Article reference 159" data-doi="10.1080/15548627.2016.1187366">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28XhtVKntrrL" aria-label="CAS reference 159">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27245739" aria-label="PubMed reference 159">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4968231" aria-label="PubMed Central reference 159">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 159" href="http://scholar.google.com/scholar_lookup?&title=Autophagy%20promotes%20ferroptosis%20by%20degradation%20of%20ferritin&journal=Autophagy.&doi=10.1080%2F15548627.2016.1187366&volume=12&pages=1425-1428&publication_year=2016&author=Hou%2CW"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="160."><p class="c-article-references__text" id="ref-CR160">Song, X. et al. AMPK-mediated BECN1 phosphorylation promotes ferroptosis by directly blocking system Xc(-) activity. <i>Curr. Biol.</i> <b>28</b>, 2388–2399 e2385 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.cub.2018.05.094" data-track-item_id="10.1016/j.cub.2018.05.094" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.cub.2018.05.094" aria-label="Article reference 160" data-doi="10.1016/j.cub.2018.05.094">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXhsVSmsLbF" aria-label="CAS reference 160">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30057310" aria-label="PubMed reference 160">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6081251" aria-label="PubMed Central reference 160">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 160" href="http://scholar.google.com/scholar_lookup?&title=AMPK-mediated%20BECN1%20phosphorylation%20promotes%20ferroptosis%20by%20directly%20blocking%20system%20Xc%28-%29%20activity&journal=Curr.%20Biol.&doi=10.1016%2Fj.cub.2018.05.094&volume=28&pages=2388-2399%20e2385&publication_year=2018&author=Song%2CX"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="161."><p class="c-article-references__text" id="ref-CR161">Zhou, B. et al. Ferroptosis is a type of autophagy-dependent cell death. <i>Sem. Cancer Biol</i>. pii: S1044-579X(19)30006-9. <a href="https://doi.org/10.1016/j.semcancer.2019.03.002" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/j.semcancer.2019.03.002">https://doi.org/10.1016/j.semcancer.2019.03.002</a> (2019).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="162."><p class="c-article-references__text" id="ref-CR162">Bai, Y. et al. Lipid storage and lipophagy regulates ferroptosis. <i>Biochem. Biophys. Res. Commun.</i> <b>508</b>, 997–1003 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.bbrc.2018.12.039" data-track-item_id="10.1016/j.bbrc.2018.12.039" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.bbrc.2018.12.039" aria-label="Article reference 162" data-doi="10.1016/j.bbrc.2018.12.039">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXisVyks7fN" aria-label="CAS reference 162">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30545638" aria-label="PubMed reference 162">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 162" href="http://scholar.google.com/scholar_lookup?&title=Lipid%20storage%20and%20lipophagy%20regulates%20ferroptosis&journal=Biochem.%20Biophys.%20Res.%20Commun.&doi=10.1016%2Fj.bbrc.2018.12.039&volume=508&pages=997-1003&publication_year=2019&author=Bai%2CY"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="163."><p class="c-article-references__text" id="ref-CR163">Kang, R. & Tang, D. Autophagy and ferroptosis - what’s the connection? <i>Curr Pathobiol Rep</i> <b>5</b>, 153–159 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s40139-017-0139-5" data-track-item_id="10.1007/s40139-017-0139-5" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s40139-017-0139-5" aria-label="Article reference 163" data-doi="10.1007/s40139-017-0139-5">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXmsFGjsrg%3D" aria-label="CAS reference 163">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29038744" aria-label="PubMed reference 163">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5640172" aria-label="PubMed Central reference 163">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 163" href="http://scholar.google.com/scholar_lookup?&title=Autophagy%20and%20ferroptosis%20-%20what%E2%80%99s%20the%20connection%3F&journal=Curr%20Pathobiol%20Rep&doi=10.1007%2Fs40139-017-0139-5&volume=5&pages=153-159&publication_year=2017&author=Kang%2CR&author=Tang%2CD"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="164."><p class="c-article-references__text" id="ref-CR164">Stockwell, B. R. et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. <i>Cell</i> <b>171</b>, 273–285 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.cell.2017.09.021" data-track-item_id="10.1016/j.cell.2017.09.021" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.cell.2017.09.021" aria-label="Article reference 164" data-doi="10.1016/j.cell.2017.09.021">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXhs1Wqs7%2FL" aria-label="CAS reference 164">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28985560" aria-label="PubMed reference 164">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5685180" aria-label="PubMed Central reference 164">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 164" href="http://scholar.google.com/scholar_lookup?&title=Ferroptosis%3A%20a%20regulated%20cell%20death%20nexus%20linking%20metabolism%2C%20redox%20biology%2C%20and%20disease&journal=Cell&doi=10.1016%2Fj.cell.2017.09.021&volume=171&pages=273-285&publication_year=2017&author=Stockwell%2CBR"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="165."><p class="c-article-references__text" id="ref-CR165">Tan, S., Schubert, D. & Maher, P. Oxytosis: a novel form of programmed cell death. <i>Curr. Top. Med. Chem.</i> <b>1</b>, 497–506 (2001).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.2174/1568026013394741" data-track-item_id="10.2174/1568026013394741" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.2174%2F1568026013394741" aria-label="Article reference 165" data-doi="10.2174/1568026013394741">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD3MXos1aitrc%3D" aria-label="CAS reference 165">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11895126" aria-label="PubMed reference 165">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 165" href="http://scholar.google.com/scholar_lookup?&title=Oxytosis%3A%20a%20novel%20form%20of%20programmed%20cell%20death&journal=Curr.%20Top.%20Med.%20Chem.&doi=10.2174%2F1568026013394741&volume=1&pages=497-506&publication_year=2001&author=Tan%2CS&author=Schubert%2CD&author=Maher%2CP"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="166."><p class="c-article-references__text" id="ref-CR166">Murphy, T. H., Malouf, A. T., Sastre, A., Schnaar, R. L. & Coyle, J. T. Calcium-dependent glutamate cytotoxicity in a neuronal cell line. <i>Brain Res.</i> <b>444</b>, 325–332 (1988).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/0006-8993(88)90941-9" data-track-item_id="10.1016/0006-8993(88)90941-9" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2F0006-8993%2888%2990941-9" aria-label="Article reference 166" data-doi="10.1016/0006-8993(88)90941-9">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DyaL1cXhs1aqsLg%3D" aria-label="CAS reference 166">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2896063" aria-label="PubMed reference 166">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 166" href="http://scholar.google.com/scholar_lookup?&title=Calcium-dependent%20glutamate%20cytotoxicity%20in%20a%20neuronal%20cell%20line&journal=Brain%20Res.&doi=10.1016%2F0006-8993%2888%2990941-9&volume=444&pages=325-332&publication_year=1988&author=Murphy%2CTH&author=Malouf%2CAT&author=Sastre%2CA&author=Schnaar%2CRL&author=Coyle%2CJT"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="167."><p class="c-article-references__text" id="ref-CR167">Lewerenz, J., Ates, G., Methner, A., Conrad, M. & Maher, P. Oxytosis/ferroptosis-(Re-) emerging roles for oxidative stress-dependent non-apoptotic cell death in diseases of the central nervous system. <i>Front. Neurosci.</i> <b>12</b>, 214 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.3389/fnins.2018.00214" data-track-item_id="10.3389/fnins.2018.00214" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.3389%2Ffnins.2018.00214" aria-label="Article reference 167" data-doi="10.3389/fnins.2018.00214">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29731704" aria-label="PubMed reference 167">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5920049" aria-label="PubMed Central reference 167">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 167" href="http://scholar.google.com/scholar_lookup?&title=Oxytosis%2Fferroptosis-%28Re-%29%20emerging%20roles%20for%20oxidative%20stress-dependent%20non-apoptotic%20cell%20death%20in%20diseases%20of%20the%20central%20nervous%20system&journal=Front.%20Neurosci.&doi=10.3389%2Ffnins.2018.00214&volume=12&publication_year=2018&author=Lewerenz%2CJ&author=Ates%2CG&author=Methner%2CA&author=Conrad%2CM&author=Maher%2CP"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="168."><p class="c-article-references__text" id="ref-CR168">David, K. K., Andrabi, S. A., Dawson, T. M. & Dawson, V. L. Parthanatos, a messenger of death. <i>Front. Biosci. (Landmark Ed)</i> <b>14</b>, 1116–1128 (2009).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.2741/3297" data-track-item_id="10.2741/3297" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.2741%2F3297" aria-label="Article reference 168" data-doi="10.2741/3297">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD1MXltFejtb8%3D" aria-label="CAS reference 168">CAS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 168" href="http://scholar.google.com/scholar_lookup?&title=Parthanatos%2C%20a%20messenger%20of%20death&journal=Front.%20Biosci.%20%28Landmark%20Ed%29&doi=10.2741%2F3297&volume=14&pages=1116-1128&publication_year=2009&author=David%2CKK&author=Andrabi%2CSA&author=Dawson%2CTM&author=Dawson%2CVL"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="169."><p class="c-article-references__text" id="ref-CR169">Delettre, C. et al. AIFsh, a novel apoptosis-inducing factor (AIF) pro-apoptotic isoform with potential pathological relevance in human cancer. <i>J. Biol. Chem.</i> <b>281</b>, 6413–6427 (2006).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1074/jbc.M509884200" data-track-item_id="10.1074/jbc.M509884200" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1074%2Fjbc.M509884200" aria-label="Article reference 169" data-doi="10.1074/jbc.M509884200">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD28XhvFOgsr4%3D" aria-label="CAS reference 169">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16365034" aria-label="PubMed reference 169">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 169" href="http://scholar.google.com/scholar_lookup?&title=AIFsh%2C%20a%20novel%20apoptosis-inducing%20factor%20%28AIF%29%20pro-apoptotic%20isoform%20with%20potential%20pathological%20relevance%20in%20human%20cancer&journal=J.%20Biol.%20Chem.&doi=10.1074%2Fjbc.M509884200&volume=281&pages=6413-6427&publication_year=2006&author=Delettre%2CC"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="170."><p class="c-article-references__text" id="ref-CR170">Wang, H. et al. Apoptosis-inducing factor substitutes for caspase executioners in NMDA-triggered excitotoxic neuronal death. <i>J. Neurosci.</i> <b>24</b>, 10963–10973 (2004).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1523/JNEUROSCI.3461-04.2004" data-track-item_id="10.1523/JNEUROSCI.3461-04.2004" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1523%2FJNEUROSCI.3461-04.2004" aria-label="Article reference 170" data-doi="10.1523/JNEUROSCI.3461-04.2004">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD2cXhtFShu77K" aria-label="CAS reference 170">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15574746" aria-label="PubMed reference 170">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6730219" aria-label="PubMed Central reference 170">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 170" href="http://scholar.google.com/scholar_lookup?&title=Apoptosis-inducing%20factor%20substitutes%20for%20caspase%20executioners%20in%20NMDA-triggered%20excitotoxic%20neuronal%20death&journal=J.%20Neurosci.&doi=10.1523%2FJNEUROSCI.3461-04.2004&volume=24&pages=10963-10973&publication_year=2004&author=Wang%2CH"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="171."><p class="c-article-references__text" id="ref-CR171">Nicholson, D. W. et al. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. <i>Nature</i> <b>376</b>, 37–43 (1995).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/376037a0" data-track-item_id="10.1038/376037a0" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2F376037a0" aria-label="Article reference 171" data-doi="10.1038/376037a0">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DyaK2MXmvVGqu7k%3D" aria-label="CAS reference 171">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7596430" aria-label="PubMed reference 171">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 171" href="http://scholar.google.com/scholar_lookup?&title=Identification%20and%20inhibition%20of%20the%20ICE%2FCED-3%20protease%20necessary%20for%20mammalian%20apoptosis&journal=Nature&doi=10.1038%2F376037a0&volume=376&pages=37-43&publication_year=1995&author=Nicholson%2CDW"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="172."><p class="c-article-references__text" id="ref-CR172">Tewari, M. et al. Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. <i>Cell</i> <b>81</b>, 801–809 (1995).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/0092-8674(95)90541-3" data-track-item_id="10.1016/0092-8674(95)90541-3" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2F0092-8674%2895%2990541-3" aria-label="Article reference 172" data-doi="10.1016/0092-8674(95)90541-3">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DyaK2MXmtFOiurY%3D" aria-label="CAS reference 172">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7774019" aria-label="PubMed reference 172">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 172" href="http://scholar.google.com/scholar_lookup?&title=Yama%2FCPP32%20beta%2C%20a%20mammalian%20homolog%20of%20CED-3%2C%20is%20a%20CrmA-inhibitable%20protease%20that%20cleaves%20the%20death%20substrate%20poly%28ADP-ribose%29%20polymerase&journal=Cell&doi=10.1016%2F0092-8674%2895%2990541-3&volume=81&pages=801-809&publication_year=1995&author=Tewari%2CM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="173."><p class="c-article-references__text" id="ref-CR173">Wang, R. et al. OGG1-initiated base excision repair exacerbates oxidative stress-induced parthanatos. <i>Cell Death Dis.</i> <b>9</b>, 628 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41419-018-0680-0" data-track-item_id="10.1038/s41419-018-0680-0" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41419-018-0680-0" aria-label="Article reference 173" data-doi="10.1038/s41419-018-0680-0">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29795387" aria-label="PubMed reference 173">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5967321" aria-label="PubMed Central reference 173">PubMed Central</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXhtVKns7fP" aria-label="CAS reference 173">CAS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 173" href="http://scholar.google.com/scholar_lookup?&title=OGG1-initiated%20base%20excision%20repair%20exacerbates%20oxidative%20stress-induced%20parthanatos&journal=Cell%20Death%20Dis.&doi=10.1038%2Fs41419-018-0680-0&volume=9&publication_year=2018&author=Wang%2CR"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="174."><p class="c-article-references__text" id="ref-CR174">Andrabi, S. A., Dawson, T. M. & Dawson, V. L. Mitochondrial and nuclear cross talk in cell death: parthanatos. <i>Ann. N. Y. Acad. Sci.</i> <b>1147</b>, 233–241 (2008).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1196/annals.1427.014" data-track-item_id="10.1196/annals.1427.014" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1196%2Fannals.1427.014" aria-label="Article reference 174" data-doi="10.1196/annals.1427.014">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD1MXhsVaqurs%3D" aria-label="CAS reference 174">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19076445" aria-label="PubMed reference 174">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4454457" aria-label="PubMed Central reference 174">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 174" href="http://scholar.google.com/scholar_lookup?&title=Mitochondrial%20and%20nuclear%20cross%20talk%20in%20cell%20death%3A%20parthanatos&journal=Ann.%20N.%20Y.%20Acad.%20Sci.&doi=10.1196%2Fannals.1427.014&volume=1147&pages=233-241&publication_year=2008&author=Andrabi%2CSA&author=Dawson%2CTM&author=Dawson%2CVL"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="175."><p class="c-article-references__text" id="ref-CR175">Susin, S. A. et al. Molecular characterization of mitochondrial apoptosis-inducing factor. <i>Nature</i> <b>397</b>, 441–446 (1999).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/17135" data-track-item_id="10.1038/17135" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2F17135" aria-label="Article reference 175" data-doi="10.1038/17135">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DyaK1MXhtFOhu78%3D" aria-label="CAS reference 175">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9989411" aria-label="PubMed reference 175">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 175" href="http://scholar.google.com/scholar_lookup?&title=Molecular%20characterization%20of%20mitochondrial%20apoptosis-inducing%20factor&journal=Nature&doi=10.1038%2F17135&volume=397&pages=441-446&publication_year=1999&author=Susin%2CSA"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="176."><p class="c-article-references__text" id="ref-CR176">Yu, S. W. et al. Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. <i>Science</i> <b>297</b>, 259–263 (2002).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1126/science.1072221" data-track-item_id="10.1126/science.1072221" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1126%2Fscience.1072221" aria-label="Article reference 176" data-doi="10.1126/science.1072221">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD38XlsVCntr0%3D" aria-label="CAS reference 176">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12114629" aria-label="PubMed reference 176">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 176" href="http://scholar.google.com/scholar_lookup?&title=Mediation%20of%20poly%28ADP-ribose%29%20polymerase-1-dependent%20cell%20death%20by%20apoptosis-inducing%20factor&journal=Science&doi=10.1126%2Fscience.1072221&volume=297&pages=259-263&publication_year=2002&author=Yu%2CSW"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="177."><p class="c-article-references__text" id="ref-CR177">Wang, Y. et al. Poly(ADP-ribose) (PAR) binding to apoptosis-inducing factor is critical for PAR polymerase-1-dependent cell death (parthanatos). <i>Sci. Signal.</i> <b>4</b>, ra20 (2011).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=21467298" aria-label="PubMed reference 177">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3086524" aria-label="PubMed Central reference 177">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 177" href="http://scholar.google.com/scholar_lookup?&title=Poly%28ADP-ribose%29%20%28PAR%29%20binding%20to%20apoptosis-inducing%20factor%20is%20critical%20for%20PAR%20polymerase-1-dependent%20cell%20death%20%28parthanatos%29&journal=Sci.%20Signal.&volume=4&publication_year=2011&author=Wang%2CY"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="178."><p class="c-article-references__text" id="ref-CR178">Mashimo, M., Kato, J. & Moss, J. ADP-ribosyl-acceptor hydrolase 3 regulates poly (ADP-ribose) degradation and cell death during oxidative stress. <i>Proc. Natl Acad. Sci. USA</i> <b>110</b>, 18964–18969 (2013).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1073/pnas.1312783110" data-track-item_id="10.1073/pnas.1312783110" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1073%2Fpnas.1312783110" aria-label="Article reference 178" data-doi="10.1073/pnas.1312783110">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3sXhvFCis7nE" aria-label="CAS reference 178">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=24191052" aria-label="PubMed reference 178">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3839768" aria-label="PubMed Central reference 178">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 178" href="http://scholar.google.com/scholar_lookup?&title=ADP-ribosyl-acceptor%20hydrolase%203%20regulates%20poly%20%28ADP-ribose%29%20degradation%20and%20cell%20death%20during%20oxidative%20stress&journal=Proc.%20Natl%20Acad.%20Sci.%20USA&doi=10.1073%2Fpnas.1312783110&volume=110&pages=18964-18969&publication_year=2013&author=Mashimo%2CM&author=Kato%2CJ&author=Moss%2CJ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="179."><p class="c-article-references__text" id="ref-CR179">Andrabi, S. A. et al. Iduna protects the brain from glutamate excitotoxicity and stroke by interfering with poly(ADP-ribose) polymer-induced cell death. <i>Nat. Med.</i> <b>17</b>, 692–699 (2011).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nm.2387" data-track-item_id="10.1038/nm.2387" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnm.2387" aria-label="Article reference 179" data-doi="10.1038/nm.2387">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3MXmsVGmsbg%3D" aria-label="CAS reference 179">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=21602803" aria-label="PubMed reference 179">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3709257" aria-label="PubMed Central reference 179">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 179" href="http://scholar.google.com/scholar_lookup?&title=Iduna%20protects%20the%20brain%20from%20glutamate%20excitotoxicity%20and%20stroke%20by%20interfering%20with%20poly%28ADP-ribose%29%20polymer-induced%20cell%20death&journal=Nat.%20Med.&doi=10.1038%2Fnm.2387&volume=17&pages=692-699&publication_year=2011&author=Andrabi%2CSA"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="180."><p class="c-article-references__text" id="ref-CR180">Wang, Y. et al. A nuclease that mediates cell death induced by DNA damage and poly(ADP-ribose) polymerase-1. <i>Science</i> <a href="https://doi.org/10.1126/science.aad6872" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1126/science.aad6872">https://doi.org/10.1126/science.aad6872</a> (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1126/science.aad6872" data-track-item_id="10.1126/science.aad6872" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1126%2Fscience.aad6872" aria-label="Article reference 180" data-doi="10.1126/science.aad6872">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27846469" aria-label="PubMed reference 180">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5134926" aria-label="PubMed Central reference 180">PubMed Central</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28Xhs1SktrvN" aria-label="CAS reference 180">CAS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 180" href="http://scholar.google.com/scholar_lookup?&title=A%20nuclease%20that%20mediates%20cell%20death%20induced%20by%20DNA%20damage%20and%20poly%28ADP-ribose%29%20polymerase-1&journal=Science&doi=10.1126%2Fscience.aad6872&volume=354&issue=6308&pages=aad6872-aad6872&publication_year=2016&author=Wang%2CY.&author=An%2CR.&author=Umanah%2CG.%20K.&author=Park%2CH.&author=Nambiar%2CK.&author=Eacker%2CS.%20M.&author=Kim%2CB.&author=Bao%2CL.&author=Harraz%2CM.%20M.&author=Chang%2CC.&author=Chen%2CR.&author=Wang%2CJ.%20E.&author=Kam%2CT.-I.&author=Jeong%2CJ.%20S.&author=Xie%2CZ.&author=Neifert%2CS.&author=Qian%2CJ.&author=Andrabi%2CS.%20A.&author=Blackshaw%2CS.&author=Zhu%2CH.&author=Song%2CH.&author=Ming%2CG.-l.&author=Dawson%2CV.%20L.&author=Dawson%2CT.%20M."> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="181."><p class="c-article-references__text" id="ref-CR181">Jang, K. H. et al. AIF-independent parthanatos in the pathogenesis of dry age-related macular degeneration. <i>Cell Death Dis.</i> <b>8</b>, e2526 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/cddis.2016.437" data-track-item_id="10.1038/cddis.2016.437" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fcddis.2016.437" aria-label="Article reference 181" data-doi="10.1038/cddis.2016.437">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXktVSitA%3D%3D" aria-label="CAS reference 181">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28055012" aria-label="PubMed reference 181">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5386356" aria-label="PubMed Central reference 181">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 181" href="http://scholar.google.com/scholar_lookup?&title=AIF-independent%20parthanatos%20in%20the%20pathogenesis%20of%20dry%20age-related%20macular%20degeneration&journal=Cell%20Death%20Dis.&doi=10.1038%2Fcddis.2016.437&volume=8&publication_year=2017&author=Jang%2CKH"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="182."><p class="c-article-references__text" id="ref-CR182">Rodriguez-Vargas, J. M. et al. ROS-induced DNA damage and PARP-1 are required for optimal induction of starvation-induced autophagy. <i>Cell Res.</i> <b>22</b>, 1181–1198 (2012).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/cr.2012.70" data-track-item_id="10.1038/cr.2012.70" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fcr.2012.70" aria-label="Article reference 182" data-doi="10.1038/cr.2012.70">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC38Xpsl2itr4%3D" aria-label="CAS reference 182">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22525338" aria-label="PubMed reference 182">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3391023" aria-label="PubMed Central reference 182">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 182" href="http://scholar.google.com/scholar_lookup?&title=ROS-induced%20DNA%20damage%20and%20PARP-1%20are%20required%20for%20optimal%20induction%20of%20starvation-induced%20autophagy&journal=Cell%20Res.&doi=10.1038%2Fcr.2012.70&volume=22&pages=1181-1198&publication_year=2012&author=Rodriguez-Vargas%2CJM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="183."><p class="c-article-references__text" id="ref-CR183">Xu, X. et al. The role of PARP activation in glutamate-induced necroptosis in HT-22 cells. <i>Brain Res.</i> <b>1343</b>, 206–212 (2010).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.brainres.2010.04.080" data-track-item_id="10.1016/j.brainres.2010.04.080" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.brainres.2010.04.080" aria-label="Article reference 183" data-doi="10.1016/j.brainres.2010.04.080">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3cXnvVygsrg%3D" aria-label="CAS reference 183">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20451505" aria-label="PubMed reference 183">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 183" href="http://scholar.google.com/scholar_lookup?&title=The%20role%20of%20PARP%20activation%20in%20glutamate-induced%20necroptosis%20in%20HT-22%20cells&journal=Brain%20Res.&doi=10.1016%2Fj.brainres.2010.04.080&volume=1343&pages=206-212&publication_year=2010&author=Xu%2CX"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="184."><p class="c-article-references__text" id="ref-CR184">Overholtzer, M. et al. A nonapoptotic cell death process, entosis, that occurs by cell-in-cell invasion. <i>Cell</i> <b>131</b>, 966–979 (2007).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.cell.2007.10.040" data-track-item_id="10.1016/j.cell.2007.10.040" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.cell.2007.10.040" aria-label="Article reference 184" data-doi="10.1016/j.cell.2007.10.040">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD2sXhsVCnur7I" aria-label="CAS reference 184">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18045538" aria-label="PubMed reference 184">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 184" href="http://scholar.google.com/scholar_lookup?&title=A%20nonapoptotic%20cell%20death%20process%2C%20entosis%2C%20that%20occurs%20by%20cell-in-cell%20invasion&journal=Cell&doi=10.1016%2Fj.cell.2007.10.040&volume=131&pages=966-979&publication_year=2007&author=Overholtzer%2CM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="185."><p class="c-article-references__text" id="ref-CR185">Hamann, J. C. et al. Entosis Is Induced by Glucose Starvation. <i>Cell Rep</i> <b>20</b>, 201–210 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.celrep.2017.06.037" data-track-item_id="10.1016/j.celrep.2017.06.037" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.celrep.2017.06.037" aria-label="Article reference 185" data-doi="10.1016/j.celrep.2017.06.037">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXhtFartbbN" aria-label="CAS reference 185">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28683313" aria-label="PubMed reference 185">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5559205" aria-label="PubMed Central reference 185">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 185" href="http://scholar.google.com/scholar_lookup?&title=Entosis%20Is%20Induced%20by%20Glucose%20Starvation&journal=Cell%20Rep&doi=10.1016%2Fj.celrep.2017.06.037&volume=20&pages=201-210&publication_year=2017&author=Hamann%2CJC"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="186."><p class="c-article-references__text" id="ref-CR186">Durgan, J. et al. Mitosis can drive cell cannibalism through entosis. <i>Elife</i> <a href="https://doi.org/10.7554/eLife.27134" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.7554/eLife.27134">https://doi.org/10.7554/eLife.27134</a> (2017).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="187."><p class="c-article-references__text" id="ref-CR187">Brouwer, M., de Ley, L., Feltkamp, C. A., Elema, J. & Jongsma, A. P. Serum-dependent “cannibalism” and autodestruction in cultures of human small cell carcinoma of the lung. <i>Cancer Res.</i> <b>44</b>, 2947–2951 (1984).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:STN:280:DyaL2c3gsFClug%3D%3D" aria-label="CAS reference 187">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6327030" aria-label="PubMed reference 187">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 187" href="http://scholar.google.com/scholar_lookup?&title=Serum-dependent%20%E2%80%9Ccannibalism%E2%80%9D%20and%20autodestruction%20in%20cultures%20of%20human%20small%20cell%20carcinoma%20of%20the%20lung&journal=Cancer%20Res.&volume=44&pages=2947-2951&publication_year=1984&author=Brouwer%2CM&author=Ley%2CL&author=Feltkamp%2CCA&author=Elema%2CJ&author=Jongsma%2CAP"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="188."><p class="c-article-references__text" id="ref-CR188">Krajcovic, M. et al. A non-genetic route to aneuploidy in human cancers. <i>Nat. Cell Biol.</i> <b>13</b>, 324–330 (2011).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/ncb2174" data-track-item_id="10.1038/ncb2174" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fncb2174" aria-label="Article reference 188" data-doi="10.1038/ncb2174">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3MXisFKntr0%3D" aria-label="CAS reference 188">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=21336303" aria-label="PubMed reference 188">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3576821" aria-label="PubMed Central reference 188">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 188" href="http://scholar.google.com/scholar_lookup?&title=A%20non-genetic%20route%20to%20aneuploidy%20in%20human%20cancers&journal=Nat.%20Cell%20Biol.&doi=10.1038%2Fncb2174&volume=13&pages=324-330&publication_year=2011&author=Krajcovic%2CM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="189."><p class="c-article-references__text" id="ref-CR189">Durgan, J. & Florey, O. Cancer cell cannibalism: multiple triggers emerge for entosis. <i>Biochim. Biophys. Acta Mol. Cell Res.</i> <b>1865</b>, 831–841 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.bbamcr.2018.03.004" data-track-item_id="10.1016/j.bbamcr.2018.03.004" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.bbamcr.2018.03.004" aria-label="Article reference 189" data-doi="10.1016/j.bbamcr.2018.03.004">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXltlSnsrY%3D" aria-label="CAS reference 189">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29548938" aria-label="PubMed reference 189">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 189" href="http://scholar.google.com/scholar_lookup?&title=Cancer%20cell%20cannibalism%3A%20multiple%20triggers%20emerge%20for%20entosis&journal=Biochim.%20Biophys.%20Acta%20Mol.%20Cell%20Res.&doi=10.1016%2Fj.bbamcr.2018.03.004&volume=1865&pages=831-841&publication_year=2018&author=Durgan%2CJ&author=Florey%2CO"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="190."><p class="c-article-references__text" id="ref-CR190">Martins, I. et al. Entosis: the emerging face of non-cell-autonomous type IV programmed death. <i>Biomed J</i> <b>40</b>, 133–140 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.bj.2017.05.001" data-track-item_id="10.1016/j.bj.2017.05.001" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.bj.2017.05.001" aria-label="Article reference 190" data-doi="10.1016/j.bj.2017.05.001">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28651734" aria-label="PubMed reference 190">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6136291" aria-label="PubMed Central reference 190">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 190" href="http://scholar.google.com/scholar_lookup?&title=Entosis%3A%20the%20emerging%20face%20of%20non-cell-autonomous%20type%20IV%20programmed%20death&journal=Biomed%20J&doi=10.1016%2Fj.bj.2017.05.001&volume=40&pages=133-140&publication_year=2017&author=Martins%2CI"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="191."><p class="c-article-references__text" id="ref-CR191">Wang, M. et al. Impaired formation of homotypic cell-in-cell structures in human tumor cells lacking alpha-catenin expression. <i>Sci. Rep.</i> <b>5</b>, 12223 (2015).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/srep12223" data-track-item_id="10.1038/srep12223" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fsrep12223" aria-label="Article reference 191" data-doi="10.1038/srep12223">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2MXhtlWgsr7K" aria-label="CAS reference 191">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26192076" aria-label="PubMed reference 191">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4648412" aria-label="PubMed Central reference 191">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 191" href="http://scholar.google.com/scholar_lookup?&title=Impaired%20formation%20of%20homotypic%20cell-in-cell%20structures%20in%20human%20tumor%20cells%20lacking%20alpha-catenin%20expression&journal=Sci.%20Rep.&doi=10.1038%2Fsrep12223&volume=5&publication_year=2015&author=Wang%2CM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="192."><p class="c-article-references__text" id="ref-CR192">Sun, Q., Cibas, E. S., Huang, H., Hodgson, L. & Overholtzer, M. Induction of entosis by epithelial cadherin expression. <i>Cell Res.</i> <b>24</b>, 1288–1298 (2014).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/cr.2014.137" data-track-item_id="10.1038/cr.2014.137" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fcr.2014.137" aria-label="Article reference 192" data-doi="10.1038/cr.2014.137">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2cXhvVSqtrzF" aria-label="CAS reference 192">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25342558" aria-label="PubMed reference 192">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4220160" aria-label="PubMed Central reference 192">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 192" href="http://scholar.google.com/scholar_lookup?&title=Induction%20of%20entosis%20by%20epithelial%20cadherin%20expression&journal=Cell%20Res.&doi=10.1038%2Fcr.2014.137&volume=24&pages=1288-1298&publication_year=2014&author=Sun%2CQ&author=Cibas%2CES&author=Huang%2CH&author=Hodgson%2CL&author=Overholtzer%2CM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="193."><p class="c-article-references__text" id="ref-CR193">Sottile, F., Aulicino, F., Theka, I. & Cosma, M. P. Mesenchymal stem cells generate distinct functional hybrids in vitro via cell fusion or entosis. <i>Sci. Rep.</i> <b>6</b>, 36863 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/srep36863" data-track-item_id="10.1038/srep36863" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fsrep36863" aria-label="Article reference 193" data-doi="10.1038/srep36863">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28XhvVGjtb7O" aria-label="CAS reference 193">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27827439" aria-label="PubMed reference 193">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5101832" aria-label="PubMed Central reference 193">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 193" href="http://scholar.google.com/scholar_lookup?&title=Mesenchymal%20stem%20cells%20generate%20distinct%20functional%20hybrids%20in%20vitro%20via%20cell%20fusion%20or%20entosis&journal=Sci.%20Rep.&doi=10.1038%2Fsrep36863&volume=6&publication_year=2016&author=Sottile%2CF&author=Aulicino%2CF&author=Theka%2CI&author=Cosma%2CMP"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="194."><p class="c-article-references__text" id="ref-CR194">Wen, S., Shang, Z., Zhu, S., Chang, C. & Niu, Y. Androgen receptor enhances entosis, a non-apoptotic cell death, through modulation of Rho/ROCK pathway in prostate cancer cells. <i>Prostate</i> <b>73</b>, 1306–1315 (2013).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1002/pros.22676" data-track-item_id="10.1002/pros.22676" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1002%2Fpros.22676" aria-label="Article reference 194" data-doi="10.1002/pros.22676">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3sXhtFOisrjJ" aria-label="CAS reference 194">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=23775364" aria-label="PubMed reference 194">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 194" href="http://scholar.google.com/scholar_lookup?&title=Androgen%20receptor%20enhances%20entosis%2C%20a%20non-apoptotic%20cell%20death%2C%20through%20modulation%20of%20Rho%2FROCK%20pathway%20in%20prostate%20cancer%20cells&journal=Prostate&doi=10.1002%2Fpros.22676&volume=73&pages=1306-1315&publication_year=2013&author=Wen%2CS&author=Shang%2CZ&author=Zhu%2CS&author=Chang%2CC&author=Niu%2CY"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="195."><p class="c-article-references__text" id="ref-CR195">Sun, Q. et al. Competition between human cells by entosis. <i>Cell Res.</i> <b>24</b>, 1299–1310 (2014).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/cr.2014.138" data-track-item_id="10.1038/cr.2014.138" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fcr.2014.138" aria-label="Article reference 195" data-doi="10.1038/cr.2014.138">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2cXhvVSqtrzE" aria-label="CAS reference 195">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25342560" aria-label="PubMed reference 195">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4220161" aria-label="PubMed Central reference 195">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 195" href="http://scholar.google.com/scholar_lookup?&title=Competition%20between%20human%20cells%20by%20entosis&journal=Cell%20Res.&doi=10.1038%2Fcr.2014.138&volume=24&pages=1299-1310&publication_year=2014&author=Sun%2CQ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="196."><p class="c-article-references__text" id="ref-CR196">Wan, Q. et al. Regulation of myosin activation during cell-cell contact formation by Par3-Lgl antagonism: entosis without matrix detachment. <i>Mol. Biol. Cell.</i> <b>23</b>, 2076–2091 (2012).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1091/mbc.e11-11-0940" data-track-item_id="10.1091/mbc.e11-11-0940" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1091%2Fmbc.e11-11-0940" aria-label="Article reference 196" data-doi="10.1091/mbc.e11-11-0940">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC38XotlWrs7g%3D" aria-label="CAS reference 196">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22496418" aria-label="PubMed reference 196">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3364173" aria-label="PubMed Central reference 196">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 196" href="http://scholar.google.com/scholar_lookup?&title=Regulation%20of%20myosin%20activation%20during%20cell-cell%20contact%20formation%20by%20Par3-Lgl%20antagonism%3A%20entosis%20without%20matrix%20detachment&journal=Mol.%20Biol.%20Cell.&doi=10.1091%2Fmbc.e11-11-0940&volume=23&pages=2076-2091&publication_year=2012&author=Wan%2CQ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="197."><p class="c-article-references__text" id="ref-CR197">Xia, P. et al. Aurora A orchestrates entosis by regulating a dynamic MCAK-TIP150 interaction. <i>J. Mol. Cell Biol.</i> <b>6</b>, 240–254 (2014).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1093/jmcb/mju016" data-track-item_id="10.1093/jmcb/mju016" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1093%2Fjmcb%2Fmju016" aria-label="Article reference 197" data-doi="10.1093/jmcb/mju016">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2cXptVCgtLw%3D" aria-label="CAS reference 197">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=24847103" aria-label="PubMed reference 197">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4034728" aria-label="PubMed Central reference 197">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 197" href="http://scholar.google.com/scholar_lookup?&title=Aurora%20A%20orchestrates%20entosis%20by%20regulating%20a%20dynamic%20MCAK-TIP150%20interaction&journal=J.%20Mol.%20Cell%20Biol.&doi=10.1093%2Fjmcb%2Fmju016&volume=6&pages=240-254&publication_year=2014&author=Xia%2CP"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="198."><p class="c-article-references__text" id="ref-CR198">Hinojosa, L. S., Holst, M., Baarlink, C. & Grosse, R. MRTF transcription and Ezrin-dependent plasma membrane blebbing are required for entotic invasion. <i>J. Cell. Biol.</i> <b>216</b>, 3087–3095 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1083/jcb.201702010" data-track-item_id="10.1083/jcb.201702010" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1083%2Fjcb.201702010" aria-label="Article reference 198" data-doi="10.1083/jcb.201702010">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXmvVWltro%3D" aria-label="CAS reference 198">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28774893" aria-label="PubMed reference 198">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5626544" aria-label="PubMed Central reference 198">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 198" href="http://scholar.google.com/scholar_lookup?&title=MRTF%20transcription%20and%20Ezrin-dependent%20plasma%20membrane%20blebbing%20are%20required%20for%20entotic%20invasion&journal=J.%20Cell.%20Biol.&doi=10.1083%2Fjcb.201702010&volume=216&pages=3087-3095&publication_year=2017&author=Hinojosa%2CLS&author=Holst%2CM&author=Baarlink%2CC&author=Grosse%2CR"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="199."><p class="c-article-references__text" id="ref-CR199">Li, Y., Sun, X. & Dey, S. K. Entosis allows timely elimination of the luminal epithelial barrier for embryo implantation. <i>Cell Rep</i> <b>11</b>, 358–365 (2015).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.celrep.2015.03.035" data-track-item_id="10.1016/j.celrep.2015.03.035" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.celrep.2015.03.035" aria-label="Article reference 199" data-doi="10.1016/j.celrep.2015.03.035">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2MXmsVequrg%3D" aria-label="CAS reference 199">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25865893" aria-label="PubMed reference 199">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5089169" aria-label="PubMed Central reference 199">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 199" href="http://scholar.google.com/scholar_lookup?&title=Entosis%20allows%20timely%20elimination%20of%20the%20luminal%20epithelial%20barrier%20for%20embryo%20implantation&journal=Cell%20Rep&doi=10.1016%2Fj.celrep.2015.03.035&volume=11&pages=358-365&publication_year=2015&author=Li%2CY&author=Sun%2CX&author=Dey%2CSK"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="200."><p class="c-article-references__text" id="ref-CR200">Heckmann, B. L., Boada-Romero, E., Cunha, L. D., Magne, J. & Green, D. R. LC3-associated phagocytosis and inflammation. <i>J. Mol. Biol.</i> <b>429</b>, 3561–3576 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.jmb.2017.08.012" data-track-item_id="10.1016/j.jmb.2017.08.012" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.jmb.2017.08.012" aria-label="Article reference 200" data-doi="10.1016/j.jmb.2017.08.012">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXhsVeis7zE" aria-label="CAS reference 200">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28847720" aria-label="PubMed reference 200">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5743439" aria-label="PubMed Central reference 200">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 200" href="http://scholar.google.com/scholar_lookup?&title=LC3-associated%20phagocytosis%20and%20inflammation&journal=J.%20Mol.%20Biol.&doi=10.1016%2Fj.jmb.2017.08.012&volume=429&pages=3561-3576&publication_year=2017&author=Heckmann%2CBL&author=Boada-Romero%2CE&author=Cunha%2CLD&author=Magne%2CJ&author=Green%2CDR"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="201."><p class="c-article-references__text" id="ref-CR201">Brinkmann, V. et al. Neutrophil extracellular traps kill bacteria. <i>Science</i> <b>303</b>, 1532–1535 (2004).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1126/science.1092385" data-track-item_id="10.1126/science.1092385" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1126%2Fscience.1092385" aria-label="Article reference 201" data-doi="10.1126/science.1092385">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD2cXhslCgsb8%3D" aria-label="CAS reference 201">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15001782" aria-label="PubMed reference 201">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 201" href="http://scholar.google.com/scholar_lookup?&title=Neutrophil%20extracellular%20traps%20kill%20bacteria&journal=Science&doi=10.1126%2Fscience.1092385&volume=303&pages=1532-1535&publication_year=2004&author=Brinkmann%2CV"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="202."><p class="c-article-references__text" id="ref-CR202">Arazna, M., Pruchniak, M. P. & Demkow, U. Reactive Oxygen Species, Granulocytes, and NETosis. <i>Adv. Exp. Med. Biol.</i> <b>836</b>, 1–7 (2015).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25310939" aria-label="PubMed reference 202">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 202" href="http://scholar.google.com/scholar_lookup?&title=Reactive%20Oxygen%20Species%2C%20Granulocytes%2C%20and%20NETosis&journal=Adv.%20Exp.%20Med.%20Biol.&volume=836&pages=1-7&publication_year=2015&author=Arazna%2CM&author=Pruchniak%2CMP&author=Demkow%2CU"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="203."><p class="c-article-references__text" id="ref-CR203">Kazzaz, N. M., Sule, G. & Knight, J. S. Intercellular interactions as regulators of NETosis. <i>Front. Immunol.</i> <b>7</b>, 453 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.3389/fimmu.2016.00453" data-track-item_id="10.3389/fimmu.2016.00453" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.3389%2Ffimmu.2016.00453" aria-label="Article reference 203" data-doi="10.3389/fimmu.2016.00453">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27895638" aria-label="PubMed reference 203">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5107827" aria-label="PubMed Central reference 203">PubMed Central</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXptF2qtw%3D%3D" aria-label="CAS reference 203">CAS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 203" href="http://scholar.google.com/scholar_lookup?&title=Intercellular%20interactions%20as%20regulators%20of%20NETosis&journal=Front.%20Immunol.&doi=10.3389%2Ffimmu.2016.00453&volume=7&publication_year=2016&author=Kazzaz%2CNM&author=Sule%2CG&author=Knight%2CJS"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="204."><p class="c-article-references__text" id="ref-CR204">Remijsen, Q. et al. Dying for a cause: NETosis, mechanisms behind an antimicrobial cell death modality. <i>Cell Death Differ.</i> <b>18</b>, 581–588 (2011).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/cdd.2011.1" data-track-item_id="10.1038/cdd.2011.1" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fcdd.2011.1" aria-label="Article reference 204" data-doi="10.1038/cdd.2011.1">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3MXjtVCksrk%3D" aria-label="CAS reference 204">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=21293492" aria-label="PubMed reference 204">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3131909" aria-label="PubMed Central reference 204">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 204" href="http://scholar.google.com/scholar_lookup?&title=Dying%20for%20a%20cause%3A%20NETosis%2C%20mechanisms%20behind%20an%20antimicrobial%20cell%20death%20modality&journal=Cell%20Death%20Differ.&doi=10.1038%2Fcdd.2011.1&volume=18&pages=581-588&publication_year=2011&author=Remijsen%2CQ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="205."><p class="c-article-references__text" id="ref-CR205">Branzk, N. & Papayannopoulos, V. Molecular mechanisms regulating NETosis in infection and disease. <i>Semin. Immunopathol.</i> <b>35</b>, 513–530 (2013).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s00281-013-0384-6" data-track-item_id="10.1007/s00281-013-0384-6" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s00281-013-0384-6" aria-label="Article reference 205" data-doi="10.1007/s00281-013-0384-6">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3sXpvFelsbw%3D" aria-label="CAS reference 205">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=23732507" aria-label="PubMed reference 205">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3685711" aria-label="PubMed Central reference 205">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 205" href="http://scholar.google.com/scholar_lookup?&title=Molecular%20mechanisms%20regulating%20NETosis%20in%20infection%20and%20disease&journal=Semin.%20Immunopathol.&doi=10.1007%2Fs00281-013-0384-6&volume=35&pages=513-530&publication_year=2013&author=Branzk%2CN&author=Papayannopoulos%2CV"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="206."><p class="c-article-references__text" id="ref-CR206">Albrengues, J. et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. <i>Science</i> <a href="https://doi.org/10.1126/science.aao4227" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1126/science.aao4227">https://doi.org/10.1126/science.aao4227</a> (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1126/science.aao4227" data-track-item_id="10.1126/science.aao4227" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1126%2Fscience.aao4227" aria-label="Article reference 206" data-doi="10.1126/science.aao4227">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30262472" aria-label="PubMed reference 206">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXhslOrur3E" aria-label="CAS reference 206">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6777850" aria-label="PubMed Central reference 206">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 206" href="http://scholar.google.com/scholar_lookup?&title=Neutrophil%20extracellular%20traps%20produced%20during%20inflammation%20awaken%20dormant%20cancer%20cells%20in%20mice&journal=Science&doi=10.1126%2Fscience.aao4227&volume=361&issue=6409&publication_year=2018&author=Albrengues%2CJean&author=Shields%2CMario%20A.&author=Ng%2CDavid&author=Park%2CChun%20Gwon&author=Ambrico%2CAlexandra&author=Poindexter%2CMorgan%20E.&author=Upadhyay%2CPriya&author=Uyeminami%2CDale%20L.&author=Pommier%2CArnaud&author=K%C3%BCttner%2CVictoria&author=Bru%C5%BEas%2CEmilis&author=Maiorino%2CLaura&author=Bautista%2CCarmelita&author=Carmona%2CEllese%20M.&author=Gimotty%2CPhyllis%20A.&author=Fearon%2CDouglas%20T.&author=Chang%2CKenneth&author=Lyons%2CScott%20K.&author=Pinkerton%2CKent%20E.&author=Trotman%2CLloyd%20C.&author=Goldberg%2CMichael%20S.&author=Yeh%2CJohannes%20T.-H.&author=Egeblad%2CMikala"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="207."><p class="c-article-references__text" id="ref-CR207">Skendros, P., Mitroulis, I. & Ritis, K. Autophagy in neutrophils: from granulopoiesis to neutrophil extracellular traps. <i>Front. Cell. Dev. Biol.</i> <b>6</b>, 109 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.3389/fcell.2018.00109" data-track-item_id="10.3389/fcell.2018.00109" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.3389%2Ffcell.2018.00109" aria-label="Article reference 207" data-doi="10.3389/fcell.2018.00109">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30234114" aria-label="PubMed reference 207">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6131573" aria-label="PubMed Central reference 207">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 207" href="http://scholar.google.com/scholar_lookup?&title=Autophagy%20in%20neutrophils%3A%20from%20granulopoiesis%20to%20neutrophil%20extracellular%20traps&journal=Front.%20Cell.%20Dev.%20Biol.&doi=10.3389%2Ffcell.2018.00109&volume=6&publication_year=2018&author=Skendros%2CP&author=Mitroulis%2CI&author=Ritis%2CK"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="208."><p class="c-article-references__text" id="ref-CR208">Remijsen, Q. et al. Neutrophil extracellular trap cell death requires both autophagy and superoxide generation. <i>Cell Res.</i> <b>21</b>, 290–304 (2011).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/cr.2010.150" data-track-item_id="10.1038/cr.2010.150" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fcr.2010.150" aria-label="Article reference 208" data-doi="10.1038/cr.2010.150">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3MXhsVOmurY%3D" aria-label="CAS reference 208">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=21060338" aria-label="PubMed reference 208">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 208" href="http://scholar.google.com/scholar_lookup?&title=Neutrophil%20extracellular%20trap%20cell%20death%20requires%20both%20autophagy%20and%20superoxide%20generation&journal=Cell%20Res.&doi=10.1038%2Fcr.2010.150&volume=21&pages=290-304&publication_year=2011&author=Remijsen%2CQ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="209."><p class="c-article-references__text" id="ref-CR209">Yipp, B. G. et al. Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. <i>Nat. Med.</i> <b>18</b>, 1386–1393 (2012).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nm.2847" data-track-item_id="10.1038/nm.2847" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnm.2847" aria-label="Article reference 209" data-doi="10.1038/nm.2847">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC38Xht1GhsL7O" aria-label="CAS reference 209">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22922410" aria-label="PubMed reference 209">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4529131" aria-label="PubMed Central reference 209">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 209" href="http://scholar.google.com/scholar_lookup?&title=Infection-induced%20NETosis%20is%20a%20dynamic%20process%20involving%20neutrophil%20multitasking%20in%20vivo&journal=Nat.%20Med.&doi=10.1038%2Fnm.2847&volume=18&pages=1386-1393&publication_year=2012&author=Yipp%2CBG"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="210."><p class="c-article-references__text" id="ref-CR210">Li, P. et al. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. <i>J. Exp. Med.</i> <b>207</b>, 1853–1862 (2010).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1084/jem.20100239" data-track-item_id="10.1084/jem.20100239" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1084%2Fjem.20100239" aria-label="Article reference 210" data-doi="10.1084/jem.20100239">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3cXhtFensr3O" aria-label="CAS reference 210">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20733033" aria-label="PubMed reference 210">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2931169" aria-label="PubMed Central reference 210">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 210" href="http://scholar.google.com/scholar_lookup?&title=PAD4%20is%20essential%20for%20antibacterial%20innate%20immunity%20mediated%20by%20neutrophil%20extracellular%20traps&journal=J.%20Exp.%20Med.&doi=10.1084%2Fjem.20100239&volume=207&pages=1853-1862&publication_year=2010&author=Li%2CP"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="211."><p class="c-article-references__text" id="ref-CR211">Hemmers, S., Teijaro, J. R., Arandjelovic, S. & Mowen, K. A. PAD4-mediated neutrophil extracellular trap formation is not required for immunity against influenza infection. <i>PLoS ONE</i> <b>6</b>, e22043 (2011).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1371/journal.pone.0022043" data-track-item_id="10.1371/journal.pone.0022043" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1371%2Fjournal.pone.0022043" aria-label="Article reference 211" data-doi="10.1371/journal.pone.0022043">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3MXpsl2gsr0%3D" aria-label="CAS reference 211">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=21779371" aria-label="PubMed reference 211">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3133614" aria-label="PubMed Central reference 211">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 211" href="http://scholar.google.com/scholar_lookup?&title=PAD4-mediated%20neutrophil%20extracellular%20trap%20formation%20is%20not%20required%20for%20immunity%20against%20influenza%20infection&journal=PLoS%20One&doi=10.1371%2Fjournal.pone.0022043&volume=6&publication_year=2011&author=Hemmers%2CS&author=Teijaro%2CJR&author=Arandjelovic%2CS&author=Mowen%2CKA"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="212."><p class="c-article-references__text" id="ref-CR212">Mitroulis, I. et al. Neutrophil extracellular trap formation is associated with IL-1beta and autophagy-related signaling in gout. <i>PLoS ONE</i> <b>6</b>, e29318 (2011).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1371/journal.pone.0029318" data-track-item_id="10.1371/journal.pone.0029318" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1371%2Fjournal.pone.0029318" aria-label="Article reference 212" data-doi="10.1371/journal.pone.0029318">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC38XjvFCiug%3D%3D" aria-label="CAS reference 212">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22195044" aria-label="PubMed reference 212">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3241704" aria-label="PubMed Central reference 212">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 212" href="http://scholar.google.com/scholar_lookup?&title=Neutrophil%20extracellular%20trap%20formation%20is%20associated%20with%20IL-1beta%20and%20autophagy-related%20signaling%20in%20gout&journal=PLoS%20One&doi=10.1371%2Fjournal.pone.0029318&volume=6&publication_year=2011&author=Mitroulis%2CI"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="213."><p class="c-article-references__text" id="ref-CR213">Neubert, E. et al. Chromatin swelling drives neutrophil extracellular trap release. <i>Nat. Commun.</i> <b>9</b>, 3767 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41467-018-06263-5" data-track-item_id="10.1038/s41467-018-06263-5" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41467-018-06263-5" aria-label="Article reference 213" data-doi="10.1038/s41467-018-06263-5">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30218080" aria-label="PubMed reference 213">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6138659" aria-label="PubMed Central reference 213">PubMed Central</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXhslamu7bL" aria-label="CAS reference 213">CAS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 213" href="http://scholar.google.com/scholar_lookup?&title=Chromatin%20swelling%20drives%20neutrophil%20extracellular%20trap%20release&journal=Nat.%20Commun.&doi=10.1038%2Fs41467-018-06263-5&volume=9&publication_year=2018&author=Neubert%2CE"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="214."><p class="c-article-references__text" id="ref-CR214">Okubo, K. et al. Lactoferrin suppresses neutrophil extracellular traps release in inflammation. <i>EBioMedicine</i> <b>10</b>, 204–215 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.ebiom.2016.07.012" data-track-item_id="10.1016/j.ebiom.2016.07.012" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.ebiom.2016.07.012" aria-label="Article reference 214" data-doi="10.1016/j.ebiom.2016.07.012">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27453322" aria-label="PubMed reference 214">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5006695" aria-label="PubMed Central reference 214">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 214" href="http://scholar.google.com/scholar_lookup?&title=Lactoferrin%20suppresses%20neutrophil%20extracellular%20traps%20release%20in%20inflammation&journal=EBioMedicine&doi=10.1016%2Fj.ebiom.2016.07.012&volume=10&pages=204-215&publication_year=2016&author=Okubo%2CK"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="215."><p class="c-article-references__text" id="ref-CR215">Aits, S. & Jaattela, M. Lysosomal cell death at a glance. <i>J. Cell. Sci.</i> <b>126</b>, 1905–1912 (2013).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1242/jcs.091181" data-track-item_id="10.1242/jcs.091181" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1242%2Fjcs.091181" aria-label="Article reference 215" data-doi="10.1242/jcs.091181">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3sXhtFWjtL3O" aria-label="CAS reference 215">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=23720375" aria-label="PubMed reference 215">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 215" href="http://scholar.google.com/scholar_lookup?&title=Lysosomal%20cell%20death%20at%20a%20glance&journal=J.%20Cell.%20Sci.&doi=10.1242%2Fjcs.091181&volume=126&pages=1905-1912&publication_year=2013&author=Aits%2CS&author=Jaattela%2CM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="216."><p class="c-article-references__text" id="ref-CR216">Franko, J., Pomfy, M. & Prosbova, T. Apoptosis and cell death (mechanisms, pharmacology and promise for the future). <i>Acta Medica (Hradec. Kralove)</i> <b>43</b>, 63–68 (2000).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD3cXlslGjsrY%3D" aria-label="CAS reference 216">CAS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 216" href="http://scholar.google.com/scholar_lookup?&title=Apoptosis%20and%20cell%20death%20%28mechanisms%2C%20pharmacology%20and%20promise%20for%20the%20future%29&journal=Acta%20Medica%20%28Hradec.%20Kralove%29&volume=43&pages=63-68&publication_year=2000&author=Franko%2CJ&author=Pomfy%2CM&author=Prosbova%2CT"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="217."><p class="c-article-references__text" id="ref-CR217">Kroemer, G. & Jaattela, M. Lysosomes and autophagy in cell death control. <i>Nat. Rev. Cancer</i> <b>5</b>, 886–897 (2005).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nrc1738" data-track-item_id="10.1038/nrc1738" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnrc1738" aria-label="Article reference 217" data-doi="10.1038/nrc1738">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD2MXht1Witb3L" aria-label="CAS reference 217">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16239905" aria-label="PubMed reference 217">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 217" href="http://scholar.google.com/scholar_lookup?&title=Lysosomes%20and%20autophagy%20in%20cell%20death%20control&journal=Nat.%20Rev.%20Cancer&doi=10.1038%2Fnrc1738&volume=5&pages=886-897&publication_year=2005&author=Kroemer%2CG&author=Jaattela%2CM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="218."><p class="c-article-references__text" id="ref-CR218">Gao, H. et al. Ferroptosis is a lysosomal cell death process. <i>Biochem. Biophys. Res. Commun.</i> <b>503</b>, 1550–1556 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.bbrc.2018.07.078" data-track-item_id="10.1016/j.bbrc.2018.07.078" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.bbrc.2018.07.078" aria-label="Article reference 218" data-doi="10.1016/j.bbrc.2018.07.078">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXhtlCltL7J" aria-label="CAS reference 218">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30031610" aria-label="PubMed reference 218">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 218" href="http://scholar.google.com/scholar_lookup?&title=Ferroptosis%20is%20a%20lysosomal%20cell%20death%20process&journal=Biochem.%20Biophys.%20Res.%20Commun.&doi=10.1016%2Fj.bbrc.2018.07.078&volume=503&pages=1550-1556&publication_year=2018&author=Gao%2CH"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="219."><p class="c-article-references__text" id="ref-CR219">Repnik, U., Stoka, V., Turk, V. & Turk, B. Lysosomes and lysosomal cathepsins in cell death. <i>Biochim. Biophys. Acta</i> <b>1824</b>, 22–33 (2012).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.bbapap.2011.08.016" data-track-item_id="10.1016/j.bbapap.2011.08.016" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.bbapap.2011.08.016" aria-label="Article reference 219" data-doi="10.1016/j.bbapap.2011.08.016">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3MXhsFOns73I" aria-label="CAS reference 219">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=21914490" aria-label="PubMed reference 219">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 219" href="http://scholar.google.com/scholar_lookup?&title=Lysosomes%20and%20lysosomal%20cathepsins%20in%20cell%20death&journal=Biochim.%20Biophys.%20Acta&doi=10.1016%2Fj.bbapap.2011.08.016&volume=1824&pages=22-33&publication_year=2012&author=Repnik%2CU&author=Stoka%2CV&author=Turk%2CV&author=Turk%2CB"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="220."><p class="c-article-references__text" id="ref-CR220">Kreuzaler, P. A. et al. Stat3 controls lysosomal-mediated cell death in vivo. <i>Nat. Cell Biol.</i> <b>13</b>, 303–309 (2011).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/ncb2171" data-track-item_id="10.1038/ncb2171" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fncb2171" aria-label="Article reference 220" data-doi="10.1038/ncb2171">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3MXisFKntrY%3D" aria-label="CAS reference 220">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=21336304" aria-label="PubMed reference 220">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 220" href="http://scholar.google.com/scholar_lookup?&title=Stat3%20controls%20lysosomal-mediated%20cell%20death%20in%20vivo&journal=Nat.%20Cell%20Biol.&doi=10.1038%2Fncb2171&volume=13&pages=303-309&publication_year=2011&author=Kreuzaler%2CPA"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="221."><p class="c-article-references__text" id="ref-CR221">Wu, G. S., Saftig, P., Peters, C. & El-Deiry, W. S. Potential role for cathepsin D in p53-dependent tumor suppression and chemosensitivity. <i>Oncogene</i> <b>16</b>, 2177–2183 (1998).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/sj.onc.1201755" data-track-item_id="10.1038/sj.onc.1201755" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fsj.onc.1201755" aria-label="Article reference 221" data-doi="10.1038/sj.onc.1201755">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DyaK1cXjtFegtL0%3D" aria-label="CAS reference 221">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9619826" aria-label="PubMed reference 221">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 221" href="http://scholar.google.com/scholar_lookup?&title=Potential%20role%20for%20cathepsin%20D%20in%20p53-dependent%20tumor%20suppression%20and%20chemosensitivity&journal=Oncogene&doi=10.1038%2Fsj.onc.1201755&volume=16&pages=2177-2183&publication_year=1998&author=Wu%2CGS&author=Saftig%2CP&author=Peters%2CC&author=El-Deiry%2CWS"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="222."><p class="c-article-references__text" id="ref-CR222">Liu, N. et al. NF-kappaB protects from the lysosomal pathway of cell death. <i>EMBO J.</i> <b>22</b>, 5313–5322 (2003).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1093/emboj/cdg510" data-track-item_id="10.1093/emboj/cdg510" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1093%2Femboj%2Fcdg510" aria-label="Article reference 222" data-doi="10.1093/emboj/cdg510">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD3sXnvVequ78%3D" aria-label="CAS reference 222">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14517268" aria-label="PubMed reference 222">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC204493" aria-label="PubMed Central reference 222">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 222" href="http://scholar.google.com/scholar_lookup?&title=NF-kappaB%20protects%20from%20the%20lysosomal%20pathway%20of%20cell%20death&journal=EMBO%20J.&doi=10.1093%2Femboj%2Fcdg510&volume=22&pages=5313-5322&publication_year=2003&author=Liu%2CN"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="223."><p class="c-article-references__text" id="ref-CR223">Colletti, G. A. et al. Loss of lysosomal ion channel transient receptor potential channel mucolipin-1 (TRPML1) leads to cathepsin B-dependent apoptosis. <i>J. Biol. Chem.</i> <b>287</b>, 8082–8091 (2012).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1074/jbc.M111.285536" data-track-item_id="10.1074/jbc.M111.285536" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1074%2Fjbc.M111.285536" aria-label="Article reference 223" data-doi="10.1074/jbc.M111.285536">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC38XjsFCku7s%3D" aria-label="CAS reference 223">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22262857" aria-label="PubMed reference 223">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3318733" aria-label="PubMed Central reference 223">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 223" href="http://scholar.google.com/scholar_lookup?&title=Loss%20of%20lysosomal%20ion%20channel%20transient%20receptor%20potential%20channel%20mucolipin-1%20%28TRPML1%29%20leads%20to%20cathepsin%20B-dependent%20apoptosis&journal=J.%20Biol.%20Chem.&doi=10.1074%2Fjbc.M111.285536&volume=287&pages=8082-8091&publication_year=2012&author=Colletti%2CGA"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="224."><p class="c-article-references__text" id="ref-CR224">Terman, A. & Kurz, T. Lysosomal iron, iron chelation, and cell death. <i>Antioxid. Redox. Signal.</i> <b>18</b>, 888–898 (2013).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1089/ars.2012.4885" data-track-item_id="10.1089/ars.2012.4885" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1089%2Fars.2012.4885" aria-label="Article reference 224" data-doi="10.1089/ars.2012.4885">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3sXhsVOmsLo%3D" aria-label="CAS reference 224">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22909065" aria-label="PubMed reference 224">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 224" href="http://scholar.google.com/scholar_lookup?&title=Lysosomal%20iron%2C%20iron%20chelation%2C%20and%20cell%20death&journal=Antioxid.%20Redox.%20Signal.&doi=10.1089%2Fars.2012.4885&volume=18&pages=888-898&publication_year=2013&author=Terman%2CA&author=Kurz%2CT"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="225."><p class="c-article-references__text" id="ref-CR225">Torii, S. et al. An essential role for functional lysosomes in ferroptosis of cancer cells. <i>Biochem. J.</i> <b>473</b>, 769–777 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1042/BJ20150658" data-track-item_id="10.1042/BJ20150658" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1042%2FBJ20150658" aria-label="Article reference 225" data-doi="10.1042/BJ20150658">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28XkvFCrsbk%3D" aria-label="CAS reference 225">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26759376" aria-label="PubMed reference 225">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 225" href="http://scholar.google.com/scholar_lookup?&title=An%20essential%20role%20for%20functional%20lysosomes%20in%20ferroptosis%20of%20cancer%20cells&journal=Biochem.%20J.&doi=10.1042%2FBJ20150658&volume=473&pages=769-777&publication_year=2016&author=Torii%2CS"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="226."><p class="c-article-references__text" id="ref-CR226">Platt, F. M., Boland, B. & van der Spoel, A. C. The cell biology of disease: lysosomal storage disorders: the cellular impact of lysosomal dysfunction. <i>J. Cell. Biol.</i> <b>199</b>, 723–734 (2012).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1083/jcb.201208152" data-track-item_id="10.1083/jcb.201208152" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1083%2Fjcb.201208152" aria-label="Article reference 226" data-doi="10.1083/jcb.201208152">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC38XhslOit73M" aria-label="CAS reference 226">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=23185029" aria-label="PubMed reference 226">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3514785" aria-label="PubMed Central reference 226">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 226" href="http://scholar.google.com/scholar_lookup?&title=The%20cell%20biology%20of%20disease%3A%20lysosomal%20storage%20disorders%3A%20the%20cellular%20impact%20of%20lysosomal%20dysfunction&journal=J.%20Cell.%20Biol.&doi=10.1083%2Fjcb.201208152&volume=199&pages=723-734&publication_year=2012&author=Platt%2CFM&author=Boland%2CB&author=Spoel%2CAC"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="227."><p class="c-article-references__text" id="ref-CR227">Gomez-Sintes, R., Ledesma, M. D. & Boya, P. Lysosomal cell death mechanisms in aging. <i>Ageing Res. Rev.</i> <b>32</b>, 150–168 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.arr.2016.02.009" data-track-item_id="10.1016/j.arr.2016.02.009" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.arr.2016.02.009" aria-label="Article reference 227" data-doi="10.1016/j.arr.2016.02.009">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28XktVOmsrg%3D" aria-label="CAS reference 227">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26947122" aria-label="PubMed reference 227">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 227" href="http://scholar.google.com/scholar_lookup?&title=Lysosomal%20cell%20death%20mechanisms%20in%20aging&journal=Ageing%20Res.%20Rev.&doi=10.1016%2Fj.arr.2016.02.009&volume=32&pages=150-168&publication_year=2016&author=Gomez-Sintes%2CR&author=Ledesma%2CMD&author=Boya%2CP"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="228."><p class="c-article-references__text" id="ref-CR228">Klionsky, D. J. Autophagy: from phenomenology to molecular understanding in less than a decade. <i>Nat. Rev. Mol. Cell Biol.</i> <b>8</b>, 931–937 (2007).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nrm2245" data-track-item_id="10.1038/nrm2245" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnrm2245" aria-label="Article reference 228" data-doi="10.1038/nrm2245">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD2sXhtF2qsL3I" aria-label="CAS reference 228">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17712358" aria-label="PubMed reference 228">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 228" href="http://scholar.google.com/scholar_lookup?&title=Autophagy%3A%20from%20phenomenology%20to%20molecular%20understanding%20in%20less%20than%20a%20decade&journal=Nat.%20Rev.%20Mol.%20Cell%20Biol.&doi=10.1038%2Fnrm2245&volume=8&pages=931-937&publication_year=2007&author=Klionsky%2CDJ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="229."><p class="c-article-references__text" id="ref-CR229">Levine, B. & Kroemer, G. Biological functions of autophagy genes: a disease perspective. <i>Cell</i> <b>176</b>, 11–42 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.cell.2018.09.048" data-track-item_id="10.1016/j.cell.2018.09.048" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.cell.2018.09.048" aria-label="Article reference 229" data-doi="10.1016/j.cell.2018.09.048">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1MXovFyquw%3D%3D" aria-label="CAS reference 229">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30633901" aria-label="PubMed reference 229">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6347410" aria-label="PubMed Central reference 229">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 229" href="http://scholar.google.com/scholar_lookup?&title=Biological%20functions%20of%20autophagy%20genes%3A%20a%20disease%20perspective&journal=Cell&doi=10.1016%2Fj.cell.2018.09.048&volume=176&pages=11-42&publication_year=2019&author=Levine%2CB&author=Kroemer%2CG"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="230."><p class="c-article-references__text" id="ref-CR230">Dikic, I. & Elazar, Z. Mechanism and medical implications of mammalian autophagy. <i>Nat. Rev. Mol. Cell Biol.</i> <b>19</b>, 349–364 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41580-018-0003-4" data-track-item_id="10.1038/s41580-018-0003-4" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41580-018-0003-4" aria-label="Article reference 230" data-doi="10.1038/s41580-018-0003-4">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXosVCns7s%3D" aria-label="CAS reference 230">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29618831" aria-label="PubMed reference 230">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 230" href="http://scholar.google.com/scholar_lookup?&title=Mechanism%20and%20medical%20implications%20of%20mammalian%20autophagy&journal=Nat.%20Rev.%20Mol.%20Cell%20Biol.&doi=10.1038%2Fs41580-018-0003-4&volume=19&pages=349-364&publication_year=2018&author=Dikic%2CI&author=Elazar%2CZ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="231."><p class="c-article-references__text" id="ref-CR231">Liu, Y. & Levine, B. Autosis and autophagic cell death: the dark side of autophagy. <i>Cell Death Differ.</i> <b>22</b>, 367–376 (2015).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/cdd.2014.143" data-track-item_id="10.1038/cdd.2014.143" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fcdd.2014.143" aria-label="Article reference 231" data-doi="10.1038/cdd.2014.143">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2cXhs1ChsbbM" aria-label="CAS reference 231">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25257169" aria-label="PubMed reference 231">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 231" href="http://scholar.google.com/scholar_lookup?&title=Autosis%20and%20autophagic%20cell%20death%3A%20the%20dark%20side%20of%20autophagy&journal=Cell%20Death%20Differ.&doi=10.1038%2Fcdd.2014.143&volume=22&pages=367-376&publication_year=2015&author=Liu%2CY&author=Levine%2CB"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="232."><p class="c-article-references__text" id="ref-CR232">Bialik, S., Dasari, S. K. & Kimchi, A. Autophagy-dependent cell death—where, how and why a cell eats itself to death. <i>J. Cell. Sci.</i> <a href="https://doi.org/10.1242/jcs.215152" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1242/jcs.215152">https://doi.org/10.1242/jcs.215152</a> (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1242/jcs.215152" data-track-item_id="10.1242/jcs.215152" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1242%2Fjcs.215152" aria-label="Article reference 232" data-doi="10.1242/jcs.215152">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30237248" aria-label="PubMed reference 232">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXitlSmu7jO" aria-label="CAS reference 232">CAS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 232" href="http://scholar.google.com/scholar_lookup?&title=Autophagy-dependent%20cell%20death%20%E2%80%93%20where%2C%20how%20and%20why%20a%20cell%20eats%20itself%20to%20death&journal=Journal%20of%20Cell%20Science&doi=10.1242%2Fjcs.215152&volume=131&issue=18&publication_year=2018&author=Bialik%2CShani&author=Dasari%2CSantosh%20K.&author=Kimchi%2CAdi"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="233."><p class="c-article-references__text" id="ref-CR233">Denton, D. & Kumar, S. Autophagy-dependent cell death. <i>Cell Death Differ</i>. <a href="https://doi.org/10.1038/s41418-018-0252-y" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1038/s41418-018-0252-y">https://doi.org/10.1038/s41418-018-0252-y</a> (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41418-018-0252-y" data-track-item_id="10.1038/s41418-018-0252-y" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41418-018-0252-y" aria-label="Article reference 233" data-doi="10.1038/s41418-018-0252-y">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXisFKrt77K" aria-label="CAS reference 233">CAS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 233" href="http://scholar.google.com/scholar_lookup?&title=Autophagy-dependent%20cell%20death&journal=Cell%20Death%20%26%20Differentiation&doi=10.1038%2Fs41418-018-0252-y&volume=26&issue=4&pages=605-616&publication_year=2018&author=Denton%2CDonna&author=Kumar%2CSharad"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="234."><p class="c-article-references__text" id="ref-CR234">Kriel, J. & Loos, B. The good, the bad and the autophagosome: exploring unanswered questions of autophagy-dependent cell death. <i>Cell Death Differ.</i> <a href="https://doi.org/10.1038/s41418-018-0267-4" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1038/s41418-018-0267-4">https://doi.org/10.1038/s41418-018-0267-4</a> (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41418-018-0267-4" data-track-item_id="10.1038/s41418-018-0267-4" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41418-018-0267-4" aria-label="Article reference 234" data-doi="10.1038/s41418-018-0267-4">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 234" href="http://scholar.google.com/scholar_lookup?&title=The%20good%2C%20the%20bad%20and%20the%20autophagosome%3A%20exploring%20unanswered%20questions%20of%20autophagy-dependent%20cell%20death&journal=Cell%20Death%20%26%20Differentiation&doi=10.1038%2Fs41418-018-0267-4&volume=26&issue=4&pages=640-652&publication_year=2019&author=Kriel%2CJurgen&author=Loos%2CBen"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="235."><p class="c-article-references__text" id="ref-CR235">Gump, J. M. et al. Autophagy variation within a cell population determines cell fate through selective degradation of Fap-1. <i>Nat. Cell Biol.</i> <b>16</b>, 47–54 (2014).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/ncb2886" data-track-item_id="10.1038/ncb2886" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fncb2886" aria-label="Article reference 235" data-doi="10.1038/ncb2886">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3sXhvV2hsL3F" aria-label="CAS reference 235">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=24316673" aria-label="PubMed reference 235">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 235" href="http://scholar.google.com/scholar_lookup?&title=Autophagy%20variation%20within%20a%20cell%20population%20determines%20cell%20fate%20through%20selective%20degradation%20of%20Fap-1&journal=Nat.%20Cell%20Biol.&doi=10.1038%2Fncb2886&volume=16&pages=47-54&publication_year=2014&author=Gump%2CJM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="236."><p class="c-article-references__text" id="ref-CR236">He, W. et al. A JNK-mediated autophagy pathway that triggers c-IAP degradation and necroptosis for anticancer chemotherapy. <i>Oncogene</i> <b>33</b>, 3004–3013 (2014).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/onc.2013.256" data-track-item_id="10.1038/onc.2013.256" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fonc.2013.256" aria-label="Article reference 236" data-doi="10.1038/onc.2013.256">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3sXhtVKhu7bP" aria-label="CAS reference 236">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=23831571" aria-label="PubMed reference 236">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 236" href="http://scholar.google.com/scholar_lookup?&title=A%20JNK-mediated%20autophagy%20pathway%20that%20triggers%20c-IAP%20degradation%20and%20necroptosis%20for%20anticancer%20chemotherapy&journal=Oncogene&doi=10.1038%2Fonc.2013.256&volume=33&pages=3004-3013&publication_year=2014&author=He%2CW"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="237."><p class="c-article-references__text" id="ref-CR237">Sousa, L. et al. Effects of iron overload on the activity of Na,K-ATPase and lipid profile of the human erythrocyte membrane. <i>PLoS ONE</i> <b>10</b>, e0132852 (2015).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1371/journal.pone.0132852" data-track-item_id="10.1371/journal.pone.0132852" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1371%2Fjournal.pone.0132852" aria-label="Article reference 237" data-doi="10.1371/journal.pone.0132852">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26197432" aria-label="PubMed reference 237">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4510300" aria-label="PubMed Central reference 237">PubMed Central</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2MXhsVWjsLvM" aria-label="CAS reference 237">CAS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 237" href="http://scholar.google.com/scholar_lookup?&title=Effects%20of%20iron%20overload%20on%20the%20activity%20of%20Na%2CK-ATPase%20and%20lipid%20profile%20of%20the%20human%20erythrocyte%20membrane&journal=PLoS%20One&doi=10.1371%2Fjournal.pone.0132852&volume=10&publication_year=2015&author=Sousa%2CL"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="238."><p class="c-article-references__text" id="ref-CR238">Song, X. et al. JTC801 induces pH-dependent death specifically in cancer cells and slows growth of tumors in mice. <i>Gastroenterology</i> <b>154</b>, 1480–1493 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1053/j.gastro.2017.12.004" data-track-item_id="10.1053/j.gastro.2017.12.004" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1053%2Fj.gastro.2017.12.004" aria-label="Article reference 238" data-doi="10.1053/j.gastro.2017.12.004">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXmvVGgt70%3D" aria-label="CAS reference 238">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29248440" aria-label="PubMed reference 238">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 238" href="http://scholar.google.com/scholar_lookup?&title=JTC801%20induces%20pH-dependent%20death%20specifically%20in%20cancer%20cells%20and%20slows%20growth%20of%20tumors%20in%20mice&journal=Gastroenterology&doi=10.1053%2Fj.gastro.2017.12.004&volume=154&pages=1480-1493&publication_year=2018&author=Song%2CX"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="239."><p class="c-article-references__text" id="ref-CR239">Zheng, C. J., Yang, L. L., Liu, J. & Zhong, L. JTC-801 exerts anti-proliferative effects in human osteosarcoma cells by inducing apoptosis. <i>J. Recept. Signal. Transduct. Res.</i> <b>38</b>, 133–140 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1080/10799893.2018.1436561" data-track-item_id="10.1080/10799893.2018.1436561" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1080%2F10799893.2018.1436561" aria-label="Article reference 239" data-doi="10.1080/10799893.2018.1436561">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXivFSmtrc%3D" aria-label="CAS reference 239">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29447541" aria-label="PubMed reference 239">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 239" href="http://scholar.google.com/scholar_lookup?&title=JTC-801%20exerts%20anti-proliferative%20effects%20in%20human%20osteosarcoma%20cells%20by%20inducing%20apoptosis&journal=J.%20Recept.%20Signal.%20Transduct.%20Res.&doi=10.1080%2F10799893.2018.1436561&volume=38&pages=133-140&publication_year=2018&author=Zheng%2CCJ&author=Yang%2CLL&author=Liu%2CJ&author=Zhong%2CL"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="240."><p class="c-article-references__text" id="ref-CR240">Pochet, J. M., Laterre, P. F., Jadoul, M. & Devuyst, O. Metabolic alkalosis in the intensive care unit. <i>Acta Clin. Belg.</i> <b>56</b>, 2–9 (2001).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1179/acb.2001.002" data-track-item_id="10.1179/acb.2001.002" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1179%2Facb.2001.002" aria-label="Article reference 240" data-doi="10.1179/acb.2001.002">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:STN:280:DC%2BD3MzgslKiug%3D%3D" aria-label="CAS reference 240">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11307479" aria-label="PubMed reference 240">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 240" href="http://scholar.google.com/scholar_lookup?&title=Metabolic%20alkalosis%20in%20the%20intensive%20care%20unit&journal=Acta%20Clin.%20Belg.&doi=10.1179%2Facb.2001.002&volume=56&pages=2-9&publication_year=2001&author=Pochet%2CJM&author=Laterre%2CPF&author=Jadoul%2CM&author=Devuyst%2CO"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="241."><p class="c-article-references__text" id="ref-CR241">Holze, C. et al. Oxeiptosis, a ROS-induced caspase-independent apoptosis-like cell-death pathway. <i>Nat. Immunol.</i> <b>19</b>, 130–140 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41590-017-0013-y" data-track-item_id="10.1038/s41590-017-0013-y" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41590-017-0013-y" aria-label="Article reference 241" data-doi="10.1038/s41590-017-0013-y">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXmtVCku7o%3D" aria-label="CAS reference 241">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29255269" aria-label="PubMed reference 241">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 241" href="http://scholar.google.com/scholar_lookup?&title=Oxeiptosis%2C%20a%20ROS-induced%20caspase-independent%20apoptosis-like%20cell-death%20pathway&journal=Nat.%20Immunol.&doi=10.1038%2Fs41590-017-0013-y&volume=19&pages=130-140&publication_year=2018&author=Holze%2CC"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="242."><p class="c-article-references__text" id="ref-CR242">Saito, Y. et al. Turning point in apoptosis/necrosis induced by hydrogen peroxide. <i>Free. Radic. Res.</i> <b>40</b>, 619–630 (2006).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1080/10715760600632552" data-track-item_id="10.1080/10715760600632552" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1080%2F10715760600632552" aria-label="Article reference 242" data-doi="10.1080/10715760600632552">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD28Xmt1egtL8%3D" aria-label="CAS reference 242">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16753840" aria-label="PubMed reference 242">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 242" href="http://scholar.google.com/scholar_lookup?&title=Turning%20point%20in%20apoptosis%2Fnecrosis%20induced%20by%20hydrogen%20peroxide&journal=Free.%20Radic.%20Res.&doi=10.1080%2F10715760600632552&volume=40&pages=619-630&publication_year=2006&author=Saito%2CY"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="243."><p class="c-article-references__text" id="ref-CR243">Ingold, I. et al. Selenium Utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis. <i>Cell</i> <b>172</b>, 409–422 e421 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.cell.2017.11.048" data-track-item_id="10.1016/j.cell.2017.11.048" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.cell.2017.11.048" aria-label="Article reference 243" data-doi="10.1016/j.cell.2017.11.048">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXit1OhsQ%3D%3D" aria-label="CAS reference 243">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29290465" aria-label="PubMed reference 243">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 243" href="http://scholar.google.com/scholar_lookup?&title=Selenium%20Utilization%20by%20GPX4%20is%20required%20to%20prevent%20hydroperoxide-induced%20ferroptosis&journal=Cell&doi=10.1016%2Fj.cell.2017.11.048&volume=172&pages=409-422%20e421&publication_year=2018&author=Ingold%2CI"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="244."><p class="c-article-references__text" id="ref-CR244">Casares, N. et al. Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. <i>J. Exp. Med.</i> <b>202</b>, 1691–1701 (2005).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1084/jem.20050915" data-track-item_id="10.1084/jem.20050915" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1084%2Fjem.20050915" aria-label="Article reference 244" data-doi="10.1084/jem.20050915">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD2MXhtlCjsrjK" aria-label="CAS reference 244">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16365148" aria-label="PubMed reference 244">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2212968" aria-label="PubMed Central reference 244">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 244" href="http://scholar.google.com/scholar_lookup?&title=Caspase-dependent%20immunogenicity%20of%20doxorubicin-induced%20tumor%20cell%20death&journal=J.%20Exp.%20Med.&doi=10.1084%2Fjem.20050915&volume=202&pages=1691-1701&publication_year=2005&author=Casares%2CN"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="245."><p class="c-article-references__text" id="ref-CR245">Green, D. R., Ferguson, T., Zitvogel, L. & Kroemer, G. Immunogenic and tolerogenic cell death. <i>Nat. Rev. Immunol.</i> <b>9</b>, 353–363 (2009).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nri2545" data-track-item_id="10.1038/nri2545" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnri2545" aria-label="Article reference 245" data-doi="10.1038/nri2545">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD1MXksVyit7Y%3D" aria-label="CAS reference 245">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19365408" aria-label="PubMed reference 245">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2818721" aria-label="PubMed Central reference 245">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 245" href="http://scholar.google.com/scholar_lookup?&title=Immunogenic%20and%20tolerogenic%20cell%20death&journal=Nat.%20Rev.%20Immunol.&doi=10.1038%2Fnri2545&volume=9&pages=353-363&publication_year=2009&author=Green%2CDR&author=Ferguson%2CT&author=Zitvogel%2CL&author=Kroemer%2CG"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="246."><p class="c-article-references__text" id="ref-CR246">Obeid, M. et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. <i>Nat. Med.</i> <b>13</b>, 54–61 (2007).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nm1523" data-track-item_id="10.1038/nm1523" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnm1523" aria-label="Article reference 246" data-doi="10.1038/nm1523">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD2sXhvFWisw%3D%3D" aria-label="CAS reference 246">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17187072" aria-label="PubMed reference 246">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 246" href="http://scholar.google.com/scholar_lookup?&title=Calreticulin%20exposure%20dictates%20the%20immunogenicity%20of%20cancer%20cell%20death&journal=Nat.%20Med.&doi=10.1038%2Fnm1523&volume=13&pages=54-61&publication_year=2007&author=Obeid%2CM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="247."><p class="c-article-references__text" id="ref-CR247">Galluzzi, L., Buque, A., Kepp, O., Zitvogel, L. & Kroemer, G. Immunogenic cell death in cancer and infectious disease. <i>Nat. Rev. Immunol.</i> <b>17</b>, 97–111 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nri.2016.107" data-track-item_id="10.1038/nri.2016.107" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnri.2016.107" aria-label="Article reference 247" data-doi="10.1038/nri.2016.107">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28Xhs1ygtrjJ" aria-label="CAS reference 247">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27748397" aria-label="PubMed reference 247">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 247" href="http://scholar.google.com/scholar_lookup?&title=Immunogenic%20cell%20death%20in%20cancer%20and%20infectious%20disease&journal=Nat.%20Rev.%20Immunol.&doi=10.1038%2Fnri.2016.107&volume=17&pages=97-111&publication_year=2017&author=Galluzzi%2CL&author=Buque%2CA&author=Kepp%2CO&author=Zitvogel%2CL&author=Kroemer%2CG"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="248."><p class="c-article-references__text" id="ref-CR248">Tang, D., Kang, R., Coyne, C. B., Zeh, H. J. & Lotze, M. T. PAMPs and DAMPs: signal 0s that spur autophagy and immunity. <i>Immunol. Rev.</i> <b>249</b>, 158–175 (2012).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1111/j.1600-065X.2012.01146.x" data-track-item_id="10.1111/j.1600-065X.2012.01146.x" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1111%2Fj.1600-065X.2012.01146.x" aria-label="Article reference 248" data-doi="10.1111/j.1600-065X.2012.01146.x">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC38XhsFCnu7jN" aria-label="CAS reference 248">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22889221" aria-label="PubMed reference 248">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3662247" aria-label="PubMed Central reference 248">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 248" href="http://scholar.google.com/scholar_lookup?&title=PAMPs%20and%20DAMPs%3A%20signal%200s%20that%20spur%20autophagy%20and%20immunity&journal=Immunol.%20Rev.&doi=10.1111%2Fj.1600-065X.2012.01146.x&volume=249&pages=158-175&publication_year=2012&author=Tang%2CD&author=Kang%2CR&author=Coyne%2CCB&author=Zeh%2CHJ&author=Lotze%2CMT"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="249."><p class="c-article-references__text" id="ref-CR249">Hou, W. et al. Strange attractors: DAMPs and autophagy link tumor cell death and immunity. <i>Cell Death Dis.</i> <b>4</b>, e966 (2013).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/cddis.2013.493" data-track-item_id="10.1038/cddis.2013.493" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fcddis.2013.493" aria-label="Article reference 249" data-doi="10.1038/cddis.2013.493">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3sXhvFCqtr%2FI" aria-label="CAS reference 249">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=24336086" aria-label="PubMed reference 249">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3877563" aria-label="PubMed Central reference 249">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 249" href="http://scholar.google.com/scholar_lookup?&title=Strange%20attractors%3A%20DAMPs%20and%20autophagy%20link%20tumor%20cell%20death%20and%20immunity&journal=Cell%20Death%20Dis.&doi=10.1038%2Fcddis.2013.493&volume=4&publication_year=2013&author=Hou%2CW"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="250."><p class="c-article-references__text" id="ref-CR250">Yatim, N. et al. RIPK1 and NF-kappaB signaling in dying cells determines cross-priming of CD8(+) T cells. <i>Science</i> <b>350</b>, 328–334 (2015).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1126/science.aad0395" data-track-item_id="10.1126/science.aad0395" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1126%2Fscience.aad0395" aria-label="Article reference 250" data-doi="10.1126/science.aad0395">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2MXhs1ChsL3J" aria-label="CAS reference 250">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26405229" aria-label="PubMed reference 250">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4651449" aria-label="PubMed Central reference 250">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 250" href="http://scholar.google.com/scholar_lookup?&title=RIPK1%20and%20NF-kappaB%20signaling%20in%20dying%20cells%20determines%20cross-priming%20of%20CD8%28%2B%29%20T%20cells&journal=Science&doi=10.1126%2Fscience.aad0395&volume=350&pages=328-334&publication_year=2015&author=Yatim%2CN"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="251."><p class="c-article-references__text" id="ref-CR251">Ahn, J., Xia, T., Rabasa Capote, A., Betancourt, D. & Barber, G. N. Extrinsic Phagocyte-dependent STING signaling dictates the immunogenicity of dying cells. <i>Cancer Cell.</i> <b>33</b>, 862–873 e865 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.ccell.2018.03.027" data-track-item_id="10.1016/j.ccell.2018.03.027" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.ccell.2018.03.027" aria-label="Article reference 251" data-doi="10.1016/j.ccell.2018.03.027">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXosFWhtLo%3D" aria-label="CAS reference 251">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29706455" aria-label="PubMed reference 251">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6177226" aria-label="PubMed Central reference 251">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 251" href="http://scholar.google.com/scholar_lookup?&title=Extrinsic%20Phagocyte-dependent%20STING%20signaling%20dictates%20the%20immunogenicity%20of%20dying%20cells&journal=Cancer%20Cell.&doi=10.1016%2Fj.ccell.2018.03.027&volume=33&pages=862-873%20e865&publication_year=2018&author=Ahn%2CJ&author=Xia%2CT&author=Rabasa%20Capote%2CA&author=Betancourt%2CD&author=Barber%2CGN"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="252."><p class="c-article-references__text" id="ref-CR252">Ma, Y. et al. Contribution of IL-17-producing gamma delta T cells to the efficacy of anticancer chemotherapy. <i>J. Exp. Med.</i> <b>208</b>, 491–503 (2011).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1084/jem.20100269" data-track-item_id="10.1084/jem.20100269" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1084%2Fjem.20100269" aria-label="Article reference 252" data-doi="10.1084/jem.20100269">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3MXjslCmtro%3D" aria-label="CAS reference 252">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=21383056" aria-label="PubMed reference 252">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058575" aria-label="PubMed Central reference 252">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 252" href="http://scholar.google.com/scholar_lookup?&title=Contribution%20of%20IL-17-producing%20gamma%20delta%20T%20cells%20to%20the%20efficacy%20of%20anticancer%20chemotherapy&journal=J.%20Exp.%20Med.&doi=10.1084%2Fjem.20100269&volume=208&pages=491-503&publication_year=2011&author=Ma%2CY"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="253."><p class="c-article-references__text" id="ref-CR253">Ren, J. et al. The RIP3-RIP1-NF-kappaB signaling axis is dispensable for necroptotic cells to elicit cross-priming of CD8(+) T cells. <i>Cell. Mol. Immunol.</i> <b>14</b>, 639–642 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/cmi.2017.31" data-track-item_id="10.1038/cmi.2017.31" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fcmi.2017.31" aria-label="Article reference 253" data-doi="10.1038/cmi.2017.31">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXhtVyqu7rJ" aria-label="CAS reference 253">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28626232" aria-label="PubMed reference 253">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5590049" aria-label="PubMed Central reference 253">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 253" href="http://scholar.google.com/scholar_lookup?&title=The%20RIP3-RIP1-NF-kappaB%20signaling%20axis%20is%20dispensable%20for%20necroptotic%20cells%20to%20elicit%20cross-priming%20of%20CD8%28%2B%29%20T%20cells&journal=Cell.%20Mol.%20Immunol.&doi=10.1038%2Fcmi.2017.31&volume=14&pages=639-642&publication_year=2017&author=Ren%2CJ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="254."><p class="c-article-references__text" id="ref-CR254">Michaud, M. et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. <i>Science</i> <b>334</b>, 1573–1577 (2011).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1126/science.1208347" data-track-item_id="10.1126/science.1208347" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1126%2Fscience.1208347" aria-label="Article reference 254" data-doi="10.1126/science.1208347">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3MXhs1aju7nO" aria-label="CAS reference 254">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22174255" aria-label="PubMed reference 254">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 254" href="http://scholar.google.com/scholar_lookup?&title=Autophagy-dependent%20anticancer%20immune%20responses%20induced%20by%20chemotherapeutic%20agents%20in%20mice&journal=Science&doi=10.1126%2Fscience.1208347&volume=334&pages=1573-1577&publication_year=2011&author=Michaud%2CM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="255."><p class="c-article-references__text" id="ref-CR255">Vacchelli, E. et al. Chemotherapy-induced antitumor immunity requires formyl peptide receptor 1. <i>Science</i> <b>350</b>, 972–978 (2015).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1126/science.aad0779" data-track-item_id="10.1126/science.aad0779" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1126%2Fscience.aad0779" aria-label="Article reference 255" data-doi="10.1126/science.aad0779">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2MXhvVeqsr3P" aria-label="CAS reference 255">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26516201" aria-label="PubMed reference 255">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 255" href="http://scholar.google.com/scholar_lookup?&title=Chemotherapy-induced%20antitumor%20immunity%20requires%20formyl%20peptide%20receptor%201&journal=Science&doi=10.1126%2Fscience.aad0779&volume=350&pages=972-978&publication_year=2015&author=Vacchelli%2CE"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="256."><p class="c-article-references__text" id="ref-CR256">Apetoh, L. et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. <i>Nat. Med.</i> <b>13</b>, 1050–1059 (2007).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nm1622" data-track-item_id="10.1038/nm1622" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnm1622" aria-label="Article reference 256" data-doi="10.1038/nm1622">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD2sXhtVSgtr3E" aria-label="CAS reference 256">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17704786" aria-label="PubMed reference 256">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 256" href="http://scholar.google.com/scholar_lookup?&title=Toll-like%20receptor%204-dependent%20contribution%20of%20the%20immune%20system%20to%20anticancer%20chemotherapy%20and%20radiotherapy&journal=Nat.%20Med.&doi=10.1038%2Fnm1622&volume=13&pages=1050-1059&publication_year=2007&author=Apetoh%2CL"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="257."><p class="c-article-references__text" id="ref-CR257">Yang, M. et al. TFAM is a novel mediator of immunogenic cancer cell death. <i>Oncoimmunology</i> <b>7</b>, e1431086 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1080/2162402X.2018.1431086" data-track-item_id="10.1080/2162402X.2018.1431086" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1080%2F2162402X.2018.1431086" aria-label="Article reference 257" data-doi="10.1080/2162402X.2018.1431086">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29872558" aria-label="PubMed reference 257">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5980348" aria-label="PubMed Central reference 257">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 257" href="http://scholar.google.com/scholar_lookup?&title=TFAM%20is%20a%20novel%20mediator%20of%20immunogenic%20cancer%20cell%20death&journal=Oncoimmunology&doi=10.1080%2F2162402X.2018.1431086&volume=7&publication_year=2018&author=Yang%2CM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="258."><p class="c-article-references__text" id="ref-CR258">Kang, R. et al. HMGB1 in health and disease. <i>Mol. Aspects. Med.</i> <b>40</b>, 1–116 (2014).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.mam.2014.05.001" data-track-item_id="10.1016/j.mam.2014.05.001" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.mam.2014.05.001" aria-label="Article reference 258" data-doi="10.1016/j.mam.2014.05.001">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2cXhtlSqt7vJ" aria-label="CAS reference 258">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25010388" aria-label="PubMed reference 258">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 258" href="http://scholar.google.com/scholar_lookup?&title=HMGB1%20in%20health%20and%20disease&journal=Mol.%20Aspects.%20Med.&doi=10.1016%2Fj.mam.2014.05.001&volume=40&pages=1-116&publication_year=2014&author=Kang%2CR"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="259."><p class="c-article-references__text" id="ref-CR259">Kazama, H. et al. Induction of immunological tolerance by apoptotic cells requires caspase-dependent oxidation of high-mobility group box-1 protein. <i>Immunity</i> <b>29</b>, 21–32 (2008).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.immuni.2008.05.013" data-track-item_id="10.1016/j.immuni.2008.05.013" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.immuni.2008.05.013" aria-label="Article reference 259" data-doi="10.1016/j.immuni.2008.05.013">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD1cXptF2mtLw%3D" aria-label="CAS reference 259">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18631454" aria-label="PubMed reference 259">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2704496" aria-label="PubMed Central reference 259">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 259" href="http://scholar.google.com/scholar_lookup?&title=Induction%20of%20immunological%20tolerance%20by%20apoptotic%20cells%20requires%20caspase-dependent%20oxidation%20of%20high-mobility%20group%20box-1%20protein&journal=Immunity&doi=10.1016%2Fj.immuni.2008.05.013&volume=29&pages=21-32&publication_year=2008&author=Kazama%2CH"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="260."><p class="c-article-references__text" id="ref-CR260">Li, C. et al. PINK1 and PARK2 suppress pancreatic tumorigenesis through control of mitochondrial iron-mediated immunometabolism. <i>Dev. Cell.</i> <b>46</b>, 441–455 e448 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.devcel.2018.07.012" data-track-item_id="10.1016/j.devcel.2018.07.012" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.devcel.2018.07.012" aria-label="Article reference 260" data-doi="10.1016/j.devcel.2018.07.012">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXhsVOksrzK" aria-label="CAS reference 260">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30100261" aria-label="PubMed reference 260">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7654182" aria-label="PubMed Central reference 260">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 260" href="http://scholar.google.com/scholar_lookup?&title=PINK1%20and%20PARK2%20suppress%20pancreatic%20tumorigenesis%20through%20control%20of%20mitochondrial%20iron-mediated%20immunometabolism&journal=Dev.%20Cell.&doi=10.1016%2Fj.devcel.2018.07.012&volume=46&pages=441-455%20e448&publication_year=2018&author=Li%2CC"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="261."><p class="c-article-references__text" id="ref-CR261">Ito, T. et al. Proteolytic cleavage of high mobility group Box 1 protein by thrombin-thrombomodulin complexes. <i>Arterioscler. Thromb. Vasc. Biol.</i> <b>28</b>, 1825–1830 (2008).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1161/ATVBAHA.107.150631" data-track-item_id="10.1161/ATVBAHA.107.150631" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1161%2FATVBAHA.107.150631" aria-label="Article reference 261" data-doi="10.1161/ATVBAHA.107.150631">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD1cXhtFSmsrnL" aria-label="CAS reference 261">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18599803" aria-label="PubMed reference 261">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 261" href="http://scholar.google.com/scholar_lookup?&title=Proteolytic%20cleavage%20of%20high%20mobility%20group%20Box%201%20protein%20by%20thrombin-thrombomodulin%20complexes&journal=Arterioscler.%20Thromb.%20Vasc.%20Biol.&doi=10.1161%2FATVBAHA.107.150631&volume=28&pages=1825-1830&publication_year=2008&author=Ito%2CT"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="262."><p class="c-article-references__text" id="ref-CR262">Yu, H. et al. Role of high-mobility group Box 1 protein and poly(ADP-ribose) polymerase 1 degradation in Chlamydia trachomatis-induced cytopathicity. <i>Infect. Immun.</i> <b>78</b>, 3288–3297 (2010).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1128/IAI.01404-09" data-track-item_id="10.1128/IAI.01404-09" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1128%2FIAI.01404-09" aria-label="Article reference 262" data-doi="10.1128/IAI.01404-09">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3cXpvVOnsro%3D" aria-label="CAS reference 262">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20421386" aria-label="PubMed reference 262">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2897395" aria-label="PubMed Central reference 262">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 262" href="http://scholar.google.com/scholar_lookup?&title=Role%20of%20high-mobility%20group%20Box%201%20protein%20and%20poly%28ADP-ribose%29%20polymerase%201%20degradation%20in%20Chlamydia%20trachomatis-induced%20cytopathicity&journal=Infect.%20Immun.&doi=10.1128%2FIAI.01404-09&volume=78&pages=3288-3297&publication_year=2010&author=Yu%2CH"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="263."><p class="c-article-references__text" id="ref-CR263">Yu, Y., Tang, D. & Kang, R. Oxidative stress-mediated HMGB1 biology. <i>Front. Physiol.</i> <b>6</b>, 93 (2015).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.3389/fphys.2015.00093" data-track-item_id="10.3389/fphys.2015.00093" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.3389%2Ffphys.2015.00093" aria-label="Article reference 263" data-doi="10.3389/fphys.2015.00093">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25904867" aria-label="PubMed reference 263">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4387954" aria-label="PubMed Central reference 263">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 263" href="http://scholar.google.com/scholar_lookup?&title=Oxidative%20stress-mediated%20HMGB1%20biology&journal=Front.%20Physiol.&doi=10.3389%2Ffphys.2015.00093&volume=6&publication_year=2015&author=Yu%2CY&author=Tang%2CD&author=Kang%2CR"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="264."><p class="c-article-references__text" id="ref-CR264">Fridman, J. S. & Lowe, S. W. Control of apoptosis by p53. <i>Oncogene</i> <b>22</b>, 9030–9040 (2003).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/sj.onc.1207116" data-track-item_id="10.1038/sj.onc.1207116" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fsj.onc.1207116" aria-label="Article reference 264" data-doi="10.1038/sj.onc.1207116">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD3sXpsFOmsrk%3D" aria-label="CAS reference 264">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14663481" aria-label="PubMed reference 264">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 264" href="http://scholar.google.com/scholar_lookup?&title=Control%20of%20apoptosis%20by%20p53&journal=Oncogene&doi=10.1038%2Fsj.onc.1207116&volume=22&pages=9030-9040&publication_year=2003&author=Fridman%2CJS&author=Lowe%2CSW"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="265."><p class="c-article-references__text" id="ref-CR265">Fujiki, K., Inamura, H., Sugaya, T. & Matsuoka, M. Blockade of ALK4/5 signaling suppresses cadmium- and erastin-induced cell death in renal proximal tubular epithelial cells via distinct signaling mechanisms. <i>Cell Death Differ.</i> <a href="https://doi.org/10.1038/s41418-019-0307-8" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1038/s41418-019-0307-8">https://doi.org/10.1038/s41418-019-0307-8</a> (2019).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="266."><p class="c-article-references__text" id="ref-CR266">Song, X. et al. FANCD2 protects against bone marrow injury from ferroptosis. <i>Biochem. Biophys. Res. Commun.</i> <b>480</b>, 443–449 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.bbrc.2016.10.068" data-track-item_id="10.1016/j.bbrc.2016.10.068" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.bbrc.2016.10.068" aria-label="Article reference 266" data-doi="10.1016/j.bbrc.2016.10.068">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28XhslCrt7zO" aria-label="CAS reference 266">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27773819" aria-label="PubMed reference 266">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6591579" aria-label="PubMed Central reference 266">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 266" href="http://scholar.google.com/scholar_lookup?&title=FANCD2%20protects%20against%20bone%20marrow%20injury%20from%20ferroptosis&journal=Biochem.%20Biophys.%20Res.%20Commun.&doi=10.1016%2Fj.bbrc.2016.10.068&volume=480&pages=443-449&publication_year=2016&author=Song%2CX"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="267."><p class="c-article-references__text" id="ref-CR267">Alvarez, S. W. et al. NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis. <i>Nature</i> <b>551</b>, 639–643 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nature24637" data-track-item_id="10.1038/nature24637" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnature24637" aria-label="Article reference 267" data-doi="10.1038/nature24637">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXhvVynsb7I" aria-label="CAS reference 267">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29168506" aria-label="PubMed reference 267">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5808442" aria-label="PubMed Central reference 267">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 267" href="http://scholar.google.com/scholar_lookup?&title=NFS1%20undergoes%20positive%20selection%20in%20lung%20tumours%20and%20protects%20cells%20from%20ferroptosis&journal=Nature&doi=10.1038%2Fnature24637&volume=551&pages=639-643&publication_year=2017&author=Alvarez%2CSW"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="268."><p class="c-article-references__text" id="ref-CR268">Brown, C. W., Amante, J. J., Goel, H. L. & Mercurio, A. M. The alpha6beta4 integrin promotes resistance to ferroptosis. <i>J. Cell. Biol.</i> <b>216</b>, 4287–4297 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1083/jcb.201701136" data-track-item_id="10.1083/jcb.201701136" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1083%2Fjcb.201701136" aria-label="Article reference 268" data-doi="10.1083/jcb.201701136">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXht1Omsb7N" aria-label="CAS reference 268">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28972104" aria-label="PubMed reference 268">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5716272" aria-label="PubMed Central reference 268">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 268" href="http://scholar.google.com/scholar_lookup?&title=The%20alpha6beta4%20integrin%20promotes%20resistance%20to%20ferroptosis&journal=J.%20Cell.%20Biol.&doi=10.1083%2Fjcb.201701136&volume=216&pages=4287-4297&publication_year=2017&author=Brown%2CCW&author=Amante%2CJJ&author=Goel%2CHL&author=Mercurio%2CAM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="269."><p class="c-article-references__text" id="ref-CR269">Liu, T., Jiang, L., Tavana, O. & Gu, W. The deubiquitylase OTUB1 mediates ferroptosis via stabilization of SLC7A11. <i>Cancer Res</i>. <a href="https://doi.org/10.1158/0008-5472.CAN-18-3037" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1158/0008-5472.CAN-18-3037">https://doi.org/10.1158/0008-5472.CAN-18-3037</a> (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1158/0008-5472.CAN-18-3037" data-track-item_id="10.1158/0008-5472.CAN-18-3037" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1158%2F0008-5472.CAN-18-3037" aria-label="Article reference 269" data-doi="10.1158/0008-5472.CAN-18-3037">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30709928" aria-label="PubMed reference 269">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6467774" aria-label="PubMed Central reference 269">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 269" href="http://scholar.google.com/scholar_lookup?&title=The%20Deubiquitylase%20OTUB1%20Mediates%20Ferroptosis%20via%20Stabilization%20of%20SLC7A11&journal=Cancer%20Research&doi=10.1158%2F0008-5472.CAN-18-3037&volume=79&issue=8&pages=1913-1924&publication_year=2019&author=Liu%2CTong&author=Jiang%2CLe&author=Tavana%2COmid&author=Gu%2CWei"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="270."><p class="c-article-references__text" id="ref-CR270">Yoneda, T. et al. Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. <i>J. Biol. Chem.</i> <b>276</b>, 13935–13940 (2001).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1074/jbc.M010677200" data-track-item_id="10.1074/jbc.M010677200" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1074%2Fjbc.M010677200" aria-label="Article reference 270" data-doi="10.1074/jbc.M010677200">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD3MXjt12rsr0%3D" aria-label="CAS reference 270">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11278723" aria-label="PubMed reference 270">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 270" href="http://scholar.google.com/scholar_lookup?&title=Activation%20of%20caspase-12%2C%20an%20endoplastic%20reticulum%20%28ER%29%20resident%20caspase%2C%20through%20tumor%20necrosis%20factor%20receptor-associated%20factor%202-dependent%20mechanism%20in%20response%20to%20the%20ER%20stress&journal=J.%20Biol.%20Chem.&doi=10.1074%2Fjbc.M010677200&volume=276&pages=13935-13940&publication_year=2001&author=Yoneda%2CT"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="271."><p class="c-article-references__text" id="ref-CR271">Kalai, M. et al. Regulation of the expression and processing of caspase-12. <i>J. Cell. Biol.</i> <b>162</b>, 457–467 (2003).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1083/jcb.200303157" data-track-item_id="10.1083/jcb.200303157" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1083%2Fjcb.200303157" aria-label="Article reference 271" data-doi="10.1083/jcb.200303157">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD3sXmt1Cru7w%3D" aria-label="CAS reference 271">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12885762" aria-label="PubMed reference 271">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2172698" aria-label="PubMed Central reference 271">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 271" href="http://scholar.google.com/scholar_lookup?&title=Regulation%20of%20the%20expression%20and%20processing%20of%20caspase-12&journal=J.%20Cell.%20Biol.&doi=10.1083%2Fjcb.200303157&volume=162&pages=457-467&publication_year=2003&author=Kalai%2CM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="272."><p class="c-article-references__text" id="ref-CR272">Haberzettl, P. & Hill, B. G. Oxidized lipids activate autophagy in a JNK-dependent manner by stimulating the endoplasmic reticulum stress response. <i>Redox Biol.</i> <b>1</b>, 56–64 (2013).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.redox.2012.10.003" data-track-item_id="10.1016/j.redox.2012.10.003" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.redox.2012.10.003" aria-label="Article reference 272" data-doi="10.1016/j.redox.2012.10.003">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2cXptFOitw%3D%3D" aria-label="CAS reference 272">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=24024137" aria-label="PubMed reference 272">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3757667" aria-label="PubMed Central reference 272">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 272" href="http://scholar.google.com/scholar_lookup?&title=Oxidized%20lipids%20activate%20autophagy%20in%20a%20JNK-dependent%20manner%20by%20stimulating%20the%20endoplasmic%20reticulum%20stress%20response&journal=Redox%20Biol.&doi=10.1016%2Fj.redox.2012.10.003&volume=1&pages=56-64&publication_year=2013&author=Haberzettl%2CP&author=Hill%2CBG"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="273."><p class="c-article-references__text" id="ref-CR273">Barany, T. et al. Oxidative stress-related parthanatos of circulating mononuclear leukocytes in heart failure. <i>Oxid. Med. Cell Longev.</i> <b>2017</b>, 1249614 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1155/2017/1249614" data-track-item_id="10.1155/2017/1249614" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1155%2F2017%2F1249614" aria-label="Article reference 273" data-doi="10.1155/2017/1249614">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29250299" aria-label="PubMed reference 273">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5700485" aria-label="PubMed Central reference 273">PubMed Central</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXitlKrtrnO" aria-label="CAS reference 273">CAS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 273" href="http://scholar.google.com/scholar_lookup?&title=Oxidative%20stress-related%20parthanatos%20of%20circulating%20mononuclear%20leukocytes%20in%20heart%20failure&journal=Oxid.%20Med.%20Cell%20Longev.&doi=10.1155%2F2017%2F1249614&volume=2017&publication_year=2017&author=Barany%2CT"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="274."><p class="c-article-references__text" id="ref-CR274">Palladino, E. N. D., Katunga, L. A., Kolar, G. R. & Ford, D. A. 2-Chlorofatty acids: lipid mediators of neutrophil extracellular trap formation. <i>J. Lipid Res.</i> <b>59</b>, 1424–1432 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1194/jlr.M084731" data-track-item_id="10.1194/jlr.M084731" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1194%2Fjlr.M084731" aria-label="Article reference 274" data-doi="10.1194/jlr.M084731">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXhsVeku73J" aria-label="CAS reference 274">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29739865" aria-label="PubMed reference 274">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6071778" aria-label="PubMed Central reference 274">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 274" href="http://scholar.google.com/scholar_lookup?&title=2-Chlorofatty%20acids%3A%20lipid%20mediators%20of%20neutrophil%20extracellular%20trap%20formation&journal=J.%20Lipid%20Res.&doi=10.1194%2Fjlr.M084731&volume=59&pages=1424-1432&publication_year=2018&author=Palladino%2CEND&author=Katunga%2CLA&author=Kolar%2CGR&author=Ford%2CDA"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="275."><p class="c-article-references__text" id="ref-CR275">Zhou, R., Yazdi, A. S., Menu, P. & Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. <i>Nature</i> <b>469</b>, 221–225 (2011).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nature09663" data-track-item_id="10.1038/nature09663" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnature09663" aria-label="Article reference 275" data-doi="10.1038/nature09663">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3cXhsV2nsLrE" aria-label="CAS reference 275">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=21124315" aria-label="PubMed reference 275">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 275" href="http://scholar.google.com/scholar_lookup?&title=A%20role%20for%20mitochondria%20in%20NLRP3%20inflammasome%20activation&journal=Nature&doi=10.1038%2Fnature09663&volume=469&pages=221-225&publication_year=2011&author=Zhou%2CR&author=Yazdi%2CAS&author=Menu%2CP&author=Tschopp%2CJ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="276."><p class="c-article-references__text" id="ref-CR276">Silke, J., Rickard, J. A. & Gerlic, M. The diverse role of RIP kinases in necroptosis and inflammation. <i>Nat. Immunol.</i> <b>16</b>, 689–697 (2015).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/ni.3206" data-track-item_id="10.1038/ni.3206" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fni.3206" aria-label="Article reference 276" data-doi="10.1038/ni.3206">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2MXht1OmtL3E" aria-label="CAS reference 276">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26086143" aria-label="PubMed reference 276">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 276" href="http://scholar.google.com/scholar_lookup?&title=The%20diverse%20role%20of%20RIP%20kinases%20in%20necroptosis%20and%20inflammation&journal=Nat.%20Immunol.&doi=10.1038%2Fni.3206&volume=16&pages=689-697&publication_year=2015&author=Silke%2CJ&author=Rickard%2CJA&author=Gerlic%2CM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="277."><p class="c-article-references__text" id="ref-CR277">Polykratis, A. et al. Cutting edge: RIPK1 Kinase inactive mice are viable and protected from TNF-induced necroptosis in vivo. <i>J. Immunol.</i> <b>193</b>, 1539–1543 (2014).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.4049/jimmunol.1400590" data-track-item_id="10.4049/jimmunol.1400590" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.4049%2Fjimmunol.1400590" aria-label="Article reference 277" data-doi="10.4049/jimmunol.1400590">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2cXht1Kju77P" aria-label="CAS reference 277">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25015821" aria-label="PubMed reference 277">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 277" href="http://scholar.google.com/scholar_lookup?&title=Cutting%20edge%3A%20RIPK1%20Kinase%20inactive%20mice%20are%20viable%20and%20protected%20from%20TNF-induced%20necroptosis%20in%20vivo&journal=J.%20Immunol.&doi=10.4049%2Fjimmunol.1400590&volume=193&pages=1539-1543&publication_year=2014&author=Polykratis%2CA"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="278."><p class="c-article-references__text" id="ref-CR278">Newton, K. et al. RIPK3 deficiency or catalytically inactive RIPK1 provides greater benefit than MLKL deficiency in mouse models of inflammation and tissue injury. <i>Cell Death Differ.</i> <b>23</b>, 1565–1576 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/cdd.2016.46" data-track-item_id="10.1038/cdd.2016.46" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fcdd.2016.46" aria-label="Article reference 278" data-doi="10.1038/cdd.2016.46">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28XotV2it7c%3D" aria-label="CAS reference 278">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27177019" aria-label="PubMed reference 278">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5072432" aria-label="PubMed Central reference 278">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 278" href="http://scholar.google.com/scholar_lookup?&title=RIPK3%20deficiency%20or%20catalytically%20inactive%20RIPK1%20provides%20greater%20benefit%20than%20MLKL%20deficiency%20in%20mouse%20models%20of%20inflammation%20and%20tissue%20injury&journal=Cell%20Death%20Differ.&doi=10.1038%2Fcdd.2016.46&volume=23&pages=1565-1576&publication_year=2016&author=Newton%2CK"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="279."><p class="c-article-references__text" id="ref-CR279">Berger, S. B. et al. Cutting Edge: RIP1 kinase activity is dispensable for normal development but is a key regulator of inflammation in SHARPIN-deficient mice. <i>J. Immunol.</i> <b>192</b>, 5476–5480 (2014).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.4049/jimmunol.1400499" data-track-item_id="10.4049/jimmunol.1400499" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.4049%2Fjimmunol.1400499" aria-label="Article reference 279" data-doi="10.4049/jimmunol.1400499">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2cXpsVajtLw%3D" aria-label="CAS reference 279">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=24821972" aria-label="PubMed reference 279">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 279" href="http://scholar.google.com/scholar_lookup?&title=Cutting%20Edge%3A%20RIP1%20kinase%20activity%20is%20dispensable%20for%20normal%20development%20but%20is%20a%20key%20regulator%20of%20inflammation%20in%20SHARPIN-deficient%20mice&journal=J.%20Immunol.&doi=10.4049%2Fjimmunol.1400499&volume=192&pages=5476-5480&publication_year=2014&author=Berger%2CSB"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="280."><p class="c-article-references__text" id="ref-CR280">Kondylis, V., Kumari, S., Vlantis, K. & Pasparakis, M. The interplay of IKK, NF-kappaB and RIPK1 signaling in the regulation of cell death, tissue homeostasis and inflammation. <i>Immunol. Rev.</i> <b>277</b>, 113–127 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1111/imr.12550" data-track-item_id="10.1111/imr.12550" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1111%2Fimr.12550" aria-label="Article reference 280" data-doi="10.1111/imr.12550">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXmvVeltbc%3D" aria-label="CAS reference 280">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28462531" aria-label="PubMed reference 280">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 280" href="http://scholar.google.com/scholar_lookup?&title=The%20interplay%20of%20IKK%2C%20NF-kappaB%20and%20RIPK1%20signaling%20in%20the%20regulation%20of%20cell%20death%2C%20tissue%20homeostasis%20and%20inflammation&journal=Immunol.%20Rev.&doi=10.1111%2Fimr.12550&volume=277&pages=113-127&publication_year=2017&author=Kondylis%2CV&author=Kumari%2CS&author=Vlantis%2CK&author=Pasparakis%2CM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="281."><p class="c-article-references__text" id="ref-CR281">Dondelinger, Y., Darding, M., Bertrand, M. J. & Walczak, H. Poly-ubiquitination in TNFR1-mediated necroptosis. <i>Cell. Mol. Life Sci.</i> <b>73</b>, 2165–2176 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s00018-016-2191-4" data-track-item_id="10.1007/s00018-016-2191-4" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s00018-016-2191-4" aria-label="Article reference 281" data-doi="10.1007/s00018-016-2191-4">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28XlslCnur0%3D" aria-label="CAS reference 281">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27066894" aria-label="PubMed reference 281">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4887548" aria-label="PubMed Central reference 281">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 281" href="http://scholar.google.com/scholar_lookup?&title=Poly-ubiquitination%20in%20TNFR1-mediated%20necroptosis&journal=Cell.%20Mol.%20Life%20Sci.&doi=10.1007%2Fs00018-016-2191-4&volume=73&pages=2165-2176&publication_year=2016&author=Dondelinger%2CY&author=Darding%2CM&author=Bertrand%2CMJ&author=Walczak%2CH"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="282."><p class="c-article-references__text" id="ref-CR282">Dondelinger, Y. et al. NF-kappaB-independent role of IKKalpha/IKKbeta in preventing RIPK1 kinase-dependent apoptotic and necroptotic cell death during TNF signaling. <i>Mol. Cell</i> <b>60</b>, 63–76 (2015).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.molcel.2015.07.032" data-track-item_id="10.1016/j.molcel.2015.07.032" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.molcel.2015.07.032" aria-label="Article reference 282" data-doi="10.1016/j.molcel.2015.07.032">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2MXhsVKlurnN" aria-label="CAS reference 282">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26344099" aria-label="PubMed reference 282">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 282" href="http://scholar.google.com/scholar_lookup?&title=NF-kappaB-independent%20role%20of%20IKKalpha%2FIKKbeta%20in%20preventing%20RIPK1%20kinase-dependent%20apoptotic%20and%20necroptotic%20cell%20death%20during%20TNF%20signaling&journal=Mol.%20Cell&doi=10.1016%2Fj.molcel.2015.07.032&volume=60&pages=63-76&publication_year=2015&author=Dondelinger%2CY"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="283."><p class="c-article-references__text" id="ref-CR283">Menon, M. B. et al. p38(MAPK)/MK2-dependent phosphorylation controls cytotoxic RIPK1 signalling in inflammation and infection. <i>Nat. Cell Biol.</i> <b>19</b>, 1248–1259 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/ncb3614" data-track-item_id="10.1038/ncb3614" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fncb3614" aria-label="Article reference 283" data-doi="10.1038/ncb3614">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXhsFSku7%2FP" aria-label="CAS reference 283">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28920954" aria-label="PubMed reference 283">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 283" href="http://scholar.google.com/scholar_lookup?&title=p38%28MAPK%29%2FMK2-dependent%20phosphorylation%20controls%20cytotoxic%20RIPK1%20signalling%20in%20inflammation%20and%20infection&journal=Nat.%20Cell%20Biol.&doi=10.1038%2Fncb3614&volume=19&pages=1248-1259&publication_year=2017&author=Menon%2CMB"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="284."><p class="c-article-references__text" id="ref-CR284">Dondelinger, Y. et al. MK2 phosphorylation of RIPK1 regulates TNF-mediated cell death. <i>Nat. Cell Biol.</i> <b>19</b>, 1237–1247 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/ncb3608" data-track-item_id="10.1038/ncb3608" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fncb3608" aria-label="Article reference 284" data-doi="10.1038/ncb3608">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXhsFSku7%2FI" aria-label="CAS reference 284">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28920952" aria-label="PubMed reference 284">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 284" href="http://scholar.google.com/scholar_lookup?&title=MK2%20phosphorylation%20of%20RIPK1%20regulates%20TNF-mediated%20cell%20death&journal=Nat.%20Cell%20Biol.&doi=10.1038%2Fncb3608&volume=19&pages=1237-1247&publication_year=2017&author=Dondelinger%2CY"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="285."><p class="c-article-references__text" id="ref-CR285">Jaco, I. et al. MK2 phosphorylates RIPK1 to prevent TNF-induced cell death. <i>Mol. Cell</i> <b>66</b>, 698–710 e695 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.molcel.2017.05.003" data-track-item_id="10.1016/j.molcel.2017.05.003" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.molcel.2017.05.003" aria-label="Article reference 285" data-doi="10.1016/j.molcel.2017.05.003">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXns1yhtb0%3D" aria-label="CAS reference 285">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28506461" aria-label="PubMed reference 285">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5459754" aria-label="PubMed Central reference 285">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 285" href="http://scholar.google.com/scholar_lookup?&title=MK2%20phosphorylates%20RIPK1%20to%20prevent%20TNF-induced%20cell%20death&journal=Mol.%20Cell&doi=10.1016%2Fj.molcel.2017.05.003&volume=66&pages=698-710%20e695&publication_year=2017&author=Jaco%2CI"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="286."><p class="c-article-references__text" id="ref-CR286">Geng, J. et al. Regulation of RIPK1 activation by TAK1-mediated phosphorylation dictates apoptosis and necroptosis. <i>Nat. Commun.</i> <b>8</b>, 359 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41467-017-00406-w" data-track-item_id="10.1038/s41467-017-00406-w" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41467-017-00406-w" aria-label="Article reference 286" data-doi="10.1038/s41467-017-00406-w">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28842570" aria-label="PubMed reference 286">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5572456" aria-label="PubMed Central reference 286">PubMed Central</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXos1SlsrY%3D" aria-label="CAS reference 286">CAS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 286" href="http://scholar.google.com/scholar_lookup?&title=Regulation%20of%20RIPK1%20activation%20by%20TAK1-mediated%20phosphorylation%20dictates%20apoptosis%20and%20necroptosis&journal=Nat.%20Commun.&doi=10.1038%2Fs41467-017-00406-w&volume=8&publication_year=2017&author=Geng%2CJ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="287."><p class="c-article-references__text" id="ref-CR287">Xu, D. et al. TBK1 suppresses RIPK1-driven apoptosis and inflammation during development and in aging. <i>Cell</i> <b>174</b>, 1477–1491 e1419 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.cell.2018.07.041" data-track-item_id="10.1016/j.cell.2018.07.041" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.cell.2018.07.041" aria-label="Article reference 287" data-doi="10.1016/j.cell.2018.07.041">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXhsFyktbvE" aria-label="CAS reference 287">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30146158" aria-label="PubMed reference 287">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6128749" aria-label="PubMed Central reference 287">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 287" href="http://scholar.google.com/scholar_lookup?&title=TBK1%20suppresses%20RIPK1-driven%20apoptosis%20and%20inflammation%20during%20development%20and%20in%20aging&journal=Cell&doi=10.1016%2Fj.cell.2018.07.041&volume=174&pages=1477-1491%20e1419&publication_year=2018&author=Xu%2CD"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="288."><p class="c-article-references__text" id="ref-CR288">Wegner, K. W., Saleh, D. & Degterev, A. Complex pathologic roles of RIPK1 and RIPK3: moving beyond necroptosis. <i>Trends Pharmacol. Sci.</i> <b>38</b>, 202–225 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.tips.2016.12.005" data-track-item_id="10.1016/j.tips.2016.12.005" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.tips.2016.12.005" aria-label="Article reference 288" data-doi="10.1016/j.tips.2016.12.005">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXlt12ltA%3D%3D" aria-label="CAS reference 288">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28126382" aria-label="PubMed reference 288">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5325808" aria-label="PubMed Central reference 288">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 288" href="http://scholar.google.com/scholar_lookup?&title=Complex%20pathologic%20roles%20of%20RIPK1%20and%20RIPK3%3A%20moving%20beyond%20necroptosis&journal=Trends%20Pharmacol.%20Sci.&doi=10.1016%2Fj.tips.2016.12.005&volume=38&pages=202-225&publication_year=2017&author=Wegner%2CKW&author=Saleh%2CD&author=Degterev%2CA"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="289."><p class="c-article-references__text" id="ref-CR289">Choi, J. J., Reich, C. F. 3rd & Pisetsky, D. S. Release of DNA from dead and dying lymphocyte and monocyte cell lines in vitro. <i>Scand. J. Immunol.</i> <b>60</b>, 159–166 (2004).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1111/j.0300-9475.2004.01470.x" data-track-item_id="10.1111/j.0300-9475.2004.01470.x" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1111%2Fj.0300-9475.2004.01470.x" aria-label="Article reference 289" data-doi="10.1111/j.0300-9475.2004.01470.x">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD2cXms1ahsr8%3D" aria-label="CAS reference 289">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15238085" aria-label="PubMed reference 289">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 289" href="http://scholar.google.com/scholar_lookup?&title=Release%20of%20DNA%20from%20dead%20and%20dying%20lymphocyte%20and%20monocyte%20cell%20lines%20in%20vitro&journal=Scand.%20J.%20Immunol.&doi=10.1111%2Fj.0300-9475.2004.01470.x&volume=60&pages=159-166&publication_year=2004&author=Choi%2CJJ&author=Reich%2CCF&author=Pisetsky%2CDS"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="290."><p class="c-article-references__text" id="ref-CR290">Chen, Q., Sun, L. & Chen, Z. J. Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. <i>Nat. Immunol.</i> <b>17</b>, 1142–1149 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/ni.3558" data-track-item_id="10.1038/ni.3558" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fni.3558" aria-label="Article reference 290" data-doi="10.1038/ni.3558">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28XhsFaqtr3E" aria-label="CAS reference 290">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27648547" aria-label="PubMed reference 290">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 290" href="http://scholar.google.com/scholar_lookup?&title=Regulation%20and%20function%20of%20the%20cGAS-STING%20pathway%20of%20cytosolic%20DNA%20sensing&journal=Nat.%20Immunol.&doi=10.1038%2Fni.3558&volume=17&pages=1142-1149&publication_year=2016&author=Chen%2CQ&author=Sun%2CL&author=Chen%2CZJ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="291."><p class="c-article-references__text" id="ref-CR291">Holm, C. K. et al. Influenza A virus targets a cGAS-independent STING pathway that controls enveloped RNA viruses. <i>Nat. Commun.</i> <b>7</b>, 10680 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/ncomms10680" data-track-item_id="10.1038/ncomms10680" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fncomms10680" aria-label="Article reference 291" data-doi="10.1038/ncomms10680">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28Xisl2hsr0%3D" aria-label="CAS reference 291">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26893169" aria-label="PubMed reference 291">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4762884" aria-label="PubMed Central reference 291">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 291" href="http://scholar.google.com/scholar_lookup?&title=Influenza%20A%20virus%20targets%20a%20cGAS-independent%20STING%20pathway%20that%20controls%20enveloped%20RNA%20viruses&journal=Nat.%20Commun.&doi=10.1038%2Fncomms10680&volume=7&publication_year=2016&author=Holm%2CCK"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="292."><p class="c-article-references__text" id="ref-CR292">Costa Franco, M. M. et al. Brucella abortus triggers a cGAS-independent STING pathway to induce host protection that involves guanylate-binding proteins and inflammasome activation. <i>J. Immunol.</i> <b>200</b>, 607–622 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.4049/jimmunol.1700725" data-track-item_id="10.4049/jimmunol.1700725" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.4049%2Fjimmunol.1700725" aria-label="Article reference 292" data-doi="10.4049/jimmunol.1700725">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXksVKrtw%3D%3D" aria-label="CAS reference 292">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29203515" aria-label="PubMed reference 292">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 292" href="http://scholar.google.com/scholar_lookup?&title=Brucella%20abortus%20triggers%20a%20cGAS-independent%20STING%20pathway%20to%20induce%20host%20protection%20that%20involves%20guanylate-binding%20proteins%20and%20inflammasome%20activation&journal=J.%20Immunol.&doi=10.4049%2Fjimmunol.1700725&volume=200&pages=607-622&publication_year=2018&author=Costa%20Franco%2CMM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="293."><p class="c-article-references__text" id="ref-CR293">DeFilippis, V. R., Alvarado, D., Sali, T., Rothenburg, S. & Fruh, K. Human cytomegalovirus induces the interferon response via the DNA sensor ZBP1. <i>J. Virol.</i> <b>84</b>, 585–598 (2010).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1128/JVI.01748-09" data-track-item_id="10.1128/JVI.01748-09" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1128%2FJVI.01748-09" aria-label="Article reference 293" data-doi="10.1128/JVI.01748-09">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3cXisVKhs7s%3D" aria-label="CAS reference 293">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19846511" aria-label="PubMed reference 293">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 293" href="http://scholar.google.com/scholar_lookup?&title=Human%20cytomegalovirus%20induces%20the%20interferon%20response%20via%20the%20DNA%20sensor%20ZBP1&journal=J.%20Virol.&doi=10.1128%2FJVI.01748-09&volume=84&pages=585-598&publication_year=2010&author=DeFilippis%2CVR&author=Alvarado%2CD&author=Sali%2CT&author=Rothenburg%2CS&author=Fruh%2CK"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="294."><p class="c-article-references__text" id="ref-CR294">Zhang, Z. et al. The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. <i>Nat. Immunol.</i> <b>12</b>, 959–965 (2011).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/ni.2091" data-track-item_id="10.1038/ni.2091" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fni.2091" aria-label="Article reference 294" data-doi="10.1038/ni.2091">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3MXhtFWku7nL" aria-label="CAS reference 294">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=21892174" aria-label="PubMed reference 294">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3671854" aria-label="PubMed Central reference 294">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 294" href="http://scholar.google.com/scholar_lookup?&title=The%20helicase%20DDX41%20senses%20intracellular%20DNA%20mediated%20by%20the%20adaptor%20STING%20in%20dendritic%20cells&journal=Nat.%20Immunol.&doi=10.1038%2Fni.2091&volume=12&pages=959-965&publication_year=2011&author=Zhang%2CZ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="295."><p class="c-article-references__text" id="ref-CR295">Kondo, T. et al. DNA damage sensor MRE11 recognizes cytosolic double-stranded DNA and induces type I interferon by regulating STING trafficking. <i>Proc. Natl Acad. Sci. USA</i> <b>110</b>, 2969–2974 (2013).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1073/pnas.1222694110" data-track-item_id="10.1073/pnas.1222694110" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1073%2Fpnas.1222694110" aria-label="Article reference 295" data-doi="10.1073/pnas.1222694110">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3sXjvVyquro%3D" aria-label="CAS reference 295">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=23388631" aria-label="PubMed reference 295">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3581880" aria-label="PubMed Central reference 295">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 295" href="http://scholar.google.com/scholar_lookup?&title=DNA%20damage%20sensor%20MRE11%20recognizes%20cytosolic%20double-stranded%20DNA%20and%20induces%20type%20I%20interferon%20by%20regulating%20STING%20trafficking&journal=Proc.%20Natl%20Acad.%20Sci.%20USA&doi=10.1073%2Fpnas.1222694110&volume=110&pages=2969-2974&publication_year=2013&author=Kondo%2CT"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="296."><p class="c-article-references__text" id="ref-CR296">Unterholzner, L. et al. IFI16 is an innate immune sensor for intracellular DNA. <i>Nat. Immunol.</i> <b>11</b>, 997–1004 (2010).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/ni.1932" data-track-item_id="10.1038/ni.1932" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fni.1932" aria-label="Article reference 296" data-doi="10.1038/ni.1932">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3cXht1elu7rI" aria-label="CAS reference 296">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20890285" aria-label="PubMed reference 296">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3142795" aria-label="PubMed Central reference 296">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 296" href="http://scholar.google.com/scholar_lookup?&title=IFI16%20is%20an%20innate%20immune%20sensor%20for%20intracellular%20DNA&journal=Nat.%20Immunol.&doi=10.1038%2Fni.1932&volume=11&pages=997-1004&publication_year=2010&author=Unterholzner%2CL"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="297."><p class="c-article-references__text" id="ref-CR297">Zeng, L. et al. ALK is a therapeutic target for lethal sepsis. <i>Sci. Transl. Med.</i> <a href="https://doi.org/10.1126/scitranslmed.aan5689" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1126/scitranslmed.aan5689">https://doi.org/10.1126/scitranslmed.aan5689</a> (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1126/scitranslmed.aan5689" data-track-item_id="10.1126/scitranslmed.aan5689" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1126%2Fscitranslmed.aan5689" aria-label="Article reference 297" data-doi="10.1126/scitranslmed.aan5689">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29046432" aria-label="PubMed reference 297">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5737927" aria-label="PubMed Central reference 297">PubMed Central</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXitFKisrbP" aria-label="CAS reference 297">CAS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 297" href="http://scholar.google.com/scholar_lookup?&title=ALK%20is%20a%20therapeutic%20target%20for%20lethal%20sepsis&journal=Science%20Translational%20Medicine&doi=10.1126%2Fscitranslmed.aan5689&volume=9&issue=412&publication_year=2017&author=Zeng%2CLing&author=Kang%2CRui&author=Zhu%2CShan&author=Wang%2CXiao&author=Cao%2CLizhi&author=Wang%2CHaichao&author=Billiar%2CTimothy%20R.&author=Jiang%2CJianxin&author=Tang%2CDaolin"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="298."><p class="c-article-references__text" id="ref-CR298">Barber, G. N. STING: infection, inflammation and cancer. <i>Nat. Rev. Immunol.</i> <b>15</b>, 760–770 (2015).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nri3921" data-track-item_id="10.1038/nri3921" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnri3921" aria-label="Article reference 298" data-doi="10.1038/nri3921">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2MXhvFWitrvK" aria-label="CAS reference 298">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26603901" aria-label="PubMed reference 298">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5004891" aria-label="PubMed Central reference 298">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 298" href="http://scholar.google.com/scholar_lookup?&title=STING%3A%20infection%2C%20inflammation%20and%20cancer&journal=Nat.%20Rev.%20Immunol.&doi=10.1038%2Fnri3921&volume=15&pages=760-770&publication_year=2015&author=Barber%2CGN"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="299."><p class="c-article-references__text" id="ref-CR299">Ahn, J., Son, S., Oliveira, S. C. & Barber, G. N. STING-dependent signaling underlies IL-10 controlled inflammatory colitis. <i>Cell Rep</i> <b>21</b>, 3873–3884 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.celrep.2017.11.101" data-track-item_id="10.1016/j.celrep.2017.11.101" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.celrep.2017.11.101" aria-label="Article reference 299" data-doi="10.1016/j.celrep.2017.11.101">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXitVeksb3N" aria-label="CAS reference 299">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29281834" aria-label="PubMed reference 299">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6082386" aria-label="PubMed Central reference 299">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 299" href="http://scholar.google.com/scholar_lookup?&title=STING-dependent%20signaling%20underlies%20IL-10%20controlled%20inflammatory%20colitis&journal=Cell%20Rep&doi=10.1016%2Fj.celrep.2017.11.101&volume=21&pages=3873-3884&publication_year=2017&author=Ahn%2CJ&author=Son%2CS&author=Oliveira%2CSC&author=Barber%2CGN"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="300."><p class="c-article-references__text" id="ref-CR300">Ahn, J., Gutman, D., Saijo, S. & Barber, G. N. STING manifests self DNA-dependent inflammatory disease. <i>Proc. Natl Acad. Sci. USA</i> <b>109</b>, 19386–19391 (2012).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1073/pnas.1215006109" data-track-item_id="10.1073/pnas.1215006109" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1073%2Fpnas.1215006109" aria-label="Article reference 300" data-doi="10.1073/pnas.1215006109">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC38XhvValsr%2FL" aria-label="CAS reference 300">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=23132945" aria-label="PubMed reference 300">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3511090" aria-label="PubMed Central reference 300">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 300" href="http://scholar.google.com/scholar_lookup?&title=STING%20manifests%20self%20DNA-dependent%20inflammatory%20disease&journal=Proc.%20Natl%20Acad.%20Sci.%20USA&doi=10.1073%2Fpnas.1215006109&volume=109&pages=19386-19391&publication_year=2012&author=Ahn%2CJ&author=Gutman%2CD&author=Saijo%2CS&author=Barber%2CGN"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="301."><p class="c-article-references__text" id="ref-CR301">Bakhoum, S. F. et al. Chromosomal instability drives metastasis through a cytosolic DNA response. <i>Nature</i> <b>553</b>, 467–472 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nature25432" data-track-item_id="10.1038/nature25432" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnature25432" aria-label="Article reference 301" data-doi="10.1038/nature25432">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXhtVOisb0%3D" aria-label="CAS reference 301">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29342134" aria-label="PubMed reference 301">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5785464" aria-label="PubMed Central reference 301">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 301" href="http://scholar.google.com/scholar_lookup?&title=Chromosomal%20instability%20drives%20metastasis%20through%20a%20cytosolic%20DNA%20response&journal=Nature&doi=10.1038%2Fnature25432&volume=553&pages=467-472&publication_year=2018&author=Bakhoum%2CSF"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="302."><p class="c-article-references__text" id="ref-CR302">Sliter, D. A. et al. Parkin and PINK1 mitigate STING-induced inflammation. <i>Nature</i> <b>561</b>, 258–262 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41586-018-0448-9" data-track-item_id="10.1038/s41586-018-0448-9" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41586-018-0448-9" aria-label="Article reference 302" data-doi="10.1038/s41586-018-0448-9">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXhsFOgsL3L" aria-label="CAS reference 302">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30135585" aria-label="PubMed reference 302">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7362342" aria-label="PubMed Central reference 302">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 302" href="http://scholar.google.com/scholar_lookup?&title=Parkin%20and%20PINK1%20mitigate%20STING-induced%20inflammation&journal=Nature&doi=10.1038%2Fs41586-018-0448-9&volume=561&pages=258-262&publication_year=2018&author=Sliter%2CDA"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="303."><p class="c-article-references__text" id="ref-CR303">Larkin, B. et al. Cutting edge: activation of STING in T cells induces type I IFN responses and cell death. <i>J. Immunol.</i> <b>199</b>, 397–402 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.4049/jimmunol.1601999" data-track-item_id="10.4049/jimmunol.1601999" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.4049%2Fjimmunol.1601999" aria-label="Article reference 303" data-doi="10.4049/jimmunol.1601999">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXhtFKiurzN" aria-label="CAS reference 303">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28615418" aria-label="PubMed reference 303">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 303" href="http://scholar.google.com/scholar_lookup?&title=Cutting%20edge%3A%20activation%20of%20STING%20in%20T%20cells%20induces%20type%20I%20IFN%20responses%20and%20cell%20death&journal=J.%20Immunol.&doi=10.4049%2Fjimmunol.1601999&volume=199&pages=397-402&publication_year=2017&author=Larkin%2CB"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="304."><p class="c-article-references__text" id="ref-CR304">Gulen, M. F. et al. Signalling strength determines proapoptotic functions of STING. <i>Nat. Commun.</i> <b>8</b>, 427 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41467-017-00573-w" data-track-item_id="10.1038/s41467-017-00573-w" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41467-017-00573-w" aria-label="Article reference 304" data-doi="10.1038/s41467-017-00573-w">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28874664" aria-label="PubMed reference 304">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5585373" aria-label="PubMed Central reference 304">PubMed Central</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXosl2jt70%3D" aria-label="CAS reference 304">CAS</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 304" href="http://scholar.google.com/scholar_lookup?&title=Signalling%20strength%20determines%20proapoptotic%20functions%20of%20STING&journal=Nat.%20Commun.&doi=10.1038%2Fs41467-017-00573-w&volume=8&publication_year=2017&author=Gulen%2CMF"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="305."><p class="c-article-references__text" id="ref-CR305">Gaidt, M. M. et al. TheDNA inflammasome in human myeloid cells is initiated by a STING-cell death program upstream of NLRP3. <i>Cell</i> <b>171</b>, 1110–1124 e1118 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.cell.2017.09.039" data-track-item_id="10.1016/j.cell.2017.09.039" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.cell.2017.09.039" aria-label="Article reference 305" data-doi="10.1016/j.cell.2017.09.039">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXhs1GjsrnK" aria-label="CAS reference 305">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29033128" aria-label="PubMed reference 305">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5901709" aria-label="PubMed Central reference 305">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 305" href="http://scholar.google.com/scholar_lookup?&title=TheDNA%20inflammasome%20in%20human%20myeloid%20cells%20is%20initiated%20by%20a%20STING-cell%20death%20program%20upstream%20of%20NLRP3&journal=Cell&doi=10.1016%2Fj.cell.2017.09.039&volume=171&pages=1110-1124%20e1118&publication_year=2017&author=Gaidt%2CMM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="306."><p class="c-article-references__text" id="ref-CR306">Cunha, L. D. et al. LC3-associated phagocytosis in myeloid cells promotes tumor immune tolerance. <i>Cell</i> <a href="https://doi.org/10.1016/j.cell.2018.08.061" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/j.cell.2018.08.061">https://doi.org/10.1016/j.cell.2018.08.061</a> (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.cell.2018.08.061" data-track-item_id="10.1016/j.cell.2018.08.061" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.cell.2018.08.061" aria-label="Article reference 306" data-doi="10.1016/j.cell.2018.08.061">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30245008" aria-label="PubMed reference 306">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXhslOjsbrF" aria-label="CAS reference 306">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6201245" aria-label="PubMed Central reference 306">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 306" href="http://scholar.google.com/scholar_lookup?&title=LC3-Associated%20Phagocytosis%20in%20Myeloid%20Cells%20Promotes%20Tumor%20Immune%20Tolerance&journal=Cell&doi=10.1016%2Fj.cell.2018.08.061&volume=175&issue=2&publication_year=2018&author=Cunha%2CLarissa%20D.&author=Yang%2CMao&author=Carter%2CRobert&author=Guy%2CClifford&author=Harris%2CLacie&author=Crawford%2CJeremy%20C.&author=Quarato%2CGiovanni&author=Boada-Romero%2CEmilio&author=Kalkavan%2CHalime&author=Johnson%2CMichael%20D.L.&author=Natarajan%2CSivaraman&author=Turnis%2CMeghan%20E.&author=Finkelstein%2CDavid&author=Opferman%2CJoseph%20T.&author=Gawad%2CCharles&author=Green%2CDouglas%20R."> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="307."><p class="c-article-references__text" id="ref-CR307">Man, S. M., Karki, R. & Kanneganti, T. D. AIM2 inflammasome in infection, cancer, and autoimmunity: role in DNA sensing, inflammation, and innate immunity. <i>Eur. J. Immunol.</i> <b>46</b>, 269–280 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1002/eji.201545839" data-track-item_id="10.1002/eji.201545839" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1002%2Feji.201545839" aria-label="Article reference 307" data-doi="10.1002/eji.201545839">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2MXitVymsrfF" aria-label="CAS reference 307">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26626159" aria-label="PubMed reference 307">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 307" href="http://scholar.google.com/scholar_lookup?&title=AIM2%20inflammasome%20in%20infection%2C%20cancer%2C%20and%20autoimmunity%3A%20role%20in%20DNA%20sensing%2C%20inflammation%2C%20and%20innate%20immunity&journal=Eur.%20J.%20Immunol.&doi=10.1002%2Feji.201545839&volume=46&pages=269-280&publication_year=2016&author=Man%2CSM&author=Karki%2CR&author=Kanneganti%2CTD"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="308."><p class="c-article-references__text" id="ref-CR308">Wilson, J. E. et al. Inflammasome-independent role of AIM2 in suppressing colon tumorigenesis via DNA-PK and Akt. <i>Nat. Med.</i> <b>21</b>, 906–913 (2015).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nm.3908" data-track-item_id="10.1038/nm.3908" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnm.3908" aria-label="Article reference 308" data-doi="10.1038/nm.3908">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2MXhtFeisrjP" aria-label="CAS reference 308">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26107252" aria-label="PubMed reference 308">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4529369" aria-label="PubMed Central reference 308">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 308" href="http://scholar.google.com/scholar_lookup?&title=Inflammasome-independent%20role%20of%20AIM2%20in%20suppressing%20colon%20tumorigenesis%20via%20DNA-PK%20and%20Akt&journal=Nat.%20Med.&doi=10.1038%2Fnm.3908&volume=21&pages=906-913&publication_year=2015&author=Wilson%2CJE"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="309."><p class="c-article-references__text" id="ref-CR309">Kuriakose, T. & Kanneganti, T. D. ZBP1: innate sensor regulating cell death and inflammation. <i>Trends Immunol.</i> <b>39</b>, 123–134 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.it.2017.11.002" data-track-item_id="10.1016/j.it.2017.11.002" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.it.2017.11.002" aria-label="Article reference 309" data-doi="10.1016/j.it.2017.11.002">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXhvVehsrrO" aria-label="CAS reference 309">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29236673" aria-label="PubMed reference 309">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 309" href="http://scholar.google.com/scholar_lookup?&title=ZBP1%3A%20innate%20sensor%20regulating%20cell%20death%20and%20inflammation&journal=Trends%20Immunol.&doi=10.1016%2Fj.it.2017.11.002&volume=39&pages=123-134&publication_year=2018&author=Kuriakose%2CT&author=Kanneganti%2CTD"> Google Scholar</a> </p></li></ol><p class="c-article-references__download u-hide-print"><a data-track="click" data-track-action="download citation references" data-track-label="link" rel="nofollow" href="https://citation-needed.springer.com/v2/references/10.1038/s41422-019-0164-5?format=refman&flavour=references">Download references<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-download-medium"></use></svg></a></p></div></div></div></section></div><section data-title="Acknowledgements"><div class="c-article-section" id="Ack1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Ack1">Acknowledgements</h2><div class="c-article-section__content" id="Ack1-content"><p>We thank Christine Burr (Department of Surgery, University of Pittsburgh) and Dave Primm (Department of Surgery, University of Texas Southwestern Medical Center) for their critical reading of the manuscript. We apologize to all researchers whose great work could not be cited in this review due to space limitations. G.K. is supported by the Ligue contre le Cancer Comité de Charente-Maritime (équipe labelisée); Agence National de la Recherche (ANR) – Projets blancs; ANR under the frame of E-Rare-2, the ERA-Net for Research on Rare Diseases; Association pour la recherche sur le cancer (ARC); Cancéropôle Ile-de-France; Chancelerie des universités de Paris (Legs Poix), Fondation pour la Recherche Médicale (FRM); the European Commission (ArtForce); the European Research Council (ERC); Fondation Carrefour; Institut National du Cancer (INCa); Inserm (HTE); Institut Universitaire de France; LeDucq Foundation; the LabEx Immuno-Oncology; the RHU Torino Lumière, the Searave Foundation; the SIRIC Stratified Oncology Cell DNA Repair and Tumor Immune Elimination (SOCRATE); the SIRIC Cancer Research and Personalized Medicine (CARPEM); and the Paris Alliance of Cancer Research Institutes (PACRI).</p></div></div></section><section aria-labelledby="author-information" data-title="Author information"><div class="c-article-section" id="author-information-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="author-information">Author information</h2><div class="c-article-section__content" id="author-information-content"><span class="c-article-author-information__subtitle u-visually-hidden" id="author-notes">Author notes</span><ol class="c-article-author-information__list"><li class="c-article-author-information__item" id="na1"><p>These authors contributed equally: Daolin Tang, Guido Kroemer</p></li></ol><h3 class="c-article__sub-heading" id="affiliations">Authors and Affiliations</h3><ol class="c-article-author-affiliation__list"><li id="Aff1"><p class="c-article-author-affiliation__address">The Third Affiliated Hospital, Protein Modification and Degradation Lab, School of Basic Medical Sciences, Guangzhou Medical University, 510510, Guangzhou, Guangdong, China</p><p class="c-article-author-affiliation__authors-list">Daolin Tang</p></li><li id="Aff2"><p class="c-article-author-affiliation__address">Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA</p><p class="c-article-author-affiliation__authors-list">Daolin Tang & Rui Kang</p></li><li id="Aff3"><p class="c-article-author-affiliation__address">Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, 9052, Ghent, Belgium</p><p class="c-article-author-affiliation__authors-list">Tom Vanden Berghe & Peter Vandenabeele</p></li><li id="Aff4"><p class="c-article-author-affiliation__address">Department for Biomedical Molecular Biology, Ghent University, 9052, Ghent, Belgium</p><p class="c-article-author-affiliation__authors-list">Tom Vanden Berghe & Peter Vandenabeele</p></li><li id="Aff5"><p class="c-article-author-affiliation__address">Laboratory of Pathophysiology, Faculty of Biomedical Sciences, University of Antwerp, 2610, Wilrijk, Belgium</p><p class="c-article-author-affiliation__authors-list">Tom Vanden Berghe</p></li><li id="Aff6"><p class="c-article-author-affiliation__address">Methusalem program, Ghent University, 9000, Ghent, Belgium</p><p class="c-article-author-affiliation__authors-list">Peter Vandenabeele</p></li><li id="Aff7"><p class="c-article-author-affiliation__address">Université Paris Descartes, Sorbonne Paris Cité, 75006, Paris, France</p><p class="c-article-author-affiliation__authors-list">Guido Kroemer</p></li><li id="Aff8"><p class="c-article-author-affiliation__address">Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, 75006, Paris, France</p><p class="c-article-author-affiliation__authors-list">Guido Kroemer</p></li><li id="Aff9"><p class="c-article-author-affiliation__address">Institut National de la Santé et de la Recherche Médicale, U1138, Paris, France</p><p class="c-article-author-affiliation__authors-list">Guido Kroemer</p></li><li id="Aff10"><p class="c-article-author-affiliation__address">Université Pierre et Marie Curie, 75006, Paris, France</p><p class="c-article-author-affiliation__authors-list">Guido Kroemer</p></li><li id="Aff11"><p class="c-article-author-affiliation__address">Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94800, Villejuif, France</p><p class="c-article-author-affiliation__authors-list">Guido Kroemer</p></li><li id="Aff12"><p class="c-article-author-affiliation__address">Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, 75015, Paris, France</p><p class="c-article-author-affiliation__authors-list">Guido Kroemer</p></li><li id="Aff13"><p class="c-article-author-affiliation__address">Department of Women’s and Children’s Health, Karolinska University Hospital, 17176, Stockholm, Sweden</p><p class="c-article-author-affiliation__authors-list">Guido Kroemer</p></li></ol><div class="u-js-hide u-hide-print" data-test="author-info"><span class="c-article__sub-heading">Authors</span><ol class="c-article-authors-search u-list-reset"><li id="auth-Daolin-Tang-Aff1-Aff2"><span class="c-article-authors-search__title u-h3 js-search-name">Daolin Tang</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?author=Daolin%20Tang" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Daolin%20Tang" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Daolin%20Tang%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Rui-Kang-Aff2"><span class="c-article-authors-search__title u-h3 js-search-name">Rui Kang</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?author=Rui%20Kang" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Rui%20Kang" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Rui%20Kang%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Tom_Vanden-Berghe-Aff3-Aff4-Aff5"><span class="c-article-authors-search__title u-h3 js-search-name">Tom Vanden Berghe</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?author=Tom%20Vanden%20Berghe" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Tom%20Vanden%20Berghe" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Tom%20Vanden%20Berghe%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Peter-Vandenabeele-Aff3-Aff4-Aff6"><span class="c-article-authors-search__title u-h3 js-search-name">Peter Vandenabeele</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?author=Peter%20Vandenabeele" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Peter%20Vandenabeele" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Peter%20Vandenabeele%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Guido-Kroemer-Aff7-Aff8-Aff9-Aff10-Aff11-Aff12-Aff13"><span class="c-article-authors-search__title u-h3 js-search-name">Guido Kroemer</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?author=Guido%20Kroemer" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Guido%20Kroemer" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Guido%20Kroemer%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li></ol></div><h3 class="c-article__sub-heading" id="contributions">Contributions</h3><p>D.T. and G.K. took the lead in writing the manuscript. R.K., T.V.B., and P.V. discussed the contents and edited the manuscript.</p><h3 class="c-article__sub-heading" id="corresponding-author">Corresponding authors</h3><p id="corresponding-author-list">Correspondence to <a id="corresp-c1" href="mailto:daolin.tang@utsouthwestern.edu">Daolin Tang</a> or <a id="corresp-c2" href="mailto:kroemer@orange.fr">Guido Kroemer</a>.</p></div></div></section><section data-title="Ethics declarations"><div class="c-article-section" id="ethics-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="ethics">Ethics declarations</h2><div class="c-article-section__content" id="ethics-content"> <h3 class="c-article__sub-heading" id="FPar1">Competing interests</h3> <p>The authors declare that they have no competing interests.</p> </div></div></section><section data-title="Rights and permissions"><div class="c-article-section" id="rightslink-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="rightslink">Rights and permissions</h2><div class="c-article-section__content" id="rightslink-content"> <p><b>Open Access</b> This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit <a href="http://creativecommons.org/licenses/by/4.0/" rel="license">http://creativecommons.org/licenses/by/4.0/</a>.</p> <p class="c-article-rights"><a data-track="click" data-track-action="view rights and permissions" data-track-label="link" href="https://s100.copyright.com/AppDispatchServlet?title=The%20molecular%20machinery%20of%20regulated%20cell%20death&author=Daolin%20Tang%20et%20al&contentID=10.1038%2Fs41422-019-0164-5&copyright=The%20Author%28s%29&publication=1001-0602&publicationDate=2019-04-04&publisherName=SpringerNature&orderBeanReset=true&oa=CC%20BY">Reprints and permissions</a></p></div></div></section><section aria-labelledby="article-info" data-title="About this article"><div class="c-article-section" id="article-info-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="article-info">About this article</h2><div class="c-article-section__content" id="article-info-content"><div class="c-bibliographic-information"><div class="u-hide-print c-bibliographic-information__column c-bibliographic-information__column--border"><a data-crossmark="10.1038/s41422-019-0164-5" target="_blank" rel="noopener" href="https://crossmark.crossref.org/dialog/?doi=10.1038/s41422-019-0164-5" data-track="click" data-track-action="Click Crossmark" data-track-label="link" data-test="crossmark"><img loading="lazy" width="57" height="81" alt="Check for updates. Verify currency and authenticity via CrossMark" src=""></a></div><div class="c-bibliographic-information__column"><h3 class="c-article__sub-heading" id="citeas">Cite this article</h3><p class="c-bibliographic-information__citation">Tang, D., Kang, R., Berghe, T.V. <i>et al.</i> The molecular machinery of regulated cell death. <i>Cell Res</i> <b>29</b>, 347–364 (2019). https://doi.org/10.1038/s41422-019-0164-5</p><p class="c-bibliographic-information__download-citation u-hide-print"><a data-test="citation-link" data-track="click" data-track-action="download article citation" data-track-label="link" data-track-external="" rel="nofollow" href="https://citation-needed.springer.com/v2/references/10.1038/s41422-019-0164-5?format=refman&flavour=citation">Download citation<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-download-medium"></use></svg></a></p><ul class="c-bibliographic-information__list" data-test="publication-history"><li class="c-bibliographic-information__list-item"><p>Received<span class="u-hide">: </span><span class="c-bibliographic-information__value"><time datetime="2019-01-29">29 January 2019</time></span></p></li><li class="c-bibliographic-information__list-item"><p>Accepted<span class="u-hide">: </span><span class="c-bibliographic-information__value"><time datetime="2019-03-19">19 March 2019</time></span></p></li><li class="c-bibliographic-information__list-item"><p>Published<span class="u-hide">: </span><span class="c-bibliographic-information__value"><time datetime="2019-04-04">04 April 2019</time></span></p></li><li class="c-bibliographic-information__list-item"><p>Issue Date<span class="u-hide">: </span><span class="c-bibliographic-information__value"><time datetime="2019-05">May 2019</time></span></p></li><li class="c-bibliographic-information__list-item c-bibliographic-information__list-item--full-width"><p><abbr title="Digital Object Identifier">DOI</abbr><span class="u-hide">: </span><span class="c-bibliographic-information__value">https://doi.org/10.1038/s41422-019-0164-5</span></p></li></ul><div data-component="share-box"><div class="c-article-share-box u-display-none" hidden=""><h3 class="c-article__sub-heading">Share this article</h3><p class="c-article-share-box__description">Anyone you share the following link with will be able to read this content:</p><button class="js-get-share-url c-article-share-box__button" type="button" id="get-share-url" data-track="click" data-track-label="button" data-track-external="" data-track-action="get shareable link">Get shareable link</button><div class="js-no-share-url-container u-display-none" hidden=""><p class="js-c-article-share-box__no-sharelink-info c-article-share-box__no-sharelink-info">Sorry, a shareable link is not currently available for this article.</p></div><div class="js-share-url-container u-display-none" hidden=""><p class="js-share-url c-article-share-box__only-read-input" id="share-url" data-track="click" data-track-label="button" data-track-action="select share url"></p><button class="js-copy-share-url c-article-share-box__button--link-like" type="button" id="copy-share-url" data-track="click" data-track-label="button" data-track-action="copy share url" data-track-external="">Copy to clipboard</button></div><p class="js-c-article-share-box__additional-info c-article-share-box__additional-info"> Provided by the Springer Nature SharedIt content-sharing initiative </p></div></div><div data-component="article-info-list"></div></div></div></div></div></section> </div> </div> </article> </main> <aside class="c-article-extras u-hide-print" aria-label="Article navigation" data-component-reading-companion data-container-type="reading-companion" data-track-component="reading companion"> <div class="js-context-bar-sticky-point-desktop" data-track-context="reading companion"> <div class="c-pdf-download u-clear-both js-pdf-download"> <a href="/articles/s41422-019-0164-5.pdf" class="u-button u-button--full-width u-button--primary u-justify-content-space-between c-pdf-download__link" data-article-pdf="true" data-readcube-pdf-url="true" data-test="download-pdf" data-draft-ignore="true" data-track="content_download" data-track-type="article pdf download" data-track-action="download pdf" data-track-label="link" data-track-external download> <span class="c-pdf-download__text">Download PDF</span> <svg aria-hidden="true" focusable="false" width="16" height="16" class="u-icon"><use xlink:href="#icon-download"/></svg> </a> </div> </div> <div class="c-reading-companion"> <div class="c-reading-companion__sticky" data-component="reading-companion-sticky" data-test="reading-companion-sticky"> <div class="c-reading-companion__panel c-reading-companion__sections c-reading-companion__panel--active" id="tabpanel-sections"> <div class="u-lazy-ad-wrapper u-mt-16 u-hide" data-component-mpu> <div class="c-ad c-ad--300x250"> <div class="c-ad__inner"> <p class="c-ad__label">Advertisement</p> <div id="div-gpt-ad-right-2" class="div-gpt-ad advert medium-rectangle js-ad text-center hide-print grade-c-hide" data-ad-type="right" data-test="right-ad" data-pa11y-ignore data-gpt data-gpt-unitpath="/285/cr.nature.com/article" data-gpt-sizes="300x250" data-gpt-targeting="type=article;pos=right;artid=s41422-019-0164-5;doi=10.1038/s41422-019-0164-5;subjmeta=631,80,82,86;kwrd=Cell+death,Cell+signalling"> <noscript> <a href="//pubads.g.doubleclick.net/gampad/jump?iu=/285/cr.nature.com/article&sz=300x250&c=800516679&t=pos%3Dright%26type%3Darticle%26artid%3Ds41422-019-0164-5%26doi%3D10.1038/s41422-019-0164-5%26subjmeta%3D631,80,82,86%26kwrd%3DCell+death,Cell+signalling"> <img data-test="gpt-advert-fallback-img" src="//pubads.g.doubleclick.net/gampad/ad?iu=/285/cr.nature.com/article&sz=300x250&c=800516679&t=pos%3Dright%26type%3Darticle%26artid%3Ds41422-019-0164-5%26doi%3D10.1038/s41422-019-0164-5%26subjmeta%3D631,80,82,86%26kwrd%3DCell+death,Cell+signalling" alt="Advertisement" width="300" height="250"></a> </noscript> </div> </div> </div> </div> </div> <div class="c-reading-companion__panel c-reading-companion__figures c-reading-companion__panel--full-width" id="tabpanel-figures"></div> <div class="c-reading-companion__panel c-reading-companion__references c-reading-companion__panel--full-width" id="tabpanel-references"></div> </div> </div> </aside> </div> <nav class="c-header__dropdown" aria-labelledby="Explore-content" data-test="Explore-content" id="explore" data-track-component="nature-150-split-header"> <div class="c-header__container"> <h2 id="Explore-content" class="c-header__heading c-header__heading--js-hide">Explore content</h2> <ul class="c-header__list c-header__list--js-stack"> <li class="c-header__item"> <a class="c-header__link" href="/cr/research-articles" data-track="click" data-track-action="research articles" data-track-label="link" data-test="explore-nav-item"> Research articles </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/cr/reviews-and-analysis" data-track="click" data-track-action="reviews & analysis" data-track-label="link" data-test="explore-nav-item"> Reviews & Analysis </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/cr/news-and-comment" data-track="click" data-track-action="news & comment" data-track-label="link" data-test="explore-nav-item"> News & Comment </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/cr/current-issue" data-track="click" data-track-action="current issue" data-track-label="link" data-test="explore-nav-item"> Current issue </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/cr/collections" data-track="click" data-track-action="collections" data-track-label="link" data-test="explore-nav-item"> Collections </a> </li> </ul> <ul class="c-header__list c-header__list--js-stack"> <li class="c-header__item c-header__item--hide-lg"> <a class="c-header__link" href="https://www.nature.com/my-account/alerts/subscribe-journal?list-id=122" rel="nofollow" data-track="click" data-track-action="Sign up for alerts" data-track-external data-track-label="link (mobile dropdown)">Sign up for alerts<svg role="img" aria-hidden="true" focusable="false" height="18" viewBox="0 0 18 18" width="18" xmlns="http://www.w3.org/2000/svg"><path d="m4 10h2.5c.27614237 0 .5.2238576.5.5s-.22385763.5-.5.5h-3.08578644l-1.12132034 1.1213203c-.18753638.1875364-.29289322.4418903-.29289322.7071068v.1715729h14v-.1715729c0-.2652165-.1053568-.5195704-.2928932-.7071068l-1.7071068-1.7071067v-3.4142136c0-2.76142375-2.2385763-5-5-5-2.76142375 0-5 2.23857625-5 5zm3 4c0 1.1045695.8954305 2 2 2s2-.8954305 2-2zm-5 0c-.55228475 0-1-.4477153-1-1v-.1715729c0-.530433.21071368-1.0391408.58578644-1.4142135l1.41421356-1.4142136v-3c0-3.3137085 2.6862915-6 6-6s6 2.6862915 6 6v3l1.4142136 1.4142136c.3750727.3750727.5857864.8837805.5857864 1.4142135v.1715729c0 .5522847-.4477153 1-1 1h-4c0 1.6568542-1.3431458 3-3 3-1.65685425 0-3-1.3431458-3-3z" fill="#fff"/></svg> </a> </li> <li class="c-header__item c-header__item--hide-lg"> <a class="c-header__link" href="https://www.nature.com/cr.rss" data-track="click" data-track-action="rss feed" data-track-label="link"> <span>RSS feed</span> </a> </li> </ul> </div> </nav> <nav class="c-header__dropdown" aria-labelledby="About-the-journal" id="about-the-journal" data-test="about-the-journal" data-track-component="nature-150-split-header"> <div class="c-header__container"> <h2 id="About-the-journal" class="c-header__heading c-header__heading--js-hide">About the journal</h2> <ul class="c-header__list c-header__list--js-stack"> <li class="c-header__item"> <a class="c-header__link" href="/cr/aims" data-track="click" data-track-action="aims & scope" data-track-label="link"> Aims & Scope </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/cr/journal-information" data-track="click" data-track-action="journal information" data-track-label="link"> Journal Information </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/cr/open-access" data-track="click" data-track-action="open access fees and funding" data-track-label="link"> Open Access Fees and Funding </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/cr/editors" data-track="click" data-track-action="about the editors" data-track-label="link"> About the Editors </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/cr/editorial-board" data-track="click" data-track-action="editorial board" data-track-label="link"> Editorial Board </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/cr/partner" data-track="click" data-track-action="about the partner" data-track-label="link"> About the Partner </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/cr/30-anniversary" data-track="click" data-track-action="cell research celebrates 30 years of publication" data-track-label="link"> Cell Research Celebrates 30 Years of Publication </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/cr/contact" data-track="click" data-track-action="contact" data-track-label="link"> Contact </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/cr/advertising" data-track="click" data-track-action="for advertisers" data-track-label="link"> For Advertisers </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/cr/subscribe" data-track="click" data-track-action="subscribe" data-track-label="link"> Subscribe </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/cr/press-releases" data-track="click" data-track-action="press releases" data-track-label="link"> Press Releases </a> </li> </ul> </div> </nav> <nav class="c-header__dropdown" aria-labelledby="Publish-with-us-label" id="publish-with-us" data-test="publish-with-us" data-track-component="nature-150-split-header"> <div class="c-header__container"> <h2 id="Publish-with-us-label" class="c-header__heading c-header__heading--js-hide">Publish with us</h2> <ul class="c-header__list c-header__list--js-stack"> <li class="c-header__item"> <a class="c-header__link" href="/cr/authors-and-referees" data-track="click" data-track-action="for authors & referees" data-track-label="link"> For Authors & Referees </a> </li> <li class="c-header__item"> <a class="c-header__link" data-test="nature-author-services" data-track="nav_language_services" data-track-context="header publish with us dropdown menu" data-track-action="manuscript author services" data-track-label="link manuscript author services" href="https://authorservices.springernature.com/go/sn/?utm_source=For+Authors&utm_medium=Website_Nature&utm_campaign=Platform+Experimentation+2022&utm_id=PE2022"> Language editing services </a> </li> <li class="c-header__item c-header__item--keyline"> <a class="c-header__link" href="https://mts-cr.nature.com/cgi-bin/main.plex" data-track="click_submit_manuscript" data-track-context="submit link in Nature header dropdown menu" data-track-action="submit manuscript" data-track-label="link (publish with us dropdown menu)" data-track-external data-gtm-criteo="submit-manuscript">Submit manuscript<svg role="img" aria-hidden="true" focusable="false" height="18" viewBox="0 0 18 18" width="18" xmlns="http://www.w3.org/2000/svg"><path d="m15 0c1.1045695 0 2 .8954305 2 2v5.5c0 .27614237-.2238576.5-.5.5s-.5-.22385763-.5-.5v-5.5c0-.51283584-.3860402-.93550716-.8833789-.99327227l-.1166211-.00672773h-9v3c0 1.1045695-.8954305 2-2 2h-3v10c0 .5128358.38604019.9355072.88337887.9932723l.11662113.0067277h7.5c.27614237 0 .5.2238576.5.5s-.22385763.5-.5.5h-7.5c-1.1045695 0-2-.8954305-2-2v-10.17157288c0-.53043297.21071368-1.0391408.58578644-1.41421356l3.82842712-3.82842712c.37507276-.37507276.88378059-.58578644 1.41421356-.58578644zm-.5442863 8.18867991 3.3545404 3.35454039c.2508994.2508994.2538696.6596433.0035959.909917-.2429543.2429542-.6561449.2462671-.9065387-.0089489l-2.2609825-2.3045251.0010427 7.2231989c0 .3569916-.2898381.6371378-.6473715.6371378-.3470771 0-.6473715-.2852563-.6473715-.6371378l-.0010428-7.2231995-2.2611222 2.3046654c-.2531661.2580415-.6562868.2592444-.9065605.0089707-.24295423-.2429542-.24865597-.6576651.0036132-.9099343l3.3546673-3.35466731c.2509089-.25090888.6612706-.25227691.9135302-.00001728zm-.9557137-3.18867991c.2761424 0 .5.22385763.5.5s-.2238576.5-.5.5h-6c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5zm-8.5-3.587-3.587 3.587h2.587c.55228475 0 1-.44771525 1-1zm8.5 1.587c.2761424 0 .5.22385763.5.5s-.2238576.5-.5.5h-6c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5z" fill="#fff"/></svg> </a> </li> </ul> </div> </nav> <div id="search-menu" class="c-header__dropdown c-header__dropdown--full-width" data-track-component="nature-150-split-header"> <div class="c-header__container"> <h2 class="c-header__visually-hidden">Search</h2> <form class="c-header__search-form" action="/search" method="get" role="search" autocomplete="off" data-test="inline-search"> <label class="c-header__heading" for="keywords">Search articles by subject, keyword or author</label> <div class="c-header__search-layout c-header__search-layout--max-width"> <div> <input type="text" required="" class="c-header__input" id="keywords" name="q" value=""> </div> <div class="c-header__search-layout"> <div> <label for="results-from" class="c-header__visually-hidden">Show results from</label> <select id="results-from" name="journal" class="c-header__select"> <option value="" selected>All journals</option> <option value="cr">This journal</option> </select> </div> <div> <button type="submit" class="c-header__search-button">Search</button> </div> </div> </div> </form> <div class="c-header__flush"> <a class="c-header__link" href="/search/advanced" data-track="click" data-track-action="advanced search" data-track-label="link"> Advanced search </a> </div> <h3 class="c-header__heading c-header__heading--keyline">Quick links</h3> <ul class="c-header__list"> <li><a class="c-header__link" href="/subjects" data-track="click" data-track-action="explore articles by subject" data-track-label="link">Explore articles by subject</a></li> <li><a class="c-header__link" href="/naturecareers" data-track="click" data-track-action="find a job" data-track-label="link">Find a job</a></li> <li><a class="c-header__link" href="/authors/index.html" data-track="click" data-track-action="guide to authors" data-track-label="link">Guide to authors</a></li> <li><a class="c-header__link" href="/authors/editorial_policies/" data-track="click" data-track-action="editorial policies" data-track-label="link">Editorial policies</a></li> </ul> </div> </div> <footer class="composite-layer" itemscope itemtype="http://schema.org/Periodical"> <meta itemprop="publisher" content="Springer Nature"> <div class="u-mt-16 u-mb-16"> <div class="u-container"> <div class="u-display-flex u-flex-wrap u-justify-content-space-between"> <p class="c-meta u-ma-0 u-flex-shrink"> <span class="c-meta__item"> Cell Research (<i>Cell Res</i>) </span> <span class="c-meta__item"> <abbr title="International Standard Serial Number">ISSN</abbr> <span itemprop="onlineIssn">1748-7838</span> (online) </span> <span class="c-meta__item"> <abbr title="International Standard Serial Number">ISSN</abbr> <span itemprop="printIssn">1001-0602</span> (print) </span> </p> </div> </div> </div> <div class="c-footer"> <div class="u-hide-print" data-track-component="footer"> <h2 class="u-visually-hidden">nature.com sitemap</h2> <div class="c-footer__container"> <div class="c-footer__grid c-footer__group--separator"> <div class="c-footer__group"> <h3 class="c-footer__heading u-mt-0">About Nature Portfolio</h3> <ul class="c-footer__list"> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/npg_/company_info/index.html" data-track="click" data-track-action="about us" data-track-label="link">About us</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/npg_/press_room/press_releases.html" data-track="click" data-track-action="press releases" data-track-label="link">Press releases</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://press.nature.com/" data-track="click" data-track-action="press office" data-track-label="link">Press office</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://support.nature.com/support/home" data-track="click" data-track-action="contact us" data-track-label="link">Contact us</a></li> </ul> </div> <div class="c-footer__group"> <h3 class="c-footer__heading u-mt-0">Discover content</h3> <ul class="c-footer__list"> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/siteindex" data-track="click" data-track-action="journals a-z" data-track-label="link">Journals A-Z</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/subjects" data-track="click" data-track-action="article by subject" data-track-label="link">Articles by subject</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.protocols.io/" data-track="click" data-track-action="protocols.io" data-track-label="link">protocols.io</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.natureindex.com/" data-track="click" data-track-action="nature index" data-track-label="link">Nature Index</a></li> </ul> </div> <div class="c-footer__group"> <h3 class="c-footer__heading u-mt-0">Publishing policies</h3> <ul class="c-footer__list"> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/authors/editorial_policies" data-track="click" data-track-action="Nature portfolio policies" data-track-label="link">Nature portfolio policies</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/nature-research/open-access" data-track="click" data-track-action="open access" data-track-label="link">Open access</a></li> </ul> </div> <div class="c-footer__group"> <h3 class="c-footer__heading u-mt-0">Author & Researcher services</h3> <ul class="c-footer__list"> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/reprints" data-track="click" data-track-action="reprints and permissions" data-track-label="link">Reprints & permissions</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.springernature.com/gp/authors/research-data" data-track="click" data-track-action="data research service" data-track-label="link">Research data</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://authorservices.springernature.com/language-editing/" data-track="click" data-track-action="language editing" data-track-label="link">Language editing</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://authorservices.springernature.com/scientific-editing/" data-track="click" data-track-action="scientific editing" data-track-label="link">Scientific editing</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://masterclasses.nature.com/" data-track="click" data-track-action="nature masterclasses" data-track-label="link">Nature Masterclasses</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://solutions.springernature.com/" data-track="click" data-track-action="research solutions" data-track-label="link">Research Solutions</a></li> </ul> </div> <div class="c-footer__group"> <h3 class="c-footer__heading u-mt-0">Libraries & institutions</h3> <ul class="c-footer__list"> <li class="c-footer__item"><a class="c-footer__link" href="https://www.springernature.com/gp/librarians/tools-services" data-track="click" data-track-action="librarian service and tools" data-track-label="link">Librarian service & tools</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.springernature.com/gp/librarians/manage-your-account/librarianportal" data-track="click" data-track-action="librarian portal" data-track-label="link">Librarian portal</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/openresearch/about-open-access/information-for-institutions" data-track="click" data-track-action="open research" data-track-label="link">Open research</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.springernature.com/gp/librarians/recommend-to-your-library" data-track="click" data-track-action="Recommend to library" data-track-label="link">Recommend to library</a></li> </ul> </div> <div class="c-footer__group"> <h3 class="c-footer__heading u-mt-0">Advertising & partnerships</h3> <ul class="c-footer__list"> <li class="c-footer__item"><a class="c-footer__link" href="https://partnerships.nature.com/product/digital-advertising/" data-track="click" data-track-action="advertising" data-track-label="link">Advertising</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://partnerships.nature.com/" data-track="click" data-track-action="partnerships and services" data-track-label="link">Partnerships & Services</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://partnerships.nature.com/media-kits/" data-track="click" data-track-action="media kits" data-track-label="link">Media kits</a> </li> <li class="c-footer__item"><a class="c-footer__link" href="https://partnerships.nature.com/product/branded-content-native-advertising/" data-track-action="branded content" data-track-label="link">Branded content</a></li> </ul> </div> <div class="c-footer__group"> <h3 class="c-footer__heading u-mt-0">Professional development</h3> <ul class="c-footer__list"> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/naturecareers/" data-track="click" data-track-action="nature careers" data-track-label="link">Nature Careers</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://conferences.nature.com" data-track="click" data-track-action="nature conferences" data-track-label="link">Nature<span class="u-visually-hidden"> </span> Conferences</a></li> </ul> </div> <div class="c-footer__group"> <h3 class="c-footer__heading u-mt-0">Regional websites</h3> <ul class="c-footer__list"> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/natafrica" data-track="click" data-track-action="nature africa" data-track-label="link">Nature Africa</a></li> <li class="c-footer__item"><a class="c-footer__link" href="http://www.naturechina.com" data-track="click" data-track-action="nature china" data-track-label="link">Nature China</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/nindia" data-track="click" data-track-action="nature india" data-track-label="link">Nature India</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/natitaly" data-track="click" data-track-action="nature Italy" data-track-label="link">Nature Italy</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.natureasia.com/ja-jp" data-track="click" data-track-action="nature japan" data-track-label="link">Nature Japan</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/nmiddleeast" data-track="click" data-track-action="nature middle east" data-track-label="link">Nature Middle East</a></li> </ul> </div> </div> </div> <div class="c-footer__container"> <ul class="c-footer__links"> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/info/privacy" data-track="click" data-track-action="privacy policy" data-track-label="link">Privacy Policy</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/info/cookies" data-track="click" data-track-action="use of cookies" data-track-label="link">Use of cookies</a></li> <li class="c-footer__item"> <button class="optanon-toggle-display c-footer__link" onclick="javascript:;" data-cc-action="preferences" data-track="click" data-track-action="manage cookies" data-track-label="link">Your privacy choices/Manage cookies </button> </li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/info/legal-notice" data-track="click" data-track-action="legal notice" data-track-label="link">Legal notice</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/info/accessibility-statement" data-track="click" data-track-action="accessibility statement" data-track-label="link">Accessibility statement</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/info/terms-and-conditions" data-track="click" data-track-action="terms and conditions" data-track-label="link">Terms & Conditions</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.springernature.com/ccpa" data-track="click" data-track-action="california privacy statement" data-track-label="link">Your US state privacy rights</a></li> </ul> </div> </div> <div class="c-footer__container"> <a href="https://www.springernature.com/" class="c-footer__link"> <img src="/static/images/logos/sn-logo-white-ea63208b81.svg" alt="Springer Nature" loading="lazy" width="200" height="20"/> </a> <p class="c-footer__legal" data-test="copyright">© 2025 Springer Nature Limited</p> </div> </div> <div class="u-visually-hidden" aria-hidden="true"> <?xml version="1.0" encoding="UTF-8"?><!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="a" d="M0 .74h56.72v55.24H0z"/></defs><symbol id="icon-access" viewBox="0 0 18 18"><path d="m14 8c.5522847 0 1 .44771525 1 1v7h2.5c.2761424 0 .5.2238576.5.5v1.5h-18v-1.5c0-.2761424.22385763-.5.5-.5h2.5v-7c0-.55228475.44771525-1 1-1s1 .44771525 1 1v6.9996556h8v-6.9996556c0-.55228475.4477153-1 1-1zm-8 0 2 1v5l-2 1zm6 0v7l-2-1v-5zm-2.42653766-7.59857636 7.03554716 4.92488299c.4162533.29137735.5174853.86502537.226108 1.28127873-.1721584.24594054-.4534847.39241464-.7536934.39241464h-14.16284822c-.50810197 0-.92-.41189803-.92-.92 0-.30020869.1464741-.58153499.39241464-.75369337l7.03554714-4.92488299c.34432015-.2410241.80260453-.2410241 1.14692468 0zm-.57346234 2.03988748-3.65526982 2.55868888h7.31053962z" fill-rule="evenodd"/></symbol><symbol id="icon-account" viewBox="0 0 18 18"><path d="m10.2379028 16.9048051c1.3083556-.2032362 2.5118471-.7235183 3.5294683-1.4798399-.8731327-2.5141501-2.0638925-3.935978-3.7673711-4.3188248v-1.27684611c1.1651924-.41183641 2-1.52307546 2-2.82929429 0-1.65685425-1.3431458-3-3-3-1.65685425 0-3 1.34314575-3 3 0 1.30621883.83480763 2.41745788 2 2.82929429v1.27684611c-1.70347856.3828468-2.89423845 1.8046747-3.76737114 4.3188248 1.01762123.7563216 2.22111275 1.2766037 3.52946833 1.4798399.40563808.0629726.81921174.0951949 1.23790281.0951949s.83226473-.0322223 1.2379028-.0951949zm4.3421782-2.1721994c1.4927655-1.4532925 2.419919-3.484675 2.419919-5.7326057 0-4.418278-3.581722-8-8-8s-8 3.581722-8 8c0 2.2479307.92715352 4.2793132 2.41991895 5.7326057.75688473-2.0164459 1.83949951-3.6071894 3.48926591-4.3218837-1.14534283-.70360829-1.90918486-1.96796271-1.90918486-3.410722 0-2.209139 1.790861-4 4-4s4 1.790861 4 4c0 1.44275929-.763842 2.70711371-1.9091849 3.410722 1.6497664.7146943 2.7323812 2.3054378 3.4892659 4.3218837zm-5.580081 3.2673943c-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9 4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9z" fill-rule="evenodd"/></symbol><symbol id="icon-alert" viewBox="0 0 18 18"><path d="m4 10h2.5c.27614237 0 .5.2238576.5.5s-.22385763.5-.5.5h-3.08578644l-1.12132034 1.1213203c-.18753638.1875364-.29289322.4418903-.29289322.7071068v.1715729h14v-.1715729c0-.2652165-.1053568-.5195704-.2928932-.7071068l-1.7071068-1.7071067v-3.4142136c0-2.76142375-2.2385763-5-5-5-2.76142375 0-5 2.23857625-5 5zm3 4c0 1.1045695.8954305 2 2 2s2-.8954305 2-2zm-5 0c-.55228475 0-1-.4477153-1-1v-.1715729c0-.530433.21071368-1.0391408.58578644-1.4142135l1.41421356-1.4142136v-3c0-3.3137085 2.6862915-6 6-6s6 2.6862915 6 6v3l1.4142136 1.4142136c.3750727.3750727.5857864.8837805.5857864 1.4142135v.1715729c0 .5522847-.4477153 1-1 1h-4c0 1.6568542-1.3431458 3-3 3-1.65685425 0-3-1.3431458-3-3z" fill-rule="evenodd"/></symbol><symbol id="icon-arrow-broad" viewBox="0 0 16 16"><path d="m6.10307866 2.97190702v7.69043288l2.44965196-2.44676915c.38776071-.38730439 1.0088052-.39493524 1.38498697-.01919617.38609051.38563612.38643641 1.01053024-.00013864 1.39665039l-4.12239817 4.11754683c-.38616704.3857126-1.01187344.3861062-1.39846576-.0000311l-4.12258206-4.11773056c-.38618426-.38572979-.39254614-1.00476697-.01636437-1.38050605.38609047-.38563611 1.01018509-.38751562 1.4012233.00306241l2.44985644 2.4469734v-8.67638639c0-.54139983.43698413-.98042709.98493125-.98159081l7.89910522-.0043627c.5451687 0 .9871152.44142642.9871152.98595351s-.4419465.98595351-.9871152.98595351z" fill-rule="evenodd" transform="matrix(-1 0 0 -1 14 15)"/></symbol><symbol id="icon-arrow-down" viewBox="0 0 16 16"><path d="m3.28337502 11.5302405 4.03074001 4.176208c.37758093.3912076.98937525.3916069 1.367372-.0000316l4.03091977-4.1763942c.3775978-.3912252.3838182-1.0190815.0160006-1.4001736-.3775061-.39113013-.9877245-.39303641-1.3700683.003106l-2.39538585 2.4818345v-11.6147896l-.00649339-.11662112c-.055753-.49733869-.46370161-.88337888-.95867408-.88337888-.49497246 0-.90292107.38604019-.95867408.88337888l-.00649338.11662112v11.6147896l-2.39518594-2.4816273c-.37913917-.39282218-.98637524-.40056175-1.35419292-.0194697-.37750607.3911302-.37784433 1.0249269.00013556 1.4165479z" fill-rule="evenodd"/></symbol><symbol id="icon-arrow-left" viewBox="0 0 16 16"><path d="m4.46975946 3.28337502-4.17620792 4.03074001c-.39120768.37758093-.39160691.98937525.0000316 1.367372l4.1763942 4.03091977c.39122514.3775978 1.01908149.3838182 1.40017357.0160006.39113012-.3775061.3930364-.9877245-.00310603-1.3700683l-2.48183446-2.39538585h11.61478958l.1166211-.00649339c.4973387-.055753.8833789-.46370161.8833789-.95867408 0-.49497246-.3860402-.90292107-.8833789-.95867408l-.1166211-.00649338h-11.61478958l2.4816273-2.39518594c.39282216-.37913917.40056173-.98637524.01946965-1.35419292-.39113012-.37750607-1.02492687-.37784433-1.41654791.00013556z" fill-rule="evenodd"/></symbol><symbol id="icon-arrow-right" viewBox="0 0 16 16"><path d="m11.5302405 12.716625 4.176208-4.03074003c.3912076-.37758093.3916069-.98937525-.0000316-1.367372l-4.1763942-4.03091981c-.3912252-.37759778-1.0190815-.38381821-1.4001736-.01600053-.39113013.37750607-.39303641.98772445.003106 1.37006824l2.4818345 2.39538588h-11.6147896l-.11662112.00649339c-.49733869.055753-.88337888.46370161-.88337888.95867408 0 .49497246.38604019.90292107.88337888.95867408l.11662112.00649338h11.6147896l-2.4816273 2.39518592c-.39282218.3791392-.40056175.9863753-.0194697 1.3541929.3911302.3775061 1.0249269.3778444 1.4165479-.0001355z" fill-rule="evenodd"/></symbol><symbol id="icon-arrow-sub" viewBox="0 0 16 16"><path d="m7.89692134 4.97190702v7.69043288l-2.44965196-2.4467692c-.38776071-.38730434-1.0088052-.39493519-1.38498697-.0191961-.38609047.3856361-.38643643 1.0105302.00013864 1.3966504l4.12239817 4.1175468c.38616704.3857126 1.01187344.3861062 1.39846576-.0000311l4.12258202-4.1177306c.3861843-.3857298.3925462-1.0047669.0163644-1.380506-.3860905-.38563612-1.0101851-.38751563-1.4012233.0030624l-2.44985643 2.4469734v-8.67638639c0-.54139983-.43698413-.98042709-.98493125-.98159081l-7.89910525-.0043627c-.54516866 0-.98711517.44142642-.98711517.98595351s.44194651.98595351.98711517.98595351z" fill-rule="evenodd"/></symbol><symbol id="icon-arrow-up" viewBox="0 0 16 16"><path d="m12.716625 4.46975946-4.03074003-4.17620792c-.37758093-.39120768-.98937525-.39160691-1.367372.0000316l-4.03091981 4.1763942c-.37759778.39122514-.38381821 1.01908149-.01600053 1.40017357.37750607.39113012.98772445.3930364 1.37006824-.00310603l2.39538588-2.48183446v11.61478958l.00649339.1166211c.055753.4973387.46370161.8833789.95867408.8833789.49497246 0 .90292107-.3860402.95867408-.8833789l.00649338-.1166211v-11.61478958l2.39518592 2.4816273c.3791392.39282216.9863753.40056173 1.3541929.01946965.3775061-.39113012.3778444-1.02492687-.0001355-1.41654791z" fill-rule="evenodd"/></symbol><symbol id="icon-article" viewBox="0 0 18 18"><path d="m13 15v-12.9906311c0-.0073595-.0019884-.0093689.0014977-.0093689l-11.00158888.00087166v13.00506804c0 .5482678.44615281.9940603.99415146.9940603h10.27350412c-.1701701-.2941734-.2675644-.6357129-.2675644-1zm-12 .0059397v-13.00506804c0-.5562408.44704472-1.00087166.99850233-1.00087166h11.00299537c.5510129 0 .9985023.45190985.9985023 1.0093689v2.9906311h3v9.9914698c0 1.1065798-.8927712 2.0085302-1.9940603 2.0085302h-12.01187942c-1.09954652 0-1.99406028-.8927712-1.99406028-1.9940603zm13-9.0059397v9c0 .5522847.4477153 1 1 1s1-.4477153 1-1v-9zm-10-2h7v4h-7zm1 1v2h5v-2zm-1 4h7v1h-7zm0 2h7v1h-7zm0 2h7v1h-7z" fill-rule="evenodd"/></symbol><symbol id="icon-audio" viewBox="0 0 18 18"><path d="m13.0957477 13.5588459c-.195279.1937043-.5119137.193729-.7072234.0000551-.1953098-.193674-.1953346-.5077061-.0000556-.7014104 1.0251004-1.0168342 1.6108711-2.3905226 1.6108711-3.85745208 0-1.46604976-.5850634-2.83898246-1.6090736-3.85566829-.1951894-.19379323-.1950192-.50782531.0003802-.70141028.1953993-.19358497.512034-.19341614.7072234.00037709 1.2094886 1.20083761 1.901635 2.8250555 1.901635 4.55670148 0 1.73268608-.6929822 3.35779608-1.9037571 4.55880738zm2.1233994 2.1025159c-.195234.193749-.5118687.1938462-.7072235.0002171-.1953548-.1936292-.1954528-.5076613-.0002189-.7014104 1.5832215-1.5711805 2.4881302-3.6939808 2.4881302-5.96012998 0-2.26581266-.9046382-4.3883241-2.487443-5.95944795-.1952117-.19377107-.1950777-.50780316.0002993-.70141031s.5120117-.19347426.7072234.00029682c1.7683321 1.75528196 2.7800854 4.12911258 2.7800854 6.66056144 0 2.53182498-1.0120556 4.90597838-2.7808529 6.66132328zm-14.21898205-3.6854911c-.5523759 0-1.00016505-.4441085-1.00016505-.991944v-3.96777631c0-.54783558.44778915-.99194407 1.00016505-.99194407h2.0003301l5.41965617-3.8393633c.44948677-.31842296 1.07413994-.21516983 1.39520191.23062232.12116339.16823446.18629727.36981184.18629727.57655577v12.01603479c0 .5478356-.44778914.9919441-1.00016505.9919441-.20845738 0-.41170538-.0645985-.58133413-.184766l-5.41965617-3.8393633zm0-.991944h2.32084805l5.68047235 4.0241292v-12.01603479l-5.68047235 4.02412928h-2.32084805z" fill-rule="evenodd"/></symbol><symbol id="icon-block" viewBox="0 0 24 24"><path d="m0 0h24v24h-24z" fill-rule="evenodd"/></symbol><symbol id="icon-book" viewBox="0 0 18 18"><path d="m4 13v-11h1v11h11v-11h-13c-.55228475 0-1 .44771525-1 1v10.2675644c.29417337-.1701701.63571286-.2675644 1-.2675644zm12 1h-13c-.55228475 0-1 .4477153-1 1s.44771525 1 1 1h13zm0 3h-13c-1.1045695 0-2-.8954305-2-2v-12c0-1.1045695.8954305-2 2-2h13c.5522847 0 1 .44771525 1 1v14c0 .5522847-.4477153 1-1 1zm-8.5-13h6c.2761424 0 .5.22385763.5.5s-.2238576.5-.5.5h-6c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5zm1 2h4c.2761424 0 .5.22385763.5.5s-.2238576.5-.5.5h-4c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5z" fill-rule="evenodd"/></symbol><symbol id="icon-broad" viewBox="0 0 24 24"><path d="m9.18274226 7.81v7.7999954l2.48162734-2.4816273c.3928221-.3928221 1.0219731-.4005617 1.4030652-.0194696.3911301.3911301.3914806 1.0249268-.0001404 1.4165479l-4.17620796 4.1762079c-.39120769.3912077-1.02508144.3916069-1.41671995-.0000316l-4.1763942-4.1763942c-.39122514-.3912251-.39767006-1.0190815-.01657798-1.4001736.39113012-.3911301 1.02337106-.3930364 1.41951349.0031061l2.48183446 2.4818344v-8.7999954c0-.54911294.4426881-.99439484.99778758-.99557515l8.00221246-.00442485c.5522847 0 1 .44771525 1 1s-.4477153 1-1 1z" fill-rule="evenodd" transform="matrix(-1 0 0 -1 20.182742 24.805206)"/></symbol><symbol id="icon-calendar" viewBox="0 0 18 18"><path d="m12.5 0c.2761424 0 .5.21505737.5.49047852v.50952148h2c1.1072288 0 2 .89451376 2 2v12c0 1.1072288-.8945138 2-2 2h-12c-1.1072288 0-2-.8945138-2-2v-12c0-1.1072288.89451376-2 2-2h1v1h-1c-.55393837 0-1 .44579254-1 1v3h14v-3c0-.55393837-.4457925-1-1-1h-2v1.50952148c0 .27088381-.2319336.49047852-.5.49047852-.2761424 0-.5-.21505737-.5-.49047852v-3.01904296c0-.27088381.2319336-.49047852.5-.49047852zm3.5 7h-14v8c0 .5539384.44579254 1 1 1h12c.5539384 0 1-.4457925 1-1zm-11 6v1h-1v-1zm3 0v1h-1v-1zm3 0v1h-1v-1zm-6-2v1h-1v-1zm3 0v1h-1v-1zm6 0v1h-1v-1zm-3 0v1h-1v-1zm-3-2v1h-1v-1zm6 0v1h-1v-1zm-3 0v1h-1v-1zm-5.5-9c.27614237 0 .5.21505737.5.49047852v.50952148h5v1h-5v1.50952148c0 .27088381-.23193359.49047852-.5.49047852-.27614237 0-.5-.21505737-.5-.49047852v-3.01904296c0-.27088381.23193359-.49047852.5-.49047852z" fill-rule="evenodd"/></symbol><symbol id="icon-cart" viewBox="0 0 18 18"><path d="m5 14c1.1045695 0 2 .8954305 2 2s-.8954305 2-2 2-2-.8954305-2-2 .8954305-2 2-2zm10 0c1.1045695 0 2 .8954305 2 2s-.8954305 2-2 2-2-.8954305-2-2 .8954305-2 2-2zm-10 1c-.55228475 0-1 .4477153-1 1s.44771525 1 1 1 1-.4477153 1-1-.44771525-1-1-1zm10 0c-.5522847 0-1 .4477153-1 1s.4477153 1 1 1 1-.4477153 1-1-.4477153-1-1-1zm-12.82032249-15c.47691417 0 .88746157.33678127.98070211.80449199l.23823144 1.19501025 13.36277974.00045554c.5522847.00001882.9999659.44774934.9999659 1.00004222 0 .07084994-.0075361.14150708-.022474.2107727l-1.2908094 5.98534344c-.1007861.46742419-.5432548.80388386-1.0571651.80388386h-10.24805106c-.59173366 0-1.07142857.4477153-1.07142857 1 0 .5128358.41361449.9355072.94647737.9932723l.1249512.0067277h10.35933776c.2749512 0 .4979349.2228539.4979349.4978051 0 .2749417-.2227336.4978951-.4976753.4980063l-10.35959736.0041886c-1.18346732 0-2.14285714-.8954305-2.14285714-2 0-.6625717.34520317-1.24989198.87690425-1.61383592l-1.63768102-8.19004794c-.01312273-.06561364-.01950005-.131011-.0196107-.19547395l-1.71961253-.00064219c-.27614237 0-.5-.22385762-.5-.5 0-.27614237.22385763-.5.5-.5zm14.53193359 2.99950224h-13.11300004l1.20580469 6.02530174c.11024034-.0163252.22327998-.02480398.33844139-.02480398h10.27064786z"/></symbol><symbol id="icon-chevron-less" viewBox="0 0 10 10"><path d="m5.58578644 4-3.29289322-3.29289322c-.39052429-.39052429-.39052429-1.02368927 0-1.41421356s1.02368927-.39052429 1.41421356 0l4 4c.39052429.39052429.39052429 1.02368927 0 1.41421356l-4 4c-.39052429.39052429-1.02368927.39052429-1.41421356 0s-.39052429-1.02368927 0-1.41421356z" fill-rule="evenodd" transform="matrix(0 -1 -1 0 9 9)"/></symbol><symbol id="icon-chevron-more" viewBox="0 0 10 10"><path d="m5.58578644 6-3.29289322-3.29289322c-.39052429-.39052429-.39052429-1.02368927 0-1.41421356s1.02368927-.39052429 1.41421356 0l4 4c.39052429.39052429.39052429 1.02368927 0 1.41421356l-4 4.00000002c-.39052429.3905243-1.02368927.3905243-1.41421356 0s-.39052429-1.02368929 0-1.41421358z" fill-rule="evenodd" transform="matrix(0 1 -1 0 11 1)"/></symbol><symbol id="icon-chevron-right" viewBox="0 0 10 10"><path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/></symbol><symbol id="icon-circle-fill" viewBox="0 0 16 16"><path d="m8 14c-3.3137085 0-6-2.6862915-6-6s2.6862915-6 6-6 6 2.6862915 6 6-2.6862915 6-6 6z" fill-rule="evenodd"/></symbol><symbol id="icon-circle" viewBox="0 0 16 16"><path d="m8 12c2.209139 0 4-1.790861 4-4s-1.790861-4-4-4-4 1.790861-4 4 1.790861 4 4 4zm0 2c-3.3137085 0-6-2.6862915-6-6s2.6862915-6 6-6 6 2.6862915 6 6-2.6862915 6-6 6z" fill-rule="evenodd"/></symbol><symbol id="icon-citation" viewBox="0 0 18 18"><path d="m8.63593473 5.99995183c2.20913897 0 3.99999997 1.79084375 3.99999997 3.99996146 0 1.40730761-.7267788 2.64486871-1.8254829 3.35783281 1.6240224.6764218 2.8754442 2.0093871 3.4610603 3.6412466l-1.0763845.000006c-.5310008-1.2078237-1.5108121-2.1940153-2.7691712-2.7181346l-.79002167-.329052v-1.023992l.63016577-.4089232c.8482885-.5504661 1.3698342-1.4895187 1.3698342-2.51898361 0-1.65683828-1.3431457-2.99996146-2.99999997-2.99996146-1.65685425 0-3 1.34312318-3 2.99996146 0 1.02946491.52154569 1.96851751 1.36983419 2.51898361l.63016581.4089232v1.023992l-.79002171.329052c-1.25835905.5241193-2.23817037 1.5103109-2.76917113 2.7181346l-1.07638453-.000006c.58561612-1.6318595 1.8370379-2.9648248 3.46106024-3.6412466-1.09870405-.7129641-1.82548287-1.9505252-1.82548287-3.35783281 0-2.20911771 1.790861-3.99996146 4-3.99996146zm7.36897597-4.99995183c1.1018574 0 1.9950893.89353404 1.9950893 2.00274083v5.994422c0 1.10608317-.8926228 2.00274087-1.9950893 2.00274087l-3.0049107-.0009037v-1l3.0049107.00091329c.5490631 0 .9950893-.44783123.9950893-1.00275046v-5.994422c0-.55646537-.4450595-1.00275046-.9950893-1.00275046h-14.00982141c-.54906309 0-.99508929.44783123-.99508929 1.00275046v5.9971821c0 .66666024.33333333.99999036 1 .99999036l2-.00091329v1l-2 .0009037c-1 0-2-.99999041-2-1.99998077v-5.9971821c0-1.10608322.8926228-2.00274083 1.99508929-2.00274083zm-8.5049107 2.9999711c.27614237 0 .5.22385547.5.5 0 .2761349-.22385763.5-.5.5h-4c-.27614237 0-.5-.2238651-.5-.5 0-.27614453.22385763-.5.5-.5zm3 0c.2761424 0 .5.22385547.5.5 0 .2761349-.2238576.5-.5.5h-1c-.27614237 0-.5-.2238651-.5-.5 0-.27614453.22385763-.5.5-.5zm4 0c.2761424 0 .5.22385547.5.5 0 .2761349-.2238576.5-.5.5h-2c-.2761424 0-.5-.2238651-.5-.5 0-.27614453.2238576-.5.5-.5z" fill-rule="evenodd"/></symbol><symbol id="icon-close" viewBox="0 0 16 16"><path d="m2.29679575 12.2772478c-.39658757.3965876-.39438847 1.0328109-.00062148 1.4265779.39651227.3965123 1.03246768.3934888 1.42657791-.0006214l4.27724782-4.27724787 4.2772478 4.27724787c.3965876.3965875 1.0328109.3943884 1.4265779.0006214.3965123-.3965122.3934888-1.0324677-.0006214-1.4265779l-4.27724787-4.2772478 4.27724787-4.27724782c.3965875-.39658757.3943884-1.03281091.0006214-1.42657791-.3965122-.39651226-1.0324677-.39348875-1.4265779.00062148l-4.2772478 4.27724782-4.27724782-4.27724782c-.39658757-.39658757-1.03281091-.39438847-1.42657791-.00062148-.39651226.39651227-.39348875 1.03246768.00062148 1.42657791l4.27724782 4.27724782z" fill-rule="evenodd"/></symbol><symbol id="icon-collections" viewBox="0 0 18 18"><path d="m15 4c1.1045695 0 2 .8954305 2 2v9c0 1.1045695-.8954305 2-2 2h-8c-1.1045695 0-2-.8954305-2-2h1c0 .5128358.38604019.9355072.88337887.9932723l.11662113.0067277h8c.5128358 0 .9355072-.3860402.9932723-.8833789l.0067277-.1166211v-9c0-.51283584-.3860402-.93550716-.8833789-.99327227l-.1166211-.00672773h-1v-1zm-4-3c1.1045695 0 2 .8954305 2 2v9c0 1.1045695-.8954305 2-2 2h-8c-1.1045695 0-2-.8954305-2-2v-9c0-1.1045695.8954305-2 2-2zm0 1h-8c-.51283584 0-.93550716.38604019-.99327227.88337887l-.00672773.11662113v9c0 .5128358.38604019.9355072.88337887.9932723l.11662113.0067277h8c.5128358 0 .9355072-.3860402.9932723-.8833789l.0067277-.1166211v-9c0-.51283584-.3860402-.93550716-.8833789-.99327227zm-1.5 7c.27614237 0 .5.22385763.5.5s-.22385763.5-.5.5h-5c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5zm0-2c.27614237 0 .5.22385763.5.5s-.22385763.5-.5.5h-5c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5zm0-2c.27614237 0 .5.22385763.5.5s-.22385763.5-.5.5h-5c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5z" fill-rule="evenodd"/></symbol><symbol id="icon-compare" viewBox="0 0 18 18"><path d="m12 3c3.3137085 0 6 2.6862915 6 6s-2.6862915 6-6 6c-1.0928452 0-2.11744941-.2921742-2.99996061-.8026704-.88181407.5102749-1.90678042.8026704-3.00003939.8026704-3.3137085 0-6-2.6862915-6-6s2.6862915-6 6-6c1.09325897 0 2.11822532.29239547 3.00096303.80325037.88158756-.51107621 1.90619177-.80325037 2.99903697-.80325037zm-6 1c-2.76142375 0-5 2.23857625-5 5 0 2.7614237 2.23857625 5 5 5 .74397391 0 1.44999672-.162488 2.08451611-.4539116-1.27652344-1.1000812-2.08451611-2.7287264-2.08451611-4.5460884s.80799267-3.44600721 2.08434391-4.5463015c-.63434719-.29121054-1.34037-.4536985-2.08434391-.4536985zm6 0c-.7439739 0-1.4499967.16248796-2.08451611.45391156 1.27652341 1.10008123 2.08451611 2.72872644 2.08451611 4.54608844s-.8079927 3.4460072-2.08434391 4.5463015c.63434721.2912105 1.34037001.4536985 2.08434391.4536985 2.7614237 0 5-2.2385763 5-5 0-2.76142375-2.2385763-5-5-5zm-1.4162763 7.0005324h-3.16744736c.15614659.3572676.35283837.6927622.58425872 1.0006671h1.99892988c.23142036-.3079049.42811216-.6433995.58425876-1.0006671zm.4162763-2.0005324h-4c0 .34288501.0345146.67770871.10025909 1.0011864h3.79948181c.0657445-.32347769.1002591-.65830139.1002591-1.0011864zm-.4158423-1.99953894h-3.16831543c-.13859957.31730812-.24521946.651783-.31578599.99935097h3.79988742c-.0705665-.34756797-.1771864-.68204285-.315786-.99935097zm-1.58295822-1.999926-.08316107.06199199c-.34550042.27081213-.65446126.58611297-.91825862.93727862h2.00044041c-.28418626-.37830727-.6207872-.71499149-.99902072-.99927061z" fill-rule="evenodd"/></symbol><symbol id="icon-download-file" viewBox="0 0 18 18"><path d="m10.0046024 0c.5497429 0 1.3179837.32258606 1.707238.71184039l4.5763192 4.57631922c.3931386.39313859.7118404 1.16760135.7118404 1.71431368v8.98899651c0 1.1092806-.8945138 2.0085302-1.9940603 2.0085302h-12.01187942c-1.10128908 0-1.99406028-.8926228-1.99406028-1.9950893v-14.00982141c0-1.10185739.88743329-1.99508929 1.99961498-1.99508929zm0 1h-7.00498742c-.55709576 0-.99961498.44271433-.99961498.99508929v14.00982141c0 .5500396.44491393.9950893.99406028.9950893h12.01187942c.5463747 0 .9940603-.4506622.9940603-1.0085302v-8.98899651c0-.28393444-.2150684-.80332809-.4189472-1.0072069l-4.5763192-4.57631922c-.2038461-.20384606-.718603-.41894717-1.0001312-.41894717zm-1.5046024 4c.27614237 0 .5.21637201.5.49209595v6.14827645l1.7462789-1.77990922c.1933927-.1971171.5125222-.19455839.7001689-.0069117.1932998.19329992.1910058.50899492-.0027774.70277812l-2.59089271 2.5908927c-.19483374.1948337-.51177825.1937771-.70556873-.0000133l-2.59099079-2.5909908c-.19484111-.1948411-.19043735-.5151448-.00279066-.70279146.19329987-.19329987.50465175-.19237083.70018565.00692852l1.74638684 1.78001764v-6.14827695c0-.27177709.23193359-.49209595.5-.49209595z" fill-rule="evenodd"/></symbol><symbol id="icon-download" viewBox="0 0 16 16"><path d="m12.9975267 12.999368c.5467123 0 1.0024733.4478567 1.0024733 1.000316 0 .5563109-.4488226 1.000316-1.0024733 1.000316h-9.99505341c-.54671233 0-1.00247329-.4478567-1.00247329-1.000316 0-.5563109.44882258-1.000316 1.00247329-1.000316zm-4.9975267-11.999368c.55228475 0 1 .44497754 1 .99589209v6.80214418l2.4816273-2.48241149c.3928222-.39294628 1.0219732-.4006883 1.4030652-.01947579.3911302.39125371.3914806 1.02525073-.0001404 1.41699553l-4.17620792 4.17752758c-.39120769.3913313-1.02508144.3917306-1.41671995-.0000316l-4.17639421-4.17771394c-.39122513-.39134876-.39767006-1.01940351-.01657797-1.40061601.39113012-.39125372 1.02337105-.3931606 1.41951349.00310701l2.48183446 2.48261871v-6.80214418c0-.55001601.44386482-.99589209 1-.99589209z" fill-rule="evenodd"/></symbol><symbol id="icon-editors" viewBox="0 0 18 18"><path d="m8.72592184 2.54588137c-.48811714-.34391207-1.08343326-.54588137-1.72592184-.54588137-1.65685425 0-3 1.34314575-3 3 0 1.02947485.5215457 1.96853646 1.3698342 2.51900785l.6301658.40892721v1.02400182l-.79002171.32905522c-1.93395773.8055207-3.20997829 2.7024791-3.20997829 4.8180274v.9009805h-1v-.9009805c0-2.5479714 1.54557359-4.79153984 3.82548288-5.7411543-1.09870406-.71297106-1.82548288-1.95054399-1.82548288-3.3578652 0-2.209139 1.790861-4 4-4 1.09079823 0 2.07961816.43662103 2.80122451 1.1446278-.37707584.09278571-.7373238.22835063-1.07530267.40125357zm-2.72592184 14.45411863h-1v-.9009805c0-2.5479714 1.54557359-4.7915398 3.82548288-5.7411543-1.09870406-.71297106-1.82548288-1.95054399-1.82548288-3.3578652 0-2.209139 1.790861-4 4-4s4 1.790861 4 4c0 1.40732121-.7267788 2.64489414-1.8254829 3.3578652 2.2799093.9496145 3.8254829 3.1931829 3.8254829 5.7411543v.9009805h-1v-.9009805c0-2.1155483-1.2760206-4.0125067-3.2099783-4.8180274l-.7900217-.3290552v-1.02400184l.6301658-.40892721c.8482885-.55047139 1.3698342-1.489533 1.3698342-2.51900785 0-1.65685425-1.3431458-3-3-3-1.65685425 0-3 1.34314575-3 3 0 1.02947485.5215457 1.96853646 1.3698342 2.51900785l.6301658.40892721v1.02400184l-.79002171.3290552c-1.93395773.8055207-3.20997829 2.7024791-3.20997829 4.8180274z" fill-rule="evenodd"/></symbol><symbol id="icon-email" viewBox="0 0 18 18"><path d="m16.0049107 2c1.1018574 0 1.9950893.89706013 1.9950893 2.00585866v9.98828264c0 1.1078052-.8926228 2.0058587-1.9950893 2.0058587h-14.00982141c-1.10185739 0-1.99508929-.8970601-1.99508929-2.0058587v-9.98828264c0-1.10780515.8926228-2.00585866 1.99508929-2.00585866zm0 1h-14.00982141c-.54871518 0-.99508929.44887827-.99508929 1.00585866v9.98828264c0 .5572961.44630695 1.0058587.99508929 1.0058587h14.00982141c.5487152 0 .9950893-.4488783.9950893-1.0058587v-9.98828264c0-.55729607-.446307-1.00585866-.9950893-1.00585866zm-.0049107 2.55749512v1.44250488l-7 4-7-4v-1.44250488l7 4z" fill-rule="evenodd"/></symbol><symbol id="icon-error" viewBox="0 0 18 18"><path d="m9 0c4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9zm2.8630343 4.71100931-2.8630343 2.86303426-2.86303426-2.86303426c-.39658757-.39658757-1.03281091-.39438847-1.4265779-.00062147-.39651227.39651226-.39348876 1.03246767.00062147 1.4265779l2.86303426 2.86303426-2.86303426 2.8630343c-.39658757.3965875-.39438847 1.0328109-.00062147 1.4265779.39651226.3965122 1.03246767.3934887 1.4265779-.0006215l2.86303426-2.8630343 2.8630343 2.8630343c.3965875.3965876 1.0328109.3943885 1.4265779.0006215.3965122-.3965123.3934887-1.0324677-.0006215-1.4265779l-2.8630343-2.8630343 2.8630343-2.86303426c.3965876-.39658757.3943885-1.03281091.0006215-1.4265779-.3965123-.39651227-1.0324677-.39348876-1.4265779.00062147z" fill-rule="evenodd"/></symbol><symbol id="icon-ethics" viewBox="0 0 18 18"><path d="m6.76384967 1.41421356.83301651-.8330165c.77492941-.77492941 2.03133823-.77492941 2.80626762 0l.8330165.8330165c.3750728.37507276.8837806.58578644 1.4142136.58578644h1.3496361c1.1045695 0 2 .8954305 2 2v1.34963611c0 .53043298.2107137 1.03914081.5857864 1.41421356l.8330165.83301651c.7749295.77492941.7749295 2.03133823 0 2.80626762l-.8330165.8330165c-.3750727.3750728-.5857864.8837806-.5857864 1.4142136v1.3496361c0 1.1045695-.8954305 2-2 2h-1.3496361c-.530433 0-1.0391408.2107137-1.4142136.5857864l-.8330165.8330165c-.77492939.7749295-2.03133821.7749295-2.80626762 0l-.83301651-.8330165c-.37507275-.3750727-.88378058-.5857864-1.41421356-.5857864h-1.34963611c-1.1045695 0-2-.8954305-2-2v-1.3496361c0-.530433-.21071368-1.0391408-.58578644-1.4142136l-.8330165-.8330165c-.77492941-.77492939-.77492941-2.03133821 0-2.80626762l.8330165-.83301651c.37507276-.37507275.58578644-.88378058.58578644-1.41421356v-1.34963611c0-1.1045695.8954305-2 2-2h1.34963611c.53043298 0 1.03914081-.21071368 1.41421356-.58578644zm-1.41421356 1.58578644h-1.34963611c-.55228475 0-1 .44771525-1 1v1.34963611c0 .79564947-.31607052 1.55871121-.87867966 2.12132034l-.8330165.83301651c-.38440512.38440512-.38440512 1.00764896 0 1.39205408l.8330165.83301646c.56260914.5626092.87867966 1.3256709.87867966 2.1213204v1.3496361c0 .5522847.44771525 1 1 1h1.34963611c.79564947 0 1.55871121.3160705 2.12132034.8786797l.83301651.8330165c.38440512.3844051 1.00764896.3844051 1.39205408 0l.83301646-.8330165c.5626092-.5626092 1.3256709-.8786797 2.1213204-.8786797h1.3496361c.5522847 0 1-.4477153 1-1v-1.3496361c0-.7956495.3160705-1.5587112.8786797-2.1213204l.8330165-.83301646c.3844051-.38440512.3844051-1.00764896 0-1.39205408l-.8330165-.83301651c-.5626092-.56260913-.8786797-1.32567087-.8786797-2.12132034v-1.34963611c0-.55228475-.4477153-1-1-1h-1.3496361c-.7956495 0-1.5587112-.31607052-2.1213204-.87867966l-.83301646-.8330165c-.38440512-.38440512-1.00764896-.38440512-1.39205408 0l-.83301651.8330165c-.56260913.56260914-1.32567087.87867966-2.12132034.87867966zm3.58698944 11.4960218c-.02081224.002155-.04199226.0030286-.06345763.002542-.98766446-.0223875-1.93408568-.3063547-2.75885125-.8155622-.23496767-.1450683-.30784554-.4531483-.16277726-.688116.14506827-.2349677.45314827-.3078455.68811595-.1627773.67447084.4164161 1.44758575.6483839 2.25617384.6667123.01759529.0003988.03495764.0017019.05204365.0038639.01713363-.0017748.03452416-.0026845.05212715-.0026845 2.4852814 0 4.5-2.0147186 4.5-4.5 0-1.04888973-.3593547-2.04134635-1.0074477-2.83787157-.1742817-.21419731-.1419238-.5291218.0722736-.70340353.2141973-.17428173.5291218-.14192375.7034035.07227357.7919032.97327203 1.2317706 2.18808682 1.2317706 3.46900153 0 3.0375661-2.4624339 5.5-5.5 5.5-.02146768 0-.04261937-.0013529-.06337445-.0039782zm1.57975095-10.78419583c.2654788.07599731.419084.35281842.3430867.61829728-.0759973.26547885-.3528185.419084-.6182973.3430867-.37560116-.10752146-.76586237-.16587951-1.15568824-.17249193-2.5587807-.00064534-4.58547766 2.00216524-4.58547766 4.49928198 0 .62691557.12797645 1.23496.37274865 1.7964426.11035133.2531347-.0053975.5477984-.25853224.6581497-.25313473.1103514-.54779841-.0053975-.65814974-.2585322-.29947131-.6869568-.45606667-1.43097603-.45606667-2.1960601 0-3.05211432 2.47714695-5.50006595 5.59399617-5.49921198.48576182.00815502.96289603.0795037 1.42238033.21103795zm-1.9766658 6.41091303 2.69835-2.94655317c.1788432-.21040373.4943901-.23598862.7047939-.05714545.2104037.17884318.2359886.49439014.0571454.70479387l-3.01637681 3.34277395c-.18039088.1999106-.48669547.2210637-.69285412.0478478l-1.93095347-1.62240047c-.21213845-.17678204-.24080048-.49206439-.06401844-.70420284.17678204-.21213844.49206439-.24080048.70420284-.06401844z" fill-rule="evenodd"/></symbol><symbol id="icon-expand"><path d="M7.498 11.918a.997.997 0 0 0-.003-1.411.995.995 0 0 0-1.412-.003l-4.102 4.102v-3.51A1 1 0 0 0 .98 10.09.992.992 0 0 0 0 11.092V17c0 .554.448 1.002 1.002 1.002h5.907c.554 0 1.002-.45 1.002-1.003 0-.539-.45-.978-1.006-.978h-3.51zm3.005-5.835a.997.997 0 0 0 .003 1.412.995.995 0 0 0 1.411.003l4.103-4.103v3.51a1 1 0 0 0 1.001 1.006A.992.992 0 0 0 18 6.91V1.002A1 1 0 0 0 17 0h-5.907a1.003 1.003 0 0 0-1.002 1.003c0 .539.45.978 1.006.978h3.51z" fill-rule="evenodd"/></symbol><symbol id="icon-explore" viewBox="0 0 18 18"><path d="m9 17c4.418278 0 8-3.581722 8-8s-3.581722-8-8-8-8 3.581722-8 8 3.581722 8 8 8zm0 1c-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9 4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9zm0-2.5c-.27614237 0-.5-.2238576-.5-.5s.22385763-.5.5-.5c2.969509 0 5.400504-2.3575119 5.497023-5.31714844.0090007-.27599565.2400359-.49243782.5160315-.48343711.2759957.0090007.4924378.2400359.4834371.51603155-.114093 3.4985237-2.9869632 6.284554-6.4964916 6.284554zm-.29090657-12.99359748c.27587424-.01216621.50937715.20161139.52154336.47748563.01216621.27587423-.20161139.50937715-.47748563.52154336-2.93195733.12930094-5.25315116 2.54886451-5.25315116 5.49456849 0 .27614237-.22385763.5-.5.5s-.5-.22385763-.5-.5c0-3.48142406 2.74307146-6.34074398 6.20909343-6.49359748zm1.13784138 8.04763908-1.2004882-1.20048821c-.19526215-.19526215-.19526215-.51184463 0-.70710678s.51184463-.19526215.70710678 0l1.20048821 1.2004882 1.6006509-4.00162734-4.50670359 1.80268144-1.80268144 4.50670359zm4.10281269-6.50378907-2.6692597 6.67314927c-.1016411.2541026-.3029834.4554449-.557086.557086l-6.67314927 2.6692597 2.66925969-6.67314926c.10164107-.25410266.30298336-.45544495.55708602-.55708602z" fill-rule="evenodd"/></symbol><symbol id="icon-filter" viewBox="0 0 16 16"><path d="m14.9738641 0c.5667192 0 1.0261359.4477136 1.0261359 1 0 .24221858-.0902161.47620768-.2538899.65849851l-5.6938314 6.34147206v5.49997973c0 .3147562-.1520673.6111434-.4104543.7999971l-2.05227171 1.4999945c-.45337535.3313696-1.09655869.2418269-1.4365902-.1999993-.13321514-.1730955-.20522717-.3836284-.20522717-.5999978v-6.99997423l-5.69383133-6.34147206c-.3731872-.41563511-.32996891-1.0473954.09653074-1.41107611.18705584-.15950448.42716133-.2474224.67571519-.2474224zm-5.9218641 8.5h-2.105v6.491l.01238459.0070843.02053271.0015705.01955278-.0070558 2.0532976-1.4990996zm-8.02585008-7.5-.01564945.00240169 5.83249953 6.49759831h2.313l5.836-6.499z"/></symbol><symbol id="icon-home" viewBox="0 0 18 18"><path d="m9 5-6 6v5h4v-4h4v4h4v-5zm7 6.5857864v4.4142136c0 .5522847-.4477153 1-1 1h-5v-4h-2v4h-5c-.55228475 0-1-.4477153-1-1v-4.4142136c-.25592232 0-.51184464-.097631-.70710678-.2928932l-.58578644-.5857864c-.39052429-.3905243-.39052429-1.02368929 0-1.41421358l8.29289322-8.29289322 8.2928932 8.29289322c.3905243.39052429.3905243 1.02368928 0 1.41421358l-.5857864.5857864c-.1952622.1952622-.4511845.2928932-.7071068.2928932zm-7-9.17157284-7.58578644 7.58578644.58578644.5857864 7-6.99999996 7 6.99999996.5857864-.5857864z" fill-rule="evenodd"/></symbol><symbol id="icon-image" viewBox="0 0 18 18"><path d="m10.0046024 0c.5497429 0 1.3179837.32258606 1.707238.71184039l4.5763192 4.57631922c.3931386.39313859.7118404 1.16760135.7118404 1.71431368v8.98899651c0 1.1092806-.8945138 2.0085302-1.9940603 2.0085302h-12.01187942c-1.10128908 0-1.99406028-.8926228-1.99406028-1.9950893v-14.00982141c0-1.10185739.88743329-1.99508929 1.99961498-1.99508929zm-3.49645283 10.1752453-3.89407257 6.7495552c.11705545.048464.24538859.0751995.37998328.0751995h10.60290092l-2.4329715-4.2154691-1.57494129 2.7288098zm8.49779013 6.8247547c.5463747 0 .9940603-.4506622.9940603-1.0085302v-8.98899651c0-.28393444-.2150684-.80332809-.4189472-1.0072069l-4.5763192-4.57631922c-.2038461-.20384606-.718603-.41894717-1.0001312-.41894717h-7.00498742c-.55709576 0-.99961498.44271433-.99961498.99508929v13.98991071l4.50814957-7.81026689 3.08089884 5.33809539 1.57494129-2.7288097 3.5875735 6.2159812zm-3.0059397-11c1.1045695 0 2 .8954305 2 2s-.8954305 2-2 2-2-.8954305-2-2 .8954305-2 2-2zm0 1c-.5522847 0-1 .44771525-1 1s.4477153 1 1 1 1-.44771525 1-1-.4477153-1-1-1z" fill-rule="evenodd"/></symbol><symbol id="icon-info" viewBox="0 0 18 18"><path d="m9 0c4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9zm0 7h-1.5l-.11662113.00672773c-.49733868.05776511-.88337887.48043643-.88337887.99327227 0 .47338693.32893365.86994729.77070917.97358929l.1126697.01968298.11662113.00672773h.5v3h-.5l-.11662113.0067277c-.42082504.0488782-.76196299.3590206-.85696816.7639815l-.01968298.1126697-.00672773.1166211.00672773.1166211c.04887817.4208251.35902055.761963.76398144.8569682l.1126697.019683.11662113.0067277h3l.1166211-.0067277c.4973387-.0577651.8833789-.4804365.8833789-.9932723 0-.4733869-.3289337-.8699473-.7707092-.9735893l-.1126697-.019683-.1166211-.0067277h-.5v-4l-.00672773-.11662113c-.04887817-.42082504-.35902055-.76196299-.76398144-.85696816l-.1126697-.01968298zm0-3.25c-.69035594 0-1.25.55964406-1.25 1.25s.55964406 1.25 1.25 1.25 1.25-.55964406 1.25-1.25-.55964406-1.25-1.25-1.25z" fill-rule="evenodd"/></symbol><symbol id="icon-institution" viewBox="0 0 18 18"><path d="m7 16.9998189v-2.0003623h4v2.0003623h2v-3.0005434h-8v3.0005434zm-3-10.00181122h-1.52632364c-.27614237 0-.5-.22389817-.5-.50009056 0-.13995446.05863589-.27350497.16166338-.36820841l1.23156713-1.13206327h-2.36690687v12.00217346h3v-2.0003623h-3v-1.0001811h3v-1.0001811h1v-4.00072448h-1zm10 0v2.00036224h-1v4.00072448h1v1.0001811h3v1.0001811h-3v2.0003623h3v-12.00217346h-2.3695309l1.2315671 1.13206327c.2033191.186892.2166633.50325042.0298051.70660631-.0946863.10304615-.2282126.16169266-.3681417.16169266zm3-3.00054336c.5522847 0 1 .44779634 1 1.00018112v13.00235456h-18v-13.00235456c0-.55238478.44771525-1.00018112 1-1.00018112h3.45499992l4.20535144-3.86558216c.19129876-.17584288.48537447-.17584288.67667324 0l4.2053514 3.86558216zm-4 3.00054336h-8v1.00018112h8zm-2 6.00108672h1v-4.00072448h-1zm-1 0v-4.00072448h-2v4.00072448zm-3 0v-4.00072448h-1v4.00072448zm8-4.00072448c.5522847 0 1 .44779634 1 1.00018112v2.00036226h-2v-2.00036226c0-.55238478.4477153-1.00018112 1-1.00018112zm-12 0c.55228475 0 1 .44779634 1 1.00018112v2.00036226h-2v-2.00036226c0-.55238478.44771525-1.00018112 1-1.00018112zm5.99868798-7.81907007-5.24205601 4.81852671h10.48411203zm.00131202 3.81834559c-.55228475 0-1-.44779634-1-1.00018112s.44771525-1.00018112 1-1.00018112 1 .44779634 1 1.00018112-.44771525 1.00018112-1 1.00018112zm-1 11.00199236v1.0001811h2v-1.0001811z" fill-rule="evenodd"/></symbol><symbol id="icon-location" viewBox="0 0 18 18"><path d="m9.39521328 16.2688008c.79596342-.7770119 1.59208152-1.6299956 2.33285652-2.5295081 1.4020032-1.7024324 2.4323601-3.3624519 2.9354918-4.871847.2228715-.66861448.3364384-1.29323246.3364384-1.8674457 0-3.3137085-2.6862915-6-6-6-3.36356866 0-6 2.60156856-6 6 0 .57421324.11356691 1.19883122.3364384 1.8674457.50313169 1.5093951 1.53348863 3.1694146 2.93549184 4.871847.74077492.8995125 1.53689309 1.7524962 2.33285648 2.5295081.13694479.1336842.26895677.2602648.39521328.3793207.12625651-.1190559.25826849-.2456365.39521328-.3793207zm-.39521328 1.7311992s-7-6-7-11c0-4 3.13400675-7 7-7 3.8659932 0 7 3.13400675 7 7 0 5-7 11-7 11zm0-8c-1.65685425 0-3-1.34314575-3-3s1.34314575-3 3-3c1.6568542 0 3 1.34314575 3 3s-1.3431458 3-3 3zm0-1c1.1045695 0 2-.8954305 2-2s-.8954305-2-2-2-2 .8954305-2 2 .8954305 2 2 2z" fill-rule="evenodd"/></symbol><symbol id="icon-minus" viewBox="0 0 16 16"><path d="m2.00087166 7h11.99825664c.5527662 0 1.0008717.44386482 1.0008717 1 0 .55228475-.4446309 1-1.0008717 1h-11.99825664c-.55276616 0-1.00087166-.44386482-1.00087166-1 0-.55228475.44463086-1 1.00087166-1z" fill-rule="evenodd"/></symbol><symbol id="icon-newsletter" viewBox="0 0 18 18"><path d="m9 11.8482489 2-1.1428571v-1.7053918h-4v1.7053918zm-3-1.7142857v-2.1339632h6v2.1339632l3-1.71428574v-6.41967746h-12v6.41967746zm10-5.3839632 1.5299989.95624934c.2923814.18273835.4700011.50320827.4700011.8479983v8.44575236c0 1.1045695-.8954305 2-2 2h-14c-1.1045695 0-2-.8954305-2-2v-8.44575236c0-.34479003.1776197-.66525995.47000106-.8479983l1.52999894-.95624934v-2.75c0-.55228475.44771525-1 1-1h12c.5522847 0 1 .44771525 1 1zm0 1.17924764v3.07075236l-7 4-7-4v-3.07075236l-1 .625v8.44575236c0 .5522847.44771525 1 1 1h14c.5522847 0 1-.4477153 1-1v-8.44575236zm-10-1.92924764h6v1h-6zm-1 2h8v1h-8z" fill-rule="evenodd"/></symbol><symbol id="icon-orcid" viewBox="0 0 18 18"><path d="m9 1c4.418278 0 8 3.581722 8 8s-3.581722 8-8 8-8-3.581722-8-8 3.581722-8 8-8zm-2.90107518 5.2732337h-1.41865256v7.1712107h1.41865256zm4.55867178.02508949h-2.99247027v7.14612121h2.91062487c.7673039 0 1.4476365-.1483432 2.0410182-.445034s1.0511995-.7152915 1.3734671-1.2558144c.3222677-.540523.4833991-1.1603247.4833991-1.85942385 0-.68545815-.1602789-1.30270225-.4808414-1.85175082-.3205625-.54904856-.7707074-.97532211-1.3504481-1.27883343-.5797408-.30351132-1.2413173-.45526471-1.9847495-.45526471zm-.1892674 1.07933542c.7877654 0 1.4143875.22336734 1.8798852.67010873.4654977.44674138.698243 1.05546001.698243 1.82617415 0 .74343221-.2310402 1.34447791-.6931277 1.80315511-.4620874.4586773-1.0750688.6880124-1.8389625.6880124h-1.46810075v-4.98745039zm-5.08652545-3.71099194c-.21825533 0-.410525.08444276-.57681478.25333081-.16628977.16888806-.24943341.36245684-.24943341.58071218 0 .22345188.08314364.41961891.24943341.58850696.16628978.16888806.35855945.25333082.57681478.25333082.233845 0 .43390938-.08314364.60019916-.24943342.16628978-.16628977.24943342-.36375592.24943342-.59240436 0-.233845-.08314364-.43131115-.24943342-.59240437s-.36635416-.24163862-.60019916-.24163862z" fill-rule="evenodd"/></symbol><symbol id="icon-plus" viewBox="0 0 16 16"><path d="m2.00087166 7h4.99912834v-4.99912834c0-.55276616.44386482-1.00087166 1-1.00087166.55228475 0 1 .44463086 1 1.00087166v4.99912834h4.9991283c.5527662 0 1.0008717.44386482 1.0008717 1 0 .55228475-.4446309 1-1.0008717 1h-4.9991283v4.9991283c0 .5527662-.44386482 1.0008717-1 1.0008717-.55228475 0-1-.4446309-1-1.0008717v-4.9991283h-4.99912834c-.55276616 0-1.00087166-.44386482-1.00087166-1 0-.55228475.44463086-1 1.00087166-1z" fill-rule="evenodd"/></symbol><symbol id="icon-print" viewBox="0 0 18 18"><path d="m16.0049107 5h-14.00982141c-.54941618 0-.99508929.4467783-.99508929.99961498v6.00077002c0 .5570958.44271433.999615.99508929.999615h1.00491071v-3h12v3h1.0049107c.5494162 0 .9950893-.4467783.9950893-.999615v-6.00077002c0-.55709576-.4427143-.99961498-.9950893-.99961498zm-2.0049107-1v-2.00208688c0-.54777062-.4519464-.99791312-1.0085302-.99791312h-7.9829396c-.55661731 0-1.0085302.44910695-1.0085302.99791312v2.00208688zm1 10v2.0018986c0 1.103521-.9019504 1.9981014-2.0085302 1.9981014h-7.9829396c-1.1092806 0-2.0085302-.8867064-2.0085302-1.9981014v-2.0018986h-1.00491071c-1.10185739 0-1.99508929-.8874333-1.99508929-1.999615v-6.00077002c0-1.10435686.8926228-1.99961498 1.99508929-1.99961498h1.00491071v-2.00208688c0-1.10341695.90195036-1.99791312 2.0085302-1.99791312h7.9829396c1.1092806 0 2.0085302.89826062 2.0085302 1.99791312v2.00208688h1.0049107c1.1018574 0 1.9950893.88743329 1.9950893 1.99961498v6.00077002c0 1.1043569-.8926228 1.999615-1.9950893 1.999615zm-1-3h-10v5.0018986c0 .5546075.44702548.9981014 1.0085302.9981014h7.9829396c.5565964 0 1.0085302-.4491701 1.0085302-.9981014zm-9 1h8v1h-8zm0 2h5v1h-5zm9-5c-.5522847 0-1-.44771525-1-1s.4477153-1 1-1 1 .44771525 1 1-.4477153 1-1 1z" fill-rule="evenodd"/></symbol><symbol id="icon-search" viewBox="0 0 22 22"><path d="M21.697 20.261a1.028 1.028 0 01.01 1.448 1.034 1.034 0 01-1.448-.01l-4.267-4.267A9.812 9.811 0 010 9.812a9.812 9.811 0 1117.43 6.182zM9.812 18.222A8.41 8.41 0 109.81 1.403a8.41 8.41 0 000 16.82z" fill-rule="evenodd"/></symbol><symbol id="icon-social-facebook" viewBox="0 0 24 24"><path d="m6.00368507 20c-1.10660471 0-2.00368507-.8945138-2.00368507-1.9940603v-12.01187942c0-1.10128908.89451376-1.99406028 1.99406028-1.99406028h12.01187942c1.1012891 0 1.9940603.89451376 1.9940603 1.99406028v12.01187942c0 1.1012891-.88679 1.9940603-2.0032184 1.9940603h-2.9570132v-6.1960818h2.0797387l.3114113-2.414723h-2.39115v-1.54164807c0-.69911803.1941355-1.1755439 1.1966615-1.1755439l1.2786739-.00055875v-2.15974763l-.2339477-.02492088c-.3441234-.03134957-.9500153-.07025255-1.6293054-.07025255-1.8435726 0-3.1057323 1.12531866-3.1057323 3.19187953v1.78079225h-2.0850778v2.414723h2.0850778v6.1960818z" fill-rule="evenodd"/></symbol><symbol id="icon-social-twitter" viewBox="0 0 24 24"><path d="m18.8767135 6.87445248c.7638174-.46908424 1.351611-1.21167363 1.6250764-2.09636345-.7135248.43394112-1.50406.74870123-2.3464594.91677702-.6695189-.73342162-1.6297913-1.19486605-2.6922204-1.19486605-2.0399895 0-3.6933555 1.69603749-3.6933555 3.78628909 0 .29642457.0314329.58673729.0942985.8617704-3.06469922-.15890802-5.78835241-1.66547825-7.60988389-3.9574208-.3174714.56076194-.49978171 1.21167363-.49978171 1.90536824 0 1.31404706.65223085 2.47224203 1.64236444 3.15218497-.60350999-.0198635-1.17401554-.1925232-1.67222562-.47366811v.04583885c0 1.83355406 1.27302891 3.36609966 2.96411421 3.71294696-.31118484.0886217-.63651445.1329326-.97441718.1329326-.2357461 0-.47149219-.0229194-.69466516-.0672303.47149219 1.5065703 1.83253297 2.6036468 3.44975116 2.632678-1.2651707 1.0160946-2.85724264 1.6196394-4.5891906 1.6196394-.29861172 0-.59093688-.0152796-.88011875-.0504227 1.63450624 1.0726291 3.57548241 1.6990934 5.66104951 1.6990934 6.79263079 0 10.50641749-5.7711113 10.50641749-10.7751859l-.0094298-.48894775c.7229547-.53478659 1.3516109-1.20250585 1.8419628-1.96190282-.6632323.30100846-1.3751855.50422736-2.1217148.59590507z" fill-rule="evenodd"/></symbol><symbol id="icon-social-youtube" viewBox="0 0 24 24"><path d="m10.1415 14.3973208-.0005625-5.19318431 4.863375 2.60554491zm9.963-7.92753362c-.6845625-.73643756-1.4518125-.73990314-1.803375-.7826454-2.518875-.18714178-6.2971875-.18714178-6.2971875-.18714178-.007875 0-3.7861875 0-6.3050625.18714178-.352125.04274226-1.1188125.04620784-1.8039375.7826454-.5394375.56084773-.7149375 1.8344515-.7149375 1.8344515s-.18 1.49597903-.18 2.99138042v1.4024082c0 1.495979.18 2.9913804.18 2.9913804s.1755 1.2736038.7149375 1.8344515c.685125.7364376 1.5845625.7133337 1.9850625.7901542 1.44.1420891 6.12.1859866 6.12.1859866s3.78225-.005776 6.301125-.1929178c.3515625-.0433198 1.1188125-.0467854 1.803375-.783223.5394375-.5608477.7155-1.8344515.7155-1.8344515s.18-1.4954014.18-2.9913804v-1.4024082c0-1.49540139-.18-2.99138042-.18-2.99138042s-.1760625-1.27360377-.7155-1.8344515z" fill-rule="evenodd"/></symbol><symbol id="icon-subject-medicine" viewBox="0 0 18 18"><path d="m12.5 8h-6.5c-1.65685425 0-3 1.34314575-3 3v1c0 1.6568542 1.34314575 3 3 3h1v-2h-.5c-.82842712 0-1.5-.6715729-1.5-1.5s.67157288-1.5 1.5-1.5h1.5 2 1 2c1.6568542 0 3-1.34314575 3-3v-1c0-1.65685425-1.3431458-3-3-3h-2v2h1.5c.8284271 0 1.5.67157288 1.5 1.5s-.6715729 1.5-1.5 1.5zm-5.5-1v-1h-3.5c-1.38071187 0-2.5-1.11928813-2.5-2.5s1.11928813-2.5 2.5-2.5h1.02786405c.46573528 0 .92507448.10843528 1.34164078.31671843l1.13382424.56691212c.06026365-1.05041141.93116291-1.88363055 1.99667093-1.88363055 1.1045695 0 2 .8954305 2 2h2c2.209139 0 4 1.790861 4 4v1c0 2.209139-1.790861 4-4 4h-2v1h2c1.1045695 0 2 .8954305 2 2s-.8954305 2-2 2h-2c0 1.1045695-.8954305 2-2 2s-2-.8954305-2-2h-1c-2.209139 0-4-1.790861-4-4v-1c0-2.209139 1.790861-4 4-4zm0-2v-2.05652691c-.14564246-.03538148-.28733393-.08714006-.42229124-.15461871l-1.15541752-.57770876c-.27771087-.13885544-.583937-.21114562-.89442719-.21114562h-1.02786405c-.82842712 0-1.5.67157288-1.5 1.5s.67157288 1.5 1.5 1.5zm4 1v1h1.5c.2761424 0 .5-.22385763.5-.5s-.2238576-.5-.5-.5zm-1 1v-5c0-.55228475-.44771525-1-1-1s-1 .44771525-1 1v5zm-2 4v5c0 .5522847.44771525 1 1 1s1-.4477153 1-1v-5zm3 2v2h2c.5522847 0 1-.4477153 1-1s-.4477153-1-1-1zm-4-1v-1h-.5c-.27614237 0-.5.2238576-.5.5s.22385763.5.5.5zm-3.5-9h1c.27614237 0 .5.22385763.5.5s-.22385763.5-.5.5h-1c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5z" fill-rule="evenodd"/></symbol><symbol id="icon-success" viewBox="0 0 18 18"><path d="m9 0c4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9zm3.4860198 4.98163161-4.71802968 5.50657859-2.62834168-2.02300024c-.42862421-.36730544-1.06564993-.30775346-1.42283677.13301307-.35718685.44076653-.29927542 1.0958383.12934879 1.46314377l3.40735508 2.7323063c.42215801.3385221 1.03700951.2798252 1.38749189-.1324571l5.38450527-6.33394549c.3613513-.43716226.3096573-1.09278382-.115462-1.46437175-.4251192-.37158792-1.0626796-.31842941-1.4240309.11873285z" fill-rule="evenodd"/></symbol><symbol id="icon-table" viewBox="0 0 18 18"><path d="m16.0049107 2c1.1018574 0 1.9950893.89706013 1.9950893 2.00585866v9.98828264c0 1.1078052-.8926228 2.0058587-1.9950893 2.0058587l-4.0059107-.001.001.001h-1l-.001-.001h-5l.001.001h-1l-.001-.001-3.00391071.001c-1.10185739 0-1.99508929-.8970601-1.99508929-2.0058587v-9.98828264c0-1.10780515.8926228-2.00585866 1.99508929-2.00585866zm-11.0059107 5h-3.999v6.9941413c0 .5572961.44630695 1.0058587.99508929 1.0058587h3.00391071zm6 0h-5v8h5zm5.0059107-4h-4.0059107v3h5.001v1h-5.001v7.999l4.0059107.001c.5487152 0 .9950893-.4488783.9950893-1.0058587v-9.98828264c0-.55729607-.446307-1.00585866-.9950893-1.00585866zm-12.5049107 9c.27614237 0 .5.2238576.5.5s-.22385763.5-.5.5h-1c-.27614237 0-.5-.2238576-.5-.5s.22385763-.5.5-.5zm12 0c.2761424 0 .5.2238576.5.5s-.2238576.5-.5.5h-2c-.2761424 0-.5-.2238576-.5-.5s.2238576-.5.5-.5zm-6 0c.27614237 0 .5.2238576.5.5s-.22385763.5-.5.5h-2c-.27614237 0-.5-.2238576-.5-.5s.22385763-.5.5-.5zm-6-2c.27614237 0 .5.2238576.5.5s-.22385763.5-.5.5h-1c-.27614237 0-.5-.2238576-.5-.5s.22385763-.5.5-.5zm12 0c.2761424 0 .5.2238576.5.5s-.2238576.5-.5.5h-2c-.2761424 0-.5-.2238576-.5-.5s.2238576-.5.5-.5zm-6 0c.27614237 0 .5.2238576.5.5s-.22385763.5-.5.5h-2c-.27614237 0-.5-.2238576-.5-.5s.22385763-.5.5-.5zm-6-2c.27614237 0 .5.22385763.5.5s-.22385763.5-.5.5h-1c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5zm12 0c.2761424 0 .5.22385763.5.5s-.2238576.5-.5.5h-2c-.2761424 0-.5-.22385763-.5-.5s.2238576-.5.5-.5zm-6 0c.27614237 0 .5.22385763.5.5s-.22385763.5-.5.5h-2c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5zm1.499-5h-5v3h5zm-6 0h-3.00391071c-.54871518 0-.99508929.44887827-.99508929 1.00585866v1.99414134h3.999z" fill-rule="evenodd"/></symbol><symbol id="icon-tick-circle" viewBox="0 0 24 24"><path d="m12 2c5.5228475 0 10 4.4771525 10 10s-4.4771525 10-10 10-10-4.4771525-10-10 4.4771525-10 10-10zm0 1c-4.97056275 0-9 4.02943725-9 9 0 4.9705627 4.02943725 9 9 9 4.9705627 0 9-4.0294373 9-9 0-4.97056275-4.0294373-9-9-9zm4.2199868 5.36606669c.3613514-.43716226.9989118-.49032077 1.424031-.11873285s.4768133 1.02720949.115462 1.46437175l-6.093335 6.94397871c-.3622945.4128716-.9897871.4562317-1.4054264.0971157l-3.89719065-3.3672071c-.42862421-.3673054-.48653564-1.0223772-.1293488-1.4631437s.99421256-.5003185 1.42283677-.1330131l3.11097438 2.6987741z" fill-rule="evenodd"/></symbol><symbol id="icon-tick" viewBox="0 0 16 16"><path d="m6.76799012 9.21106946-3.1109744-2.58349728c-.42862421-.35161617-1.06564993-.29460792-1.42283677.12733148s-.29927541 1.04903009.1293488 1.40064626l3.91576307 3.23873978c.41034319.3393961 1.01467563.2976897 1.37450571-.0948578l6.10568327-6.660841c.3613513-.41848908.3096572-1.04610608-.115462-1.4018218-.4251192-.35571573-1.0626796-.30482786-1.424031.11366122z" fill-rule="evenodd"/></symbol><symbol id="icon-update" viewBox="0 0 18 18"><path d="m1 13v1c0 .5522847.44771525 1 1 1h14c.5522847 0 1-.4477153 1-1v-1h-1v-10h-14v10zm16-1h1v2c0 1.1045695-.8954305 2-2 2h-14c-1.1045695 0-2-.8954305-2-2v-2h1v-9c0-.55228475.44771525-1 1-1h14c.5522847 0 1 .44771525 1 1zm-1 0v1h-4.5857864l-1 1h-2.82842716l-1-1h-4.58578644v-1h5l1 1h2l1-1zm-13-8h12v7h-12zm1 1v5h10v-5zm1 1h4v1h-4zm0 2h4v1h-4z" fill-rule="evenodd"/></symbol><symbol id="icon-upload" viewBox="0 0 18 18"><path d="m10.0046024 0c.5497429 0 1.3179837.32258606 1.707238.71184039l4.5763192 4.57631922c.3931386.39313859.7118404 1.16760135.7118404 1.71431368v8.98899651c0 1.1092806-.8945138 2.0085302-1.9940603 2.0085302h-12.01187942c-1.10128908 0-1.99406028-.8926228-1.99406028-1.9950893v-14.00982141c0-1.10185739.88743329-1.99508929 1.99961498-1.99508929zm0 1h-7.00498742c-.55709576 0-.99961498.44271433-.99961498.99508929v14.00982141c0 .5500396.44491393.9950893.99406028.9950893h12.01187942c.5463747 0 .9940603-.4506622.9940603-1.0085302v-8.98899651c0-.28393444-.2150684-.80332809-.4189472-1.0072069l-4.5763192-4.57631922c-.2038461-.20384606-.718603-.41894717-1.0001312-.41894717zm-1.85576936 4.14572769c.19483374-.19483375.51177826-.19377714.70556874.00001334l2.59099082 2.59099079c.1948411.19484112.1904373.51514474.0027906.70279143-.1932998.19329987-.5046517.19237083-.7001856-.00692852l-1.74638687-1.7800176v6.14827687c0 .2717771-.23193359.492096-.5.492096-.27614237 0-.5-.216372-.5-.492096v-6.14827641l-1.74627892 1.77990922c-.1933927.1971171-.51252214.19455839-.70016883.0069117-.19329987-.19329988-.19100584-.50899493.00277731-.70277808z" fill-rule="evenodd"/></symbol><symbol id="icon-video" viewBox="0 0 18 18"><path d="m16.0049107 2c1.1018574 0 1.9950893.89706013 1.9950893 2.00585866v9.98828264c0 1.1078052-.8926228 2.0058587-1.9950893 2.0058587h-14.00982141c-1.10185739 0-1.99508929-.8970601-1.99508929-2.0058587v-9.98828264c0-1.10780515.8926228-2.00585866 1.99508929-2.00585866zm0 1h-14.00982141c-.54871518 0-.99508929.44887827-.99508929 1.00585866v9.98828264c0 .5572961.44630695 1.0058587.99508929 1.0058587h14.00982141c.5487152 0 .9950893-.4488783.9950893-1.0058587v-9.98828264c0-.55729607-.446307-1.00585866-.9950893-1.00585866zm-8.30912922 2.24944486 4.60460462 2.73982242c.9365543.55726659.9290753 1.46522435 0 2.01804082l-4.60460462 2.7398224c-.93655425.5572666-1.69578148.1645632-1.69578148-.8937585v-5.71016863c0-1.05087579.76670616-1.446575 1.69578148-.89375851zm-.67492769.96085624v5.5750128c0 .2995102-.10753745.2442517.16578928.0847713l4.58452283-2.67497259c.3050619-.17799716.3051624-.21655446 0-.39461026l-4.58452283-2.67497264c-.26630747-.15538481-.16578928-.20699944-.16578928.08477139z" fill-rule="evenodd"/></symbol><symbol id="icon-warning" viewBox="0 0 18 18"><path d="m9 11.75c.69035594 0 1.25.5596441 1.25 1.25s-.55964406 1.25-1.25 1.25-1.25-.5596441-1.25-1.25.55964406-1.25 1.25-1.25zm.41320045-7.75c.55228475 0 1.00000005.44771525 1.00000005 1l-.0034543.08304548-.3333333 4c-.043191.51829212-.47645714.91695452-.99654578.91695452h-.15973424c-.52008864 0-.95335475-.3986624-.99654576-.91695452l-.33333333-4c-.04586475-.55037702.36312325-1.03372649.91350028-1.07959124l.04148683-.00259031zm-.41320045 14c-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9 4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9z" fill-rule="evenodd"/></symbol><symbol id="icon-checklist-banner" viewBox="0 0 56.69 56.69"><path style="fill:none" d="M0 0h56.69v56.69H0z"/><clipPath id="b"><use xlink:href="#a" style="overflow:visible"/></clipPath><path d="M21.14 34.46c0-6.77 5.48-12.26 12.24-12.26s12.24 5.49 12.24 12.26-5.48 12.26-12.24 12.26c-6.76-.01-12.24-5.49-12.24-12.26zm19.33 10.66 10.23 9.22s1.21 1.09 2.3-.12l2.09-2.32s1.09-1.21-.12-2.3l-10.23-9.22m-19.29-5.92c0-4.38 3.55-7.94 7.93-7.94s7.93 3.55 7.93 7.94c0 4.38-3.55 7.94-7.93 7.94-4.38-.01-7.93-3.56-7.93-7.94zm17.58 12.99 4.14-4.81" style="clip-path:url(#b);fill:none;stroke:#01324b;stroke-width:2;stroke-linecap:round"/><path d="M8.26 9.75H28.6M8.26 15.98H28.6m-20.34 6.2h12.5m14.42-5.2V4.86s0-2.93-2.93-2.93H4.13s-2.93 0-2.93 2.93v37.57s0 2.93 2.93 2.93h15.01M8.26 9.75H28.6M8.26 15.98H28.6m-20.34 6.2h12.5" style="clip-path:url(#b);fill:none;stroke:#01324b;stroke-width:2;stroke-linecap:round;stroke-linejoin:round"/></symbol><symbol id="icon-chevron-down" viewBox="0 0 16 16"><path d="m5.58578644 3-3.29289322-3.29289322c-.39052429-.39052429-.39052429-1.02368927 0-1.41421356s1.02368927-.39052429 1.41421356 0l4 4c.39052429.39052429.39052429 1.02368927 0 1.41421356l-4 4c-.39052429.39052429-1.02368927.39052429-1.41421356 0s-.39052429-1.02368927 0-1.41421356z" fill-rule="evenodd" transform="matrix(0 1 -1 0 11 1)"/></symbol><symbol id="icon-eds-i-arrow-right-medium" viewBox="0 0 24 24"><path d="m12.728 3.293 7.98 7.99a.996.996 0 0 1 .281.561l.011.157c0 .32-.15.605-.384.788l-7.908 7.918a1 1 0 0 1-1.416-1.414L17.576 13H4a1 1 0 0 1 0-2h13.598l-6.285-6.293a1 1 0 0 1-.082-1.32l.083-.095a1 1 0 0 1 1.414.001Z"/></symbol><symbol id="icon-eds-i-chevron-down-medium" viewBox="0 0 16 16"><path d="m2.00087166 7h4.99912834v-4.99912834c0-.55276616.44386482-1.00087166 1-1.00087166.55228475 0 1 .44463086 1 1.00087166v4.99912834h4.9991283c.5527662 0 1.0008717.44386482 1.0008717 1 0 .55228475-.4446309 1-1.0008717 1h-4.9991283v4.9991283c0 .5527662-.44386482 1.0008717-1 1.0008717-.55228475 0-1-.4446309-1-1.0008717v-4.9991283h-4.99912834c-.55276616 0-1.00087166-.44386482-1.00087166-1 0-.55228475.44463086-1 1.00087166-1z" fill-rule="evenodd"/></symbol><symbol id="icon-eds-i-chevron-down-small" viewBox="0 0 16 16"><path d="M13.692 5.278a1 1 0 0 1 .03 1.414L9.103 11.51a1.491 1.491 0 0 1-2.188.019L2.278 6.692a1 1 0 0 1 1.444-1.384L8 9.771l4.278-4.463a1 1 0 0 1 1.318-.111l.096.081Z"/></symbol><symbol id="icon-eds-i-chevron-right-medium" viewBox="0 0 10 10"><path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/></symbol><symbol id="icon-eds-i-chevron-right-small" viewBox="0 0 10 10"><path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/></symbol><symbol id="icon-eds-i-chevron-up-medium" viewBox="0 0 16 16"><path d="m2.00087166 7h11.99825664c.5527662 0 1.0008717.44386482 1.0008717 1 0 .55228475-.4446309 1-1.0008717 1h-11.99825664c-.55276616 0-1.00087166-.44386482-1.00087166-1 0-.55228475.44463086-1 1.00087166-1z" fill-rule="evenodd"/></symbol><symbol id="icon-eds-i-close-medium" viewBox="0 0 16 16"><path d="m2.29679575 12.2772478c-.39658757.3965876-.39438847 1.0328109-.00062148 1.4265779.39651227.3965123 1.03246768.3934888 1.42657791-.0006214l4.27724782-4.27724787 4.2772478 4.27724787c.3965876.3965875 1.0328109.3943884 1.4265779.0006214.3965123-.3965122.3934888-1.0324677-.0006214-1.4265779l-4.27724787-4.2772478 4.27724787-4.27724782c.3965875-.39658757.3943884-1.03281091.0006214-1.42657791-.3965122-.39651226-1.0324677-.39348875-1.4265779.00062148l-4.2772478 4.27724782-4.27724782-4.27724782c-.39658757-.39658757-1.03281091-.39438847-1.42657791-.00062148-.39651226.39651227-.39348875 1.03246768.00062148 1.42657791l4.27724782 4.27724782z" fill-rule="evenodd"/></symbol><symbol id="icon-eds-i-download-medium" viewBox="0 0 16 16"><path d="m12.9975267 12.999368c.5467123 0 1.0024733.4478567 1.0024733 1.000316 0 .5563109-.4488226 1.000316-1.0024733 1.000316h-9.99505341c-.54671233 0-1.00247329-.4478567-1.00247329-1.000316 0-.5563109.44882258-1.000316 1.00247329-1.000316zm-4.9975267-11.999368c.55228475 0 1 .44497754 1 .99589209v6.80214418l2.4816273-2.48241149c.3928222-.39294628 1.0219732-.4006883 1.4030652-.01947579.3911302.39125371.3914806 1.02525073-.0001404 1.41699553l-4.17620792 4.17752758c-.39120769.3913313-1.02508144.3917306-1.41671995-.0000316l-4.17639421-4.17771394c-.39122513-.39134876-.39767006-1.01940351-.01657797-1.40061601.39113012-.39125372 1.02337105-.3931606 1.41951349.00310701l2.48183446 2.48261871v-6.80214418c0-.55001601.44386482-.99589209 1-.99589209z" fill-rule="evenodd"/></symbol><symbol id="icon-eds-i-info-filled-medium" viewBox="0 0 18 18"><path d="m9 0c4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9zm0 7h-1.5l-.11662113.00672773c-.49733868.05776511-.88337887.48043643-.88337887.99327227 0 .47338693.32893365.86994729.77070917.97358929l.1126697.01968298.11662113.00672773h.5v3h-.5l-.11662113.0067277c-.42082504.0488782-.76196299.3590206-.85696816.7639815l-.01968298.1126697-.00672773.1166211.00672773.1166211c.04887817.4208251.35902055.761963.76398144.8569682l.1126697.019683.11662113.0067277h3l.1166211-.0067277c.4973387-.0577651.8833789-.4804365.8833789-.9932723 0-.4733869-.3289337-.8699473-.7707092-.9735893l-.1126697-.019683-.1166211-.0067277h-.5v-4l-.00672773-.11662113c-.04887817-.42082504-.35902055-.76196299-.76398144-.85696816l-.1126697-.01968298zm0-3.25c-.69035594 0-1.25.55964406-1.25 1.25s.55964406 1.25 1.25 1.25 1.25-.55964406 1.25-1.25-.55964406-1.25-1.25-1.25z" fill-rule="evenodd"/></symbol><symbol id="icon-eds-i-mail-medium" viewBox="0 0 24 24"><path d="m19.462 0c1.413 0 2.538 1.184 2.538 2.619v12.762c0 1.435-1.125 2.619-2.538 2.619h-16.924c-1.413 0-2.538-1.184-2.538-2.619v-12.762c0-1.435 1.125-2.619 2.538-2.619zm.538 5.158-7.378 6.258a2.549 2.549 0 0 1 -3.253-.008l-7.369-6.248v10.222c0 .353.253.619.538.619h16.924c.285 0 .538-.266.538-.619zm-.538-3.158h-16.924c-.264 0-.5.228-.534.542l8.65 7.334c.2.165.492.165.684.007l8.656-7.342-.001-.025c-.044-.3-.274-.516-.531-.516z"/></symbol><symbol id="icon-eds-i-menu-medium" viewBox="0 0 24 24"><path d="M21 4a1 1 0 0 1 0 2H3a1 1 0 1 1 0-2h18Zm-4 7a1 1 0 0 1 0 2H3a1 1 0 0 1 0-2h14Zm4 7a1 1 0 0 1 0 2H3a1 1 0 0 1 0-2h18Z"/></symbol><symbol id="icon-eds-i-search-medium" viewBox="0 0 24 24"><path d="M11 1c5.523 0 10 4.477 10 10 0 2.4-.846 4.604-2.256 6.328l3.963 3.965a1 1 0 0 1-1.414 1.414l-3.965-3.963A9.959 9.959 0 0 1 11 21C5.477 21 1 16.523 1 11S5.477 1 11 1Zm0 2a8 8 0 1 0 0 16 8 8 0 0 0 0-16Z"/></symbol><symbol id="icon-eds-i-user-single-medium" viewBox="0 0 24 24"><path d="M12 1a5 5 0 1 1 0 10 5 5 0 0 1 0-10Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm-.406 9.008a8.965 8.965 0 0 1 6.596 2.494A9.161 9.161 0 0 1 21 21.025V22a1 1 0 0 1-1 1H4a1 1 0 0 1-1-1v-.985c.05-4.825 3.815-8.777 8.594-9.007Zm.39 1.992-.299.006c-3.63.175-6.518 3.127-6.678 6.775L5 21h13.998l-.009-.268a7.157 7.157 0 0 0-1.97-4.573l-.214-.213A6.967 6.967 0 0 0 11.984 14Z"/></symbol><symbol id="icon-eds-i-warning-filled-medium" viewBox="0 0 18 18"><path d="m9 11.75c.69035594 0 1.25.5596441 1.25 1.25s-.55964406 1.25-1.25 1.25-1.25-.5596441-1.25-1.25.55964406-1.25 1.25-1.25zm.41320045-7.75c.55228475 0 1.00000005.44771525 1.00000005 1l-.0034543.08304548-.3333333 4c-.043191.51829212-.47645714.91695452-.99654578.91695452h-.15973424c-.52008864 0-.95335475-.3986624-.99654576-.91695452l-.33333333-4c-.04586475-.55037702.36312325-1.03372649.91350028-1.07959124l.04148683-.00259031zm-.41320045 14c-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9 4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9z" fill-rule="evenodd"/></symbol><symbol id="icon-expand-image" viewBox="0 0 18 18"><path d="m7.49754099 11.9178212c.38955542-.3895554.38761957-1.0207846-.00290473-1.4113089-.39324695-.3932469-1.02238878-.3918247-1.41130883-.0029047l-4.10273549 4.1027355.00055454-3.5103985c.00008852-.5603185-.44832171-1.006032-1.00155062-1.0059446-.53903074.0000852-.97857527.4487442-.97866268 1.0021075l-.00093318 5.9072465c-.00008751.553948.44841131 1.001882 1.00174994 1.0017946l5.906983-.0009331c.5539233-.0000875 1.00197907-.4486389 1.00206646-1.0018679.00008515-.5390307-.45026621-.9784332-1.00588841-.9783454l-3.51010549.0005545zm3.00571741-5.83449376c-.3895554.38955541-.3876196 1.02078454.0029047 1.41130883.393247.39324696 1.0223888.39182478 1.4113089.00290473l4.1027355-4.10273549-.0005546 3.5103985c-.0000885.56031852.4483217 1.006032 1.0015506 1.00594461.5390308-.00008516.9785753-.44874418.9786627-1.00210749l.0009332-5.9072465c.0000875-.553948-.4484113-1.00188204-1.0017499-1.00179463l-5.906983.00093313c-.5539233.00008751-1.0019791.44863892-1.0020665 1.00186784-.0000852.53903074.4502662.97843325 1.0058884.97834547l3.5101055-.00055449z" fill-rule="evenodd"/></symbol><symbol id="icon-github" viewBox="0 0 100 100"><path fill-rule="evenodd" clip-rule="evenodd" d="M48.854 0C21.839 0 0 22 0 49.217c0 21.756 13.993 40.172 33.405 46.69 2.427.49 3.316-1.059 3.316-2.362 0-1.141-.08-5.052-.08-9.127-13.59 2.934-16.42-5.867-16.42-5.867-2.184-5.704-5.42-7.17-5.42-7.17-4.448-3.015.324-3.015.324-3.015 4.934.326 7.523 5.052 7.523 5.052 4.367 7.496 11.404 5.378 14.235 4.074.404-3.178 1.699-5.378 3.074-6.6-10.839-1.141-22.243-5.378-22.243-24.283 0-5.378 1.94-9.778 5.014-13.2-.485-1.222-2.184-6.275.486-13.038 0 0 4.125-1.304 13.426 5.052a46.97 46.97 0 0 1 12.214-1.63c4.125 0 8.33.571 12.213 1.63 9.302-6.356 13.427-5.052 13.427-5.052 2.67 6.763.97 11.816.485 13.038 3.155 3.422 5.015 7.822 5.015 13.2 0 18.905-11.404 23.06-22.324 24.283 1.78 1.548 3.316 4.481 3.316 9.126 0 6.6-.08 11.897-.08 13.526 0 1.304.89 2.853 3.316 2.364 19.412-6.52 33.405-24.935 33.405-46.691C97.707 22 75.788 0 48.854 0z"/></symbol><symbol id="icon-springer-arrow-left"><path d="M15 7a1 1 0 000-2H3.385l2.482-2.482a.994.994 0 00.02-1.403 1.001 1.001 0 00-1.417 0L.294 5.292a1.001 1.001 0 000 1.416l4.176 4.177a.991.991 0 001.4.016 1 1 0 00-.003-1.42L3.385 7H15z"/></symbol><symbol id="icon-springer-arrow-right"><path d="M1 7a1 1 0 010-2h11.615l-2.482-2.482a.994.994 0 01-.02-1.403 1.001 1.001 0 011.417 0l4.176 4.177a1.001 1.001 0 010 1.416l-4.176 4.177a.991.991 0 01-1.4.016 1 1 0 01.003-1.42L12.615 7H1z"/></symbol><symbol id="icon-submit-open" viewBox="0 0 16 17"><path d="M12 0c1.10457 0 2 .895431 2 2v5c0 .276142-.223858.5-.5.5S13 7.276142 13 7V2c0-.512836-.38604-.935507-.883379-.993272L12 1H6v3c0 1.10457-.89543 2-2 2H1v8c0 .512836.38604.935507.883379.993272L2 15h6.5c.276142 0 .5.223858.5.5s-.223858.5-.5.5H2c-1.104569 0-2-.89543-2-2V5.828427c0-.530433.210714-1.039141.585786-1.414213L4.414214.585786C4.789286.210714 5.297994 0 5.828427 0H12Zm3.41 11.14c.250899.250899.250274.659726 0 .91-.242954.242954-.649606.245216-.9-.01l-1.863671-1.900337.001043 5.869492c0 .356992-.289839.637138-.647372.637138-.347077 0-.647371-.285256-.647371-.637138l-.001043-5.869492L9.5 12.04c-.253166.258042-.649726.260274-.9.01-.242954-.242954-.252269-.657731 0-.91l2.942184-2.951303c.250908-.250909.66127-.252277.91353-.000017L15.41 11.14ZM5 1.413 1.413 5H4c.552285 0 1-.447715 1-1V1.413ZM11 3c.276142 0 .5.223858.5.5s-.223858.5-.5.5H7.5c-.276142 0-.5-.223858-.5-.5s.223858-.5.5-.5H11Zm0 2c.276142 0 .5.223858.5.5s-.223858.5-.5.5H7.5c-.276142 0-.5-.223858-.5-.5s.223858-.5.5-.5H11Z" fill-rule="nonzero"/></symbol></svg> </div> </footer> <noscript> <img hidden src="https://verify.nature.com/verify/nature.png" width="0" height="0" style="display: none" alt=""> </noscript> <script src="//content.readcube.com/ping?doi=10.1038/s41422-019-0164-5&format=js&last_modified=2019-04-04" async></script> </body> </html>