CINXE.COM
Search results for: information propagation
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: information propagation</title> <meta name="description" content="Search results for: information propagation"> <meta name="keywords" content="information propagation"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="information propagation" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="information propagation"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 11434</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: information propagation</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11434</span> Source Identification Model Based on Label Propagation and Graph Ordinary Differential Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fuyuan%20Ma">Fuyuan Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuhan%20Wang"> Yuhan Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Junhe%20Zhang"> Junhe Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ying%20Wang"> Ying Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Identifying the sources of information dissemination is a pivotal task in the study of collective behaviors in networks, enabling us to discern and intercept the critical pathways through which information propagates from its origins. This allows for the control of the information’s dissemination impact in its early stages. Numerous methods for source detection rely on pre-existing, underlying propagation models as prior knowledge. Current models that eschew prior knowledge attempt to harness label propagation algorithms to model the statistical characteristics of propagation states or employ Graph Neural Networks (GNNs) for deep reverse modeling of the diffusion process. These approaches are either deficient in modeling the propagation patterns of information or are constrained by the over-smoothing problem inherent in GNNs, which limits the stacking of sufficient model depth to excavate global propagation patterns. Consequently, we introduce the ODESI model. Initially, the model employs a label propagation algorithm to delineate the distribution density of infected states within a graph structure and extends the representation of infected states from integers to state vectors, which serve as the initial states of nodes. Subsequently, the model constructs a deep architecture based on GNNs-coupled Ordinary Differential Equations (ODEs) to model the global propagation patterns of continuous propagation processes. Addressing the challenges associated with solving ODEs on graphs, we approximate the analytical solutions to reduce computational costs. Finally, we conduct simulation experiments on two real-world social network datasets, and the results affirm the efficacy of our proposed ODESI model in source identification tasks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=source%20identification" title="source identification">source identification</a>, <a href="https://publications.waset.org/abstracts/search?q=ordinary%20differential%20equations" title=" ordinary differential equations"> ordinary differential equations</a>, <a href="https://publications.waset.org/abstracts/search?q=label%20propagation" title=" label propagation"> label propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20networks" title=" complex networks"> complex networks</a> </p> <a href="https://publications.waset.org/abstracts/192604/source-identification-model-based-on-label-propagation-and-graph-ordinary-differential-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192604.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">20</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11433</span> Rumour Containment Using Monitor Placement and Truth Propagation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amrah%20Maryam">Amrah Maryam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The emergence of online social networks (OSNs) has transformed the way we pursue and share information. On the one hand, OSNs provide great ease for the spreading of positive information while, on the other hand, they may also become a channel for the spreading of malicious rumors and misinformation throughout the social network. Thus, to assure the trustworthiness of OSNs to its users, it is of vital importance to detect the misinformation propagation in the network by placing network monitors. In this paper, we aim to place monitors near the suspected nodes with the intent to limit the diffusion of misinformation in the social network, and then we also detect the most significant nodes in the network for propagating true information in order to minimize the effect of already diffused misinformation. Thus, we initiate two heuristic monitor placement using articulation points and truth propagation using eigenvector centrality. Furthermore, to provide real-time workings of the system, we integrate both the monitor placement and truth propagation entities as well. To signify the effectiveness of the approaches, we have carried out the experiment and evaluation of Stanford datasets of online social networks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=online%20social%20networks" title="online social networks">online social networks</a>, <a href="https://publications.waset.org/abstracts/search?q=monitor%20placement" title=" monitor placement"> monitor placement</a>, <a href="https://publications.waset.org/abstracts/search?q=independent%20cascade%20model" title=" independent cascade model"> independent cascade model</a>, <a href="https://publications.waset.org/abstracts/search?q=spread%20of%20misinformation" title=" spread of misinformation"> spread of misinformation</a> </p> <a href="https://publications.waset.org/abstracts/113743/rumour-containment-using-monitor-placement-and-truth-propagation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113743.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11432</span> Effect of Load Ratio on Probability Distribution of Fatigue Crack Propagation Life in Magnesium Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seon%20Soon%20Choi">Seon Soon Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is necessary to predict a fatigue crack propagation life for estimation of structural integrity. Because of an uncertainty and a randomness of a structural behavior, it is also required to analyze stochastic characteristics of the fatigue crack propagation life at a specified fatigue crack size. The essential purpose of this study is to present the good probability distribution fit for the fatigue crack propagation life at a specified fatigue crack size in magnesium alloys under various fatigue load ratio conditions. To investigate a stochastic crack growth behavior, fatigue crack propagation experiments are performed in laboratory air under several conditions of fatigue load ratio using AZ31. By Anderson-Darling test, a goodness-of-fit test for probability distribution of the fatigue crack propagation life is performed and the good probability distribution fit for the fatigue crack propagation life is presented. The effect of load ratio on variability of fatigue crack propagation life is also investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fatigue%20crack%20propagation%20life" title="fatigue crack propagation life">fatigue crack propagation life</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20ratio" title=" load ratio"> load ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium%20alloys" title=" magnesium alloys"> magnesium alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=probability%20distribution" title=" probability distribution"> probability distribution</a> </p> <a href="https://publications.waset.org/abstracts/34718/effect-of-load-ratio-on-probability-distribution-of-fatigue-crack-propagation-life-in-magnesium-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34718.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">649</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11431</span> Influence of Maximum Fatigue Load on Probabilistic Aspect of Fatigue Crack Propagation Life at Specified Grown Crack in Magnesium Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seon%20Soon%20Choi">Seon Soon Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The principal purpose of this paper is to find the influence of maximum fatigue load on the probabilistic aspect of fatigue crack propagation life at a specified grown crack in magnesium alloys. The experiments of fatigue crack propagation are carried out in laboratory air under different conditions of the maximum fatigue loads to obtain the fatigue crack propagation data for the statistical analysis. In order to analyze the probabilistic aspect of fatigue crack propagation life, the goodness-of fit test for probability distribution of the fatigue crack propagation life at a specified grown crack is implemented through Anderson-Darling test. The good probability distribution of the fatigue crack propagation life is also verified under the conditions of the maximum fatigue loads. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fatigue%20crack%20propagation%20life" title="fatigue crack propagation life">fatigue crack propagation life</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium%20alloys" title=" magnesium alloys"> magnesium alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20fatigue%20load" title=" maximum fatigue load"> maximum fatigue load</a>, <a href="https://publications.waset.org/abstracts/search?q=probability" title=" probability"> probability</a> </p> <a href="https://publications.waset.org/abstracts/66629/influence-of-maximum-fatigue-load-on-probabilistic-aspect-of-fatigue-crack-propagation-life-at-specified-grown-crack-in-magnesium-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66629.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11430</span> Propagation of Cos-Gaussian Beam in Photorefractive Crystal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Keshavarz">A. Keshavarz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A physical model for guiding the wave in photorefractive media is studied. Propagation of cos-Gaussian beam as the special cases of sinusoidal-Gaussian beams in photorefractive crystal is simulated numerically by the Crank-Nicolson method in one dimension. Results show that the beam profile deforms as the energy transfers from the center to the tails under propagation. This simulation approach is of significant interest for application in optical telecommunication. The results are presented graphically and discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beam%20propagation" title="beam propagation">beam propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=cos-Gaussian%20beam" title=" cos-Gaussian beam"> cos-Gaussian beam</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=photorefractive%20crystal" title=" photorefractive crystal"> photorefractive crystal</a> </p> <a href="https://publications.waset.org/abstracts/33883/propagation-of-cos-gaussian-beam-in-photorefractive-crystal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33883.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">499</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11429</span> RF Propagation Analysis in Outdoor Environments Using RSSI Measurements Applied in ZigBee Sensor Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Teles%20de%20Sales%20Bezerra">Teles de Sales Bezerra</a>, <a href="https://publications.waset.org/abstracts/search?q=Saulo%20Aislan%20da%20Silva%20Eleuterio"> Saulo Aislan da Silva Eleuterio</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20Anderson%20Rodrigues%20de%20Souza"> José Anderson Rodrigues de Souza</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeronimo%20Silva%20Rocha"> Jeronimo Silva Rocha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Propagation in radio frequency is a constant concern in the application of Wireless Sensor Networks (WSN), the behavior of an environment determines how good the quality of signal reception. The objective of this paper is to analyze the behavior of a WSN in an environment for agriculture where environmental variables are present and correlate the capture of values received signal strength (RSSI) with a propagation model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=propagation" title="propagation">propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=WSN" title=" WSN"> WSN</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture" title=" agriculture"> agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a> </p> <a href="https://publications.waset.org/abstracts/20471/rf-propagation-analysis-in-outdoor-environments-using-rssi-measurements-applied-in-zigbee-sensor-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20471.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">754</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11428</span> SISSLE in Consensus-Based Ripple: Some Improvements in Speed, Security, Last Mile Connectivity and Ease of Use</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mayank%20Mundhra">Mayank Mundhra</a>, <a href="https://publications.waset.org/abstracts/search?q=Chester%20Rebeiro"> Chester Rebeiro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cryptocurrencies are rapidly finding wide application in areas such as Real Time Gross Settlements and Payments Systems. Ripple is a cryptocurrency that has gained prominence with banks and payment providers. It solves the Byzantine General’s Problem with its Ripple Protocol Consensus Algorithm (RPCA), where each server maintains a list of servers, called Unique Node List (UNL) that represents the network for the server, and will not collectively defraud it. The server believes that the network has come to a consensus when members of the UNL come to a consensus on a transaction. In this paper we improve Ripple to achieve better speed, security, last mile connectivity and ease of use. We implement guidelines and automated systems for building and maintaining UNLs for resilience, robustness, improved security, and efficient information propagation. We enhance the system so as to ensure that each server receives information from across the whole network rather than just from the UNL members. We also introduce the paradigm of UNL overlap as a function of information propagation and the trust a server assigns to its own UNL. Our design not only reduces vulnerabilities such as eclipse attacks, but also makes it easier to identify malicious behaviour and entities attempting to fraudulently Double Spend or stall the system. We provide experimental evidence of the benefits of our approach over the current Ripple scheme. We observe ≥ 4.97x and 98.22x in speedup and success rate for information propagation respectively, and ≥ 3.16x and 51.70x in speedup and success rate in consensus. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ripple" title="Ripple">Ripple</a>, <a href="https://publications.waset.org/abstracts/search?q=Kelips" title=" Kelips"> Kelips</a>, <a href="https://publications.waset.org/abstracts/search?q=unique%20node%20list" title=" unique node list"> unique node list</a>, <a href="https://publications.waset.org/abstracts/search?q=consensus" title=" consensus"> consensus</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20propagation" title=" information propagation"> information propagation</a> </p> <a href="https://publications.waset.org/abstracts/130100/sissle-in-consensus-based-ripple-some-improvements-in-speed-security-last-mile-connectivity-and-ease-of-use" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130100.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11427</span> Quantifying Stability of Online Communities and Its Impact on Disinformation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Victor%20Chomel">Victor Chomel</a>, <a href="https://publications.waset.org/abstracts/search?q=Maziyar%20Panahi"> Maziyar Panahi</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Chavalarias"> David Chavalarias</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Misinformation has taken an increasingly worrying place in social media. Propagation patterns are closely linked to the structure of communities. This study proposes a method of community analysis based on a combination of centrality indicators for the network and its main communities. The objective is to establish a link between the stability of the communities over time, the social ascension of its members internally, and the propagation of information in the community. To this end, data from the debates about global warming and political communities on Twitter have been collected, and several tens of millions of tweets and retweets have helped us better understand the structure of these communities. The quantification of this stability allows for the study of the propagation of information of any kind, including disinformation. Our results indicate that the most stable communities over time are the ones that enable the establishment of nodes capturing a large part of the information and broadcasting its opinions. Conversely, communities with a high turnover and social ascendancy only stabilize themselves strongly in the face of adversity and external events but seem to offer a greater diversity of opinions most of the time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=community%20analysis" title="community analysis">community analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=disinformation" title=" disinformation"> disinformation</a>, <a href="https://publications.waset.org/abstracts/search?q=misinformation" title=" misinformation"> misinformation</a>, <a href="https://publications.waset.org/abstracts/search?q=Twitter" title=" Twitter"> Twitter</a> </p> <a href="https://publications.waset.org/abstracts/128710/quantifying-stability-of-online-communities-and-its-impact-on-disinformation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128710.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11426</span> The Cracks Propagation Monitoring of a Cantilever Beam Using Modal Analysis </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Morteza%20Raki">Morteza Raki</a>, <a href="https://publications.waset.org/abstracts/search?q=Abolghasem%20Zabihollah"> Abolghasem Zabihollah</a>, <a href="https://publications.waset.org/abstracts/search?q=Omid%20Askari"> Omid Askari </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cantilever beam is a simplified sample of a lot of mechanical components used in a wide range of applications, including many industries such as gas turbine blade. Due to the nature of the operating conditions, beams are subject to variety of damages especially crack propagates. Crack propagation may lead to catastrophic failure during operation. Therefore, online detection of crack presence and its propagation is very important and may reduce possible significant cost of the whole system failure. This paper aims to investigate the effect of cracks presence and crack propagation on one end fixed beam`s vibration. A finite element model will be developed for the blade in which the modal response of the structure with and without crack will be studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blade" title="blade">blade</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20propagation" title=" crack propagation"> crack propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20monitoring" title=" health monitoring"> health monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20analysis" title=" modal analysis"> modal analysis</a> </p> <a href="https://publications.waset.org/abstracts/48812/the-cracks-propagation-monitoring-of-a-cantilever-beam-using-modal-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48812.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11425</span> Guided Wave in a Cylinder with Trepezoid Cross-Section</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nan%20Tang">Nan Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Bin%20Wu"> Bin Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Cunfu%20He"> Cunfu He</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The trapezoid rods are widely used in civil engineering as load –carrying members. Ultrasonic guided wave is one of the most popular techniques in analyzing the propagation of elastic guided wave. The goal of this paper is to investigate the propagation of elastic waves in the isotropic bar with trapezoid cross-section. Dispersion curves that describe the relationship between the frequency and velocity provide the fundamental information to describe the propagation of elastic waves through a structure. Based on the SAFE (semi-analytical finite element) a linear algebraic system of equations is obtained. By using numerical methods, dispersion curves solved for the rods with the trapezoid cross-section. These fundamental information plays an important role in applying ultrasonic guided waves to NTD for structures with trapezoid cross section. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=guided%20wave" title="guided wave">guided wave</a>, <a href="https://publications.waset.org/abstracts/search?q=dispersion" title=" dispersion"> dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=trapezoid%20rod" title=" trapezoid rod"> trapezoid rod</a> </p> <a href="https://publications.waset.org/abstracts/30839/guided-wave-in-a-cylinder-with-trepezoid-cross-section" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30839.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11424</span> Minimization of Propagation Delay in Multi Unmanned Aerial Vehicle Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Purva%20Joshi">Purva Joshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rohit%20Thanki"> Rohit Thanki</a>, <a href="https://publications.waset.org/abstracts/search?q=Omar%20Hanif"> Omar Hanif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Unmanned aerial vehicles (UAVs) are becoming increasingly important in various industrial applications and sectors. Nowadays, a multi UAV network is used for specific types of communication (e.g., military) and monitoring purposes. Therefore, it is critical to reducing propagation delay during communication between UAVs, which is essential in a multi UAV network. This paper presents how the propagation delay between the base station (BS) and the UAVs is reduced using a searching algorithm. Furthermore, the iterative-based K-nearest neighbor (k-NN) algorithm and Travelling Salesmen Problem (TSP) algorthm were utilized to optimize the distance between BS and individual UAV to overcome the problem of propagation delay in multi UAV networks. The simulation results show that this proposed method reduced complexity, improved reliability, and reduced propagation delay in multi UAV networks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi%20UAV%20network" title="multi UAV network">multi UAV network</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20distance" title=" optimal distance"> optimal distance</a>, <a href="https://publications.waset.org/abstracts/search?q=propagation%20delay" title=" propagation delay"> propagation delay</a>, <a href="https://publications.waset.org/abstracts/search?q=K%20-%20nearest%20neighbor" title=" K - nearest neighbor"> K - nearest neighbor</a>, <a href="https://publications.waset.org/abstracts/search?q=traveling%20salesmen%20problem" title=" traveling salesmen problem"> traveling salesmen problem</a> </p> <a href="https://publications.waset.org/abstracts/150423/minimization-of-propagation-delay-in-multi-unmanned-aerial-vehicle-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150423.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">200</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11423</span> Modeling of Dam Break Flood Wave Propagation Using HEC-RAS 2D and GIS: A Case Study of Taksebt Dam in Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelghani%20Leghouchi">Abdelghani Leghouchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to predict the consequences associated with the propagation of the flood wave that may occur after the failure of the Taksebt dam and suggest an efficient emergency action plan (EAP) for mitigation purposes. To achieve the objectives of this study, the hydrodynamic model HEC-RAS 2D was used for the flood routing of the dam break wave, which gave an estimate of the hydraulic characteristics downstream the Taksebt dam. Geospatial analysis of the simulation results conducted in a Geographic information system (GIS) environment showed that many residential areas are considered to be in danger in case of the Taksebt dam break event. Based on the obtained results, an emergency actions plan was suggested to moderate the causalities in the downstream area at risk. Overall, the present study showed that the integration of 2D hydraulic modeling and GIS provides great capabilities in providing realistic view of the dam break wave propagation that enhances assessing the associated risks and proposing appropriate mitigation measures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=taksebt%20dam" title="taksebt dam">taksebt dam</a>, <a href="https://publications.waset.org/abstracts/search?q=dam%20break" title=" dam break"> dam break</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20propagation%20time" title=" wave propagation time"> wave propagation time</a>, <a href="https://publications.waset.org/abstracts/search?q=HEC-RAS%202D" title=" HEC-RAS 2D"> HEC-RAS 2D</a> </p> <a href="https://publications.waset.org/abstracts/157966/modeling-of-dam-break-flood-wave-propagation-using-hec-ras-2d-and-gis-a-case-study-of-taksebt-dam-in-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157966.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11422</span> Simulation of Propagation of Cos-Gaussian Beam in Strongly Nonlocal Nonlinear Media Using Paraxial Group Transformation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Keshavarz">A. Keshavarz</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Roosta"> Z. Roosta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, propagation of cos-Gaussian beam in strongly nonlocal nonlinear media has been stimulated by using paraxial group transformation. At first, cos-Gaussian beam, nonlocal nonlinear media, critical power, transfer matrix, and paraxial group transformation are introduced. Then, the propagation of the cos-Gaussian beam in strongly nonlocal nonlinear media is simulated. Results show that beam propagation has periodic structure during self-focusing effect in this case. However, this simple method can be used for investigation of propagation of kinds of beams in ABCD optical media. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=paraxial%20group%20transformation" title="paraxial group transformation">paraxial group transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlocal%20nonlinear%20media" title=" nonlocal nonlinear media"> nonlocal nonlinear media</a>, <a href="https://publications.waset.org/abstracts/search?q=cos-Gaussian%20beam" title=" cos-Gaussian beam"> cos-Gaussian beam</a>, <a href="https://publications.waset.org/abstracts/search?q=ABCD%20law" title=" ABCD law"> ABCD law</a> </p> <a href="https://publications.waset.org/abstracts/52660/simulation-of-propagation-of-cos-gaussian-beam-in-strongly-nonlocal-nonlinear-media-using-paraxial-group-transformation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52660.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11421</span> Relating Interface Properties with Crack Propagation in Composite Laminates </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tao%20Qu">Tao Qu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chandra%20Prakash"> Chandra Prakash</a>, <a href="https://publications.waset.org/abstracts/search?q=Vikas%20Tomar"> Vikas Tomar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The interfaces between organic and inorganic phases in natural materials have been shown to be a key factor contributing to their high performance. This work analyzes crack propagation in a 2-ply laminate subjected to uniaxial tensile mode-I crack propagation loading that has laminate properties derived based on biological material constituents (marine exoskeleton- chitin and calcite). Interfaces in such laminates are explicitly modeled based on earlier molecular simulations performed by authors. Extended finite element method and cohesive zone modeling based simulations coupled with theoretical analysis are used to analyze crack propagation. Analyses explicitly quantify the effect that interface mechanical property variation has on the delamination as well as the transverse crack propagation in examined 2-ply laminates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chitin" title="chitin">chitin</a>, <a href="https://publications.waset.org/abstracts/search?q=composites" title=" composites"> composites</a>, <a href="https://publications.waset.org/abstracts/search?q=interfaces" title=" interfaces"> interfaces</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture" title=" fracture"> fracture</a> </p> <a href="https://publications.waset.org/abstracts/44635/relating-interface-properties-with-crack-propagation-in-composite-laminates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44635.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11420</span> The Magnitude Scale Evaluation of Cross-Platform Internet Public Opinion </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yi%20Wang">Yi Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xun%20Liang"> Xun Liang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper introduces a model of internet public opinion waves, which describes the message propagation and measures the influence of a detected event. We collect data on public opinion propagation from different platforms on the internet, including micro-blogs and news. Then, we compare the spread of public opinion to the seismic waves and correspondently define the P-wave and S-wave and other essential attributes and characteristics in the process. Further, a model is established to evaluate the magnitude scale of the events. In the end, a practical example is used to analyze the influence of network public opinion and test the reasonability and effectiveness of the proposed model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=internet%20public%20opinion%20waves%20%28IPOW%29" title="internet public opinion waves (IPOW)">internet public opinion waves (IPOW)</a>, <a href="https://publications.waset.org/abstracts/search?q=magnitude%20scale" title=" magnitude scale"> magnitude scale</a>, <a href="https://publications.waset.org/abstracts/search?q=cross-platform" title=" cross-platform"> cross-platform</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20propagation" title=" information propagation"> information propagation</a> </p> <a href="https://publications.waset.org/abstracts/54219/the-magnitude-scale-evaluation-of-cross-platform-internet-public-opinion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54219.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11419</span> Aspects Concerning Flame Propagation of Various Fuels in Combustion Chamber of Four Valve Engines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zoran%20Jovanovic">Zoran Jovanovic</a>, <a href="https://publications.waset.org/abstracts/search?q=Zoran%20Masonicic"> Zoran Masonicic</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Dragutinovic"> S. Dragutinovic</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Sakota"> Z. Sakota</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, results concerning flame propagation of various fuels in a particular combustion chamber with four tilted valves were elucidated. Flame propagation was represented by the evolution of spatial distribution of temperature in various cut-planes within combustion chamber while the flame front location was determined by dint of zones with maximum temperature gradient. The results presented are only a small part of broader on-going scrutinizing activity in the field of multidimensional modeling of reactive flows in combustion chambers with complicated geometries encompassing various models of turbulence, different fuels and combustion models. In the case of turbulence two different models were applied i.e. standard k-ε model of turbulence and k-ξ-f model of turbulence. In this paper flame propagation results were analyzed and presented for two different hydrocarbon fuels, such as CH4 and C8H18. In the case of combustion all differences ensuing from different turbulence models, obvious for non-reactive flows are annihilated entirely. Namely the interplay between fluid flow pattern and flame propagation is invariant as regards turbulence models and fuels applied. Namely the interplay between fluid flow pattern and flame propagation is entirely invariant as regards fuel variation indicating that the flame propagation through unburned mixture of CH4 and C8H18 fuels is not chemically controlled. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automotive%20flows" title="automotive flows">automotive flows</a>, <a href="https://publications.waset.org/abstracts/search?q=flame%20propagation" title=" flame propagation"> flame propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion%20modelling" title=" combustion modelling"> combustion modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=CNG" title=" CNG"> CNG</a> </p> <a href="https://publications.waset.org/abstracts/47372/aspects-concerning-flame-propagation-of-various-fuels-in-combustion-chamber-of-four-valve-engines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47372.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11418</span> Ray Tracing Modified 3D Image Method Simulation of Picocellular Propagation Channel Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fathi%20Alwafie">Fathi Alwafie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper we present the simulation of the propagation characteristics of the picocellular propagation channel environment. The first aim has been to find a correct description of the environment for received wave. The result of the first investigations is that the environment of the indoor wave significantly changes as we change the electric parameters of material constructions. A modified 3D ray tracing image method tool has been utilized for the coverage prediction. A detailed analysis of the dependence of the indoor wave on the wide-band characteristics of the channel: Root Mean Square (RMS) delay spread characteristics and mean excess delay, is also investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=propagation" title="propagation">propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=ray%20tracing" title=" ray tracing"> ray tracing</a>, <a href="https://publications.waset.org/abstracts/search?q=network" title=" network"> network</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20computing" title=" mobile computing"> mobile computing</a> </p> <a href="https://publications.waset.org/abstracts/4077/ray-tracing-modified-3d-image-method-simulation-of-picocellular-propagation-channel-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4077.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11417</span> Evaluation of Security and Performance of Master Node Protocol in the Bitcoin Peer-To-Peer Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muntadher%20Sallal">Muntadher Sallal</a>, <a href="https://publications.waset.org/abstracts/search?q=Gareth%20Owenson"> Gareth Owenson</a>, <a href="https://publications.waset.org/abstracts/search?q=Mo%20Adda"> Mo Adda</a>, <a href="https://publications.waset.org/abstracts/search?q=Safa%20Shubbar"> Safa Shubbar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bitcoin is a digital currency based on a peer-to-peer network to propagate and verify transactions. Bitcoin is gaining wider adoption than any previous crypto-currency. However, the mechanism of peers randomly choosing logical neighbors without any knowledge about underlying physical topology can cause a delay overhead in information propagation, which makes the system vulnerable to double-spend attacks. Aiming at alleviating the propagation delay problem, this paper introduces proximity-aware extensions to the current Bitcoin protocol, named Master Node Based Clustering (MNBC). The ultimate purpose of the proposed protocol, that are based on how clusters are formulated and how nodes can define their membership, is to improve the information propagation delay in the Bitcoin network. In MNBC protocol, physical internet connectivity increases, as well as the number of hops between nodes, decreases through assigning nodes to be responsible for maintaining clusters based on physical internet proximity. We show, through simulations, that the proposed protocol defines better clustering structures that optimize the performance of the transaction propagation over the Bitcoin protocol. The evaluation of partition attacks in the MNBC protocol, as well as the Bitcoin network, was done in this paper. Evaluation results prove that even though the Bitcoin network is more resistant against the partitioning attack than the MNBC protocol, more resources are needed to be spent to split the network in the MNBC protocol, especially with a higher number of nodes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bitcoin%20network" title="Bitcoin network">Bitcoin network</a>, <a href="https://publications.waset.org/abstracts/search?q=propagation%20delay" title=" propagation delay"> propagation delay</a>, <a href="https://publications.waset.org/abstracts/search?q=clustering" title=" clustering"> clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=scalability" title=" scalability "> scalability </a> </p> <a href="https://publications.waset.org/abstracts/119089/evaluation-of-security-and-performance-of-master-node-protocol-in-the-bitcoin-peer-to-peer-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119089.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11416</span> Optical Switching Based On Bragg Solitons in A Nonuniform Fiber Bragg Grating</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulatif%20Abdusalam">Abdulatif Abdusalam</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Shaban"> Mohamed Shaban</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we consider the nonlinear pulse propagation through a nonuniform birefringent fiber Bragg grating (FBG) whose index modulation depth varies along the propagation direction. Here, the pulse propagation is governed by the nonlinear birefringent coupled mode (NLBCM) equations. To form the Bragg soliton outside the photonic bandgap (PBG), the NLBCM equations are reduced to the well known NLS type equation by multiple scale analysis. As we consider the pulse propagation in a nonuniform FBG, the pulse propagation outside the PBG is governed by inhomogeneous NLS (INLS) rather than NLS. We, then, discuss the formation of soliton in the FBG known as Bragg soliton whose central frequency lies outside but close to the PBG of the grating structure. Further, we discuss Bragg soliton compression due to a delicate balance between the SPM and the varying grating induced dispersion. In addition, Bragg soliton collision, Bragg soliton switching and possible logic gates have also been discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bragg%20%20grating" title="Bragg grating">Bragg grating</a>, <a href="https://publications.waset.org/abstracts/search?q=non%20uniform%20%20fiber" title=" non uniform fiber"> non uniform fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=non%20linear%20pulse" title=" non linear pulse"> non linear pulse</a> </p> <a href="https://publications.waset.org/abstracts/2177/optical-switching-based-on-bragg-solitons-in-a-nonuniform-fiber-bragg-grating" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2177.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11415</span> Numerical Study on the Effect of Obstacle Structure on Two-Phase Detonation Initiation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ding%20Yu">Ding Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ge%20Yang"> Ge Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang%20Hong-Tao"> Wang Hong-Tao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aiming at the detonation performance and detonation wave propagation distance of liquid fuel detonation engine, the kerosene/oxygen-enriched air mixture is chosen as the research object; its detonation initiation and detonation wave propagation process by mild energy input are numerically studied by using Euler-Lagrange method in the present study. The effects of a semicircular obstacle, rectangular obstacle, and triangular obstacle on the detonation characteristic parameters in the detonation tube are compared and analyzed, and the effect of the angle between obstacle and flame propagation direction on flame propagation characteristics and detonation process when the blocking ratio is constant are studied. The results show that the flame propagation velocity decreases with the increase of the angle in the range of 0-90°, and when the angle is 0° which corresponds to the semicircle obstacle gets the highest detonation wave propagation velocity. With the increase of the angle in the range of 0-90°, DDT (Deflagration to detonation transition) distance decreases first and then increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deflagration%20to%20detonation%20transition" title="deflagration to detonation transition">deflagration to detonation transition</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=obstacle%20structure" title=" obstacle structure"> obstacle structure</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20flame" title=" turbulent flame"> turbulent flame</a> </p> <a href="https://publications.waset.org/abstracts/165628/numerical-study-on-the-effect-of-obstacle-structure-on-two-phase-detonation-initiation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165628.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11414</span> Temperature Effect on Sound Propagation in an Elastic Pipe with Viscoelastic Liquid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Levitsky">S. Levitsky</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Bergman"> R. Bergman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fluid rheology may have essential impact on sound propagation in a liquid-filled pipe, especially, in a low frequency range. Rheological parameters of liquid are temperature-sensitive, which ultimately results in a temperature dependence of the wave speed and attenuation in the waveguide. The study is devoted to modeling of this effect at sound propagation in an elastic pipe with polymeric liquid, described by generalized Maxwell model with non-zero high-frequency viscosity. It is assumed that relaxation spectrum is distributed according to the Spriggs law; temperature impact on the liquid rheology is described on the basis of the temperature-superposition principle and activation theory. The dispersion equation for the waveguide, considered as a thin-walled tube with polymeric solution, is obtained within a quasi-one-dimensional formulation. Results of the study illustrate the influence of temperature on sound propagation in the system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elastic%20tube" title="elastic tube">elastic tube</a>, <a href="https://publications.waset.org/abstracts/search?q=sound%20propagation" title=" sound propagation"> sound propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20effect" title=" temperature effect"> temperature effect</a>, <a href="https://publications.waset.org/abstracts/search?q=viscoelastic%20liquid" title=" viscoelastic liquid"> viscoelastic liquid</a> </p> <a href="https://publications.waset.org/abstracts/12837/temperature-effect-on-sound-propagation-in-an-elastic-pipe-with-viscoelastic-liquid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12837.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11413</span> Dynamic Transmission Modes of Network Public Opinion on Subevents Clusters of an Emergent Event</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuan%20Xu">Yuan Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xun%20Liang"> Xun Liang</a>, <a href="https://publications.waset.org/abstracts/search?q=Meina%20Zhang"> Meina Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rise and attenuation of the public opinion broadcast of an emergent accident, in the social network, has a close relationship with the dynamic development of its subevents cluster. In this article, we take Tianjin Port explosion's subevents as an example to research the dynamic propagation discipline of Internet public opinion in a sudden accident, and analyze the overall structure of dynamic propagation to propose four different routes for subevents clusters propagation. We also generate network diagrams for the dynamic public opinion propagation, analyze each propagation type specifically. Based on this, suggestions on the supervision and guidance of Internet public opinion broadcast can be made. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=network%20dynamic%20transmission%20modes" title="network dynamic transmission modes">network dynamic transmission modes</a>, <a href="https://publications.waset.org/abstracts/search?q=emergent%20subevents%20clusters" title=" emergent subevents clusters"> emergent subevents clusters</a>, <a href="https://publications.waset.org/abstracts/search?q=Tianjin%20Port%20explosion" title=" Tianjin Port explosion"> Tianjin Port explosion</a>, <a href="https://publications.waset.org/abstracts/search?q=public%20opinion%20supervision" title=" public opinion supervision"> public opinion supervision</a> </p> <a href="https://publications.waset.org/abstracts/54222/dynamic-transmission-modes-of-network-public-opinion-on-subevents-clusters-of-an-emergent-event" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54222.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11412</span> Models of Environmental, Crack Propagation of Some Aluminium Alloys (7xxx)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20A.%20Jawan">H. A. Jawan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This review describes the models of environmental-related crack propagation of aluminum alloys (7xxx) during the last few decades. Acknowledge on effects of different factors on the susceptibility to SCC permits to propose valuable mechanisms on crack advancement. The reliable mechanism of cracking give a possibility to propose the optimum chemical composition and thermal treatment conditions resulting in microstructure the most suitable for real environmental condition and stress state. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microstructure" title="microstructure">microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental" title=" environmental"> environmental</a>, <a href="https://publications.waset.org/abstracts/search?q=propagation" title=" propagation"> propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanism" title=" mechanism"> mechanism</a> </p> <a href="https://publications.waset.org/abstracts/21168/models-of-environmental-crack-propagation-of-some-aluminium-alloys-7xxx" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21168.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11411</span> Models of Environmental: Cracker Propagation of Some Aluminum Alloys (7xxx)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Jawan">H. Jawan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This review describes the models of environmental-related crack propagation of aluminum alloys (7xxx) during the last few decades. Acknowledge on effects of different factors on the susceptibility to SCC permits to propose valuable mechanisms on crack advancement. The reliable mechanism of cracking give a possibility to propose the optimum chemical composition and thermal treatment conditions resulting in microstructure the most suitable for real environmental condition and stress state. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microstructure" title="microstructure">microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental" title=" environmental"> environmental</a>, <a href="https://publications.waset.org/abstracts/search?q=propagation" title=" propagation"> propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanism" title=" mechanism"> mechanism</a> </p> <a href="https://publications.waset.org/abstracts/24710/models-of-environmental-cracker-propagation-of-some-aluminum-alloys-7xxx" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24710.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">390</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11410</span> Simulation of Wave Propagation in Multiphase Medium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Edip%20Kemal">Edip Kemal</a>, <a href="https://publications.waset.org/abstracts/search?q=Sheshov%20Vlatko"> Sheshov Vlatko</a>, <a href="https://publications.waset.org/abstracts/search?q=Bojadjieva%20Julijana"> Bojadjieva Julijana</a>, <a href="https://publications.waset.org/abstracts/search?q=Bogdanovic%20ALeksandra"> Bogdanovic ALeksandra</a>, <a href="https://publications.waset.org/abstracts/search?q=Gjorgjeska%20Irena"> Gjorgjeska Irena</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The wave propagation phenomenon in porous domains is of great importance in the field of geotechnical earthquake engineering. In these kinds of problems, the elastic waves propagate from the interior to the exterior domain and require special treatment at the computational level since apart from displacement in the solid-state there is a p-wave that takes place in the pore water phase. In this paper, a study on the implementation of multiphase finite elements is presented. The proposed algorithm is implemented in the ANSYS finite element software and tested on one-dimensional wave propagation considering both pore pressure wave propagation and displacement fields. In the simulation of porous media such as soils, the behavior is governed largely by the interaction of the solid skeleton with water and/or air in the pores. Therefore, coupled problems of fluid flow and deformation of the solid skeleton are considered in a detailed way. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wave%20propagation" title="wave propagation">wave propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=multiphase%20model" title=" multiphase model"> multiphase model</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20methods" title=" numerical methods"> numerical methods</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a> </p> <a href="https://publications.waset.org/abstracts/144167/simulation-of-wave-propagation-in-multiphase-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144167.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11409</span> Analysis of Nonlinear Pulse Propagation Characteristics in Semiconductor Optical Amplifier for Different Input Pulse Shapes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suchi%20Barua">Suchi Barua</a>, <a href="https://publications.waset.org/abstracts/search?q=Narottam%20Das"> Narottam Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Sven%20Nordholm"> Sven Nordholm</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Razaghi"> Mohammad Razaghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents nonlinear pulse propagation characteristics for different input optical pulse shapes with various input pulse energy levels in semiconductor optical amplifiers. For simulation of nonlinear pulse propagation, finite-difference beam propagation method is used to solve the nonlinear Schrödinger equation. In this equation, gain spectrum dynamics, gain saturation are taken into account which depends on carrier depletion, carrier heating, spectral-hole burning, group velocity dispersion, self-phase modulation and two photon absorption. From this analysis, we obtained the output waveforms and spectra for different input pulse shapes as well as for different input energies. It shows clearly that the peak position of the output waveforms are shifted toward the leading edge which due to the gain saturation of the SOA for higher input pulse energies. We also analyzed and compared the normalized difference of full-width at half maximum for different input pulse shapes in the SOA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite-difference%20beam%20propagation%20method" title="finite-difference beam propagation method">finite-difference beam propagation method</a>, <a href="https://publications.waset.org/abstracts/search?q=pulse%20shape" title=" pulse shape"> pulse shape</a>, <a href="https://publications.waset.org/abstracts/search?q=pulse%20propagation" title=" pulse propagation"> pulse propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductor%20optical%20amplifier" title=" semiconductor optical amplifier"> semiconductor optical amplifier</a> </p> <a href="https://publications.waset.org/abstracts/20730/analysis-of-nonlinear-pulse-propagation-characteristics-in-semiconductor-optical-amplifier-for-different-input-pulse-shapes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20730.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">607</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11408</span> Amplification of electromagnetic pulse by conducting cone</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20S.%20Manuylovich">E. S. Manuylovich</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20A.%20Astapenko"> V. A. Astapenko</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20A.%20Golovinsky"> P. A. Golovinsky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The dispersion relation binding the constant of propagation and frequency is calculated for silver cone. The evolution of the electric field of ultrashort pulse during its propagation in conical structure is considered. Increasing of electric field during pulse propagation to the top of the cone is observed. Reduction of the pulse duration at a certain distance is observed. The dependence of minimum pulse duration on initial chirp and cone angle is investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultrashort%20pulses" title="ultrashort pulses">ultrashort pulses</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20plasmon%20polariton" title=" surface plasmon polariton"> surface plasmon polariton</a>, <a href="https://publications.waset.org/abstracts/search?q=dispersion" title=" dispersion"> dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=silver%20cone" title=" silver cone"> silver cone</a> </p> <a href="https://publications.waset.org/abstracts/27539/amplification-of-electromagnetic-pulse-by-conducting-cone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27539.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11407</span> Multi-Scale Control Model for Network Group Behavior</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fuyuan%20Ma">Fuyuan Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Ying%20Wang"> Ying Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xin%20Wang"> Xin Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Social networks have become breeding grounds for the rapid spread of rumors and malicious information, posing threats to societal stability and causing significant public harm. Existing research focuses on simulating the spread of information and its impact on users through propagation dynamics and applies methods such as greedy approximation strategies to approximate the optimal control solution at the global scale. However, the greedy strategy at the global scale may fall into locally optimal solutions, and the approximate simulation of information spread may accumulate more errors. Therefore, we propose a multi-scale control model for network group behavior, introducing individual and group scales on top of the greedy strategy’s global scale. At the individual scale, we calculate the propagation influence of nodes based on their structural attributes to alleviate the issue of local optimality. At the group scale, we conduct precise propagation simulations to avoid introducing cumulative errors from approximate calculations without increasing computational costs. Experimental results on three real-world datasets demonstrate the effectiveness of our proposed multi-scale model in controlling network group behavior. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=influence%20blocking%20maximization" title="influence blocking maximization">influence blocking maximization</a>, <a href="https://publications.waset.org/abstracts/search?q=competitive%20linear%20threshold%20model" title=" competitive linear threshold model"> competitive linear threshold model</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20networks" title=" social networks"> social networks</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20group%20behavior" title=" network group behavior"> network group behavior</a> </p> <a href="https://publications.waset.org/abstracts/191264/multi-scale-control-model-for-network-group-behavior" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191264.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">21</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11406</span> Numerical Simulation of Laser Propagation through Turbulent Atmosphere Using Zernike Polynomials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Moradi%20%E2%80%8E">Mohammad Moradi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article, propagation of a laser beam through turbulent atmosphere is evaluated. At first the laser beam is simulated and then turbulent atmosphere will be simulated by using Zernike polynomials. Some parameter like intensity, PSF will be measured for four wavelengths in different Cn2. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser%20beam%20propagation" title="laser beam propagation">laser beam propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20screen" title=" phase screen"> phase screen</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20atmosphere" title=" turbulent atmosphere"> turbulent atmosphere</a>, <a href="https://publications.waset.org/abstracts/search?q=Zernike%20%E2%80%8Epolynomials" title=" Zernike polynomials"> Zernike polynomials</a> </p> <a href="https://publications.waset.org/abstracts/35907/numerical-simulation-of-laser-propagation-through-turbulent-atmosphere-using-zernike-polynomials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35907.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">511</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11405</span> Evaluation of the Fire Propagation Characteristics of Thermoplastics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ji-Hun%20Choi">Ji-Hun Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyoung-Suk%20Cho"> Kyoung-Suk Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Seung-Un%20Chae"> Seung-Un Chae</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Consisting of organic compounds, plastic ignites easily and burns fast. In addition, a large amount of toxic gas is produced while it is burning. When plastic is heated, its volume decreases because its surface is melted. The decomposition of its molecular bond generates combustible liquid of low viscosity, which accelerates plastic combustion and spreads the flames. Radiant heat produced in the process propagates the fire to increase the risk of human and property damages. Accordingly, the purpose of this study was to identify chemical, thermal and combustion characteristics of thermoplastic plastics using the fire propagation apparatus based on experimental criteria of ISO 12136 and ASTM E 2058. By the experiment result, as the ignition time increased, the thermal response parameter (TRP) decreased and as the TRP increased, the slope decreased. In other words, the large the TRP was, the longer the time taken for heating and ignition of the material was. It was identified that the fire propagation speed dropped accordingly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fire%20propagation%20apparatus%20%28FPA%29" title="fire propagation apparatus (FPA)">fire propagation apparatus (FPA)</a>, <a href="https://publications.waset.org/abstracts/search?q=ISO%2012136" title=" ISO 12136"> ISO 12136</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20response%20parameter%20%28TRP%29" title=" thermal response parameter (TRP)"> thermal response parameter (TRP)</a>, <a href="https://publications.waset.org/abstracts/search?q=fire%20propagation%20index%20%28FPI%29" title=" fire propagation index (FPI)"> fire propagation index (FPI)</a> </p> <a href="https://publications.waset.org/abstracts/94397/evaluation-of-the-fire-propagation-characteristics-of-thermoplastics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94397.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=information%20propagation&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=information%20propagation&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=information%20propagation&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=information%20propagation&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=information%20propagation&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=information%20propagation&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=information%20propagation&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=information%20propagation&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=information%20propagation&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=information%20propagation&page=381">381</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=information%20propagation&page=382">382</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=information%20propagation&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>