CINXE.COM
Search results for: in vivo study
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: in vivo study</title> <meta name="description" content="Search results for: in vivo study"> <meta name="keywords" content="in vivo study"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="in vivo study" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="in vivo study"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 50322</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: in vivo study</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50322</span> A Comparative Evaluation of Antioxidant Activity of in vivo and in vitro Raised Holarrhena antidysenterica Linn.</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gayatri%20Nahak">Gayatri Nahak</a>, <a href="https://publications.waset.org/abstracts/search?q=Satyajit%20Kanungo"> Satyajit Kanungo</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajani%20Kanta%20Sahu"> Rajani Kanta Sahu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Holarrhena antidysenterica Linn. (Apocynaceae) is a typical Indian medicinal plant popularly known as “Indrajav”. Traditionally the plant has been considered a popular remedy for the treatment of dysentery, diarrhea, intestinal worms and the seeds of this plant are also used as an anti-diabetic remedy. In the present study axillary shoot multiplication, callus induction and shoot regeneration from callus culture were obtained on Murashige and Skoog (MS) medium supplemented with different concentrations and combinations of plant growth regulators. Then in vivo and in vitro grown healthy plants were selected for study of antioxidant activity through DPPH and OH methods. Significantly higher antioxidant activity and phenol contents were observed in vitro raised plant in comparison to in vivo plants. The findings indicated the greater amount of phenolic compounds leads to more potent radical scavenging effect as shown in in vitro raised plant in comparison to in vivo plants which showed the ability to utilize tissue culture techniques towards development of desired bioactive metabolites from in vitro culture as an alternative way to avoid using endangered plants in pharmaceutical purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Holarrhena%20antidysenterica" title="Holarrhena antidysenterica">Holarrhena antidysenterica</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20vitro" title=" in vitro"> in vitro</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20vivo" title=" in vivo"> in vivo</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a> </p> <a href="https://publications.waset.org/abstracts/16353/a-comparative-evaluation-of-antioxidant-activity-of-in-vivo-and-in-vitro-raised-holarrhena-antidysenterica-linn" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16353.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">510</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50321</span> Comparative Study of Antioxidant Activity in in vivo and in vitro Samples of Purple Greater Yam (Dioscorea alata L).</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sakinah%20Abdullah">Sakinah Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosna%20Mat%20Taha"> Rosna Mat Taha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Antioxidants are compounds that protect cells against the damaging effects of reactive oxygen species such as singlet oxygen, superoxide, peroxyl radicals, and peroxynitrite which result in oxidative stress leading to cellular damage. Natural antioxidant are in high demand because of their potential in health promotion and disease prevention and their improved safety and consumer acceptability. Plants are rich sources of natural antioxidant. Dioscorea alata L. known as 'ubi badak' in Malaysia were well known for their antioxidant content, but this plant was seasonal. Thus, tissue culture technique was used to mass propagate this plant. In the present work, a comparative study between in vitro (from tissue culture) and in vivo (from intact plant) samples of Dioscorea alata L. for their antioxidant potential by 2,2-diphenil -1- picrylhydrazyl (DPPH) radical scavenging activity method and their total phenolic and flavonoid contents were carried out. All samples had better radical scavenging activity but in vivo samples had the strongest radical scavenging activity compared to in vitro samples. Furthermore, tubers from in vivo samples showed the greatest free radical scavenging effect and comparatively greater phenolic content than in vitro samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dioscorea%20alata" title="Dioscorea alata">Dioscorea alata</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20culture" title=" tissue culture"> tissue culture</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20vivo" title=" in vivo"> in vivo</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20vitro" title=" in vitro"> in vitro</a>, <a href="https://publications.waset.org/abstracts/search?q=DPPH" title=" DPPH"> DPPH</a> </p> <a href="https://publications.waset.org/abstracts/31969/comparative-study-of-antioxidant-activity-in-in-vivo-and-in-vitro-samples-of-purple-greater-yam-dioscorea-alata-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31969.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50320</span> A Novel Peptide Showing Universal Effect against Multiple Viruses in Vitro and in Vivo</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanjun%20Zhao">Hanjun Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Ke%20Zhang"> Ke Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Bojian%20Zheng"> Bojian Zheng </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: So far, there is no universal antiviral agent which can inhibit multiple viral infections. More and more drug-resistant viral strains emerge after the antiviral drug application for treatment. Defensins are the front line of host innate immunity and have broad spectrum antibacterial and antiviral effects. However, there is limited data to show if these defensins have good antiviral activity in vivo and what the antiviral mechanism is. Subjects: To investigate a peptide with widespread antivirus activity in vitro and in vivo and illustrate the antiviral mechanism. Methods: Antiviral peptide library designed from mouse beta defensins was synthesized by the company. Recombinant beta defensin was obtained from E. coli. Antiviral activity in vitro was assayed by plaque assay, qPCR. Antiviral activity in vivo was detected by animal challenge with 2009 pandemic H1N1 influenza A virus. The antiviral mechanism was assayed by western blot, ELISA, and qPCR. Conclusions: We identify a new peptide which has widespread effects against multiple viruses (H1N1, H5N1, H7N9, MERS-CoV) in vitro and has efficient antivirus activity in vivo. This peptide inhibits viral entry into target cells and subsequently blocks viral replication. The in vivo study of the antiviral peptide against other viral infections and the investigation of its more detail antiviral mechanism are ongoing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antiviral%20peptide" title="antiviral peptide">antiviral peptide</a>, <a href="https://publications.waset.org/abstracts/search?q=defensin" title=" defensin"> defensin</a>, <a href="https://publications.waset.org/abstracts/search?q=Influenza%20A%20virus" title=" Influenza A virus"> Influenza A virus</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanism" title=" mechanism"> mechanism</a> </p> <a href="https://publications.waset.org/abstracts/29172/a-novel-peptide-showing-universal-effect-against-multiple-viruses-in-vitro-and-in-vivo" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29172.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50319</span> Nano-Particle of π-Conjugated Polymer for Near-Infrared Bio-Imaging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hiroyuki%20Aoki">Hiroyuki Aoki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Molecular imaging has attracted much attention recently, which visualizes biological molecules, cells, tissue, and so on. Among various in vivo imaging techniques, the fluorescence imaging method has been widely employed as a useful modality for small animals in pre-clinical researches. However, the higher signal intensity is needed for highly sensitive in vivo imaging. The objective of the current study is the development of a fluorescent imaging agent with high brightness for the tumor imaging of a mouse. The strategy to enhance the fluorescence signal of a bio-imaging agent is the increase of the absorption of the excitation light and the fluorescence conversion efficiency. We developed a nano-particle fluorescence imaging agent consisting of a π-conjugated polymer emitting a fluorescence signal in a near infrared region. A large absorption coefficient and high emission intensity at a near infrared optical window for biological tissue enabled highly sensitive in vivo imaging with a tumor-targeting ability by an EPR (enhanced permeation and retention) effect. The signal intensity from the π-conjugated fluorescence imaging agent is larger by two orders of magnitude compared to a quantum dot, which has been known as the brightest imaging agent. The π-conjugated polymer nano-particle would be a promising candidate in the in vivo imaging of small animals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluorescence" title="fluorescence">fluorescence</a>, <a href="https://publications.waset.org/abstracts/search?q=conjugated%20polymer" title=" conjugated polymer"> conjugated polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20vivo%20imaging" title=" in vivo imaging"> in vivo imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-particle" title=" nano-particle"> nano-particle</a>, <a href="https://publications.waset.org/abstracts/search?q=near-infrared" title=" near-infrared"> near-infrared</a> </p> <a href="https://publications.waset.org/abstracts/97998/nano-particle-of-p-conjugated-polymer-for-near-infrared-bio-imaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97998.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">478</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50318</span> A Systematic Review Examining the Experimental methodology behind in vivo testing of hiatus hernia and Diaphragmatic Hernia Mesh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Whitehead-Clarke%20T.">Whitehead-Clarke T.</a>, <a href="https://publications.waset.org/abstracts/search?q=Beynon%20V."> Beynon V.</a>, <a href="https://publications.waset.org/abstracts/search?q=Banks%20J."> Banks J.</a>, <a href="https://publications.waset.org/abstracts/search?q=Karanjia%20R."> Karanjia R.</a>, <a href="https://publications.waset.org/abstracts/search?q=Mudera%20V."> Mudera V.</a>, <a href="https://publications.waset.org/abstracts/search?q=Windsor%20A."> Windsor A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Kureshi%20A."> Kureshi A.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Mesh implants are regularly used to help repair both hiatus hernias (HH) and diaphragmatic hernias (DH). In vivo studies are used to test not only mesh safety but increasingly comparative efficacy. Our work examines the field of in vivo mesh testing for HH and DH models to establish current practices and standards. Method: This systematic review was registered with PROSPERO. Medline and Embase databases were searched for relevant in vivo studies. 44 articles were identified and underwent abstract review, where 22 were excluded. 4 further studies were excluded after full text review – leaving 18 to undergo data extraction. Results: Of 18 studies identified, 9 used an in vivo HH model and 9 a DH model. 5 studies undertook mechanical testing on tissue samples – all uniaxial in nature. Testing strip widths ranged from 1-20mm (median 3mm). Testing speeds varied from 1.5-60mm/minute. Upon histology, the most commonly assessed structural and cellular factors were neovascularization and macrophages, respectively (n=9 each). Structural analysis was mostly qualitative, where cellular analysis was equally likely to be quantitative. 11 studies assessed adhesion formation, of which 8 used one of four scoring systems. 8 studies measured mesh shrinkage. Discussion: In vivo studies assessing mesh for HH and DH repair are uncommon. Within this relatively young field, we encourage surgical and materials testing institutions to discuss its standardisation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hiatus" title="hiatus">hiatus</a>, <a href="https://publications.waset.org/abstracts/search?q=diaphragmatic" title=" diaphragmatic"> diaphragmatic</a>, <a href="https://publications.waset.org/abstracts/search?q=hernia" title=" hernia"> hernia</a>, <a href="https://publications.waset.org/abstracts/search?q=mesh" title=" mesh"> mesh</a>, <a href="https://publications.waset.org/abstracts/search?q=materials%20testing" title=" materials testing"> materials testing</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20vivo" title=" in vivo"> in vivo</a> </p> <a href="https://publications.waset.org/abstracts/141777/a-systematic-review-examining-the-experimental-methodology-behind-in-vivo-testing-of-hiatus-hernia-and-diaphragmatic-hernia-mesh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141777.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50317</span> Development of Polymer Nano-Particles as in vivo Imaging Agents for Photo-Acoustic Imaging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hiroyuki%20Aoki">Hiroyuki Aoki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Molecular imaging has attracted much attention to visualize a tumor site in a living body on the basis of biological functions. A fluorescence in vivo imaging technique has been widely employed as a useful modality for small animals in pre-clinical researches. However, it is difficult to observe a site deep inside a body because of a short penetration depth of light. A photo-acoustic effect is a generation of a sound wave following light absorption. Because the sound wave is less susceptible to the absorption of tissues, an in vivo imaging method based on the photoacoustic effect can observe deep inside a living body. The current study developed an in vivo imaging agent for a photoacoustic imaging method. Nano-particles of poly(lactic acid) including indocyanine dye were developed as bio-compatible imaging agent with strong light absorption. A tumor site inside a mouse body was successfully observed in a photo-acoustic image. A photo-acoustic imaging with polymer nano-particle agent would be a powerful method to visualize a tumor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nano-particle" title="nano-particle">nano-particle</a>, <a href="https://publications.waset.org/abstracts/search?q=photo-acoustic%20effect" title=" photo-acoustic effect"> photo-acoustic effect</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer" title=" polymer"> polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=dye" title=" dye"> dye</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20vivo%20imaging" title=" in vivo imaging"> in vivo imaging</a> </p> <a href="https://publications.waset.org/abstracts/101895/development-of-polymer-nano-particles-as-in-vivo-imaging-agents-for-photo-acoustic-imaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101895.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50316</span> Hepatoprotective Evaluation of Potent Antioxidant Fraction from Urtica dioica L.: In vitro and In vivo Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bhuwan%20C.%20Joshi">Bhuwan C. Joshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Atish%20Prakash"> Atish Prakash</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajudhia%20N.%20Kalia"> Ajudhia N. Kalia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ethnopharmacological relevance: The plant Urtica dioica L. (Urticaceae) is used in various diseases including hepatic ailments. Traditionally, the leaves and roots of the plant are used in jaundice. Objective: The aim of the present work was to evaluate hepatoprotective potential of potent antioxidant from Urtica dioica L. against CCl4 induced hepatotoxicity in-vitro and in-vivo model. Materials and methods: Antioxidant activity of hydro alcoholic extract and its fractions petroleum ether fraction (PEF), ethyl acetate fraction (EAF), n-butanol fraction (NBF) and aqueous fraction (AF) were determined by DPPH radicals scavenging assay. Fractions were subjected to in-vitro cell line study. Further, the most potent fraction (EAF) was subjected to in-vivo study. The in-vivo hepatoprotective active fraction was chromatographed on silica column to isolate the bioactive constituent(s). Structure elucidation was done by using various spectrophotometric techniques like UV, IR, 1H NMR, 13C NMR and MS spectroscopy. Results and conclusion: The ethyl acetate fraction (EAF) of Urtica. dioica L. possessed the potent antioxidant activity viz. DPPH (IC50 78.99 ± 0.17 µg/ml). The in-vitro cell line study showed EAF prevented the cell damage. The EAF significantly attenuated the increased liver enzymes activities in serum and tissue. Column chromatography of most potent antioxidant fraction (EAF) leads to the isolation of 4-hydroxy-3-methoxy cinnamic acid which is responsible for its hepatoprotective potential. Hence, the present study suggests that EAF has significant antioxidant and hepatoprotective potential on CCl4 induced hepatotoxicity in-vitro and in-vivo. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Urtica%20dioica%20L." title="Urtica dioica L.">Urtica dioica L.</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=HepG2%20cell%20line" title=" HepG2 cell line"> HepG2 cell line</a>, <a href="https://publications.waset.org/abstracts/search?q=hepatoprotective" title=" hepatoprotective"> hepatoprotective</a> </p> <a href="https://publications.waset.org/abstracts/41585/hepatoprotective-evaluation-of-potent-antioxidant-fraction-from-urtica-dioica-l-in-vitro-and-in-vivo-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41585.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50315</span> Self-Carried Theranostic Nanoparticles for in vitro and in vivo Cancer Therapy with Real-Time Monitoring of Drug Release</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jinfeng%20Zhang">Jinfeng Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chun-Sing%20Lee"> Chun-Sing Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of different nanocarriers for delivering hydrophobic pharmaceutical agents to tumor sites has garnered major attention. Despite the merits of these nanocarriers, further studies are needed for improving their drug loading capacities (typically less than 10%) and reducing their potential systemic toxicity. So development of alternative self-carried nanodrug delivery strategies without using any inert carriers is highly desirable. In this study, we developed a self-carried theranostic curcumin (Cur) nanodrug for highly effective cancer therapy in vitro and in vivo with real-time monitoring of drug release. With a biocompatible C18PMH-PEG functionalization, the Cur nanoparticles (NPs) showed excellent dispersibility and outstanding stability in physiological environment, with drug loading capacity higher than 78 wt.%. Both confocal microscopy and flow cytometry confirmed the cellular fluorescent “OFF-ON” activation and real-time monitoring of Cur molecule release, showing its potential for cancer diagnosis. In vitro and in vivo experiments clearly show that therapeutic efficacy of the PEGylated Cur NPs is much better than that of free Cur. This self-carried theranostic strategy with real-time monitoring of drug release may open a new way for simultaneous cancer therapy and diagnosis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drug%20delivery" title="drug delivery">drug delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20vitro%20and%20in%20vivo%20cancer%20therapy" title=" in vitro and in vivo cancer therapy"> in vitro and in vivo cancer therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=real-time%20monitoring" title=" real-time monitoring"> real-time monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=self-carried" title=" self-carried"> self-carried</a> </p> <a href="https://publications.waset.org/abstracts/26667/self-carried-theranostic-nanoparticles-for-in-vitro-and-in-vivo-cancer-therapy-with-real-time-monitoring-of-drug-release" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26667.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50314</span> Formulation and Ex Vivo Evaluation of Solid Lipid Nanoparticles Based Hydrogel for Intranasal Drug Delivery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pramod%20Jagtap">Pramod Jagtap</a>, <a href="https://publications.waset.org/abstracts/search?q=Kisan%20Jadhav"> Kisan Jadhav</a>, <a href="https://publications.waset.org/abstracts/search?q=Neha%20Dand"> Neha Dand</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Risperidone (RISP) is an antipsychotic agent and has low water solubility and nontargeted delivery results in numerous side effects. Hence, an attempt was made to develop SLNs hydrogel for intranasal delivery of RISP to achieve maximum bioavailability and reduction of side effects. RISP loaded SLNs composed of 1.65% (w/v) lipid mass were produced by high shear homogenization (HSH) coupled ultrasound (US) method using glyceryl monostearate (GMS) or Imwitor 900K (solid lipid). The particles were loaded with 0.2% (w/v) of the RISP & surface-tailored with a 2.02% (w/v) non-ionic surfactant Tween® 80. Optimization was done using 32 factorial design using Design Expert® software. The prepared SLNs dispersion incorporated into Polycarbophil AA1 hydrogel (0.5% w/v). The final gel formulation was evaluated for entrapment efficiency, particle size, rheological properties, X ray diffraction, in vitro diffusion, ex vivo permeation using sheep nasal mucosa and histopathological studies for nasocilliary toxicity. The entrapment efficiency of optimized SLNs was found to be 76 ± 2 %, polydispersity index <0.3., particle size 278 ± 5 nm. This optimized batch was incorporated into hydrogel. The pH was found to be 6.4 ± 0.14. The rheological behaviour of hydrogel formulation revealed no thixotropic behaviour. In histopathology study, there was no nasocilliary toxicity observed in nasal mucosa after ex vivo permeation. X-ray diffraction data shows drug was in amorphous form. Ex vivo permeation study shows controlled release profile of drug. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ex%20vivo" title="ex vivo">ex vivo</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20size" title=" particle size"> particle size</a>, <a href="https://publications.waset.org/abstracts/search?q=risperidone" title=" risperidone"> risperidone</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20lipid%20nanoparticles" title=" solid lipid nanoparticles"> solid lipid nanoparticles</a> </p> <a href="https://publications.waset.org/abstracts/20704/formulation-and-ex-vivo-evaluation-of-solid-lipid-nanoparticles-based-hydrogel-for-intranasal-drug-delivery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20704.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50313</span> Bio-Functional Polymeric Protein Based Materials Utilized for Soft Tissue Engineering Application </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Er-Yuan%20Chuang">Er-Yuan Chuang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bio-mimetic matters have biological functionalities. This might be valuable in the development of versatile biomaterials. At biological fields, protein-based materials might be components to form a 3D network of extracellular biomolecules, containing growth factors. Also, the protein-based biomaterial provides biochemical and structural assistance of adjacent cells. In this study, we try to prepare protein based biomaterial, which was harvested from living animal. We analyzed it’s chemical, physical and biological property in vitro. Besides, in vivo bio-interaction of the prepared biomimetic matrix was tested in an animal model. The protein-based biomaterial has degradability and biocompatibility. This development could be used for tissue regenerations and be served as platform technologies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=protein%20based" title="protein based">protein based</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20vitro%20study" title=" in vitro study"> in vitro study</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20vivo%20study" title=" in vivo study"> in vivo study</a>, <a href="https://publications.waset.org/abstracts/search?q=biomaterials" title=" biomaterials"> biomaterials</a> </p> <a href="https://publications.waset.org/abstracts/105449/bio-functional-polymeric-protein-based-materials-utilized-for-soft-tissue-engineering-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105449.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50312</span> Identification and Characterization of in Vivo, in Vitro and Reactive Metabolites of Zorifertinib Using Liquid Chromatography Lon Trap Mass Spectrometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adnan%20A.%20Kadi">Adnan A. Kadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasser%20S.%20Al-Shakliah"> Nasser S. Al-Shakliah</a>, <a href="https://publications.waset.org/abstracts/search?q=Haitham%20Al-Rabiah"> Haitham Al-Rabiah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zorifertinib is a novel, potent, oral, a small molecule used to treat non-small cell lung cancer (NSCLC). zorifertinib is an Epidermal Growth Factor Receptor (EGFR) inhibitor and has good blood–brain barrier permeability for (NSCLC) patients with EGFR mutations. zorifertinibis currently at phase II/III clinical trials. The current research reports the characterization and identification of in vitro, in vivo and reactive intermediates of zorifertinib. Prediction of susceptible sites of metabolism and reactivity pathways (cyanide and GSH) of zorifertinib were performed by the Xenosite web predictor tool. In-vitro metabolites of zorifertinib were performed by incubation with rat liver microsomes (RLMs) and isolated perfused rat liver hepatocytes. Extraction of zorifertinib and it's in vitro metabolites from the incubation mixtures were done by protein precipitation. In vivo metabolism was done by giving a single oral dose of zorifertinib(10 mg/Kg) to Sprague Dawely rats in metabolic cages by using oral gavage. Urine was gathered and filtered at specific time intervals (0, 6, 12, 18, 24, 48, 72,96and 120 hr) from zorifertinib dosing. A similar volume of ACN was added to each collected urine sample. Both layers (organic and aqueous) were injected into liquid chromatography ion trap mass spectrometry(LC-IT-MS) to detect vivozorifertinib metabolites. N-methyl piperizine ring and quinazoline group of zorifertinib undergoe metabolism forming iminium and electro deficient conjugated system respectively, which are very reactive toward nucleophilic macromolecules. Incubation of zorifertinib with RLMs in the presence of 1.0 mM KCN and 1.0 Mm glutathione were made to check reactive metabolites as it is often responsible for toxicities associated with this drug. For in vitro metabolites there were nine in vitro phase I metabolites, four in vitro phase II metabolites, eleven reactive metabolites(three cyano adducts, five GSH conjugates metabolites, and three methoxy metabolites of zorifertinib were detected by LC-IT-MS. For in vivo metabolites, there were eight in vivo phase I, tenin vivo phase II metabolitesofzorifertinib were detected by LC-IT-MS. In vitro and in vivo phase I metabolic pathways wereN- demthylation, O-demethylation, hydroxylation, reduction, defluorination, and dechlorination. In vivo phase II metabolic reaction was direct conjugation of zorifertinib with glucuronic acid and sulphate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=in%20vivo%20metabolites" title="in vivo metabolites">in vivo metabolites</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20vitro%20metabolites" title=" in vitro metabolites"> in vitro metabolites</a>, <a href="https://publications.waset.org/abstracts/search?q=cyano%20adducts" title=" cyano adducts"> cyano adducts</a>, <a href="https://publications.waset.org/abstracts/search?q=GSH%20conjugate" title="GSH conjugate">GSH conjugate</a> </p> <a href="https://publications.waset.org/abstracts/140683/identification-and-characterization-of-in-vivo-in-vitro-and-reactive-metabolites-of-zorifertinib-using-liquid-chromatography-lon-trap-mass-spectrometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140683.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50311</span> In-Vivo Study of Annacardium occidentale L. Emulgel Extract Using Non-Invasive Probes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akhtar%20Naveed">Akhtar Naveed</a>, <a href="https://publications.waset.org/abstracts/search?q=Kanwal%20Shahla"> Kanwal Shahla</a>, <a href="https://publications.waset.org/abstracts/search?q=Khan%20HMS"> Khan HMS</a>, <a href="https://publications.waset.org/abstracts/search?q=Rasool%20Fatima"> Rasool Fatima</a>, <a href="https://publications.waset.org/abstracts/search?q=Ijaz%20Shakeel"> Ijaz Shakeel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The focus of the study was to design, develop and characterize in vivo, a stable Emulgel formulation containing Anacardium occidentale L.(cashew extract) as an active ingredient. The formulation was prepared and kept at 8ºC, 25 ºC, 40ºC and 40ºC±RH for a period of 28 days. During this time period, stability, pH values, conductivity, organoleptic features (color, liquefaction, phase separation) were conducted at the intervals of day 1st, 2nd, 3rd , 7th, 14th and 28th days. In In vivo studies, the test formulation (5% Anacardium occidentale L, extract) and a base formulation (without cashew extract) were prepared and both were applied on cheek areas of healthy human female volunteers, after the skin sensitivity test of each volunteer, for a study period of 8 weeks after getting consent from them. Various parameters of skin like Melanin level, Erythema level, and skin elasticity were measured at regular time intervals. Results of the study were analyzed by statistical techniques i.e. Two Way ANOVA and paired sample t-test. The result showed significant results as the p ≤ 0.05. Findings of paired sample t-test explained that test formulation have profound effects on skin parameters when compared with control formulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anacardium%20occientale%20L." title="Anacardium occientale L.">Anacardium occientale L.</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-oxidant" title=" anti-oxidant"> anti-oxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=cashew%20nut" title=" cashew nut"> cashew nut</a>, <a href="https://publications.waset.org/abstracts/search?q=emulgel" title=" emulgel"> emulgel</a> </p> <a href="https://publications.waset.org/abstracts/64048/in-vivo-study-of-annacardium-occidentale-l-emulgel-extract-using-non-invasive-probes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64048.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50310</span> In vitro and invivo Antioxidant Studies of Grewia crenata Leaves Extract in Albino Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20N.Ukwuani">A. N.Ukwuani</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20Abdulfatah"> A. K. Abdulfatah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> G. crenata is used locally for the treatment of fractured bones, wound healing and inflammatory conditions. In vitro and in vivo antioxidant activity of hydromethanolic extracts of the leaves of G. crenata were assessed. The phytochemical analysis shows the presence of phenols, flavonoids, saponins, cardiac glycosides and tannins. An in vitro quantitative analysis of phenols, flavonoids and tannins respectively were (164±1.20, 199±0.88 and 88.67±0.88 mg/100g FW). In vivo studies of hydromethanolic extract demonstrated a dose dependent increase in hepatic superoxide dismutase (1.14±0.14, 2.13±0.11, 2.55±0.11 U/mg Protein) with improvement in hepatic glutathione (6.98±0.42, 8.91±0.37, 11.07±0.46 µM/mg Protein) and Catalase (4.47±0.05, 6.24±0.02, 7.17±0.04 U/mg Protein) and Total protein (6.18±0.08, 6.69±0.18, 7.27±0.16 mg/ml) respectively at 100-300mg/kg body weight Grewia crenata leaves when compared to the control and standard drug. It can be concluded from the present findings of that G. crenata leaves possess antioxidant potential. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Grewia%20crenata" title="Grewia crenata">Grewia crenata</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=hydromethanolic%20extract" title=" hydromethanolic extract"> hydromethanolic extract</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20vivo" title=" in vivo"> in vivo</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20vitro" title=" in vitro"> in vitro</a> </p> <a href="https://publications.waset.org/abstracts/15568/in-vitro-and-invivo-antioxidant-studies-of-grewia-crenata-leaves-extract-in-albino-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15568.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">553</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50309</span> Nematocidal Effects of Laurus Nobilis Essential Oil against Gastrointestinal Nematodes.</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Essia%20Sebai">Essia Sebai</a>, <a href="https://publications.waset.org/abstracts/search?q=Amel%20Abidi"> Amel Abidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hayet%20benyeddem"> Hayet benyeddem</a>, <a href="https://publications.waset.org/abstracts/search?q=Akkari%20Hafidh"> Akkari Hafidh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Herbal extracts are of particular interest to the drug industry; essential oil with significant anthelmintic activity has the potential to be used as an alternative to conventional chemical drugs. In the present study, we describe the chemical profile of Laurus nobilis essential oil (EO), the in vitro anthelmintic activity of laurel oil against Haemonchus contortus and its in vivo anthelmintic effect against the murine helminth parasite model Heligmosomoides polygyrus. The chromatographic profile of L. nobilis (EO) extracted from the leaves of L. nobilis has shown the presence of monoterpenes 1,8-cineol (Eucalyptol) (29.47%), D-Limonène (18.51%) and Linalool (10.84%) in high fractions. The in vitro anthelmintic potential was expressed by an ovicidal effect against H. contortus egg hatching with an inhibition value of 3.23 mg/mL and 87.5% of immobility of adult worms after 8 hours of exposure to 8 mg/mL of L. nobilis EO. Regarding the in vivo anthelmintic potential, L. nobilis (EO) at 2400 mg/kg completely eliminated the egg output of H. polygyrus after seven days of oral treatment, together with a 79.2% of reduction in total worm counts. Based on the obtained funding, L. nobilis EO showed promising in vitro and in vivo anthelmintic capacities against gastrointestinal parasites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lauris%20nobilis" title="lauris nobilis">lauris nobilis</a>, <a href="https://publications.waset.org/abstracts/search?q=anthelmintic" title=" anthelmintic"> anthelmintic</a>, <a href="https://publications.waset.org/abstracts/search?q=haemonchus" title=" haemonchus"> haemonchus</a>, <a href="https://publications.waset.org/abstracts/search?q=pylogyrus" title=" pylogyrus"> pylogyrus</a> </p> <a href="https://publications.waset.org/abstracts/161804/nematocidal-effects-of-laurus-nobilis-essential-oil-against-gastrointestinal-nematodes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161804.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50308</span> Understanding the Information in Principal Component Analysis of Raman Spectroscopic Data during Healing of Subcritical Calvarial Defects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rafay%20Ahmed">Rafay Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Condon%20Lau"> Condon Lau</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bone healing is a complex and sequential process involving changes at the molecular level. Raman spectroscopy is a promising technique to study bone mineral and matrix environments simultaneously. In this study, subcritical calvarial defects are used to study bone composition during healing without discomposing the fracture. The model allowed to monitor the natural healing of bone avoiding mechanical harm to the callus. Calvarial defects were created using 1mm burr drill in the parietal bones of Sprague-Dawley rats (n=8) that served in vivo defects. After 7 days, their skulls were harvested after euthanizing. One additional defect per sample was created on the opposite parietal bone using same calvarial defect procedure to serve as control defect. Raman spectroscopy (785 nm) was established to investigate bone parameters of three different skull surfaces; in vivo defects, control defects and normal surface. Principal component analysis (PCA) was utilized for the data analysis and interpretation of Raman spectra and helped in the classification of groups. PCA was able to distinguish in vivo defects from normal surface and control defects. PC1 shows that the major variation at 958 cm⁻¹, which corresponds to ʋ1 phosphate mineral band. PC2 shows the major variation at 1448 cm⁻¹ which is the characteristic band of CH2 deformation and corresponds to collagens. Raman parameters, namely, mineral to matrix ratio and crystallinity was found significantly decreased in the in vivo defects compared to surface and controls. Scanning electron microscope and optical microscope images show the formation of newly generated matrix by means of bony bridges of collagens. Optical profiler shows that surface roughness increased by 30% from controls to in vivo defects after 7 days. These results agree with Raman assessment parameters and confirm the new collagen formation during healing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raman%20spectroscopy" title="Raman spectroscopy">Raman spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=principal%20component%20analysis" title=" principal component analysis"> principal component analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=calvarial%20defects" title=" calvarial defects"> calvarial defects</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20characterization" title=" tissue characterization"> tissue characterization</a> </p> <a href="https://publications.waset.org/abstracts/93514/understanding-the-information-in-principal-component-analysis-of-raman-spectroscopic-data-during-healing-of-subcritical-calvarial-defects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93514.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">223</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50307</span> Human Xanthine Oxidase Inhibitory Effect, in vivo Antioxidant Activity of Globularia alypum L. Extracts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Boussoualim">N. Boussoualim</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Trabsa"> H. Trabsa</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Krache"> I. Krache</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Aouachria"> S. Aouachria</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Boumerfeg"> S. Boumerfeg</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Arrar"> L. Arrar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Baghiani"> A. Baghiani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study consisted in evaluating the antioxidant in vivo properties, anti-hemolytic and XOR inhibitory effect of Globularia alypum L. (GA) extracts. GA was submitted to extraction and fractionation to give crude (CrE), chloroformique (ChE), ethyle acetate (EAE) and aqueos (AqE) extracts. Total polyphenols contents of GA extracts were determined; EAE is the most rich in polyphenols (157,74±5,27 mg GAE/mg of extract). GA Extracts inhibited XO in a concentration-dependent manner, the EAE showed the highest inhibitory properties on the XOR activity (IC50=0,083±0,001 mg/ml), followed by CrE and ChE. The antioxidant activities of the CrE, EAE, and AqE were tested by an in vivo assay in mice, the plasma ability to inhibit DPPH radical was measured, The CrE was found to exhibit the greatest scavenger activity with 48.41±2.763%, followed by AqE and EAE (40.54±7.51% and 41.79±1.654%, respectively). Total antioxidant capacity of red blood cells was measured, from the kinetics of hemolysis obtained. The calculated HT50 reveal an extension of time for half hemolysis in all treated groups compared with the control group. CrE increase significantly HT50 (112,8±2,427). The hemolysis is lagged, indicating that endogenous antioxidants in the erythrocytes can trap radicals to protect them against free-radical-induced hemolysis. Antimicrobial activities of the extracts were determined by the disc diffusion method. Test microorganisms were; 4 Gram positive, 7 gram negative bacteria, most active extracts were EAE and CrE. We deduce a great relationship between the effect on the extracts antibacterial effect and their contents in flavonoid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Globularia%20alypum" title="Globularia alypum">Globularia alypum</a>, <a href="https://publications.waset.org/abstracts/search?q=Xanthine%20oxidoreductase" title=" Xanthine oxidoreductase"> Xanthine oxidoreductase</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20vivo-antioxidant%20activity" title=" in vivo-antioxidant activity"> in vivo-antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=hemolysis" title=" hemolysis"> hemolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=polyphenol" title=" polyphenol"> polyphenol</a> </p> <a href="https://publications.waset.org/abstracts/7332/human-xanthine-oxidase-inhibitory-effect-in-vivo-antioxidant-activity-of-globularia-alypum-l-extracts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7332.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50306</span> Synthesis, Biological Evaluation and Molecular Modeling Studies on Chiral Chloroquine Analogues as Antimalarial Agents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Srinivasarao%20Kondaparla">Srinivasarao Kondaparla</a>, <a href="https://publications.waset.org/abstracts/search?q=Utsab%20Debnath"> Utsab Debnath</a>, <a href="https://publications.waset.org/abstracts/search?q=Awakash%20Soni"> Awakash Soni</a>, <a href="https://publications.waset.org/abstracts/search?q=Vasantha%20%20Rao%20Dola"> Vasantha Rao Dola</a>, <a href="https://publications.waset.org/abstracts/search?q=Manish%20Sinha"> Manish Sinha</a>, <a href="https://publications.waset.org/abstracts/search?q=Kumkum%20Kumkum%20Srivastava"> Kumkum Kumkum Srivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunil%20K.%20%20Puri"> Sunil K. Puri</a>, <a href="https://publications.waset.org/abstracts/search?q=Seturam%20B.%20Katti"> Seturam B. Katti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In a focused exploration, we have designed synthesized and biologically evaluated chiral conjugated new chloroquine (CQ) analogs with substituted piperazines as antimalarial agents. In vitro as well as in vivo studies revealed that compound 7c showed potent activity [for in vitro IC₅₀= 56.98nM (3D7), 97.76nM (K1); for in vivo (up to at the dose of 12.5 mg/kg); SI = 3510] as a new lead of antimalarial agent. Other compounds 6b, 6d, 7d, 7h, 8c, 8d, 9a, and 9c are also showing moderate activity against CQ-sensitive (3D7) strain and superior activity against resistant (K1) strain of P. falciparum. Furthermore, we have carried out docking and 3D-QSAR studies of all in-house data sets (168 molecules) of chiral CQ analogs to explain the structure activity relationships (SAR). Our new findings specified the significance of H-bond interaction with the side chain of heme for biological activity. In addition, the 3D-QSAR study against 3D7 strain indicated the favorable and unfavorable sites of CQ analogs for incorporating steric, hydrophobic and electropositive groups to improve the antimalarial activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=piperazines" title="piperazines">piperazines</a>, <a href="https://publications.waset.org/abstracts/search?q=CQ-sensitive%20strain-3D7" title=" CQ-sensitive strain-3D7"> CQ-sensitive strain-3D7</a>, <a href="https://publications.waset.org/abstracts/search?q=in-vitro%20and%20in-vivo%20assay" title=" in-vitro and in-vivo assay"> in-vitro and in-vivo assay</a>, <a href="https://publications.waset.org/abstracts/search?q=docking" title=" docking"> docking</a>, <a href="https://publications.waset.org/abstracts/search?q=3D-QSAR" title=" 3D-QSAR"> 3D-QSAR</a> </p> <a href="https://publications.waset.org/abstracts/95175/synthesis-biological-evaluation-and-molecular-modeling-studies-on-chiral-chloroquine-analogues-as-antimalarial-agents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95175.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50305</span> A Derivative of L-allo Threonine Alleviates Asthmatic Symptoms in vitro and in vivo</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kun%20Chun">Kun Chun</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin-Chun%20Heo"> Jin-Chun Heo</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang-Han%20Lee"> Sang-Han Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Asthma is a chronic airway inflammatory disease characterized by the infiltration of inflammatory cells and tissue remodeling. In this study, we examined the anti-asthmatic activity of a derivative of L-allo threonine by in vitro and in vivo anti-asthmatic assays. Ovalbumin (OVA)-induced C57BL/6 mice were used to analyze lung inflammation and cytokine expressions for exhibiting anti-atopic activity of the derivative. LX519290, a derivative of L-allo threonine, induced an increased IFN-γ and a decreased IL-10 mRNA level. This compound exhibited potent anti-asthmatic activity by decreasing immune cell infiltration in the lung, and IL-4 and IL-13 cytokine levels in the serum of OVA-induced mice. These results indicated that chronic airway injury was decreased by LX519290. We also assessed that LX519290 inhibits infiltration of immune cell, mucus release and cytokine expression in an in vivo model. Our results collectively suggest that the L-allo threonine is effective in alleviating asthmatic symptoms by treating inflammatory factors in the lung. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asthma" title="asthma">asthma</a>, <a href="https://publications.waset.org/abstracts/search?q=L%20-allo%20threonine" title=" L -allo threonine"> L -allo threonine</a>, <a href="https://publications.waset.org/abstracts/search?q=LX519290" title=" LX519290"> LX519290</a>, <a href="https://publications.waset.org/abstracts/search?q=mice" title=" mice"> mice</a> </p> <a href="https://publications.waset.org/abstracts/3306/a-derivative-of-l-allo-threonine-alleviates-asthmatic-symptoms-in-vitro-and-in-vivo" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3306.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50304</span> Protective Potential of Hyperhalophilic Diatoms Extract Against Lead Induced Oxidative Stress in Rats and Human HepG2 and HEK293 Cells Line</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wassim%20Guermazi">Wassim Guermazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Saoussan%20Boukhris"> Saoussan Boukhris</a>, <a href="https://publications.waset.org/abstracts/search?q=Neila%20Annabi%20Trabelsi"> Neila Annabi Trabelsi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tarek%20Rebai"> Tarek Rebai</a>, <a href="https://publications.waset.org/abstracts/search?q=Alya%20Sellami-Kamoun"> Alya Sellami-Kamoun</a>, <a href="https://publications.waset.org/abstracts/search?q=Habib%20Ayadi"> Habib Ayadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work investigates the protective effects of the microalga Halamphora sp. extract (H. Ext) as a natural product on lead-intoxicated liver and kidney human cells in vitro and in vivo on rats wistar. HepG2 cells line derived from human hepatocellular carcinoma and HEK293 cells line derived from human embryonic kidney were used for the in vitro study. The analysis of the fatty acids methyl esters of the extract was performed by a GC/MS. Four groups of rats, each of which was composed of six animals, were used for the in vivo experiment. The pretreatment of HepG2 and HEK293 cells line with the extract (100 µg mL-1) significantly (p < 0.05) protected against cytotoxicity induced by lead exposure. In vivo, the biochemical parameters in serum, namely malondialdehyde level (MDA), superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activities, were measured in supernatants of organ homogenates. H. Ext was found to be rich in fatty acids, essentially palmitic and palmitoleic accounting respectively 29.46% and 42.07% of total fatty acids. Both in vitro and in vivo, the co-treatment with H. Ext allowed the protection of the liver and kidney cells structure, as well as the significant preservation of normal antioxidant and biochemical parameters in rats. Halamphora extract rich in fatty acids has been proven to be effective in protection against Pb-induced toxicity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microalga%20extract" title="microalga extract">microalga extract</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20cells%20line" title=" human cells line"> human cells line</a>, <a href="https://publications.waset.org/abstracts/search?q=fatty%20acid" title=" fatty acid"> fatty acid</a>, <a href="https://publications.waset.org/abstracts/search?q=lead%20exposure" title=" lead exposure"> lead exposure</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a>, <a href="https://publications.waset.org/abstracts/search?q=rats" title=" rats"> rats</a> </p> <a href="https://publications.waset.org/abstracts/163424/protective-potential-of-hyperhalophilic-diatoms-extract-against-lead-induced-oxidative-stress-in-rats-and-human-hepg2-and-hek293-cells-line" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163424.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50303</span> Formulation and Evaluation of Lisinopril Microspheres for Nasal Delivery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20Patil">S. S. Patil</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20M.%20Mhetre"> R. M. Mhetre</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20V.%20Patil"> S. V. Patil </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lisinopril is an angiotensin converting enzyme inhibitor used in the treatment of hypertension and heart failure in prophylactic treatment after myocardial infarction and in diabetic nephropathy. However, it is very poorly absorbed from gastro-intestinal tract. Intranasal administration is an ideal alternative to the parenteral route for systemic drug delivery. Formulating multiparticulate system with mucoadhesive polymers provide a significant increase in the nasal residence time. The aim of the present approach was to overcome the drawbacks of the conventional dosage forms of lisinopril by formulating intranasal microspheres with Carbopol 974P NF and HPMC K4 M along with film forming polymer ethyl cellulose.The microspheres were prepared by emulsion solvent evaporation method. The prepared microspheres were characterized for encapsulation efficiency, drug loading, particle size, and surface morphology, degree of swelling, ex vivo mucoadhesion, drug release, ex vivo diffusion studies. All formulations has shown entrapment efficiency between 80 to more than 95%, mucoadhesion was more than 80 % and drug release up to 90 %. Ex vivo studies revealed tht the improved bioavailability of drug compared to oral drug administration. Both in vitro and in vivo studies conclude that combination of Carbopol and HPMC based microspheres shown better results than single carbopol based microspheres for the delivery of lisinopril. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microspheres" title="microspheres">microspheres</a>, <a href="https://publications.waset.org/abstracts/search?q=lisinopril" title=" lisinopril"> lisinopril</a>, <a href="https://publications.waset.org/abstracts/search?q=nasal%20delivery" title=" nasal delivery"> nasal delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=solvent%20evaporation%20method" title=" solvent evaporation method"> solvent evaporation method</a> </p> <a href="https://publications.waset.org/abstracts/22193/formulation-and-evaluation-of-lisinopril-microspheres-for-nasal-delivery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22193.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">528</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50302</span> Mechanical Environment of the Aortic Valve and Mechanobiology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rania%20Abdulkareem%20Aboubakr%20Mahdaly%20Ammar">Rania Abdulkareem Aboubakr Mahdaly Ammar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aortic valve (AV) is a complex mechanical environment that includes flexure, tension, pressure and shear stress forces to blood flow during cardiac cycle. This mechanical environment regulates AV tissue structure by constantly renewing and remodeling the phenotype. In vitro, ex vivo and in vivo studies have explained that pathological states such as hypertension and congenital defects like bicuspid AV ( BAV ) can potentially alter the AV’s mechanical environment, triggering a cascade of remodeling, inflammation and calcification activities in AV tissue. Changes in mechanical environments are first sent by the endothelium that induces changes in the extracellular matrix, and triggers cell differentiation and activation. However, the molecular mechanism of this process is not very well understood. Understanding these mechanisms is critical for the development of effective medical based therapies. Recently, there have been some interesting studies on characterizing the hemodynamics associated with AV, especially in pathologies like BAV, using different experimental and numerical methods. Here, we review the current knowledge of the local AV mechanical environment and its effect on valve biology, focusing on in vitro and ex vivo approaches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aortic%20valve%20mechanobiology" title="aortic valve mechanobiology">aortic valve mechanobiology</a>, <a href="https://publications.waset.org/abstracts/search?q=bicuspid%20calcification" title=" bicuspid calcification"> bicuspid calcification</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20stretch" title=" pressure stretch"> pressure stretch</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20stress" title=" shear stress"> shear stress</a> </p> <a href="https://publications.waset.org/abstracts/45985/mechanical-environment-of-the-aortic-valve-and-mechanobiology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45985.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50301</span> Assessment of Antiplasmodial and Some Other Biological Activities, Essential Oil Constituents, and Phytochemical Screening of Azadirachta indica Grown in Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dawit%20Chankaye">Dawit Chankaye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Azadirachta indica is the most versatile medicinal plant known as “the village pharmacy”. The plant is known for its broad spectrum of biological activity in India and various countries throughout history by many different human cultures. The present study was undertaken to determine the antimalarial and antidiabetic properties of the leaf extracts of A. indica grown in Ethiopia when treated in vivo. This work has also been concerned with determining essential oil composition and the antimicrobial activity of the plant in vitro. Methods: Leaf extracts were prepared using three different selected solvents. Standard and clinical isolates were treated with extracts of the leaves of A. indica using the agar well diffusion method. The antimalarial and antidiabetic tests were conducted in vivo in mice. Phytochemical screening was done using various chemical tests, and the volatile oil constituents were determined using gas chromatography-mass spectrometry (GC/MS). Results: In vivo antimalarial activity studies showed 85.23%, 69.01%, and 81.54% suppression of parasitemia for 70% ethanol, acetone, and water extracts, respectively. The extracts collected from the leaves also showed reduced blood sugar levels in alloxan-induced diabetic mice. In addition, the solvent extracts were shown to have an inhibitory effect on the growth of microorganisms under the study. The minimum inhibitory concentration (MIC) ranged from 850 to 1050 µg/ml. Notably, the phytochemical investigation of the ethanol extracts showed the presence of secondary metabolites. Seventeen compounds (mainly sesquiterpenes) that represent 75.45% of the essential oil were characterized by GC/MS analysis. Conclusion: Extracts examined in this study indicated that the leaf of A. indica grown in Ethiopia retained the biological activities demonstrating the extent equivalent to when it was grown in its natural habitat. In addition, phytochemical investigation and GC/MS analysis of volatile oil constituents showed comparable results to those presented in India and elsewhere. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azadirachta%20indica" title="Azadirachta indica">Azadirachta indica</a>, <a href="https://publications.waset.org/abstracts/search?q=vivo" title=" vivo"> vivo</a>, <a href="https://publications.waset.org/abstracts/search?q=antimalarial%20activity" title=" antimalarial activity"> antimalarial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=antidiabetic%20activity" title=" antidiabetic activity"> antidiabetic activity</a>, <a href="https://publications.waset.org/abstracts/search?q=alloxan" title=" alloxan"> alloxan</a>, <a href="https://publications.waset.org/abstracts/search?q=mice" title=" mice"> mice</a>, <a href="https://publications.waset.org/abstracts/search?q=phytochemical" title=" phytochemical"> phytochemical</a> </p> <a href="https://publications.waset.org/abstracts/171066/assessment-of-antiplasmodial-and-some-other-biological-activities-essential-oil-constituents-and-phytochemical-screening-of-azadirachta-indica-grown-in-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171066.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50300</span> Simulation of Remove the Fouling on the in vivo By Using MHD </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farhad%20Aalizadeh">Farhad Aalizadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Moosavi"> Ali Moosavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When a blood vessel is injured, the cells of your blood bond together to form a blood clot. The blood clot helps you stop bleeding. Blood clots are made of a combination of blood cells, platelets(small sticky cells that speed up the clot-making process), and fibrin (protein that forms a thread-like mesh to trap cells). Doctors call this kind of blood clot a “thrombus.”We study the effects of different parameters on the deposition of Nanoparticles on the surface of a bump in the blood vessels by the magnetic field. The Maxwell and the flow equations are solved for this purpose. It is assumed that the blood is non-Newtonian and the number of particles has been considered enough to rely on the results statistically. Using MHD and its property it is possible to control the flow velocity, remove the fouling on the walls and return the system to its original form. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MHD" title="MHD">MHD</a>, <a href="https://publications.waset.org/abstracts/search?q=fouling" title=" fouling"> fouling</a>, <a href="https://publications.waset.org/abstracts/search?q=in-vivo" title=" in-vivo"> in-vivo</a>, <a href="https://publications.waset.org/abstracts/search?q=blood%20clots" title=" blood clots"> blood clots</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/14099/simulation-of-remove-the-fouling-on-the-in-vivo-by-using-mhd" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14099.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">469</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50299</span> In vitro and in vivo Antiangiogenic Activity of Girinimbine Isolated from Murraya koenigii</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Venoos%20Iman">Venoos Iman</a>, <a href="https://publications.waset.org/abstracts/search?q=Suzita%20Mohd%20Noor"> Suzita Mohd Noor</a>, <a href="https://publications.waset.org/abstracts/search?q=Syam%20Mohan"> Syam Mohan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Ibrahim%20Noordin"> Mohamad Ibrahim Noordin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Girinimbine, a carbazole alkaloid was isolated from the stem bark and root of Murraya koenigii and its structure and purity was identified by HPLC and LC-MS. Here we report that Girinimbine strongly inhibit angiogenesis activity both in vitro and in vivo. MTT result showed that girinimbine inhibits cell proliferation of the HUVECS cell line in vitro. Result of endothelial cell invasion, migration, tube formation and wound healing assays also demonstrated significant time and does dependent inhibition by girinimbine. Moreover, girinibine mediates its anti-angiogenic activity through up- and down-regulation of angiogenic and anti-aniogenic proteins. Furthermore, anti-angiogenic potential of girinimbine was evidenced in vivo on zebrafish model. Girinimbine inhibited neo-vessels formation in zebrafish embryos during 24 hours exposure time. Together, these results demonstrated for the first time that girinimbine could effectively suppress angiogenesis and strongly suggest that it might be a novel angiogenesis inhibitor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-angiogenic" title="anti-angiogenic">anti-angiogenic</a>, <a href="https://publications.waset.org/abstracts/search?q=carbazole%20alkaloid" title=" carbazole alkaloid"> carbazole alkaloid</a>, <a href="https://publications.waset.org/abstracts/search?q=girinimbine" title=" girinimbine"> girinimbine</a>, <a href="https://publications.waset.org/abstracts/search?q=zebrafish" title=" zebrafish"> zebrafish</a> </p> <a href="https://publications.waset.org/abstracts/13579/in-vitro-and-in-vivo-antiangiogenic-activity-of-girinimbine-isolated-from-murraya-koenigii" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13579.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50298</span> Genetic Instabilities in Marine Bivalve Following Benzo(α)pyrene Exposure: Utilization of Combined Random Amplified Polymorphic DNA and Comet Assay</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mengjie%20Qu">Mengjie Qu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi%20Wang"> Yi Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiawei%20Ding"> Jiawei Ding</a>, <a href="https://publications.waset.org/abstracts/search?q=Siyu%20Chen"> Siyu Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yanan%20Di"> Yanan Di</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Marine ecosystem is facing intensified multiple stresses caused by environmental contaminants from human activities. Xenobiotics, such as benzo(α)pyrene (BaP) have been discharged into marine environment and cause hazardous impacts on both marine organisms and human beings. As a filter-feeder, marine mussels, Mytilus spp., has been extensively used to monitor the marine environment. However, their genomic alterations induced by such xenobiotics are still kept unknown. In the present study, gills, as the first defense barrier in mussels, were selected to evaluate the genetic instability alterations induced by the exposure to BaP both in vivo and in vitro. Both random amplified polymorphic DNA (RAPD) assay and comet assay were applied as the rapid tools to assess the environmental stresses due to their low money- and time-consumption. All mussels were identified to be the single species of Mytilus coruscus before used in BaP exposure at the concentration of 56 μg/l for 1 & 3 days (in vivo exposure) or 1 & 3 hours (in vitro). Both RAPD and comet assay results were showed significantly increased genomic instability with time-specific altering pattern. After the recovery period in 'in vivo' exposure, the genomic status was as same as control condition. However, the relative higher genomic instabilities were still observed in gill cells after the recovery from in vitro exposure condition. Different repair mechanisms or signaling pathway might be involved in the isolated gill cells in the comparison with intact tissues. The study provides the robust and rapid techniques to exam the genomic stability in marine organisms in response to marine environmental changes and provide basic information for further mechanism research in stress responses in marine organisms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genotoxic%20impacts" title="genotoxic impacts">genotoxic impacts</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20vivo%2Fvitro%20exposure" title=" in vivo/vitro exposure"> in vivo/vitro exposure</a>, <a href="https://publications.waset.org/abstracts/search?q=marine%20mussels" title=" marine mussels"> marine mussels</a>, <a href="https://publications.waset.org/abstracts/search?q=RAPD%20and%20comet%20assay" title=" RAPD and comet assay"> RAPD and comet assay</a> </p> <a href="https://publications.waset.org/abstracts/84882/genetic-instabilities-in-marine-bivalve-following-benzoapyrene-exposure-utilization-of-combined-random-amplified-polymorphic-dna-and-comet-assay" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84882.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50297</span> Nanotechnology-Based Treatment of Liver Cancer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lucian%20Mocan">Lucian Mocan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present method of Nanoparticle enhanced laser thermal ablation of HepG2 cells (Human hepatocellular liver carcinomacell line), using gold nanoparticles combuned with a specific growth factor and demonstrate its selective therapeutic efficacy usig ex vivo specimens. Ex vivo-perfused liver specimens were obtained from hepatocellular carcinoma patients similarly to the surgical technique of transplantation. Ab bound to GNPs was inoculated intra-arterially onto the resulting specimen and determined the specific delivery of the nano-bioconjugate into the malignant tissue by means of the capillary bed. The extent of necrosis was considerable following laser therapy and at the same time surrounding parenchyma was not seriously affected. The selective photothermal ablation of the malignant liver tissue was obtained after the selective accumulation of Ab bound to GNPs into tumor cells following ex-vivo intravascular perfusion. These unique results may represent a major step in liver cancer treatment using nanolocalized thermal ablation by laser heating. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HepG2%20cells" title="HepG2 cells">HepG2 cells</a>, <a href="https://publications.waset.org/abstracts/search?q=gold%20nanoparticles" title=" gold nanoparticles"> gold nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticle%20functionalization" title=" nanoparticle functionalization"> nanoparticle functionalization</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20irradiation" title=" laser irradiation"> laser irradiation</a> </p> <a href="https://publications.waset.org/abstracts/66957/nanotechnology-based-treatment-of-liver-cancer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66957.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50296</span> A Gastro-Intestinal Model for a Rational Design of in vitro Systems to Study Drugs Bioavailability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pompa%20Marcello">Pompa Marcello</a>, <a href="https://publications.waset.org/abstracts/search?q=Mauro%20Capocelli"> Mauro Capocelli</a>, <a href="https://publications.waset.org/abstracts/search?q=Vincenzo%20Piemonte"> Vincenzo Piemonte</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work focuses on a mathematical model able to describe the gastro-intestinal physiology and providing a rational tool for the design of an artificial gastro-intestinal system. This latter is mainly devoted to analyse the absorption and bioavailability of drugs and nutrients through in vitro tests in order to overcome (or, at least, to partially replace) in vivo trials. The provided model realizes a conjunction ring (with extended prediction capability) between in vivo tests and mechanical-laboratory models emulating the human body. On this basis, no empirical equations controlling the gastric emptying are implemented in this model as frequent in the cited literature and all the sub-unit and the related system of equations are physiologically based. More in detail, the model structure consists of six compartments (stomach, duodenum, jejunum, ileum, colon and blood) interconnected through pipes and valves. Paracetamol, Ketoprofen, Irbesartan and Ketoconazole are considered and analysed in this work as reference drugs. The mathematical model has been validated against in vivo literature data. Results obtained show a very good model reliability and highlight the possibility to realize tailored simulations for different couples patient-drug, including food adsorption dynamics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gastro-intestinal%20model" title="gastro-intestinal model">gastro-intestinal model</a>, <a href="https://publications.waset.org/abstracts/search?q=drugs%20bioavailability" title=" drugs bioavailability"> drugs bioavailability</a>, <a href="https://publications.waset.org/abstracts/search?q=paracetamol" title=" paracetamol"> paracetamol</a>, <a href="https://publications.waset.org/abstracts/search?q=ketoprofen" title=" ketoprofen"> ketoprofen</a> </p> <a href="https://publications.waset.org/abstracts/92839/a-gastro-intestinal-model-for-a-rational-design-of-in-vitro-systems-to-study-drugs-bioavailability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92839.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50295</span> Formulation of Sun Screen Cream and Sun Protecting Factor Activity from Standardized–Partition Compound of Mahkota Dewa Leaf (Phaleria macrocarpa (Scheff.) Boerl.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Karim%20Zulkarnain">Abdul Karim Zulkarnain</a>, <a href="https://publications.waset.org/abstracts/search?q=Marchaban"> Marchaban</a>, <a href="https://publications.waset.org/abstracts/search?q=Subagus%20Wahyono"> Subagus Wahyono</a>, <a href="https://publications.waset.org/abstracts/search?q=Ratna%20Asmah%20Susidarti"> Ratna Asmah Susidarti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mahkota Dewa contains phalerin which has activity as sun screen. In this study, 13 formulations of cream oil in water (o/w) were prepared and tested for their physical characteristics. The physical characteristics were then used for determining the optimum formula. This study aimed to explore the physical stability of optimized formulation of cream, its sun protecting factor (SPF) values using in vitro and in vivo tests. The optimum formula of o/w cream were prepared based on Simplex Lattice Design (LSD) method using software Design Expert®. The formulation of o/w cream were varied based on the proportion of cetyl alcohol, mineral oil and tween 80. The difference of physical characteristic of optimum and predicted formula was tested using t-test with significant level of 95%. The optimum formula of o/w cream was the formula which consists of cetyl alcohol 9.71%, mineral oil, 29%, and tween 80 3.29. Based on t-test, there was no significant difference of physical characteristics of optimum and predicted formulation. Viscosity, spread power, adhesive power, and separation volume ratio of o/w at week 0-4 were relatively stable. The o/w creams were relatively stable at extreme temperature. The o/w creams from mahkota dewa, phalerin, and benzophenone have SPF values of 21.32, 33.12, and 42.49, respectively. The formulas did not irritate the skin based on in vivo test. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cream" title="cream">cream</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=In%20vitro" title=" In vitro"> In vitro</a>, <a href="https://publications.waset.org/abstracts/search?q=In%20vivo" title=" In vivo"> In vivo</a> </p> <a href="https://publications.waset.org/abstracts/66716/formulation-of-sun-screen-cream-and-sun-protecting-factor-activity-from-standardized-partition-compound-of-mahkota-dewa-leaf-phaleria-macrocarpa-scheff-boerl" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50294</span> Use of Real Time Ultrasound for the Prediction of Carcass Composition in Serrana Goats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Antonio%20Monteiro">Antonio Monteiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Jorge%20Azevedo"> Jorge Azevedo</a>, <a href="https://publications.waset.org/abstracts/search?q=Severiano%20Silva"> Severiano Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Alfredo%20Teixeira"> Alfredo Teixeira </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study was to compare the carcass and in vivo real-time ultrasound measurements (RTU) and their capacity to predict the composition of Serrana goats up to 40% of maturity. Twenty one females (11.1 ± 3.97 kg) and Twenty one males (15.6 ± 5.38 kg) were utilized to made in vivo measurements with a 5 MHz probe (ALOKA 500V scanner) at the 9th-10th, 10th-11th thoracic vertebrae (uT910 and uT1011, respectively), at the 1st- 2nd, 3rd-4th, and 4th-5th lumbar vertebrae (uL12, ul34 and uL45, respectively) and also at the 3rd-4th sternebrae (EEST). It was recorded the images of RTU measurements of Longissimus thoracis et lumborum muscle (LTL) depth (EM), width (LM), perimeter (PM), area (AM) and subcutaneous fat thickness (SFD) above the LTL, as well as the depth of tissues of the sternum (EEST) between the 3rd-4th sternebrae. All RTU images were analyzed using the ImageJ software. After slaughter, the carcasses were stored at 4 ºC for 24 h. After this period the carcasses were divided and the left half was entirely dissected into muscle, dissected fat (subcutaneous fat plus intermuscular fat) and bone. Prior to the dissection measurements equivalent to those obtained in vivo with RTU were recorded. Using the Statistica 5, correlation and regression analyses were performed. The prediction of carcass composition was achieved by stepwise regression procedure, with live weight and RTU measurements with and without transformation of variables to the same dimension. The RTU and carcass measurements, except for SFD measurements, showed high correlation (r > 0.60, P < 0.001). The RTU measurements and the live weight, showed ability to predict carcass composition on muscle (R2 = 0.99, P < 0.001), subcutaneous fat (R2 = 0.41, P < 0.001), intermuscular fat (R2 = 0.84, P < 0.001), dissected fat (R2 = 0.71, P < 0.001) and bone (R2 = 0.94, P < 0.001). The transformation of variables allowed a slight increase of precision, but with the increase in the number of variables, with the exception of subcutaneous fat prediction. In vivo measurements by RTU can be applied to predict kid goat carcass composition, from 5 measurements of RTU and the live weight. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carcass" title="carcass">carcass</a>, <a href="https://publications.waset.org/abstracts/search?q=goats" title=" goats"> goats</a>, <a href="https://publications.waset.org/abstracts/search?q=real%20time" title=" real time"> real time</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a> </p> <a href="https://publications.waset.org/abstracts/87445/use-of-real-time-ultrasound-for-the-prediction-of-carcass-composition-in-serrana-goats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87445.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50293</span> Study of the in vivo and in vitro Antioxidant Activity of the Methanol Extract from the Roots of the Barks of Zizyphus lotus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Djemai%20Zoughlache%20Soumia">Djemai Zoughlache Soumia</a>, <a href="https://publications.waset.org/abstracts/search?q=Yahia%20Mouloud"> Yahia Mouloud</a>, <a href="https://publications.waset.org/abstracts/search?q=Lekbir%20Adel"> Lekbir Adel</a>, <a href="https://publications.waset.org/abstracts/search?q=Meslem%20Meriem"> Meslem Meriem</a>, <a href="https://publications.waset.org/abstracts/search?q=Maouchi%20Madiha"> Maouchi Madiha</a>, <a href="https://publications.waset.org/abstracts/search?q=Bahi%20Ahlem"> Bahi Ahlem</a>, <a href="https://publications.waset.org/abstracts/search?q=Benbia%20Souhila"> Benbia Souhila</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural extracts is known for their contents of biologically active molecules. In this context, we attempted to evaluate the antioxidant activity of the methanolic extract prepared from the bark of the roots of Zizyphus lotus. The quantitative analysis based on the dosage, phenolic compounds, flavonoids and tannins provided following values: 0.39 ± 0.007 ug EAG/mg of extract for phenolic compounds, 0.05 ± 0.02ug EQ/mg extract for flavonoids and 0.0025 ± 7.071 E-4 ECT ug/mg extract for tannins. The study of the antioxidant activity by the DPPH test in vitro showed a powerful antiradical power with an IC50 = 8,8 ug/ml. For the DPPH test in vivo we used two rats lots, one lot with a dose of 200 mg/kg of the methanol extract and a control lot. We found a significant difference in antiradical activity with p < 0.05. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zizyphus%20lotus" title="Zizyphus lotus">Zizyphus lotus</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=DPPH" title=" DPPH"> DPPH</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds" title=" phenolic compounds"> phenolic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=flavonoids" title=" flavonoids"> flavonoids</a>, <a href="https://publications.waset.org/abstracts/search?q=tannins" title=" tannins"> tannins</a> </p> <a href="https://publications.waset.org/abstracts/5758/study-of-the-in-vivo-and-in-vitro-antioxidant-activity-of-the-methanol-extract-from-the-roots-of-the-barks-of-zizyphus-lotus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5758.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">509</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=in%20vivo%20study&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=in%20vivo%20study&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=in%20vivo%20study&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=in%20vivo%20study&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=in%20vivo%20study&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=in%20vivo%20study&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=in%20vivo%20study&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=in%20vivo%20study&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=in%20vivo%20study&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=in%20vivo%20study&page=1677">1677</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=in%20vivo%20study&page=1678">1678</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=in%20vivo%20study&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>