CINXE.COM
Extracting the Significant Degrees of Attributes in Unlabeled Data using Unsupervised Machine Learning
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Extracting the Significant Degrees of Attributes in Unlabeled Data using Unsupervised Machine Learning</title> <!-- common meta tags --> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta http-equiv="X-UA-Compatible" content="ie=edge"> <meta name="title" content="Extracting the Significant Degrees of Attributes in Unlabeled Data using Unsupervised Machine Learning"> <meta name="description" content="We propose a valid approach to find the degree of important attributes in unlabeled dataset to improve the clustering performance. The significant degrees of attributes are extracted through the training of unsupervised simple competitive learning with the raw unlabeled data. These significant degrees are applied to the original dataset and generate the weighted dataset reflected by the degrees of influentialvalues for the set ofattributes. This work is simulated on the UCI Machine Learning repository dataset. The Scikit-learn K-Means clustering with raw data, scaled data, and the weighted data are tested. The result shows that the proposed approach improves the performance"/> <meta name="keywords" content="Unsupervised MachineLearning, Simple Competitive Learning, SignificantDegree of Attributes, Scikitlearn K-Means Clustering, Weighted Data, UCI Machine Learning Data"/> <!-- end common meta tags --> <!-- Dublin Core(DC) meta tags --> <meta name="dc.title" content="Extracting the Significant Degrees of Attributes in Unlabeled Data using Unsupervised Machine Learning"> <meta name="citation_author" content="Byoung Jik Lee"> <meta name="dc.type" content="Article"> <meta name="dc.source" content="Computer Science & Information Technology (CS & IT), Vol 10, No.16"> <meta name="dc.date" content="28-11-2020"> <meta name="dc.identifier" content="10.5121/csit.2020.101608"> <meta name="dc.publisher" content="AIRCC Publishing Corporation"> <meta name="dc.rights" content="http://creativecommons.org/licenses/by/3.0/"> <meta name="dc.format" content="application/pdf"> <meta name="dc.language" content="en"> <meta name="dc.description" content="We propose a valid approach to find the degree of important attributes in unlabeled dataset to improve the clustering performance. The significant degrees of attributes are extracted through the training of unsupervised simple competitive learning with the raw unlabeled data. These significant degrees are applied to the original dataset and generate the weighted dataset reflected by the degrees of influentialvalues for the set ofattributes. This work is simulated on the UCI Machine Learning repository dataset. The Scikit-learn K-Means clustering with raw data, scaled data, and the weighted data are tested. The result shows that the proposed approach improves the performance"/> <meta name="dc.subject" content="Unsupervised MachineLearning"> <meta name="dc.subject" content="Simple Competitive Learning"> <meta name="dc.subject" content="SignificantDegree of Attributes"> <meta name="dc.subject" content="Scikitlearn K-Means Clustering"> <meta name="dc.subject" content="Weighted Data"> <meta name="dc.subject" content="UCI Machine Learning Data"> <!-- Prism meta tags --> <meta name="prism.publicationName" content="Computer Science & Information Technology (CS & IT)"> <meta name="prism.publicationDate" content="28-11-2020"> <meta name="prism.volume" content="10"> <meta name="prism.number" content="16"> <meta name="prism.section" content="Article"> <meta name="prism.startingPage" content="93"> <!-- End Prism meta tags --> <!-- citation meta tags --> <meta name="citation_journal_title" content="Computer Science & Information Technology (CS & IT)"> <meta name="citation_publisher" content="AIRCC Publishing Corporation"> <meta name="citation_author" content="Byoung Jik Lee"> <meta name="citation_title" content="Extracting the Significant Degrees of Attributes in Unlabeled Data using Unsupervised Machine Learning"> <meta name="citation_online_date" content="28-11-2020"> <meta name="citation_volume" content="10"> <meta name="citation_issue" content="16"> <meta name="citation_firstpage" content="93"> <meta name="citation_author" content="Byoung Jik Lee"> <meta name="citation_doi" content="10.5121/csit.2020.101608"> <meta name="citation_abstract_html_url" content="https://aircconline.com/csit/abstract/v10n16/csit101608.html"> <meta name="citation_pdf_url" content="https://aircconline.com/csit/papers/vol10/csit101608.pdf"> <!-- end citation meta tags --> <!-- Og meta tags --> <meta property="og:site_name" content="AIRCC" /> <meta property="og:type" content="article" /> <meta property="og:url" content="https://aircconline.com/csit/abstract/v10n16/csit101608.html"/> <meta property="og:title" content="Extracting the Significant Degrees of Attributes in Unlabeled Data using Unsupervised Machine Learning"> <meta property="og:description" content="We propose a valid approach to find the degree of important attributes in unlabeled dataset to improve the clustering performance. The significant degrees of attributes are extracted through the training of unsupervised simple competitive learning with the raw unlabeled data. These significant degrees are applied to the original dataset and generate the weighted dataset reflected by the degrees of influentialvalues for the set ofattributes. This work is simulated on the UCI Machine Learning repository dataset. The Scikit-learn K-Means clustering with raw data, scaled data, and the weighted data are tested. The result shows that the proposed approach improves the performance."/> <meta name="keywords" content="Unsupervised MachineLearning, Simple Competitive Learning, SignificantDegree of Attributes, Scikitlearn K-Means Clustering, Weighted Data, UCI Machine Learning Data."/> <!-- end og meta tags --> <!-- INDEX meta tags --> <meta name="google-site-verification" content="t8rHIcM8EfjIqfQzQ0IdYIiA9JxDD0uUZAitBCzsOIw" /> <meta name="yandex-verification" content="e3d2d5a32c7241f4" /> <!-- end INDEX meta tags --> <link rel="icon" type="image/ico" href="../img/ico.ico"/> <link rel="stylesheet" type="text/css" href="../main1.css" media="screen" /> <style type="text/css"> a{ color:white; text-decoration:none; line-height:20px; } ul li a{ font-weight:bold; color:#000; list-style:none; text-decoration:none; size:10px;} .imagess { height:90px; text-align:left; margin:0px 5px 2px 8px; float:right; border:none; } #left p { font-family: CALIBRI; font-size: 16px; margin-left: 20px; font-weight: 500; } .right { margin-right: 20px; } #button{ float: left; font-size: 14px; margin-left: 10px; height: 28px; width: auto; background-color: #1e86c6; } </style> </head> <body> <div class="font"> <div id="wap"> <div id="page"> <div id="top"> <form action="https://airccj.org/csecfp/library/Search.php" method="get" target="_blank" > <table width="100%" cellspacing="0" cellpadding="0" > <tr class="search_input"> <td width="665" align="right"> </td> <td width="236" > <input name="title" type="text" value="Enter the paper title" class="search_textbox" onclick="if(this.value=='Enter the paper title'){this.value=''}" onblur="if(this.value==''){this.value='Enter the paper title'}" /> </td> <td width="59"> <input type="image" src="../img/go.gif" /> </td> </tr> <tr> <td colspan="3" valign="top"><img src="../img/top1.gif" alt="Academy & Industry Research Collaboration Center (AIRCC)" /></td> </tr> </table> </form> </div> <div id="font-face"> <div id="menu"> <a href="http://airccse.org">Home</a> <a href="http://airccse.org/journal.html">Journals</a> <a href="http://airccse.org/ethics.html">Ethics</a> <a href="http://airccse.org/conference.html">Conferences</a> <a href="http://airccse.org/past.html">Past Events</a> <a href="http://airccse.org/b.html">Submission</a> </div> <div id="content"> <div id="left"> <h2 class="lighter"><font size="2">Volume 10, Number 16, November 2020</font></h2> <h4 style="text-align:center;height:auto;"><a>Extracting the Significant Degrees of Attributes in Unlabeled Data using Unsupervised Machine Learning</a></h4> <h3> Authors</h3> <p class="#left right" style="text-align:">Byoung Jik Lee, Western Illinois University, USA</p> <h3> Abstract</h3> <p class="#left right" style="text-align:justify">We propose a valid approach to find the degree of important attributes in unlabeled dataset to improve the clustering performance. The significant degrees of attributes are extracted through the training of unsupervised simple competitive learning with the raw unlabeled data. These significant degrees are applied to the original dataset and generate the weighted dataset reflected by the degrees of influentialvalues for the set ofattributes. This work is simulated on the UCI Machine Learning repository dataset. The Scikit-learn K-Means clustering with raw data, scaled data, and the weighted data are tested. The result shows that the proposed approach improves the performance. </p> <h3> Keywords</h3> <p class="#left right" style="text-align:justify">Unsupervised MachineLearning, Simple Competitive Learning, SignificantDegree of Attributes, Scikitlearn K-Means Clustering, Weighted Data, UCI Machine Learning Data.</p><br> <button type="button" id="button"><a target="blank" href="/csit/papers/vol10/csit101608.pdf">Full Text</a></button> <button type="button" id="button"><a href="http://airccse.org/csit/V10N16.html">Volume 10, Number 16</a></button> <br><br><br><br><br> </div> <div id="right"> <div class="menu_right"> <ul> <li id="id"><a href="http://airccse.org/editorial.html">Editorial Board</a></li> <li><a href="http://airccse.org/arch.html">Archives</a></li> <li><a href="http://airccse.org/indexing.html">Indexing</a></li> <li><a href="http://airccse.org/faq.html" target="_blank">FAQ</a></li> </ul> </div> <div class="clear_left"></div> <br> </div> <div class="clear"></div> <div id="footer"> <table width="100%" > <tr> <td width="46%" class="F_menu"><a href="http://airccse.org/subscription.html">Subscription</a> <a href="http://airccse.org/membership.html">Membership</a> <a href="http://airccse.org/cscp.html">AIRCC CSCP</a> <a href="http://airccse.org/acontact.html">Contact Us</a> </td> <td width="54%" align="right"><a href="http://airccse.org/index.php"><img src="/csit/abstract/img/logo.gif" alt="" width="21" height="24" /></a><a href="http://www.facebook.com/AIRCCSE"><img src="/csit/abstract/img/facebook.jpeg" alt="" width="21" height="24" /></a><a href="https://twitter.com/AIRCCFP"><img src="/csit/abstract/img/twitter.jpeg" alt="" width="21" height="24" /></a><a href="http://cfptech.wordpress.com/"><img src="/csit/abstract/img/index1.jpeg" alt="" width="21" height="24" /></a></td> </tr> <tr><td height="25" colspan="2"> <p align="center">All Rights Reserved ® AIRCC</p> </td></tr> </table> </div> </div> </div> </div> </div> </div> </body> </html>