CINXE.COM

Search results for: Jatropha curcas

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Jatropha curcas</title> <meta name="description" content="Search results for: Jatropha curcas"> <meta name="keywords" content="Jatropha curcas"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Jatropha curcas" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Jatropha curcas"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 51</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Jatropha curcas</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">51</span> Spatial Analysis the Suitability Area for Jatropha curcas L. as an Alternative to Biodiesel in Central Kalimantan, Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rizki%20Oktariza">Rizki Oktariza</a>, <a href="https://publications.waset.org/abstracts/search?q=Sri%20Fauza%20Pratiwi"> Sri Fauza Pratiwi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hilza%20Ikhsanti"> Hilza Ikhsanti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Human depends on fossil fuels as the bigger sources of considerable energy in all sectors. Based on that cases, we are needed alternative energy to supplies needed for fuel, one of them by using energy fuel from the biodiesel. The raw materials that can be used for producing the biodiesel energy are Jatropha curcas L. In Indonesia, the availability of land for the development of the Jatropha curcas L which has very appropriate Indonesia reached 14.2 million hectares, with an area of suitable in Kalimantan around 10 million hectares. In Central Kalimantan, as one of the provinces of Kalimantan, has considerable potential planting Jatropha curcas L because of the physical condition and have a largest of the agricultural land. To support the potential of Jatropha curcas L in Central Kalimantan, spatial analysis is needed to find out the appropriate areas for Jatropha curcas L growing land. The suitability of region is influenced by several variables i.e., rainfall, the slope of the land, the surface temperature and the altitude of a region. The compliance of criteria are divided into four criteria: high suitable (S1), moderately suitable (S2), marginally suitable (S3), not suitable (N). The suitability of the region is based on these variables and made an overlay analysis of these variables by using Geographic Information System. Based on this overlay analysis will results a map of the suitability area for planting Jatropha curcas L, which is distribution criteria is high suitable (S1) of 213,245 ha, moderately suitable (S2) of 14,389,353 ha, marginally suitable (S3) 360,357 ha, not suitable (N) 0.020 ha. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geographic%20information%20system" title="geographic information system">geographic information system</a>, <a href="https://publications.waset.org/abstracts/search?q=Jatropha%20curcas%20L." title=" Jatropha curcas L."> Jatropha curcas L.</a>, <a href="https://publications.waset.org/abstracts/search?q=overlay" title=" overlay"> overlay</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20suitable%20area" title=" the suitable area"> the suitable area</a> </p> <a href="https://publications.waset.org/abstracts/86890/spatial-analysis-the-suitability-area-for-jatropha-curcas-l-as-an-alternative-to-biodiesel-in-central-kalimantan-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86890.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50</span> Newly Developed Epoxy-Polyol and Epoxy- Polyurethane from Renewable Resources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akintayo%20Emmanuel%20Temitope">Akintayo Emmanuel Temitope</a>, <a href="https://publications.waset.org/abstracts/search?q=Akintayo%20Cecilia%20Olufunke"> Akintayo Cecilia Olufunke</a>, <a href="https://publications.waset.org/abstracts/search?q=Ziegler%20Thomas"> Ziegler Thomas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bio-polyols are important components in polyurethane industries. The preliminary studies into the synthesis of bio-polyol products (epoxy-polyol and epoxyl-polyurethanes) from Jatropha curcas were investigated. The reactions were followed by both infrared and nuclear magnetic resonance. Physico-chemical characterisation of the samples for iodine value (IV), acid value (AV), saponification value (SV) and hydroxyl value (HV) were carried out. Thermal transitions of the products were studied by heating 5 mg of the sample from 20ºC to 800ºC and then cooling down to -500ºC on a differential scanning calorimeter (DSC). The preparation of epoxylpolyol and polyurethane from Jatropha curcas oil was smooth and efficient. Results of film and solubility properties revealed that coatings of Jatropha curcas epoxy-polyurethanes performed better with increased loading of toluylene 2, 4-diisocyanate (TDI) up to 2 wt% while their solvent resistance decreased beyond a TDI loading of 1.2 wt%. DSC analysis shows the epoxy-polyurethane to be less stable compared to the epoxy-polyol. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=synthesis" title="synthesis">synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy-polyol" title=" epoxy-polyol"> epoxy-polyol</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy-polyurethane" title=" epoxy-polyurethane"> epoxy-polyurethane</a>, <a href="https://publications.waset.org/abstracts/search?q=jatropha%20curcas%20oil" title=" jatropha curcas oil"> jatropha curcas oil</a> </p> <a href="https://publications.waset.org/abstracts/6080/newly-developed-epoxy-polyol-and-epoxy-polyurethane-from-renewable-resources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6080.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">49</span> Spectroscopy Study of Jatropha curcas Seed Oil for Pharmaceutical Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bashar%20Mudhaffar%20Abdullah">Bashar Mudhaffar Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Hasniza%20Zaman%20Huri"> Hasniza Zaman Huri</a>, <a href="https://publications.waset.org/abstracts/search?q=Nany%20Hairunisa"> Nany Hairunisa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was carried out to determine the thermal properties and spectroscopy study of Malaysian Jatropha curcas seed oil. The J. curcas seed oil physicochemical properties such as free fatty acid (FFA %), acid value, saponification value, iodine value, unsaponifiable matter, and viscosity (cp) gave values of 1.89±0.10%, 3.76±0.07, 203.36±0.36 mg/g, 4.90±0.25, 1.76±0.03%, and 32, respectively. Gas chromatography (GC) was used to determine the fatty acids (FAs) composition. J. curcas seed oil is consisting of saturated FAs (19.55%) such as palmitic (13.19%), palmitoleic (0.40%), and stearic (6.36%) acids and unsaturated FAs (80.42%) such as oleic (43.32%) and linoleic (36.70%) acids. The thermal properties using differential scanning calorimetry (DSC) showed that crystallized TAG was observed at -6.79°C. The melting curves displayed three major exothermic regions of J. curcas seed oil, monounsaturated (lower-temperature peak) at -31.69°C, di-unsaturated (medium temperature peak) at -20.23°C and tri-unsaturated (higher temperature peak) at -12.72°C. The results of this study showed that the J. curcas seed oil is a plausible source of polyunsaturated fatty acid (PUFA) to be developed in the future for pharmaceutical applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jatropha%20curcas%20seed%20oil" title="Jatropha curcas seed oil">Jatropha curcas seed oil</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20properties" title=" thermal properties"> thermal properties</a>, <a href="https://publications.waset.org/abstracts/search?q=crystallization" title=" crystallization"> crystallization</a>, <a href="https://publications.waset.org/abstracts/search?q=melting" title=" melting"> melting</a>, <a href="https://publications.waset.org/abstracts/search?q=spectroscopy" title=" spectroscopy"> spectroscopy</a> </p> <a href="https://publications.waset.org/abstracts/18315/spectroscopy-study-of-jatropha-curcas-seed-oil-for-pharmaceutical-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18315.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">478</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">48</span> Effect of Organic and Inorganic Fertilizers on the Growth and Yield of Physic Nut (Jatropha curcas)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oliver%20Echezona%20Ngwu">Oliver Echezona Ngwu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research was conducted in 2011 cropping season at the Teaching and Research farm of the Faculty of Agriculture and Natural Resources Management, Enugu State University of Science and Technology, Enugu, Nigeria to study the effect of organic and inorganic fertilizers on the growth and yield of physic Nut (Jatropha curcas). There were five treatments namely, control, (no application of treatment), NPK 20:10:10, NPK 15:15;15, poultry droppings and goat dung. The treatments were laid out in a Randomized complete Block Design (RCBD) with five replications. The total land area used was 228m2 (19x12m) while the plot size was 3mx2 (6m2). The growth parameters measured were plant height, number of leaves, and leaf area, index (LAI). The results obtained showed that there were significant differences at P=0.05 among the different treatments in 30, to and 90 DAP. Based on the results T4 (poultry droppings) had higher effect at P=0.05 at 30, 60, 90 DAP than the other treatments when compared and is hereby recommended as the best type of fertilizer for the optimum growth and production of physic Nut (Jatropha Curcas) in South Eastern Nigeria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organic" title="organic">organic</a>, <a href="https://publications.waset.org/abstracts/search?q=inorganic%20fertilizers" title=" inorganic fertilizers"> inorganic fertilizers</a>, <a href="https://publications.waset.org/abstracts/search?q=growth" title=" growth"> growth</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a>, <a href="https://publications.waset.org/abstracts/search?q=Jatropha%20curcas" title=" Jatropha curcas"> Jatropha curcas</a> </p> <a href="https://publications.waset.org/abstracts/43908/effect-of-organic-and-inorganic-fertilizers-on-the-growth-and-yield-of-physic-nut-jatropha-curcas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43908.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">47</span> Effects of Organic Manure on the Growth of Jatropha curcas in Kogi State North Central Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20O.%20Amhakhian">S. O. Amhakhian</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Idenyi"> M. Idenyi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A pot experiment was conducted to assess the effects of organic manure on the growth of Jatropha curcas L seedlings at the Faculty of Agriculture, Kogi State University, Anyigba. There were seven treatments, namely, three (3) levels of poultry droppings (PD) (20g, 40g and 60g/kg soil) designated as T1, T2 and T3 respectively, three (3) levels of solid cattle dung (CD) (40g, 80g and 120g/kg soil designated as T4, T5, and T6) respectively, and control (no organic manure) designated as T7. All the treatments were replicated three (3) times. Jathopha curcas L seeds were sown into the polythene pot and observed for the period of six (6) weeks. Growth parameters measured were plant height, leaf count, stem girth, numbers of branches, and fresh weight. Mean separation using F-LSD0.05 showed that 120g cow dung/kg soil (T6) gave optional level of organic manure required for Jatropha curcas throughout the growth period of the seedlings. All the treatments having organic manure were significantly better than the control (P < 0.05) except at two weeks after planting where all the treatments gave the same number of leaves and at the sixth week after planting where only 120g cow dung/kg soil (T6) showed significant difference (P <0.05) in the number of branches. As a result, 120g cow dung/kg soil (T6) is therefore recommended for raising Jatrophus curcas L seedlings in Anyigba, Kogi State. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jatropha%20curcas" title="Jatropha curcas">Jatropha curcas</a>, <a href="https://publications.waset.org/abstracts/search?q=cow-dungs" title=" cow-dungs"> cow-dungs</a>, <a href="https://publications.waset.org/abstracts/search?q=seedlings" title=" seedlings"> seedlings</a>, <a href="https://publications.waset.org/abstracts/search?q=poultry%20dropping" title=" poultry dropping"> poultry dropping</a>, <a href="https://publications.waset.org/abstracts/search?q=polythene-pot" title=" polythene-pot"> polythene-pot</a> </p> <a href="https://publications.waset.org/abstracts/36950/effects-of-organic-manure-on-the-growth-of-jatropha-curcas-in-kogi-state-north-central-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36950.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">46</span> Conversion of Jatropha curcas Oil to Ester Biolubricant Using Solid Catalyst Derived from Saltwater Clam Shell Waste (SCSW)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Said%20Nurdin">Said Nurdin</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatimah%20A.%20Misebah"> Fatimah A. Misebah</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosli%20M.%20Yunus"> Rosli M. Yunus</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20S.%20Mahmud"> Mohd S. Mahmud</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Z.%20Sulaiman"> Ahmad Z. Sulaiman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The discarded clam shell waste, fossil and edible oil as biolubricant feedstocks create environmental impacts and food chain dilemma, thus this work aims to circumvent these issues by using activated saltwater clam shell waste (SCSW) as solid catalyst for conversion of Jatropha curcas oil as non-edible sources to ester biolubricant. The characterization of solid catalyst was done by Differential Thermal Analysis-Thermo Gravimetric Analysis (DTA-TGA), X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD), Brunauer-Emmett-Teller (BET), Field Emission Scanning Electron Microscopy (FESEM) and Fourier Transformed Infrared Spectroscopy (FTIR) analysis. The calcined catalyst was used in the transesterification of Jatropha oil to methyl ester as the first step, and the second stage was involved the reaction of Jatropha methyl ester (JME) with trimethylolpropane (TMP) based on the various process parameters. The formated biolubricant was analyzed using the capillary column (DB-5HT) equipped Gas Chromatography (GC). The conversion results of Jatropha oil to ester biolubricant can be found nearly 96.66%, and the maximum distribution composition mainly contains 72.3% of triester (TE). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conversion" title="conversion">conversion</a>, <a href="https://publications.waset.org/abstracts/search?q=Jatropha%20curcas%20oil" title=" Jatropha curcas oil"> Jatropha curcas oil</a>, <a href="https://publications.waset.org/abstracts/search?q=ester%20biolubricant" title=" ester biolubricant"> ester biolubricant</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20catalyst" title=" solid catalyst"> solid catalyst</a> </p> <a href="https://publications.waset.org/abstracts/14847/conversion-of-jatropha-curcas-oil-to-ester-biolubricant-using-solid-catalyst-derived-from-saltwater-clam-shell-waste-scsw" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14847.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">45</span> A Viable Approach for Biological Detoxification of Non Edible Oil Seed Cakes and Their Utilization in Food Production Using Aspergillus Niger</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kshitij%20Bhardwaj">Kshitij Bhardwaj</a>, <a href="https://publications.waset.org/abstracts/search?q=R.K.%20Trivedi"> R.K. Trivedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shipra%20Dixit"> Shipra Dixit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We used biological detoxification method that converts toxic residue waste of Jatropha curcas oil seeds (non edible oil seed) into industrial bio-products and animal feed material. Present study describes the complete degradation of phorbol esters by Aspergillus Niger strain during solid state fermentation (SSF) of deoiled Jatropha curcas seed cake. Phorbol esters were completely degraded in 15 days under the optimized SSF conditions viz deoiled cake 5.0 gm moistened with 5.0 ml distilled water; inoculum 2 ml of overnight grown Aspergillus niger; incubated at 30◦ C, pH 7.0. This method simultaneously induces the production of Protease enzyme by Aspergillus Niger which has high potential to be used in feedstuffs .The maximum Protease activities obtained were 709.16 mg/ml in Jatropha curcas oil seed cake. The protein isolate had small amounts of phorbol esters, phytic acid, and saponin without any lectin. Its minimum and maximum solubility were at pH 4.0&12.0. Water and oil binding capacities were 3.22 g water/g protein and 1.86 ml oil/g protein respectively.Emulsion activity showed high values in a range of basic pH. We concluded that Jatropha Curcas seed cake has a potential to be used as a novel source of functional protein for food or feed applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solid%20state%20fermentation" title="solid state fermentation">solid state fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=Jatropha%20curcas" title=" Jatropha curcas"> Jatropha curcas</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20seed%20cake" title=" oil seed cake"> oil seed cake</a>, <a href="https://publications.waset.org/abstracts/search?q=phorbol%20ester" title=" phorbol ester"> phorbol ester</a> </p> <a href="https://publications.waset.org/abstracts/14869/a-viable-approach-for-biological-detoxification-of-non-edible-oil-seed-cakes-and-their-utilization-in-food-production-using-aspergillus-niger" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14869.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">483</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">44</span> Experimental Evaluation of 10 Ecotypes of Toxic and Non-Toxic Jatropha curcas as Raw Material to Produce Biodiesel in Morelos State, Mexico</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guadalupe%20P%C3%A9rez">Guadalupe Pérez</a>, <a href="https://publications.waset.org/abstracts/search?q=Jorge%20Islas"> Jorge Islas</a>, <a href="https://publications.waset.org/abstracts/search?q=Mirna%20Guevara"> Mirna Guevara</a>, <a href="https://publications.waset.org/abstracts/search?q=Ra%C3%BAl%20Su%C3%A1rez"> Raúl Suárez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <em>Jatropha curcas</em> is a perennial oleaginous plant that is currently considered an energy crop with high potential as an environmentally sustainable biofuel. During the last decades, research in biofuels has grown in tropical and subtropical regions in Latin America. However, as far we know, there are no reports on the growth and yield patterns of <em>Jatropha curcas</em> under the specific agro climatic scenarios of the State of Morelos, Mexico. This study presents the results of 52 months monitoring of 10 toxic and non-toxic ecotypes of <em>Jatropha curcas</em> (E1M, E2M, E3M, E4M, E5M, E6O, E7O, E8O, E9C, E10C) in an experimental plantation with minimum watering and fertilization resources. The main objective is to identify the ecotypes with the highest potential as biodiesel raw material in the select region, by developing experimental information. Specifically, we monitored biophysical and growth parameters, including plant survival and seed production (at the end of month 52), to study the performance of each ecotype and to establish differences among the variables of morphological growth, net seed oil content, and toxicity. To analyze the morphological growth, a statistical approach to the biophysical parameters was used; the net seed oil content -80 to 192 kg/ha- was estimated with the first harvest; and the toxicity was evaluated by examining the phorbol ester concentration (&micro;g/L) in the oil extracted from the seeds. The comparison and selection of ecotypes was performed through a methodology developed based on the normalization of results. We identified four outstanding ecotypes (E1M, E2M, E3M, and E4M) that can be used to establish <em>Jatropha curcas</em> as energy crops in the state of Morelos for feasible agro-industrial production of biodiesel and other products related to the use of biomass. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel%20production" title="biodiesel production">biodiesel production</a>, <a href="https://publications.waset.org/abstracts/search?q=Jatropha%20curcas" title=" Jatropha curcas"> Jatropha curcas</a>, <a href="https://publications.waset.org/abstracts/search?q=seed%20oil%20content" title=" seed oil content"> seed oil content</a>, <a href="https://publications.waset.org/abstracts/search?q=toxic%20and%20non-toxic%20ecotypes" title=" toxic and non-toxic ecotypes"> toxic and non-toxic ecotypes</a> </p> <a href="https://publications.waset.org/abstracts/106293/experimental-evaluation-of-10-ecotypes-of-toxic-and-non-toxic-jatropha-curcas-as-raw-material-to-produce-biodiesel-in-morelos-state-mexico" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106293.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">43</span> Differential Proteomic Profile and Terpenoid Production in Somatic Embryos of Jatropha curcas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anamarel%20Medina-Hernandez">Anamarel Medina-Hernandez</a>, <a href="https://publications.waset.org/abstracts/search?q=Teresa%20Ponce-Noyola"> Teresa Ponce-Noyola</a>, <a href="https://publications.waset.org/abstracts/search?q=Ileana%20Vera-Reyes"> Ileana Vera-Reyes</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20C.%20Ramos-Valdivia"> Ana C. Ramos-Valdivia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Somatic embryos reproduce original seed characteristics and could be implemented in biotechnological studies. Jatropha curcas L. is an important plant for biodiesel production, but also is used in traditional medicine. Seeds from J. curcas are toxic because contain diterpenoids called phorbol esters, but in Mexico exist a non-toxic variety. Therefore, somatic embryos suspension cultures from non-toxic J. curcas variety were induced. In order to investigate the characteristics of somatic embryos, a differential proteomic analysis was made between pre-globular and globular stages by 2-D gel electrophoresis. 108 spots were differentially expressed (p<0.02), and 20 spots from globular somatic embryos were sequenced by MALDI-TOF-TOF mass spectrometry. A comparative analysis of terpenoids production between the two stages was made by RP-18 TLC plates. The sequenced proteins were related to energy production (68%), protein destination and storage (9%), secondary metabolism (9%), signal transduction (5%), cell structure (5%) and aminoacid metabolism (4%). Regarding terpenoid production, in pre-globular and globular somatic embryos were identified sterols and triterpenes of pharmacological interest (alpha-amyrin and betulinic acid) but also it was found compounds that were unique to each stage. The results of this work are the basis to characterize at different levels the J. curcas somatic embryos so that this system can be used efficiently in biotechnological processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jatropha%20curcas" title="Jatropha curcas">Jatropha curcas</a>, <a href="https://publications.waset.org/abstracts/search?q=proteomics" title=" proteomics"> proteomics</a>, <a href="https://publications.waset.org/abstracts/search?q=somatic%20embryo" title=" somatic embryo"> somatic embryo</a>, <a href="https://publications.waset.org/abstracts/search?q=terpenoids" title=" terpenoids"> terpenoids</a> </p> <a href="https://publications.waset.org/abstracts/71308/differential-proteomic-profile-and-terpenoid-production-in-somatic-embryos-of-jatropha-curcas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71308.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42</span> Effect of Jatropha curcas Leaf Extract on Castor Oil Induced Diarrhea in Albino Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatima%20U.%20Maigari">Fatima U. Maigari</a>, <a href="https://publications.waset.org/abstracts/search?q=Musa%20Halilu"> Musa Halilu</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Maryam%20Umar"> M. Maryam Umar</a>, <a href="https://publications.waset.org/abstracts/search?q=Rabiu%20Zainab"> Rabiu Zainab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plants as therapeutic agents are used as drug in many parts of the world. Medicinal plants are mostly used in developing countries due to culture acceptability, belief or due to lack of easy access to primary health care services. Jatropha curcas is a plant from the Euphorbiaceae family which is widely used in Northern Nigeria as an anti-diarrheal agent. This study was conducted to determine the anti-diarrheal effect of the leaf extract on castor oil induced diarrhea in albino rats. The leaves of J. curcas were collected from Balanga Local government in Gombe State, north-eastern Nigeria; due to its bioavailability. The leaves were air-dried at room temperature and ground to powder. Phytochemical screening was done and different concentrations of the extract was prepared and administered to the different categories of experimental animals. From the results, aqueous leaf extract of Jatropha curcas at doses of 200mg/Kg and 400mg/Kg was found to reduce the mean stool score as compared to control rats, however, maximum reduction was achieved with the standard drug of Loperamide (5mg/Kg). Treatment of diarrhea with 200mg/Kg of the extract did not produce any significant decrease in stool fluid content but was found to be significant in those rats that were treated with 400mg/Kg of the extract at 2hours (0.05±0.02) and 4hours (0.01±0.01). A significant reduction of diarrhea in the experimental animals signifies it to possess some anti-diarrheal activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-diarrhea" title="anti-diarrhea">anti-diarrhea</a>, <a href="https://publications.waset.org/abstracts/search?q=diarrhea" title=" diarrhea"> diarrhea</a>, <a href="https://publications.waset.org/abstracts/search?q=Jatropha%20curcas" title=" Jatropha curcas"> Jatropha curcas</a>, <a href="https://publications.waset.org/abstracts/search?q=loperamide" title=" loperamide"> loperamide</a> </p> <a href="https://publications.waset.org/abstracts/42231/effect-of-jatropha-curcas-leaf-extract-on-castor-oil-induced-diarrhea-in-albino-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42231.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">41</span> Evaluation and Selection of Elite Jatropha Genotypes for Biofuel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bambang%20Heliyanto">Bambang Heliyanto</a>, <a href="https://publications.waset.org/abstracts/search?q=Rully%20Dyah%20Purwati"> Rully Dyah Purwati</a>, <a href="https://publications.waset.org/abstracts/search?q=Hasnam"> Hasnam</a>, <a href="https://publications.waset.org/abstracts/search?q=Fadjry%20Djufry"> Fadjry Djufry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Jatropha curcas L., a drought tolerant and monoecious perennial shrub, has received attention worldwide during the past decade. Realizing the facts, the Indonesian government has decided to option for Jatropha and palm oil for in country biofuel production. To support the program development of high yielding jatropha varieties is necessary. This paper reviews Jatropha improvement program in Indonesia using mass selection and hybrid development. To start with, at the end of 2005, in-country germplasm collection was mobilized to Lampung and Nusa Tenggara Barat (NTB) provinces and successfully collected 15 provenances/sub-provenances which serves as a base population for selection. A significant improvement has been achieved through a simple recurrent breeding selection during 2006 to 2007. Seed yield productivity increased more than double, from 0.36 to 0.97 ton dry seed per hectare during the first selection cycle (IP-1), and then increased to 2.2 ton per hectare during the second cycles (IP-2) in Lampung provenance. Similar result was also observed in NTB provenance. Seed yield productivity increased from 0.43 ton to 1 ton dry seed per hectare in the first cycle (IP-1), and then 1.9 ton in the second cycle (IP-2). In 2008, the population IP-3 resulted from the third cycle of selection have been identified which were capable of producing 2.2 to 2.4 ton seed yield per hectare. To improve the seed yield per hectare, jatropha hybrid varieties was developed involving superior provenances. As a result a Jatropha Energy Terbarukan (JET) variety-2 was released in 2017 with seed yield potential of 2.6 ton per hectare. The use of this high yielding genotypes for biofuel is discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jatropha%20curcas" title="Jatropha curcas">Jatropha curcas</a>, <a href="https://publications.waset.org/abstracts/search?q=provenance" title=" provenance"> provenance</a>, <a href="https://publications.waset.org/abstracts/search?q=biofuel" title=" biofuel"> biofuel</a>, <a href="https://publications.waset.org/abstracts/search?q=improve%20population" title=" improve population"> improve population</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid" title=" hybrid"> hybrid</a> </p> <a href="https://publications.waset.org/abstracts/92125/evaluation-and-selection-of-elite-jatropha-genotypes-for-biofuel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92125.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">40</span> Current Harvesting Methods for Jatropha curcas L.</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luigi%20Pari">Luigi Pari</a>, <a href="https://publications.waset.org/abstracts/search?q=Alessandro%20Suardi"> Alessandro Suardi</a>, <a href="https://publications.waset.org/abstracts/search?q=Enrico%20Santangelo"> Enrico Santangelo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the last decade Jatropha curcas L. (an oleaginous crop native to Central America and part of South America) has raised particular interest owing to of its properties and uses. Its capsules may contain up to 40% in oil and can be used as feedstock for biodiesel production. The harvesting phase is made difficult by the physiological traits of the specie, because fruits are in bunches and do not ripen simultaneously. Three harvesting methodologies are currently diffused and differ for the level of mechanization applied: manual picking, semi-mechanical harvesting, and mechanical harvesting. The manual picking is the most common in the developing countries but it is also the most time consuming and inefficient. Mechanical harvesting carried out with modified grape harvesters has the higher productivity, but it is very costly as initial investment and requires appropriate schemes of cultivation. The semi-mechanical harvesting method is achieved with shaker tools employed to facilitate the fruit detachment. This system resulted much cheaper than the fully mechanized one and quite flexible for small and medium scale applications, but it still requires adjustments for improving the productive performance. CRA-ING, within the European project Jatromed (http://www.jatromed.aua.gr) has carried out preliminary studies on the applicability of such approach, adapting an olive shaker to harvest Jatropha fruits. The work is a survey of the harvesting methods currently available for Jatropha, show the pros and cons of each system, and highlighting the criteria to be considered for choosing one respect another. The harvesting of Jatropha curcas L. remains a big constrains for the spread of the species as energy crop. The approach pursued by CRA-ING can be considered a good compromise between the fully mechanized harvesters and the exclusive manual intervention. It is an attempt to promote a sustainable mechanization suited to the social context of developing countries by encouraging the concrete involvement of local populations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=jatropha%20curcas" title="jatropha curcas">jatropha curcas</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20crop" title=" energy crop"> energy crop</a>, <a href="https://publications.waset.org/abstracts/search?q=harvesting" title=" harvesting"> harvesting</a>, <a href="https://publications.waset.org/abstracts/search?q=central%20america" title=" central america"> central america</a>, <a href="https://publications.waset.org/abstracts/search?q=south%20america" title=" south america"> south america</a> </p> <a href="https://publications.waset.org/abstracts/11308/current-harvesting-methods-for-jatropha-curcas-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11308.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">39</span> Sensory Evaluation of Meat from Broilers Bird Fed Detoxified Jatropher Curcas and that Fed Conventional Feed</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20S.%20Lawal">W. S. Lawal</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20A.%20Akande"> T. A. Akande </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Four (4) different methods were employed to detoxified jatropha caucas, they are physical method (if include soaking and drying) chemical method (use of methylated spirit, hexane and methene) biological method,(use of Aspergillus niger and Sunday for 7 days and then baccillus lichifarming) and finally combined method (combination of all these methods). Phobol esther andysis was carried out after the detoxification and was found that combined method is better off (P>0.05). 100 broiler birds was used to further test the effect of detoxified Jatropha by combined method, 50 birds for Jatropha made feed at 10 birds per treatment and was replicated five times, this was also repeated for another 50 birds fed conventional feed, Jatropha made feed was compranded at 8% inclusion level. At the end of the 8th weeks, 8 birds were sacrificed each from each treatment and one bird each was fry, roast, boil and grilled from both conventional and Jatropha fed birds and panelist were served for evaluation. It was found that feeding Jatropha to poultry birds has no effect on the taste of the meat. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phobol%20esther" title="phobol esther">phobol esther</a>, <a href="https://publications.waset.org/abstracts/search?q=inclusion%20level" title=" inclusion level"> inclusion level</a>, <a href="https://publications.waset.org/abstracts/search?q=tolerance%20level" title=" tolerance level"> tolerance level</a>, <a href="https://publications.waset.org/abstracts/search?q=Jatropha%20carcass" title=" Jatropha carcass"> Jatropha carcass</a> </p> <a href="https://publications.waset.org/abstracts/25271/sensory-evaluation-of-meat-from-broilers-bird-fed-detoxified-jatropher-curcas-and-that-fed-conventional-feed" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25271.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38</span> Optimization of the Jatropha curcas Supply Chain as a Criteria for the Implementation of Future Collection Points in Rural Areas of Manabi-Ecuador </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boris%20G.%20German">Boris G. German</a>, <a href="https://publications.waset.org/abstracts/search?q=Edward%20Jim%C3%A9nez"> Edward Jiménez</a>, <a href="https://publications.waset.org/abstracts/search?q=Sebasti%C3%A1n%20Espinoza"> Sebastián Espinoza</a>, <a href="https://publications.waset.org/abstracts/search?q=Andr%C3%A9s%20G.%20Chico"> Andrés G. Chico</a>, <a href="https://publications.waset.org/abstracts/search?q=Ricardo%20A.%20Narv%C3%A1ez"> Ricardo A. Narváez </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The unique flora and fauna of The Galapagos Islands has leveraged a tourism-driven growth in the islands. Nonetheless, such development is energy-intensive and requires thousands of gallons of diesel each year for thermoelectric electricity generation. The needed transport of fossil fuels from the continent has generated oil spillages and affectations to the fragile ecosystem of the islands. The Zero Fossil Fuels initiative for The Galapagos proposed by the Ecuadorian government as an alternative to reduce the use of fossil fuels in the islands, considers the replacement of diesel in thermoelectric generators, by Jatropha curcas vegetable oil. However, the Jatropha oil supply cannot entirely cover yet the demand for electricity generation in Galapagos. Within this context, the present work aims to provide an optimization model that can be used as a selection criterion for approving new Jatropha Curcas collection points in rural areas of Manabi-Ecuador. For this purpose, existing Jatropha collection points in Manabi were grouped under three regions: north (7 collection points), center (4 collection points) and south (9 collection points). Field work was carried out in every region in order to characterize the collection points, to establish local Jatropha supply and to determine transportation costs. Data collection was complemented using GIS software and an objective function was defined in order to determine the profit associated to Jatropha oil production. The market price of both Jatropha oil and residual cake, were considered for the total revenue; whereas Jatropha price, transportation and oil extraction costs were considered for the total cost. The tonnes of Jatropha fruit and seed, transported from collection points to the extraction plant, were considered as variables. The maximum and minimum amount of the collected Jatropha from each region constrained the optimization problem. The supply chain was optimized using linear programming in order to maximize the profits. Finally, a sensitivity analysis was performed in order to find a profit-based criterion for the acceptance of future collection points in Manabi. The maximum profit reached a value of $ 4,616.93 per year, which represented a total Jatropha collection of 62.3 tonnes Jatropha per year. The northern region of Manabi had the biggest collection share (69%), followed by the southern region (17%). The criteria for accepting new Jatropha collection points in the rural areas of Manabi can be defined by the current maximum profit of the zone and by the variation in the profit when collection points are removed one at a time. The definition of new feasible collection points plays a key role in the supply chain associated to Jatropha oil production. Therefore, a mathematical model that assists decision makers in establishing new collection points while assuring profitability, contributes to guarantee a continued Jatropha oil supply for Galapagos and a sustained economic growth in the rural areas of Ecuador. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=collection%20points" title="collection points">collection points</a>, <a href="https://publications.waset.org/abstracts/search?q=Jatropha%20curcas" title=" Jatropha curcas"> Jatropha curcas</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20programming" title=" linear programming"> linear programming</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain" title=" supply chain"> supply chain</a> </p> <a href="https://publications.waset.org/abstracts/34611/optimization-of-the-jatropha-curcas-supply-chain-as-a-criteria-for-the-implementation-of-future-collection-points-in-rural-areas-of-manabi-ecuador" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34611.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">37</span> Optimization of the Feedstock Supply of an Oilseeds Conversion Unit for Biofuel Production in West Africa: A Comparative Study of the Supply of Jatropha curcas and Balanites aegyptiaca Seeds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Linda%20D.%20F.%20Bambara">Linda D. F. Bambara</a>, <a href="https://publications.waset.org/abstracts/search?q=Marie%20Sawadogo"> Marie Sawadogo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Jatropha curcas (jatropha) is the plant that has been the most studied for biofuel production in West Africa. There exist however other plants such as Balanites aegyptiaca (balanites) that have been targeted as a potential feedstock for biofuel production. This biomass could be an alternative feedstock for the production of straight vegetable oil (SVO) at costs lower than jatropha-based SVO production costs. This study aims firstly to determine, through an MILP model, the optimal organization that minimizes the costs of the oilseeds supply of two biomass conversion units (BCU) exploiting respectively jatropha seeds and the balanitès seeds. Secondly, the study aims to carry out a comparative study of these costs obtained for each BCU. The model was then implemented on two theoretical cases studies built on the basis of the common practices in Burkina Faso and two scenarios were carried out for each case study. In Scenario 1, 3 pre-processing locations ("at the harvesting area", "at the gathering points", "at the BCU") are possible. In scenario 2, only one location ("at the BCU") is possible. For each biomass, the system studied is the upstream supply chain (harvesting, transport and pre-processing (drying, dehulling, depulping)), including cultivation (for jatropha). The model optimizes the area of land to be exploited based on the productivity of the studied plants and material losses that may occur during the harvesting and the supply of the BCU. It then defines the configuration of the logistics network allowing an optimal supply of the BCU taking into account the most common means of transport in West African rural areas. For the two scenarios, the results of the implementation showed that the total area exploited for balanites (1807 ha) is 4.7 times greater than the total area exploited for Jatropha (381 ha). In both case studies, the location of pre-processing “at the harvesting area” was always chosen for scenario1. As the balanites trees were not planted and because the first harvest of the jatropha seeds took place 4 years after planting, the cost price of the seeds at the BCU without the pre-processing costs was about 430 XOF/kg. This cost is 3 times higher than the balanites's one, which is 140 XOF/kg. After the first year of harvest, i.e. 5 years after planting, and assuming that the yield remains constant, the same cost price is about 200 XOF/kg for Jatropha. This cost is still 1.4 times greater than the balanites's one. The transport cost of the balanites seeds is about 120 XOF/kg. This cost is similar for the jatropha seeds. However, when the pre-processing is located at the BCU, i.e. for scenario2, the transport costs of the balanites seeds is 1200 XOF/kg. These costs are 6 times greater than the transport costs of jatropha which is 200 XOF/kg. These results show that the cost price of the balanites seeds at the BCU can be competitive compared to the jatropha's one if the pre-processing is located at the harvesting area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Balanites%20aegyptiaca" title="Balanites aegyptiaca">Balanites aegyptiaca</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass%20conversion" title=" biomass conversion"> biomass conversion</a>, <a href="https://publications.waset.org/abstracts/search?q=Jatropha%20curcas" title=" Jatropha curcas"> Jatropha curcas</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=post-harvest%20operations" title=" post-harvest operations"> post-harvest operations</a> </p> <a href="https://publications.waset.org/abstracts/63893/optimization-of-the-feedstock-supply-of-an-oilseeds-conversion-unit-for-biofuel-production-in-west-africa-a-comparative-study-of-the-supply-of-jatropha-curcas-and-balanites-aegyptiaca-seeds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63893.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">36</span> Influence of Synthetic Antioxidant in the Iodine Value and Acid Number of Jatropha Curcas Biodiesel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Supriyono">Supriyono</a>, <a href="https://publications.waset.org/abstracts/search?q=Sumardiyono"> Sumardiyono</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biodiesel is one of the alternative fuels that promising for substituting petrodiesel as energy source which is have advantage on sustainability and eco-friendly. Due to the raw material that tend to decompose during storage, biodiesel also have the same characteristic that tend to decompose and formed higher acid value which is the result of oxidation to double bond on a chain of ester. Decomposition of biodiesel due to oxidation reaction could prevent by introduce a small amount of antioxidant. The origin of raw materials and the process for producing biodiesel will determine the effectiveness of antioxidant. The quality degradation on biodiesel could evaluated by measuring iodine value and acid number of biodiesel. Biodiesel made from High Fatty Acid Jatropha curcas oil equality by using esterification and esterification process will stand on the quality by introduce 90 ppm pyrogallol powder on the biodiesel, which could extend the quality from 2 hours to more than 6 hours in rancimat test evaluation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title="biodiesel">biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=iodine%20number" title=" iodine number"> iodine number</a>, <a href="https://publications.waset.org/abstracts/search?q=acid%20value" title=" acid value"> acid value</a> </p> <a href="https://publications.waset.org/abstracts/27197/influence-of-synthetic-antioxidant-in-the-iodine-value-and-acid-number-of-jatropha-curcas-biodiesel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27197.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">35</span> Synthesis and Physico-Chemical Analysis of Jatropha curcas Seed Oil for ISO VG32 and VG46 Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Nuhu">M. Nuhu</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Amina"> M. S. Amina</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20H.%20Aminu"> A. H. Aminu</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20J.%20Abbas"> A. J. Abbas</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Salahudeen"> N. Salahudeen</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Z.%20Yusuf"> A. Z. Yusuf </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transesterification of jatropha methyl ester (JME) with the common polyol, trimethylolpropane (TMP) produced the TMP based ester which exhibits improved temperature properties. This paper discusses the physic-chemical properties of jatropha bio-lubricant base oil applicable for ISO VG32 and VG46 requirement. The catalyst employed for the JME was CaO synthesized in National Research Institute for Chemical Technology (NARICT) that gives 100% conversion. The molar ratio of JME to TMP was 3.5:1 and the catalyst (NaOCH3) loading were found to be 0.8% of the weight of the total reactants. The final fractionated jatropha bio-lubricant base was found to contain 11.95% monoesters, 43.89% diesters and 44.16% triesters (desired product). In addition, it was found that the bio-lubricant base oil produced is comparable to the ISO VG46 commercial standards for light and industrial gears applications and other plant based bio-lubricant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodegradability" title="biodegradability">biodegradability</a>, <a href="https://publications.waset.org/abstracts/search?q=methyl%20ester" title=" methyl ester"> methyl ester</a>, <a href="https://publications.waset.org/abstracts/search?q=pour%20point" title=" pour point"> pour point</a>, <a href="https://publications.waset.org/abstracts/search?q=transesterification" title=" transesterification"> transesterification</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity%20index" title=" viscosity index"> viscosity index</a> </p> <a href="https://publications.waset.org/abstracts/19636/synthesis-and-physico-chemical-analysis-of-jatropha-curcas-seed-oil-for-iso-vg32-and-vg46-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19636.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">663</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">34</span> Bio Ethanol Production From the Co-Mixture of Jatropha Carcus L. Kernel Cake and Rice Straw</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Felix%20U.%20Asoiro">Felix U. Asoiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20I.%20Eleazar"> Daniel I. Eleazar</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20O.%20Offor"> Peter O. Offor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As a result of increasing energy demands, research in bioethanol has increased in recent years all through the world, in abide to partially or totally replace renewable energy supplies. The first and third generation feedstocks used for biofuel production have fundamental drawbacks. Waste rice straw and cake from second generation feedstock like Jatropha curcas l. kernel (JC) is seen as non-food feedstock and promising candidates for the industrial production of bioethanol. In this study, JC and rice husk (RH) wastes were characterized for proximate composition. Bioethanol was produced from the residual polysaccharides present in rice husk (RH) and Jatropha seed cake by sequential hydrolytic and fermentative processes at varying mixing proportions (50 g JC/50 g RH, 100 g JC/10 g RH, 100 g JC/20 g RH, 100 g JC/50 g RH, 100 g JC/100 g RH, 100 g JC/200 g RH and 200 g JC/100 g RH) and particle sizes (0.25, 0.5 and 1.00 mm). Mixing proportions and particle size significantly affected both bioethanol yield and some bioethanol properties. Bioethanol yield (%) increased with an increase in particle size. The highest bioethanol (8.67%) was produced at a mixing proportion of 100 g JC/50g RH at 0.25 mm particle size. The bioethanol had the lowest values of specific gravity and density of 1.25 and 0.92 g cm-3 and the highest values of 1.57 and 0.97 g cm-3 respectively. The highest values of viscosity (4.64 cSt) were obtained with 200 g JC/100 g RH, at 1.00 mm particle size. The maximum flash point and cloud point values were 139.9 oC and 23.7oC (100 g JC/200 g RH) at 1 mm and 0.5 mm particle sizes respectively. The maximum pour point value recorded was 3.85oC (100 g JC/50 g RH) at 1 mm particle size. The paper concludes that bioethanol can be recovered from JC and RH wastes. JC and RH blending proportions as well as particle sizes are important factors in bioethanol production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioethanol" title="bioethanol">bioethanol</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrolysis" title=" hydrolysis"> hydrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Jatropha%20curcas%20l.%20kernel" title=" Jatropha curcas l. kernel"> Jatropha curcas l. kernel</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20husk" title=" rice husk"> rice husk</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation" title=" fermentation"> fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=proximate%20composition" title=" proximate composition"> proximate composition</a> </p> <a href="https://publications.waset.org/abstracts/151621/bio-ethanol-production-from-the-co-mixture-of-jatropha-carcus-l-kernel-cake-and-rice-straw" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151621.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> Jatropha curcas L. Oil Selectivity in Froth Flotation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andr%C3%A9%20C.%20Silva">André C. Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Izabela%20L.%20A.%20Moraes"> Izabela L. A. Moraes</a>, <a href="https://publications.waset.org/abstracts/search?q=Elenice%20M.%20S.%20Silva"> Elenice M. S. Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20M.%20Silva%20Filho"> Carlos M. Silva Filho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Brazil, most soils are acidic and low in essential nutrients required for the growth and development of plants, making fertilizers essential for agriculture. As the biggest producer of soy in the world and a major producer of coffee, sugar cane and citrus fruits, Brazil is a large consumer of phosphate. Brazilian&rsquo;s phosphate ores are predominantly from igneous rocks showing a complex mineralogy, associated with carbonites and oxides, typically iron, silicon and barium. The adopted industrial concentration circuit for this type of ore is a mix between magnetic separation (both low and high field) to remove the magnetic fraction and a froth flotation circuit composed by a reverse flotation of apatite (barite&rsquo;s flotation) followed by direct flotation circuit (rougher, cleaner and scavenger circuit). Since the 70&rsquo;s fatty acids obtained from vegetable oils are widely used as lower-cost collectors in apatite froth flotation. This is a very effective approach to the apatite family of minerals, being that this type of collector is both selective and efficient (high recovery). This paper presents <em>Jatropha curcas</em> <em>L.</em> oil (JCO) as a renewable and sustainable source of fatty acids with high selectivity in froth flotation of apatite. JCO is considerably rich in fatty acids such as linoleic, oleic and palmitic acid. The experimental campaign involved 216 tests using a modified Hallimond tube and two different minerals (apatite and quartz). In order to be used as a collector, the oil was saponified. The results found were compared with the synthetic collector, Fotigam 5806 produced by Clariant, which is composed mainly by soy oil. JCO showed the highest selectivity for apatite flotation with cold saponification at pH 8 and concentration of 2.5 mg/L. In this case, the mineral recovery was around 95%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=froth%20flotation" title="froth flotation">froth flotation</a>, <a href="https://publications.waset.org/abstracts/search?q=jatropha%20curcas" title=" jatropha curcas"> jatropha curcas</a>, <a href="https://publications.waset.org/abstracts/search?q=microflotation" title=" microflotation"> microflotation</a>, <a href="https://publications.waset.org/abstracts/search?q=selectivity" title=" selectivity"> selectivity</a> </p> <a href="https://publications.waset.org/abstracts/50900/jatropha-curcas-l-oil-selectivity-in-froth-flotation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50900.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> Physical, Chemical and Mechanical Properties of Different Varieties of Jatropha curcas Cultivated in Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehmood%20Ali">Mehmood Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Attaullah%20Khan"> Attaullah Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Abul%20Kalam"> Md. Abul Kalam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Petroleum crude oil reserves are going to deplete in future due to the consumption of fossil fuels in transportation and energy generating sector. Thus, increasing the fossil fuel prices and also causing environmental degradation issues such as climate change and global warming due to air pollution. Therefore, to tackle these issues the environmentally friendly fuels are the potential substitute with lower emissions of toxic gases. A non-edible vegetable oilseed crop, Jatropha curcas, from different origins such as Malaysia, Thailand and India were cultivated in Pakistan. The harvested seeds physical, chemical and mechanical properties were measured, having an influence on the post-harvesting machines design parameters for dehulling, storing bins, drying, oil extraction from seeds with a screw expeller and in-situ transesterification reaction to produce biodiesel fuel. The seed variety from Thailand was found better in comparison of its properties with other varieties from Malaysia and India. The seed yield from these three varieties i.e. Malaysia, Thailand and India were 829, 943 and 735 kg/ acre/ year respectively. While the oil extraction yield from Thailand variety seed was found higher (i.e. 32.61 % by wt.) as compared to other two varieties from Malaysia and India were 27.96 and 24.96 % by wt respectively. The physical properties investigated showed the geometric mean diameter of seeds from three varieties Malaysia, Thailand and India were 11.350, 10.505 and 11.324 mm, while the sphericity of seeds were found 0.656, 0.664 and 0.655. The bulk densities of the powdered seeds from three varieties Malaysia, Thailand and India, were found as 0.9697, 0.9932 and 0.9601 g/cm³ and % passing was obtained with sieve test were 78.7, 87.1 and 79.3 respectively. The densities of the extracted oil from three varieties Malaysia, Thailand and India were found 0.902, 0.898 and 0.902 g/ mL with corresponding kinematic viscosities 54.50, 49.18 and 48.16 mm2/sec respectively. The higher heating values (HHV) of extracted oil from Malaysia, Thailand and India seed varieties were measured as 40.29, 36.41 and 34.27 MJ/ kg, while the HHV of de-oiled cake from these varieties were 21.23, 20.78 and 17.31 MJ/kg respectively. The de-oiled cake can be used as compost with nutrients and carbon content to enhance soil fertility to grow future Jatropha curcas oil seed crops and also can be used as a fuel for heating and cooking purpose. Moreover, the mechanical parameter micro Vickers hardness of Malaysia seed was found lowest 16.30 HV measured with seed in a horizontal position to the loading in comparison to other two varieties as 25.2 and 18.7 HV from Thailand and India respectively. The fatty acid composition of three varieties of seed oil showed the presence of C8-C22, required to produce good quality biodiesel fuel. In terms of physicochemical properties of seeds and its extracted oil, the variety from Thailand was found better as compared to the other two varieties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title="biodiesel">biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=Jatropha%20curcas" title=" Jatropha curcas"> Jatropha curcas</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20property" title=" mechanical property"> mechanical property</a>, <a href="https://publications.waset.org/abstracts/search?q=physico-chemical%20properties" title=" physico-chemical properties"> physico-chemical properties</a> </p> <a href="https://publications.waset.org/abstracts/94825/physical-chemical-and-mechanical-properties-of-different-varieties-of-jatropha-curcas-cultivated-in-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94825.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> Photosynthesis Metabolism Affects Yield Potentials in Jatropha curcas L.: A Transcriptomic and Physiological Data Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nisha%20Govender">Nisha Govender</a>, <a href="https://publications.waset.org/abstracts/search?q=Siju%20Senan"> Siju Senan</a>, <a href="https://publications.waset.org/abstracts/search?q=Zeti-Azura%20Hussein"> Zeti-Azura Hussein</a>, <a href="https://publications.waset.org/abstracts/search?q=Wickneswari%20Ratnam"> Wickneswari Ratnam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Jatropha curcas, a well-described bioenergy crop has been extensively accepted as future fuel need especially in tropical regions. Ideal planting material required for large-scale plantation is still lacking. Breeding programmes for improved J. curcas varieties are rendered difficult due to limitations in genetic diversity. Using a combined transcriptome and physiological data, we investigated the molecular and physiological differences in high and low yielding Jatropha curcas to address plausible heritable variations underpinning these differences, in regard to photosynthesis, a key metabolism affecting yield potentials. A total of 6 individual Jatropha plant from 4 accessions described as high and low yielding planting materials were selected from the Experimental Plot A, Universiti Kebangsaan Malaysia (UKM), Bangi. The inflorescence and shoots were collected for transcriptome study. For the physiological study, each individual plant (n=10) from the high and low yielding populations were screened for agronomic traits, chlorophyll content and stomatal patterning. The J. curcas transcriptomes are available under BioProject PRJNA338924 and BioSample SAMN05827448-65, respectively Each transcriptome was subjected to functional annotation analysis of sequence datasets using the BLAST2Go suite; BLASTing, mapping, annotation, statistical analysis and visualization Large-scale phenotyping of the number of fruits per plant (NFPP) and fruits per inflorescence (FPI) classified the high yielding Jatropha accessions with average NFPP =60 and FPI > 10, whereas the low yielding accessions yielded an average NFPP=10 and FPI < 5. Next generation sequencing revealed genes with differential expressions in the high yielding Jatropha relative to the low yielding plants. Distinct differences were observed in transcript level associated to photosynthesis metabolism. DEGs collection in the low yielding population showed comparable CAM photosynthetic metabolism and photorespiration, evident as followings: phosphoenolpyruvate phosphate translocator chloroplastic like isoform with 2.5 fold change (FC) and malate dehydrogenase (2.03 FC). Green leaves have the most pronounced photosynthetic activity in a plant body due to significant accumulation of chloroplast. In most plants, the leaf is always the dominant photosynthesizing heart of the plant body. Large number of the DEGS in the high-yielding population were found attributable to chloroplast and chloroplast associated events; STAY-GREEN chloroplastic, Chlorophyllase-1-like (5.08 FC), beta-amylase (3.66 FC), chlorophyllase-chloroplastic-like (3.1 FC), thiamine thiazole chloroplastic like (2.8 FC), 1-4, alpha glucan branching enzyme chloroplastic amyliplastic (2.6FC), photosynthetic NDH subunit (2.1 FC) and protochlorophyllide chloroplastic (2 FC). The results were parallel to a significant increase in chlorophyll a content in the high yielding population. In addition to the chloroplast associated transcript abundance, the TOO MANY MOUTHS (TMM) at 2.9 FC, which code for distant stomatal distribution and patterning in the high-yielding population may explain high concentration of CO2. The results were in agreement with the role of TMM. Clustered stomata causes back diffusion in the presence of gaps localized closely to one another. We conclude that high yielding Jatropha population corresponds to a collective function of C3 metabolism with a low degree of CAM photosynthetic fixation. From the physiological descriptions, high chlorophyll a content and even distribution of stomata in the leaf contribute to better photosynthetic efficiency in the high yielding Jatropha compared to the low yielding population. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chlorophyll" title="chlorophyll">chlorophyll</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20expression" title=" gene expression"> gene expression</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20variation" title=" genetic variation"> genetic variation</a>, <a href="https://publications.waset.org/abstracts/search?q=stomata" title=" stomata"> stomata</a> </p> <a href="https://publications.waset.org/abstracts/67246/photosynthesis-metabolism-affects-yield-potentials-in-jatropha-curcas-l-a-transcriptomic-and-physiological-data-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67246.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Performance and Combustion Characteristics of a DI Diesel Engine Fueled with Jatropha Methyl Esters and its Blends</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ajay%20V.%20Kolhe">Ajay V. Kolhe</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20E.%20Shelke"> R. E. Shelke</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20Khandare"> S. S. Khandare</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study discusses the performance and combustion characteristics of a direct injection diesel engine fueled with Jatropha methyl ester (JME). In order to determine the performance and combustion characteristics, the experiments were conducted at the constant speed mode (1500rpm) under the full load condition of the engine on single cylinder 4-stroke CI engine. The result indicated that when the test engine was fuelled with JME, the engine performance slightly weakened, the combustion characteristics slightly changed when compared to petroleum based diesel fuel. The biodiesel caused reduction in carbon monoxide (CO), unburned hydrocarbon (HC) emissions, but they caused to increases in nitrogen oxides (NOx) emissions. The useful brake power obtained is similar to diesel fuel for all loads. Oxygen content in the exhaust is more with JME blend due to the reason that fuel itself contains oxygen. JME as a new Biodiesel and its blends can be used in diesel engines without any engine modification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title="biodiesel">biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion" title=" combustion"> combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=CI%20engine" title=" CI engine"> CI engine</a>, <a href="https://publications.waset.org/abstracts/search?q=jatropha%20curcas%20oil" title=" jatropha curcas oil"> jatropha curcas oil</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20and%20emission" title=" performance and emission"> performance and emission</a> </p> <a href="https://publications.waset.org/abstracts/5707/performance-and-combustion-characteristics-of-a-di-diesel-engine-fueled-with-jatropha-methyl-esters-and-its-blends" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5707.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> Hybridization and Evaluation of Jatropha to Improve High Yield Varieties in Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rully%20D.%20Purwati">Rully D. Purwati</a>, <a href="https://publications.waset.org/abstracts/search?q=Tantri%20D.A.%20Anggraeni"> Tantri D.A. Anggraeni</a>, <a href="https://publications.waset.org/abstracts/search?q=Bambang%20Heliyanto"> Bambang Heliyanto</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Machfud"> M. Machfud</a>, <a href="https://publications.waset.org/abstracts/search?q=Joko%20Hartono"> Joko Hartono</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The availability of fuel in the world will be reduced in next few years, it is necessary to find alternative energy sources. Jatropha curcas L. is one of oil crops producing non-edible oil which is potential for bio-diesel. Jatropha cultivation and development program in Indonesia is facing several problems especially low seed yield resulting in inefficient crop cultivation cost. To cope with the problem, development of high yielding varieties is necessary. Development of new varieties to improve seed yield was conducted by hybridization and selection and resulted in fourteen potential genotypes. The yield potential of the fourteen genotypes were evaluated and compared with two check varieties. The objective of the evaluation was to find Jatropha hybrids with some characters i.e. their productivity was higher than check varieties, oil content > 40% and harvesting age ≤ 110 days. Hybridization and individual plant selection were carried out from 2010 to 2014. Evaluation of high yield was conducted in Asembagus experimental station, Situbondo, East Java in three years (2015-2017). The experimental designed was Randomized Complete Block Design with three replication, and plot size 10 m x 8 m. The characters observed were number of capsules per plant, dry seed yield (kg/ha) and seed oil content (%). The results of this experiment indicated that all the hybrids evaluated have higher productivity than check variety IP-3A. There were two superior hybrids i.e. HS-49xSP-65/32 and HS-49xSP-19/28 with highest seed yield per hectare and number of capsules per plant for three years. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jatropha" title="Jatropha">Jatropha</a>, <a href="https://publications.waset.org/abstracts/search?q=bio%20energy" title=" bio energy"> bio energy</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid" title=" hybrid"> hybrid</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20seed%20yield" title=" high seed yield"> high seed yield</a> </p> <a href="https://publications.waset.org/abstracts/92138/hybridization-and-evaluation-of-jatropha-to-improve-high-yield-varieties-in-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92138.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> Impact Analysis of Cultivation of Jatropha Tree on Fuel Prices and Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saba%20Arif">Saba Arif</a>, <a href="https://publications.waset.org/abstracts/search?q=Anam%20Nadeem"> Anam Nadeem</a>, <a href="https://publications.waset.org/abstracts/search?q=Roman%20Kalvin"> Roman Kalvin</a>, <a href="https://publications.waset.org/abstracts/search?q=Muzaffar%20Ali"> Muzaffar Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Burhan%20Ali"> Burhan Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Juntakan%20Taweekun"> Juntakan Taweekun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Globally transportation sector accounts for around 25% of energy demand and nearly 62% of oil consumed. Therefore, new energy sources are required to introduce for this huge demand replenishment of depleting conventional energy sources. Currently, biofuels such as Jatropha trees as an energy carrier for transportation sector are being utilized effectively round the globe. However, climate conditions at low altitudes with an average annual temperature above 20 degrees Celsius and rainfall of 300-1000mm are considered the most suitable environment for the efficient growth of Jatropha trees. The current study is providing a theoretical survey-based analysis to investigate the effect of rate of cultivation of jatropha trees on the reduction of fuel prices and its environmental benefits. The resulted study shows that jatropha tree’s 100 kg seeds give 80kg oil and the conversion process cost is very small as 890 PKR. Moreover, the extraction of oil from Jatropha tree is tax-free compared to other fuels. The analysis proved very essential for potential assessment of Jatropha regarding future energy fuel for transportation sector at global level. Additionally, it can be very beneficial for increment in the total amount of transportation fuel in Pakistan. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=jatropha%20tree" title="jatropha tree">jatropha tree</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20impact" title=" environmental impact"> environmental impact</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20contents" title=" energy contents"> energy contents</a>, <a href="https://publications.waset.org/abstracts/search?q=theoretical%20survey" title=" theoretical survey"> theoretical survey</a> </p> <a href="https://publications.waset.org/abstracts/83886/impact-analysis-of-cultivation-of-jatropha-tree-on-fuel-prices-and-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83886.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Effect of Graded Levels of Detoxified Jatropha cursas on the Performance Characteristics of Cockerel Birds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20S.%20Lawal">W. S. Lawal</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Akande"> T. Akande</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Abstract— Four (4) difference methods were employed to detoxify Jatropha carcas, they were physical method (it include soaking and sun drying) Chemical (the use of methylated sprit, hexane and methane). Biological (the use of Aspergillus niger and then sundry for 7days and then Bacillus lichiformis) and Combined method (the combination of chemical and biological methods). Phobol esther analysis was carried out after the detoxification methods and it was found that the combined method is better off (P<0.05). Detoxified Jatropha from each of this methods was sundry and grinded for easy inclusion into poultry feed, detoxified jatropha was included at 0%, 0.5%, 1%, 2%, 3%, 4%, and 5% but the combined method was increased up to 7% because the birds were able to tolerate it, the 0% was the control experiment. 405 day old broiler chicks was used to test the effect of detoxified Jatropha carcas on their performance, there are 5birds per treatment and there are 3 replicates, the experiment lasted for 8weeks,highest number of mortality was obtained in physical method, birds in chemical method tolerated up to 3% Jatropha carcas, biological method is better, as birds there were comfortable at 5% but the best of them is combined method the birds did very well at 7% as there were less mortality and highest weight gain was achieved here (P<0.05) and it was recommended. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phobol%20esther" title="phobol esther">phobol esther</a>, <a href="https://publications.waset.org/abstracts/search?q=inclusion%20level" title=" inclusion level"> inclusion level</a>, <a href="https://publications.waset.org/abstracts/search?q=tolerance%20level" title=" tolerance level"> tolerance level</a>, <a href="https://publications.waset.org/abstracts/search?q=Jatropha%20carcas" title=" Jatropha carcas"> Jatropha carcas</a> </p> <a href="https://publications.waset.org/abstracts/12136/effect-of-graded-levels-of-detoxified-jatropha-cursas-on-the-performance-characteristics-of-cockerel-birds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12136.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Evaluation of Botanical Plant Powders against Zabrotes subfasciatus (Boheman) (Coleoptera: Bruchidae) in Stored Local Common Bean Varieties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fikadu%20Kifle%20Hailegeorgis">Fikadu Kifle Hailegeorgis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Common bean is one of the most important sources of protein in Ethiopia and other developing countries. However, the Mexican bean weevil, Zabrotes subfasciatus (Boheman), is a major factor in the storage of common beans that causes losses. Studies were conducted to evaluate the efficacy of botanical powders of Jatropha curcas (L.), Neem/Azadrachta indica, and Parthenium hysterophorus (L) on local common bean varieties against Z subfasciatus at Melkassa Agriculture Research Center. Twenty local common bean varieties were evaluated twice against Z. Subfasciatus in a completely randomized design in three replications at the rate of 0.2g/250g of seed for each experiment. Malathion and untreated were used as standard checks. The result indicated that RAZ White and Round Yellow showed high resistance variety in experiments while Batu and Black showed high susceptible variety in experiments. Jatropha seed powder was the most effective against Z. subfasciatus. Parthenium seed powders and neem leaf powders also indicate promising results. Common beans treated with botanicals significantly (p<0.05) had a higher germination percentage than that of the untreated seed. In general, the results obtained indicated that using bean varieties (RAZ white and Round yellow) and botanicals (Jatropha) seed powder gave the best control of Z. subfasciatus. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=botanicals" title="botanicals">botanicals</a>, <a href="https://publications.waset.org/abstracts/search?q=malathion" title=" malathion"> malathion</a>, <a href="https://publications.waset.org/abstracts/search?q=resistant%20varieties" title=" resistant varieties"> resistant varieties</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20subfasciatus" title=" Z. subfasciatus"> Z. subfasciatus</a> </p> <a href="https://publications.waset.org/abstracts/176210/evaluation-of-botanical-plant-powders-against-zabrotes-subfasciatus-boheman-coleoptera-bruchidae-in-stored-local-common-bean-varieties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176210.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">59</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Supercritical Methanol for Biodiesel Production from Jatropha Oil in the Presence of Heterogeneous Catalysts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Velid%20Demir">Velid Demir</a>, <a href="https://publications.waset.org/abstracts/search?q=Mesut%20Akg%C3%BCn"> Mesut Akgün</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The lanthanum and zinc oxide were synthesized and then loaded with 6 wt% over γ-Al₂O₃ using the wet impregnation method. The samples were calcined at 900 °C to ensure a coherent structure with high catalytic performance. Characterization of the catalysts was verified by X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR). The effect of catalysts on biodiesel content from jatropha oil was studied under supercritical conditions. The results showed that ZnO/γ-Al₂O₃ was the superior catalyst for jatropha oil with 98.05% biodiesel under reaction conditions of 7 min reaction time, 1:40 oil to methanol molar ratio, 6 wt% of catalyst loading, 90 bar of reaction pressure, and 300 °C of reaction temperature, compared to 95.50% with La₂O₃/γ-Al₂O₃ at the same parameters. For this study, ZnO/γ-Al₂O₃ was the most suitable catalyst due to performance and cost considerations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title="biodiesel">biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20catalyst" title=" heterogeneous catalyst"> heterogeneous catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=jatropha%20oil" title=" jatropha oil"> jatropha oil</a>, <a href="https://publications.waset.org/abstracts/search?q=supercritical%20methanol" title=" supercritical methanol"> supercritical methanol</a>, <a href="https://publications.waset.org/abstracts/search?q=transesterification" title=" transesterification"> transesterification</a> </p> <a href="https://publications.waset.org/abstracts/162036/supercritical-methanol-for-biodiesel-production-from-jatropha-oil-in-the-presence-of-heterogeneous-catalysts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162036.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Bio–efficacy of Selected Plant extracts and Cypermethrin on Growth and Yield of Cowpea (Vigna unguiculata L.).</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akanji%20Kayode%20Ayanwusi.">Akanji Kayode Ayanwusi.</a>, <a href="https://publications.waset.org/abstracts/search?q=Akanji%20Elizabeth%20Nike"> Akanji Elizabeth Nike</a>, <a href="https://publications.waset.org/abstracts/search?q=Bidmos%20Fuad%20Adetunji"> Bidmos Fuad Adetunji</a>, <a href="https://publications.waset.org/abstracts/search?q=Oladapo%20Olufemi%20Stephen"> Oladapo Olufemi Stephen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This experiment was conducted in Igboora, southwest Nigeria during the year 2022 planting season to determine the bio-efficacy of plant extracts (Jatropha curcas and Petiveria alliacea) and synthetic (Cypermethrin) insecticides against the insect pest of cowpea (Vigna unguiculata L.) and to determine its effect on the growth and yield of cowpea in the study area. Cowpea is one of the most important food and forage legumes in the semi-arid tropics. It is grown in 45 countries worldwide, including parts of Africa, Asia, Southern Europe, the Southern United States, and Central and South America. Cowpea production is considered too risky an enterprise by many growers because of its numerous pest problems. The treatments for the experiment consisted of two aqueous plant extracts (J.curcas and P. alliacea) at 50 /0 w/v and Cypermethrin 400 EC replicated three times including control in a randomized complete block design. Each plot measured 2.0 m by 2.0 m with 1.0 m inter-spaced per adjacent plot. The results from the study showed that different insect pests attack cowpea at different stages of growth. The insects observed were Bemisa tabaci, Callosobruchus maculatus, Megalurothrips sjostedti, and Maruca vitrata. High yields were obtained from plots treated with P. alliacea and synthetic insecticide (cypermethrin). J. curcas also produced optimum yield but lower than P. alliacea also P. alliacea treated plots had the least damaged pods while the untreated plots had the highest damaged pods, the plants extracts exhibited high insecticidal activities in this study, therefore P. alliacea leaves formulated as an insecticide is recommended for the control of insect pests of cowpea in the study area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plant%20extracts" title="plant extracts">plant extracts</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a>, <a href="https://publications.waset.org/abstracts/search?q=cypermethrin." title=" cypermethrin."> cypermethrin.</a>, <a href="https://publications.waset.org/abstracts/search?q=cowpea" title=" cowpea"> cowpea</a> </p> <a href="https://publications.waset.org/abstracts/170177/bio-efficacy-of-selected-plant-extracts-and-cypermethrin-on-growth-and-yield-of-cowpea-vigna-unguiculata-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170177.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Technical and Environmental Improvement of LNG Carrier&#039;s Propulsion Machinery by Using Jatropha Biao Diesel Fuel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20H.%20Hegazy">E. H. Hegazy</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Mosaad"> M. A. Mosaad</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Tawfik"> A. A. Tawfik</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Hassan"> A. A. Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Abbas"> M. Abbas </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rapid depletion of petroleum reserves and rising oil prices has led to the search for alternative fuels. A promising alternative fuel Jatropha Methyl Easter, JME, has drawn the attention of researchers in recent times as a high potential substrate for production of biodiesel fuel. In this paper, the combustion, performance and emission characteristics of a single cylinder diesel engine when fuelled with JME, diesel oil and natural gas are evaluated experimentally and theoretically. The experimental results showed that the thermal and volumetric efficiency of diesel engine is higher than Jatropha biodiesel engine. The specific fuel consumption, exhaust gas temperature, HC, CO2 and NO were comparatively higher in Jatropha biodiesel, while CO emission is appreciable decreased. CFD investigation was carried out in the present work to compare diesel fuel oil and JME. The CFD simulation offers a powerful and convenient way to help understanding physical and chemical processes involved internal combustion engines for diesel oil fuel and JME fuel. The CFD concluded that the deviation between diesel fuel pressure and JME not exceeds 3 bar and the trend for compression pressure almost the same, also the temperature deviation between diesel fuel and JME not exceeds 40 k and the trend for temperature almost the same. Finally the maximum heat release rate of JME is lower than that of diesel fuel. The experimental and CFD investigation indicated that the Jatropha biodiesel can be used instead of diesel fuel oil with safe engine operation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dual%20fuel%20diesel%20engine" title="dual fuel diesel engine">dual fuel diesel engine</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20gas" title=" natural gas"> natural gas</a>, <a href="https://publications.waset.org/abstracts/search?q=Jatropha%20Methyl%20Easter" title=" Jatropha Methyl Easter"> Jatropha Methyl Easter</a>, <a href="https://publications.waset.org/abstracts/search?q=volumetric%20%20efficiency" title=" volumetric efficiency"> volumetric efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=emissions" title=" emissions"> emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a> </p> <a href="https://publications.waset.org/abstracts/20734/technical-and-environmental-improvement-of-lng-carriers-propulsion-machinery-by-using-jatropha-biao-diesel-fuel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20734.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">667</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Apatite Flotation Using Fruits&#039; Oil as Collector and Sorghum as Depressant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elenice%20Maria%20Schons%20Silva">Elenice Maria Schons Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Andre%20Carlos%20Silva"> Andre Carlos Silva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The crescent demand for raw material has increased mining activities. Mineral industry faces the challenge of process more complexes ores, with very small particles and low grade, together with constant pressure to reduce production costs and environment impacts. Froth flotation deserves special attention among the concentration methods for mineral processing. Besides its great selectivity for different minerals, flotation is a high efficient method to process fine particles. The process is based on the minerals surficial physicochemical properties and the separation is only possible with the aid of chemicals such as collectors, frothers, modifiers, and depressants. In order to use sustainable and eco-friendly reagents, oils extracted from three different vegetable species (pequi’s pulp, macauba’s nut and pulp, and Jatropha curcas) were studied and tested as apatite collectors. Since the oils are not soluble in water, an alkaline hydrolysis (or saponification), was necessary before their contact with the minerals. The saponification was performed at room temperature. The tests with the new collectors were carried out at pH 9 and Flotigam 5806, a synthetic mix of fatty acids industrially adopted as apatite collector manufactured by Clariant, was used as benchmark. In order to find a feasible replacement for cornstarch the flour and starch of a graniferous variety of sorghum was tested as depressant. Apatite samples were used in the flotation tests. XRF (X-ray fluorescence), XRD (X-ray diffraction), and SEM/EDS (Scanning Electron Microscopy with Energy Dispersive Spectroscopy) were used to characterize the apatite samples. Zeta potential measurements were performed in the pH range from 3.5 to 12.5. A commercial cornstarch was used as depressant benchmark. Four depressants dosages and pH values were tested. A statistical test was used to verify the pH, dosage, and starch type influence on the minerals recoveries. For dosages equal or higher than 7.5 mg/L, pequi oil recovered almost all apatite particles. In one hand, macauba’s pulp oil showed excellent results for all dosages, with more than 90% of apatite recovery, but in the other hand, with the nut oil, the higher recovery found was around 84%. Jatropha curcas oil was the second best oil tested and more than 90% of the apatite particles were recovered for the dosage of 7.5 mg/L. Regarding the depressant, the lower apatite recovery with sorghum starch were found for a dosage of 1,200 g/t and pH 11, resulting in a recovery of 1.99%. The apatite recovery for the same conditions as 1.40% for sorghum flour (approximately 30% lower). When comparing with cornstarch at the same conditions sorghum flour produced an apatite recovery 91% lower. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=collectors" title="collectors">collectors</a>, <a href="https://publications.waset.org/abstracts/search?q=depressants" title=" depressants"> depressants</a>, <a href="https://publications.waset.org/abstracts/search?q=flotation" title=" flotation"> flotation</a>, <a href="https://publications.waset.org/abstracts/search?q=mineral%20processing" title=" mineral processing"> mineral processing</a> </p> <a href="https://publications.waset.org/abstracts/92877/apatite-flotation-using-fruits-oil-as-collector-and-sorghum-as-depressant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92877.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Jatropha%20curcas&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Jatropha%20curcas&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10