CINXE.COM
Integrale di Riemann - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="it" dir="ltr"> <head> <meta charset="UTF-8"> <title>Integrale di Riemann - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )itwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t."," \t,"],"wgDigitTransformTable":["",""], "wgDefaultDateFormat":"dmy","wgMonthNames":["","gennaio","febbraio","marzo","aprile","maggio","giugno","luglio","agosto","settembre","ottobre","novembre","dicembre"],"wgRequestId":"9cb0c252-8190-4f56-828a-7c228ed8f81c","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Integrale_di_Riemann","wgTitle":"Integrale di Riemann","wgCurRevisionId":137280628,"wgRevisionId":137280628,"wgArticleId":3224721,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["P9621 letta da Wikidata","P3847 letta da Wikidata","P2812 letta da Wikidata","P7554 letta da Wikidata","Voci con codice Thesaurus BNCF","Voci non biografiche con codici di controllo di autorità","Pagine che utilizzano collegamenti magici ISBN","Calcolo integrale"],"wgPageViewLanguage":"it","wgPageContentLanguage":"it","wgPageContentModel":"wikitext","wgRelevantPageName":"Integrale_di_Riemann","wgRelevantArticleId":3224721, "wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"it","pageLanguageDir":"ltr","pageVariantFallbacks":"it"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":7000,"wgRelatedArticlesCompat":[],"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q697181","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false, "wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.MainPageWikiList","ext.gadget.stru-commonsupload","ext.gadget.HiddenCat","ext.gadget.ReferenceTooltips","ext.gadget.TitoloErrato","ext.gadget.NewSection","ext.gadget.RichiediRevisioneBozza", "ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=it&modules=ext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=it&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=it&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.6"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/f/fd/Riemann_Sum.gif"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="401"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/f/fd/Riemann_Sum.gif/800px-Riemann_Sum.gif"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="267"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/f/fd/Riemann_Sum.gif/640px-Riemann_Sum.gif"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="214"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Integrale di Riemann - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//it.m.wikipedia.org/wiki/Integrale_di_Riemann"> <link rel="alternate" type="application/x-wiki" title="Modifica" href="/w/index.php?title=Integrale_di_Riemann&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (it)"> <link rel="EditURI" type="application/rsd+xml" href="//it.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://it.wikipedia.org/wiki/Integrale_di_Riemann"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.it"> <link rel="alternate" type="application/atom+xml" title="Feed Atom di Wikipedia" href="/w/index.php?title=Speciale:UltimeModifiche&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Integrale_di_Riemann rootpage-Integrale_di_Riemann skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Vai al contenuto</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Sito"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Menu principale" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Menu principale</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Menu principale</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">sposta nella barra laterale</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">nascondi</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigazione </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Pagina_principale" title="Visita la pagina principale [z]" accesskey="z"><span>Pagina principale</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Speciale:UltimeModifiche" title="Elenco delle ultime modifiche del sito [r]" accesskey="r"><span>Ultime modifiche</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Speciale:PaginaCasuale" title="Mostra una pagina a caso [x]" accesskey="x"><span>Una voce a caso</span></a></li><li id="n-nearby-pages-title" class="mw-list-item"><a href="/wiki/Speciale:NelleVicinanze"><span>Nelle vicinanze</span></a></li><li id="n-vetrina" class="mw-list-item"><a href="/wiki/Wikipedia:Vetrina"><span>Vetrina</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/Aiuto:Aiuto" title="Pagine di aiuto"><span>Aiuto</span></a></li><li id="n-Sportello-informazioni" class="mw-list-item"><a href="/wiki/Aiuto:Sportello_informazioni"><span>Sportello informazioni</span></a></li> </ul> </div> </div> <div id="p-Comunità" class="vector-menu mw-portlet mw-portlet-Comunità" > <div class="vector-menu-heading"> Comunità </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-portal" class="mw-list-item"><a href="/wiki/Portale:Comunit%C3%A0" title="Descrizione del progetto, cosa puoi fare, dove trovare le cose"><span>Portale Comunità</span></a></li><li id="n-villagepump" class="mw-list-item"><a href="/wiki/Wikipedia:Bar"><span>Bar</span></a></li><li id="n-wikipediano" class="mw-list-item"><a href="/wiki/Wikipedia:Wikipediano"><span>Il Wikipediano</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="/wiki/Wikipedia:Contatti"><span>Contatti</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Pagina_principale" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="L'enciclopedia libera" src="/static/images/mobile/copyright/wikipedia-tagline-it.svg" width="120" height="13" style="width: 7.5em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Speciale:Ricerca" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Cerca in Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Ricerca</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Cerca in Wikipedia" aria-label="Cerca in Wikipedia" autocapitalize="sentences" title="Cerca in Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Speciale:Ricerca"> </div> <button class="cdx-button cdx-search-input__end-button">Ricerca</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Strumenti personali"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Aspetto"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Modifica la dimensione, la larghezza e il colore del testo" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Aspetto" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Aspetto</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/?wmf_source=donate&wmf_medium=sidebar&wmf_campaign=it.wikipedia.org&uselang=it" class=""><span>Fai una donazione</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Speciale:CreaUtenza&returnto=Integrale+di+Riemann" title="Si consiglia di registrarsi e di effettuare l'accesso, anche se non è obbligatorio" class=""><span>registrati</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Speciale:Entra&returnto=Integrale+di+Riemann" title="Si consiglia di effettuare l'accesso, anche se non è obbligatorio [o]" accesskey="o" class=""><span>entra</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Altre opzioni" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Strumenti personali" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Strumenti personali</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="Menu utente" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/?wmf_source=donate&wmf_medium=sidebar&wmf_campaign=it.wikipedia.org&uselang=it"><span>Fai una donazione</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Speciale:CreaUtenza&returnto=Integrale+di+Riemann" title="Si consiglia di registrarsi e di effettuare l'accesso, anche se non è obbligatorio"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>registrati</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Speciale:Entra&returnto=Integrale+di+Riemann" title="Si consiglia di effettuare l'accesso, anche se non è obbligatorio [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>entra</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pagine per utenti anonimi <a href="/wiki/Aiuto:Benvenuto" aria-label="Ulteriori informazioni sulla contribuzione"><span>ulteriori informazioni</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Speciale:MieiContributi" title="Un elenco delle modifiche fatte da questo indirizzo IP [y]" accesskey="y"><span>contributi</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Speciale:MieDiscussioni" title="Discussioni sulle modifiche fatte da questo indirizzo IP [n]" accesskey="n"><span>discussioni</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Sito"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Indice" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Indice</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">sposta nella barra laterale</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">nascondi</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">Inizio</div> </a> </li> <li id="toc-Definizione" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Definizione"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Definizione</span> </div> </a> <ul id="toc-Definizione-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Integrale_multiplo_di_Riemann" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Integrale_multiplo_di_Riemann"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Integrale multiplo di Riemann</span> </div> </a> <ul id="toc-Integrale_multiplo_di_Riemann-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Proprietà" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Proprietà"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Proprietà</span> </div> </a> <button aria-controls="toc-Proprietà-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Attiva/disattiva la sottosezione Proprietà</span> </button> <ul id="toc-Proprietà-sublist" class="vector-toc-list"> <li id="toc-Riemman-integrabilità_e_Darboux-integrabilità" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Riemman-integrabilità_e_Darboux-integrabilità"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Riemman-integrabilità e Darboux-integrabilità</span> </div> </a> <ul id="toc-Riemman-integrabilità_e_Darboux-integrabilità-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Linearità" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Linearità"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Linearità</span> </div> </a> <ul id="toc-Linearità-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Additività" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Additività"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Additività</span> </div> </a> <ul id="toc-Additività-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Monotonia" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Monotonia"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.4</span> <span>Monotonia</span> </div> </a> <ul id="toc-Monotonia-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Valore_assoluto" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Valore_assoluto"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.5</span> <span>Valore assoluto</span> </div> </a> <ul id="toc-Valore_assoluto-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Integrale_di_Stieltjes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Integrale_di_Stieltjes"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Integrale di Stieltjes</span> </div> </a> <ul id="toc-Integrale_di_Stieltjes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Bibliografia" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Bibliografia"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Bibliografia</span> </div> </a> <ul id="toc-Bibliografia-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Voci_correlate" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Voci_correlate"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Voci correlate</span> </div> </a> <ul id="toc-Voci_correlate-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Altri_progetti" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Altri_progetti"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Altri progetti</span> </div> </a> <ul id="toc-Altri_progetti-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Collegamenti_esterni" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Collegamenti_esterni"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Collegamenti esterni</span> </div> </a> <ul id="toc-Collegamenti_esterni-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Indice" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Mostra/Nascondi l'indice" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Mostra/Nascondi l'indice</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Integrale di Riemann</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Vai a una voce in un'altra lingua. Disponibile in 38 lingue" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-38" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">38 lingue</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%AA%D9%83%D8%A7%D9%85%D9%84_%D8%B1%D9%8A%D9%85%D8%A7%D9%86" title="تكامل ريمان - arabo" lang="ar" hreflang="ar" data-title="تكامل ريمان" data-language-autonym="العربية" data-language-local-name="arabo" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/Riman_inteqral%C4%B1" title="Riman inteqralı - azerbaigiano" lang="az" hreflang="az" data-title="Riman inteqralı" data-language-autonym="Azərbaycanca" data-language-local-name="azerbaigiano" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%86%D0%BD%D1%82%D1%8D%D0%B3%D1%80%D0%B0%D0%BB_%D0%A0%D1%8B%D0%BC%D0%B0%D0%BD%D0%B0" title="Інтэграл Рымана - bielorusso" lang="be" hreflang="be" data-title="Інтэграл Рымана" data-language-autonym="Беларуская" data-language-local-name="bielorusso" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Integral_de_Riemann" title="Integral de Riemann - catalano" lang="ca" hreflang="ca" data-title="Integral de Riemann" data-language-autonym="Català" data-language-local-name="catalano" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%D8%AA%DB%95%D9%88%D8%A7%D9%88%DA%A9%D8%A7%D8%B1%DB%8C%DB%8C_%DA%95%DB%8C%D9%85%D8%A7%D9%86" title="تەواوکاریی ڕیمان - curdo centrale" lang="ckb" hreflang="ckb" data-title="تەواوکاریی ڕیمان" data-language-autonym="کوردی" data-language-local-name="curdo centrale" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Riemann%C5%AFv_integr%C3%A1l" title="Riemannův integrál - ceco" lang="cs" hreflang="cs" data-title="Riemannův integrál" data-language-autonym="Čeština" data-language-local-name="ceco" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%A0%D0%B8%D0%BC%D0%B0%D0%BD_%D0%B8%D0%BD%D1%82%D0%B5%D0%B3%D1%80%D0%B0%D0%BB%C4%95" title="Риман интегралĕ - ciuvascio" lang="cv" hreflang="cv" data-title="Риман интегралĕ" data-language-autonym="Чӑвашла" data-language-local-name="ciuvascio" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Riemannsches_Integral" title="Riemannsches Integral - tedesco" lang="de" hreflang="de" data-title="Riemannsches Integral" data-language-autonym="Deutsch" data-language-local-name="tedesco" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Riemann_integral" title="Riemann integral - inglese" lang="en" hreflang="en" data-title="Riemann integral" data-language-autonym="English" data-language-local-name="inglese" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Rimana_integralo" title="Rimana integralo - esperanto" lang="eo" hreflang="eo" data-title="Rimana integralo" data-language-autonym="Esperanto" data-language-local-name="esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Integral_de_Riemann" title="Integral de Riemann - spagnolo" lang="es" hreflang="es" data-title="Integral de Riemann" data-language-autonym="Español" data-language-local-name="spagnolo" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Riemannen_integral" title="Riemannen integral - basco" lang="eu" hreflang="eu" data-title="Riemannen integral" data-language-autonym="Euskara" data-language-local-name="basco" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%A7%D9%86%D8%AA%DA%AF%D8%B1%D8%A7%D9%84_%D8%B1%DB%8C%D9%85%D8%A7%D9%86" title="انتگرال ریمان - persiano" lang="fa" hreflang="fa" data-title="انتگرال ریمان" data-language-autonym="فارسی" data-language-local-name="persiano" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Riemannin_integraali" title="Riemannin integraali - finlandese" lang="fi" hreflang="fi" data-title="Riemannin integraali" data-language-autonym="Suomi" data-language-local-name="finlandese" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Int%C3%A9grale_de_Riemann" title="Intégrale de Riemann - francese" lang="fr" hreflang="fr" data-title="Intégrale de Riemann" data-language-autonym="Français" data-language-local-name="francese" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Integral_de_Riemann" title="Integral de Riemann - galiziano" lang="gl" hreflang="gl" data-title="Integral de Riemann" data-language-autonym="Galego" data-language-local-name="galiziano" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%90%D7%99%D7%A0%D7%98%D7%92%D7%A8%D7%9C_%D7%A8%D7%99%D7%9E%D7%9F" title="אינטגרל רימן - ebraico" lang="he" hreflang="he" data-title="אינטגרל רימן" data-language-autonym="עברית" data-language-local-name="ebraico" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%B0%E0%A5%80%E0%A4%AE%E0%A4%BE%E0%A4%A8-%E0%A4%B8%E0%A4%AE%E0%A4%BE%E0%A4%95%E0%A4%B2" title="रीमान-समाकल - hindi" lang="hi" hreflang="hi" data-title="रीमान-समाकल" data-language-autonym="हिन्दी" data-language-local-name="hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Riemann-integr%C3%A1l" title="Riemann-integrál - ungherese" lang="hu" hreflang="hu" data-title="Riemann-integrál" data-language-autonym="Magyar" data-language-local-name="ungherese" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D5%8C%D5%AB%D5%B4%D5%A1%D5%B6%D5%AB_%D5%AB%D5%B6%D5%BF%D5%A5%D5%A3%D6%80%D5%A1%D5%AC" title="Ռիմանի ինտեգրալ - armeno" lang="hy" hreflang="hy" data-title="Ռիմանի ինտեգրալ" data-language-autonym="Հայերեն" data-language-local-name="armeno" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Integral_Riemann" title="Integral Riemann - indonesiano" lang="id" hreflang="id" data-title="Integral Riemann" data-language-autonym="Bahasa Indonesia" data-language-local-name="indonesiano" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%83%AA%E3%83%BC%E3%83%9E%E3%83%B3%E7%A9%8D%E5%88%86" title="リーマン積分 - giapponese" lang="ja" hreflang="ja" data-title="リーマン積分" data-language-autonym="日本語" data-language-local-name="giapponese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EB%A6%AC%EB%A7%8C_%EC%A0%81%EB%B6%84" title="리만 적분 - coreano" lang="ko" hreflang="ko" data-title="리만 적분" data-language-autonym="한국어" data-language-local-name="coreano" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Rymano_integralas" title="Rymano integralas - lituano" lang="lt" hreflang="lt" data-title="Rymano integralas" data-language-autonym="Lietuvių" data-language-local-name="lituano" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/R%C4%ABma%C5%86a_integr%C4%81lis" title="Rīmaņa integrālis - lettone" lang="lv" hreflang="lv" data-title="Rīmaņa integrālis" data-language-autonym="Latviešu" data-language-local-name="lettone" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Riemannintegratie" title="Riemannintegratie - olandese" lang="nl" hreflang="nl" data-title="Riemannintegratie" data-language-autonym="Nederlands" data-language-local-name="olandese" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Ca%C5%82ka_Riemanna" title="Całka Riemanna - polacco" lang="pl" hreflang="pl" data-title="Całka Riemanna" data-language-autonym="Polski" data-language-local-name="polacco" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Integral_de_Riemann" title="Integral de Riemann - portoghese" lang="pt" hreflang="pt" data-title="Integral de Riemann" data-language-autonym="Português" data-language-local-name="portoghese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Integral%C4%83_Riemann" title="Integrală Riemann - rumeno" lang="ro" hreflang="ro" data-title="Integrală Riemann" data-language-autonym="Română" data-language-local-name="rumeno" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%98%D0%BD%D1%82%D0%B5%D0%B3%D1%80%D0%B0%D0%BB_%D0%A0%D0%B8%D0%BC%D0%B0%D0%BD%D0%B0" title="Интеграл Римана - russo" lang="ru" hreflang="ru" data-title="Интеграл Римана" data-language-autonym="Русский" data-language-local-name="russo" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-scn mw-list-item"><a href="https://scn.wikipedia.org/wiki/Ntigrali_di_Riemann" title="Ntigrali di Riemann - siciliano" lang="scn" hreflang="scn" data-title="Ntigrali di Riemann" data-language-autonym="Sicilianu" data-language-local-name="siciliano" class="interlanguage-link-target"><span>Sicilianu</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Riemannov_integr%C3%A1l" title="Riemannov integrál - slovacco" lang="sk" hreflang="sk" data-title="Riemannov integrál" data-language-autonym="Slovenčina" data-language-local-name="slovacco" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Riemannintegral" title="Riemannintegral - svedese" lang="sv" hreflang="sv" data-title="Riemannintegral" data-language-autonym="Svenska" data-language-local-name="svedese" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%9B%E0%B8%A3%E0%B8%B4%E0%B8%9E%E0%B8%B1%E0%B8%99%E0%B8%98%E0%B9%8C%E0%B8%A3%E0%B8%B5%E0%B8%A1%E0%B8%B1%E0%B8%99" title="ปริพันธ์รีมัน - thailandese" lang="th" hreflang="th" data-title="ปริพันธ์รีมัน" data-language-autonym="ไทย" data-language-local-name="thailandese" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Riemann_integrali" title="Riemann integrali - turco" lang="tr" hreflang="tr" data-title="Riemann integrali" data-language-autonym="Türkçe" data-language-local-name="turco" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%86%D0%BD%D1%82%D0%B5%D0%B3%D1%80%D0%B0%D0%BB_%D0%A0%D1%96%D0%BC%D0%B0%D0%BD%D0%B0" title="Інтеграл Рімана - ucraino" lang="uk" hreflang="uk" data-title="Інтеграл Рімана" data-language-autonym="Українська" data-language-local-name="ucraino" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E9%BB%8E%E6%9B%BC%E7%A7%AF%E5%88%86" title="黎曼积分 - cinese" lang="zh" hreflang="zh" data-title="黎曼积分" data-language-autonym="中文" data-language-local-name="cinese" class="interlanguage-link-target"><span>中文</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E9%BB%8E%E6%9B%BC%E7%A9%8D%E5%88%86" title="黎曼積分 - cantonese" lang="yue" hreflang="yue" data-title="黎曼積分" data-language-autonym="粵語" data-language-local-name="cantonese" class="interlanguage-link-target"><span>粵語</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q697181#sitelinks-wikipedia" title="Modifica collegamenti interlinguistici" class="wbc-editpage">Modifica collegamenti</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespace"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Integrale_di_Riemann" title="Vedi la voce [c]" accesskey="c"><span>Voce</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Discussione:Integrale_di_Riemann" rel="discussion" title="Vedi le discussioni relative a questa pagina [t]" accesskey="t"><span>Discussione</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Cambia versione linguistica" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">italiano</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Visite"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Integrale_di_Riemann"><span>Leggi</span></a></li><li id="ca-ve-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Integrale_di_Riemann&veaction=edit" title="Modifica questa pagina [v]" accesskey="v"><span>Modifica</span></a></li><li id="ca-edit" class="collapsible vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Integrale_di_Riemann&action=edit" title="Modifica il wikitesto di questa pagina [e]" accesskey="e"><span>Modifica wikitesto</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Integrale_di_Riemann&action=history" title="Versioni precedenti di questa pagina [h]" accesskey="h"><span>Cronologia</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Strumenti pagine"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Strumenti" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Strumenti</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Strumenti</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">sposta nella barra laterale</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">nascondi</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="Altre opzioni" > <div class="vector-menu-heading"> Azioni </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Integrale_di_Riemann"><span>Leggi</span></a></li><li id="ca-more-ve-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Integrale_di_Riemann&veaction=edit" title="Modifica questa pagina [v]" accesskey="v"><span>Modifica</span></a></li><li id="ca-more-edit" class="collapsible vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Integrale_di_Riemann&action=edit" title="Modifica il wikitesto di questa pagina [e]" accesskey="e"><span>Modifica wikitesto</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Integrale_di_Riemann&action=history"><span>Cronologia</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> Generale </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Speciale:PuntanoQui/Integrale_di_Riemann" title="Elenco di tutte le pagine che sono collegate a questa [j]" accesskey="j"><span>Puntano qui</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Speciale:ModificheCorrelate/Integrale_di_Riemann" rel="nofollow" title="Elenco delle ultime modifiche alle pagine collegate a questa [k]" accesskey="k"><span>Modifiche correlate</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Speciale:PagineSpeciali" title="Elenco di tutte le pagine speciali [q]" accesskey="q"><span>Pagine speciali</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Integrale_di_Riemann&oldid=137280628" title="Collegamento permanente a questa versione di questa pagina"><span>Link permanente</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Integrale_di_Riemann&action=info" title="Ulteriori informazioni su questa pagina"><span>Informazioni pagina</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Speciale:Cita&page=Integrale_di_Riemann&id=137280628&wpFormIdentifier=titleform" title="Informazioni su come citare questa pagina"><span>Cita questa voce</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Speciale:UrlQ%C4%B1sald%C4%B1c%C4%B1s%C4%B1&url=https%3A%2F%2Fit.wikipedia.org%2Fwiki%2FIntegrale_di_Riemann"><span>Ottieni URL breve</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Speciale:QrKodu&url=https%3A%2F%2Fit.wikipedia.org%2Fwiki%2FIntegrale_di_Riemann"><span>Scarica codice QR</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Stampa/esporta </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-create_a_book" class="mw-list-item"><a href="/w/index.php?title=Speciale:Libro&bookcmd=book_creator&referer=Integrale+di+Riemann"><span>Crea un libro</span></a></li><li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Speciale:DownloadAsPdf&page=Integrale_di_Riemann&action=show-download-screen"><span>Scarica come PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Integrale_di_Riemann&printable=yes" title="Versione stampabile di questa pagina [p]" accesskey="p"><span>Versione stampabile</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In altri progetti </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Riemann_integral" hreflang="en"><span>Wikimedia Commons</span></a></li><li class="wb-otherproject-link wb-otherproject-wikiversity mw-list-item"><a href="https://it.wikiversity.org/wiki/Integrale_di_Riemann" hreflang="it"><span>Wikiversità</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q697181" title="Collegamento all'elemento connesso dell'archivio dati [g]" accesskey="g"><span>Elemento Wikidata</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Strumenti pagine"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Aspetto"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Aspetto</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">sposta nella barra laterale</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">nascondi</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">Da Wikipedia, l'enciclopedia libera.</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="it" dir="ltr"><figure typeof="mw:File/Thumb"><a href="/wiki/File:Riemann_Sum.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fd/Riemann_Sum.gif/300px-Riemann_Sum.gif" decoding="async" width="300" height="100" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fd/Riemann_Sum.gif/450px-Riemann_Sum.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fd/Riemann_Sum.gif/600px-Riemann_Sum.gif 2x" data-file-width="1075" data-file-height="359" /></a><figcaption>Rappresentazione grafica dell'approssimazione numerica dell'integrale di Riemann</figcaption></figure> <p>In <a href="/wiki/Analisi_matematica" title="Analisi matematica">analisi matematica</a>, l'<b>integrale di Riemann</b> è un operatore <a href="/wiki/Integrale" title="Integrale">integrale</a> tra i più utilizzati in matematica. Formulato da <a href="/wiki/Bernhard_Riemann" title="Bernhard Riemann">Bernhard Riemann</a>, si tratta della prima definizione rigorosa di integrale di una <a href="/wiki/Funzione_(matematica)" title="Funzione (matematica)">funzione</a> su un intervallo a essere stata formulata. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Definizione">Definizione</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Integrale_di_Riemann&veaction=edit&section=1" title="Modifica la sezione Definizione" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Integrale_di_Riemann&action=edit&section=1" title="Edit section's source code: Definizione"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Si consideri una <a href="/wiki/Funzione_continua" title="Funzione continua">funzione continua</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\colon [a,b]\subset \mathbb {R} \to \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:<!-- : --></mo> <mo stretchy="false">[</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">]</mo> <mo>⊂<!-- ⊂ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">→<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\colon [a,b]\subset \mathbb {R} \to \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5b2952a81af7015085f524235666f846ec94b21d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.936ex; height:2.843ex;" alt="{\displaystyle f\colon [a,b]\subset \mathbb {R} \to \mathbb {R} }"></span>, che su tale intervallo risulta <a href="/wiki/Funzione_limitata" title="Funzione limitata">limitata</a> in virtù del <a href="/wiki/Teorema_di_Weierstrass" title="Teorema di Weierstrass">teorema di Weierstrass</a>. Si suddivida l'intervallo tramite una <a href="/wiki/Partizione_di_un_intervallo" title="Partizione di un intervallo">partizione</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {P}}=\{x_{0},\ x_{1},\ \dots ,\ x_{n-1},\ x_{n}|x_{0}=a<x_{1}<\dots <x_{n-1}<x_{n}=b\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <mtext> </mtext> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mtext> </mtext> <mo>…<!-- … --></mo> <mo>,</mo> <mtext> </mtext> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mtext> </mtext> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mi>a</mi> <mo><</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo><</mo> <mo>⋯<!-- ⋯ --></mo> <mo><</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo><</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mi>b</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {P}}=\{x_{0},\ x_{1},\ \dots ,\ x_{n-1},\ x_{n}|x_{0}=a<x_{1}<\dots <x_{n-1}<x_{n}=b\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/144cd5ce71852fee1776221c1b94843a4b850557" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:65.2ex; height:2.843ex;" alt="{\displaystyle {\mathcal {P}}=\{x_{0},\ x_{1},\ \dots ,\ x_{n-1},\ x_{n}|x_{0}=a<x_{1}<\dots <x_{n-1}<x_{n}=b\}}"></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> intervalli <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [x_{i},x_{i+1}]\subset [a,b]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo stretchy="false">]</mo> <mo>⊂<!-- ⊂ --></mo> <mo stretchy="false">[</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [x_{i},x_{i+1}]\subset [a,b]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b3303f3be5b5d1594e191f2f72d8d2a31ea6aaa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.34ex; height:2.843ex;" alt="{\displaystyle [x_{i},x_{i+1}]\subset [a,b]}"></span>. Si definisce il calibro di una partizione <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {P}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {P}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10d6ec962de5797ba4f161c40e66dca74ae95cc6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.704ex; height:2.176ex;" alt="{\displaystyle {\mathcal {P}}}"></span> il massimo tra le ampiezze di tutti gli intervalli della partizione scelta, cioè </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c_{\mathcal {P}}:=\max _{i=0,\ldots ,n-1}\{x_{i+1}-x_{i}\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> </msub> <mo>:=</mo> <munder> <mo movablelimits="true" form="prefix">max</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </munder> <mo fence="false" stretchy="false">{</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c_{\mathcal {P}}:=\max _{i=0,\ldots ,n-1}\{x_{i+1}-x_{i}\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e5e3c34866a40e36151e17f2959f2f1977e34a11" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:26.956ex; height:4.343ex;" alt="{\displaystyle c_{\mathcal {P}}:=\max _{i=0,\ldots ,n-1}\{x_{i+1}-x_{i}\}.}"></span></dd></dl> <p>Per ogni intervallo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [x_{i},x_{i+1}]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [x_{i},x_{i+1}]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7138606cdb8eb7dddaba59b5aefe1ade6bc05a1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.687ex; height:2.843ex;" alt="{\displaystyle [x_{i},x_{i+1}]}"></span> si scelga arbitrariamente un elemento <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t_{i}\in [x_{i},x_{i+1}]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>∈<!-- ∈ --></mo> <mo stretchy="false">[</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t_{i}\in [x_{i},x_{i+1}]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8c19b82f1bfe2f2d9a625b8708963b6344ee6f94" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.167ex; height:2.843ex;" alt="{\displaystyle t_{i}\in [x_{i},x_{i+1}]}"></span> e si definisca la <i>somma di Riemann</i> come: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma _{n}=\sum _{i=0}^{n-1}f(t_{i})(x_{i+1}-x_{i}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma _{n}=\sum _{i=0}^{n-1}f(t_{i})(x_{i+1}-x_{i}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2943783e3207a2a9fe194d73a01cb1881ae73ee9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:25.769ex; height:7.343ex;" alt="{\displaystyle \sigma _{n}=\sum _{i=0}^{n-1}f(t_{i})(x_{i+1}-x_{i}).}"></span></dd></dl> <p>Alcune scelte comuni sono </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t_{i}=x_{i},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t_{i}=x_{i},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7507aab4451cb556c32ba036781e78cc0ede9b4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.514ex; height:2.343ex;" alt="{\displaystyle t_{i}=x_{i},}"></span> in tal caso si ha una <i>somma sinistra di Riemann</i>;</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t_{i}=x_{i+1},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t_{i}=x_{i+1},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dcfe8252780bfb44c4efb33b132c3436951432e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.614ex; height:2.343ex;" alt="{\displaystyle t_{i}=x_{i+1},}"></span> in tal caso si ha una <i>somma destra di Riemann</i>;</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t_{i}={\frac {x_{i+1}+x_{i}}{2}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t_{i}={\frac {x_{i+1}+x_{i}}{2}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33c3066d96fee2b37c13358c3918e1b873665d2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:15.42ex; height:5.176ex;" alt="{\displaystyle t_{i}={\frac {x_{i+1}+x_{i}}{2}},}"></span> in tal caso si ha una <i>somma media di Riemann</i>.</li></ul> <p>La funzione <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> è <i>integrabile secondo Riemann</i> o <i>Riemann-integrabile</i> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [a,b]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [a,b]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c4b788fc5c637e26ee98b45f89a5c08c85f7935" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.555ex; height:2.843ex;" alt="{\displaystyle [a,b]}"></span> se esiste finito il limite (che si dimostra non dipendere dalla scelta dei <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b61e3d4d909be4a19c9a554a301684232f59e5a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.639ex; height:2.343ex;" alt="{\displaystyle t_{i}}"></span>): </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{c_{\mathcal {P}}\to 0}\sigma _{n}=:\int _{a}^{b}f(x)\,\mathrm {d} x.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> <mn>0</mn> </mrow> </munder> <msub> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=:</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{c_{\mathcal {P}}\to 0}\sigma _{n}=:\int _{a}^{b}f(x)\,\mathrm {d} x.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c2533a0321c81749d884a40746d203f8a3ec141f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:22.86ex; height:6.343ex;" alt="{\displaystyle \lim _{c_{\mathcal {P}}\to 0}\sigma _{n}=:\int _{a}^{b}f(x)\,\mathrm {d} x.}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Integrale_multiplo_di_Riemann">Integrale multiplo di Riemann</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Integrale_di_Riemann&veaction=edit&section=2" title="Modifica la sezione Integrale multiplo di Riemann" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Integrale_di_Riemann&action=edit&section=2" title="Edit section's source code: Integrale multiplo di Riemann"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r130657691">body:not(.skin-minerva) .mw-parser-output .vedi-anche{font-size:95%}</style><style data-mw-deduplicate="TemplateStyles:r139142988">.mw-parser-output .hatnote-content{align-items:center;display:flex}.mw-parser-output .hatnote-icon{flex-shrink:0}.mw-parser-output .hatnote-icon img{display:flex}.mw-parser-output .hatnote-text{font-style:italic}body:not(.skin-minerva) .mw-parser-output .hatnote{border:1px solid #CCC;display:flex;margin:.5em 0;padding:.2em .5em}body:not(.skin-minerva) .mw-parser-output .hatnote-text{padding-left:.5em}body.skin-minerva .mw-parser-output .hatnote-icon{padding-right:8px}body.skin-minerva .mw-parser-output .hatnote-icon img{height:auto;width:16px}body.skin--responsive .mw-parser-output .hatnote a.new{color:#d73333}body.skin--responsive .mw-parser-output .hatnote a.new:visited{color:#a55858}</style> <div class="hatnote noprint vedi-anche"> <div class="hatnote-content"><span class="noviewer hatnote-icon" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/87/Magnifying_glass_icon_mgx2.svg/18px-Magnifying_glass_icon_mgx2.svg.png" decoding="async" width="18" height="18" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/87/Magnifying_glass_icon_mgx2.svg/27px-Magnifying_glass_icon_mgx2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/87/Magnifying_glass_icon_mgx2.svg/36px-Magnifying_glass_icon_mgx2.svg.png 2x" data-file-width="286" data-file-height="280" /></span></span> <span class="hatnote-text">Lo stesso argomento in dettaglio: <b><a href="/wiki/Integrale_multiplo" title="Integrale multiplo">Integrale multiplo</a></b>.</span></div> </div> <p>Sia <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N\subset \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> <mo>⊂<!-- ⊂ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N\subset \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3449c392595f23cc8f26806c602d9880a3172d21" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.059ex; height:2.343ex;" alt="{\displaystyle N\subset \mathbb {R} ^{n}}"></span> un <a href="/wiki/Dominio_semplice" title="Dominio semplice">dominio normale</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\colon N\to \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:<!-- : --></mo> <mi>N</mi> <mo stretchy="false">→<!-- → --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\colon N\to \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3b3be8fe0eb42bb2e16d433bb289570f5f66649d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.887ex; height:2.676ex;" alt="{\displaystyle f\colon N\to \mathbb {R} ^{n}}"></span> limitata e <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>μ<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fd47b2a39f7a7856952afec1f1db72c67af6161" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.402ex; height:2.176ex;" alt="{\displaystyle \mu }"></span> una <a href="/wiki/Misura_(matematica)" title="Misura (matematica)">misura</a>. Sia <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {P}}=\{N_{1},\ \dots ,\ N_{k}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <msub> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mtext> </mtext> <mo>…<!-- … --></mo> <mo>,</mo> <mtext> </mtext> <msub> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {P}}=\{N_{1},\ \dots ,\ N_{k}\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3fec84d46c920b51420b90194966885ab61ff0ef" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.729ex; height:2.843ex;" alt="{\displaystyle {\mathcal {P}}=\{N_{1},\ \dots ,\ N_{k}\}}"></span> una partizione di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span> in domini normali. </p><p>Si definisce la <i>somma di Riemann-Darboux</i> come: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma _{k}=\sum _{i=1}^{k}\mu (N_{i})\,{\underset {x\in N_{i}}{f(x)}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </munderover> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <msub> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <munder> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <msub> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </munder> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma _{k}=\sum _{i=1}^{k}\mu (N_{i})\,{\underset {x\in N_{i}}{f(x)}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b55c3440ac55619572568418ea709454662228fb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:20.585ex; height:7.343ex;" alt="{\displaystyle \sigma _{k}=\sum _{i=1}^{k}\mu (N_{i})\,{\underset {x\in N_{i}}{f(x)}}.}"></span></dd></dl> <p>In generale la funzione <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> è integrabile in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span> se esiste finito il limite: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{\mu (N_{i})\to 0}\sum _{i=1}^{k}\mu (N_{i})\,{\underset {x\in N_{i}}{f(x)}}=\int _{N}\!f(x)\,\mathrm {d} x_{1}\dots \mathrm {d} x_{n}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <msub> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">→<!-- → --></mo> <mn>0</mn> </mrow> </munder> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </munderover> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <msub> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <munder> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <msub> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </munder> </mrow> <mo>=</mo> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> <mspace width="negativethinmathspace" /> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>…<!-- … --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{\mu (N_{i})\to 0}\sum _{i=1}^{k}\mu (N_{i})\,{\underset {x\in N_{i}}{f(x)}}=\int _{N}\!f(x)\,\mathrm {d} x_{1}\dots \mathrm {d} x_{n}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/97ca70d116a00c4ed36031700a76b9dbec13e4fa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:44.039ex; height:7.343ex;" alt="{\displaystyle \lim _{\mu (N_{i})\to 0}\sum _{i=1}^{k}\mu (N_{i})\,{\underset {x\in N_{i}}{f(x)}}=\int _{N}\!f(x)\,\mathrm {d} x_{1}\dots \mathrm {d} x_{n}.}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Proprietà"><span id="Propriet.C3.A0"></span>Proprietà</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Integrale_di_Riemann&veaction=edit&section=3" title="Modifica la sezione Proprietà" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Integrale_di_Riemann&action=edit&section=3" title="Edit section's source code: Proprietà"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r130657691"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r139142988"> <div class="hatnote noprint vedi-anche"> <div class="hatnote-content"><span class="noviewer hatnote-icon" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/87/Magnifying_glass_icon_mgx2.svg/18px-Magnifying_glass_icon_mgx2.svg.png" decoding="async" width="18" height="18" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/87/Magnifying_glass_icon_mgx2.svg/27px-Magnifying_glass_icon_mgx2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/87/Magnifying_glass_icon_mgx2.svg/36px-Magnifying_glass_icon_mgx2.svg.png 2x" data-file-width="286" data-file-height="280" /></span></span> <span class="hatnote-text">Lo stesso argomento in dettaglio: <b><a href="/wiki/Propriet%C3%A0_dell%27integrale_di_Riemann" title="Proprietà dell'integrale di Riemann">Proprietà dell'integrale di Riemann</a></b>.</span></div> </div> <div class="mw-heading mw-heading3"><h3 id="Riemman-integrabilità_e_Darboux-integrabilità"><span id="Riemman-integrabilit.C3.A0_e_Darboux-integrabilit.C3.A0"></span>Riemman-integrabilità e Darboux-integrabilità</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Integrale_di_Riemann&veaction=edit&section=4" title="Modifica la sezione Riemman-integrabilità e Darboux-integrabilità" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Integrale_di_Riemann&action=edit&section=4" title="Edit section's source code: Riemman-integrabilità e Darboux-integrabilità"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r130657691"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r139142988"> <div class="hatnote noprint vedi-anche"> <div class="hatnote-content"><span class="noviewer hatnote-icon" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/87/Magnifying_glass_icon_mgx2.svg/18px-Magnifying_glass_icon_mgx2.svg.png" decoding="async" width="18" height="18" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/87/Magnifying_glass_icon_mgx2.svg/27px-Magnifying_glass_icon_mgx2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/87/Magnifying_glass_icon_mgx2.svg/36px-Magnifying_glass_icon_mgx2.svg.png 2x" data-file-width="286" data-file-height="280" /></span></span> <span class="hatnote-text">Lo stesso argomento in dettaglio: <b><a href="/wiki/Integrale_di_Darboux" title="Integrale di Darboux">Integrale di Darboux</a></b>.</span></div> </div> <p>In generale una funzione è Riemann-integrabile se e solo se è Darboux-integrabile, e i valori dei due integrali, se esistono, sono uguali tra loro. </p> <div class="mw-heading mw-heading3"><h3 id="Linearità"><span id="Linearit.C3.A0"></span>Linearità</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Integrale_di_Riemann&veaction=edit&section=5" title="Modifica la sezione Linearità" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Integrale_di_Riemann&action=edit&section=5" title="Edit section's source code: Linearità"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Siano <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> e <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span> due <a href="/wiki/Funzione_(matematica)" title="Funzione (matematica)">funzioni</a> <a href="/wiki/Funzione_continua" title="Funzione continua">continue</a> definite in un <a href="/wiki/Intervallo_(matematica)" title="Intervallo (matematica)">intervallo</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [a,b]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [a,b]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c4b788fc5c637e26ee98b45f89a5c08c85f7935" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.555ex; height:2.843ex;" alt="{\displaystyle [a,b]}"></span> e siano <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha ,\beta \in \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>α<!-- α --></mi> <mo>,</mo> <mi>β<!-- β --></mi> <mo>∈<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha ,\beta \in \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f0a0410274a81d9645d3d0ff8e949b42811ff47c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.372ex; height:2.509ex;" alt="{\displaystyle \alpha ,\beta \in \mathbb {R} }"></span>. Allora: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{a}^{b}[\alpha f(x)+\beta g(x)]\,dx=\alpha \int _{a}^{b}f(x)\,dx+\beta \int _{a}^{b}g(x)\,dx.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <mo stretchy="false">[</mo> <mi>α<!-- α --></mi> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>β<!-- β --></mi> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">]</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mi>α<!-- α --></mi> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>+</mo> <mi>β<!-- β --></mi> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{a}^{b}[\alpha f(x)+\beta g(x)]\,dx=\alpha \int _{a}^{b}f(x)\,dx+\beta \int _{a}^{b}g(x)\,dx.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eae1695fc1a84cf9d55518fb18bcdf193f7b8411" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:54.256ex; height:6.343ex;" alt="{\displaystyle \int _{a}^{b}[\alpha f(x)+\beta g(x)]\,dx=\alpha \int _{a}^{b}f(x)\,dx+\beta \int _{a}^{b}g(x)\,dx.}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Additività"><span id="Additivit.C3.A0"></span>Additività</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Integrale_di_Riemann&veaction=edit&section=6" title="Modifica la sezione Additività" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Integrale_di_Riemann&action=edit&section=6" title="Edit section's source code: Additività"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Sia <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> <a href="/wiki/Funzione_continua" title="Funzione continua">continua</a> e definita in un intervallo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [a,b]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [a,b]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c4b788fc5c637e26ee98b45f89a5c08c85f7935" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.555ex; height:2.843ex;" alt="{\displaystyle [a,b]}"></span> e sia <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c\in [a,b]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>∈<!-- ∈ --></mo> <mo stretchy="false">[</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c\in [a,b]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/997256364b06acf0710e5d24da39e8c42991a249" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.402ex; height:2.843ex;" alt="{\displaystyle c\in [a,b]}"></span>. Allora: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{a}^{b}f(x)\,dx=\int _{a}^{c}f(x)dx+\int _{c}^{b}f(x)\,dx.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>d</mi> <mi>x</mi> <mo>+</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{a}^{b}f(x)\,dx=\int _{a}^{c}f(x)dx+\int _{c}^{b}f(x)\,dx.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b35099b72c54da6e55efe9995b76e1c294990ee8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:39.622ex; height:6.343ex;" alt="{\displaystyle \int _{a}^{b}f(x)\,dx=\int _{a}^{c}f(x)dx+\int _{c}^{b}f(x)\,dx.}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Monotonia">Monotonia</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Integrale_di_Riemann&veaction=edit&section=7" title="Modifica la sezione Monotonia" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Integrale_di_Riemann&action=edit&section=7" title="Edit section's source code: Monotonia"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Siano <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> e <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span> due <a href="/wiki/Funzione_(matematica)" title="Funzione (matematica)">funzioni</a> <a href="/wiki/Funzione_continua" title="Funzione continua">continue</a> definite in un intervallo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [a,b]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [a,b]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c4b788fc5c637e26ee98b45f89a5c08c85f7935" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.555ex; height:2.843ex;" alt="{\displaystyle [a,b]}"></span> e <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)\leq g(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>≤<!-- ≤ --></mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)\leq g(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a9d68bfe14b9a13a427f2b04a963d1a42183b3b6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.771ex; height:2.843ex;" alt="{\displaystyle f(x)\leq g(x)}"></span>. Allora: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{a}^{b}f(x)\,dx\leq \int _{a}^{b}g(x)dx.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>≤<!-- ≤ --></mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>d</mi> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{a}^{b}f(x)\,dx\leq \int _{a}^{b}g(x)dx.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c634c4ab042e683a02bd2b83d02f7880756d879c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:25.474ex; height:6.343ex;" alt="{\displaystyle \int _{a}^{b}f(x)\,dx\leq \int _{a}^{b}g(x)dx.}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Valore_assoluto">Valore assoluto</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Integrale_di_Riemann&veaction=edit&section=8" title="Modifica la sezione Valore assoluto" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Integrale_di_Riemann&action=edit&section=8" title="Edit section's source code: Valore assoluto"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Sia <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> <a href="/wiki/Funzione_integrabile" title="Funzione integrabile">integrabile</a> in un intervallo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [a,b]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [a,b]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c4b788fc5c637e26ee98b45f89a5c08c85f7935" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.555ex; height:2.843ex;" alt="{\displaystyle [a,b]}"></span>, allora si ha: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left|\int _{a}^{b}f(x)\,dx\right|\leq \int _{a}^{b}\left|f(x)\right|\,dx.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>|</mo> <mrow> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mrow> <mo>|</mo> </mrow> <mo>≤<!-- ≤ --></mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <mrow> <mo>|</mo> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left|\int _{a}^{b}f(x)\,dx\right|\leq \int _{a}^{b}\left|f(x)\right|\,dx.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ce3470df06a071fa7885b216c94a945e8bffeb1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:28.998ex; height:6.843ex;" alt="{\displaystyle \left|\int _{a}^{b}f(x)\,dx\right|\leq \int _{a}^{b}\left|f(x)\right|\,dx.}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Integrale_di_Stieltjes">Integrale di Stieltjes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Integrale_di_Riemann&veaction=edit&section=9" title="Modifica la sezione Integrale di Stieltjes" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Integrale_di_Riemann&action=edit&section=9" title="Edit section's source code: Integrale di Stieltjes"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r130657691"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r139142988"> <div class="hatnote noprint vedi-anche"> <div class="hatnote-content"><span class="noviewer hatnote-icon" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/87/Magnifying_glass_icon_mgx2.svg/18px-Magnifying_glass_icon_mgx2.svg.png" decoding="async" width="18" height="18" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/87/Magnifying_glass_icon_mgx2.svg/27px-Magnifying_glass_icon_mgx2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/87/Magnifying_glass_icon_mgx2.svg/36px-Magnifying_glass_icon_mgx2.svg.png 2x" data-file-width="286" data-file-height="280" /></span></span> <span class="hatnote-text">Lo stesso argomento in dettaglio: <b><a href="/wiki/Integrale_di_Riemann-Stieltjes" title="Integrale di Riemann-Stieltjes">Integrale di Riemann-Stieltjes</a></b>.</span></div> </div> <p>Una possibile generalizzazione dell'integrale di Riemann è data dall'integrale di Riemann-<a href="/wiki/Thomas_Joannes_Stieltjes" title="Thomas Joannes Stieltjes">Stieltjes</a>, che rende possibile estendere la nozione di integrale utilizzando come variabile di integrazione sotto il segno di <a href="/wiki/Differenziale_(matematica)" title="Differenziale (matematica)">differenziale</a> una funzione (detta <i>integratrice</i>): </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{a}^{b}f\,\mathrm {d} g.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <mi>f</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>g</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{a}^{b}f\,\mathrm {d} g.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee86a645ef9a5953fcd79beb99afc16924a72906" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:8.51ex; height:6.343ex;" alt="{\displaystyle \int _{a}^{b}f\,\mathrm {d} g.}"></span></dd></dl> <p>Se la funzione <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span> è <a href="/wiki/Funzione_differenziabile" title="Funzione differenziabile">differenziabile</a>, vale la formula <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {d} g(x)=g^{\prime }(x)\,\mathrm {d} x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">′<!-- ′ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {d} g(x)=g^{\prime }(x)\,\mathrm {d} x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29c61d1802e388ba910c79cee34a520d759c201a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.597ex; height:3.009ex;" alt="{\displaystyle \mathrm {d} g(x)=g^{\prime }(x)\,\mathrm {d} x}"></span>, e l'integrale di Riemann-Stieltjes coincide con quello di Riemann di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle fg^{\prime }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">′<!-- ′ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle fg^{\prime }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4c4aab7fab07dc1208415716b1aad16490a780d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.082ex; height:2.843ex;" alt="{\displaystyle fg^{\prime }}"></span>, cioè: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{a}^{b}f(x)\,\mathrm {d} g(x)=\int _{a}^{b}f(x)g^{\prime }(x)\,\mathrm {d} x.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">′<!-- ′ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{a}^{b}f(x)\,\mathrm {d} g(x)=\int _{a}^{b}f(x)g^{\prime }(x)\,\mathrm {d} x.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3509ac6f72f1228ae748e1ebf151f30b6a64c503" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:34.044ex; height:6.343ex;" alt="{\displaystyle \int _{a}^{b}f(x)\,\mathrm {d} g(x)=\int _{a}^{b}f(x)g^{\prime }(x)\,\mathrm {d} x.}"></span></dd></dl> <p>L'integrale di Riemann-Stieltjes è tuttavia definito anche nel caso di funzioni integratrici più generiche, che non possiedono derivata, o che sono <a href="/wiki/Punto_di_discontinuit%C3%A0" title="Punto di discontinuità">discontinue</a>. </p><p>L'integrale di Riemann-Stieltjes generalizza l'integrale di Riemann in maniera diversa da quello di Lebesgue, e gli insiemi delle funzioni integrabili tramite i due metodi non sono sovrapponibili. È possibile tuttavia ottenere una generalizzazione di entrambi i metodi tramite l'<a href="/wiki/Integrale_di_Lebesgue-Stieltjes" title="Integrale di Lebesgue-Stieltjes">integrale di Lebesgue-Stieltjes</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Bibliografia">Bibliografia</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Integrale_di_Riemann&veaction=edit&section=10" title="Modifica la sezione Bibliografia" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Integrale_di_Riemann&action=edit&section=10" title="Edit section's source code: Bibliografia"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Giuseppe_Scorza_Dragoni" title="Giuseppe Scorza Dragoni">Giuseppe Scorza Dragoni</a> - <i>Elementi di analisi matematica I,II, III</i> - Padova</li> <li><a href="/wiki/Mauro_Picone" title="Mauro Picone">Mauro Picone</a>, <a href="/wiki/Gaetano_Fichera" title="Gaetano Fichera">Gaetano Fichera</a> - <i>Lezioni di analisi matematica I,II</i> - Roma</li> <li>Jean Favard - <i>Cours d'analyse I,II</i> - Parigi</li> <li><a href="/wiki/Federico_Cafiero" title="Federico Cafiero">Federico Cafiero</a> - <i>Misura di integrazione</i> - Roma</li> <li><a href="/wiki/Mauro_Picone" title="Mauro Picone">Mauro Picone</a>, <a href="/w/index.php?title=Tullio_Viola&action=edit&redlink=1" class="new" title="Tullio Viola (la pagina non esiste)">Tullio Viola</a> - <i>Lezioni sulla teoria moderna dell'integrazione</i> - Torino</li> <li><a href="/wiki/Henri_Lebesgue" title="Henri Lebesgue">Henri Lebesgue</a> - <i><a rel="nofollow" class="external text" href="https://www.archive.org/details/leconegrarecher00leberich">Leçons sur l'intégration et la recherche de functions primitives</a></i> - Parigi (1904)</li> <li><a href="/wiki/Guido_Fubini" title="Guido Fubini">Guido Fubini</a> - <i><a rel="nofollow" class="external text" href="https://www.archive.org/details/lezionidianalisi00fubirich">Lezioni di analisi matematica</a></i> - Torino (1920)</li> <li><a href="/wiki/Ernesto_Cesaro" title="Ernesto Cesaro">Ernesto Cesaro</a> - <i>Elementi di calcolo infinitesimale</i> - Napoli</li> <li><a href="/wiki/Tom_M._Apostol" title="Tom M. Apostol">Tom M. Apostol</a> - <i>Calcolo, Volume primo, Analisi 1</i> - Bollati Boringhieri</li> <li>Michiel Berstch, Roberta Dal Passo, Lorenzo Giacomelli <i>Analisi Matematica</i>, McGraw-Hill, Milano</li> <li><a href="/wiki/Paolo_Marcellini" title="Paolo Marcellini">Paolo Marcellini</a>, <a href="/wiki/Carlo_Sbordone" title="Carlo Sbordone">Carlo Sbordone</a> <i>Analisi Matematica Uno</i>, Liguori Editore, Napoli, 1998, <a href="/wiki/Speciale:RicercaISBN/9788820728199" class="internal mw-magiclink-isbn">ISBN 9788820728199</a>, capitolo 8.</li> <li><a href="/wiki/Nicola_Fusco_(matematico)" title="Nicola Fusco (matematico)">Nicola Fusco</a>, <a href="/wiki/Paolo_Marcellini" title="Paolo Marcellini">Paolo Marcellini</a>, <a href="/wiki/Carlo_Sbordone" title="Carlo Sbordone">Carlo Sbordone</a>, <i>Lezioni di Analisi Matematica Due</i>, Zanichelli, 2020, <a href="/wiki/Speciale:RicercaISBN/9788808520203" class="internal mw-magiclink-isbn">ISBN 9788808520203</a>, capitolo 8.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Voci_correlate">Voci correlate</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Integrale_di_Riemann&veaction=edit&section=11" title="Modifica la sezione Voci correlate" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Integrale_di_Riemann&action=edit&section=11" title="Edit section's source code: Voci correlate"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Integrale" title="Integrale">Integrale</a></li> <li><a href="/wiki/Integrale_improprio" title="Integrale improprio">Integrale improprio</a></li> <li><a href="/wiki/Integrale_di_Lebesgue" title="Integrale di Lebesgue">Integrale di Lebesgue</a></li> <li><a href="/wiki/Integrale_sui_cammini" title="Integrale sui cammini">Integrale sui cammini</a></li> <li><a href="/wiki/Derivata" title="Derivata">Derivata</a></li> <li><a href="/wiki/Funzione_sommabile" class="mw-redirect" title="Funzione sommabile">Funzione sommabile</a></li> <li><a href="/wiki/Metodi_di_integrazione" title="Metodi di integrazione">Metodi di integrazione</a></li> <li><a href="/wiki/Passaggio_al_limite_sotto_segno_di_integrale" title="Passaggio al limite sotto segno di integrale">Passaggio al limite sotto segno di integrale</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Altri_progetti">Altri progetti</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Integrale_di_Riemann&veaction=edit&section=12" title="Modifica la sezione Altri progetti" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Integrale_di_Riemann&action=edit&section=12" title="Edit section's source code: Altri progetti"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <div id="interProject" class="toccolours" style="display: none; clear: both; margin-top: 2em"><p id="sisterProjects" style="background-color: #efefef; color: black; font-weight: bold; margin: 0"><span>Altri progetti</span></p><ul title="Collegamenti verso gli altri progetti Wikimedia"> <li class="" title=""><a href="https://it.wikiversity.org/wiki/Integrale_di_Riemann" class="extiw" title="v:Integrale di Riemann">Wikiversità</a></li> <li class="" title=""><span class="plainlinks" title="commons:Category:Riemann integral"><a class="external text" href="https://commons.wikimedia.org/wiki/Category:Riemann_integral?uselang=it">Wikimedia Commons</a></span></li></ul></div> <ul><li><span typeof="mw:File"><a href="https://it.wikiversity.org/wiki/" title="Collabora a Wikiversità"><img alt="Collabora a Wikiversità" src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/18px-Wikiversity_logo_2017.svg.png" decoding="async" width="18" height="15" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/27px-Wikiversity_logo_2017.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/36px-Wikiversity_logo_2017.svg.png 2x" data-file-width="626" data-file-height="512" /></a></span> <a href="https://it.wikiversity.org/wiki/" class="extiw" title="v:">Wikiversità</a> contiene risorse sull'<b><a href="https://it.wikiversity.org/wiki/Integrale_di_Riemann" class="extiw" title="v:Integrale di Riemann">integrale di Riemann</a></b></li> <li><span typeof="mw:File"><a href="https://commons.wikimedia.org/wiki/?uselang=it" title="Collabora a Wikimedia Commons"><img alt="Collabora a Wikimedia Commons" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/18px-Commons-logo.svg.png" decoding="async" width="18" height="24" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/27px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/36px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></a></span> <span class="plainlinks"><a class="external text" href="https://commons.wikimedia.org/wiki/?uselang=it">Wikimedia Commons</a></span> contiene immagini o altri file sull'<b><span class="plainlinks"><a class="external text" href="https://commons.wikimedia.org/wiki/Category:Riemann_integral?uselang=it">integrale di Riemann</a></span></b></li></ul> <div class="mw-heading mw-heading2"><h2 id="Collegamenti_esterni">Collegamenti esterni</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Integrale_di_Riemann&veaction=edit&section=13" title="Modifica la sezione Collegamenti esterni" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Integrale_di_Riemann&action=edit&section=13" title="Edit section's source code: Collegamenti esterni"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li class="mw-empty-elt"></li> <li><cite id="CITEREFEnciclopedia_della_Matematica" class="citation libro" style="font-style:normal"> <a rel="nofollow" class="external text" href="https://www.treccani.it/enciclopedia/integrale-di-riemann_(Enciclopedia-della-Matematica)/"><span style="font-style:italic;">Riemann, integrale di</span></a>, in <span style="font-style:italic;">Enciclopedia della Matematica</span>, <a href="/wiki/Istituto_dell%27Enciclopedia_Italiana" title="Istituto dell'Enciclopedia Italiana">Istituto dell'Enciclopedia Italiana</a>, 2013.</cite> <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q697181#P9621" title="Modifica su Wikidata"><img alt="Modifica su Wikidata" src="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/10px-Blue_pencil.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/15px-Blue_pencil.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/20px-Blue_pencil.svg.png 2x" data-file-width="600" data-file-height="600" /></a></span></li> <li><cite id="CITEREFOpen_Library" class="citation web" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) <a rel="nofollow" class="external text" href="https://openlibrary.org/subjects/riemann_integral"><span style="font-style:italic;">Opere riguardanti Riemann integral</span></a>, su <span style="font-style:italic;"><a href="/wiki/Open_Library" class="mw-redirect" title="Open Library">Open Library</a></span>, <a href="/wiki/Internet_Archive" title="Internet Archive">Internet Archive</a>.</cite> <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q697181#P3847" title="Modifica su Wikidata"><img alt="Modifica su Wikidata" src="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/10px-Blue_pencil.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/15px-Blue_pencil.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/20px-Blue_pencil.svg.png 2x" data-file-width="600" data-file-height="600" /></a></span></li> <li><cite id="CITEREFMathWorld" class="citation web" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) Eric W. Weisstein, <a rel="nofollow" class="external text" href="http://mathworld.wolfram.com/RiemannIntegral.html"><span style="font-style:italic;">Riemann Integral</span></a>, su <span style="font-style:italic;"><a href="/wiki/MathWorld" title="MathWorld">MathWorld</a></span>, Wolfram Research.</cite> <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q697181#P2812" title="Modifica su Wikidata"><img alt="Modifica su Wikidata" src="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/10px-Blue_pencil.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/15px-Blue_pencil.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/20px-Blue_pencil.svg.png 2x" data-file-width="600" data-file-height="600" /></a></span></li> <li><cite id="CITEREFSpringerEOM" class="citation web" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) <a rel="nofollow" class="external text" href="https://encyclopediaofmath.org/wiki/Riemann_integral"><span style="font-style:italic;">Riemann integral</span></a>, su <span style="font-style:italic;"><a href="/wiki/Encyclopaedia_of_Mathematics" title="Encyclopaedia of Mathematics">Encyclopaedia of Mathematics</a></span>, Springer e European Mathematical Society.</cite> <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q697181#P7554" title="Modifica su Wikidata"><img alt="Modifica su Wikidata" src="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/10px-Blue_pencil.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/15px-Blue_pencil.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/20px-Blue_pencil.svg.png 2x" data-file-width="600" data-file-height="600" /></a></span></li> <li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20130325084513/http://integrals.wolfram.com/index.jsp">The Integrator - Calcolo formale di primitive </a> (<a href="/w/index.php?title=Wolfram_Research&action=edit&redlink=1" class="new" title="Wolfram Research (la pagina non esiste)">Wolfram Research</a>)</li> <li><a rel="nofollow" class="external text" href="http://wims.unice.fr/wims/en_home.html">Interactive Multipurpose Server</a> (<a href="/w/index.php?title=WIMS&action=edit&redlink=1" class="new" title="WIMS (la pagina non esiste)">WIMS</a>)</li></ul> <style data-mw-deduplicate="TemplateStyles:r141815314">.mw-parser-output .navbox{border:1px solid #aaa;clear:both;margin:auto;padding:2px;width:100%}.mw-parser-output .navbox th{padding-left:1em;padding-right:1em;text-align:center}.mw-parser-output .navbox>tbody>tr:first-child>th{background:#ccf;font-size:90%;width:100%;color:var(--color-base,black)}.mw-parser-output .navbox_navbar{float:left;margin:0;padding:0 10px 0 0;text-align:left;width:6em}.mw-parser-output .navbox_title{font-size:110%}.mw-parser-output .navbox_abovebelow{background:#ddf;font-size:90%;font-weight:normal}.mw-parser-output .navbox_group{background:#ddf;font-size:90%;padding:0 10px;white-space:nowrap}.mw-parser-output .navbox_list{font-size:90%;width:100%}.mw-parser-output .navbox_list a{white-space:nowrap}html:not(.vector-feature-night-mode-enabled) .mw-parser-output .navbox_odd{background:#fdfdfd;color:var(--color-base,black)}html:not(.vector-feature-night-mode-enabled) .mw-parser-output .navbox_even{background:#f7f7f7;color:var(--color-base,black)}.mw-parser-output .navbox a.mw-selflink{color:var(--color-base,black)}.mw-parser-output .navbox_center{text-align:center}.mw-parser-output .navbox .navbox_image{padding-left:7px;vertical-align:middle;width:0}.mw-parser-output .navbox+.navbox{margin-top:-1px}.mw-parser-output .navbox .mw-collapsible-toggle{font-weight:normal;text-align:right;width:7em}body.skin--responsive .mw-parser-output .navbox_image img{max-width:none!important}.mw-parser-output .subnavbox{margin:-3px;width:100%}.mw-parser-output .subnavbox_group{background:#e6e6ff;padding:0 10px}@media screen{html.skin-theme-clientpref-night .mw-parser-output .navbox>tbody>tr:first-child>th{background:var(--background-color-interactive)!important}html.skin-theme-clientpref-night .mw-parser-output .navbox th{color:var(--color-base)!important}html.skin-theme-clientpref-night .mw-parser-output .navbox_abovebelow,html.skin-theme-clientpref-night .mw-parser-output .navbox_group{background:var(--background-color-interactive-subtle)!important}html.skin-theme-clientpref-night .mw-parser-output .subnavbox_group{background:var(--background-color-neutral-subtle)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbox>tbody>tr:first-child>th{background:var(--background-color-interactive)!important}html.skin-theme-clientpref-os .mw-parser-output .navbox th{color:var(--color-base)!important}html.skin-theme-clientpref-os .mw-parser-output .navbox_abovebelow,html.skin-theme-clientpref-os .mw-parser-output .navbox_group{background:var(--background-color-interactive-subtle)!important}html.skin-theme-clientpref-os .mw-parser-output .subnavbox_group{background:var(--background-color-neutral-subtle)!important}}</style><table class="navbox mw-collapsible mw-collapsed noprint metadata" id="navbox-Analisi_matematica"><tbody><tr><th colspan="3"><div class="navbox_navbar"><div class="noprint plainlinks" style="background-color:transparent; padding:0; font-size:xx-small; color:var(--color-base, #000000); white-space:nowrap;"><a href="/wiki/Template:Analisi_matematica" title="Template:Analisi matematica"><span title="Vai alla pagina del template">V</span></a> · <a href="/w/index.php?title=Discussioni_template:Analisi_matematica&action=edit&redlink=1" class="new" title="Discussioni template:Analisi matematica (la pagina non esiste)"><span title="Discuti del template">D</span></a> · <a class="external text" href="https://it.wikipedia.org/w/index.php?title=Template:Analisi_matematica&action=edit"><span title="Modifica il template. Usa l'anteprima prima di salvare">M</span></a></div></div><span class="navbox_title"><a href="/wiki/Analisi_matematica" title="Analisi matematica">Analisi matematica</a></span></th></tr><tr><th colspan="1" class="navbox_group"><a href="/wiki/Calcolo_infinitesimale" title="Calcolo infinitesimale">Calcolo infinitesimale</a></th><td colspan="1" class="navbox_list navbox_odd"><a href="/wiki/Numero_reale" title="Numero reale">Numero reale</a><b> ·</b> <a href="/wiki/Infinitesimo" title="Infinitesimo">Infinitesimo</a><b> ·</b> <a href="/wiki/O-grande" title="O-grande">O-grande</a><b> ·</b> <a href="/wiki/Successione_(matematica)" title="Successione (matematica)">Successione</a> (<a href="/wiki/Successione_di_funzioni" title="Successione di funzioni">di funzioni</a>)<b> ·</b> <a href="/wiki/Successione_di_Cauchy" title="Successione di Cauchy">Successione di Cauchy</a><b> ·</b> <a href="/wiki/Teorema_di_Bolzano-Weierstrass" title="Teorema di Bolzano-Weierstrass">Teorema di Bolzano-Weierstrass</a><b> ·</b> <a href="/wiki/Stima_asintotica" title="Stima asintotica">Stima asintotica</a><b> ·</b> <a href="/wiki/Limite_(matematica)" title="Limite (matematica)">Limite</a> (<a href="/wiki/Limite_di_una_funzione" title="Limite di una funzione">di una funzione</a><b> ·</b> <a href="/wiki/Limite_di_una_successione" title="Limite di una successione">di una successione</a><b> ·</b> <a href="/wiki/Forma_indeterminata" title="Forma indeterminata">Forma indeterminata</a>)<b> ·</b> <a href="/wiki/Teorema_del_confronto" title="Teorema del confronto">Teorema dei due carabinieri</a><b> ·</b> <a href="/wiki/Limite_notevole" title="Limite notevole">Limite notevole</a><b> ·</b> <a href="/wiki/Punto_di_accumulazione" title="Punto di accumulazione">Punto di accumulazione</a><b> ·</b> <a href="/wiki/Punto_isolato" title="Punto isolato">Punto isolato</a><b> ·</b> <a href="/wiki/Intorno" title="Intorno">Intorno</a><b> ·</b> <a href="/wiki/Serie_(matematica)" title="Serie (matematica)">Serie</a> (<a href="/wiki/Serie_di_funzioni" title="Serie di funzioni">di funzioni</a>)<b> ·</b> <a href="/wiki/Criteri_di_convergenza" title="Criteri di convergenza">Criteri di convergenza</a><b> ·</b> <a href="/wiki/Limite_di_funzioni_a_pi%C3%B9_variabili" title="Limite di funzioni a più variabili">Limite di funzioni a più variabili</a></td><td rowspan="7" class="navbox_image"><figure class="mw-halign-right" typeof="mw:File"><a href="/wiki/File:Nuvola_apps_kmplot.svg" class="mw-file-description" title="Analisi matematica"><img alt="Analisi matematica" src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e8/Nuvola_apps_kmplot.svg/100px-Nuvola_apps_kmplot.svg.png" decoding="async" width="100" height="100" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e8/Nuvola_apps_kmplot.svg/150px-Nuvola_apps_kmplot.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e8/Nuvola_apps_kmplot.svg/200px-Nuvola_apps_kmplot.svg.png 2x" data-file-width="400" data-file-height="400" /></a><figcaption>Analisi matematica</figcaption></figure></td></tr><tr><th colspan="1" class="navbox_group">Studio della continuità</th><td colspan="1" class="navbox_list navbox_even"><a href="/wiki/Funzione_continua" title="Funzione continua">Funzione continua</a><b> ·</b> <a href="/wiki/Punto_di_discontinuit%C3%A0" title="Punto di discontinuità">Punto di discontinuità</a><b> ·</b> <a href="/wiki/Continuit%C3%A0_uniforme" title="Continuità uniforme">Continuità uniforme</a><b> ·</b> <a href="/wiki/Funzione_lipschitziana" title="Funzione lipschitziana">Funzione lipschitziana</a><b> ·</b> <a href="/wiki/Teorema_di_Bolzano" title="Teorema di Bolzano">Teorema di Bolzano</a><b> ·</b> <a href="/wiki/Teorema_di_Weierstrass" title="Teorema di Weierstrass">Teorema di Weierstrass</a><b> ·</b> <a href="/wiki/Teorema_dei_valori_intermedi" title="Teorema dei valori intermedi">Teorema dei valori intermedi</a><b> ·</b> <a href="/wiki/Teorema_di_Heine-Cantor" title="Teorema di Heine-Cantor">Teorema di Heine-Cantor</a><b> ·</b> <a href="/wiki/Modulo_di_continuit%C3%A0" title="Modulo di continuità">Modulo di continuità</a><b> ·</b> <a href="/wiki/Funzione_semicontinua" class="mw-redirect" title="Funzione semicontinua">Funzione semicontinua</a><b> ·</b> <a href="/wiki/Continuit%C3%A0_separata" title="Continuità separata">Continuità separata</a><b> ·</b> <a href="/wiki/Teorema_di_approssimazione_di_Weierstrass" title="Teorema di approssimazione di Weierstrass">Teorema di approssimazione di Weierstrass</a></td></tr><tr><th colspan="1" class="navbox_group"><a href="/wiki/Calcolo_differenziale" class="mw-redirect" title="Calcolo differenziale">Calcolo differenziale</a></th><td colspan="1" class="navbox_list navbox_odd"><a href="/wiki/Derivata" title="Derivata">Derivata</a><b> ·</b> <a href="/wiki/Differenziale_(matematica)" title="Differenziale (matematica)">Differenziale</a><b> ·</b> <a href="/wiki/Regole_di_derivazione" title="Regole di derivazione">Regole di derivazione</a><b> ·</b> <a href="/wiki/Teorema_di_Fermat_sui_punti_stazionari" title="Teorema di Fermat sui punti stazionari">Teorema di Fermat</a><b> ·</b> <a href="/wiki/Teorema_di_Rolle" title="Teorema di Rolle">Teorema di Rolle</a><b> ·</b> <a href="/wiki/Teorema_di_Lagrange" title="Teorema di Lagrange">Teorema di Lagrange</a><b> ·</b> <a href="/wiki/Teorema_di_Cauchy_(analisi_matematica)" title="Teorema di Cauchy (analisi matematica)">Teorema di Cauchy</a><b> ·</b> <a href="/wiki/Teorema_di_Darboux" title="Teorema di Darboux">Teorema di Darboux</a><b> ·</b> <a href="/wiki/Teorema_di_Taylor" title="Teorema di Taylor">Teorema di Taylor</a><b> ·</b> <a href="/wiki/Serie_di_Taylor" title="Serie di Taylor">Serie di Taylor</a><b> ·</b> <a href="/wiki/Funzione_differenziabile" title="Funzione differenziabile">Funzione differenziabile</a><b> ·</b> <a href="/wiki/Gradiente_(funzione)" class="mw-redirect" title="Gradiente (funzione)">Gradiente</a><b> ·</b> <a href="/wiki/Matrice_jacobiana" title="Matrice jacobiana">Jacobiana</a><b> ·</b> <a href="/wiki/Matrice_hessiana" title="Matrice hessiana">Hessiana</a><b> ·</b> <a href="/wiki/Forma_differenziale" title="Forma differenziale">Forma differenziale</a><b> ·</b> <a href="/wiki/Generalizzazioni_della_derivata" title="Generalizzazioni della derivata">Generalizzazioni della derivata</a><b> ·</b> <a href="/wiki/Derivata_parziale" title="Derivata parziale">Derivata parziale</a><b> ·</b> <a href="/wiki/Derivata_mista" title="Derivata mista">Derivata mista</a></td></tr><tr><th colspan="1" class="navbox_group"><a href="/wiki/Integrale" title="Integrale">Integrale</a></th><td colspan="1" class="navbox_list navbox_even"><a href="/wiki/Primitiva_(matematica)" title="Primitiva (matematica)">Primitiva</a><b> ·</b> <a class="mw-selflink selflink">Integrale di Riemann</a><b> ·</b> <a href="/wiki/Integrale_improprio" title="Integrale improprio">Integrale improprio</a><b> ·</b> <a href="/wiki/Integrale_di_Lebesgue" title="Integrale di Lebesgue">Integrale di Lebesgue</a><b> ·</b> <a href="/wiki/Teorema_fondamentale_del_calcolo_integrale" title="Teorema fondamentale del calcolo integrale">Teorema fondamentale</a><b> ·</b> <a href="/wiki/Metodi_di_integrazione" title="Metodi di integrazione">Metodi di integrazione</a><b> ·</b> <a href="/wiki/Categoria:Tavole_di_integrali" title="Categoria:Tavole di integrali">Tavole</a><b> ·</b> <a href="/wiki/Integrale_multiplo" title="Integrale multiplo">Integrale multiplo</a>, <a href="/wiki/Integrale_di_linea" title="Integrale di linea">di linea</a> (<a href="/wiki/Integrale_di_linea_di_prima_specie" title="Integrale di linea di prima specie">1ª specie</a><b> ·</b> <a href="/wiki/Integrale_di_linea_di_seconda_specie" title="Integrale di linea di seconda specie">2ª specie</a>) e <a href="/wiki/Integrale_di_superficie" title="Integrale di superficie">di superficie</a> (<a href="/wiki/Integrale_di_volume" title="Integrale di volume">di volume</a>)</td></tr><tr><th colspan="1" class="navbox_group"><a href="/wiki/Studio_di_funzione" title="Studio di funzione">Studio di funzione</a></th><td colspan="1" class="navbox_list navbox_odd"><a href="/wiki/Funzione_(matematica)" title="Funzione (matematica)">Funzione</a><b> ·</b> <a href="/wiki/Variabile_(matematica)" title="Variabile (matematica)">Variabile</a><b> ·</b> <a href="/wiki/Dominio_e_codominio" title="Dominio e codominio">Dominio e codominio</a><b> ·</b> <a href="/wiki/Funzioni_pari_e_dispari" title="Funzioni pari e dispari">Funzioni pari e dispari</a><b> ·</b> <a href="/wiki/Funzione_periodica" title="Funzione periodica">Funzione periodica</a><b> ·</b> <a href="/wiki/Funzione_monotona" title="Funzione monotona">Funzione monotona</a><b> ·</b> <a href="/wiki/Funzione_convessa" title="Funzione convessa">Funzione convessa</a><b> ·</b> <a href="/wiki/Massimo_e_minimo_di_una_funzione" title="Massimo e minimo di una funzione">Massimo e minimo di una funzione</a><b> ·</b> <a href="/wiki/Punto_angoloso" title="Punto angoloso">Punto angoloso</a><b> ·</b> <a href="/wiki/Cuspide_(matematica)" title="Cuspide (matematica)">Cuspide</a><b> ·</b> <a href="/wiki/Punto_di_flesso" title="Punto di flesso">Punto di flesso</a><b> ·</b> <a href="/wiki/Asintoto" title="Asintoto">Asintoto</a><b> ·</b> <a href="/wiki/Grafico_di_una_funzione" title="Grafico di una funzione">Grafico di una funzione</a><b> ·</b> <a href="/wiki/Funzione_iniettiva" title="Funzione iniettiva">Funzione iniettiva</a></td></tr><tr><th colspan="1" class="navbox_group"><a href="/wiki/Disuguaglianza" title="Disuguaglianza">Disuguaglianze</a></th><td colspan="1" class="navbox_list navbox_even"><a href="/wiki/Disuguaglianza_triangolare" title="Disuguaglianza triangolare">Disuguaglianza triangolare</a><b> ·</b> <a href="/wiki/Disuguaglianza_di_Cauchy-Schwarz" title="Disuguaglianza di Cauchy-Schwarz">Disuguaglianza di Cauchy-Schwarz</a><b> ·</b> <a href="/wiki/Disuguaglianza_di_Bernoulli" title="Disuguaglianza di Bernoulli">Bernoulli</a><b> ·</b> <a href="/wiki/Disuguaglianza_di_Jensen" title="Disuguaglianza di Jensen">Jensen</a><b> ·</b> <a href="/wiki/Disuguaglianza_di_H%C3%B6lder" title="Disuguaglianza di Hölder">Hölder</a><b> ·</b> <a href="/wiki/Disuguaglianza_di_Young" title="Disuguaglianza di Young">Young</a><b> ·</b> <a href="/wiki/Disuguaglianza_di_Minkowski" title="Disuguaglianza di Minkowski">Minkowski</a></td></tr><tr><th colspan="1" class="navbox_group">Altro</th><td colspan="1" class="navbox_list navbox_odd"><a href="/wiki/Approssimazione_di_Stirling" title="Approssimazione di Stirling">Approssimazione di Stirling</a><b> ·</b> <a href="/wiki/Prodotto_di_Wallis" title="Prodotto di Wallis">Prodotto di Wallis</a><b> ·</b> <a href="/wiki/Funzione_Gamma" title="Funzione Gamma">Funzione Gamma</a><b> ·</b> <a href="/wiki/Teorema_delle_funzioni_implicite" title="Teorema delle funzioni implicite">Teorema delle funzioni implicite</a><b> ·</b> <a href="/wiki/Teorema_della_funzione_inversa" title="Teorema della funzione inversa">Teorema della funzione inversa</a><b> ·</b> <a href="/wiki/Condizione_di_H%C3%B6lder" title="Condizione di Hölder">Funzione hölderiana</a><b> ·</b> <a href="/wiki/Spazio_metrico" title="Spazio metrico">Spazio metrico</a><b> ·</b> <a href="/wiki/Spazio_normato" title="Spazio normato">Spazio normato</a><b> ·</b> <a href="/wiki/Intervallo_(matematica)" title="Intervallo (matematica)">Intervallo</a><b> ·</b> <a href="/wiki/Insieme_trascurabile" title="Insieme trascurabile">Insieme trascurabile</a><b> ·</b> <a href="/wiki/Insieme_chiuso" title="Insieme chiuso">Insieme chiuso</a><b> ·</b> <a href="/wiki/Insieme_aperto" title="Insieme aperto">Insieme aperto</a><b> ·</b> <a href="/wiki/Palla_(matematica)" title="Palla (matematica)">Palla</a><b> ·</b> <a href="/wiki/Omeomorfismo" title="Omeomorfismo">Omeomorfismo</a><b> ·</b> <a href="/wiki/Omeomorfismo_locale" title="Omeomorfismo locale">Omeomorfismo locale</a><b> ·</b> <a href="/wiki/Diffeomorfismo" title="Diffeomorfismo">Diffeomorfismo</a><b> ·</b> <a href="/wiki/Diffeomorfismo_locale" title="Diffeomorfismo locale">Diffeomorfismo locale</a><b> ·</b> <a href="/wiki/Classe_C_di_una_funzione" title="Classe C di una funzione">Classe C di una funzione</a><b> ·</b> <a href="/wiki/Equazione_differenziale" title="Equazione differenziale">Equazione differenziale</a><b> ·</b> <a href="/wiki/Problema_di_Cauchy" title="Problema di Cauchy">Problema di Cauchy</a></td></tr></tbody></table> <style data-mw-deduplicate="TemplateStyles:r140554510">.mw-parser-output .CdA{border:1px solid #aaa;width:100%;margin:auto;font-size:90%;padding:2px}.mw-parser-output .CdA th{background-color:#f2f2f2;font-weight:bold;width:20%}@media screen{html.skin-theme-clientpref-night .mw-parser-output .CdA{border-color:#54595D}html.skin-theme-clientpref-night .mw-parser-output .CdA th{background-color:#202122}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .CdA{border-color:#54595D}html.skin-theme-clientpref-os .mw-parser-output .CdA th{background-color:#202122}}</style><table class="CdA"><tbody><tr><th><a href="/wiki/Aiuto:Controllo_di_autorit%C3%A0" title="Aiuto:Controllo di autorità">Controllo di autorità</a></th><td><a href="/wiki/Nuovo_soggettario" title="Nuovo soggettario">Thesaurus BNCF</a> <span class="uid"><a rel="nofollow" class="external text" href="https://thes.bncf.firenze.sbn.it/termine.php?id=19570">19570</a></span></td></tr></tbody></table> <div class="noprint" style="width:100%; padding: 3px 0; display: flex; flex-wrap: wrap; row-gap: 4px; column-gap: 8px; box-sizing: border-box;"><div style="flex-grow: 1"><style data-mw-deduplicate="TemplateStyles:r140555418">.mw-parser-output .itwiki-template-occhiello{width:100%;line-height:25px;border:1px solid #CCF;background-color:#F0EEFF;box-sizing:border-box}.mw-parser-output .itwiki-template-occhiello-progetto{background-color:#FAFAFA}@media screen{html.skin-theme-clientpref-night .mw-parser-output .itwiki-template-occhiello{background-color:#202122;border-color:#54595D}html.skin-theme-clientpref-night .mw-parser-output .itwiki-template-occhiello-progetto{background-color:#282929}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .itwiki-template-occhiello{background-color:#202122;border-color:#54595D}html.skin-theme-clientpref-os .mw-parser-output .itwiki-template-occhiello-progetto{background-color:#282929}}</style><div class="itwiki-template-occhiello"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Crystal128-kmplot.svg" class="mw-file-description" title="Matematica"><img alt=" " src="//upload.wikimedia.org/wikipedia/commons/thumb/a/af/Crystal128-kmplot.svg/25px-Crystal128-kmplot.svg.png" decoding="async" width="25" height="25" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/af/Crystal128-kmplot.svg/38px-Crystal128-kmplot.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/af/Crystal128-kmplot.svg/50px-Crystal128-kmplot.svg.png 2x" data-file-width="245" data-file-height="244" /></a></span> <b><a href="/wiki/Portale:Matematica" title="Portale:Matematica">Portale Matematica</a></b>: accedi alle voci di Wikipedia che trattano di matematica</div></div></div> <!-- NewPP limit report Parsed by mw‐web.eqiad.main‐d948c7fb8‐vmcqw Cached time: 20241208122423 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.359 seconds Real time usage: 0.524 seconds Preprocessor visited node count: 1851/1000000 Post‐expand include size: 32700/2097152 bytes Template argument size: 854/2097152 bytes Highest expansion depth: 9/100 Expensive parser function count: 2/500 Unstrip recursion depth: 0/20 Unstrip post‐expand size: 9909/5000000 bytes Lua time usage: 0.214/10.000 seconds Lua memory usage: 5490376/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 343.123 1 -total 45.01% 154.454 1 Template:Collegamenti_esterni 16.42% 56.346 1 Template:Analisi_matematica 15.17% 52.036 1 Template:Navbox 14.08% 48.308 4 Template:Vedi_anche 9.98% 34.255 1 Template:Portale 8.11% 27.840 1 Template:Interprogetto 5.29% 18.134 1 Template:Controllo_di_autorità 4.58% 15.731 1 Template:Icona_argomento 1.24% 4.265 91 Template:· --> <!-- Saved in parser cache with key itwiki:pcache:3224721:|#|:idhash:canonical and timestamp 20241208122423 and revision id 137280628. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?useformat=desktop&type=1x1&usesul3=0" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Estratto da "<a dir="ltr" href="https://it.wikipedia.org/w/index.php?title=Integrale_di_Riemann&oldid=137280628">https://it.wikipedia.org/w/index.php?title=Integrale_di_Riemann&oldid=137280628</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Categoria:Categorie" title="Categoria:Categorie">Categoria</a>: <ul><li><a href="/wiki/Categoria:Calcolo_integrale" title="Categoria:Calcolo integrale">Calcolo integrale</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Categorie nascoste: <ul><li><a href="/wiki/Categoria:P9621_letta_da_Wikidata" title="Categoria:P9621 letta da Wikidata">P9621 letta da Wikidata</a></li><li><a href="/wiki/Categoria:P3847_letta_da_Wikidata" title="Categoria:P3847 letta da Wikidata">P3847 letta da Wikidata</a></li><li><a href="/wiki/Categoria:P2812_letta_da_Wikidata" title="Categoria:P2812 letta da Wikidata">P2812 letta da Wikidata</a></li><li><a href="/wiki/Categoria:P7554_letta_da_Wikidata" title="Categoria:P7554 letta da Wikidata">P7554 letta da Wikidata</a></li><li><a href="/wiki/Categoria:Voci_con_codice_Thesaurus_BNCF" title="Categoria:Voci con codice Thesaurus BNCF">Voci con codice Thesaurus BNCF</a></li><li><a href="/wiki/Categoria:Voci_non_biografiche_con_codici_di_controllo_di_autorit%C3%A0" title="Categoria:Voci non biografiche con codici di controllo di autorità">Voci non biografiche con codici di controllo di autorità</a></li><li><a href="/wiki/Categoria:Pagine_che_utilizzano_collegamenti_magici_ISBN" title="Categoria:Pagine che utilizzano collegamenti magici ISBN">Pagine che utilizzano collegamenti magici ISBN</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> Questa pagina è stata modificata per l'ultima volta il 10 gen 2024 alle 15:35.</li> <li id="footer-info-copyright">Il testo è disponibile secondo la <a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by-sa/4.0/deed.it">licenza Creative Commons Attribuzione-Condividi allo stesso modo</a>; possono applicarsi condizioni ulteriori. Vedi le <a class="external text" href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use/it">condizioni d'uso</a> per i dettagli.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy/it">Informativa sulla privacy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:Sala_stampa/Wikipedia">Informazioni su Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:Avvertenze_generali">Avvertenze</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Codice di condotta</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Sviluppatori</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/it.wikipedia.org">Statistiche</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Dichiarazione sui cookie</a></li> <li id="footer-places-mobileview"><a href="//it.m.wikipedia.org/w/index.php?title=Integrale_di_Riemann&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Versione mobile</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-858ddf96d-h68xq","wgBackendResponseTime":174,"wgPageParseReport":{"limitreport":{"cputime":"0.359","walltime":"0.524","ppvisitednodes":{"value":1851,"limit":1000000},"postexpandincludesize":{"value":32700,"limit":2097152},"templateargumentsize":{"value":854,"limit":2097152},"expansiondepth":{"value":9,"limit":100},"expensivefunctioncount":{"value":2,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":9909,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 343.123 1 -total"," 45.01% 154.454 1 Template:Collegamenti_esterni"," 16.42% 56.346 1 Template:Analisi_matematica"," 15.17% 52.036 1 Template:Navbox"," 14.08% 48.308 4 Template:Vedi_anche"," 9.98% 34.255 1 Template:Portale"," 8.11% 27.840 1 Template:Interprogetto"," 5.29% 18.134 1 Template:Controllo_di_autorità"," 4.58% 15.731 1 Template:Icona_argomento"," 1.24% 4.265 91 Template:·"]},"scribunto":{"limitreport-timeusage":{"value":"0.214","limit":"10.000"},"limitreport-memusage":{"value":5490376,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-d948c7fb8-vmcqw","timestamp":"20241208122423","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Integrale di Riemann","url":"https:\/\/it.wikipedia.org\/wiki\/Integrale_di_Riemann","sameAs":"http:\/\/www.wikidata.org\/entity\/Q697181","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q697181","author":{"@type":"Organization","name":"Contributori ai progetti Wikimedia"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2010-11-21T20:21:35Z","dateModified":"2024-01-10T14:35:57Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/f\/fd\/Riemann_Sum.gif"}</script> </body> </html>