CINXE.COM

Search results for: regular waves

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: regular waves</title> <meta name="description" content="Search results for: regular waves"> <meta name="keywords" content="regular waves"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="regular waves" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="regular waves"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1858</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: regular waves</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1858</span> Computational Fluid Dynamics Simulation of Floating Body Motion Interacting with Focused Waves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seul-Ki%20Park">Seul-Ki Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong-Chun%20Park"> Jong-Chun Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Gyu-Mok%20Jeon"> Gyu-Mok Jeon</a>, <a href="https://publications.waset.org/abstracts/search?q=Dae-Kyung%20Ock"> Dae-Kyung Ock</a>, <a href="https://publications.waset.org/abstracts/search?q=Seung-Gyu%20Jeong"> Seung-Gyu Jeong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rogue waves cause frequent accidents of ships and offshore structures, which can result in severe damage to the structures. The Rogue waves, which are also known as big waves, freak waves, extreme waves, monster waves, focused waves, giant waves and abnormal waves, are unexpected and suddenly appearing, and can have a breaking force to destroy the structure even though modern structures are designed to tolerate a breaking wave. In the present study, a series of focused waves are numerically reproduced by concentrating nonlinear multi-directional waves into a target point using a commercial CFD software, Star-CCM+. A flow analysis for investigating the physical characteristics of the focused waves is performed using the Star-CCM+, while it has several difficulties to examine the inner properties of the waves in existing potential theory and experiments. Additionally, the 6-DOF (Degree of Freedom) motion of a floating body interacting with the focused waves are simulated, and the dynamic response of the body are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multidirectional%20waves" title="multidirectional waves">multidirectional waves</a>, <a href="https://publications.waset.org/abstracts/search?q=focused%20waves" title=" focused waves"> focused waves</a>, <a href="https://publications.waset.org/abstracts/search?q=rogue%20waves" title=" rogue waves"> rogue waves</a>, <a href="https://publications.waset.org/abstracts/search?q=wave-structure%20interaction" title=" wave-structure interaction"> wave-structure interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20wave%20tank" title=" numerical wave tank"> numerical wave tank</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a> </p> <a href="https://publications.waset.org/abstracts/83771/computational-fluid-dynamics-simulation-of-floating-body-motion-interacting-with-focused-waves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83771.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1857</span> Hydrodynamic Characteristics of Single and Twin Offshore Rubble Mound Breakwaters under Regular and Random Waves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Alkhalidi">M. Alkhalidi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Neelamani"> S. Neelamani</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Al-Zaqah"> Z. Al-Zaqah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the interaction of single and twin offshore rubble mound breakwaters with regular and random water waves through physical modeling to assess their reflection, transmission and energy dissipation characteristics. Various combinations of wave heights and wave periods were utilized in a series of experiments, along with three different water depths. The single and twin permeable breakwater models were both constructed with one layer of rubbles. Both models had the same total volume; however, the single breakwater was of trapezoidal type while the twin breakwaters were of triangular type. Physical modeling experiments were carried out in the wave flume of the coastal engineering laboratory of Kuwait Institute for Scientific Research (KISR). Measurements of the six wave probes which were fixed in the two-dimensional wave flume were collected and used to determine the generated incident wave heights, as well as the reflected and transmitted wave heights resulting from the wave-breakwater interaction. The possible factors affecting the wave attenuation efficiency of the breakwater models are the relative water depth (d/L), wave steepness (H/L), relative wave height ((h-d)/Hi), relative height of the breakwater (h/d), and relative clear spacing between the twin breakwaters (S/h). The results indicated that the single and double breakwaters show different responds to the change in their relative height as well as the relative wave height which demonstrates that the effect of the relative water depth on wave reflection, transmission, and energy dissipation is highly influenced by the change in the relative breakwater height, the relative wave height and the relative breakwater spacing. In general, within the range of the relative water depth tested in this study, and under both regular and random waves, it is found that the single breakwater allows for lower wave transmission and shows higher energy dissipation effect than both of the tested twin breakwaters, and hence has the best overall performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=random%20waves" title="random waves">random waves</a>, <a href="https://publications.waset.org/abstracts/search?q=regular%20waves" title=" regular waves"> regular waves</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20water%20depth" title=" relative water depth"> relative water depth</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20wave%20height" title=" relative wave height"> relative wave height</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20breakwater" title=" single breakwater"> single breakwater</a>, <a href="https://publications.waset.org/abstracts/search?q=twin%20breakwater" title=" twin breakwater"> twin breakwater</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20steepness" title=" wave steepness"> wave steepness</a> </p> <a href="https://publications.waset.org/abstracts/63850/hydrodynamic-characteristics-of-single-and-twin-offshore-rubble-mound-breakwaters-under-regular-and-random-waves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63850.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1856</span> Energization of the Ions by EMIC Waves using MMS Observation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abid%20Ali%20Abid">Abid Ali Abid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electromagnetic ion cyclotron waves have been playing a significant role in inner magnetosphere, and their proton band has been detected using the Magnetospheric-Multiscale (MMS) satellite observations in the inner magnetosphere. It has been examined that the intensity of EMIC waves gradually increases by decreasing the L shell. Thermal anisotropy of hot protons initiates the waves. The low-energy cold protons (ions) can be activated by the EMIC waves when the EMIC wave intensity is high. As a result, these formerly invisible protons are now visible. The EMIC waves, whose frequency ranges from 0.001 Hz to 5 Hz in the inner magnetosphere and received considerable attention for energy transport across the magnetosphere. Since these waves act as a mechanism for the loss of energetic electrons from the Van Allen radiation belt to the atmosphere, therefore, it is necessary to understand how and where they can be produced, as well as the direction of waves along the magnetic field lines. It is demonstrated that throughout the energy range of 1 eV to 100 eV, the number density and temperature anisotropy of the protons likewise rise as the intensity of the EMIC waves increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20ion%20cyclotron%20waves" title="electromagnetic ion cyclotron waves">electromagnetic ion cyclotron waves</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetospheric-multiscale%20%28MMS%29%20satellite" title=" magnetospheric-multiscale (MMS) satellite"> magnetospheric-multiscale (MMS) satellite</a>, <a href="https://publications.waset.org/abstracts/search?q=cold%20protons" title=" cold protons"> cold protons</a>, <a href="https://publications.waset.org/abstracts/search?q=inner%20magnetosphere" title=" inner magnetosphere"> inner magnetosphere</a> </p> <a href="https://publications.waset.org/abstracts/162109/energization-of-the-ions-by-emic-waves-using-mms-observation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162109.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1855</span> Regularity and Maximal Congruence in Transformation Semigroups with Fixed Sets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chollawat%20Pookpienlert">Chollawat Pookpienlert</a>, <a href="https://publications.waset.org/abstracts/search?q=Jintana%20Sanwong"> Jintana Sanwong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An element a of a semigroup S is called left (right) regular if there exists x in S such that a=xa² (a=a²x) and said to be intra-regular if there exist u,v in such that a=ua²v. Let T(X) be the semigroup of all full transformations on a set X under the composition of maps. For a fixed nonempty subset Y of X, let Fix(X,Y)={α ™ T(X) : yα=y for all y ™ Y}, where yα is the image of y under α. Then Fix(X,Y) is a semigroup of full transformations on X which fix all elements in Y. Here, we characterize left regular, right regular and intra-regular elements of Fix(X,Y) which characterizations are shown as follows: For α ™ Fix(X,Y), (i) α is left regular if and only if Xα\Y = Xα²\Y, (ii) α is right regular if and only if πα = πα², (iii) α is intra-regular if and only if | Xα\Y | = | Xα²\Y | such that Xα = {xα : x ™ X} and πα = {xα⁻¹ : x ™ Xα} in which xα⁻¹ = {a ™ X : aα=x}. Moreover, those regularities are equivalent if Xα\Y is a finite set. In addition, we count the number of those elements of Fix(X,Y) when X is a finite set. Finally, we determine the maximal congruence ρ on Fix(X,Y) when X is finite and Y is a nonempty proper subset of X. If we let | X \Y | = n, then we obtain that ρ = (Fixn x Fixn) ∪ (H ε x H ε) where Fixn = {α ™ Fix(X,Y) : | Xα\Y | < n} and H ε is the group of units of Fix(X,Y). Furthermore, we show that the maximal congruence is unique. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intra-regular" title="intra-regular">intra-regular</a>, <a href="https://publications.waset.org/abstracts/search?q=left%20regular" title=" left regular"> left regular</a>, <a href="https://publications.waset.org/abstracts/search?q=maximal%20congruence" title=" maximal congruence"> maximal congruence</a>, <a href="https://publications.waset.org/abstracts/search?q=right%20regular" title=" right regular"> right regular</a>, <a href="https://publications.waset.org/abstracts/search?q=transformation%20semigroup" title=" transformation semigroup"> transformation semigroup</a> </p> <a href="https://publications.waset.org/abstracts/59305/regularity-and-maximal-congruence-in-transformation-semigroups-with-fixed-sets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59305.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1854</span> Propagation of Weak Non-Linear Waves in Non-Equilibrium Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Jena">J. Jena</a>, <a href="https://publications.waset.org/abstracts/search?q=Monica%20Saxena"> Monica Saxena </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the propagation of weak nonlinear waves in non-equilibrium flow has been studied in detail using the perturbation method. The expansive action of receding piston undergoing infinite acceleration has been discussed. Central expansion fan, compression waves and shock fronts have been discussed and the solutions up to the first order in the characteristic plane and physical plane have been obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Characteristic%20wave%20front" title="Characteristic wave front">Characteristic wave front</a>, <a href="https://publications.waset.org/abstracts/search?q=weak%20non-linear%20waves" title=" weak non-linear waves"> weak non-linear waves</a>, <a href="https://publications.waset.org/abstracts/search?q=central%20expansion%20fan" title=" central expansion fan"> central expansion fan</a>, <a href="https://publications.waset.org/abstracts/search?q=compression%20waves" title=" compression waves"> compression waves</a> </p> <a href="https://publications.waset.org/abstracts/14207/propagation-of-weak-non-linear-waves-in-non-equilibrium-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14207.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1853</span> The Effects of Electron Trapping by Electron-Ecoustic Waves Excited with Electron Beam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abid%20Ali%20Abid">Abid Ali Abid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One-dimensional (1-D) particle-in-cell (PIC) electrostatic simulations are carried out to investigate the electrostatic waves, whose constituents are hot, cold and beam electrons in the background of motionless positive ions. In fact, the electrostatic modes excited are electron acoustic waves, beam driven waves as well as Langmuir waves. It is assessed that the relevant plasma parameters, for example, hot electron temperature, beam electron drift speed, and the electron beam density significantly modify the electrostatics wave's profiles. In the nonlinear stage, the wave-particle interaction becomes more evident and the waves have obtained its saturation level. Consequently, electrons become trapped in the waves and trapping vortices are clearly formed. Because of this trapping vortices and mixing of the electrons in phase space, finally, lead to electrons thermalization. It is observed that for the high-density value of the beam-electron, the solitary waves having a bipolar form of the electric field. These solitons are the nonlinear Brenstein-Greene and Kruskal wave mode that attributes the trapping of electrons potential well of phase-space hole. These examinations revealed that electrostatic waves have been exited in beam-plasma model and producing waves having broad-frequency ranges, which may clarify the broadband electrostatic noise (BEN) spectrum studied in the auroral zone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electron%20acoustic%20%20waves" title="electron acoustic waves">electron acoustic waves</a>, <a href="https://publications.waset.org/abstracts/search?q=trapping%20of%20cold%20electron" title=" trapping of cold electron"> trapping of cold electron</a>, <a href="https://publications.waset.org/abstracts/search?q=Langmuir%20waves" title=" Langmuir waves"> Langmuir waves</a>, <a href="https://publications.waset.org/abstracts/search?q=particle-in%20cell%20simulation" title=" particle-in cell simulation"> particle-in cell simulation</a> </p> <a href="https://publications.waset.org/abstracts/120540/the-effects-of-electron-trapping-by-electron-ecoustic-waves-excited-with-electron-beam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120540.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1852</span> Investigation of Stoneley Waves in Multilayered Plates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bing%20Li">Bing Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Tong%20Lu"> Tong Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Lei%20Qiang"> Lei Qiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stoneley waves are interface waves that propagate at the interface between two solid media. In this study, the dispersion characteristics and wave structures of Stoneley waves in elastic multilayered plates are displayed and investigated. With a perspective of bulk wave, a reasonable assumption of the potential function forms of the expansion wave and shear wave in nth layer medium is adopted, and the characteristic equation of Stoneley waves in a three-layered plate is given in a determinant form. The dispersion curves and wave structures are solved and presented in both numerical and simulation results. It is observed that two Stoneley wave modes exist in a three-layered plate, that conspicuous dispersion occurs on low frequency band, that the velocity of each Stoneley wave mode approaches the corresponding Stoneley wave velocity at interface between two half infinite spaces. The wave structures reveal that the in-plane displacement of Stoneley waves are relatively high at interfaces, which shows great potential for interface defects detection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=characteristic%20equation" title="characteristic equation">characteristic equation</a>, <a href="https://publications.waset.org/abstracts/search?q=interface%20waves" title=" interface waves"> interface waves</a>, <a href="https://publications.waset.org/abstracts/search?q=potential%20function" title=" potential function"> potential function</a>, <a href="https://publications.waset.org/abstracts/search?q=Stoneley%20waves" title=" Stoneley waves"> Stoneley waves</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20structure" title=" wave structure"> wave structure</a> </p> <a href="https://publications.waset.org/abstracts/45214/investigation-of-stoneley-waves-in-multilayered-plates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45214.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1851</span> Rogue Waves Arising on the Standing Periodic Wave in the High-Order Ablowitz-Ladik Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yanpei%20Zhen">Yanpei Zhen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The nonlinear Schrödinger (NLS) equation models wave dynamics in many physical problems related to fluids, plasmas, and optics. The standing periodic waves are known to be modulationally unstable, and rogue waves (localized perturbations in space and time) have been observed on their backgrounds in numerical experiments. The exact solutions for rogue waves arising on the periodic standing waves have been obtained analytically. It is natural to ask if the rogue waves persist on the standing periodic waves in the integrable discretizations of the integrable NLS equation. We study the standing periodic waves in the semidiscrete integrable system modeled by the high-order Ablowitz-Ladik (AL) equation. The standing periodic wave of the high-order AL equation is expressed by the Jacobi cnoidal elliptic function. The exact solutions are obtained by using the separation of variables and one-fold Darboux transformation. Since the cnoidal wave is modulationally unstable, the rogue waves are generated on the periodic background. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Darboux%20transformation" title="Darboux transformation">Darboux transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=periodic%20wave" title=" periodic wave"> periodic wave</a>, <a href="https://publications.waset.org/abstracts/search?q=Rogue%20wave" title=" Rogue wave"> Rogue wave</a>, <a href="https://publications.waset.org/abstracts/search?q=separating%20the%20variables" title=" separating the variables"> separating the variables</a> </p> <a href="https://publications.waset.org/abstracts/174512/rogue-waves-arising-on-the-standing-periodic-wave-in-the-high-order-ablowitz-ladik-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174512.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1850</span> The Kinks, the Solitons, and the Shocks in Series Connected Discrete Josephson Transmission Lines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eugene%20Kogan">Eugene Kogan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We analytically study the localized running waves in the discrete Josephson transmission lines (JTL), constructed from Josephson junctions (JJ) and capacitors. The quasi-continuum approximation reduces the calculation of the running wave properties to the problem of equilibrium of an elastic rod in the potential field. Making additional approximations, we reduce the problem to the motion of the fictitious Newtonian particle in the potential well. We show that there exist running waves in the form of supersonic kinks and solitons and calculate their velocities and profiles. We show that the nonstationary smooth waves, which are small perturbations on the homogeneous non-zero background, are described by Korteweg-de Vries equation, and those on zero background -by the modified Korteweg-de Vries equation. We also study the effect of dissipation on the running waves in JTL and find that in the presence of the resistors, shunting the JJ and/or in series with the ground capacitors, the only possible stationary running waves are the shock waves, whose profiles are also found. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Josephson%20transmission%20line" title="Josephson transmission line">Josephson transmission line</a>, <a href="https://publications.waset.org/abstracts/search?q=shocks" title=" shocks"> shocks</a>, <a href="https://publications.waset.org/abstracts/search?q=solitary%20waves" title=" solitary waves"> solitary waves</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20waves" title=" nonlinear waves"> nonlinear waves</a> </p> <a href="https://publications.waset.org/abstracts/148051/the-kinks-the-solitons-and-the-shocks-in-series-connected-discrete-josephson-transmission-lines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148051.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1849</span> Heating of the Ions by Electromagnetic Ion Cyclotron (EMIC) Waves Using Magnetospheric Multiscale (MMS) Satellite Observation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Abid">A. A. Abid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The magnetospheric multiscale (MMS) satellite observations in the inner magnetosphere were used to detect the proton band of the electromagnetic ion cyclotron (EMIC) waves on December 14, 2015, which have been significantly contributing to the dynamics of the magnetosphere. It has been examined that the intensity of EMIC waves gradually increases by decreasing the L shell. The waves are triggered by hot proton thermal anisotropy. The low-energy cold protons (ions) can be activated by the EMIC waves when the EMIC wave intensity is high. As a result, these previously invisible protons are now visible. As a result, the EMC waves also excite the helium ions. The EMIC waves, whose frequency in the magnetosphere of the Earth ranges from 0.001 Hz to 5 Hz, have drawn a lot of attention for their ability to carry energy. Since these waves act as a mechanism for the loss of energetic electrons from the Van Allen radiation belt to the atmosphere, therefore, it is necessary to understand how and where they can be produced, as well as the direction of waves along the magnetic field lines. This work examines how the excitation of EMIC waves is affected by the energy of hot proton temperature anisotropy, and It has a minimum resonance energy of 6.9 keV and a range of 7 to 26 keV. On the hot protons, however, the reverse effect can be seen for energies below the minimum resonance energy. It is demonstrated that throughout the energy range of 1 eV to 100 eV, the number density and temperature anisotropy of the protons likewise rise as the intensity of the EMIC waves increases. Key Points: 1. The analysis of EMIC waves produced by hot proton temperature anisotropy using MMS data. 2. The number density and temperature anisotropy of the cold protons increases owing to high-intensity EMIC waves. 3. The cold protons with an energy range of 1-100eV are energized by EMIC waves using the Magnetospheric Multiscale (MMS) satellite not been discussed before <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EMIC%20waves" title="EMIC waves">EMIC waves</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20anisotropy%20of%20hot%20protons" title=" temperature anisotropy of hot protons"> temperature anisotropy of hot protons</a>, <a href="https://publications.waset.org/abstracts/search?q=energization%20of%20the%20cold%20proton" title=" energization of the cold proton"> energization of the cold proton</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetospheric%20multiscale%20%28MMS%29%20satellite%20observations" title=" magnetospheric multiscale (MMS) satellite observations"> magnetospheric multiscale (MMS) satellite observations</a> </p> <a href="https://publications.waset.org/abstracts/161623/heating-of-the-ions-by-electromagnetic-ion-cyclotron-emic-waves-using-magnetospheric-multiscale-mms-satellite-observation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161623.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1848</span> A Laboratory Study into the Effects of Surface Waves on Freestyle Swimming</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Scott%20Draper">Scott Draper</a>, <a href="https://publications.waset.org/abstracts/search?q=Nat%20Benjanuvatra"> Nat Benjanuvatra</a>, <a href="https://publications.waset.org/abstracts/search?q=Grant%20Landers"> Grant Landers</a>, <a href="https://publications.waset.org/abstracts/search?q=Terry%20Griffiths"> Terry Griffiths</a>, <a href="https://publications.waset.org/abstracts/search?q=Justin%20Geldard"> Justin Geldard</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Open water swimming has been an Olympic sport since 2008 and is growing in popularity world-wide as a low impact form of exercise. Unlike pool swimming, open water swimmers experience a range of different environmental conditions, including surface waves, variable water temperature, aquatic life, and ocean currents. This presentation will describe experimental research to investigate how freestyle swimming behaviour and performance is influenced by surface waves. A group of 12 swimmers were instructed to swim freestyle in the 54 m long wave flume located at The University of Western Australia’s Coastal and Offshore Engineering Laboratory. A variety of different regular waves were simulated, varying in height (up to 0.3 m), period (1.25 – 4s), and direction (with or against the swimmer). Swimmer’s velocity and acceleration, respectively, were determined from video recording and inertial sensors attached to five different parts of the swimmer’s body. The results illustrate how the swimmers stroke rate and the wave encounter frequency influence their forward speed and how particular wave conditions can benefit or hinder performance. Comparisons to simplified mathematical models provide insight into several aspects of performance, including: (i) how much faster swimmers can travel when swimming with as opposed to against the waves, and (ii) why swimmers of lesser ability are expected to be affected proportionally more by waves than elite swimmers. These findings have implications across the spectrum from elite to ‘weekend’ swimmers, including how they are coached and their ability to win (or just successfully complete) iconic open water events such as the Rottnest Channel Swim held annually in Western Australia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=open%20water" title="open water">open water</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20waves" title=" surface waves"> surface waves</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20height%2Flength" title=" wave height/length"> wave height/length</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20flume" title=" wave flume"> wave flume</a>, <a href="https://publications.waset.org/abstracts/search?q=stroke%20rate" title=" stroke rate"> stroke rate</a> </p> <a href="https://publications.waset.org/abstracts/147896/a-laboratory-study-into-the-effects-of-surface-waves-on-freestyle-swimming" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1847</span> Comparative Study of Soliton Collisions in Uniform and Nonuniform Magnetized Plasma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Renu%20Tomar">Renu Tomar</a>, <a href="https://publications.waset.org/abstracts/search?q=Hitendra%20K.%20Malik"> Hitendra K. Malik</a>, <a href="https://publications.waset.org/abstracts/search?q=Raj%20P.%20Dahiya"> Raj P. Dahiya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Similar to the sound waves in air, plasmas support the propagation of ion waves, which evolve into the solitary structures when the effect of non linearity and dispersion are balanced. The ion acoustic solitary waves have been investigated in details in homogeneous plasmas, inhomogeneous plasmas, and magnetized plasmas. The ion acoustic solitary waves are also found to reflect from a density gradient or boundary present in the plasma after propagating. Another interesting feature of the solitary waves is their collision. In the present work, we carry out analytical calculations for the head-on collision of solitary waves in a magnetized plasma which has dust grains in addition to the ions and electrons. For this, we employ Poincar´e-Lighthill-Kuo (PLK) method. To lowest nonlinear order, the problem of colliding solitary waves leads to KdV (modified KdV) equations and also yields the phase shifts that occur in the interaction. These calculations are accomplished for the uniform and nonuniform plasmas, and the results on the soliton properties are discussed in detail. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inhomogeneous%20magnetized%20plasma" title="inhomogeneous magnetized plasma">inhomogeneous magnetized plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=dust%20charging" title=" dust charging"> dust charging</a>, <a href="https://publications.waset.org/abstracts/search?q=soliton%20collisions" title=" soliton collisions"> soliton collisions</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetized%20plasma" title=" magnetized plasma"> magnetized plasma</a> </p> <a href="https://publications.waset.org/abstracts/14740/comparative-study-of-soliton-collisions-in-uniform-and-nonuniform-magnetized-plasma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14740.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">471</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1846</span> Two-Step Inversion Method for Multi-mode Surface Waves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ying%20Zhang">Ying Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Surface waves provide critical constraints about the earth's structure in the crust and upper mantle. However, different modes of Love waves with close group velocities often arrive at a similar time and interfere with each other. This problem is typical for Love waves at intermediate periods that travel through the oceanic lithosphere. Therefore, we developed a two-step inversion approach to separate the waveforms of the fundamental and first higher mode of Love waves. We first solve the phase velocities of the two modes and their amplitude ratios. The misfit function is based on the sum of phase differences among the station pairs. We then solve the absolute amplitudes of the two modes and their initial phases using obtained phase velocities and amplitude ratio. The separated waveforms of each mode from the two-step inversion method can be further used in surface wave tomography to improve model resolution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surface%20wave%20inversion" title="surface wave inversion">surface wave inversion</a>, <a href="https://publications.waset.org/abstracts/search?q=waveform%20separation" title=" waveform separation"> waveform separation</a>, <a href="https://publications.waset.org/abstracts/search?q=love%20waves" title=" love waves"> love waves</a>, <a href="https://publications.waset.org/abstracts/search?q=higher-mode%20interference" title=" higher-mode interference"> higher-mode interference</a> </p> <a href="https://publications.waset.org/abstracts/164271/two-step-inversion-method-for-multi-mode-surface-waves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164271.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1845</span> Effects of Charge Fluctuating Positive Dust on Linear Dust-Acoustic Waves </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanjit%20Kumar%20Paul">Sanjit Kumar Paul</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Mamun"> A. A. Mamun</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Amin"> M. R. Amin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Linear propagation of the dust-acoustic wave in a dusty plasma consisting of Boltzmann distributed electrons and ions and mobile charge fluctuating positive dust grains has been investigated by employing the reductive perturbation method. It has been shown that the dust charge fluctuation is a source of dissipation and its responsible for the formation of the dust-acoustic waves in such a dusty plasma. The basic features of such dust-acoustic waves have been identified. It has been proposed to design a new laboratory experiment which will be able to identify the basic features of the dust-acoustic waves predicted in this theoretical investigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dust%20acoustic%20waves" title="dust acoustic waves">dust acoustic waves</a>, <a href="https://publications.waset.org/abstracts/search?q=dusty%20plasma" title=" dusty plasma"> dusty plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=Boltzmann%20distributed%20electrons" title=" Boltzmann distributed electrons"> Boltzmann distributed electrons</a>, <a href="https://publications.waset.org/abstracts/search?q=charge%20fluctuation" title=" charge fluctuation"> charge fluctuation</a> </p> <a href="https://publications.waset.org/abstracts/8380/effects-of-charge-fluctuating-positive-dust-on-linear-dust-acoustic-waves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8380.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">639</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1844</span> Patent on Brian: Brain Waves Stimulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jalil%20Qoulizadeh">Jalil Qoulizadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Sadeghi"> Hasan Sadeghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Brain waves are electrical wave patterns that are produced in the human brain. Knowing these waves and activating them can have a positive effect on brain function and ultimately create an ideal life. The brain has the ability to produce waves from 0.1 to above 65 Hz. (The Beta One device produces exactly these waves) This is because it is said that the waves produced by the Beta One device exactly match the waves produced by the brain. The function and method of this device is based on the magnetic stimulation of the brain. The technology used in the design and producƟon of this device works in a way to strengthen and improve the frequencies of brain waves with a pre-defined algorithm according to the type of requested function, so that the person can access the expected functions in life activities. to perform better. The effect of this field on neurons and their stimulation: In order to evaluate the effect of this field created by the device, on the neurons, the main tests are by conducting electroencephalography before and after stimulation and comparing these two baselines by qEEG or quantitative electroencephalography method using paired t-test in 39 subjects. It confirms the significant effect of this field on the change of electrical activity recorded after 30 minutes of stimulation in all subjects. The Beta One device is able to induce the appropriate pattern of the expected functions in a soft and effective way to the brain in a healthy and effective way (exactly in accordance with the harmony of brain waves), the process of brain activities first to a normal state and then to a powerful one. Production of inexpensive neuroscience equipment (compared to existing rTMS equipment) Magnetic brain stimulation for clinics - homes - factories and companies - professional sports clubs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stimulation" title="stimulation">stimulation</a>, <a href="https://publications.waset.org/abstracts/search?q=brain" title=" brain"> brain</a>, <a href="https://publications.waset.org/abstracts/search?q=waves" title=" waves"> waves</a>, <a href="https://publications.waset.org/abstracts/search?q=betaOne" title=" betaOne"> betaOne</a> </p> <a href="https://publications.waset.org/abstracts/160354/patent-on-brian-brain-waves-stimulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160354.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1843</span> Characterization of Monoids by a New Generalization of Flatness Property</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahdiyeh%20Abbasi">Mahdiyeh Abbasi</a>, <a href="https://publications.waset.org/abstracts/search?q=Akbar%20Golchin"> Akbar Golchin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is well-known that, using principal weak flatness property, some important monoids are characterized, such as regular monoids, left almost regular monoids, and so on. In this article, we define a generalization of principal weak flatness called GP-Flatness, and will characterize monoids by this property of their right (Rees factor) acts. Also we investigate new classes of monoids called generally regular monoids and generally left almost regular monoids. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=G-left%20stabilizing" title="G-left stabilizing">G-left stabilizing</a>, <a href="https://publications.waset.org/abstracts/search?q=GP-flatness" title=" GP-flatness"> GP-flatness</a>, <a href="https://publications.waset.org/abstracts/search?q=generally%20regular" title=" generally regular"> generally regular</a>, <a href="https://publications.waset.org/abstracts/search?q=principal%20weak%20flatness" title=" principal weak flatness"> principal weak flatness</a> </p> <a href="https://publications.waset.org/abstracts/36458/characterization-of-monoids-by-a-new-generalization-of-flatness-property" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36458.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1842</span> Model of Cosserat Continuum Dispersion in a Half-Space with a Scatterer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Francisco%20Velez">Francisco Velez</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20David%20Gomez"> Juan David Gomez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dispersion effects on the Scattering for a semicircular canyon in a micropolar continuum are analyzed, by using a computational finite element scheme. The presence of microrotational waves and the dispersive SV waves affects the propagation of elastic waves. Here, a contrast with the classic model is presented, and the dependence with the micropolar parameters is studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=scattering" title="scattering">scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=semicircular%20canyon" title=" semicircular canyon"> semicircular canyon</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20dispersion" title=" wave dispersion"> wave dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=micropolar%20medium" title=" micropolar medium"> micropolar medium</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM%20modeling" title=" FEM modeling"> FEM modeling</a> </p> <a href="https://publications.waset.org/abstracts/11667/model-of-cosserat-continuum-dispersion-in-a-half-space-with-a-scatterer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11667.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">544</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1841</span> Numerical Simulation of a Point Absorber Wave Energy Converter Using OpenFOAM in Indian Scenario</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pooja%20Verma">Pooja Verma</a>, <a href="https://publications.waset.org/abstracts/search?q=Sumana%20Ghosh"> Sumana Ghosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is a growing need for alternative way of power generation worldwide. The reason can be attributed to limited resources of fossil fuels, environmental pollution, increasing cost of conventional fuels, and lower efficiency of conversion of energy in existing systems. In this context, one of the potential alternatives for power generation is wave energy. However, it is difficult to estimate the amount of electrical energy generation in an irregular sea condition by experiment and or analytical methods. Therefore in this work, a numerical wave tank is developed using the computational fluid dynamics software Open FOAM. In this software a specific utility known as waves2Foam utility is being used to carry out the simulation work. The computational domain is a tank of dimension: 5m*1.5m*1m with a floating object of dimension: 0.5m*0.2m*0.2m. Regular waves are generated at the inlet of the wave tank according to Stokes second order theory. The main objective of the present study is to validate the numerical model against existing experimental data. It shows a good matching with the existing experimental data of floater displacement. Later the model is exploited to estimate energy extraction due to the movement of such a point absorber in real sea conditions. Scale down the wave properties like wave height, wave length, etc. are used as input parameters. Seasonal variations are also considered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=OpenFOAM" title="OpenFOAM">OpenFOAM</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20wave%20tank" title=" numerical wave tank"> numerical wave tank</a>, <a href="https://publications.waset.org/abstracts/search?q=regular%20waves" title=" regular waves"> regular waves</a>, <a href="https://publications.waset.org/abstracts/search?q=floating%20object" title=" floating object"> floating object</a>, <a href="https://publications.waset.org/abstracts/search?q=point%20absorber" title=" point absorber"> point absorber</a> </p> <a href="https://publications.waset.org/abstracts/80469/numerical-simulation-of-a-point-absorber-wave-energy-converter-using-openfoam-in-indian-scenario" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1840</span> Investigating Viscous Surface Wave Propagation Modes in a Finite Depth Fluid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arash%20Ghahraman">Arash Ghahraman</a>, <a href="https://publications.waset.org/abstracts/search?q=Gyula%20Bene"> Gyula Bene</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The object of this study is to investigate the effect of viscosity on the propagation of free-surface waves in an incompressible viscous fluid layer of arbitrary depth. While we provide a more detailed study of properties of linear surface waves, the description of fully nonlinear waves in terms of KdV-like (Korteweg-de Vries) equations is discussed. In the linear case, we find that in shallow enough fluids, no surface waves can propagate. Even in any thicker fluid layers, propagation of very short and very long waves is forbidden. When wave propagation is possible, only a single propagating mode exists for any given horizontal wave number. The numerical results show that there can be two types of non-propagating modes. One type is always present, and there exist still infinitely many of such modes at the same parameters. In contrast, there can be zero, one or two modes belonging to the other type. Another significant feature is that KdV-like equations. They describe propagating nonlinear viscous surface waves. Since viscosity gives rise to a new wavenumber that cannot be small at the same time as the original one, these equations may not exist. Nonetheless, we propose a reasonable nonlinear description in terms of 1+1 variate functions that make possible successive approximations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=free%20surface%20wave" title="free surface wave">free surface wave</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20waves" title=" water waves"> water waves</a>, <a href="https://publications.waset.org/abstracts/search?q=KdV%20equation" title=" KdV equation"> KdV equation</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity"> viscosity</a> </p> <a href="https://publications.waset.org/abstracts/112217/investigating-viscous-surface-wave-propagation-modes-in-a-finite-depth-fluid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112217.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1839</span> Lamb Waves in Plates Subjected to Uniaxial Stresses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Munawwar%20Mohabuth">Munawwar Mohabuth</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrei%20Kotousov"> Andrei Kotousov</a>, <a href="https://publications.waset.org/abstracts/search?q=Ching-Tai%20Ng"> Ching-Tai Ng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> On the basis of the finite deformation theory, the effect of homogeneous stress on the propagation of Lamb waves in an initially isotropic hyperelastic plate is analysed. The equations governing the propagation of small amplitude waves in the prestressed plate are derived using the theory of small deformations superimposed on large deformations. By enforcing traction free boundary conditions at the upper and lower surfaces of the plate, acoustoelastic dispersion equations for Lamb wave propagation are obtained, which are solved numerically. Results are given for an aluminum plate subjected to a range of applied stresses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustoelasticity" title="acoustoelasticity">acoustoelasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=dispersion" title=" dispersion"> dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20deformation" title=" finite deformation"> finite deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=lamb%20waves" title=" lamb waves"> lamb waves</a> </p> <a href="https://publications.waset.org/abstracts/32316/lamb-waves-in-plates-subjected-to-uniaxial-stresses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32316.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">468</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1838</span> Analysis of Seismic Waves Generated by Blasting Operations and their Response on Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Ziaran">S. Ziaran</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Musil"> M. Musil</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Cekan"> M. Cekan</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Chlebo"> O. Chlebo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper analyzes the response of buildings and industrially structures on seismic waves (low frequency mechanical vibration) generated by blasting operations. The principles of seismic analysis can be applied for different kinds of excitation such as: earthquakes, wind, explosions, random excitation from local transportation, periodic excitation from large rotating and/or machines with reciprocating motion, metal forming processes such as forging, shearing and stamping, chemical reactions, construction and earth moving work, and other strong deterministic and random energy sources caused by human activities. The article deals with the response of seismic, low frequency, mechanical vibrations generated by nearby blasting operations on a residential home. The goal was to determine the fundamental natural frequencies of the measured structure; therefore it is important to determine the resonant frequencies to design a suitable modal damping. The article also analyzes the package of seismic waves generated by blasting (Primary waves – P-waves and Secondary waves S-waves) and investigated the transfer regions. For the detection of seismic waves resulting from an explosion, the Fast Fourier Transform (FFT) and modal analysis, in the frequency domain, is used and the signal was acquired and analyzed also in the time domain. In the conclusions the measured results of seismic waves caused by blasting in a nearby quarry and its effect on a nearby structure (house) is analyzed. The response on the house, including the fundamental natural frequency and possible fatigue damage is also assessed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20structure" title="building structure">building structure</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20waves" title=" seismic waves"> seismic waves</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20analysis" title=" spectral analysis"> spectral analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20response" title=" structural response"> structural response</a> </p> <a href="https://publications.waset.org/abstracts/2072/analysis-of-seismic-waves-generated-by-blasting-operations-and-their-response-on-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2072.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1837</span> Effect of Runup over a Vertical Pile Supported Caisson Breakwater and Quarter Circle Pile Supported Caisson Breakwater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20J.%20Jemi%20Jeya">T. J. Jemi Jeya</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Sriram"> V. Sriram</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pile Supported Caisson breakwater is an ecofriendly breakwater very useful in coastal zone protection. The model is developed by considering the advantages of both caisson breakwater and pile supported breakwater, where the top portion is a vertical or quarter circle caisson and the bottom portion consists of a pile supported breakwater defined as Vertical Pile Supported Breakwater (VPSCB) and Quarter-circle Pile Supported Breakwater (QPSCB). The study mainly focuses on comparison of run up over VPSCB and QPSCB under oblique waves. The experiments are carried out in a shallow wave basin under different water depths (d = 0.5 m &amp; 0.55 m) and under different oblique regular waves (0<sup>0</sup>, 15<sup>0</sup>, 30<sup>0</sup>). The run up over the surface is measured by placing two run up probes over the surface at 0.3 m on both sides from the centre of the model. The results show that the non-dimensional shoreward run up shows slight decrease with respect to increase in angle of wave attack. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Caisson%20breakwater" title="Caisson breakwater">Caisson breakwater</a>, <a href="https://publications.waset.org/abstracts/search?q=pile%20supported%20breakwater" title=" pile supported breakwater"> pile supported breakwater</a>, <a href="https://publications.waset.org/abstracts/search?q=quarter%20circle%20breakwater" title=" quarter circle breakwater"> quarter circle breakwater</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20breakwater" title=" vertical breakwater"> vertical breakwater</a> </p> <a href="https://publications.waset.org/abstracts/111802/effect-of-runup-over-a-vertical-pile-supported-caisson-breakwater-and-quarter-circle-pile-supported-caisson-breakwater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111802.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1836</span> Observations of Magnetospheric Ulf Waves in Connection to the Kelvin-Helmholtz Instability at Mercury</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elisabet%20Liljeblad">Elisabet Liljeblad</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomas%20Karlsson"> Tomas Karlsson</a>, <a href="https://publications.waset.org/abstracts/search?q=Torbjorn%20Sundberg"> Torbjorn Sundberg</a>, <a href="https://publications.waset.org/abstracts/search?q=Anita%20Kullen"> Anita Kullen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The magnetospheric magnetic field data from the MESSENGER spacecraft is investigated to establish the presence of ultra-low frequency (ULF) waves in connection to 131 previously observed nonlinear Kelvin-Helmholtz waves (KHWs) at Mercury. Distinct ULF signatures are detected in 44 out of the 131 magnetospheric traversals prior to or after observing a KHW. In particular, 39 of these 44 ULF events are highly coherent at the frequency of maximum power spectral density. The waves observed at the dayside, which appears mainly at the duskside and naturally following the KHW occurrence asymmetry, are significantly different to the events behind the dawn-dusk terminator and have the following distinct wave characteristics: they oscillate clearly in the perpendicular (azimuthal) direction to the mean magnetic field with a wave normal angle more in the parallel than the perpendicular direction, increase in absolute ellipticity with distance from noon, are almost exclusively right-hand polarized, and are observed mainly for frequencies in the range 0.02-0.04 Hz. These results indicate that the dayside ULF waves are likely to shear Alfvén waves driven by KHWs at the magnetopause, which in turn manifests the importance of the Kelvin-Helmholtz instability in terms of mass transport throughout the Mercury magnetosphere. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultra-low%20frequency%20waves" title="ultra-low frequency waves">ultra-low frequency waves</a>, <a href="https://publications.waset.org/abstracts/search?q=kelvin-Helmholtz%20instability" title=" kelvin-Helmholtz instability"> kelvin-Helmholtz instability</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetospheric%20processes" title=" magnetospheric processes"> magnetospheric processes</a>, <a href="https://publications.waset.org/abstracts/search?q=mercury" title=" mercury"> mercury</a>, <a href="https://publications.waset.org/abstracts/search?q=messenger" title=" messenger"> messenger</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20and%20momentum%20transfer%20in%20planetary%20environments" title=" energy and momentum transfer in planetary environments"> energy and momentum transfer in planetary environments</a> </p> <a href="https://publications.waset.org/abstracts/51968/observations-of-magnetospheric-ulf-waves-in-connection-to-the-kelvin-helmholtz-instability-at-mercury" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51968.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1835</span> Using Probabilistic Neural Network (PNN) for Extracting Acoustic Microwaves (Bulk Acoustic Waves) in Piezoelectric Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hafdaoui%20Hichem">Hafdaoui Hichem</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehadjebia%20Cherifa"> Mehadjebia Cherifa</a>, <a href="https://publications.waset.org/abstracts/search?q=Benatia%20Djamel"> Benatia Djamel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we propose a new method for Bulk detection of an acoustic microwave signal during the propagation of acoustic microwaves in a piezoelectric substrate (Lithium Niobate LiNbO3). We have used the classification by probabilistic neural network (PNN) as a means of numerical analysis in which we classify all the values of the real part and the imaginary part of the coefficient attenuation with the acoustic velocity in order to build a model from which we note the Bulk waves easily. These singularities inform us of presence of Bulk waves in piezoelectric materials. By which we obtain accurate values for each of the coefficient attenuation and acoustic velocity for Bulk waves. This study will be very interesting in modeling and realization of acoustic microwaves devices (ultrasound) based on the propagation of acoustic microwaves. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=piezoelectric%20material" title="piezoelectric material">piezoelectric material</a>, <a href="https://publications.waset.org/abstracts/search?q=probabilistic%20neural%20network%20%28PNN%29" title=" probabilistic neural network (PNN)"> probabilistic neural network (PNN)</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/abstracts/search?q=acoustic%20microwaves" title=" acoustic microwaves"> acoustic microwaves</a>, <a href="https://publications.waset.org/abstracts/search?q=bulk%20waves" title=" bulk waves"> bulk waves</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20attenuation%20coefficient" title=" the attenuation coefficient"> the attenuation coefficient</a> </p> <a href="https://publications.waset.org/abstracts/43264/using-probabilistic-neural-network-pnn-for-extracting-acoustic-microwaves-bulk-acoustic-waves-in-piezoelectric-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43264.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1834</span> A Review on the Hydrodynamic Characteristics of Caisson Breakwater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20J.%20Jemi%20Jeya">T. J. Jemi Jeya</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Sriram"> V. Sriram</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Sundar"> V. Sundar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Caisson breakwaters are gravity structures resting on the seabed and piercing the free surface sunk in coastal waters to break the energy in the waves and protect the water area behind them by creating tranquil conditions on its lee side for the purpose of berthing of vessels. A number of formula and methodologies have been proposed for calculating the forces on caissons due to waves, most of which being evolved through intensive laboratory and field measurements. The reflection of waves from such breakwaters often generates clapotis, leading to an amplification of waves in its vicinity. This result in increased pressures and forces, forcing researchers to modify its seaside shape as well as placing dissipaters in the form of screens. Apart from the above aspects, this paper also discusses the other important phenomena, like overtopping that dictates the stability of caisson breakwaters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=caisson%20breakwater" title="caisson breakwater">caisson breakwater</a>, <a href="https://publications.waset.org/abstracts/search?q=Jarlan%20type%20breakwater" title=" Jarlan type breakwater"> Jarlan type breakwater</a>, <a href="https://publications.waset.org/abstracts/search?q=screens" title=" screens"> screens</a>, <a href="https://publications.waset.org/abstracts/search?q=circular%20breakwater" title=" circular breakwater"> circular breakwater</a> </p> <a href="https://publications.waset.org/abstracts/35150/a-review-on-the-hydrodynamic-characteristics-of-caisson-breakwater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35150.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1833</span> Exposure to Radio Frequency Waves of Mobile Phone and Temperature Changes of Brain Tissue</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farhad%20Forouharmajd">Farhad Forouharmajd</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Ebrahimi"> Hossein Ebrahimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Siamak%20Pourabdian"> Siamak Pourabdian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Prevalent use of cell phones (mobile phones) has led to increasing worries about the effect of radiofrequency waves on the physiology of human body. This study was done to determine different reactions of the temperatures in different depths of brain tissue in confronting with radiofrequency waves of cell phones. Methodology: This study was an empirical research. A cow's brain tissue was placed in a compartment and the effects of radiofrequency waves of the cell phone was analyzed during confrontation and after confrontation, in three different depths of 2, 12, and 22 mm of the tissue, in 4 mm and 4 cm distances of the tissue to a cell phone, for 15 min. Lutron thermometer was used to measure the tissue temperatures. Data analysis was done by Lutron software. Findings: The rate of increasing the temperature at the depth of 22 mm was higher than 2 mm and 12mm depths, during confrontation of the brain tissue at the distance of 4 mm with the cell phone, such that the tissue temperatures at 2, 12, and 22 mm depths increased by 0.29 ˚C, 0.31 ˚C, and 0.37 ˚C, respectively, relative to the base temperature (tissue temperature before confrontation). Moreover, the temperature of brain tissue at the distance of 4 cm by increasing the tissue depth was more than other depths. Increasing the tissue temperature also existed by increasing the brain tissue depth after the confrontation with the cell phone. The temperature of the 22 mm depth increased with higher speed at the time confrontation. Conclusion: Not only radiofrequency waves of cell phones increased the tissue temperature in all the depths of the brain tissue, but also the temperature due to radiofrequency waves of the cell phone was more at the depths higher than 22 mm of the tissue. In fact, the thermal effect of radiofrequency waves was higher in higher depths. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mobile%20phone" title="mobile phone">mobile phone</a>, <a href="https://publications.waset.org/abstracts/search?q=radio%20frequency%20waves" title=" radio frequency waves"> radio frequency waves</a>, <a href="https://publications.waset.org/abstracts/search?q=brain%20tissue" title=" brain tissue"> brain tissue</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a> </p> <a href="https://publications.waset.org/abstracts/98613/exposure-to-radio-frequency-waves-of-mobile-phone-and-temperature-changes-of-brain-tissue" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98613.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1832</span> Using Peer Instruction in Physics of Waves for Pre-Service Science Teacher</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sumalee%20Tientongdee">Sumalee Tientongdee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, it was aimed to investigate Physics achievement of the pre-service science teacher studying in general science program at Suan Sunandha Rajabhat University, Bangkok, Thailand. The program has provided the new curriculum that focuses on 21st-century skills development. Active learning approaches are used to teach in all subjects. One of the active learning approaches Peer Instruction, or PI was used in this study to teach physics of waves as a compulsory course. It was conducted in the second semester from January to May of 2017. The concept test was given to evaluate pre-service science teachers’ understanding in concept of waves. Problem-solving assessment form was used to evaluate their problem-solving skill. The results indicated that after they had learned through Peer Instruction in physics of waves course, their concepts in physics of waves was significantly higher at 0.05 confident levels. Their problem-solving skill from the whole class was at the highest level. Based on the group interview on the opinions of using Peer Instruction in Physics class, they mostly felt that it was very useful and helping them understand more about physics, especially for female students. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=peer%20instruction" title="peer instruction">peer instruction</a>, <a href="https://publications.waset.org/abstracts/search?q=physics%20of%20waves" title=" physics of waves"> physics of waves</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-service%20science%20teacher" title=" pre-service science teacher"> pre-service science teacher</a>, <a href="https://publications.waset.org/abstracts/search?q=Suan%20Sunandha%20Rajabhat%20university" title=" Suan Sunandha Rajabhat university"> Suan Sunandha Rajabhat university</a> </p> <a href="https://publications.waset.org/abstracts/83122/using-peer-instruction-in-physics-of-waves-for-pre-service-science-teacher" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83122.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1831</span> Existence and Stability of Periodic Traveling Waves in a Bistable Excitable System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Osman%20Gani">M. Osman Gani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ferdows"> M. Ferdows</a>, <a href="https://publications.waset.org/abstracts/search?q=Toshiyuki%20Ogawa"> Toshiyuki Ogawa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we proposed a modified FHN-type reaction-diffusion system for a bistable excitable system by adding a scaled function obtained from a given function. We study the existence and the stability of the periodic traveling waves (or wavetrains) for the FitzHugh-Nagumo (FHN) system and the modified one and compare the results. The stability results of the periodic traveling waves (PTWs) indicate that most of the solutions in the fast family of the PTWs are stable for the FitzHugh-Nagumo equations. The instability occurs only in the waves having smaller periods. However, the smaller period waves are always unstable. The fast family with sufficiently large periods is always stable in FHN model. We find that the oscillation of pulse widths is absent in the standard FHN model. That motivates us to study the PTWs in the proposed FHN-type reaction-diffusion system for the bistable excitable media. A good agreement is found between the solutions of the traveling wave ODEs and the corresponding whole PDE simulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bistable%20system" title="bistable system">bistable system</a>, <a href="https://publications.waset.org/abstracts/search?q=Eckhaus%20bifurcation" title=" Eckhaus bifurcation"> Eckhaus bifurcation</a>, <a href="https://publications.waset.org/abstracts/search?q=excitable%20media" title=" excitable media"> excitable media</a>, <a href="https://publications.waset.org/abstracts/search?q=FitzHugh-Nagumo%20model" title=" FitzHugh-Nagumo model"> FitzHugh-Nagumo model</a>, <a href="https://publications.waset.org/abstracts/search?q=periodic%20traveling%20waves" title=" periodic traveling waves"> periodic traveling waves</a> </p> <a href="https://publications.waset.org/abstracts/85926/existence-and-stability-of-periodic-traveling-waves-in-a-bistable-excitable-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85926.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1830</span> Restrictedly-Regular Map Representation of n-Dimensional Abstract Polytopes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Antonio%20Breda%20d%E2%80%99Azevedo">Antonio Breda d’Azevedo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Regularity has often been present in the form of regular polyhedra or tessellations; classical examples are the nine regular polyhedra consisting of the five Platonic solids (regular convex polyhedra) and the four Kleper-Poinsot polyhedra. These polytopes can be seen as regular maps. Maps are cellular embeddings of graphs (with possibly multiple edges, loops or dangling edges) on compact connected (closed) surfaces with or without boundary. The n-dimensional abstract polytopes, particularly the regular ones, have gained popularity over recent years. The main focus of research has been their symmetries and regularity. Planification of polyhedra helps its spatial construction, yet it destroys its symmetries. To our knowledge there is no &ldquo;planification&rdquo; for n-dimensional polytopes. However we show that it is possible to make a &ldquo;surfacification&rdquo; of the n-dimensional polytope, that is, it is possible to construct a restrictedly-marked map representation of the abstract polytope on some surface that describes its combinatorial structures as well as all of its symmetries. We also show that there are infinitely many ways to do this; yet there is one that is more natural that describes reflections on the sides ((n&minus;1)-faces) of n-simplices with reflections on the sides of n-polygons. We illustrate this construction with the 4-tetrahedron (a regular 4-polytope with automorphism group of size 120) and the 4-cube (a regular 4-polytope with automorphism group of size 384). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=abstract%20polytope" title="abstract polytope">abstract polytope</a>, <a href="https://publications.waset.org/abstracts/search?q=automorphism%20group" title=" automorphism group"> automorphism group</a>, <a href="https://publications.waset.org/abstracts/search?q=N-simplicies" title=" N-simplicies"> N-simplicies</a>, <a href="https://publications.waset.org/abstracts/search?q=symmetry" title=" symmetry"> symmetry</a> </p> <a href="https://publications.waset.org/abstracts/95439/restrictedly-regular-map-representation-of-n-dimensional-abstract-polytopes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95439.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1829</span> Discussion on Dispersion Curves of Non-penetrable Soils from in-Situ Seismic Dilatometer Measurements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Angelo%20Aloisio%20Dag">Angelo Aloisio Dag</a>, <a href="https://publications.waset.org/abstracts/search?q=Pasquale%20Pasca"> Pasquale Pasca</a>, <a href="https://publications.waset.org/abstracts/search?q=Massimo%20Fragiacomo"> Massimo Fragiacomo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ferdinando%20Totani"> Ferdinando Totani</a>, <a href="https://publications.waset.org/abstracts/search?q=Gianfranco%20Totani"> Gianfranco Totani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The estimate of the velocity of shear waves (Vs) is essential in seismic engineering to characterize the dynamic response of soils. There are various direct methods to estimate the Vs. The authors report the results of site characterization in Macerata, where they measured the Vs using the seismic dilatometer in a 100m deep borehole. The standard Vs estimation originates from the cross-correlation between the signals acquired by two geophones at increasing depths. This paper focuses on the estimate of the dependence of Vs on the wavenumber. The dispersion curves reveal an unexpected hyperbolic dispersion curve typical of Lamb waves. Interestingly, the contribution of Lamb waves may be notable up to 100m depth. The amplitude of surface waves decrease rapidly with depth: still, their influence may be essential up to depths considered unusual for standard geotechnical investigations, where their effect is generally neglected. Accordingly, these waves may bias the outcomes of the standard Vs estimations, which ignore frequency-dependent phenomena. The paper proposes an enhancement of the accepted procedure to estimate Vs and addresses the importance of Lamb waves in soil characterization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dispersion%20curve" title="dispersion curve">dispersion curve</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20dilatometer" title=" seismic dilatometer"> seismic dilatometer</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20wave" title=" shear wave"> shear wave</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20mechanics" title=" soil mechanics"> soil mechanics</a> </p> <a href="https://publications.waset.org/abstracts/132758/discussion-on-dispersion-curves-of-non-penetrable-soils-from-in-situ-seismic-dilatometer-measurements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132758.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=regular%20waves&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=regular%20waves&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=regular%20waves&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=regular%20waves&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=regular%20waves&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=regular%20waves&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=regular%20waves&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=regular%20waves&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=regular%20waves&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=regular%20waves&amp;page=61">61</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=regular%20waves&amp;page=62">62</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=regular%20waves&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10