CINXE.COM

Targeted and Personalized Online Advertising in the Age of Artificial Intelligence (AI): A Literature Review and Research Agenda

<!DOCTYPE html> <!--[if IE 8]> <html class="ie ie8"> <![endif]--> <!--[if IE 9]> <html class="ie ie9"> <![endif]--> <!--[if gt IE 9]><!--> <html> <!--<![endif]--> <head> <meta charset="utf-8" /> <title>Targeted and Personalized Online Advertising in the Age of Artificial Intelligence (AI): A Literature Review and Research Agenda</title> <!-- favicon --> <link rel="shortcut icon" type="image/ico" href="./data/ijsom/coversheet/favicon.ico" /> <!-- mobile settings --> <meta name="viewport" content="width=device-width, maximum-scale=1, initial-scale=1, user-scalable=0" /> <!--[if IE]><meta http-equiv='X-UA-Compatible' content='IE=edge,chrome=1'><![endif]--> <!-- user defined metatags --> <meta name="keywords" content="Keywords: Artificial Intelligence,Machine Learning,Marketing Optimization,Targeted Advertising,Personalized Advertising" /> <meta name="description" content="This study aims to provide a comprehensive evaluation of current machine learning (ML) algorithms employed in targeted and personalized advertising. It reveals key findings and conclusions from a wide range of sources, offering readers a concise summary. The study addresses the gap by identifying and analyzing the most significant machine learning-based targeting methods utilized in the recent studies. This helps readers understand the strengths and weaknesses of different approaches and keeps them up-to-date with the most recent advancements and best practices. Employing the PRISMA methodology, the review systematically examines existing literature on ML-driven targeted advertising. It identifies effective ML methods and strategies, presenting real-world examples to illustrate their practical implementation. Reviewing key findings from existing literature, the analysis identifies the most effective ML methods for targeted advertising. It also examines three research questions across three key dimensions: targeting, personalizing, and predicting customer preferences. This study proposes a novel theoretical framework that elucidates the application of ML in targeted advertising. Specifically, the study explores ML algorithms that enhance precision in each dimension. Key models include Long Short-Term Memory (LSTM) networks for analyzing historical customer data, Convolutional Neural Networks (CNN) for image recognition tasks, and Factorization Machines for capturing feature interactions in click-through rate (CTR) predictions. Additionally, traditional models such as logistic regression, decision trees, random forests, and support vector machines (SVM) are utilized for classification tasks, while unsupervised learning techniques like k-means clustering and hierarchical clustering facilitate user segmentation based on behavioral and demographic similarities. These models collectively enable marketers to derive actionable insights, optimize advertising content, and improve overall campaign performance. By consolidating key findings from existing literature on ML-driven targeted advertising, this study offers a valuable resource for understanding current trends and gaps. It also proposes future research directions, highlighting potential areas for further exploration, which can inspire new studies and innovations in the field." /> <meta name="title" content="Targeted and Personalized Online Advertising in the Age of Artificial Intelligence (AI): A Literature Review and Research Agenda" /> <meta name="googlebot" content="NOODP" /> <meta name="citation_title" content="Targeted and Personalized Online Advertising in the Age of Artificial Intelligence (AI): A Literature Review and Research Agenda" /> <meta name="citation_author" content="Reeyazati, Ashraf" /> <meta name="citation_author_institution" content="Mahan Business School (Marketing department)" /> <meta name="citation_author" content="Samizadeh, Reza" /> <meta name="citation_author_institution" content="Department of Industrial Engineering Alzahra University" /> <meta name="citation_abstract" content="This study aims to provide a comprehensive evaluation of current machine learning (ML) algorithms employed in targeted and personalized advertising. It reveals key findings and conclusions from a wide range of sources, offering readers a concise summary. The study addresses the gap by identifying and analyzing the most significant machine learning-based targeting methods utilized in the recent studies. This helps readers understand the strengths and weaknesses of different approaches and keeps them up-to-date with the most recent advancements and best practices. Employing the PRISMA methodology, the review systematically examines existing literature on ML-driven targeted advertising. It identifies effective ML methods and strategies, presenting real-world examples to illustrate their practical implementation. Reviewing key findings from existing literature, the analysis identifies the most effective ML methods for targeted advertising. It also examines three research questions across three key dimensions: targeting, personalizing, and predicting customer preferences. This study proposes a novel theoretical framework that elucidates the application of ML in targeted advertising. Specifically, the study explores ML algorithms that enhance precision in each dimension. Key models include Long Short-Term Memory (LSTM) networks for analyzing historical customer data, Convolutional Neural Networks (CNN) for image recognition tasks, and Factorization Machines for capturing feature interactions in click-through rate (CTR) predictions. Additionally, traditional models such as logistic regression, decision trees, random forests, and support vector machines (SVM) are utilized for classification tasks, while unsupervised learning techniques like k-means clustering and hierarchical clustering facilitate user segmentation based on behavioral and demographic similarities. These models collectively enable marketers to derive actionable insights, optimize advertising content, and improve overall campaign performance. By consolidating key findings from existing literature on ML-driven targeted advertising, this study offers a valuable resource for understanding current trends and gaps. It also proposes future research directions, highlighting potential areas for further exploration, which can inspire new studies and innovations in the field." /> <meta name="citation_id" content="2948" /> <meta name="citation_publication_date" content="2024/11/14" /> <meta name="citation_date" content="2024-11-14" /> <meta name="citation_journal_title" content="International Journal of Supply and Operations Management" /> <meta name="citation_issn" content="23831359" /> <meta name="citation_volume" content="0" /> <meta name="citation_issue" content="" /> <meta name="citation_firstpage" content="" /> <meta name="citation_lastpage" content="" /> <meta name="citation_publisher" content="Kharazmi University" /> <meta name="citation_doi" content="10.22034/ijsom.2024.110537.3205" /> <meta name="DC.Identifier" content="10.22034/ijsom.2024.110537.3205" /> <meta name="citation_abstract_html_url" content="http://www.ijsom.com/article_2948.html" /> <meta name="citation_pdf_url" content="http://www.ijsom.com/article_2948_5fbed59dec0dc924be2c5cfc0ebba03f.pdf" /> <meta name="DC.Title" content="Targeted and Personalized Online Advertising in the Age of Artificial Intelligence (AI): A Literature Review and Research Agenda" /> <meta name="DC.Source" content="International Journal of Supply and Operations Management" /> <meta name="DC.Date" content="14/11/2024" /> <meta name="DC.Date.issued" content="2024-11-14" /> <meta name="DC.Format" content="application/pdf" /> <meta name="DC.Contributor" content="Reeyazati, Ashraf" /> <meta name="DC.Contributor" content="Samizadeh, Reza" /> <meta name="og:title" content="Targeted and Personalized Online Advertising in the Age of Artificial Intelligence (AI): A Literature Review and Research Agenda" /> <meta name="og:description" content="This study aims to provide a comprehensive evaluation of current machine learning (ML) algorithms employed in targeted and personalized advertising. It reveals key findings and conclusions from a wide range of sources, offering readers a concise summary. The study addresses the gap by identifying and analyzing the most significant machine learning-based targeting methods utilized in the recent studies. This helps readers understand the strengths and weaknesses of different approaches and keeps them up-to-date with the most recent advancements and best practices. Employing the PRISMA methodology, the review systematically examines existing literature on ML-driven targeted advertising. It identifies effective ML methods and strategies, presenting real-world examples to illustrate their practical implementation. Reviewing key findings from existing literature, the analysis identifies the most effective ML methods for targeted advertising. It also examines three research questions across three key dimensions: targeting, personalizing, and predicting customer preferences. This study proposes a novel theoretical framework that elucidates the application of ML in targeted advertising. Specifically, the study explores ML algorithms that enhance precision in each dimension. Key models include Long Short-Term Memory (LSTM) networks for analyzing historical customer data, Convolutional Neural Networks (CNN) for image recognition tasks, and Factorization Machines for capturing feature interactions in click-through rate (CTR) predictions. Additionally, traditional models such as logistic regression, decision trees, random forests, and support vector machines (SVM) are utilized for classification tasks, while unsupervised learning techniques like k-means clustering and hierarchical clustering facilitate user segmentation based on behavioral and demographic similarities. These models collectively enable marketers to derive actionable insights, optimize advertising content, and improve overall campaign performance. By consolidating key findings from existing literature on ML-driven targeted advertising, this study offers a valuable resource for understanding current trends and gaps. It also proposes future research directions, highlighting potential areas for further exploration, which can inspire new studies and innovations in the field." /> <meta name="og:url" content="http://www.ijsom.com/article_2948.html" /> <!-- WEB FONTS : use %7C instead of | (pipe) --> <link href="./themes/base/front/assets/css/social-icon-font.css" rel="stylesheet" type="text/css" /> <!-- CORE CSS --> <link href="./themes/base/front/assets/plugins/bootstrap/css/bootstrap.min.css?v=0.02" rel="stylesheet" type="text/css" /> <link href="./themes/old/front/assets/css/header.css?v=0.05" rel="stylesheet" type="text/css" /> <link href="./themes/old/front/assets/css/footer.css" rel="stylesheet" type="text/css" /> <link href="./inc/css/essentials.css?v=0.2" rel="stylesheet" type="text/css" /> <link href="./inc/css/cookieconsent.min.css" rel="stylesheet" type="text/css" /> <link href="./inc/css/print.css" rel="stylesheet" type="text/css" media="print"/> <!-- RTL CSS --> <link href="./themes/base/front/assets/plugins/bootstrap/css/bootstrap-ltr.min.css" rel="stylesheet" type="text/css" /> <link href=" ./themes/base/front/assets/css/gfonts-OpenSans.css" rel="stylesheet" type="text/css" /> <link href="./themes/old/front/assets/css/accordian.css" rel="stylesheet" type="text/css" /> <link href="./themes/base/front/assets/css/academicons.min.css" rel="stylesheet" type="text/css" /> <!-- user defined metatags--> <meta name="google-site-verification" content="UlbWpwabckk_wTgRmzoJCVPEYKnomtCLcftujpXdou4" /> <link href="./data/ijsom/coversheet/stl_front.css?v=0.10" rel="stylesheet" type="text/css" /> <link href="./data/ijsom/coversheet/stl.css" rel="stylesheet" type="text/css" /> <!-- Feed--> <link rel="alternate" type="application/rss+xml" title="RSS feed" href="ju.rss" /> <script type="text/javascript" src="./themes/base/front/assets/plugins/jquery/jquery.min.js?v=0.5"></script> <script type="text/javascript" src="./inc/js/common.js?v=0.1"></script> <script type="text/javascript" src="./inc/js/jquery/cookieconsent.min.js"></script> <!-- Extra Style Scripts --> <!-- Extra Script Scripts --> <script src="inc/js/article.js?v=0.31" type="text/javascript" ></script> </head> <body class="ltr len"> <div class="container" id="header"> <div class="row"> <div class="col-xs-12 text-center"> <img src="./data/ijsom/coversheet/head_en.jpg" class="img-responsive text-center" style="display:-webkit-inline-box; width: 100%;" > </div> </div> </div> <div class="container"> <div class="row"> <div class="col-xs-12 col-lg-12 col-md-12 text-center"> <nav class="navbar navbar-default noborder nomargin noradius" role="navigation"> <div class="container-fluid nopadding" > <div class="navbar-header" style="background: #FFFFFF;"> <button type="button" class="navbar-toggle" data-toggle="collapse" data-target="#bs-example-navbar-collapse-1"> <span class="sr-only">Toggle navigation</span> <span class="icon-bar"></span> <span class="icon-bar"></span> <span class="icon-bar"></span> </button> <!-- <a class="navbar-brand" href="#">Brand</a> --> </div> <!-- Collect the nav links, forms, and other content for toggling --> <div class="collapse navbar-collapse nopadding" id="bs-example-navbar-collapse-1"> <ul class="nav navbar-nav"> <li><a href="././"> Home</a></li> <li class="dropdown"> <a href="" class="dropdown-toggle" data-toggle="dropdown">Browse <b class="caret"></b></a> <ul class="dropdown-menu"> <li><a href="./?_action=current">Current Issue</a></li> <li class="divider margin-bottom-6 margin-top-6"></li> <li><a href="./browse?_action=issue">By Issue</a></li> <li class="divider margin-bottom-6 margin-top-6"></li> <li><a href="./browse?_action=author">By Author</a></li> <li class="divider margin-bottom-6 margin-top-6"></li> <li><a href="./browse?_action=subject">By Subject</a></li> <li class="divider margin-bottom-6 margin-top-6"></li> <li><a href="./author.index">Author Index</a></li> <li class="divider margin-bottom-6 margin-top-6"></li> <li><a href="./keyword.index">Keyword Index</a></li> </ul> </li> <li class="dropdown"> <a href="" class="dropdown-toggle" data-toggle="dropdown">Journal Info <b class="caret"></b></a> <ul class="dropdown-menu"> <li><a href="./journal/about">About Journal</a></li> <li class="divider margin-bottom-6 margin-top-6"></li> <li><a href="./journal/aim_scope">Aims and Scope</a></li> <li class="divider margin-bottom-6 margin-top-6"></li> <li><a href="./journal/editorial.board">Editorial Board</a></li> <li class="divider margin-bottom-6 margin-top-6"></li> <li><a href="./journal/process?ethics">Publication Ethics</a></li> <li class="divider margin-bottom-6 margin-top-6"></li> <li><a href="./journal/indexing">Indexing and Abstracting</a></li> <li class="divider margin-bottom-6 margin-top-6"></li> <li><a href="./journal/links">Related Links</a></li> <li class="divider margin-bottom-6 margin-top-6"></li> <li><a href="./journal/faq">FAQ</a></li> <li class="divider margin-bottom-6 margin-top-6"></li> <li><a href="./journal/process">Peer Review Process</a></li> <li class="divider margin-bottom-6 margin-top-6"></li> <li><a href="./journal/metrics">Journal Metrics</a></li> <li class="divider margin-bottom-6 margin-top-6"></li> <li><a href="./news">News</a></li> </ul> </li> <li><a href="./journal/authors.note"> Guide for Authors</a></li> <li><a href="./author"> Submit Manuscript</a></li> <li><a href="./reviewer?_action=info"> Reviewers</a></li> <li><a href="./journal/contact.us"> Contact Us</a></li> </ul> <ul class="nav navbar-nav navbar-right nomargin"> <li><a href="./contacts">Login</a></li> <li><a href="./contacts?_action=signup">Register</a></li> </ul> </div> <!-- /.navbar-collapse --> </div> <!-- /.container-fluid --> </nav> </div> </div> </div> <!-- MAIN SECTION --> <div class="container" > <div id="dv_main_cnt"> <section class="no-cover-box"> <div class="row"> <!-- CENTER --> <div class="col-lg-9 col-md-9 col-sm-8" id="dv_artcl"> <!-- Current Issue --> <div> <h1 class="margin-bottom-20 size-18 ltr"><span class="article_title bold"> Targeted and Personalized Online Advertising in the Age of Artificial Intelligence (AI): A Literature Review and Research Agenda</span></h1> <div> <div class="margin-bottom-3"> </div> <p class="margin-bottom-3">Document Type : Review Paper</p> <p class="padding-0" style="margin:12px -2px 0 -2px"><strong>Authors</strong></p> <ul class="list-inline list-inline-seprator margin-bottom-6 ltr"> <li class="padding-3"> <a href="./?_action=article&amp;au=131614&amp;_au=ashraf++reeyazati">ashraf reeyazati</a> <sup><a href="mailto:elahe.reeyazati@gmail.com" data-toggle="tooltip" data-placement="bottom" title="Email to Corresponding Author"><i class="fa fa-envelope-o" ></i></a></sup> <sup class="ltr"><a class=" text-green" href="https://www.orcid.org/0009-0002-0077-5116" data-toggle="tooltip" data-placement="bottom" data-html="true" title="ORCID: 0009-0002-0077-5116" target="_blank"><i class="ai ai-orcid size-13" ></i></a></sup> <sup><a href="#aff1" >1</a></sup> </li> <li class="padding-3"> <a href="./?_action=article&amp;au=131615&amp;_au=Reza++Samizadeh">Reza Samizadeh</a> <sup class="ltr"><a class=" text-green" href="https://www.orcid.org/0000-0001-7822-6366" data-toggle="tooltip" data-placement="bottom" data-html="true" title="ORCID: 0000-0001-7822-6366" target="_blank"><i class="ai ai-orcid size-13" ></i></a></sup> <sup><a href="#aff2" >2</a></sup> </li> </ul> <p class="margin-bottom-3 ltr" id="aff1"> <sup>1</sup> Mahan Business School (Marketing department) </p> <p class="margin-bottom-3 ltr" id="aff2"> <sup>2</sup> Department of Industrial Engineering Alzahra University </p> <div class="margin-bottom-3 ltr" id="ar_doi" title="DOI"><i class="ai ai-doi size-25 text-orange"></i> <span dir="ltr"><a href="https://dx.doi.org/10.22034/ijsom.2024.110537.3205">10.22034/ijsom.2024.110537.3205</a></span></div> <p style="margin:12px -2px 0 -2px"><strong>Abstract</strong></p> <div class="padding_abstract justify ltr">This study aims to provide a comprehensive evaluation of current machine learning (ML) algorithms employed in targeted and personalized advertising. It reveals key findings and conclusions from a wide range of sources, offering readers a concise summary. The study addresses the gap by identifying and analyzing the most significant machine learning-based targeting methods utilized in the recent studies. This helps readers understand the strengths and weaknesses of different approaches and keeps them up-to-date with the most recent advancements and best practices. Employing the PRISMA methodology, the review systematically examines existing literature on ML-driven targeted advertising. It identifies effective ML methods and strategies, presenting real-world examples to illustrate their practical implementation. Reviewing key findings from existing literature, the analysis identifies the most effective ML methods for targeted advertising. It also examines three research questions across three key dimensions: targeting, personalizing, and predicting customer preferences. This study proposes a novel theoretical framework that elucidates the application of ML in targeted advertising. Specifically, the study explores ML algorithms that enhance precision in each dimension. Key models include Long Short-Term Memory (LSTM) networks for analyzing historical customer data, Convolutional Neural Networks (CNN) for image recognition tasks, and Factorization Machines for capturing feature interactions in click-through rate (CTR) predictions. Additionally, traditional models such as logistic regression, decision trees, random forests, and support vector machines (SVM) are utilized for classification tasks, while unsupervised learning techniques like k-means clustering and hierarchical clustering facilitate user segmentation based on behavioral and demographic similarities. These models collectively enable marketers to derive actionable insights, optimize advertising content, and improve overall campaign performance. By consolidating key findings from existing literature on ML-driven targeted advertising, this study offers a valuable resource for understanding current trends and gaps. It also proposes future research directions, highlighting potential areas for further exploration, which can inspire new studies and innovations in the field.</div> <p class="padding-0" style="margin:12px -2px 0 -2px"><strong>Keywords</strong></p> <ul class="block list-inline list-inline-seprator margin-bottom-6 ltr"> <li class="padding-3"> <a class="tag_a" href="./?_action=article&amp;kw=106505&amp;_kw=Keywords%3A+Artificial+Intelligence" >Keywords: Artificial Intelligence</a> </li> <li class="padding-3"> <a class="tag_a" href="./?_action=article&amp;kw=106295&amp;_kw=Machine+Learning" >Machine Learning</a> </li> <li class="padding-3"> <a class="tag_a" href="./?_action=article&amp;kw=106562&amp;_kw=Marketing+Optimization" >Marketing Optimization</a> </li> <li class="padding-3"> <a class="tag_a" href="./?_action=article&amp;kw=106563&amp;_kw=Targeted+Advertising" >Targeted Advertising</a> </li> <li class="padding-3"> <a class="tag_a" href="./?_action=article&amp;kw=106564&amp;_kw=Personalized+Advertising" >Personalized Advertising</a> </li> </ul> </div> <hr> <div class="page_break"></div> <div class="panel"> <div class="panel-heading card-header"> <h4 class="panel-title "> <a data-toggle="collapse" data-parent="#accordions" href="#collapsesRef"><i class="fa fa-plus"></i> References</a> </h4> </div> <div id="collapsesRef" class="panel-collapse collapse"> <div class="panel-body justify"> <div class="padding-3 margin-top-3 ltr justify">Akter, S., Dwivedi, Y. K., Sajib, S., Biswas, K., Bandara, R. J., &amp; Michael, K. (2022). Algorithmic bias in machine learning-based marketing models. <em>Journal of Business Research</em>, <em>144</em>, 201&ndash;216. https://doi.org/10.1016/j.jbusres.2022.01.083 </div> <div class="padding-3 margin-top-3 ltr justify">Amalraj Victoire, T., Karunamurthy, A., Subitsha, B., &amp; Kevin, A. E. (2023). Leveraging Artificial Intelligence in Marketing and Advertising: Unleashing the Power of Advanced Technologies. <em>International Research Journal of Engineering and Technology</em>. www.irjet.net </div> <div class="padding-3 margin-top-3 ltr justify">Arasu, B. S., Seelan, B. J. B., &amp; Thamaraiselvan, N. (2020). A machine learning-based approach to enhancing social media marketing. <em>Computers and Electrical Engineering</em>, <em>86</em>. https://doi.org/10.1016/j.compeleceng.2020.106723 </div> <div class="padding-3 margin-top-3 ltr justify">Argan, M., Dinc, H., Kaya, S., &amp; Argan, M. T. (2022). Artificial Intelligence (AI) in Advertising: Understanding and Schematizing the Behaviors of Social Media Users. <em>Advances in Distributed Computing and Artificial Intelligence Journal</em>, <em>11</em>(3), 331&ndash;348. https://doi.org/10.14201/adcaij.28331 </div> <div class="padding-3 margin-top-3 ltr justify">Bhatt, C., Bangwal, D., Purohit, U. N., Chauhan, R., B P, A. P., &amp; Singh, T. (2023). Behavior Analysis Using User&rsquo;s Search History Through Machine Learning. <em>2023 International Conference on Communication, Security and Artificial Intelligence (ICCSAI)</em>, 587&ndash;591. https://doi.org/10.1109/ICCSAI59793.2023.10420857 </div> <div class="padding-3 margin-top-3 ltr justify">Borges, A. F. S., Laurindo, F. J. B., Sp&iacute;nola, M. M., Gon&ccedil;alves, R. F., &amp; Mattos, C. A. (2021). The strategic use of artificial intelligence in the digital era: Systematic literature review and future research directions. In <em>International Journal of Information Management</em> (Vol. 57). Elsevier Ltd. https://doi.org/10.1016/j.ijinfomgt.2020.102225 </div> <div class="padding-3 margin-top-3 ltr justify">Boyko, N., &amp; Kholodetska, Y. (2022). Using Artificial Intelligence Algorithms in Advertising. <em>International Scientific and Technical Conference on Computer Sciences and Information Technologies</em>, <em>2022-November</em>, 317&ndash;321. https://doi.org/10.1109/CSIT56902.2022.10000819 </div> <div class="padding-3 margin-top-3 ltr justify">Chen, Y. (2023). Comparing content marketing strategies of digital brands using machine learning. <em>Humanities and Social Sciences Communications</em>, <em>10</em>(1). https://doi.org/10.1057/s41599-023-01544-x </div> <div class="padding-3 margin-top-3 ltr justify">Choi, J. A., &amp; Lim, K. (2020). Identifying machine learning techniques for classification of target advertising. In <em>ICT Express</em> (Vol. 6, Issue 3, pp. 175&ndash;180). Korean Institute of Communications Information Sciences. https://doi.org/10.1016/j.icte.2020.04.012 </div> <div class="padding-3 margin-top-3 ltr justify">Ciuchita, R., Gummerus, J. K., Holmlund, M., &amp; Linhart, E. L. (2023). Programmatic advertising in online retailing: consumer perceptions and future avenues. <em>Journal of Service Management</em>, <em>34</em>(2), 231&ndash;255. https://doi.org/10.1108/JOSM-06-2021-0238 </div> <div class="padding-3 margin-top-3 ltr justify">De Bruyn, A., Viswanathan, V., Beh, Y. S., Brock, J. K. U., &amp; von Wangenheim, F. (2020). Artificial Intelligence and Marketing: Pitfalls and Opportunities. <em>Journal of Interactive Marketing</em>, <em>51</em>, 91&ndash;105. https://doi.org/10.1016/j.intmar.2020.04.007 </div> <div class="padding-3 margin-top-3 ltr justify">De Mauro, A., Sestino, A., &amp; Bacconi, A. (2022). Machine learning and artificial intelligence use in marketing: a general taxonomy. <em>Italian Journal of Marketing</em>, <em>2022</em>(4), 439&ndash;457. https://doi.org/10.1007/s43039-022-00057-w </div> <div class="padding-3 margin-top-3 ltr justify">Dumitriu, D., &amp; Popescu, M. A. M. (2020). Artificial intelligence solutions for digital marketing. <em>Procedia Manufacturing</em>, <em>46</em>, 630&ndash;636. https://doi.org/10.1016/j.promfg.2020.03.090 </div> <div class="padding-3 margin-top-3 ltr justify">Ebrahimi, P., Basirat, M., Yousefi, A., Nekmahmud, M., Gholampour, A., &amp; Fekete鈥恌arkas, M. (2022). Social Networks Marketing and Consumer Purchase Behavior: The Combination of SEM and Unsupervised Machine Learning Approaches. <em>Big Data and Cognitive Computing</em>, <em>6</em>(2). https://doi.org/10.3390/bdcc6020035 </div> <div class="padding-3 margin-top-3 ltr justify">Ford, J., Jain, V., Wadhwani, K., &amp; Gupta, D. G. (2023). AI advertising: An overview and guidelines. <em>Journal of Business Research</em>, <em>166</em>. https://doi.org/10.1016/j.jbusres.2023.114124 </div> <div class="padding-3 margin-top-3 ltr justify">Gao, B., Wang, Y., Xie, H., Hu, Y., &amp; Hu, Y. (2023). Artificial Intelligence in Advertising: Advancements, Challenges, and Ethical Considerations in Targeting, Personalization, Content Creation, and Ad Optimization. In <em>SAGE Open</em> (Vol. 13, Issue 4). SAGE Publications Inc. https://doi.org/10.1177/21582440231210759 </div> <div class="padding-3 margin-top-3 ltr justify">Geru, M. &amp; M. A.-E. &amp; C. A. &amp; M. A. (2018). Using Artificial Intelligence on Social Media&rsquo;s User Generated Content for Disruptive Marketing Strategies in eCommerce D&eacute;veloppement durable, responsabilit&eacute; sociale, culture et performance d&rsquo;entreprise View project The Marketing Simulations Online Knowledge Center (MSOKC) View project Using Artificial Intelligence on Social Media&rsquo;s User Generated Content for Disruptive Marketing Strategies in eCommerce. <em>Annals of the University Dunarea de Jos of Galati</em>, 5&ndash;11. https://doi.org/10.26397/eai1584040911 </div> <div class="padding-3 margin-top-3 ltr justify">Guo, H., Tang, R., Ye, Y., Li, Z., &amp; He, X. (2017). <em>DeepFM: A Factorization-Machine based Neural Network for CTR Prediction</em>. </div> <div class="padding-3 margin-top-3 ltr justify">Gupta, M., Kumar, R., Sharma, A., &amp; Pai, A. S. (2023). Impact of AI on social marketing and its usage in social media: A review analysis. <em>2023 14th International Conference on Computing Communication and Networking Technologies, ICCCNT 2023</em>. https://doi.org/10.1109/ICCCNT56998.2023.10308092 </div> <div class="padding-3 margin-top-3 ltr justify">Haleem, A., Javaid, M., Asim Qadri, M., Pratap Singh, R., &amp; Suman, R. (2022). Artificial intelligence (AI) applications for marketing: A literature-based study. In <em>International Journal of Intelligent Networks</em> (Vol. 3, pp. 119&ndash;132). KeAi Communications Co. https://doi.org/10.1016/j.ijin.2022.08.005 </div> <div class="padding-3 margin-top-3 ltr justify">Hocutt, D. L. (2024). Composing with generative AI on digital advertising platforms. <em>Computers and Composition</em>, <em>71</em>. https://doi.org/10.1016/j.compcom.2024.102829 </div> <div class="padding-3 margin-top-3 ltr justify">Huai, J. (2021). Explore the digital transformation path of the advertising industry in the era of artificial intelligence. <em>Proceedings - 2021 International Conference on Computer Information Science and Artificial Intelligence, CISAI 2021</em>, 832&ndash;836. https://doi.org/10.1109/CISAI54367.2021.00168 </div> <div class="padding-3 margin-top-3 ltr justify">Huang, M. H., &amp; Rust, R. T. (2022). A Framework for Collaborative Artificial Intelligence in Marketing. <em>Journal of Retailing</em>, <em>98</em>(2), 209&ndash;223. https://doi.org/10.1016/j.jretai.2021.03.001 </div> <div class="padding-3 margin-top-3 ltr justify">Huang, M.-H., &amp; Rust, R. T. (2021). A strategic framework for artificial intelligence in marketing. <em>Journal of the Academy of Marketing Science </em>, 30&ndash;50. https://doi.org/10.1007/s11747-020-00749-9/Published </div> <div class="padding-3 margin-top-3 ltr justify">Ijaz, M., Haq, U., David, T., Muhammad, A., &amp; Haq, I. U. (2021). <em>Role of Machine learning in Online Advertising</em>. https://www.researchgate.net/publication/356909485 </div> <div class="padding-3 margin-top-3 ltr justify">Jain, P., &amp; Aggarwal, K. (2020). Transforming Marketing with Artificial Intelligence. <em>International Research Journal of Engineering and Technology (IRJET)</em>, <em>7</em>(7). https://doi.org/10.13140/RG.2.2.25848.67844 </div> <div class="padding-3 margin-top-3 ltr justify">Joni Salminen, Bernard J. Jansen, &amp; https://www.tandfonline.com/author/Mustak%2C+Mekhail. (2022). How Feature Changes of a Dominant Ad Platform Shape Advertisers&rsquo; Human Agency. <em>International Journal of Electronic Commerce</em>, <em>27</em>, 1&ndash;33. </div> <div class="padding-3 margin-top-3 ltr justify">Kamal, M., &amp; Bablu, T. A. (2022). <em>Machine Learning Models for Predicting Click-Through Rates on social media: Factors and Performance Analysis International Journal of Applied Machine Learning and Computational Intelligence Machine Learning Models for Predicting Click-through Rates on social media: Factors and Performance Analysis</em>. https://doi.org/10.1003/2023935959 </div> <div class="padding-3 margin-top-3 ltr justify">Kshetri, N., Dwivedi, Y. K., Davenport, T. H., &amp; Panteli, N. (2023). Generative artificial intelligence in marketing: Applications, opportunities, challenges, and research agenda. In <em>International Journal of Information Management</em>. Elsevier Ltd. https://doi.org/10.1016/j.ijinfomgt.2023.102716 </div> <div class="padding-3 margin-top-3 ltr justify">Kuang, A. (2022). Construction of Personalized Advertising Accuracy Model Based on Artificial Intelligence. <em>Proceedings - 2022 International Conference on Artificial Intelligence and Autonomous Robot Systems, AIARS 2022</em>, 395&ndash;398. https://doi.org/10.1109/AIARS57204.2022.00095 </div> <div class="padding-3 margin-top-3 ltr justify">Lee, G. H., Lee, K. J., Jeong, B., &amp; Kim, T. K. (2024). Developing Personalized Marketing Service Using Generative AI. <em>IEEE Access</em>. https://doi.org/10.1109/ACCESS.2024.3361946 </div> <div class="padding-3 margin-top-3 ltr justify">Ma, L., &amp; Sun, B. (2020). Machine learning and AI in marketing &ndash; Connecting computing power to human insights. <em>International Journal of Research in Marketing</em>, <em>37</em>(3), 481&ndash;504. https://doi.org/10.1016/j.ijresmar.2020.04.005 </div> <div class="padding-3 margin-top-3 ltr justify">Maddodi, C. B., &amp; Upadhyaya, P. (2023). In-app advertising: a systematic literature review and implications for future research. In <em>Spanish Journal of Marketing - ESIC</em>. Emerald Publishing. https://doi.org/10.1108/SJME-05-2022-0120 </div> <div class="padding-3 margin-top-3 ltr justify">Makalesi, A., Ayd谋n, S., G&ouml;khan Nalbant, K., Kelimeler, A., &amp; Zeka Dijital Pazarlama, Y. (n.d.). The Significance of Artificial Intelligence in the Realms of Marketing, Advertising, and Branding inside the Metaverse Metaverse&rsquo;de Pazarlama, Reklam ve Markalama Alanlar谋nda Yapay Zekan谋n &Ouml;nemi A R T I C L E I N F O. <em>JOURNAL OF EMERGING ECONOMIES AND POLICY 2023</em>, <em>8</em>(2), 301&ndash;316. </div> <div class="padding-3 margin-top-3 ltr justify">Moher, D., Liberati, A., Tetzlaff, J., &amp; Altman, D. G. (2010). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. <em>International Journal of Surgery</em>, <em>8</em>(5), 336&ndash;341. https://doi.org/10.1016/j.ijsu.2010.02.007 </div> <div class="padding-3 margin-top-3 ltr justify">Ngai, E. W. T., &amp; Wu, Y. (2022). Machine learning in marketing: A literature review, conceptual framework, and research agenda. <em>Journal of Business Research</em>, <em>145</em>, 35&ndash;48. https://doi.org/10.1016/j.jbusres.2022.02.049 </div> <div class="padding-3 margin-top-3 ltr justify">Nour Sadeq, G. N. , J. Y. (2023). Impact of Artificial Intelligence on E-marketing. <em>International Journal of Trend in Scientific Research and Development (IJTSRD)</em>. https://www.researchgate.net/publication/368916517 </div> <div class="padding-3 margin-top-3 ltr justify">Plangger, K., Grewal, D., de Ruyter, K., &amp; Tucker, C. (2022). The future of digital technologies in marketing: A conceptual framework and an overview. In <em>Journal of the Academy of Marketing Science</em> (Vol. 50, Issue 6, pp. 1125&ndash;1134). Springer. https://doi.org/10.1007/s11747-022-00906-2 </div> <div class="padding-3 margin-top-3 ltr justify">Raphael, J., Madhusudana Rao, N., Bindu, A., &amp; Gao, X. Z. (2022). Clustering-based Factorization Machines for Advertisement Click prediction. <em>Procedia Computer Science</em>, <em>215</em>, 546&ndash;555. https://doi.org/10.1016/j.procs.2022.12.057 </div> <div class="padding-3 margin-top-3 ltr justify">Ratchford, B. T. (2020). The history of academic research in marketing and its implications for the future. In <em>Spanish Journal of Marketing - ESIC</em> (Vol. 24, Issue 1, pp. 3&ndash;36). Emerald Group Holdings Ltd. https://doi.org/10.1108/SJME-11-2019-0096 </div> <div class="padding-3 margin-top-3 ltr justify">S&aacute;nchez-Fern&aacute;ndez, P., Baca Ruiz, L. G., &amp; Pegalajar Jim&eacute;nez, M. del C. (2023). Application of classical and advanced machine learning models to predict personality on social media. <em>Expert Systems with Applications</em>, <em>216</em>. https://doi.org/10.1016/j.eswa.2022.119498 </div> <div class="padding-3 margin-top-3 ltr justify">Shi, B., &amp; Wang, H. (2023). An AI-enabled approach for improving advertising identification and promotion in social networks. <em>Technological Forecasting and Social Change</em>, <em>188</em>. https://doi.org/10.1016/j.techfore.2022.122269 </div> <div class="padding-3 margin-top-3 ltr justify">Xiong, W., Xiong, Z., &amp; Tian, T. (2022). Who to show the ad to? Behavioral targeting in Internet advertising. <em>Journal of Internet and Digital Economics</em>, <em>2</em>(1), 15&ndash;26. https://doi.org/10.1108/jide-12-2021-0023 </div> <div class="padding-3 margin-top-3 ltr justify">Yang, Y., &amp; Zhai, P. (2022). Click-through rate prediction in online advertising: A literature review. <em>Information Processing and Management</em>, <em>59</em>(2). https://doi.org/10.1016/j.ipm.2021.102853 </div> <div class="padding-3 margin-top-3 ltr justify">Yolanda Masnita, J. K. A. A. Z. N. W. W. M. (2023). Artificial Intelligence in Marketing: Literature Review and Future Research Agenda. <em>Journal of System and Management Sciences</em>, <em>14</em>(1). https://doi.org/10.33168/JSMS.2024.0108 </div> <div class="padding-3 margin-top-3 ltr justify">Zhao, H., Lyu, F., &amp; Luo, Y. (2022). Research on the Effect of Online Marketing Based on Multimodel Fusion and Artificial Intelligence in the Context of Big Data. <em>Security and Communication Networks</em>, <em>2022</em>. https://doi.org/10.1155/2022/1516543 </div> <div class="padding-3 margin-top-3 ltr justify">Ziakis, C., &amp; Vlachopoulou, M. (2023). Artificial Intelligence in Digital Marketing: Insights from a Comprehensive Review. <em>Information (Switzerland)</em>, <em>14</em>(12). https://doi.org/10.3390/info14120664 </div> <div class="padding-3 margin-top-3 ltr justify"><strong>&nbsp;</strong></div> </div> </div> </div> </div> </div> <!-- /CENTER --> <!-- LEFT --> <div class="col-lg-3 col-md-3 col-sm-4"> <div class="panel panel-default my_panel-default margin-bottom-10"> <div class="panel-body ar_info_pnl" id="ar_info_pnl_cover"> <div id="pnl_cover"> <div class="row" > <div class="col-xs-6 col-md-6 nomargin-bottom"> <a href="javascript:loadModal('International Journal of Supply and Operations Management', './data/ijsom/coversheet/cover_en.jpg')"> <img src="data/ijsom/coversheet/cover_en.jpg" alt="International Journal of Supply and Operations Management" style="width: 100%;"> </a> </div> <div class="col-xs-6 col-md-6 nomargin-bottom"> <h6><br><a href="./?_action=press&amp;issue=-1&amp;_is=Articles in Press">Articles in Press</a>, Accepted Manuscript<br/> Available Online from 14 November 2024</h6> </div> </div> </div> </div> </div> <!-- Download Files --> <div class="panel panel-default my_panel-default margin-bottom-10 panel-lists"> <div class="panel-heading"> <h3 class="panel-title"><a data-toggle="collapse" data-parent="#accordion" href="#ar_info_pnl_fl"><i class="fa fa-files-o"></i> Files</a></h3> </div> <div id="ar_info_pnl_fl" class="panel-collapse collapse in"> <div class="panel-body ar_info_pnl padding-6"> <ul class="list-group list-group-bordered list-group-noicon nomargin"> <li class="list-group-item"><a href="./?_action=xml&amp;article=2948" target="_blank" class="tag_a pdf_link"><i class="fa fa-file-code-o text-orange" ></i> XML</a></li> <li class="list-group-item"><a href="./article_2948_5fbed59dec0dc924be2c5cfc0ebba03f.pdf" target="_blank" class="tag_a pdf_link"><i class="fa fa-file-pdf-o text-red" ></i> PDF 995.31 K</a></li> <!-- Suplement Files --> </ul> </div> </div> </div> <div class="panel panel-default my_panel-default margin-bottom-10"> <div class="panel-heading"> <h3 class="panel-title"><a data-toggle="collapse" data-parent="#accordion" href="#ar_info_pnl_share"><i class="fa fa-share-square-o" aria-hidden="true"></i> Share</a></h3> </div> <div id="ar_info_pnl_share" class="panel-collapse collapse"> <div class="panel-body ar_info_pnl padding-10 text-center"> <a id="share_facebook" href="https://www.facebook.com/sharer.php?u=http://www.ijsom.com/article_2948.html" target="_blank" class="social-icon social-icon-sm social-facebook" data-toggle="tooltip" data-placement="top" title="Facebook"> <i class="icon-facebook"></i> <i class="icon-facebook"></i> </a> <a id="share_linkedin" href="https://www.linkedin.com/shareArticle?mini=true&amp;url=http://www.ijsom.com/article_2948.html" target="_blank" class="social-icon social-icon-sm social-linkedin" data-toggle="tooltip" data-placement="top" title="Linkedin"> <i class="icon-linkedin"></i> <i class="icon-linkedin"></i> </a> <a id="share_mendeley" href="https://www.mendeley.com/import/?url=http://www.ijsom.com/article_2948.html" target="_blank" class="social-icon social-icon-sm social-youtube" data-toggle="tooltip" data-placement="top" title="Mendeley"> <i class="icon-mendeley"></i> <i class="icon-mendeley"></i> </a> <a id="share_refworks" href="https://www.refworks.com/express/ExpressImport.asp?url=http://www.ijsom.com/article_2948.html" target="_blank" class="social-icon social-icon-sm social-disqus" data-toggle="tooltip" data-placement="top" title="Refworks"> <i class="icon-refworks"><span class="path1"></span><span class="path2"></span><span class="path3"></span><span class="path4"></span><span class="path5"></span><span class="path6"></span><span class="path7"></span><span class="path8"></span><span class="path9"></span><span class="path10"></span></i> <i class="icon-refworks"><span class="path1"></span><span class="path2"></span><span class="path3"></span><span class="path4"></span><span class="path5"></span><span class="path6"></span><span class="path7"></span><span class="path8"></span><span class="path9"></span><span class="path10"></span></i> </a> <a id="share_instagram" href="https://www.instagram.com/?url=http://www.ijsom.com/article_2948.html" target="_blank" class="social-icon social-icon-sm social-instagram" data-toggle="tooltip" data-placement="top" title="Instagram"> <i class="icon-instagram"></i> <i class="icon-instagram"></i> </a> <a id="share_twitter" href="https://twitter.com/share?url=http://www.ijsom.com/article_2948.html&amp;text=Targeted and Personalized Online Advertising in the Age of Artificial Intelligence (AI): A Literature Review and Research Agenda" target="_blank" class="social-icon social-icon-sm social-twitter" data-toggle="tooltip" data-placement="top" title="Twitter"> <i class="icon-twitter"></i> <i class="icon-twitter"></i> </a> <a id="share_email" href="javascript:act('email')" class="social-icon social-icon-sm social-email3 " data-toggle="tooltip" data-placement="top" title="Email"> <i class="icon-email3"></i> <i class="icon-email3"></i> </a> <a id="share_print" href="javascript:printDiv('dv_artcl')" class="social-icon social-icon-sm social-print" data-toggle="tooltip" data-placement="top" title="Print"> <i class="icon-print"></i> <i class="icon-print"></i> </a> <a id="share_stumble" href="https://mix.com/mixit?su=submit&url=http://www.ijsom.com/article_2948.html" target="_blank" class="social-icon social-icon-sm social-stumbleupon" data-toggle="tooltip" data-placement="top" title="StumbleUpon"> <i class="icon-stumbleupon"></i> <i class="icon-stumbleupon"></i> </a> <a id="share_acedemia" href="https://www.academia.edu/" target="_blank" class="social-icon social-icon-sm social-academia" data-toggle="tooltip" data-placement="top" title="Academia"> <i class="ai ai-academia"></i> <i class="ai ai-academia"></i> </a> <a id="share_sems" href="https://www.semanticscholar.org/" target="_blank" class="social-icon social-icon-sm social-forrst" data-toggle="tooltip" data-placement="top" title="Semantic scholar"> <i class="ai ai-semantic-scholar"></i> <i class="ai ai-semantic-scholar"></i> </a> <a id="share_reddit" href="https://www.reddit.com/submit?url=http://www.ijsom.com/article_2948.html" target="_blank" class="social-icon social-icon-sm social-dwolla" data-toggle="tooltip" data-placement="top" title="Reddit"> <i class="icon-reddit"></i> <i class="icon-reddit"></i> </a> <a id="share_rg" href="https://www.researchgate.net/" target="_blank" class="social-icon social-icon-sm social-researchgate" data-toggle="tooltip" data-placement="top" title="Research Gate"> <i class="ai ai-researchgate"></i> <i class="ai ai-researchgate"></i> </a> <a id="share_blogger" href="https://www.blogger.com/blog-this.g?u=http://www.ijsom.com/article_2948.html" target="_blank" class="social-icon social-icon-sm social-blogger" data-toggle="tooltip" data-placement="top" title="Blogger"> <i class="icon-blogger"></i> <i class="icon-blogger"></i> </a> <a id="share_pinterest" href="https://pinterest.com/pin/create/bookmarklet/?media=&url=http://www.ijsom.com/article_2948.html" target="_blank" class="social-icon social-icon-sm social-pinterest" data-toggle="tooltip" data-placement="top" title="Pinterest"> <i class="icon-pinterest"></i> <i class="icon-pinterest"></i> </a> <a id="share_digg" href="https://www.digg.com/submit?http://www.ijsom.com/article_2948.html&title=Targeted and Personalized Online Advertising in the Age of Artificial Intelligence (AI): A Literature Review and Research Agenda" target="_blank" class="social-icon social-icon-sm social-digg" data-toggle="tooltip" data-placement="top" title="Digg"> <i class="icon-digg"></i> <i class="icon-digg"></i> </a> <a id="share_delicious" href="https://del.icio.us/post?url=http://www.ijsom.com/article_2948.html" target="_blank" class="social-icon social-icon-sm social-delicious" data-toggle="tooltip" data-placement="top" title="Delicious"> <i class="icon-delicious"></i> <i class="icon-delicious"></i> </a> <a id="share_skype" href="https://web.skype.com/share?url=http://www.ijsom.com/article_2948.html" target="_blank" class="social-icon social-icon-sm social-skype" data-toggle="tooltip" data-placement="top" title="Skype"> <i class="icon-skype"></i> <i class="icon-skype"></i> </a> </div> </div> </div> <!-- Cite This Article --> <div class="panel panel-default my_panel-default margin-bottom-10 panel-lists"> <div class="panel-heading"> <h3 class="panel-title"><a data-toggle="collapse" data-parent="#accordion" href="#ar_info_pnl_cite"><i class=" fa fa-external-link"></i> How to cite</a></h3> </div> <div id="ar_info_pnl_cite" class="panel-collapse collapse "> <div class="panel-body ar_info_pnl"> <ul class="list-group list-group-bordered list-group-noicon" style="display:block !important;max-height:9999px"> <li class="list-group-item ltr"><a class="tag_a" href="./?_action=export&rf=ris&rc=2948">RIS</a></li> <li class="list-group-item ltr"><a class="tag_a" href="./?_action=export&rf=enw&rc=2948">EndNote</a></li> <li class="list-group-item ltr"><a class="tag_a" href="./?_action=export&rf=ris&rc=2948">Mendeley</a></li> <li class="list-group-item ltr"><a class="tag_a" href="./?_action=export&rf=bibtex&rc=2948">BibTeX</a></li> <li class="list-group-item ltr"><a class="tag_a" href="javascript:void(0)" data-toggle="modal" data-target="#cite-apa">APA</a></li> <li class="list-group-item ltr"><a class="tag_a" href="javascript:void(0)" data-toggle="modal" data-target="#cite-mla">MLA</a></li> <li class="list-group-item ltr"><a class="tag_a" href="javascript:void(0)" data-toggle="modal" data-target="#cite-harvard">HARVARD</a></li> <li class="list-group-item ltr"><a class="tag_a" href="javascript:void(0)" data-toggle="modal" data-target="#cite-vancouver">VANCOUVER</a></li> </ul> </div> </div> </div> <!-- Article Statastic --> <div class="panel panel-default my_panel-default panel-lists"> <div class="panel-heading"> <h3 class="panel-title"><a data-toggle="collapse" data-parent="#accordion" href="#ar_info_pnl_st"><i class="fa fa-bar-chart" aria-hidden="true"></i> Statistics</a></h3> </div> <div id="ar_info_pnl_st" class="panel-collapse collapse in"> <div class="panel-body ar_info_pnl"> <ul class="list-group list-group-bordered list-group-noicon" style="display:block !important;max-height:9999px"> <li class="list-group-item"><a class="tag_a">Article View: <i>100</i></a></li> <li class="list-group-item"><a class="tag_a">PDF Download: <i>86</i></a></li> </ul> </div> </div> </div> </div> <!-- /LEFT --> </div> </section> <div id="cite-apa" class="modal fade" tabindex="-1" role="dialog" aria-labelledby="myModalLabel" aria-hidden="true"> <div class="modal-dialog"> <div class="modal-content"> <!-- Modal Header --> <div class="modal-header"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> <h4 class="modal-title" id="myModalLabel">APA</h4> </div> <!-- Modal Body --> <div class="modal-body"> <p>reeyazati, A., & Samizadeh, R. (2024). Targeted and Personalized Online Advertising in the Age of Artificial Intelligence (AI): A Literature Review and Research Agenda. <em>International Journal of Supply and Operations Management</em>, (), -. doi: 10.22034/ijsom.2024.110537.3205</p> </div> </div> </div> </div> <div id="cite-mla" class="modal fade" tabindex="-1" role="dialog" aria-labelledby="myModalLabel" aria-hidden="true"> <div class="modal-dialog"> <div class="modal-content"> <!-- Modal Header --> <div class="modal-header"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> <h4 class="modal-title" id="myModalLabel">MLA</h4> </div> <!-- Modal Body --> <div class="modal-body"> <p>ashraf reeyazati; Reza Samizadeh. "Targeted and Personalized Online Advertising in the Age of Artificial Intelligence (AI): A Literature Review and Research Agenda". <em>International Journal of Supply and Operations Management</em>, , , 2024, -. doi: 10.22034/ijsom.2024.110537.3205</p> </div> </div> </div> </div> <div id="cite-harvard" class="modal fade" tabindex="-1" role="dialog" aria-labelledby="myModalLabel" aria-hidden="true"> <div class="modal-dialog"> <div class="modal-content"> <!-- Modal Header --> <div class="modal-header"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> <h4 class="modal-title" id="myModalLabel">HARVARD</h4> </div> <!-- Modal Body --> <div class="modal-body"> <p>reeyazati, A., Samizadeh, R. (2024). 'Targeted and Personalized Online Advertising in the Age of Artificial Intelligence (AI): A Literature Review and Research Agenda', <em>International Journal of Supply and Operations Management</em>, (), pp. -. doi: 10.22034/ijsom.2024.110537.3205</p> </div> </div> </div> </div> <div id="cite-vancouver" class="modal fade" tabindex="-1" role="dialog" aria-labelledby="myModalLabel" aria-hidden="true"> <div class="modal-dialog"> <div class="modal-content"> <!-- Modal Header --> <div class="modal-header"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> <h4 class="modal-title" id="myModalLabel">VANCOUVER</h4> </div> <!-- Modal Body --> <div class="modal-body"> <p>reeyazati, A., Samizadeh, R. Targeted and Personalized Online Advertising in the Age of Artificial Intelligence (AI): A Literature Review and Research Agenda. <em>International Journal of Supply and Operations Management</em>, 2024; (): -. doi: 10.22034/ijsom.2024.110537.3205</p> </div> </div> </div> </div> </div> </div> <!-- /MAIN CONTENT --> <!-- Subscribe --> <section class="alternate padding-xxs"> </section> <!-- /Subscribe --> <!-- FOOTER --> <div class="container"> <footer id="footer"> <div class="scrollup" id="scroll" href="#"><span></span></div> <div class="row"> <div class="col-md-2"> <!-- Links --> <h4 class="">Explore Journal</h4> <ul class="footer-links list-unstyled"> <li id="fli_home"><a href="./">Home</a></li> <li id="fli_about"><a href="./journal/about">About Journal</a></li> <li id="fli_Edb"><a href="./journal/editorial.board">Editorial Board</a></li> <li id="fli_submit"><a href="./author">Submit Manuscript</a></li> <li id="fli_contactus"><a href="./journal/contact.us">Contact Us</a></li> <li id="fli_glossary"><a href="./journal/glossary">Glossary</a></li> <li id="fli_order_hrdj"><a href="./journal/subscription.form">Hard Copy Subscription</a></li> <li id="fli_sitemap"><a href="./sitemap.xml?usr">Sitemap</a></li> </ul> <!-- /Links --> </div> <div class="col-md-3"> <!-- Latest News --> <h4 class="">Latest News</h4> <ul class="footer-posts list-unstyled"> <li> <a href="./news?newsCode=173">SD of ISC: Sustainable Development of Intelligent Supply Chains based on Trends and Future Directions: Application of Novel Solution Techniques</a> <small class="ltr">2023-03-05</small> </li> </ul> <!-- /Latest News --> </div> <div class="col-md-3"> <!-- Footer Note --> <div><p><a title="Linkedin" href="http://www.linkedin.com/company/ijsom?trk=eml-cp_mktg-btn-welcome-20120607%2F"><img src="images/linkedin.jpg" alt="linkedin" /></a></p></div> <!-- /Footer Note --> </div> <div class="col-md-4"> <!-- Newsletter Form --> <h4 class="">Newsletter Subscription</h4> <p>Subscribe to the journal newsletter and receive the latest news and updates</p> <form class="validate" action="" method="post" data-success="Subscription saved successfully." data-toastr-position="bottom-right"> <input type="hidden" name="_token" value="442c01bac5a6457dc822fbeb21ea5ead2bcbd31a70f8ab4e"/> <div class="input-group"> <span class="input-group-addon"><i class="fa fa-envelope"></i></span> <input type="email" id="email" name="email" required="required" class="form-control required sbs_email" placeholder="Enter your Email" oninvalid="this.setCustomValidity('Enter a valid email address.')" oninput="this.setCustomValidity('')"> <span class="input-group-btn"> <button class="btn btn-primary mybtn" type="submit">Subscribe</button> </span> </div> </form> <!-- /Newsletter Form --> <!-- Social Icons --> <div class="margin-top-20"> <a class="noborder" href="" target="_blank" class="social-icon social-icon-border social-facebook pull-left block" data-toggle="tooltip" data-placement="top" title="Facebook"> <i class="fa fa-facebook-square" aria-hidden="true"></i> </a> <a class="noborder" href="" target="_blank" class="social-icon social-icon-border social-facebook pull-left block" data-toggle="tooltip" data-placement="top" title="Twitter"> <i class="fa fa-twitter-square" aria-hidden="true"></i> </a> <a class="noborder" href="" target="_blank" class="social-icon social-icon-border social-facebook pull-left block" data-toggle="tooltip" data-placement="top" title="Linkedin"> <i class="fa fa-linkedin-square" aria-hidden="true"></i> </a> <a class="noborder" href="./ju.rss" class="social-icon social-icon-border social-rss pull-left block" data-toggle="tooltip" data-placement="top" title="Rss"><i class="fa fa-rss-square" aria-hidden="true"></i></a> </div> </div> </div> <div class="copyright" style="position: relative"> <ul class="nomargin list-inline mobile-block"> <li>&copy; Journal Management System. <span id='sp_crt'>Powered by <a target='_blank' href='https://www.sinaweb.net/'>Sinaweb</a></span></li> </ul> </div> </footer> </div> <!-- /FOOTER --> </div> <!-- /wrapper --> <!-- SCROLL TO TOP --> <a href="#" id="toTop_old"></a> <!-- PRELOADER --> <div id="preloader"> <div class="inner"> <span class="loader"></span> </div> </div><!-- /PRELOADER --> <!-- JAVASCRIPT FILES --> <script type="text/javascript">var plugin_path = './themes/base/front/assets/plugins/';</script> <script type="text/javascript" src="./themes/base/front/assets/js/scripts.js?v=0.02"></script> <!-- user defined scripts--> <!-- Extra Script Scripts --> <script type="text/javascript"> $('ul.nav li.dropdown').hover(function() { if (window.matchMedia('(max-width: 767px)').matches) return; $(this).find('.dropdown-menu').stop(true, true).delay(200).fadeIn(500); }, function() { if (window.matchMedia('(max-width: 767px)').matches) return; $(this).find('.dropdown-menu').stop(true, true).delay(200).fadeOut(500); }); var btn = $('#toTop_old'); $(window).scroll(function() { if ($(window).scrollTop() > 300) { btn.addClass('show'); } else { btn.removeClass('show'); } }); btn.on('click', function(e) { e.preventDefault(); $('html, body').animate({scrollTop:0}, '300'); }); window.cookieconsent.initialise({ "palette": { "popup": { "background": "#222" }, "button": { "background": "#f1d600" } }, "content": { "message": "This website uses cookies to ensure you get the best experience on our website.", "dismiss": "Got it!", "link": "" } }); </script> </body> </html><div id="actn_modal" class="modal fade" tabindex="-1"> <div id="" class="modal-dialog modal-dialog madal-aw"> <div class="modal-content"> <div class="modal-header"> <button type="button" class="close pull-right" data-dismiss="modal" aria-hidden="true" href="#lost">&times;</button> <h5 class="modal-title"></h5> </div> <div class="modal-body"></div> <div class="modal-footer"></div> </div> </div> </div>

Pages: 1 2 3 4 5 6 7 8 9 10