CINXE.COM

Search results for: activity recognition

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: activity recognition</title> <meta name="description" content="Search results for: activity recognition"> <meta name="keywords" content="activity recognition"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="activity recognition" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="activity recognition"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 7789</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: activity recognition</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7789</span> A Contribution to Human Activities Recognition Using Expert System Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malika%20Yaici">Malika Yaici</a>, <a href="https://publications.waset.org/abstracts/search?q=Soraya%20Aloui"> Soraya Aloui</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Semchaoui"> Sara Semchaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with human activity recognition from sensor data. It is an active research area, and the main objective is to obtain a high recognition rate. In this work, a recognition system based on expert systems is proposed; the recognition is performed using the objects, object states, and gestures and taking into account the context (the location of the objects and of the person performing the activity, the duration of the elementary actions and the activity). The system recognizes complex activities after decomposing them into simple, easy-to-recognize activities. The proposed method can be applied to any type of activity. The simulation results show the robustness of our system and its speed of decision. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=human%20activity%20recognition" title="human activity recognition">human activity recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=ubiquitous%20computing" title=" ubiquitous computing"> ubiquitous computing</a>, <a href="https://publications.waset.org/abstracts/search?q=context-awareness" title=" context-awareness"> context-awareness</a>, <a href="https://publications.waset.org/abstracts/search?q=expert%20system" title=" expert system"> expert system</a> </p> <a href="https://publications.waset.org/abstracts/171721/a-contribution-to-human-activities-recognition-using-expert-system-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171721.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7788</span> Human Activities Recognition Based on Expert System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malika%20Yaici">Malika Yaici</a>, <a href="https://publications.waset.org/abstracts/search?q=Soraya%20Aloui"> Soraya Aloui</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Semchaoui"> Sara Semchaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recognition of human activities from sensor data is an active research area, and the main objective is to obtain a high recognition rate. In this work, we propose a recognition system based on expert systems. The proposed system makes the recognition based on the objects, object states, and gestures, taking into account the context (the location of the objects and of the person performing the activity, the duration of the elementary actions, and the activity). This work focuses on complex activities which are decomposed into simple easy to recognize activities. The proposed method can be applied to any type of activity. The simulation results show the robustness of our system and its speed of decision. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=human%20activity%20recognition" title="human activity recognition">human activity recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=ubiquitous%20computing" title=" ubiquitous computing"> ubiquitous computing</a>, <a href="https://publications.waset.org/abstracts/search?q=context-awareness" title=" context-awareness"> context-awareness</a>, <a href="https://publications.waset.org/abstracts/search?q=expert%20system" title=" expert system"> expert system</a> </p> <a href="https://publications.waset.org/abstracts/151943/human-activities-recognition-based-on-expert-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151943.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7787</span> A Human Activity Recognition System Based on Sensory Data Related to Object Usage </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Abdullah">M. Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Al-Wadud"> Al-Wadud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sensor-based activity recognition systems usually accounts which sensors have been activated to perform an activity. The system then combines the conditional probabilities of those sensors to represent different activities and takes the decision based on that. However, the information about the sensors which are not activated may also be of great help in deciding which activity has been performed. This paper proposes an approach where the sensory data related to both usage and non-usage of objects are utilized to make the classification of activities. Experimental results also show the promising performance of the proposed method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Na%C3%AFve%20Bayesian" title="Naïve Bayesian">Naïve Bayesian</a>, <a href="https://publications.waset.org/abstracts/search?q=based%20classification" title=" based classification"> based classification</a>, <a href="https://publications.waset.org/abstracts/search?q=activity%20recognition" title=" activity recognition"> activity recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor%20data" title=" sensor data"> sensor data</a>, <a href="https://publications.waset.org/abstracts/search?q=object-usage%20model" title=" object-usage model"> object-usage model</a> </p> <a href="https://publications.waset.org/abstracts/4112/a-human-activity-recognition-system-based-on-sensory-data-related-to-object-usage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4112.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7786</span> Smartphone-Based Human Activity Recognition by Machine Learning Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yanting%20Cao">Yanting Cao</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazumitsu%20Nawata"> Kazumitsu Nawata</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As smartphones upgrading, their software and hardware are getting smarter, so the smartphone-based human activity recognition will be described as more refined, complex, and detailed. In this context, we analyzed a set of experimental data obtained by observing and measuring 30 volunteers with six activities of daily living (ADL). Due to the large sample size, especially a 561-feature vector with time and frequency domain variables, cleaning these intractable features and training a proper model becomes extremely challenging. After a series of feature selection and parameters adjustment, a well-performed SVM classifier has been trained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smart%20sensors" title="smart sensors">smart sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20activity%20recognition" title=" human activity recognition"> human activity recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title=" artificial intelligence"> artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=SVM" title=" SVM"> SVM</a> </p> <a href="https://publications.waset.org/abstracts/142359/smartphone-based-human-activity-recognition-by-machine-learning-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142359.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7785</span> Improving Activity Recognition Classification of Repetitious Beginner Swimming Using a 2-Step Peak/Valley Segmentation Method with Smoothing and Resampling for Machine Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Larry%20Powell">Larry Powell</a>, <a href="https://publications.waset.org/abstracts/search?q=Seth%20Polsley"> Seth Polsley</a>, <a href="https://publications.waset.org/abstracts/search?q=Drew%20Casey"> Drew Casey</a>, <a href="https://publications.waset.org/abstracts/search?q=Tracy%20Hammond"> Tracy Hammond</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Human activity recognition (HAR) systems have shown positive performance when recognizing repetitive activities like walking, running, and sleeping. Water-based activities are a reasonably new area for activity recognition. However, water-based activity recognition has largely focused on supporting the elite and competitive swimming population, which already has amazing coordination and proper form. Beginner swimmers are not perfect, and activity recognition needs to support the individual motions to help beginners. Activity recognition algorithms are traditionally built around short segments of timed sensor data. Using a time window input can cause performance issues in the machine learning model. The window’s size can be too small or large, requiring careful tuning and precise data segmentation. In this work, we present a method that uses a time window as the initial segmentation, then separates the data based on the change in the sensor value. Our system uses a multi-phase segmentation method that pulls all peaks and valleys for each axis of an accelerometer placed on the swimmer’s lower back. This results in high recognition performance using leave-one-subject-out validation on our study with 20 beginner swimmers, with our model optimized from our final dataset resulting in an F-Score of 0.95. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=time%20window" title="time window">time window</a>, <a href="https://publications.waset.org/abstracts/search?q=peak%2Fvalley%20segmentation" title=" peak/valley segmentation"> peak/valley segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20extraction" title=" feature extraction"> feature extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=beginner%20swimming" title=" beginner swimming"> beginner swimming</a>, <a href="https://publications.waset.org/abstracts/search?q=activity%20recognition" title=" activity recognition"> activity recognition</a> </p> <a href="https://publications.waset.org/abstracts/156773/improving-activity-recognition-classification-of-repetitious-beginner-swimming-using-a-2-step-peakvalley-segmentation-method-with-smoothing-and-resampling-for-machine-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156773.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7784</span> On the Network Packet Loss Tolerance of SVM Based Activity Recognition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gamze%20Uslu">Gamze Uslu</a>, <a href="https://publications.waset.org/abstracts/search?q=Sebnem%20Baydere"> Sebnem Baydere</a>, <a href="https://publications.waset.org/abstracts/search?q=Alper%20K.%20Demir"> Alper K. Demir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, data loss tolerance of Support Vector Machines (SVM) based activity recognition model and multi activity classification performance when data are received over a lossy wireless sensor network is examined. Initially, the classification algorithm we use is evaluated in terms of resilience to random data loss with 3D acceleration sensor data for sitting, lying, walking and standing actions. The results show that the proposed classification method can recognize these activities successfully despite high data loss. Secondly, the effect of differentiated quality of service performance on activity recognition success is measured with activity data acquired from a multi hop wireless sensor network, which introduces high data loss. The effect of number of nodes on the reliability and multi activity classification success is demonstrated in simulation environment. To the best of our knowledge, the effect of data loss in a wireless sensor network on activity detection success rate of an SVM based classification algorithm has not been studied before. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activity%20recognition" title="activity recognition">activity recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machines" title=" support vector machines"> support vector machines</a>, <a href="https://publications.waset.org/abstracts/search?q=acceleration%20sensor" title=" acceleration sensor"> acceleration sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20sensor%20networks" title=" wireless sensor networks"> wireless sensor networks</a>, <a href="https://publications.waset.org/abstracts/search?q=packet%20loss" title=" packet loss"> packet loss</a> </p> <a href="https://publications.waset.org/abstracts/14201/on-the-network-packet-loss-tolerance-of-svm-based-activity-recognition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14201.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7783</span> Lightweight Hybrid Convolutional and Recurrent Neural Networks for Wearable Sensor Based Human Activity Recognition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sonia%20Perez-Gamboa">Sonia Perez-Gamboa</a>, <a href="https://publications.waset.org/abstracts/search?q=Qingquan%20Sun"> Qingquan Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan%20Zhang"> Yan Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Non-intrusive sensor-based human activity recognition (HAR) is utilized in a spectrum of applications, including fitness tracking devices, gaming, health care monitoring, and smartphone applications. Deep learning models such as convolutional neural networks (CNNs) and long short term memory (LSTM) recurrent neural networks (RNNs) provide a way to achieve HAR accurately and effectively. In this paper, we design a multi-layer hybrid architecture with CNN and LSTM and explore a variety of multi-layer combinations. Based on the exploration, we present a lightweight, hybrid, and multi-layer model, which can improve the recognition performance by integrating local features and scale-invariant with dependencies of activities. The experimental results demonstrate the efficacy of the proposed model, which can achieve a 94.7% activity recognition rate on a benchmark human activity dataset. This model outperforms traditional machine learning and other deep learning methods. Additionally, our implementation achieves a balance between recognition rate and training time consumption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title="deep learning">deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=LSTM" title=" LSTM"> LSTM</a>, <a href="https://publications.waset.org/abstracts/search?q=CNN" title=" CNN"> CNN</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20activity%20recognition" title=" human activity recognition"> human activity recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=inertial%20sensor" title=" inertial sensor"> inertial sensor</a> </p> <a href="https://publications.waset.org/abstracts/131782/lightweight-hybrid-convolutional-and-recurrent-neural-networks-for-wearable-sensor-based-human-activity-recognition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131782.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7782</span> Real Time Multi Person Action Recognition Using Pose Estimates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aishrith%20Rao">Aishrith Rao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Human activity recognition is an important aspect of video analytics, and many approaches have been recommended to enable action recognition. In this approach, the model is used to identify the action of the multiple people in the frame and classify them accordingly. A few approaches use RNNs and 3D CNNs, which are computationally expensive and cannot be trained with the small datasets which are currently available. Multi-person action recognition has been performed in order to understand the positions and action of people present in the video frame. The size of the video frame can be adjusted as a hyper-parameter depending on the hardware resources available. OpenPose has been used to calculate pose estimate using CNN to produce heap-maps, one of which provides skeleton features, which are basically joint features. The features are then extracted, and a classification algorithm can be applied to classify the action. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=human%20activity%20recognition" title="human activity recognition">human activity recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20vision" title=" computer vision"> computer vision</a>, <a href="https://publications.waset.org/abstracts/search?q=pose%20estimates" title=" pose estimates"> pose estimates</a>, <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20networks" title=" convolutional neural networks"> convolutional neural networks</a> </p> <a href="https://publications.waset.org/abstracts/127872/real-time-multi-person-action-recognition-using-pose-estimates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127872.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7781</span> Investigating Activity Recognition Using 9-Axis Sensors and Filters in Wearable Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jun%20Gil%20Ahn">Jun Gil Ahn</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong%20Kang%20Park"> Jong Kang Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong%20Tae%20Kim"> Jong Tae Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we analyze major components of activity recognition (AR) in wearable device with 9-axis sensors and sensor fusion filters. 9-axis sensors commonly include 3-axis accelerometer, 3-axis gyroscope and 3-axis magnetometer. We chose sensor fusion filters as Kalman filter and Direction Cosine Matrix (DCM) filter. We also construct sensor fusion data from each activity sensor data and perform classification by accuracy of AR using Na&iuml;ve Bayes and SVM. According to the classification results, we observed that the DCM filter and the specific combination of the sensing axes are more effective for AR in wearable devices while classifying walking, running, ascending and descending. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accelerometer" title="accelerometer">accelerometer</a>, <a href="https://publications.waset.org/abstracts/search?q=activity%20recognition" title=" activity recognition"> activity recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=directiona%20cosine%20matrix%20filter" title=" directiona cosine matrix filter"> directiona cosine matrix filter</a>, <a href="https://publications.waset.org/abstracts/search?q=gyroscope" title=" gyroscope"> gyroscope</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalman%20filter" title=" Kalman filter"> Kalman filter</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetometer" title=" magnetometer"> magnetometer</a> </p> <a href="https://publications.waset.org/abstracts/56198/investigating-activity-recognition-using-9-axis-sensors-and-filters-in-wearable-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56198.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7780</span> Fine Grained Action Recognition of Skateboarding Tricks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Frederik%20Calsius">Frederik Calsius</a>, <a href="https://publications.waset.org/abstracts/search?q=Mirela%20Popa"> Mirela Popa</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexia%20Briassouli"> Alexia Briassouli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the field of machine learning, it is common practice to use benchmark datasets to prove the working of a method. The domain of action recognition in videos often uses datasets like Kinet-ics, Something-Something, UCF-101 and HMDB-51 to report results. Considering the properties of the datasets, there are no datasets that focus solely on very short clips (2 to 3 seconds), and on highly-similar fine-grained actions within one specific domain. This paper researches how current state-of-the-art action recognition methods perform on a dataset that consists of highly similar, fine-grained actions. To do so, a dataset of skateboarding tricks was created. The performed analysis highlights both benefits and limitations of state-of-the-art methods, while proposing future research directions in the activity recognition domain. The conducted research shows that the best results are obtained by fusing RGB data with OpenPose data for the Temporal Shift Module. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activity%20recognition" title="activity recognition">activity recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=fused%20deep%20representations" title=" fused deep representations"> fused deep representations</a>, <a href="https://publications.waset.org/abstracts/search?q=fine-grained%20dataset" title=" fine-grained dataset"> fine-grained dataset</a>, <a href="https://publications.waset.org/abstracts/search?q=temporal%20modeling" title=" temporal modeling"> temporal modeling</a> </p> <a href="https://publications.waset.org/abstracts/138954/fine-grained-action-recognition-of-skateboarding-tricks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138954.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">231</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7779</span> Environmentally Adaptive Acoustic Echo Suppression for Barge-in Speech Recognition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jong%20Han%20Joo">Jong Han Joo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jung%20Hoon%20Lee"> Jung Hoon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%20Sun%20Kim"> Young Sun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae%20Young%20Kang"> Jae Young Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Seung%20Ho%20Choi"> Seung Ho Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we propose a novel technique for acoustic echo suppression (AES) during speech recognition under barge-in conditions. Conventional AES methods based on spectral subtraction apply fixed weights to the estimated echo path transfer function (EPTF) at the current signal segment and to the EPTF estimated until the previous time interval. We propose a new approach that adaptively updates weight parameters in response to abrupt changes in the acoustic environment due to background noises or double-talk. Furthermore, we devised a voice activity detector and an initial time-delay estimator for barge-in speech recognition in communication networks. The initial time delay is estimated using log-spectral distance measure, as well as cross-correlation coefficients. The experimental results show that the developed techniques can be successfully applied in barge-in speech recognition systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20echo%20suppression" title="acoustic echo suppression">acoustic echo suppression</a>, <a href="https://publications.waset.org/abstracts/search?q=barge-in" title=" barge-in"> barge-in</a>, <a href="https://publications.waset.org/abstracts/search?q=speech%20recognition" title=" speech recognition"> speech recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=echo%20path%20transfer%20function" title=" echo path transfer function"> echo path transfer function</a>, <a href="https://publications.waset.org/abstracts/search?q=initial%20delay%20estimator" title=" initial delay estimator"> initial delay estimator</a>, <a href="https://publications.waset.org/abstracts/search?q=voice%20activity%20detector" title=" voice activity detector"> voice activity detector</a> </p> <a href="https://publications.waset.org/abstracts/17151/environmentally-adaptive-acoustic-echo-suppression-for-barge-in-speech-recognition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17151.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7778</span> Intelligent Campus Monitoring: YOLOv8-Based High-Accuracy Activity Recognition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Degale%20Desta">A. Degale Desta</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamirat%20Kebamo"> Tamirat Kebamo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Recent advances in computer vision and pattern recognition have significantly improved activity recognition through video analysis, particularly with the application of Deep Convolutional Neural Networks (CNNs). One-stage detectors now enable efficient video-based recognition by simultaneously predicting object categories and locations. Such advancements are highly relevant in educational settings where CCTV surveillance could automatically monitor academic activities, enhancing security and classroom management. However, current datasets and recognition systems lack the specific focus on campus environments necessary for practical application in these settings.Objective: This study aims to address this gap by developing a dataset and testing an automated activity recognition system specifically tailored for educational campuses. The EthioCAD dataset was created to capture various classroom activities and teacher-student interactions, facilitating reliable recognition of academic activities using deep learning models. Method: EthioCAD, a novel video-based dataset, was created with a design science research approach to encompass teacher-student interactions across three domains and 18 distinct classroom activities. Using the Roboflow AI framework, the data was processed, with 4.224 KB of frames and 33.485 MB of images managed for frame extraction, labeling, and organization. The Ultralytics YOLOv8 model was then implemented within Google Colab to evaluate the dataset’s effectiveness, achieving high mean Average Precision (mAP) scores. Results: The YOLOv8 model demonstrated robust activity recognition within campus-like settings, achieving an mAP50 of 90.2% and an mAP50-95 of 78.6%. These results highlight the potential of EthioCAD, combined with YOLOv8, to provide reliable detection and classification of classroom activities, supporting automated surveillance needs on educational campuses. Discussion: The high performance of YOLOv8 on the EthioCAD dataset suggests that automated activity recognition for surveillance is feasible within educational environments. This system addresses current limitations in campus-specific data and tools, offering a tailored solution for academic monitoring that could enhance the effectiveness of CCTV systems in these settings. Conclusion: The EthioCAD dataset, alongside the YOLOv8 model, provides a promising framework for automated campus activity recognition. This approach lays the groundwork for future advancements in CCTV-based educational surveillance systems, enabling more refined and reliable monitoring of classroom activities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20CNN" title="deep CNN">deep CNN</a>, <a href="https://publications.waset.org/abstracts/search?q=EthioCAD" title=" EthioCAD"> EthioCAD</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=YOLOv8" title=" YOLOv8"> YOLOv8</a>, <a href="https://publications.waset.org/abstracts/search?q=activity%20recognition" title=" activity recognition"> activity recognition</a> </p> <a href="https://publications.waset.org/abstracts/194137/intelligent-campus-monitoring-yolov8-based-high-accuracy-activity-recognition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194137.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">10</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7777</span> Handwriting Recognition of Gurmukhi Script: A Survey of Online and Offline Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ravneet%20Kaur">Ravneet Kaur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Character recognition is a very interesting area of pattern recognition. From past few decades, an intensive research on character recognition for Roman, Chinese, and Japanese and Indian scripts have been reported. In this paper, a review of Handwritten Character Recognition work on Indian Script Gurmukhi is being highlighted. Most of the published papers were summarized, various methodologies were analysed and their results are reported. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gurmukhi%20character%20recognition" title="Gurmukhi character recognition">Gurmukhi character recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=online" title=" online"> online</a>, <a href="https://publications.waset.org/abstracts/search?q=offline" title=" offline"> offline</a>, <a href="https://publications.waset.org/abstracts/search?q=HCR%20survey" title=" HCR survey"> HCR survey</a> </p> <a href="https://publications.waset.org/abstracts/46337/handwriting-recognition-of-gurmukhi-script-a-survey-of-online-and-offline-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46337.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7776</span> OCR/ICR Text Recognition Using ABBYY FineReader as an Example Text</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Bagirzade">A. R. Bagirzade</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Sh.%20Najafova"> A. Sh. Najafova</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Yessirkepova"> S. M. Yessirkepova</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20S.%20Albert"> E. S. Albert</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article describes a text recognition method based on Optical Character Recognition (OCR). The features of the OCR method were examined using the ABBYY FineReader program. It describes automatic text recognition in images. OCR is necessary because optical input devices can only transmit raster graphics as a result. Text recognition describes the task of recognizing letters shown as such, to identify and assign them an assigned numerical value in accordance with the usual text encoding (ASCII, Unicode). The peculiarity of this study conducted by the authors using the example of the ABBYY FineReader, was confirmed and shown in practice, the improvement of digital text recognition platforms developed by Electronic Publication. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ABBYY%20FineReader%20system" title="ABBYY FineReader system">ABBYY FineReader system</a>, <a href="https://publications.waset.org/abstracts/search?q=algorithm%20symbol%20recognition" title=" algorithm symbol recognition"> algorithm symbol recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=OCR%2FICR%20techniques" title=" OCR/ICR techniques"> OCR/ICR techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=recognition%20technologies" title=" recognition technologies"> recognition technologies</a> </p> <a href="https://publications.waset.org/abstracts/130255/ocricr-text-recognition-using-abbyy-finereader-as-an-example-text" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130255.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7775</span> An Improved OCR Algorithm on Appearance Recognition of Electronic Components Based on Self-adaptation of Multifont Template</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhu-Qing%20Jia">Zhu-Qing Jia</a>, <a href="https://publications.waset.org/abstracts/search?q=Tao%20Lin"> Tao Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Tong%20Zhou"> Tong Zhou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The recognition method of Optical Character Recognition has been expensively utilized, while it is rare to be employed specifically in recognition of electronic components. This paper suggests a high-effective algorithm on appearance identification of integrated circuit components based on the existing methods of character recognition, and analyze the pros and cons. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optical%20character%20recognition" title="optical character recognition">optical character recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20page%20identification" title=" fuzzy page identification"> fuzzy page identification</a>, <a href="https://publications.waset.org/abstracts/search?q=mutual%20correlation%20matrix" title=" mutual correlation matrix"> mutual correlation matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=confidence%20self-adaptation" title=" confidence self-adaptation"> confidence self-adaptation</a> </p> <a href="https://publications.waset.org/abstracts/14322/an-improved-ocr-algorithm-on-appearance-recognition-of-electronic-components-based-on-self-adaptation-of-multifont-template" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14322.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">540</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7774</span> Facial Recognition on the Basis of Facial Fragments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tetyana%20Baydyk">Tetyana Baydyk</a>, <a href="https://publications.waset.org/abstracts/search?q=Ernst%20Kussul"> Ernst Kussul</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandra%20Bonilla%20Meza"> Sandra Bonilla Meza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are many articles that attempt to establish the role of different facial fragments in face recognition. Various approaches are used to estimate this role. Frequently, authors calculate the entropy corresponding to the fragment. This approach can only give approximate estimation. In this paper, we propose to use a more direct measure of the importance of different fragments for face recognition. We propose to select a recognition method and a face database and experimentally investigate the recognition rate using different fragments of faces. We present two such experiments in the paper. We selected the PCNC neural classifier as a method for face recognition and parts of the LFW (Labeled Faces in the Wild<em>) </em>face database as training and testing sets. The recognition rate of the best experiment is comparable with the recognition rate obtained using the whole face. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=face%20recognition" title="face recognition">face recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=labeled%20faces%20in%20the%20wild%20%28LFW%29%20database" title=" labeled faces in the wild (LFW) database"> labeled faces in the wild (LFW) database</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20local%20descriptor%20%28RLD%29" title=" random local descriptor (RLD)"> random local descriptor (RLD)</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20features" title=" random features"> random features</a> </p> <a href="https://publications.waset.org/abstracts/50117/facial-recognition-on-the-basis-of-facial-fragments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50117.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7773</span> Multimodal Deep Learning for Human Activity Recognition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ons%20Slimene">Ons Slimene</a>, <a href="https://publications.waset.org/abstracts/search?q=Aroua%20Taamallah"> Aroua Taamallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Maha%20Khemaja"> Maha Khemaja</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, human activity recognition (HAR) has been a key area of research due to its diverse applications. It has garnered increasing attention in the field of computer vision. HAR plays an important role in people’s daily lives as it has the ability to learn advanced knowledge about human activities from data. In HAR, activities are usually represented by exploiting different types of sensors, such as embedded sensors or visual sensors. However, these sensors have limitations, such as local obstacles, image-related obstacles, sensor unreliability, and consumer concerns. Recently, several deep learning-based approaches have been proposed for HAR and these approaches are classified into two categories based on the type of data used: vision-based approaches and sensor-based approaches. This research paper highlights the importance of multimodal data fusion from skeleton data obtained from videos and data generated by embedded sensors using deep neural networks for achieving HAR. We propose a deep multimodal fusion network based on a twostream architecture. These two streams use the Convolutional Neural Network combined with the Bidirectional LSTM (CNN BILSTM) to process skeleton data and data generated by embedded sensors and the fusion at the feature level is considered. The proposed model was evaluated on a public OPPORTUNITY++ dataset and produced a accuracy of 96.77%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=human%20activity%20recognition" title="human activity recognition">human activity recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=action%20recognition" title=" action recognition"> action recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=sensors" title=" sensors"> sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=vision" title=" vision"> vision</a>, <a href="https://publications.waset.org/abstracts/search?q=human-centric%20sensing" title=" human-centric sensing"> human-centric sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=context-awareness" title=" context-awareness"> context-awareness</a> </p> <a href="https://publications.waset.org/abstracts/162633/multimodal-deep-learning-for-human-activity-recognition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162633.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7772</span> Fitness Action Recognition Based on MediaPipe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zixuan%20Xu">Zixuan Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yichun%20Lou"> Yichun Lou</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Song"> Yang Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Zihuai%20Lin"> Zihuai Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> MediaPipe is an open-source machine learning computer vision framework that can be ported into a multi-platform environment, which makes it easier to use it to recognize the human activity. Based on this framework, many human recognition systems have been created, but the fundamental issue is the recognition of human behavior and posture. In this paper, two methods are proposed to recognize human gestures based on MediaPipe, the first one uses the Adaptive Boosting algorithm to recognize a series of fitness gestures, and the second one uses the Fast Dynamic Time Warping algorithm to recognize 413 continuous fitness actions. These two methods are also applicable to any human posture movement recognition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computer%20vision" title="computer vision">computer vision</a>, <a href="https://publications.waset.org/abstracts/search?q=MediaPipe" title=" MediaPipe"> MediaPipe</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20boosting" title=" adaptive boosting"> adaptive boosting</a>, <a href="https://publications.waset.org/abstracts/search?q=fast%20dynamic%20time%20warping" title=" fast dynamic time warping"> fast dynamic time warping</a> </p> <a href="https://publications.waset.org/abstracts/160758/fitness-action-recognition-based-on-mediapipe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160758.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7771</span> DBN-Based Face Recognition System Using Light Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bing%20Gu">Bing Gu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Abstract—Most of Conventional facial recognition systems are based on image features, such as LBP, SIFT. Recently some DBN-based 2D facial recognition systems have been proposed. However, we find there are few DBN-based 3D facial recognition system and relative researches. 3D facial images include all the individual biometric information. We can use these information to build more accurate features, So we present our DBN-based face recognition system using Light Field. We can see Light Field as another presentation of 3D image, and Light Field Camera show us a way to receive a Light Field. We use the commercially available Light Field Camera to act as the collector of our face recognition system, and the system receive a state-of-art performance as convenient as conventional 2D face recognition system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DBN" title="DBN">DBN</a>, <a href="https://publications.waset.org/abstracts/search?q=face%20recognition" title=" face recognition"> face recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=light%20field" title=" light field"> light field</a>, <a href="https://publications.waset.org/abstracts/search?q=Lytro" title=" Lytro"> Lytro</a> </p> <a href="https://publications.waset.org/abstracts/10821/dbn-based-face-recognition-system-using-light-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10821.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">464</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7770</span> The Impact of Trait and Mathematical Anxiety on Oscillatory Brain Activity during Lexical and Numerical Error-Recognition Tasks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexander%20N.%20Savostyanov">Alexander N. Savostyanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Tatyana%20A.%20Dolgorukova"> Tatyana A. Dolgorukova</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20A.%20Esipenko"> Elena A. Esipenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Mikhail%20S.%20Zaleshin"> Mikhail S. Zaleshin</a>, <a href="https://publications.waset.org/abstracts/search?q=Margherita%20Malanchini"> Margherita Malanchini</a>, <a href="https://publications.waset.org/abstracts/search?q=Anna%20V.%20Budakova"> Anna V. Budakova</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20E.%20Saprygin"> Alexander E. Saprygin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yulia%20V.%20Kovas"> Yulia V. Kovas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study compared spectral-power indexes and cortical topography of brain activity in a sample characterized by different levels of trait and mathematical anxiety. 52 healthy Russian-speakers (age 17-32; 30 males) participated in the study. Participants solved an error recognition task under 3 conditions: A lexical condition (simple sentences in Russian), and two numerical conditions (simple arithmetic and complicated algebraic problems). Trait and mathematical anxiety were measured using self-repot questionnaires. EEG activity was recorded simultaneously during task execution. Event-related spectral perturbations (ERSP) were used to analyze spectral-power changes in brain activity. Additionally, sLORETA was applied in order to localize the sources of brain activity. When exploring EEG activity recorded after tasks onset during lexical conditions, sLORETA revealed increased activation in frontal and left temporal cortical areas, mainly in the alpha/beta frequency ranges. When examining the EEG activity recorded after task onset during arithmetic and algebraic conditions, additional activation in delta/theta band in the right parietal cortex was observed. The ERSP plots reveled alpha/beta desynchronizations within a 500-3000 ms interval after task onset and slow-wave synchronization within an interval of 150-350 ms. Amplitudes of these intervals reflected the accuracy of error recognition, and were differently associated with the three (lexical, arithmetic and algebraic) conditions. The level of trait anxiety was positively correlated with the amplitude of alpha/beta desynchronization. The level of mathematical anxiety was negatively correlated with the amplitude of theta synchronization and of alpha/beta desynchronization. Overall, trait anxiety was related with an increase in brain activation during task execution, whereas mathematical anxiety was associated with increased inhibitory-related activity. We gratefully acknowledge the support from the №11.G34.31.0043 grant from the Government of the Russian Federation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anxiety" title="anxiety">anxiety</a>, <a href="https://publications.waset.org/abstracts/search?q=EEG" title=" EEG"> EEG</a>, <a href="https://publications.waset.org/abstracts/search?q=lexical%20and%20numerical%20error-recognition%20tasks" title=" lexical and numerical error-recognition tasks"> lexical and numerical error-recognition tasks</a>, <a href="https://publications.waset.org/abstracts/search?q=alpha%2Fbeta%20desynchronization" title=" alpha/beta desynchronization"> alpha/beta desynchronization</a> </p> <a href="https://publications.waset.org/abstracts/27035/the-impact-of-trait-and-mathematical-anxiety-on-oscillatory-brain-activity-during-lexical-and-numerical-error-recognition-tasks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27035.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">525</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7769</span> Face Tracking and Recognition Using Deep Learning Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Degale%20Desta">Degale Desta</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng%20Jian"> Cheng Jian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The most important factor in identifying a person is their face. Even identical twins have their own distinct faces. As a result, identification and face recognition are needed to tell one person from another. A face recognition system is a verification tool used to establish a person's identity using biometrics. Nowadays, face recognition is a common technique used in a variety of applications, including home security systems, criminal identification, and phone unlock systems. This system is more secure because it only requires a facial image instead of other dependencies like a key or card. Face detection and face identification are the two phases that typically make up a human recognition system.The idea behind designing and creating a face recognition system using deep learning with Azure ML Python's OpenCV is explained in this paper. Face recognition is a task that can be accomplished using deep learning, and given the accuracy of this method, it appears to be a suitable approach. To show how accurate the suggested face recognition system is, experimental results are given in 98.46% accuracy using Fast-RCNN Performance of algorithms under different training conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title="deep learning">deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=face%20recognition" title=" face recognition"> face recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=identification" title=" identification"> identification</a>, <a href="https://publications.waset.org/abstracts/search?q=fast-RCNN" title=" fast-RCNN"> fast-RCNN</a> </p> <a href="https://publications.waset.org/abstracts/163134/face-tracking-and-recognition-using-deep-learning-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163134.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7768</span> A Smartphone-Based Real-Time Activity Recognition and Fall Detection System </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manutchanok%20Jongprasithporn">Manutchanok Jongprasithporn</a>, <a href="https://publications.waset.org/abstracts/search?q=Rawiphorn%20Srivilai"> Rawiphorn Srivilai</a>, <a href="https://publications.waset.org/abstracts/search?q=Paweena%20Pongsopha"> Paweena Pongsopha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fall is the most serious accident leading to increased unintentional injuries and mortality. Falls are not only the cause of suffering and functional impairments to the individuals, but also the cause of increasing medical cost and days away from work. The early detection of falls could be an advantage to reduce fall-related injuries and consequences of falls. Smartphones, embedded accelerometer, have become a common device in everyday life due to decreasing technology cost. This paper explores a physical activity monitoring and fall detection application in smartphones which is a non-invasive biomedical device to determine physical activities and fall event. The combination of application and sensors could perform as a biomedical sensor to monitor physical activities and recognize a fall. We have chosen Android-based smartphone in this study since android operating system is an open-source and no cost. Moreover, android phone users become a majority of Thai’s smartphone users. We developed Thai 3 Axis (TH3AX) as a physical activities and fall detection application which included command, manual, results in Thai language. The smartphone was attached to right hip of 10 young, healthy adult subjects (5 males, 5 females; aged< 35y) to collect accelerometer and gyroscope data during performing physical activities (e.g., walking, running, sitting, and lying down) and falling to determine threshold for each activity. Dependent variables are including accelerometer data (acceleration, peak acceleration, average resultant acceleration, and time between peak acceleration). A repeated measures ANOVA was performed to test whether there are any differences between DVs’ means. Statistical analyses were considered significant at p<0.05. After finding threshold, the results were used as training data for a predictive model of activity recognition. In the future, accuracies of activity recognition will be performed to assess the overall performance of the classifier. Moreover, to help improve the quality of life, our system will be implemented with patients and elderly people who need intensive care in hospitals and nursing homes in Thailand. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activity%20recognition" title="activity recognition">activity recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=accelerometer" title=" accelerometer"> accelerometer</a>, <a href="https://publications.waset.org/abstracts/search?q=fall" title=" fall"> fall</a>, <a href="https://publications.waset.org/abstracts/search?q=gyroscope" title=" gyroscope"> gyroscope</a>, <a href="https://publications.waset.org/abstracts/search?q=smartphone" title=" smartphone "> smartphone </a> </p> <a href="https://publications.waset.org/abstracts/27452/a-smartphone-based-real-time-activity-recognition-and-fall-detection-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27452.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">692</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7767</span> Long Short-Term Memory Based Model for Modeling Nicotine Consumption Using an Electronic Cigarette and Internet of Things Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamdi%20Amroun">Hamdi Amroun</a>, <a href="https://publications.waset.org/abstracts/search?q=Yacine%20Benziani"> Yacine Benziani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Ammi"> Mehdi Ammi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we want to determine whether the accurate prediction of nicotine concentration can be obtained by using a network of smart objects and an e-cigarette. The approach consists of, first, the recognition of factors influencing smoking cessation such as physical activity recognition and participant&rsquo;s behaviors (using both smartphone and smartwatch), then the prediction of the configuration of the e-cigarette (in terms of nicotine concentration, power, and resistance of e-cigarette). The study uses a network of commonly connected objects; a smartwatch, a smartphone, and an e-cigarette transported by the participants during an uncontrolled experiment. The data obtained from sensors carried in the three devices were trained by a Long short-term memory algorithm (LSTM). Results show that our LSTM-based model allows predicting the configuration of the e-cigarette in terms of nicotine concentration, power, and resistance with a root mean square error percentage of 12.9%, 9.15%, and 11.84%, respectively. This study can help to better control consumption of nicotine and offer an intelligent configuration of the e-cigarette to users. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iot" title="Iot">Iot</a>, <a href="https://publications.waset.org/abstracts/search?q=activity%20recognition" title=" activity recognition"> activity recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=automatic%20classification" title=" automatic classification"> automatic classification</a>, <a href="https://publications.waset.org/abstracts/search?q=unconstrained%20environment" title=" unconstrained environment"> unconstrained environment</a> </p> <a href="https://publications.waset.org/abstracts/89965/long-short-term-memory-based-model-for-modeling-nicotine-consumption-using-an-electronic-cigarette-and-internet-of-things-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89965.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">224</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7766</span> Effects of Oxytocin on Neural Response to Facial Emotion Recognition in Schizophrenia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Avyarthana%20Dey">Avyarthana Dey</a>, <a href="https://publications.waset.org/abstracts/search?q=Naren%20P.%20Rao"> Naren P. Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=Arpitha%20Jacob"> Arpitha Jacob</a>, <a href="https://publications.waset.org/abstracts/search?q=Chaitra%20V.%20Hiremath"> Chaitra V. Hiremath</a>, <a href="https://publications.waset.org/abstracts/search?q=Shivarama%20Varambally"> Shivarama Varambally</a>, <a href="https://publications.waset.org/abstracts/search?q=Ganesan%20Venkatasubramanian"> Ganesan Venkatasubramanian</a>, <a href="https://publications.waset.org/abstracts/search?q=Rose%20Dawn%20Bharath"> Rose Dawn Bharath</a>, <a href="https://publications.waset.org/abstracts/search?q=Bangalore%20N.%20Gangadhar"> Bangalore N. Gangadhar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: Impaired facial emotion recognition is widely reported in schizophrenia. Neuropeptide oxytocin is known to modulate brain regions involved in facial emotion recognition, namely amygdala, in healthy volunteers. However, its effect on facial emotion recognition deficits seen in schizophrenia is not well explored. In this study, we examined the effect of intranasal OXT on processing facial emotions and its neural correlates in patients with schizophrenia. Method: 12 male patients (age= 31.08±7.61 years, education= 14.50±2.20 years) participated in this single-blind, counterbalanced functional magnetic resonance imaging (fMRI) study. All participants underwent three fMRI scans; one at baseline, one each after single dose 24IU intranasal OXT and intranasal placebo. The order of administration of OXT and placebo were counterbalanced and subject was blind to the drug administered. Participants performed a facial emotion recognition task presented in a block design with six alternating blocks of faces and shapes. The faces depicted happy, angry or fearful emotions. The images were preprocessed and analyzed using SPM 12. First level contrasts comparing recognition of emotions and shapes were modelled at individual subject level. A group level analysis was performed using the contrasts generated at the first level to compare the effects of intranasal OXT and placebo. The results were thresholded at uncorrected p < 0.001 with a cluster size of 6 voxels. Neuropeptide oxytocin is known to modulate brain regions involved in facial emotion recognition, namely amygdala, in healthy volunteers. Results: Compared to placebo, intranasal OXT attenuated activity in inferior temporal, fusiform and parahippocampal gyri (BA 20), premotor cortex (BA 6), middle frontal gyrus (BA 10) and anterior cingulate gyrus (BA 24) and enhanced activity in the middle occipital gyrus (BA 18), inferior occipital gyrus (BA 19), and superior temporal gyrus (BA 22). There were no significant differences between the conditions on the accuracy scores of emotion recognition between baseline (77.3±18.38), oxytocin (82.63 ± 10.92) or Placebo (76.62 ± 22.67). Conclusion: Our results provide further evidence to the modulatory effect of oxytocin in patients with schizophrenia. Single dose oxytocin resulted in significant changes in activity of brain regions involved in emotion processing. Future studies need to examine the effectiveness of long-term treatment with OXT for emotion recognition deficits in patients with schizophrenia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=recognition" title="recognition">recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20connectivity" title=" functional connectivity"> functional connectivity</a>, <a href="https://publications.waset.org/abstracts/search?q=oxytocin" title=" oxytocin"> oxytocin</a>, <a href="https://publications.waset.org/abstracts/search?q=schizophrenia" title=" schizophrenia"> schizophrenia</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20cognition" title=" social cognition"> social cognition</a> </p> <a href="https://publications.waset.org/abstracts/70924/effects-of-oxytocin-on-neural-response-to-facial-emotion-recognition-in-schizophrenia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70924.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7765</span> Comparing Emotion Recognition from Voice and Facial Data Using Time Invariant Features</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vesna%20Kirandziska">Vesna Kirandziska</a>, <a href="https://publications.waset.org/abstracts/search?q=Nevena%20Ackovska"> Nevena Ackovska</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20Madevska%20Bogdanova"> Ana Madevska Bogdanova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problem of emotion recognition is a challenging problem. It is still an open problem from the aspect of both intelligent systems and psychology. In this paper, both voice features and facial features are used for building an emotion recognition system. A Support Vector Machine classifiers are built by using raw data from video recordings. In this paper, the results obtained for the emotion recognition are given, and a discussion about the validity and the expressiveness of different emotions is presented. A comparison between the classifiers build from facial data only, voice data only and from the combination of both data is made here. The need for a better combination of the information from facial expression and voice data is argued. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=emotion%20recognition" title="emotion recognition">emotion recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=facial%20recognition" title=" facial recognition"> facial recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20processing" title=" signal processing"> signal processing</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a> </p> <a href="https://publications.waset.org/abstracts/42384/comparing-emotion-recognition-from-voice-and-facial-data-using-time-invariant-features" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42384.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7764</span> Job Satisfaction among Public and Private Universities in Egypt Related to Organizational and Personal Aspects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reem%20Alkadeem">Reem Alkadeem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims at evaluating the overall satisfaction of faculty members and relating it to organizational and personal aspects in Egyptian public and private universities. These aspects are identified through an extensive study of all factors that might affect job satisfaction. The most influencing parameters selected are academics’ demographics, human resource management, organizational profile, workload, teamwork skills, recognition, autonomy, teaching activity, research activity, and motivation. A questionnaire of 94 questions was used to assess job satisfaction and the previously mentioned parameters. It was distributed among seven hundred members of different universities in Egypt. Two hundred and twenty-seven faculty members responded. This sample was gathered from twelve universities and The Supreme Council of Universities. The ANOVA showed a significant relationship (p < 0.05) between eight of the selected parameters and job satisfaction. These parameters are age, rank, human resource management, profile of organizational characteristics, workload, recognition, teaching activity, and motivation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=job%20satisfaction" title="job satisfaction">job satisfaction</a>, <a href="https://publications.waset.org/abstracts/search?q=higher%20education" title=" higher education"> higher education</a>, <a href="https://publications.waset.org/abstracts/search?q=organizational%20profile" title=" organizational profile"> organizational profile</a>, <a href="https://publications.waset.org/abstracts/search?q=Egyptian%20universities" title=" Egyptian universities "> Egyptian universities </a> </p> <a href="https://publications.waset.org/abstracts/19286/job-satisfaction-among-public-and-private-universities-in-egypt-related-to-organizational-and-personal-aspects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19286.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">484</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7763</span> Possibilities, Challenges and the State of the Art of Automatic Speech Recognition in Air Traffic Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Van%20Nhan%20Nguyen">Van Nhan Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Harald%20Holone"> Harald Holone</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over the past few years, a lot of research has been conducted to bring Automatic Speech Recognition (ASR) into various areas of Air Traffic Control (ATC), such as air traffic control simulation and training, monitoring live operators for with the aim of safety improvements, air traffic controller workload measurement and conducting analysis on large quantities controller-pilot speech. Due to the high accuracy requirements of the ATC context and its unique challenges, automatic speech recognition has not been widely adopted in this field. With the aim of providing a good starting point for researchers who are interested bringing automatic speech recognition into ATC, this paper gives an overview of possibilities and challenges of applying automatic speech recognition in air traffic control. To provide this overview, we present an updated literature review of speech recognition technologies in general, as well as specific approaches relevant to the ATC context. Based on this literature review, criteria for selecting speech recognition approaches for the ATC domain are presented, and remaining challenges and possible solutions are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automatic%20speech%20recognition" title="automatic speech recognition">automatic speech recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=asr" title=" asr"> asr</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20traffic%20control" title=" air traffic control"> air traffic control</a>, <a href="https://publications.waset.org/abstracts/search?q=atc" title=" atc"> atc</a> </p> <a href="https://publications.waset.org/abstracts/31004/possibilities-challenges-and-the-state-of-the-art-of-automatic-speech-recognition-in-air-traffic-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31004.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7762</span> Switching to the Latin Alphabet in Kazakhstan: A Brief Overview of Character Recognition Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ainagul%20Yermekova">Ainagul Yermekova</a>, <a href="https://publications.waset.org/abstracts/search?q=Liudmila%20Goncharenko"> Liudmila Goncharenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Baghirzade"> Ali Baghirzade</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergey%20Sybachin"> Sergey Sybachin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article, we address the problem of Kazakhstan's transition to the Latin alphabet. The transition process started in 2017 and is scheduled to be completed in 2025. In connection with these events, the problem of recognizing the characters of the new alphabet is raised. Well-known character recognition programs such as ABBYY FineReader, FormReader, MyScript Stylus did not recognize specific Kazakh letters that were used in Cyrillic. The author tries to give an assessment of the well-known method of character recognition that could be in demand as part of the country's transition to the Latin alphabet. Three methods of character recognition: template, structured, and feature-based, are considered through the algorithms of operation. At the end of the article, a general conclusion is made about the possibility of applying a certain method to a particular recognition process: for example, in the process of population census, recognition of typographic text in Latin, or recognition of photos of car numbers, store signs, etc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=text%20detection" title="text detection">text detection</a>, <a href="https://publications.waset.org/abstracts/search?q=template%20method" title=" template method"> template method</a>, <a href="https://publications.waset.org/abstracts/search?q=recognition%20algorithm" title=" recognition algorithm"> recognition algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=structured%20method" title=" structured method"> structured method</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20method" title=" feature method"> feature method</a> </p> <a href="https://publications.waset.org/abstracts/138734/switching-to-the-latin-alphabet-in-kazakhstan-a-brief-overview-of-character-recognition-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138734.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7761</span> Recognizing an Individual, Their Topic of Conversation and Cultural Background from 3D Body Movement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gheida%20J.%20Shahrour">Gheida J. Shahrour</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20J.%20Russell"> Martin J. Russell</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The 3D body movement signals captured during human-human conversation include clues not only to the content of people’s communication but also to their culture and personality. This paper is concerned with automatic extraction of this information from body movement signals. For the purpose of this research, we collected a novel corpus from 27 subjects, arranged them into groups according to their culture. We arranged each group into pairs and each pair communicated with each other about different topics. A state-of-art recognition system is applied to the problems of person, culture, and topic recognition. We borrowed modeling, classification, and normalization techniques from speech recognition. We used Gaussian Mixture Modeling (GMM) as the main technique for building our three systems, obtaining 77.78%, 55.47%, and 39.06% from the person, culture, and topic recognition systems respectively. In addition, we combined the above GMM systems with Support Vector Machines (SVM) to obtain 85.42%, 62.50%, and 40.63% accuracy for person, culture, and topic recognition respectively. Although direct comparison among these three recognition systems is difficult, it seems that our person recognition system performs best for both GMM and GMM-SVM, suggesting that inter-subject differences (i.e. subject’s personality traits) are a major source of variation. When removing these traits from culture and topic recognition systems using the Nuisance Attribute Projection (NAP) and the Intersession Variability Compensation (ISVC) techniques, we obtained 73.44% and 46.09% accuracy from culture and topic recognition systems respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=person%20recognition" title="person recognition">person recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=topic%20recognition" title=" topic recognition"> topic recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=culture%20recognition" title=" culture recognition"> culture recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20body%20movement%20signals" title=" 3D body movement signals"> 3D body movement signals</a>, <a href="https://publications.waset.org/abstracts/search?q=variability%20compensation" title=" variability compensation"> variability compensation</a> </p> <a href="https://publications.waset.org/abstracts/19473/recognizing-an-individual-their-topic-of-conversation-and-cultural-background-from-3d-body-movement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19473.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">541</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7760</span> Violence Detection and Tracking on Moving Surveillance Video Using Machine Learning Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abe%20Degale%20D.">Abe Degale D.</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng%20Jian"> Cheng Jian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When creating automated video surveillance systems, violent action recognition is crucial. In recent years, hand-crafted feature detectors have been the primary method for achieving violence detection, such as the recognition of fighting activity. Researchers have also looked into learning-based representational models. On benchmark datasets created especially for the detection of violent sequences in sports and movies, these methods produced good accuracy results. The Hockey dataset's videos with surveillance camera motion present challenges for these algorithms for learning discriminating features. Image recognition and human activity detection challenges have shown success with deep representation-based methods. For the purpose of detecting violent images and identifying aggressive human behaviours, this research suggested a deep representation-based model using the transfer learning idea. The results show that the suggested approach outperforms state-of-the-art accuracy levels by learning the most discriminating features, attaining 99.34% and 99.98% accuracy levels on the Hockey and Movies datasets, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=violence%20detection" title="violence detection">violence detection</a>, <a href="https://publications.waset.org/abstracts/search?q=faster%20RCNN" title=" faster RCNN"> faster RCNN</a>, <a href="https://publications.waset.org/abstracts/search?q=transfer%20learning%20and" title=" transfer learning and"> transfer learning and</a>, <a href="https://publications.waset.org/abstracts/search?q=surveillance%20video" title=" surveillance video"> surveillance video</a> </p> <a href="https://publications.waset.org/abstracts/171296/violence-detection-and-tracking-on-moving-surveillance-video-using-machine-learning-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171296.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=activity%20recognition&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=activity%20recognition&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=activity%20recognition&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=activity%20recognition&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=activity%20recognition&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=activity%20recognition&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=activity%20recognition&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=activity%20recognition&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=activity%20recognition&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=activity%20recognition&amp;page=259">259</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=activity%20recognition&amp;page=260">260</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=activity%20recognition&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10