CINXE.COM
Search results for: Lateral Geniculate Nucleus
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Lateral Geniculate Nucleus</title> <meta name="description" content="Search results for: Lateral Geniculate Nucleus"> <meta name="keywords" content="Lateral Geniculate Nucleus"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Lateral Geniculate Nucleus" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Lateral Geniculate Nucleus"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 901</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Lateral Geniculate Nucleus</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">901</span> Neuron Imaging in Lateral Geniculate Nucleus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sandy%20Bao">Sandy Bao</a>, <a href="https://publications.waset.org/abstracts/search?q=Yankang%20Bao"> Yankang Bao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The understanding of information that is being processed in the brain, especially in the lateral geniculate nucleus (LGN), has been proven challenging for modern neuroscience and for researchers with a focus on how neurons process signals and images. In this paper, we are proposing a method to image process different colors within different layers of LGN, that is, green information in layers 4 & 6 and red & blue in layers 3 & 5 based on the surface dimension of layers. We take into consideration the images in LGN and visual cortex, and that the edge detected information from the visual cortex needs to be considered in order to return back to the layers of LGN, along with the image in LGN to form the new image, which will provide an improved image that is clearer, sharper, and making it easier to identify objects in the image. Matrix Laboratory (MATLAB) simulation is performed, and results show that the clarity of the output image has significant improvement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lateral%20geniculate%20nucleus" title="lateral geniculate nucleus">lateral geniculate nucleus</a>, <a href="https://publications.waset.org/abstracts/search?q=matrix%20laboratory" title=" matrix laboratory"> matrix laboratory</a>, <a href="https://publications.waset.org/abstracts/search?q=neuroscience" title=" neuroscience"> neuroscience</a>, <a href="https://publications.waset.org/abstracts/search?q=visual%20cortex" title=" visual cortex"> visual cortex</a> </p> <a href="https://publications.waset.org/abstracts/137931/neuron-imaging-in-lateral-geniculate-nucleus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137931.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">900</span> Action Potential of Lateral Geniculate Neurons at Low Threshold Currents: Simulation Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faris%20Tarlochan">Faris Tarlochan</a>, <a href="https://publications.waset.org/abstracts/search?q=Siva%20Mahesh%20Tangutooru"> Siva Mahesh Tangutooru </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lateral Geniculate Nucleus (LGN) is the relay center in the visual pathway as it receives most of the input information from retinal ganglion cells (RGC) and sends to visual cortex. Low threshold calcium currents (IT) at the membrane are the unique indicator to characterize this firing functionality of the LGN neurons gained by the RGC input. According to the LGN functional requirements such as functional mapping of RGC to LGN, the morphologies of the LGN neurons were developed. During the neurological disorders like glaucoma, the mapping between RGC and LGN is disconnected and hence stimulating LGN electrically using deep brain electrodes can restore the functionalities of LGN. A computational model was developed for simulating the LGN neurons with three predominant morphologies, each representing different functional mapping of RGC to LGN. The firings of action potentials at LGN neuron due to IT were characterized by varying the stimulation parameters, morphological parameters and orientation. A wide range of stimulation parameters (stimulus amplitude, duration and frequency) represents the various strengths of the electrical stimulation with different morphological parameters (soma size, dendrites size and structure). The orientation (0-1800) of LGN neuron with respect to the stimulating electrode represents the angle at which the extracellular deep brain stimulation towards LGN neuron is performed. A reduced dendrite structure was used in the model using Bush–Sejnowski algorithm to decrease the computational time while conserving its input resistance and total surface area. The major finding is that an input potential of 0.4 V is required to produce the action potential in the LGN neuron which is placed at 100 µm distance from the electrode. From this study, it can be concluded that the neuroprostheses under design would need to consider the capability of inducing at least 0.4V to produce action potentials in LGN. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lateral%20Geniculate%20Nucleus" title="Lateral Geniculate Nucleus">Lateral Geniculate Nucleus</a>, <a href="https://publications.waset.org/abstracts/search?q=visual%20cortex" title=" visual cortex"> visual cortex</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title=" finite element"> finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=glaucoma" title=" glaucoma"> glaucoma</a>, <a href="https://publications.waset.org/abstracts/search?q=neuroprostheses" title=" neuroprostheses"> neuroprostheses</a> </p> <a href="https://publications.waset.org/abstracts/38655/action-potential-of-lateral-geniculate-neurons-at-low-threshold-currents-simulation-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38655.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">899</span> The Relationship of the Dentate Nucleus with the Pyramid of Vermis: A Microneurosurgical Anatomical Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Santhosh%20K.%20S.%20Annayappa">Santhosh K. S. Annayappa</a>, <a href="https://publications.waset.org/abstracts/search?q=Nupur%20Pruthi"> Nupur Pruthi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The region of dentate nucleus is a common site for various pathologies like hematomas, tumours, etc. We aimed to study in detail the relationship of this region with the vermis, especially the pyramid using microscopic fibre dissection technique. To achieve this aim, 20 cerebellar hemispheres were studied from the 11 cerebellums. Dissection was performed using wooden spatulas and micro dissectors under a microscope following Klingler’s preservation technique. The relationship between the pyramid of vermis and the dentate nucleus was studied in detail. A similar relationship was studied on the MRI of randomly selected trigeminal neuralgia patients and correlated with anatomical findings. Results show the mean distance of the lateral margin of the dentate nucleus from the midline on anatomic specimens was 21.4 ± 1.8 mm (19-25 mm) and 23.4 ± 3.4 mm (15-29 mm) on right and left side, respectively. Similar measurements made on the MRI were 22.97 ± 2.0 mm (20.03-26.15 mm) on the right side and 23.98 ± 2.1 mm (21.47-27.67 mm) on the left side. The amount of white matter dissection required to reach the dentate nucleus at the pyramidal attachment area was 7.3 ± 1.0 mm (6-9 mm) on the right side and 6.8 ± 1.4 mm (5-10 mm) on the left side. It was concluded that the pyramid of vermis has a constant relationship with the dentate nucleus and can be used as an excellent landmark during surgery to localise the dentate nucleus on the suboccipital surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fiber%20dissection" title="fiber dissection">fiber dissection</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20neurosurgery" title=" micro neurosurgery"> micro neurosurgery</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20dentate%20nucleus%20of%20cerebellum" title=" the dentate nucleus of cerebellum"> the dentate nucleus of cerebellum</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20pyramid%20of%20vermis" title=" the pyramid of vermis"> the pyramid of vermis</a> </p> <a href="https://publications.waset.org/abstracts/102046/the-relationship-of-the-dentate-nucleus-with-the-pyramid-of-vermis-a-microneurosurgical-anatomical-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102046.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">898</span> Perinatal Ethanol Exposure Modifies CART System in Rat Brain Anticipated for Development of Anxiety, Depression and Memory Deficits</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20P.%20Dandekar">M. P. Dandekar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20P.%20Bharne"> A. P. Bharne</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20T.%20Borkar"> P. T. Borkar</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20M.%20Kokare"> D. M. Kokare</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20K.%20Subhedar"> N. K. Subhedar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ethanol ingestion by the mother ensue adverse consequences for her offspring. Herein, we examine the behavioral phenotype and neural substrate of the offspring of the mother on ethanol. Female rats were fed with ethanol-containing liquid diet from 8 days prior of conception and continued till 25 days post-parturition to coincide with weaning. Behavioral changes associated with anxiety, depression and learning and memory were assessed in the offspring, after they attained adulthood (day 85), using elevated plus maze (EPM), forced swim (FST) and novel object recognition tests (NORT), respectively. The offspring of the alcoholic mother, compared to those of the pair-fed mother, spent significantly more time in closed arms of EPM and showed more immobility time in FST. Offspring at the age of 25 and 85 days failed to discriminate between novel versus familiar object in NORT, thus reflecting anxiogenic, depressive and amnesic phenotypes. Neuropeptide cocaine- and amphetamine-regulated transcript peptide (CART) is known to be involved in central effects of ethanol and hence selected for the current study. Twenty-five days old pups of the alcoholic mother showed significant augmentation in CART-immunoreactivity in the cells of Edinger-Westphal (EW) nucleus and lateral hypothalamus. However, a significant decrease in CART-immunoreactivity was seen in nucleus accumbens shell (AcbSh), lateral part of bed nucleus of the stria terminalis (BNSTl), locus coeruleus (LC), hippocampus (CA1, CA2 and CA3), and arcuate nucleus (ARC) of the pups and/or adults offspring. While no change in the CART-immunoreactive fibers of AcbSh and BNSTl, CA2 and CA3 was noticed in the 25 days old pups, the CART-immunoreactive cells in EW and paraventricular nucleus (PVN), and fibers in the central nucleus of amygdala of 85 days old offspring remained unaffected. We suggest that the endogenous CART system in these discrete areas, among other factors, may be a causal to the abnormalities in the next generation of an alcoholic mother. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anxiety" title="anxiety">anxiety</a>, <a href="https://publications.waset.org/abstracts/search?q=depression" title=" depression"> depression</a>, <a href="https://publications.waset.org/abstracts/search?q=CART" title=" CART"> CART</a>, <a href="https://publications.waset.org/abstracts/search?q=ethanol" title=" ethanol"> ethanol</a>, <a href="https://publications.waset.org/abstracts/search?q=immunocytochemistry" title=" immunocytochemistry"> immunocytochemistry</a> </p> <a href="https://publications.waset.org/abstracts/40929/perinatal-ethanol-exposure-modifies-cart-system-in-rat-brain-anticipated-for-development-of-anxiety-depression-and-memory-deficits" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40929.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">897</span> Subthalamic Nucleus in Adult Human Cadaveric Brain: A Morphometric Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mangala%20Kohli">Mangala Kohli</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20A.%20Athira"> P. A. Athira</a>, <a href="https://publications.waset.org/abstracts/search?q=Reeha%20Mahajan"> Reeha Mahajan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The subthalamic nucleus (STN) is a biconvex nucleus situated in the diencephalon. The knowledge of the morphometry of the subthalamic nucleus is essential for accurate targeting of the nucleus during Deep Brain Stimulation. The present study aims to note the morphometry of the subthalamic nucleus in both the cerebral hemispheres which will prove to be of great value to radiologists and neurosurgeons. A cross‐sectional observational study was conducted in the Departments of Anatomy and Forensic Medicine, Lady Hardinge Medical College & Associated Hospitals, New Delhi on thirty adult cadaveric brain specimens of unclaimed and donated corpses. The specimens were categorized into 3 age groups: 20-35, 35-50 and above 50 years. All samples were collected after following the standard protocol for ethical clearance. The morphometric study of 60 subthalamic nucleus was thus conducted. Transverse section of the brain was made at a plane 4mm ventral to the plane containing mid commissural point. The dimensions of the subthalamic nucleus were measured bilaterally with the aid of digital Vernier caliper and magnifying glass. In the present study, the mean length and width and AC-PC length of the subthalamic nucleus was recorded on the right and left side in Group A, B and C. On comparison of mean of subthalamic nucleus dimensions between the right and left side in Group C, no statistically significant difference was observed. The length and width of subthalamic nucleus measured in the 3 age groups were compared with each other and the p value calculated. There was no statistically significant difference between the dimensions of Group A and B, Group B and C as well as Group A and C. The present study reveals that there is no significant reduction in the size of the nucleus was noted with increasing age. Thus, the values obtained in the present study can be used as a reference for various invasive and non-invasive procedures on subthalamic nucleus. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cerebral%20hemisphere" title="cerebral hemisphere">cerebral hemisphere</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20brain%20stimulation" title=" deep brain stimulation"> deep brain stimulation</a>, <a href="https://publications.waset.org/abstracts/search?q=morphometry" title=" morphometry"> morphometry</a>, <a href="https://publications.waset.org/abstracts/search?q=subthalamic%20nucleus" title=" subthalamic nucleus"> subthalamic nucleus</a> </p> <a href="https://publications.waset.org/abstracts/102231/subthalamic-nucleus-in-adult-human-cadaveric-brain-a-morphometric-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102231.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">896</span> Pre-Administration of Thunbergia Laurifolia Linn. Prevent the Increase of Dopamine in the Nucleus Accumbens in Ethanol Addicted Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Watchareewan%20Thongsaard">Watchareewan Thongsaard</a>, <a href="https://publications.waset.org/abstracts/search?q=Ratirat%20Sangpayap"> Ratirat Sangpayap</a>, <a href="https://publications.waset.org/abstracts/search?q=Maneekarn%20Namsa-Aid"> Maneekarn Namsa-Aid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thunbergia laurifolia Linn. (TL) is a herbal medicine which has been used as an antidote for several poisonous agents including insecticides and as a component of a mixture of crude extracts to treat drug addicted patients. The aim of this study is to examine the level of dopamine in nucleus accumbens after chronic pre-administration of TL in ethanol addicted rats. Male Wistar rats weigh 200-250 g received TL methanol extract (200mg/kg, orally) 60 minutes before 20% ethanol (1 g/kg, i.p.) for 30 days. The nucleus accumbens was removed and tested for dopamine by HPLC-ECD. The level of dopamine was significantly increased by chronic ethanol administration, whereas the chronic TL extract administration did not cause a difference in dopamine level when compared to control. Moreover, the pre-treatment of TL extract before ethanol significantly reduced the dopamine level in nucleus accumbens to normal level when compared with chronic ethanol administration alone. These results suggested that the increase in dopamine level in the nucleus accumbens by chronic ethanol administration is the cause of ethanol addiction, and this effect is prevented by chronic TL pre-administration. Furthermore, chronic TL extract administration alone did not cause the changes in dopamine level in the nucleus accumbens, indicating that TL itself did not cause addiction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thunbergia%20laurifolia%20Linn." title="Thunbergia laurifolia Linn.">Thunbergia laurifolia Linn.</a>, <a href="https://publications.waset.org/abstracts/search?q=alcohol%20addiction" title=" alcohol addiction"> alcohol addiction</a>, <a href="https://publications.waset.org/abstracts/search?q=dopamine" title=" dopamine"> dopamine</a>, <a href="https://publications.waset.org/abstracts/search?q=nucleus%20accumbens" title=" nucleus accumbens"> nucleus accumbens</a> </p> <a href="https://publications.waset.org/abstracts/101812/pre-administration-of-thunbergia-laurifolia-linn-prevent-the-increase-of-dopamine-in-the-nucleus-accumbens-in-ethanol-addicted-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101812.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">895</span> Visual Improvement Outcome of Pars Plana Vitrectomy Combined Endofragmentation and Secondary IOL Implantation for Dropped Nucleus After Cataract Surgery : A Case Report</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saut%20Samuel%20Simamora">Saut Samuel Simamora</a> </p> <p class="card-text"><strong>Abstract:</strong></p> PURPOSE: Nucleus drop is one of the most feared and severe complications of modern cataract surgery. The lens material may drop through iatrogenic breaks of the posterior capsule. The incidence of the nucleus as the complication of phacoemulsification increases concomitant to the increased frequency of phacoemulsification. Pars plana vitrectomy (PPV) followed by endofragmentation and secondary intraocular lens (IOL) implantation is the choice of management procedure. This case report aims to present the outcome of PPV for the treatment dropped nucleus after cataract surgery METHODS: A 65 year old female patient came to Vitreoretina department with chief complaints blurry vision in her left eye after phacoemulsification one month before. Ophthalmological examination revealed visual acuity of the right eye (VA RE) was 6/15, and the left eye (VA LE) was hand movement. The intraocular pressure (IOP) on the right eye was 18 mmHg, and on the left eye was 59 mmHg. On her left eye, there were aphakic, dropped lens nucleus and secondary glaucoma.RESULTS: The patient got antiglaucoma agent until her IOP was decreased. She underwent pars plana vitrectomy to remove dropped nucleus and iris fixated IOL. One week post operative evaluation revealed VA LE was 6/7.5 and iris fixated IOL in proper position. CONCLUSIONS: Nucleus drop generally occurs in phacoemulsification cataract surgery techniques. Retained lens nucleus or fragments in the vitreous may cause severe intraocular inflammation leading to secondary glaucoma. The proper and good management for retained lens fragments in nucleus drop give excellent outcome to patient. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=secondary%20glaucoma" title="secondary glaucoma">secondary glaucoma</a>, <a href="https://publications.waset.org/abstracts/search?q=complication%20of%20phacoemulsification" title=" complication of phacoemulsification"> complication of phacoemulsification</a>, <a href="https://publications.waset.org/abstracts/search?q=nucleus%20drop" title=" nucleus drop"> nucleus drop</a>, <a href="https://publications.waset.org/abstracts/search?q=pars%20plana%20vitrectomy" title=" pars plana vitrectomy"> pars plana vitrectomy</a> </p> <a href="https://publications.waset.org/abstracts/171914/visual-improvement-outcome-of-pars-plana-vitrectomy-combined-endofragmentation-and-secondary-iol-implantation-for-dropped-nucleus-after-cataract-surgery-a-case-report" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171914.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">894</span> Field Investigating the Effects of Lateral Support Elements on Lateral Resistance of Ballasted Tracks with Sharp Curves </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Milad%20Alizadeh%20Galdiani">Milad Alizadeh Galdiani</a>, <a href="https://publications.waset.org/abstracts/search?q=Jabbar%20Ali%20Zakeri"> Jabbar Ali Zakeri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lateral movement of CWR ballasted track occurs in sharp curves because of the lack of adequate lateral resistance. Several strategies have been proposed and used for increase the lateral resistance of ballasted tracks, but still there are some problems in tracks with small radius curves. In this paper, a new method has been presented for increase the lateral resistance. This method is using the lateral supports as numerical and field studies. In this paper, the field and laboratory tests have been conducted by using the single tie pressure test (STPT) and track panel loading test (LTPT). Then, their results were compared with the numerical results. The results of numerical and field tests showed that the lateral stiffness of ballasted tracks significantly increased when there were lateral supports in ballasted tracks. Also, the track structure had a bilinear behavior. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ballasted%20railway" title="ballasted railway">ballasted railway</a>, <a href="https://publications.waset.org/abstracts/search?q=Lateral%20resistance" title=" Lateral resistance"> Lateral resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=railway%20buckling" title=" railway buckling"> railway buckling</a>, <a href="https://publications.waset.org/abstracts/search?q=field%20and%20numerical%20studies" title=" field and numerical studies"> field and numerical studies</a> </p> <a href="https://publications.waset.org/abstracts/67093/field-investigating-the-effects-of-lateral-support-elements-on-lateral-resistance-of-ballasted-tracks-with-sharp-curves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67093.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">893</span> Types of Neurons in the Spinal Trigeminal Nucleus of the Camel Brain: Golgi Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qasim%20A.%20El%20Dwairi">Qasim A. El Dwairi</a>, <a href="https://publications.waset.org/abstracts/search?q=Saleh%20M.%20Banihani"> Saleh M. Banihani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayat%20S.%20Banihani"> Ayat S. Banihani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ziad%20M.%20Bataineh"> Ziad M. Bataineh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Neurons in the spinal trigeminal nucleus of the camel were studied by Golgi impregnation. Neurons were classified based on differences in size and shape of their cell bodies, density of their dendritic trees, morphology and distribution of their appendages. In the spinal trigeminal nucleus of the camel, at least twelve types of neurons were identified. These neurons include, stalked, islets, octubus-like, lobulated, boat-like, pyramidal, multipolar, round, oval and elongated neurons. They have large number of different forms of appendages not only for their dendrites but also for their cell bodies. Neurons with unique large dilatations especially at their dendritic branching points were found. The morphological features of these neurons were described and compared with their counterparts in other species. Finding of large number of neuronal types with different size and shapes and large number of different forms of appendages for cell bodies and dendrites together with the presence of cells with unique features such as large dilated parts for dendrites may indicate to a very complex information processing for pain and temperature at the level of the spinal trigeminal nucleus in the camel that traditionally live in a very hard environment (the desert). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=camel" title="camel">camel</a>, <a href="https://publications.waset.org/abstracts/search?q=golgi" title=" golgi"> golgi</a>, <a href="https://publications.waset.org/abstracts/search?q=neurons" title=" neurons "> neurons </a>, <a href="https://publications.waset.org/abstracts/search?q=spinal%20trigeminal%20nucleus" title=" spinal trigeminal nucleus"> spinal trigeminal nucleus</a> </p> <a href="https://publications.waset.org/abstracts/30990/types-of-neurons-in-the-spinal-trigeminal-nucleus-of-the-camel-brain-golgi-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30990.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">892</span> Simplified Equations for Rigidity and Lateral Deflection for Reinforced Concrete Cantilever Shear Walls </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anas%20M.%20Fares">Anas M. Fares</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reinforced concrete shear walls are the most frequently used forms of lateral resisting structural elements. These walls may take many forms due to their functions and locations in the building. In Palestine, the most lateral resisting forces construction forms is the cantilever shear walls system. It is thus of prime importance to study the rigidity of these walls. The virtual work theorem is used to derive the total lateral deflection of cantilever shear walls due to flexural and shear deformation. The case of neglecting the shear deformation in the walls is also studied, and it is found that the wall height to length aspect ratio (H/B) plays a major role in calculating the lateral deflection and the rigidity of such walls. When the H/B is more than or equal to 3.7, the shear deformation may be neglected from the calculation of the lateral deflection. Moreover, the walls with the same material properties, same lateral load value, and same aspect ratio, shall have the same of both the lateral deflection and the rigidity. Finally, an equation to calculate the total rigidity and total deflection of such walls is derived by using the virtual work theorem for a cantilever beam. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cantilever%20shear%20walls" title="cantilever shear walls">cantilever shear walls</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20deformation" title=" flexural deformation"> flexural deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral%20deflection" title=" lateral deflection"> lateral deflection</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral%20loads" title=" lateral loads"> lateral loads</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20shear%20walls" title=" reinforced concrete shear walls"> reinforced concrete shear walls</a>, <a href="https://publications.waset.org/abstracts/search?q=rigidity" title=" rigidity"> rigidity</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20deformation" title=" shear deformation"> shear deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20work%20theorem" title=" virtual work theorem"> virtual work theorem</a> </p> <a href="https://publications.waset.org/abstracts/99514/simplified-equations-for-rigidity-and-lateral-deflection-for-reinforced-concrete-cantilever-shear-walls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99514.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">891</span> Non-Coplanar Nuclei in Heavy-Ion Reactions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sahila%20Chopra">Sahila Chopra</a>, <a href="https://publications.waset.org/abstracts/search?q=Hemdeep"> Hemdeep</a>, <a href="https://publications.waset.org/abstracts/search?q=Arshdeep%20Kaur"> Arshdeep Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Raj%20K.%20Gupta"> Raj K. Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent times, we noticed an interesting and important role of non-coplanar degree-of-freedom (Φ = 00) in heavy ion reactions. Using the dynamical cluster-decay model (DCM) with Φ degree-of-freedom included, we have studied three compound systems 246Bk∗, 164Yb∗ and 105Ag∗. Here, within the DCM with pocket formula for nuclear proximity potential, we look for the effects of including compact, non-coplanar configurations (Φc = 00) on the non-compound nucleus (nCN) contribution in total fusion cross section σfus. For 246Bk∗, formed in 11B+235U and 14N+232Th reaction channels, the DCM with coplanar nuclei (Φc = 00) shows an nCN contribution for 11B+235U channel, but none for 14N+232Th channel, which on including Φ gives both reaction channels as pure compound nucleus decays. In the case of 164Yb∗, formed in 64Ni+100Mo, the small nCN effects for Φ=00 are reduced to almost zero for Φ = 00. Interestingly, however, 105Ag∗ for Φ = 00 shows a small nCN contribution, which gets strongly enhanced for Φ = 00, such that the characteristic property of PCN presents a change of behaviour, like that of a strongly fissioning superheavy element to a weakly fissioning nucleus; note that 105Ag∗ is a weakly fissioning nucleus and Psurv behaves like one for a weakly fissioning nucleus for both Φ = 00 and Φ = 00. Apparently, Φ is presenting itself like a good degree-of-freedom in the DCM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamical%20cluster-decay%20model" title="dynamical cluster-decay model">dynamical cluster-decay model</a>, <a href="https://publications.waset.org/abstracts/search?q=fusion%20cross%20sections" title=" fusion cross sections"> fusion cross sections</a>, <a href="https://publications.waset.org/abstracts/search?q=non-compound%20nucleus%20effects" title=" non-compound nucleus effects"> non-compound nucleus effects</a>, <a href="https://publications.waset.org/abstracts/search?q=non-coplanarity" title=" non-coplanarity"> non-coplanarity</a> </p> <a href="https://publications.waset.org/abstracts/41851/non-coplanar-nuclei-in-heavy-ion-reactions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41851.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">890</span> Adhesion Performance According to Lateral Reinforcement Method of Textile</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jungbhin%20You">Jungbhin You</a>, <a href="https://publications.waset.org/abstracts/search?q=Taekyun%20Kim"> Taekyun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jongho%20Park"> Jongho Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Sungnam%20Hong"> Sungnam Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Sun-Kyu%20Park"> Sun-Kyu Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reinforced concrete has been mainly used in construction field because of excellent durability. However, it may lead to reduction of durability and safety due to corrosion of reinforcement steels according to damage of concrete surface. Recently, research of textile is ongoing to complement weakness of reinforced concrete. In previous research, only experiment of longitudinal length were performed. Therefore, in order to investigate the adhesion performance according to the lattice shape and the embedded length, the pull-out test was performed on the roving with parameter of the number of lateral reinforcement, the lateral reinforcement length and the lateral reinforcement spacing. As a result, the number of lateral reinforcement and the lateral reinforcement length did not significantly affect the load variation depending on the adhesion performance, and only the load analysis results according to the reinforcement spacing are affected. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adhesion%20performance" title="adhesion performance">adhesion performance</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral%20reinforcement" title=" lateral reinforcement"> lateral reinforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=pull-out%20test" title=" pull-out test"> pull-out test</a>, <a href="https://publications.waset.org/abstracts/search?q=textile" title=" textile"> textile</a> </p> <a href="https://publications.waset.org/abstracts/67487/adhesion-performance-according-to-lateral-reinforcement-method-of-textile" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67487.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">889</span> Investigation for the Mechanism of Lateral-Torsional Coupled Vibration of the Propulsion Shaft in a Ship</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyungsuk%20Han">Hyungsuk Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Soohong%20Jeon"> Soohong Jeon</a>, <a href="https://publications.waset.org/abstracts/search?q=Chungwon%20Lee"> Chungwon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=YongHoon%20Kim"> YongHoon Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When a rubber mount and flexible coupling are installed on the main engine, high torsional vibration can occur. The root cause of this high torsional vibration can be attributed to the lateral-torsional coupled vibration of the shaft system. Therefore, the lateral-torsional coupled vibration is investigated numerically after approximating the shaft system to a three-degrees-of-freedom Jeffcott rotor. To verify that the high torsional vibration is caused by the lateral-torsional coupled vibration, a test unit that can simulate this lateral-torsional coupled vibration occurring in the propulsion shaft is developed. Performing a vibration test with the test unit, it can be experimentally verified that the high torsional vibration occurring in the propulsion shaft of the particular ship was caused by the lateral-torsional coupled vibration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeffcott%20rotor" title="Jeffcott rotor">Jeffcott rotor</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral-torsional%20coupled%20vibration" title=" lateral-torsional coupled vibration"> lateral-torsional coupled vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=propulsion%20shaft" title=" propulsion shaft"> propulsion shaft</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a> </p> <a href="https://publications.waset.org/abstracts/107458/investigation-for-the-mechanism-of-lateral-torsional-coupled-vibration-of-the-propulsion-shaft-in-a-ship" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107458.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">888</span> The Impact of Combined Loading on Lateral Capacity and Group Efficiency of Helical Piles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hesham%20Hamdy%20Abdulmohsen">Hesham Hamdy Abdulmohsen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Shawky%20Abdel%20Aziz"> Ahmed Shawky Abdel Aziz</a>, <a href="https://publications.waset.org/abstracts/search?q=Mona%20Fawzy%20Aldaghma"> Mona Fawzy Aldaghma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Helical piles have gained significant attention as efficient alternatives for deep foundations due to their rapid installation process and dual functionality in compression and tension. They experience various combinations of axial and lateral loads. While extensive research has explored helical pile behavior under individual axial or lateral loads, the effects of combined axial compression and lateral loads still need further study. This paper compares experimental and numerical (PLAXIS-3D) results for vertical helical-pile groups under combined loads. The study aims to clarify the impact of key factors, including helix location and lateral load direction, on the lateral capacity of helical-pile groups and, consequently, their overall efficiency. The study concludes that the lateral capacity of the helical-pile group significantly depends on the helix location within the pile shaft length. Optimal lateral performance occurs when helices are positioned at a depth ratio of H/L = 0.4. Furthermore, rectangular plan distribution groups exhibit greater lateral capacity when subjected to lateral loads aligned with their long axis. The presence of vertical compression loading enhances the lateral capacity of the group, with the specific enhancement depending on the value of the vertical compression load, lateral load direction, and helix location. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=experimental" title="experimental">experimental</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20model" title=" numerical model"> numerical model</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral%20loading" title=" lateral loading"> lateral loading</a>, <a href="https://publications.waset.org/abstracts/search?q=group%20efficiency" title=" group efficiency"> group efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=helical%20piles" title=" helical piles"> helical piles</a> </p> <a href="https://publications.waset.org/abstracts/190044/the-impact-of-combined-loading-on-lateral-capacity-and-group-efficiency-of-helical-piles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190044.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">40</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">887</span> Lateral Cephalometric Radiograph to Determine Sex in Forensic Investigations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paulus%20Maulana">Paulus Maulana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Forensic identification is to help investigators determine a person's identity. Personal identification is often a problem in civil and criminal cases. Orthodontists like all other dental professionals can play a major role by maintaining lateral cephalogram and thus providing important or vital information or can clues to the legal authorities in order to help them in their search. Radiographic lateral cephalometry is a measurement method which focused on the anatomical points of human lateral skull. Sex determination is one of the most important aspects of the personal identification in forensic. Lateral cephalogram is a valuable tool in identification of sex as reveal morphological details of the skull on single radiograph. This present study evaluates the role of lateral cephalogram in identification of sex that parameters of lateral cephalogram are linear measurement and angle measurement. The linear measurements are N-S ( Anterior cranial length), Sna-Snp (Palatal plane length), Me-Go (menton-gonion), N-Sna ( Midfacial anterior height ), Sna-Me (Lower anterior face height), Co-Gn (total mandibular length). The angle measurements are SNA, SNB, ANB, Gonial, Interincical, and facial. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lateral%20cephalometry" title="lateral cephalometry">lateral cephalometry</a>, <a href="https://publications.waset.org/abstracts/search?q=cephalogram" title=" cephalogram"> cephalogram</a>, <a href="https://publications.waset.org/abstracts/search?q=sex" title=" sex"> sex</a>, <a href="https://publications.waset.org/abstracts/search?q=forensic" title=" forensic"> forensic</a>, <a href="https://publications.waset.org/abstracts/search?q=parameter" title=" parameter"> parameter</a> </p> <a href="https://publications.waset.org/abstracts/74843/lateral-cephalometric-radiograph-to-determine-sex-in-forensic-investigations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74843.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">886</span> Decay Analysis of 118Xe* Nucleus Formed in 28Si Induced Reaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manoj%20K.%20Sharma">Manoj K. Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Neha%20Grover"> Neha Grover</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dynamical cluster decay model (DCM) is applied to study the decay mechanism of 118Xe* nucleus in reference to recent data on 28Si + 90Zr → 118Xe* reaction, as an extension of our previous work on the dynamics of 112Xe* nucleus. It is relevant to mention here that DCM is based on collective clusterization approach, where emission probability of different decay paths such as evaporation residue (ER), intermediate mass fragments (IMF) and fission etc. is worked out on parallel scale. Calculations have been done over a wide range of center of mass energies with Ec.m. = 65 - 92 MeV. The evaporation residue (ER) cross-sections of 118Xe* compound nucleus are fitted in reference to available data, using spherical and quadrupole (β2) deformed choice of decaying fragments within the optimum orientations approach. It may be noted that our calculated cross-sections find decent agreement with experimental data and hence provide an opportunity to analyze the exclusive role of deformations in view of fragmentation behavior of 118Xe* nucleus. The possible contribution of IMF fragments is worked out and an extensive effort is being made to analyze the role of excitation energy, angular momentum, diffuseness parameter and level density parameter to have better understanding of the decay patterns governed in the dynamics of 28Si + 90Zr → 118Xe* reaction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cross-sections" title="cross-sections">cross-sections</a>, <a href="https://publications.waset.org/abstracts/search?q=deformations" title=" deformations"> deformations</a>, <a href="https://publications.waset.org/abstracts/search?q=fragmentation" title=" fragmentation"> fragmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=angular%20momentum" title=" angular momentum"> angular momentum</a> </p> <a href="https://publications.waset.org/abstracts/41838/decay-analysis-of-118xe-nucleus-formed-in-28si-induced-reaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41838.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">885</span> Numerical Analysis of Jet Grouting Strengthened Pile under Lateral Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Ziaie%20Moayed">Reza Ziaie Moayed</a>, <a href="https://publications.waset.org/abstracts/search?q=Naeem%20Gholampoor"> Naeem Gholampoor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Jet grouting strengthened pile (JPP) is one of composite piles used in soft ground improvement. It may improve the vertical and lateral bearing capacity effectively and it has been practically used in a considerable scale. In order to make a further research on load transfer mechanism of single JPP with and without cap under lateral loads, JPP is analyzed by means of FEM analysis. It is resulted that the JPP pile could improve lateral bearing capacity by compared with bored concrete pile which is higher for shorter pile and the biggest bending moment of JPP pile is located in the depth of around 48% of embedded length of the pile. Meanwhile, increase of JPP pile length causes to increase of peak mobilized bending moment. Also, by cap addition, JPP piles will have a much higher lateral bearing capacity and increasing in cohesion of soil layer resulted to increase of lateral bearing capacity of JPP pile. In addition, the numerical results basically coincide with the experimental results presented by other researchers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bending%20moment" title="bending moment">bending moment</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM%20analysis" title=" FEM analysis"> FEM analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=JPP%20pile" title=" JPP pile"> JPP pile</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral%20bearing%20capacity" title=" lateral bearing capacity"> lateral bearing capacity</a> </p> <a href="https://publications.waset.org/abstracts/48319/numerical-analysis-of-jet-grouting-strengthened-pile-under-lateral-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48319.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">884</span> Elastic Deformation of Multistory RC Frames under Lateral Loads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamdy%20Elgohary">Hamdy Elgohary</a>, <a href="https://publications.waset.org/abstracts/search?q=Majid%20Assas"> Majid Assas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Estimation of lateral displacement and interstory drifts represent a major step in multistory frames design. In the preliminary design stage, it is essential to perform a fast check for the expected values of lateral deformations. This step will help to ensure the compliance of the expected values with the design code requirements. Also, in some cases during or after the detailed design stage, it may be required to carry fast check of lateral deformations by design reviewer. In the present paper, a parametric study is carried out on the factors affecting in the lateral displacements of multistory frame buildings. Based on the results of the parametric study, simplified empirical equations are recommended for the direct determination of the lateral deflection of multistory frames. The results obtained using the recommended equations have been compared with the results obtained by finite element analysis. The comparison shows that the proposed equations lead to good approximation for the estimation of lateral deflection of multistory RC frame buildings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lateral%20deflection" title="lateral deflection">lateral deflection</a>, <a href="https://publications.waset.org/abstracts/search?q=interstory%20drift" title=" interstory drift"> interstory drift</a>, <a href="https://publications.waset.org/abstracts/search?q=approximate%20analysis" title=" approximate analysis"> approximate analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=multistory%20frames" title=" multistory frames"> multistory frames</a> </p> <a href="https://publications.waset.org/abstracts/45019/elastic-deformation-of-multistory-rc-frames-under-lateral-loads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45019.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">883</span> Robustness Conditions for the Establishment of Stationary Patterns of Drosophila Segmentation Gene Expression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ekaterina%20M.%20Myasnikova">Ekaterina M. Myasnikova</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrey%20A.%20Makashov"> Andrey A. Makashov</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20V.%20Spirov"> Alexander V. Spirov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> First manifestation of a segmentation pattern in the early Drosophila development is the formation of expression domains (along with the main embryo axis) of genes belonging to the trunk gene class. Highly variable expression of genes from gap family in early Drosophila embryo is strongly reduced by the start of gastrulation due to the gene cross-regulation. The dynamics of gene expression is described by a gene circuit model for a system of four gap genes. It is shown that for the formation of a steep and stationary border by the model it is necessary that there existed a nucleus (modeling point) in which the gene expression level is constant in time and hence is described by a stationary equation. All the rest genes expressed in this nucleus are in a dynamic equilibrium. The mechanism of border formation associated with the existence of a stationary nucleus is also confirmed by the experiment. An important advantage of this approach is that properties of the system in a stationary nucleus are described by algebraic equations and can be easily handled analytically. Thus we explicitly characterize the cross-regulation properties necessary for the robustness and formulate the conditions providing this effect through the properties of the initial input data. It is shown that our formally derived conditions are satisfied for the previously published model solutions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drosophila" title="drosophila">drosophila</a>, <a href="https://publications.waset.org/abstracts/search?q=gap%20genes" title=" gap genes"> gap genes</a>, <a href="https://publications.waset.org/abstracts/search?q=reaction-diffusion%20model" title=" reaction-diffusion model"> reaction-diffusion model</a>, <a href="https://publications.waset.org/abstracts/search?q=robustness" title=" robustness"> robustness</a> </p> <a href="https://publications.waset.org/abstracts/73794/robustness-conditions-for-the-establishment-of-stationary-patterns-of-drosophila-segmentation-gene-expression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73794.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">882</span> On the Evaluation of Critical Lateral-Torsional Buckling Loads of Monosymmetric Beam-Columns</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Yilmaz">T. Yilmaz</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Kirac"> N. Kirac</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Beam-column elements are defined as structural members subjected to a combination of axial and bending forces. Lateral torsional buckling is one of the major failure modes in which beam-columns that are bent about its strong axis may buckle out of the plane by deflecting laterally and twisting. This study presents a compact closed-form equation that it can be used for calculating critical lateral torsional-buckling load of beam-columns with monosymmetric sections in the presence of a known axial load. Lateral-torsional buckling behavior of beam-columns subjected to constant axial force and various transverse load cases are investigated by using Ritz method in order to establish proposed equation. Lateral-torsional buckling loads calculated by presented formula are compared to finite element model results. ABAQUS software is utilized to generate finite element models of beam-columns. It is found out that lateral-torsional buckling load of beam-columns with monosymmetric sections can be determined by proposed equation and can be safely used in design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lateral-torsional%20buckling" title="lateral-torsional buckling">lateral-torsional buckling</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=beam-column" title=" beam-column"> beam-column</a>, <a href="https://publications.waset.org/abstracts/search?q=monosymmetric%20section" title=" monosymmetric section"> monosymmetric section</a> </p> <a href="https://publications.waset.org/abstracts/51595/on-the-evaluation-of-critical-lateral-torsional-buckling-loads-of-monosymmetric-beam-columns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51595.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">881</span> An Approximate Lateral-Torsional Buckling Mode Function for Cantilever I-Beams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Ozbasaran">H. Ozbasaran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lateral torsional buckling is a global stability loss which should be considered in the design of slender structural members under flexure about their strong axis. It is possible to compute the load which causes lateral torsional buckling of a beam by finite element analysis, however, closed form equations are needed in engineering practice. Such equations can be obtained by using energy method. Unfortunately, this method has a vital drawback. In lateral torsional buckling applications of energy method, a proper function for the critical lateral torsional buckling mode should be chosen which can be thought as the variation of twisting angle along the buckled beam. The accuracy of the results depends on how close is the chosen function to the exact mode. Since critical lateral torsional buckling mode of the cantilever I-beams varies due to material properties, section properties, and loading case, the hardest step is to determine a proper mode function. This paper presents an approximate function for critical lateral torsional buckling mode of doubly symmetric cantilever I-beams. Coefficient matrices are calculated for the concentrated load at the free end, uniformly distributed load and constant moment along the beam cases. Critical lateral torsional buckling modes obtained by presented function and exact solutions are compared. It is found that the modes obtained by presented function coincide with differential equation solutions for considered loading cases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=buckling%20mode" title="buckling mode">buckling mode</a>, <a href="https://publications.waset.org/abstracts/search?q=cantilever" title=" cantilever"> cantilever</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral-torsional%20buckling" title=" lateral-torsional buckling"> lateral-torsional buckling</a>, <a href="https://publications.waset.org/abstracts/search?q=I-beam" title=" I-beam"> I-beam</a> </p> <a href="https://publications.waset.org/abstracts/34077/an-approximate-lateral-torsional-buckling-mode-function-for-cantilever-i-beams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34077.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">880</span> A Parametric Study on Lateral Torsional Buckling of European IPN and IPE Cantilevers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Ozbasaran">H. Ozbasaran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> IPN and IPE sections, which are commonly used European I shapes, are widely used in steel structures as cantilever beams to support overhangs. A considerable number of studies exist on calculating lateral torsional buckling load of I sections. However, most of them provide series solutions or complex closed-form equations. In this paper, a simple equation is presented to calculate lateral torsional buckling load of IPN and IPE section cantilever beams. First, differential equation of lateral torsional buckling is solved numerically for various loading cases. Then a parametric study is conducted on results to present an equation for lateral torsional buckling load of European IPN and IPE beams. Finally, results obtained by presented equation are compared to differential equation solutions and finite element model results. ABAQUS software is utilized to generate finite element models of beams. It is seen that the results obtained from presented equation coincide with differential equation solutions and ABAQUS software results. It can be suggested that presented formula can be safely used to calculate critical lateral torsional buckling load of European IPN and IPE section cantilevers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cantilever" title="cantilever">cantilever</a>, <a href="https://publications.waset.org/abstracts/search?q=IPN" title=" IPN"> IPN</a>, <a href="https://publications.waset.org/abstracts/search?q=IPE" title=" IPE"> IPE</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral%20torsional%20buckling" title=" lateral torsional buckling"> lateral torsional buckling</a> </p> <a href="https://publications.waset.org/abstracts/8135/a-parametric-study-on-lateral-torsional-buckling-of-european-ipn-and-ipe-cantilevers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8135.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">540</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">879</span> Lateral Control of Electric Vehicle Based on Fuzzy Logic Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hartani%20Kada">Hartani Kada</a>, <a href="https://publications.waset.org/abstracts/search?q=Merah%20Abdelkader"> Merah Abdelkader</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aiming at the high nonlinearities and unmatched uncertainties of the intelligent electric vehicles’ dynamic system, this paper presents a lateral motion control algorithm for intelligent electric vehicles with four in-wheel motors. A fuzzy logic procedure is presented and formulated to realize lateral control in lane change. The vehicle dynamics model and a desired target tracking model were established in this paper. A fuzzy logic controller was designed for integrated active front steering (AFS) and direct yaw moment control (DYC) in order to improve vehicle handling performance and stability, and a fuzzy controller for the automatic steering problem. The simulation results demonstrate the strong robustness and excellent tracking performance of the control algorithm that is proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logic" title="fuzzy logic">fuzzy logic</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral%20control" title=" lateral control"> lateral control</a>, <a href="https://publications.waset.org/abstracts/search?q=AFS" title=" AFS"> AFS</a>, <a href="https://publications.waset.org/abstracts/search?q=DYC" title=" DYC"> DYC</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20car%20technology" title=" electric car technology"> electric car technology</a>, <a href="https://publications.waset.org/abstracts/search?q=longitudinal%20control" title=" longitudinal control"> longitudinal control</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral%20motion" title=" lateral motion"> lateral motion</a> </p> <a href="https://publications.waset.org/abstracts/14474/lateral-control-of-electric-vehicle-based-on-fuzzy-logic-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14474.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">610</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">878</span> Torsional Rigidities of Reinforced Concrete Beams Subjected to Elastic Lateral Torsional Buckling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ilker%20Kalkan">Ilker Kalkan</a>, <a href="https://publications.waset.org/abstracts/search?q=Saruhan%20Kartal"> Saruhan Kartal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reinforced concrete (RC) beams rarely undergo lateral-torsional buckling (LTB), since these beams possess large lateral bending and torsional rigidities owing to their stocky cross-sections, unlike steel beams. However, the problem of LTB is becoming more and more pronounced in the last decades as the span lengths of concrete beams increase and the cross-sections become more slender with the use of pre-stressed concrete. The buckling moment of a beam mainly depends on its lateral bending rigidity and torsional rigidity. The nonhomogeneous and elastic-inelastic nature of RC complicates estimation of the buckling moments of concrete beams. Furthermore, the lateral bending and torsional rigidities of RC beams and the buckling moments are affected from different forms of concrete cracking, including flexural, torsional and restrained shrinkage cracking. The present study pertains to the effects of concrete cracking on the torsional rigidities of RC beams prone to elastic LTB. A series of tests on rather slender RC beams indicated that torsional cracking does not initiate until buckling in elastic LTB, while flexural cracking associated with lateral bending takes place even at the initial stages of loading. Hence, the present study clearly indicated that the un-cracked torsional rigidity needs to be used for estimating the buckling moments of RC beams liable to elastic LTB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lateral%20stability" title="lateral stability">lateral stability</a>, <a href="https://publications.waset.org/abstracts/search?q=post-cracking%20torsional%20rigidity" title=" post-cracking torsional rigidity"> post-cracking torsional rigidity</a>, <a href="https://publications.waset.org/abstracts/search?q=uncracked%20torsional%20rigidity" title=" uncracked torsional rigidity"> uncracked torsional rigidity</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20moment" title=" critical moment"> critical moment</a> </p> <a href="https://publications.waset.org/abstracts/72558/torsional-rigidities-of-reinforced-concrete-beams-subjected-to-elastic-lateral-torsional-buckling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72558.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">877</span> Lateral Torsional Buckling of Steel Thin-Walled Beams with Lateral Restraints</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ivan%20Bal%C3%A1zs">Ivan Balázs</a>, <a href="https://publications.waset.org/abstracts/search?q=Jind%C5%99ich%20Melcher"> Jindřich Melcher</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal thin-walled members have been widely used in building industry. Usually they are utilized as purlins, girts or ceiling beams. Due to slenderness of thin-walled cross-sections these structural members are prone to stability problems (e.g. flexural buckling, lateral torsional buckling). If buckling is not constructionally prevented their resistance is limited by buckling strength. In practice planar members of roof or wall cladding can be attached to thin-walled members. These elements reduce displacement of thin-walled members and therefore increase their buckling strength. If this effect is taken into static assessment more economical sections of thin-walled members might be utilized and certain savings of material might be achieved. This paper focuses on problem of determination of critical load of steel thin-walled beams with lateral continuous restraint which is crucial for lateral torsional buckling assessment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beam" title="beam">beam</a>, <a href="https://publications.waset.org/abstracts/search?q=buckling" title=" buckling"> buckling</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20analysis" title=" numerical analysis"> numerical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=steel" title=" steel"> steel</a> </p> <a href="https://publications.waset.org/abstracts/31094/lateral-torsional-buckling-of-steel-thin-walled-beams-with-lateral-restraints" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31094.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">876</span> Bioconversion of Antifungal Antibiotic Derived from Aspergillus Nidulans</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Savitha%20Janakiraman">Savitha Janakiraman</a>, <a href="https://publications.waset.org/abstracts/search?q=Shivakumar%20M.%20C"> Shivakumar M. C</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Anidulafungin, an advanced class of antifungal agent used for the treatment of chronic fungal infections, is derived from Echinocandin B nucleus, an intermediate metabolite of Echinocandin B produced by Aspergillus nidulans. The enzyme acylase derived from the fermentation broth of Actinoplanes utahensis (NRRL 12052) plays a key role in the bioconversion of echinocandin B to echinocandin B nucleus. The membrane-bound nature of acylase and low levels of expression contributes to the rate-limiting process of enzymatic deacylation, hence low yields of ECB nucleus and anidulafungin. In the present study, this is addressed through novel genetic engineering approaches of overexpression and heterologous expression studies, immobilization of whole cells of Actinoplanes utahensis (NRRL 12052) and Co-cultivation studies. Overexpression of the acylase gene in Actinoplanes utahensis (NRRL 12052) was done by increasing the gene copy number to increase the echinocandin B nucleus production. Echinocandin B acylase gene, under the control of a PermE* promoter, was cloned in pSET152 vector and introduced into Actinoplanes utahensis (NRRL12052) by a ɸC31-directed site-specific recombination method. The resultant recombinant strain (C2-18) showed a 3-fold increase in acylase expression, which was confirmed by HPLC analysis. Pichia pastoris is one of the most effective and versatile host systems for the production of heterologous proteins. The ECB acylase gene was cloned into pPIC9K vector with AOX1 promoter and was transformed into Pichia pastoris (GS115). The acylase expression was confirmed by protein expression and bioconversion studies. The heterologous expression of acylase in Pichia pastoris, is a milestone in the development of antifungals. Actively growing cells of Actinoplanes utahensis (NRRL 12052) were immobilized and tested for bioconversion ability which showed >90% conversion in each cycle. The stability of immobilized cell beads retained the deacylation ability up to 60 days and reusability was confirmed up to 4 cycles. The significant findings from the study have revealed that immobilization of whole cells of Actinoplanes utahensis (NRRL 12052) could be an alternative option for bioconversion of echinocandin B to echinocandin B nucleus, which has not been reported to date. The concept of co-cultivation of Aspergillus nidulans and Actinoplanes utahensis strains for the production of the echinocandin B nucleus was also carried out in order to produce echinocandin B nucleus. The process completely reduced the ECB purification step and, therefore, could be recommended as an ingenious method to improve the yield of the ECB nucleus. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acylase" title="acylase">acylase</a>, <a href="https://publications.waset.org/abstracts/search?q=anidulafungin" title=" anidulafungin"> anidulafungin</a>, <a href="https://publications.waset.org/abstracts/search?q=antifungals" title=" antifungals"> antifungals</a>, <a href="https://publications.waset.org/abstracts/search?q=Aspergillus%20nidulans" title=" Aspergillus nidulans"> Aspergillus nidulans</a> </p> <a href="https://publications.waset.org/abstracts/154160/bioconversion-of-antifungal-antibiotic-derived-from-aspergillus-nidulans" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154160.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">875</span> Lateral Capacity of Helical-Pile Groups Subjected to Bearing Combined Loads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hesham%20Hamdy%20Abdelmohsen">Hesham Hamdy Abdelmohsen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Shawky%20Abdul%20Azizb"> Ahmed Shawky Abdul Azizb</a>, <a href="https://publications.waset.org/abstracts/search?q=Mona%20Fawzy%20Aldaghma"> Mona Fawzy Aldaghma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Helical piles have earned considerable attention as an effective deep foundation alternative due to their rapid installation process and their dual purpose in compression and tension. These piles find common uses as foundations for structures like solar panels, wind turbines, offshore platforms, and some kinds of retaining walls. These structures usually transfer different combinations of loads to their helical-pile foundations in the form of axial and lateral loads. Extensive research has been conducted to investigate and understand the behavior of these piles under the influence of either axial or lateral loads. However, the impacts of loading patterns that may act on the helical piles as combinations of axial compression and lateral loads still need more efforts of research work. This paper presents the results of an experimental (Lab tests) and numerical (PLAXIS-3D) study performed on vertical helical-pile groups under the action of combined loads as axial compression (bearing loads), acting successively with lateral (horizontal) loads. The study aims to clarify the effects of key factors, like helix location and direction of lateral load, on the lateral capacity of helical-pile groups and, consequently, on group efficiency. Besides the variation of helix location and lateral load direction, three patterns of successive bearing combined loads were considered, in which the axial vertical compression load was either zero, V1 or V2, whereas the lateral horizontal loads were varied under each vertical compression load. The study concluded that the lateral capacity of the helical-pile group is significantly affected by helix location within the length of the pile shaft. The optimal lateral performance is achieved with helices at a depth ratio of H/L = 0.4. Furthermore, groups of rectangular plan distribution exhibit greater lateral capacity if subjected to lateral horizontal load in the direction of its long axis. Additionally, the research emphasizes that the presence of vertical compression loading can enhance the lateral capacity of the group. This enhancement depends on the value of the vertical compression load, lateral load direction, and helix location, which highlights the complex interaction effect of these factors on the efficiency of helical-pile groups. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=helical%20piles" title="helical piles">helical piles</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental" title=" experimental"> experimental</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical" title=" numerical"> numerical</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral%20loading" title=" lateral loading"> lateral loading</a>, <a href="https://publications.waset.org/abstracts/search?q=group%20efficiency" title=" group efficiency"> group efficiency</a> </p> <a href="https://publications.waset.org/abstracts/189201/lateral-capacity-of-helical-pile-groups-subjected-to-bearing-combined-loads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189201.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">32</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">874</span> Cost-Optimized Extra-Lateral Transshipments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dilupa%20Nakandala">Dilupa Nakandala</a>, <a href="https://publications.waset.org/abstracts/search?q=Henry%20Lau"> Henry Lau</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ever increasing demand for cost efficiency and customer satisfaction through reliable delivery have been a mandate for logistics practitioners to continually improve inventory management processes. With the cost optimization objectives, this study considers an extended scenario where sourcing from the same echelon of the supply chain, known as lateral transshipment which is instantaneous but more expensive than purchasing from regular suppliers, is considered by warehouses not only to re-actively fulfill the urgent outstanding retailer demand that could not be fulfilled by stock on hand but also for preventively reduce back-order cost. Such extra lateral trans-shipments as preventive responses are intended to meet the expected demand during the supplier lead time in a periodic review ordering policy setting. We develop decision rules to assist logistics practitioners to make cost optimized selection between back-ordering and combined reactive and proactive lateral transshipment options. A method for determining the optimal quantity of extra lateral transshipment is developed considering the trade-off between purchasing, holding and backorder cost components. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lateral%20transshipment" title="lateral transshipment">lateral transshipment</a>, <a href="https://publications.waset.org/abstracts/search?q=warehouse%20inventory%20management" title=" warehouse inventory management"> warehouse inventory management</a>, <a href="https://publications.waset.org/abstracts/search?q=cost%20optimization" title=" cost optimization"> cost optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=preventive%20transshipment" title=" preventive transshipment "> preventive transshipment </a> </p> <a href="https://publications.waset.org/abstracts/17695/cost-optimized-extra-lateral-transshipments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17695.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">616</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">873</span> Evaluation of Flange Effects on the Lateral In-Plane Response of Brick Masonry Walls</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hizb%20Ullah%20Sajid">Hizb Ullah Sajid</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Ashraf"> Muhammad Ashraf</a>, <a href="https://publications.waset.org/abstracts/search?q=Naveed%20Ahmad%20Qaisar%20Ali"> Naveed Ahmad Qaisar Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Sikandar%20Hayat%20Sajid"> Sikandar Hayat Sajid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research study investigates experimentally the effects of flanges (transverse walls) on the lateral in-plane response of brick masonry walls. The experimental work included lateral in-plane quasi-static cyclic tests on full-scale walls (both with & without flanges). The flanges were introduced at both ends of the in-plane wall. In particular the damage mechanism, lateral in-plane stiffness & strength, deformability and energy dissipation of the two classes of walls are compared and the differences are quantified to help understand the effects of flanges on the in-plane response of masonry walls. The available analytical models for the in-plane shear strength & deformation evaluation of masonry walls are critically analyzed. Recommendations are made for the lateral in-plane capacity assessment of brick masonry walls including the contribution of transverse walls. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brick%20masonry" title="brick masonry">brick masonry</a>, <a href="https://publications.waset.org/abstracts/search?q=damage%20mechanism" title=" damage mechanism"> damage mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=flanges%20effects" title=" flanges effects"> flanges effects</a>, <a href="https://publications.waset.org/abstracts/search?q=in-plane%20response" title=" in-plane response"> in-plane response</a> </p> <a href="https://publications.waset.org/abstracts/33495/evaluation-of-flange-effects-on-the-lateral-in-plane-response-of-brick-masonry-walls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33495.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">872</span> Deflection Behaviour of Retaining Wall with Pile for Pipeline on Slope of Soft Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mutadi">Mutadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pipes laying on an unstable slope of soft soil are prone to movement. Pipelines that are buried in unstable slope areas will move due to lateral loads from soil movement, which can cause damage to the pipeline. A small-scale laboratory model of the reinforcement system of piles supported by retaining walls was conducted to investigate the effect of lateral load on the reinforcement. In this experiment, the lateral forces of 0.3 kN, 0.35 kN, and 0.4 kN and vertical force of 0.05 kN, 0.1 kN, and 0.15 kN were used. Lateral load from the electric jack is equipped with load cell and vertical load using the cement-steel box. To validate the experimental result, a finite element program named 2-D Plaxis was used. The experimental results showed that with an increase in lateral loading, the displacement of the reinforcement system increased. For a Vertical Load, 0.1 kN and versus a lateral load of 0.3 kN causes a horizontal displacement of 0.35 mm and an increase of 2.94% for loading of 0.35 kN and an increase of 8.82% for loading 0.4 kN. The pattern is the same in the finite element method analysis, where there was a 6.52% increase for 0.35 kN loading and an increase to 23.91 % for 0.4 kN loading. In the same Load, the Reinforcement System is reliable, as shown in Safety Factor on dry conditions were 3.3, 2.824 and 2.474, and on wet conditions were 2.98, 2.522 and 2.235. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soft%20soil" title="soft soil">soft soil</a>, <a href="https://publications.waset.org/abstracts/search?q=deflection" title=" deflection"> deflection</a>, <a href="https://publications.waset.org/abstracts/search?q=wall" title=" wall"> wall</a>, <a href="https://publications.waset.org/abstracts/search?q=pipeline" title=" pipeline"> pipeline</a> </p> <a href="https://publications.waset.org/abstracts/143880/deflection-behaviour-of-retaining-wall-with-pile-for-pipeline-on-slope-of-soft-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143880.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Lateral%20Geniculate%20Nucleus&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Lateral%20Geniculate%20Nucleus&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Lateral%20Geniculate%20Nucleus&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Lateral%20Geniculate%20Nucleus&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Lateral%20Geniculate%20Nucleus&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Lateral%20Geniculate%20Nucleus&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Lateral%20Geniculate%20Nucleus&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Lateral%20Geniculate%20Nucleus&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Lateral%20Geniculate%20Nucleus&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Lateral%20Geniculate%20Nucleus&page=30">30</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Lateral%20Geniculate%20Nucleus&page=31">31</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Lateral%20Geniculate%20Nucleus&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>