CINXE.COM
(PDF) Automated Vehicle Recognition with Deep Convolutional Neural Networks | Anuj Sharma - Academia.edu
<!DOCTYPE html> <html > <head> <meta charset="utf-8"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <meta content="width=device-width, initial-scale=1" name="viewport"> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs"> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="gosGJL107/iBTzvI34PLc9FMvqbHrerEU9ESl/45KhD64IrlDjj2oevqES73CndCZiZdXGgNxUopvbsw7iBkyg==" /> <meta name="citation_title" content="Automated Vehicle Recognition with Deep Convolutional Neural Networks" /> <meta name="citation_publication_date" content="2017" /> <meta name="citation_journal_title" content="Transportation Research Record: Journal of the Transportation Research Board" /> <meta name="citation_author" content="Yaw Okyere Adu-Gyamfi" /> <meta name="citation_author" content="Sampson Kwasi Asare" /> <meta name="citation_author" content="Anuj Sharma" /> <meta name="citation_author" content="Tienaah Titus" /> <meta name="citation_volume" content="2645" /> <meta name="citation_issue" content="1" /> <meta name="citation_firstpage" content="113-122" /> <meta name="citation_issn" content="0361-1981" /> <meta name="twitter:card" content="summary" /> <meta name="twitter:url" content="https://www.academia.edu/90959603/Automated_Vehicle_Recognition_with_Deep_Convolutional_Neural_Networks" /> <meta name="twitter:title" content="Automated Vehicle Recognition with Deep Convolutional Neural Networks" /> <meta name="twitter:description" content="In recent years there has been growing interest in the use of nonintrusive systems such as radar and infrared systems for vehicle recognition. State-of-the-art nonintrusive systems can report up to eight classes of vehicle types. Video-based systems," /> <meta name="twitter:image" content="http://a.academia-assets.com/images/twitter-card.jpeg" /> <meta property="fb:app_id" content="2369844204" /> <meta property="og:type" content="article" /> <meta property="og:url" content="https://www.academia.edu/90959603/Automated_Vehicle_Recognition_with_Deep_Convolutional_Neural_Networks" /> <meta property="og:title" content="Automated Vehicle Recognition with Deep Convolutional Neural Networks" /> <meta property="og:image" content="http://a.academia-assets.com/images/open-graph-icons/fb-paper.gif" /> <meta property="og:description" content="In recent years there has been growing interest in the use of nonintrusive systems such as radar and infrared systems for vehicle recognition. State-of-the-art nonintrusive systems can report up to eight classes of vehicle types. Video-based systems," /> <meta property="article:author" content="https://iastate.academia.edu/AnujSharma" /> <meta name="description" content="In recent years there has been growing interest in the use of nonintrusive systems such as radar and infrared systems for vehicle recognition. State-of-the-art nonintrusive systems can report up to eight classes of vehicle types. Video-based systems," /> <title>(PDF) Automated Vehicle Recognition with Deep Convolutional Neural Networks | Anuj Sharma - Academia.edu</title> <link rel="canonical" href="https://www.academia.edu/90959603/Automated_Vehicle_Recognition_with_Deep_Convolutional_Neural_Networks" /> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "single_work", 'action': "show", 'controller_action': 'single_work#show', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script> var $controller_name = 'single_work'; var $action_name = "show"; var $rails_env = 'production'; var $app_rev = '92477ec68c09d28ae4730a4143c926f074776319'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.require = { config: function() { return function() {} } } </script> <script> window.Aedu = window.Aedu || {}; window.Aedu.hit_data = null; window.Aedu.serverRenderTime = new Date(1732827671000); window.Aedu.timeDifference = new Date().getTime() - 1732827671000; </script> <script type="application/ld+json">{"@context":"https://schema.org","@type":"ScholarlyArticle","abstract":"In recent years there has been growing interest in the use of nonintrusive systems such as radar and infrared systems for vehicle recognition. State-of-the-art nonintrusive systems can report up to eight classes of vehicle types. Video-based systems, which arguably are the most popular nonintrusive detection systems, can report only very coarse classification levels (up to four classes), even with the best-performing vision systems. The present study developed a vision system that can report finer vehicle classifications according to FHWA’s scheme and is also comparable to other nonintrusive recognition systems. The proposed system decoupled object recognition into two main tasks: localization and classification. It began with localization by generating class-independent region proposals for each video frame, then it used deep convolutional neural networks to extract feature descriptors for each proposed region, and, finally, the system scored and classified the proposed regions by ...","author":[{"@context":"https://schema.org","@type":"Person","name":"Anuj Sharma"}],"contributor":[],"dateCreated":"2022-11-16","dateModified":"2022-11-16","datePublished":"2017-01-01","headline":"Automated Vehicle Recognition with Deep Convolutional Neural Networks","inLanguage":"en","keywords":["Civil Engineering","Transportation Engineering","Computer Science","Urban And Regional Planning","Operational Research","Deep Learning"],"locationCreated":null,"publication":"Transportation Research Record: Journal of the Transportation Research Board","publisher":{"@context":"https://schema.org","@type":"Organization","name":"SAGE Publications"},"image":null,"thumbnailUrl":null,"url":"https://www.academia.edu/90959603/Automated_Vehicle_Recognition_with_Deep_Convolutional_Neural_Networks","sourceOrganization":[{"@context":"https://schema.org","@type":"EducationalOrganization","name":"iastate"}]}</script><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/single_work_page/loswp-102fa537001ba4d8dcd921ad9bd56c474abc201906ea4843e7e7efe9dfbf561d.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/body-8d679e925718b5e8e4b18e9a4fab37f7eaa99e43386459376559080ac8f2856a.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/text_button-73590134e40cdb49f9abdc8e796cc00dc362693f3f0f6137d6cf9bb78c318ce7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> </head> <body> <div id='react-modal'></div> <div class="js-upgrade-ie-banner" style="display: none; text-align: center; padding: 8px 0; background-color: #ebe480;"><p style="color: #000; font-size: 12px; margin: 0 0 4px;">Academia.edu no longer supports Internet Explorer.</p><p style="color: #000; font-size: 12px; margin: 0;">To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.querySelector('.js-upgrade-ie-banner').style.display = 'block'; }</script> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "e7fe5c6ec3f7b6844a8c5e361a37cfe9a6cb70bd8929a2521708587da70fc533", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="AdkHl0o0VYeNakGqg9rlK0GQoE95lSpMcPCqimfLbeB5sotW+XhM3ufPa0yrU1ka9vpDtdY1BcIKnAMtd9IjOg==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://www.academia.edu/90959603/Automated_Vehicle_Recognition_with_Deep_Convolutional_Neural_Networks" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="KOrSkyqrma82esx7lz11Da3tm16pjA96hJbvfpMJGRFQgV5SmeeA9lzf5p2/tMk8God4pAYsIPT++kbZgxBXyw==" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><input class="btn btn-primary btn-block g-recaptcha js-password-reset-submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" type="submit" value="Email me a link" /></form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script> <div class="header--container" id="main-header-container"><div class="header--inner-container header--inner-container-ds2"><div class="header-ds2--left-wrapper"><div class="header-ds2--left-wrapper-inner"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="hide-on-desktop-redesign" style="height: 24px; width: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hide-on-mobile-redesign" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a><div class="header--search-container header--search-container-ds2"><form class="js-SiteSearch-form select2-no-default-pills" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><svg style="width: 14px; height: 14px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="search" class="header--search-icon svg-inline--fa fa-search fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M505 442.7L405.3 343c-4.5-4.5-10.6-7-17-7H372c27.6-35.3 44-79.7 44-128C416 93.1 322.9 0 208 0S0 93.1 0 208s93.1 208 208 208c48.3 0 92.7-16.4 128-44v16.3c0 6.4 2.5 12.5 7 17l99.7 99.7c9.4 9.4 24.6 9.4 33.9 0l28.3-28.3c9.4-9.4 9.4-24.6.1-34zM208 336c-70.7 0-128-57.2-128-128 0-70.7 57.2-128 128-128 70.7 0 128 57.2 128 128 0 70.7-57.2 128-128 128z"></path></svg><input class="header--search-input header--search-input-ds2 js-SiteSearch-form-input" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" /></form></div></div></div><nav class="header--nav-buttons header--nav-buttons-ds2 js-main-nav"><a class="ds2-5-button ds2-5-button--secondary js-header-login-url header-button-ds2 header-login-ds2 hide-on-mobile-redesign" href="https://www.academia.edu/login" rel="nofollow">Log In</a><a class="ds2-5-button ds2-5-button--secondary header-button-ds2 hide-on-mobile-redesign" href="https://www.academia.edu/signup" rel="nofollow">Sign Up</a><button class="header--hamburger-button header--hamburger-button-ds2 hide-on-desktop-redesign js-header-hamburger-button"><div class="icon-bar"></div><div class="icon-bar" style="margin-top: 4px;"></div><div class="icon-bar" style="margin-top: 4px;"></div></button></nav></div><ul class="header--dropdown-container js-header-dropdown"><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/login" rel="nofollow">Log In</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/signup" rel="nofollow">Sign Up</a></li><li class="header--dropdown-row js-header-dropdown-expand-button"><button class="header--dropdown-button">more<svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="caret-down" class="header--dropdown-button-icon svg-inline--fa fa-caret-down fa-w-10" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><path fill="currentColor" d="M31.3 192h257.3c17.8 0 26.7 21.5 14.1 34.1L174.1 354.8c-7.8 7.8-20.5 7.8-28.3 0L17.2 226.1C4.6 213.5 13.5 192 31.3 192z"></path></svg></button></li><li><ul class="header--expanded-dropdown-container"><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/about">About</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/press">Press</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://medium.com/@academia">Blog</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/documents">Papers</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/terms">Terms</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/privacy">Privacy</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/copyright">Copyright</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/hiring"><svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="header--dropdown-row-icon svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>We're Hiring!</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://support.academia.edu/"><svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="header--dropdown-row-icon svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>Help Center</a></li><li class="header--dropdown-row js-header-dropdown-collapse-button"><button class="header--dropdown-button">less<svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="caret-up" class="header--dropdown-button-icon svg-inline--fa fa-caret-up fa-w-10" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><path fill="currentColor" d="M288.662 352H31.338c-17.818 0-26.741-21.543-14.142-34.142l128.662-128.662c7.81-7.81 20.474-7.81 28.284 0l128.662 128.662c12.6 12.599 3.676 34.142-14.142 34.142z"></path></svg></button></li></ul></li></ul></div> <script src="//a.academia-assets.com/assets/webpack_bundles/fast_loswp-bundle-5a6217ebba1e3e193cb1032ca4e3bea5eb426dd3928dd536d7bf14b642b1cd3a.js" defer="defer"></script><script>window.loswp = {}; window.loswp.author = 30575540; window.loswp.bulkDownloadFilterCounts = {}; window.loswp.hasDownloadableAttachment = true; window.loswp.hasViewableAttachments = true; // TODO: just use routes for this window.loswp.loginUrl = "https://www.academia.edu/login?post_login_redirect_url=https%3A%2F%2Fwww.academia.edu%2F90959603%2FAutomated_Vehicle_Recognition_with_Deep_Convolutional_Neural_Networks%3Fauto%3Ddownload"; window.loswp.translateUrl = "https://www.academia.edu/login?post_login_redirect_url=https%3A%2F%2Fwww.academia.edu%2F90959603%2FAutomated_Vehicle_Recognition_with_Deep_Convolutional_Neural_Networks%3Fshow_translation%3Dtrue"; window.loswp.previewableAttachments = [{"id":94379609,"identifier":"Attachment_94379609","shouldShowBulkDownload":false}]; window.loswp.shouldDetectTimezone = true; window.loswp.shouldShowBulkDownload = true; window.loswp.showSignupCaptcha = false window.loswp.willEdgeCache = false; window.loswp.work = {"work":{"id":90959603,"created_at":"2022-11-16T21:04:56.975-08:00","from_world_paper_id":220497726,"updated_at":"2023-12-27T01:05:01.901-08:00","_data":{"abstract":"In recent years there has been growing interest in the use of nonintrusive systems such as radar and infrared systems for vehicle recognition. State-of-the-art nonintrusive systems can report up to eight classes of vehicle types. Video-based systems, which arguably are the most popular nonintrusive detection systems, can report only very coarse classification levels (up to four classes), even with the best-performing vision systems. The present study developed a vision system that can report finer vehicle classifications according to FHWA’s scheme and is also comparable to other nonintrusive recognition systems. The proposed system decoupled object recognition into two main tasks: localization and classification. It began with localization by generating class-independent region proposals for each video frame, then it used deep convolutional neural networks to extract feature descriptors for each proposed region, and, finally, the system scored and classified the proposed regions by ...","publisher":"SAGE Publications","publication_date":"2017,,","publication_name":"Transportation Research Record: Journal of the Transportation Research Board"},"document_type":"paper","pre_hit_view_count_baseline":null,"quality":"high","language":"en","title":"Automated Vehicle Recognition with Deep Convolutional Neural Networks","broadcastable":true,"draft":null,"has_indexable_attachment":true,"indexable":true}}["work"]; window.loswp.workCoauthors = [30575540]; window.loswp.locale = "en"; window.loswp.countryCode = "SG"; window.loswp.cwvAbTestBucket = ""; window.loswp.designVariant = "ds_vanilla"; window.loswp.fullPageMobileSutdModalVariant = "full_page_mobile_sutd_modal"; window.loswp.useOptimizedScribd4genScript = false; window.loswp.appleClientId = 'edu.academia.applesignon';</script><script defer="" src="https://accounts.google.com/gsi/client"></script><div class="ds-loswp-container"><div class="ds-work-card--grid-container"><div class="ds-work-card--container js-loswp-work-card"><div class="ds-work-card--cover"><div class="ds-work-cover--wrapper"><div class="ds-work-cover--container"><button class="ds-work-cover--clickable js-swp-download-button" data-signup-modal="{"location":"swp-splash-paper-cover","attachmentId":94379609,"attachmentType":"pdf"}"><img alt="First page of “Automated Vehicle Recognition with Deep Convolutional Neural Networks”" class="ds-work-cover--cover-thumbnail" src="https://0.academia-photos.com/attachment_thumbnails/94379609/mini_magick20221117-1-1kf9x8g.png?1668661611" /><img alt="PDF Icon" class="ds-work-cover--file-icon" src="//a.academia-assets.com/assets/single_work_splash/adobe.icon-574afd46eb6b03a77a153a647fb47e30546f9215c0ee6a25df597a779717f9ef.svg" /><div class="ds-work-cover--hover-container"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span><p>Download Free PDF</p></div><div class="ds-work-cover--ribbon-container">Download Free PDF</div><div class="ds-work-cover--ribbon-triangle"></div></button></div></div></div><div class="ds-work-card--work-information"><h1 class="ds-work-card--work-title">Automated Vehicle Recognition with Deep Convolutional Neural Networks</h1><div class="ds-work-card--work-authors ds-work-card--detail"><a class="ds-work-card--author js-wsj-grid-card-author ds2-5-body-md ds2-5-body-link" data-author-id="30575540" href="https://iastate.academia.edu/AnujSharma"><img alt="Profile image of Anuj Sharma" class="ds-work-card--author-avatar" src="//a.academia-assets.com/images/s65_no_pic.png" />Anuj Sharma</a></div><div class="ds-work-card--detail"><p class="ds-work-card--detail ds2-5-body-sm">2017, Transportation Research Record: Journal of the Transportation Research Board</p><div class="ds-work-card--work-metadata"><div class="ds-work-card--work-metadata__stat"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">visibility</span><p class="ds2-5-body-sm" id="work-metadata-view-count">…</p></div><div class="ds-work-card--work-metadata__stat"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">description</span><p class="ds2-5-body-sm">12 pages</p></div><div class="ds-work-card--work-metadata__stat"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">link</span><p class="ds2-5-body-sm">1 file</p></div></div><script>(async () => { const workId = 90959603; const worksViewsPath = "/v0/works/views?subdomain_param=api&work_ids%5B%5D=90959603"; const getWorkViews = async (workId) => { const response = await fetch(worksViewsPath); if (!response.ok) { throw new Error('Failed to load work views'); } const data = await response.json(); return data.views[workId]; }; // Get the view count for the work - we send this immediately rather than waiting for // the DOM to load, so it can be available as soon as possible (but without holding up // the backend or other resource requests, because it's a bit expensive and not critical). const viewCount = await getWorkViews(workId); const updateViewCount = (viewCount) => { const viewCountNumber = Number(viewCount); if (!viewCountNumber) { throw new Error('Failed to parse view count'); } const commaizedViewCount = viewCountNumber.toLocaleString(); const viewCountBody = document.getElementById('work-metadata-view-count'); if (viewCountBody) { viewCountBody.textContent = `${commaizedViewCount} views`; } else { throw new Error('Failed to find work views element'); } }; // If the DOM is still loading, wait for it to be ready before updating the view count. if (document.readyState === "loading") { document.addEventListener('DOMContentLoaded', () => { updateViewCount(viewCount); }); // Otherwise, just update it immediately. } else { updateViewCount(viewCount); } })();</script></div><p class="ds-work-card--work-abstract ds-work-card--detail ds2-5-body-md">In recent years there has been growing interest in the use of nonintrusive systems such as radar and infrared systems for vehicle recognition. State-of-the-art nonintrusive systems can report up to eight classes of vehicle types. Video-based systems, which arguably are the most popular nonintrusive detection systems, can report only very coarse classification levels (up to four classes), even with the best-performing vision systems. The present study developed a vision system that can report finer vehicle classifications according to FHWA’s scheme and is also comparable to other nonintrusive recognition systems. The proposed system decoupled object recognition into two main tasks: localization and classification. It began with localization by generating class-independent region proposals for each video frame, then it used deep convolutional neural networks to extract feature descriptors for each proposed region, and, finally, the system scored and classified the proposed regions by ...</p><div class="ds-work-card--button-container"><button class="ds2-5-button js-swp-download-button" data-signup-modal="{"location":"continue-reading-button--work-card","attachmentId":94379609,"attachmentType":"pdf","workUrl":"https://www.academia.edu/90959603/Automated_Vehicle_Recognition_with_Deep_Convolutional_Neural_Networks"}">See full PDF</button><button class="ds2-5-button ds2-5-button--secondary js-swp-download-button" data-signup-modal="{"location":"download-pdf-button--work-card","attachmentId":94379609,"attachmentType":"pdf","workUrl":"https://www.academia.edu/90959603/Automated_Vehicle_Recognition_with_Deep_Convolutional_Neural_Networks"}"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span>Download PDF</button></div></div></div></div><div data-auto_select="false" data-client_id="331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b" data-doc_id="94379609" data-landing_url="https://www.academia.edu/90959603/Automated_Vehicle_Recognition_with_Deep_Convolutional_Neural_Networks" data-login_uri="https://www.academia.edu/registrations/google_one_tap" data-moment_callback="onGoogleOneTapEvent" id="g_id_onload"></div><div class="ds-top-related-works--grid-container"><div class="ds-related-content--container ds-top-related-works--container"><h2 class="ds-related-content--heading">Related papers</h2><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="0" data-entity-id="49975663" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/49975663/VEHICLE_CLASSIFICATION_USING_THE_CONVOLUTION_NEURAL_NETWORK_APPROACH">VEHICLE CLASSIFICATION USING THE CONVOLUTION NEURAL NETWORK APPROACH</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="187691426" href="https://independent.academia.edu/MandalapuSaradaDevi">Mandalapu Sarada Devi</a><span>, </span><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="52647603" href="https://gtu-in.academia.edu/JANAKTRIVEDI">JANAK TRIVEDI</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Scientific Journal of Silesian University of Technology. Series Transport , 2021</p><p class="ds-related-work--abstract ds2-5-body-sm">We present vehicle detection classification using the Convolution Neural Network (CNN) of the deep learning approach. The automatic vehicle classification for traffic surveillance video systems is challenging for the Intelligent Transportation System (ITS) to build a smart city. In this article, three different vehicles: bike, car and truck classification are considered for around 3,000 bikes, 6,000 cars, and 2,000 images of trucks. CNN can automatically absorb and extract different vehicle dataset's different features without a manual selection of features. The accuracy of CNN is measured in terms of the confidence values of the detected object. The highest confidence value is about 0.99 in the case of the bike category vehicle classification. The automatic vehicle classification supports building an electronic toll collection system and identifying emergency vehicles in the traffic.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"VEHICLE CLASSIFICATION USING THE CONVOLUTION NEURAL NETWORK APPROACH","attachmentId":68133202,"attachmentType":"pdf","work_url":"https://www.academia.edu/49975663/VEHICLE_CLASSIFICATION_USING_THE_CONVOLUTION_NEURAL_NETWORK_APPROACH","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/49975663/VEHICLE_CLASSIFICATION_USING_THE_CONVOLUTION_NEURAL_NETWORK_APPROACH"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="1" data-entity-id="56704372" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/56704372/An_Optimized_Approach_to_Vehicle_Type_Classification_Using_a_Convolutional_Neural_Network">An Optimized Approach to Vehicle-Type Classification Using a Convolutional Neural Network</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="96272921" href="https://independent.academia.edu/NoreenKhan16">Noreen Khan</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Computers, Materials & Continua</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"An Optimized Approach to Vehicle-Type Classification Using a Convolutional Neural Network","attachmentId":71958995,"attachmentType":"pdf","work_url":"https://www.academia.edu/56704372/An_Optimized_Approach_to_Vehicle_Type_Classification_Using_a_Convolutional_Neural_Network","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/56704372/An_Optimized_Approach_to_Vehicle_Type_Classification_Using_a_Convolutional_Neural_Network"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="2" data-entity-id="51054895" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/51054895/A_Model_Based_on_Convolutional_Neural_Network_CNN_for_Vehicle_Classification">A Model Based on Convolutional Neural Network (CNN) for Vehicle Classification</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="202459106" href="https://northsouth.academia.edu/TONMOYROY">TONMOY ROY</a><span>, </span><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="180841030" href="https://independent.academia.edu/MahdiaAmina">Mahdia Amina</a><span>, </span><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="99384668" href="https://malaya.academia.edu/FMJavedMehediShamrat">F M Javed Mehedi Shamrat</a><span>, </span><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="27426166" href="https://independent.academia.edu/KarimAsif">Joyece Jane</a></div><p class="ds-related-work--metadata ds2-5-body-xs">IEEE, 2021</p><p class="ds-related-work--abstract ds2-5-body-sm">The Convolutional Neural Network (CNN) is a form of artificial neural network that has become very popular in computer vision. We proposed a convolutional neural network for classifying common types of vehicles in our country in this paper. Vehicle classification is essential in many applications, including surveillance protection systems and traffic control systems. We raised these concerns and set a goal to find a way to eliminate traffic-related road accidents. The most challenging aspect of computer vision is achieving effective outcomes in order to execute a device due to variations of data shapes and colors. We used three learning methods to identify the vehicle: MobileNetV2, DenseNet, and VGG 19, and demonstrated the methods detection accuracy. Convolutional neural networks are capable of performing all three approaches with grace. The system performs impressively on a real-time standard dataset-the Nepal dataset, which contains 4800 photographs of vehicles. DenseNet has a training accuracy of 94.32 % and a validation accuracy of 95.37%. Furthermore, the VGG 19 has a training accuracy of 91.94 % and a validation accuracy of 92.68 %. The MobileNetV2 architecture has the best accuracy, with a training accuracy of 97.01% and validation accuracy of 98.10%.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"A Model Based on Convolutional Neural Network (CNN) for Vehicle Classification","attachmentId":68916032,"attachmentType":"pdf","work_url":"https://www.academia.edu/51054895/A_Model_Based_on_Convolutional_Neural_Network_CNN_for_Vehicle_Classification","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/51054895/A_Model_Based_on_Convolutional_Neural_Network_CNN_for_Vehicle_Classification"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="3" data-entity-id="100139232" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/100139232/Vehicle_Detection_and_Classification_Using_Deep_Neural_Networks">Vehicle Detection and Classification Using Deep Neural Networks</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="83617235" href="https://nmsu.academia.edu/RiasatKhan">Riasat Khan</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2022 International Conference on Electrical and Information Technology (IEIT)</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Vehicle Detection and Classification Using Deep Neural Networks","attachmentId":101044415,"attachmentType":"pdf","work_url":"https://www.academia.edu/100139232/Vehicle_Detection_and_Classification_Using_Deep_Neural_Networks","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/100139232/Vehicle_Detection_and_Classification_Using_Deep_Neural_Networks"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="4" data-entity-id="103380713" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/103380713/Vehicle_detection_systems_for_intelligent_driving_using_deep_convolutional_neural_networks">Vehicle detection systems for intelligent driving using deep convolutional neural networks</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="40045720" href="https://independent.academia.edu/Abiyev">Rahib Abiyev</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Discover Artificial Intelligence</p><p class="ds-related-work--abstract ds2-5-body-sm">In the paper, a vision-based vehicle identification system is proposed for autonomous intelligent car driving. The accurate detection of obstacles (vehicles) during intelligent car driving allows avoiding crashes, preventing accidents, saving people’s lives and reducing harm. The vehicle detection system, which uses low-quality images captured by a monocular video camera mounted at the front of the car, is based on convolutional neural networks (CNN). The CNN can extract global features of the images using convolutional layers and achieves more accurate, and faithful contours of vehicles. The CNN structure proposed in the paper provides high-accuracy detection of vehicle images. The experiments that have been performed using GTI dataset demonstrate that the CNN-based vehicle detection system achieves very accurate results and is more robust to different variations of images.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Vehicle detection systems for intelligent driving using deep convolutional neural networks","attachmentId":103402835,"attachmentType":"pdf","work_url":"https://www.academia.edu/103380713/Vehicle_detection_systems_for_intelligent_driving_using_deep_convolutional_neural_networks","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/103380713/Vehicle_detection_systems_for_intelligent_driving_using_deep_convolutional_neural_networks"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="5" data-entity-id="28317322" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/28317322/Image_based_Vehicle_Analysis_using_Deep_Neural_Network_A_Systematic_Study">Image-based Vehicle Analysis using Deep Neural Network: A Systematic Study</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="53093967" href="https://liverpool.academia.edu/ThanhToanDo">Thanh-Toan Do</a></div><p class="ds-related-work--abstract ds2-5-body-sm">—We address the vehicle detection and classification problems using Deep Neural Networks (DNNs) approaches. Here we answer to questions that are specific to our application including how to utilize DNN for vehicle detection, what features are useful for vehicle classification, and how to extend a model trained on a limited size dataset, to the cases of extreme lighting condition. Answering these questions we propose our approach that outperforms state-of-the-art methods, and achieves promising results on image with extreme lighting conditions.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Image-based Vehicle Analysis using Deep Neural Network: A Systematic Study","attachmentId":48647441,"attachmentType":"pdf","work_url":"https://www.academia.edu/28317322/Image_based_Vehicle_Analysis_using_Deep_Neural_Network_A_Systematic_Study","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/28317322/Image_based_Vehicle_Analysis_using_Deep_Neural_Network_A_Systematic_Study"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="6" data-entity-id="113935455" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/113935455/Vehicle_Type_Detection_by_Convolutional_Neural_Networks">Vehicle Type Detection by Convolutional Neural Networks</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="32693197" href="https://uma.academia.edu/EzequielL%C3%B3pezRubio">Ezequiel López-Rubio</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Biomedical Applications Based on Natural and Artificial Computing, 2017</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Vehicle Type Detection by Convolutional Neural Networks","attachmentId":110767194,"attachmentType":"pdf","work_url":"https://www.academia.edu/113935455/Vehicle_Type_Detection_by_Convolutional_Neural_Networks","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/113935455/Vehicle_Type_Detection_by_Convolutional_Neural_Networks"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="7" data-entity-id="84937791" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/84937791/Deep_Learning_Based_Vehicle_Classification_for_Low_Quality_Images">Deep Learning-Based Vehicle Classification for Low Quality Images</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="99717787" href="https://atilim.academia.edu/OzgenSari">Ozgen Sari</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Sensors</p><p class="ds-related-work--abstract ds2-5-body-sm">This study proposes a simple convolutional neural network (CNN)-based model for vehicle classification in low resolution surveillance images collected by a standard security camera installed distant from a traffic scene. In order to evaluate its effectiveness, the proposed model is tested on a new dataset containing tiny (100 × 100 pixels) and low resolution (96 dpi) vehicle images. The proposed model is then compared with well-known VGG16-based CNN models in terms of accuracy and complexity. Results indicate that although the well-known models provide higher accuracy, the proposed method offers an acceptable accuracy (92.9%) as well as a simple and lightweight solution for vehicle classification in low quality images. Thus, it is believed that this study might provide useful perception and understanding for further research on the use of standard low-cost cameras to enhance the ability of the intelligent systems such as intelligent transportation system applications.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Deep Learning-Based Vehicle Classification for Low Quality Images","attachmentId":89793246,"attachmentType":"pdf","work_url":"https://www.academia.edu/84937791/Deep_Learning_Based_Vehicle_Classification_for_Low_Quality_Images","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/84937791/Deep_Learning_Based_Vehicle_Classification_for_Low_Quality_Images"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="8" data-entity-id="121436455" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/121436455/A_Fast_and_Accurate_Real_Time_Vehicle_Detection_Method_Using_Deep_Learning_for_Unconstrained_Environments">A Fast and Accurate Real-Time Vehicle Detection Method Using Deep Learning for Unconstrained Environments</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="300174126" href="https://independent.academia.edu/UzairKhan696">Uzair Khan</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Applied Sciences</p><p class="ds-related-work--abstract ds2-5-body-sm">Deep learning-based classification and detection algorithms have emerged as a powerful tool for vehicle detection in intelligent transportation systems. The limitations of the number of high-quality labeled training samples makes the single vehicle detection methods incapable of accomplishing acceptable accuracy in road vehicle detection. This paper presents detection and classification of vehicles on publicly available datasets by utilizing the YOLO-v5 architecture. This paper’s findings utilize the concept of transfer learning through fine tuning the weights of the pre-trained YOLO-v5 architecture. To employ the concept of transfer learning, extensive data sets of images and videos of the congested traffic patterns were collected by the authors. These datasets were made more comprehensive by pointing various attributes, for instance high- and low-density traffic patterns, occlusions, and different weather circumstances. All of these gathered datasets were manually annotated. Ultim...</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"A Fast and Accurate Real-Time Vehicle Detection Method Using Deep Learning for Unconstrained Environments","attachmentId":116311986,"attachmentType":"pdf","work_url":"https://www.academia.edu/121436455/A_Fast_and_Accurate_Real_Time_Vehicle_Detection_Method_Using_Deep_Learning_for_Unconstrained_Environments","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/121436455/A_Fast_and_Accurate_Real_Time_Vehicle_Detection_Method_Using_Deep_Learning_for_Unconstrained_Environments"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="9" data-entity-id="93292664" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/93292664/A_Vehicle_Detection_Approach_using_Deep_Learning_Methodologies">A Vehicle Detection Approach using Deep Learning Methodologies</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="66264307" href="https://ankara.academia.edu/%C4%B0manAskerbeyli">İman Askerbeyli</a></div><p class="ds-related-work--metadata ds2-5-body-xs">ArXiv, 2018</p><p class="ds-related-work--abstract ds2-5-body-sm">The purpose of this study is to successfully train our vehicle detector using R-CNN, Faster R-CNN deep learning methods on a sample vehicle data sets and to optimize the success rate of the trained detector by providing efficient results for vehicle detection by testing the trained vehicle detector on the test data. The working method consists of six main stages. These are respectively; loading the data set, the design of the convolutional neural network, configuration of training options, training of the Faster R-CNN object detector and evaluation of trained detector. In addition, in the scope of the study, Faster R-CNN, R-CNN deep learning methods were mentioned and experimental analysis comparisons were made with the results obtained from vehicle detection.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"A Vehicle Detection Approach using Deep Learning Methodologies","attachmentId":96070035,"attachmentType":"pdf","work_url":"https://www.academia.edu/93292664/A_Vehicle_Detection_Approach_using_Deep_Learning_Methodologies","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/93292664/A_Vehicle_Detection_Approach_using_Deep_Learning_Methodologies"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div></div></div><div class="ds-sticky-ctas--wrapper js-loswp-sticky-ctas hidden"><div class="ds-sticky-ctas--grid-container"><div class="ds-sticky-ctas--container"><button class="ds2-5-button js-swp-download-button" data-signup-modal="{"location":"continue-reading-button--sticky-ctas","attachmentId":94379609,"attachmentType":"pdf","workUrl":null}">See full PDF</button><button class="ds2-5-button ds2-5-button--secondary js-swp-download-button" data-signup-modal="{"location":"download-pdf-button--sticky-ctas","attachmentId":94379609,"attachmentType":"pdf","workUrl":null}"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span>Download PDF</button></div></div></div><div class="ds-below-fold--grid-container"><div class="ds-work--container js-loswp-embedded-document"><div class="attachment_preview" data-attachment="Attachment_94379609" style="display: none"><div class="js-scribd-document-container"><div class="scribd--document-loading js-scribd-document-loader" style="display: block;"><img alt="Loading..." src="//a.academia-assets.com/images/loaders/paper-load.gif" /><p>Loading Preview</p></div></div><div style="text-align: center;"><div class="scribd--no-preview-alert js-preview-unavailable"><p>Sorry, preview is currently unavailable. You can download the paper by clicking the button above.</p></div></div></div></div><div class="ds-sidebar--container js-work-sidebar"><div class="ds-related-content--container"><h2 class="ds-related-content--heading">Related papers</h2><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="0" data-entity-id="59767499" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/59767499/Performance_Evaluation_for_Vision_Based_Vehicle_Classification_Using_Convolutional_Neural_Network">Performance Evaluation for Vision-Based Vehicle Classification Using Convolutional Neural Network</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="11508699" href="https://uitm.academia.edu/syamsulsyafiq">syamsul syafiq</a></div><p class="ds-related-work--metadata ds2-5-body-xs">International Journal of Engineering & Technology, 2018</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Performance Evaluation for Vision-Based Vehicle Classification Using Convolutional Neural Network","attachmentId":73520071,"attachmentType":"pdf","work_url":"https://www.academia.edu/59767499/Performance_Evaluation_for_Vision_Based_Vehicle_Classification_Using_Convolutional_Neural_Network","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/59767499/Performance_Evaluation_for_Vision_Based_Vehicle_Classification_Using_Convolutional_Neural_Network"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="1" data-entity-id="90946549" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/90946549/Vehicle_Type_Classification_Using_Deep_Learning">Vehicle Type Classification Using Deep Learning</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="78516746" href="https://independent.academia.edu/deepakmane5">deepak mane</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Advances in Intelligent Systems and Computing, 2020</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Vehicle Type Classification Using Deep Learning","attachmentId":94369432,"attachmentType":"pdf","work_url":"https://www.academia.edu/90946549/Vehicle_Type_Classification_Using_Deep_Learning","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/90946549/Vehicle_Type_Classification_Using_Deep_Learning"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="2" data-entity-id="33300656" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/33300656/Vehicle_Make_and_Model_Classification_Using_Convolutional_Neural_Networks">Vehicle Make and Model Classification Using Convolutional Neural Networks</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="24493864" href="https://independent.academia.edu/SyedHasibAkhterFaruqui">Syed Hasib Akhter Faruqui</a></div><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Vehicle Make and Model Classification Using Convolutional Neural Networks","attachmentId":53365961,"attachmentType":"pdf","work_url":"https://www.academia.edu/33300656/Vehicle_Make_and_Model_Classification_Using_Convolutional_Neural_Networks","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/33300656/Vehicle_Make_and_Model_Classification_Using_Convolutional_Neural_Networks"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="3" data-entity-id="112084286" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/112084286/Vehicle_Detection_and_Identification_Using_Computer_Vision_Technology_with_the_Utilization_of_the_YOLOv8_Deep_Learning_Method">Vehicle Detection and Identification Using Computer Vision Technology with the Utilization of the YOLOv8 Deep Learning Method</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="218588178" href="https://independent.academia.edu/TELAUMBANUAPASRAH">PASRAH TELAUMBANUA</a></div><p class="ds-related-work--metadata ds2-5-body-xs">sinkron</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Vehicle Detection and Identification Using Computer Vision Technology with the Utilization of the YOLOv8 Deep Learning Method","attachmentId":109424272,"attachmentType":"pdf","work_url":"https://www.academia.edu/112084286/Vehicle_Detection_and_Identification_Using_Computer_Vision_Technology_with_the_Utilization_of_the_YOLOv8_Deep_Learning_Method","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/112084286/Vehicle_Detection_and_Identification_Using_Computer_Vision_Technology_with_the_Utilization_of_the_YOLOv8_Deep_Learning_Method"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="4" data-entity-id="115285968" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/115285968/Fast_and_Accurate_Deep_Learning_Architecture_on_Vehicle_Type_Recognition">Fast and Accurate Deep Learning Architecture on Vehicle Type Recognition</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="4100949" href="https://mahasarakham.academia.edu/OlarikSurinta">Olarik Surinta</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Current Applied Science and Technology, 2021</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Fast and Accurate Deep Learning Architecture on Vehicle Type Recognition","attachmentId":111737256,"attachmentType":"pdf","work_url":"https://www.academia.edu/115285968/Fast_and_Accurate_Deep_Learning_Architecture_on_Vehicle_Type_Recognition","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/115285968/Fast_and_Accurate_Deep_Learning_Architecture_on_Vehicle_Type_Recognition"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="5" data-entity-id="97082644" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/97082644/Vehicle_Detection_for_Vision_Based_Intelligent_Transportation_Systems_Using_Convolutional_Neural_Network_Algorithm">Vehicle Detection for Vision-Based Intelligent Transportation Systems Using Convolutional Neural Network Algorithm</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="4676562" href="https://redseauniveristy.academia.edu/elmustafasayed">Elmustafa S A Y E D Ali</a><span>, </span><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="113737" href="https://iium.academia.edu/OTHMANOKHALIFA">OTHMAN O KHALIFA</a></div><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Vehicle Detection for Vision-Based Intelligent Transportation Systems Using Convolutional Neural Network Algorithm","attachmentId":98803146,"attachmentType":"pdf","work_url":"https://www.academia.edu/97082644/Vehicle_Detection_for_Vision_Based_Intelligent_Transportation_Systems_Using_Convolutional_Neural_Network_Algorithm","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/97082644/Vehicle_Detection_for_Vision_Based_Intelligent_Transportation_Systems_Using_Convolutional_Neural_Network_Algorithm"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="6" data-entity-id="80691601" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/80691601/Large_Scale_Traffic_Surveillance_Vehicle_Detection_and_Classification_Using_Cascade_Classifier_and_Convolutional_Neural_Network">Large Scale Traffic Surveillance :Vehicle Detection and Classification Using Cascade Classifier and Convolutional Neural Network</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="219352128" href="https://independent.academia.edu/ShaifChowdhury">Shaif Chowdhury</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2017</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Large Scale Traffic Surveillance :Vehicle Detection and Classification Using Cascade Classifier and Convolutional Neural Network","attachmentId":86990259,"attachmentType":"pdf","work_url":"https://www.academia.edu/80691601/Large_Scale_Traffic_Surveillance_Vehicle_Detection_and_Classification_Using_Cascade_Classifier_and_Convolutional_Neural_Network","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/80691601/Large_Scale_Traffic_Surveillance_Vehicle_Detection_and_Classification_Using_Cascade_Classifier_and_Convolutional_Neural_Network"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="7" data-entity-id="77163178" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/77163178/Vehicle_identification_using_modified_region_based_convolution_network_for_intelligent_transportation_system">Vehicle identification using modified region based convolution network for intelligent transportation system</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="3106601" href="https://independent.academia.edu/AnuradhaDhull">Anuradha Dhull</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Multimedia Tools and Applications, 2021</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Vehicle identification using modified region based convolution network for intelligent transportation system","attachmentId":84606639,"attachmentType":"pdf","work_url":"https://www.academia.edu/77163178/Vehicle_identification_using_modified_region_based_convolution_network_for_intelligent_transportation_system","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/77163178/Vehicle_identification_using_modified_region_based_convolution_network_for_intelligent_transportation_system"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="8" data-entity-id="90202241" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/90202241/Vehicular_Detection_and_Classification_for_Intelligent_Transportation_System_A_Deep_Learning_Approach_Using_Faster_R_CNN_Model">Vehicular Detection and Classification for Intelligent Transportation System: A Deep Learning Approach Using Faster R-CNN Model</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="126655250" href="https://independent.academia.edu/CorazonRebong">Corazon Rebong</a></div><p class="ds-related-work--metadata ds2-5-body-xs">International journal of simulation: systems, science & technology, 2019</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Vehicular Detection and Classification for Intelligent Transportation System: A Deep Learning Approach Using Faster R-CNN Model","attachmentId":93829286,"attachmentType":"pdf","work_url":"https://www.academia.edu/90202241/Vehicular_Detection_and_Classification_for_Intelligent_Transportation_System_A_Deep_Learning_Approach_Using_Faster_R_CNN_Model","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/90202241/Vehicular_Detection_and_Classification_for_Intelligent_Transportation_System_A_Deep_Learning_Approach_Using_Faster_R_CNN_Model"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="9" data-entity-id="89687287" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/89687287/Physical_Features_and_Deep_Learning_based_Appearance_Features_for_Vehicle_Classification_from_Rear_View_Videos">Physical Features and Deep Learning-based Appearance Features for Vehicle Classification from Rear View Videos</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="61996598" href="https://independent.academia.edu/NinadThakoor">Ninad Thakoor</a></div><p class="ds-related-work--metadata ds2-5-body-xs">IEEE Transactions on Intelligent Transportation Systems, 2019</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Physical Features and Deep Learning-based Appearance Features for Vehicle Classification from Rear View Videos","attachmentId":93439402,"attachmentType":"pdf","work_url":"https://www.academia.edu/89687287/Physical_Features_and_Deep_Learning_based_Appearance_Features_for_Vehicle_Classification_from_Rear_View_Videos","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/89687287/Physical_Features_and_Deep_Learning_based_Appearance_Features_for_Vehicle_Classification_from_Rear_View_Videos"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="10" data-entity-id="90413704" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/90413704/Automated_Truck_Taxonomy_Classification_Using_Deep_Convolutional_Neural_Networks">Automated Truck Taxonomy Classification Using Deep Convolutional Neural Networks</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="28809130" href="https://kuniv.academia.edu/AbdullahAlmutairi">Abdullah Almutairi</a></div><p class="ds-related-work--metadata ds2-5-body-xs">International Journal of Intelligent Transportation Systems Research</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Automated Truck Taxonomy Classification Using Deep Convolutional Neural Networks","attachmentId":93983775,"attachmentType":"pdf","work_url":"https://www.academia.edu/90413704/Automated_Truck_Taxonomy_Classification_Using_Deep_Convolutional_Neural_Networks","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/90413704/Automated_Truck_Taxonomy_Classification_Using_Deep_Convolutional_Neural_Networks"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="11" data-entity-id="87642621" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/87642621/Comparative_Analysis_of_Deep_Learning_Models_for_Vehicle_Detection">Comparative Analysis of Deep Learning Models for Vehicle Detection</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="47939579" href="https://independent.academia.edu/RendiNurcahyo">Rendi Nurcahyo</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Systems Engineering and Information Technology (JOSEIT), 2022</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Comparative Analysis of Deep Learning Models for Vehicle Detection","attachmentId":91796036,"attachmentType":"pdf","work_url":"https://www.academia.edu/87642621/Comparative_Analysis_of_Deep_Learning_Models_for_Vehicle_Detection","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/87642621/Comparative_Analysis_of_Deep_Learning_Models_for_Vehicle_Detection"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="12" data-entity-id="114973387" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/114973387/An_Empirical_Analysis_of_Deep_Learning_Architectures_for_Vehicle_Make_and_Model_Recognition">An Empirical Analysis of Deep Learning Architectures for Vehicle Make and Model Recognition</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="176989728" href="https://independent.academia.edu/AqsaHassan11">Aqsa Hassan</a></div><p class="ds-related-work--metadata ds2-5-body-xs">IEEE Access, 2021</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"An Empirical Analysis of Deep Learning Architectures for Vehicle Make and Model Recognition","attachmentId":111518158,"attachmentType":"pdf","work_url":"https://www.academia.edu/114973387/An_Empirical_Analysis_of_Deep_Learning_Architectures_for_Vehicle_Make_and_Model_Recognition","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/114973387/An_Empirical_Analysis_of_Deep_Learning_Architectures_for_Vehicle_Make_and_Model_Recognition"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="13" data-entity-id="90641130" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/90641130/A_Novel_Vehicle_Classification_Model_for_Urban_Traffic_Surveillance_Using_the_Deep_Neural_Network_Model">A Novel Vehicle Classification Model for Urban Traffic Surveillance Using the Deep Neural Network Model</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="6065196" href="https://independent.academia.edu/kaurdapinder">dapinder kaur</a></div><p class="ds-related-work--metadata ds2-5-body-xs">International Journal of Education and Management Engineering, 2016</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"A Novel Vehicle Classification Model for Urban Traffic Surveillance Using the Deep Neural Network Model","attachmentId":94147965,"attachmentType":"pdf","work_url":"https://www.academia.edu/90641130/A_Novel_Vehicle_Classification_Model_for_Urban_Traffic_Surveillance_Using_the_Deep_Neural_Network_Model","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/90641130/A_Novel_Vehicle_Classification_Model_for_Urban_Traffic_Surveillance_Using_the_Deep_Neural_Network_Model"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="14" data-entity-id="37365242" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/37365242/Deep_Learning_based_Vehicle_Detection_and_Tracking_Techniques_State_of_the_Art_Survey">Deep Learning based Vehicle Detection and Tracking Techniques: State-of- the-Art Survey</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="2328357" href="https://independent.academia.edu/JournalofComputerScienceIJCSIS">Journal of Computer Science IJCSIS</a></div><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Deep Learning based Vehicle Detection and Tracking Techniques: State-of- the-Art Survey","attachmentId":57326671,"attachmentType":"pdf","work_url":"https://www.academia.edu/37365242/Deep_Learning_based_Vehicle_Detection_and_Tracking_Techniques_State_of_the_Art_Survey","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/37365242/Deep_Learning_based_Vehicle_Detection_and_Tracking_Techniques_State_of_the_Art_Survey"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="15" data-entity-id="43807151" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/43807151/IJERT_Real_Time_Road_Surveillance_and_Vehicle_Detection_using_Deep_Learning">IJERT-Real Time Road Surveillance and Vehicle Detection using Deep Learning</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="109571315" href="https://independent.academia.edu/IJERTORG">IJERT Journal</a></div><p class="ds-related-work--metadata ds2-5-body-xs">International Journal of Engineering Research and Technology (IJERT), 2020</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"IJERT-Real Time Road Surveillance and Vehicle Detection using Deep Learning","attachmentId":64125003,"attachmentType":"pdf","work_url":"https://www.academia.edu/43807151/IJERT_Real_Time_Road_Surveillance_and_Vehicle_Detection_using_Deep_Learning","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/43807151/IJERT_Real_Time_Road_Surveillance_and_Vehicle_Detection_using_Deep_Learning"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="16" data-entity-id="99373010" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/99373010/View_Independent_Vehicle_Make_Model_and_Color_Recognition_Using_Convolutional_Neural_Network">View Independent Vehicle Make, Model and Color Recognition Using Convolutional Neural Network</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="118717246" href="https://independent.academia.edu/afshindehghan">afshin dehghan</a></div><p class="ds-related-work--metadata ds2-5-body-xs">arXiv (Cornell University), 2017</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"View Independent Vehicle Make, Model and Color Recognition Using Convolutional Neural Network","attachmentId":100481121,"attachmentType":"pdf","work_url":"https://www.academia.edu/99373010/View_Independent_Vehicle_Make_Model_and_Color_Recognition_Using_Convolutional_Neural_Network","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/99373010/View_Independent_Vehicle_Make_Model_and_Color_Recognition_Using_Convolutional_Neural_Network"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="17" data-entity-id="49032114" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/49032114/Automated_vehicle_detection_in_satellite_images_using_deep_learning">Automated vehicle detection in satellite images using deep learning</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="1750972" href="https://independent.academia.edu/WessamHussein">Wessam Hussein</a></div><p class="ds-related-work--metadata ds2-5-body-xs">IOP Conference Series: Materials Science and Engineering</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Automated vehicle detection in satellite images using deep learning","attachmentId":67416051,"attachmentType":"pdf","work_url":"https://www.academia.edu/49032114/Automated_vehicle_detection_in_satellite_images_using_deep_learning","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/49032114/Automated_vehicle_detection_in_satellite_images_using_deep_learning"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="18" data-entity-id="99372217" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/99372217/A_new_approach_based_on_convolutional_neural_network_and_feature_selection_for_recognizing_vehicle_types">A new approach based on convolutional neural network and feature selection for recognizing vehicle types</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="35734439" href="https://independent.academia.edu/ErgenBurhan">Burhan Ergen</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Iran Journal of Computer Science</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"A new approach based on convolutional neural network and feature selection for recognizing vehicle types","attachmentId":100480504,"attachmentType":"pdf","work_url":"https://www.academia.edu/99372217/A_new_approach_based_on_convolutional_neural_network_and_feature_selection_for_recognizing_vehicle_types","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/99372217/A_new_approach_based_on_convolutional_neural_network_and_feature_selection_for_recognizing_vehicle_types"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div></div><div class="ds-related-content--container"><h2 class="ds-related-content--heading">Related topics</h2><div class="ds-research-interests--pills-container"><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="73" href="https://www.academia.edu/Documents/in/Civil_Engineering">Civil Engineering</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="74" href="https://www.academia.edu/Documents/in/Transportation_Engineering">Transportation Engineering</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="422" href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="20436" href="https://www.academia.edu/Documents/in/Urban_And_Regional_Planning">Urban And Regional Planning</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="38660" href="https://www.academia.edu/Documents/in/Operational_Research">Operational Research</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="81182" href="https://www.academia.edu/Documents/in/Deep_Learning">Deep Learning</a></div></div></div></div></div><div class="footer--content"><ul class="footer--main-links hide-on-mobile"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px; position: relative; bottom: -1px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a href="https://support.academia.edu/"><svg style="width: 12px; height: 12px; position: relative; bottom: -1px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer--research-interests"><li>Find new research papers in:</li><li><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul><ul class="footer--legal-links hide-on-mobile"><li><a href="https://www.academia.edu/terms">Terms</a></li><li><a href="https://www.academia.edu/privacy">Privacy</a></li><li><a href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2024</li></ul></div> </body> </html>