CINXE.COM
Search results for: shock wave.
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: shock wave.</title> <meta name="description" content="Search results for: shock wave."> <meta name="keywords" content="shock wave."> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="shock wave." name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="shock wave."> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 643</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: shock wave.</h1> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">643</span> Anisotropic Constitutive Model and its Application in Simulation of Thermal Shock Wave Propagation for Cylinder Shell Composite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Xia%20Huang">Xia Huang</a>, <a href="https://publications.waset.org/search?q=Wenhui%20Tang"> Wenhui Tang</a>, <a href="https://publications.waset.org/search?q=Banghai%20Jiang"> Banghai Jiang</a>, <a href="https://publications.waset.org/search?q=Xianwen%20Ran"> Xianwen Ran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a plane-strain orthotropic elasto-plastic dynamic constitutive model is established, and with this constitutive model, the thermal shock wave induced by intense pulsed X-ray radiation in cylinder shell composite is simulated by the finite element code, then the properties of thermal shock wave propagation are discussed. The results show that the thermal shock wave exhibit different shapes under the radiation of soft and hard X-ray, and while the composite is radiated along different principal axes, great differences exist in some aspects, such as attenuation of the peak stress value, spallation and so on. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=anisotropic%20constitutive%20model" title="anisotropic constitutive model">anisotropic constitutive model</a>, <a href="https://publications.waset.org/search?q=thermal%20shock%20wave" title=" thermal shock wave"> thermal shock wave</a>, <a href="https://publications.waset.org/search?q=X-ray" title="X-ray">X-ray</a>, <a href="https://publications.waset.org/search?q=cylinder%20shell%20composite." title=" cylinder shell composite."> cylinder shell composite.</a> </p> <a href="https://publications.waset.org/388/anisotropic-constitutive-model-and-its-application-in-simulation-of-thermal-shock-wave-propagation-for-cylinder-shell-composite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/388/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/388/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/388/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/388/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/388/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/388/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/388/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/388/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/388/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/388/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/388.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1756</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">642</span> Nonlinear Effects in Bubbly Liquid with Shock Waves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Raisa%20Kh.%20Bolotnova">Raisa Kh. Bolotnova</a>, <a href="https://publications.waset.org/search?q=Marat%20N.%20Galimzianov"> Marat N. Galimzianov</a>, <a href="https://publications.waset.org/search?q=Andrey%20S.%20Topolnikov"> Andrey S. Topolnikov</a>, <a href="https://publications.waset.org/search?q=Uliana%20O.%20Agisheva"> Uliana O. Agisheva</a>, <a href="https://publications.waset.org/search?q=Valeria%20A.%20Buzina"> Valeria A. Buzina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents the results of theoretical and numerical modeling of propagation of shock waves in bubbly liquids related to nonlinear effects (realistic equation of state, chemical reactions, two-dimensional effects). On the basis on the Rankine- Hugoniot equations the problem of determination of parameters of passing and reflected shock waves in gas-liquid medium for isothermal, adiabatic and shock compression of the gas component is solved by using the wide-range equation of state of water in the analitic form. The phenomenon of shock wave intensification is investigated in the channel of variable cross section for the propagation of a shock wave in the liquid filled with bubbles containing chemically active gases. The results of modeling of the wave impulse impact on the solid wall covered with bubble layer are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=bubbly%20liquid" title="bubbly liquid">bubbly liquid</a>, <a href="https://publications.waset.org/search?q=cavitation" title=" cavitation"> cavitation</a>, <a href="https://publications.waset.org/search?q=equation%20of%20state" title=" equation of state"> equation of state</a>, <a href="https://publications.waset.org/search?q=shock%0Awave" title=" shock wave"> shock wave</a> </p> <a href="https://publications.waset.org/14192/nonlinear-effects-in-bubbly-liquid-with-shock-waves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/14192/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/14192/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/14192/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/14192/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/14192/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/14192/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/14192/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/14192/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/14192/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/14192/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/14192.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1993</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">641</span> Incident Shock Wave Interaction with an Axisymmetric Cone Body Placed in Shock Tube</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Rabah%20Haoui">Rabah Haoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This work presents a numerical simulation of the interaction of an incident shock wave propagates from the left to the right with a cone placed in a tube at shock. The Mathematical model is based on a non stationary, viscous and axisymmetric flow. The Discretization of the Navier-stokes equations is carried out by the finite volume method in the integral form along with the Flux Vector Splitting method of Van Leer. Here, adequate combination of time stepping parameter, CFL coefficient and mesh size level is selected to ensure numerical convergence. The numerical simulation considers a shock tube filled with air. The incident shock wave propagates to the right with a determined Mach number and crosses the cone by leaving behind it a stationary detached shock wave in front of the nose cone. This type of interaction is observed according to the time of flow.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Supersonic%20flow" title="Supersonic flow">Supersonic flow</a>, <a href="https://publications.waset.org/search?q=viscous%20flow" title=" viscous flow"> viscous flow</a>, <a href="https://publications.waset.org/search?q=finite%20volume" title=" finite volume"> finite volume</a>, <a href="https://publications.waset.org/search?q=cone%20body" title=" cone body"> cone body</a> </p> <a href="https://publications.waset.org/15957/incident-shock-wave-interaction-with-an-axisymmetric-cone-body-placed-in-shock-tube" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/15957/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/15957/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/15957/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/15957/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/15957/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/15957/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/15957/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/15957/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/15957/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/15957/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/15957.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1558</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">640</span> Computational Simulation of Imploding Current Sheath Trajectory at the Radial Phase of Plasma Focus Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=R.%20Amrollahi">R. Amrollahi</a>, <a href="https://publications.waset.org/search?q=M.%20Habibi"> M. Habibi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When the shock front (SF) hits the central electrode axis of plasma focus device, a reflected shock wave moves radially outwards. The current sheath (CS) results from ionization of filled gas between two electrodes continues to compress inwards until it hits the out-going reflected shock front. In this paper the Lagrangian equations are solved for a parabolic shock trajectory yielding a first and second approximation for the CS path. To determine the accuracy of the approximation, the same problem is solved for a straight shock. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Radial%20compression" title="Radial compression">Radial compression</a>, <a href="https://publications.waset.org/search?q=Shock%20wave%20trajectory" title=" Shock wave trajectory"> Shock wave trajectory</a>, <a href="https://publications.waset.org/search?q=Current%0Asheath" title=" Current sheath"> Current sheath</a>, <a href="https://publications.waset.org/search?q=Slog%20model." title=" Slog model."> Slog model.</a> </p> <a href="https://publications.waset.org/15254/computational-simulation-of-imploding-current-sheath-trajectory-at-the-radial-phase-of-plasma-focus-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/15254/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/15254/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/15254/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/15254/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/15254/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/15254/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/15254/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/15254/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/15254/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/15254/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/15254.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1245</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">639</span> Underwater Interaction of 1064 nm Laser Radiation with Metal Target</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=G.%20Toker">G. Toker</a>, <a href="https://publications.waset.org/search?q=V.%20Bulatov"> V. Bulatov</a>, <a href="https://publications.waset.org/search?q=T.%20Kovalchuk"> T. Kovalchuk</a>, <a href="https://publications.waset.org/search?q=I.%20Schechter"> I. Schechter</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dynamics of laser radiation – metal target interaction in water at 1064 nm by applying Mach-Zehnder interference technique was studied. The mechanism of generating the well developed regime of evaporation of a metal surface and a spherical shock wave in water is proposed. Critical intensities of the NIR for the well developed evaporation of silver and gold targets were determined. Dynamics of shock waves was investigated for earlier (dozens) and later (hundreds) nanoseconds of time. Transparent expanding plasma-vapor-compressed water object was visualized and measured. The thickness of compressed layer of water and pressures behind the front of a shock wave for later time delays were obtained from the optical treatment of interferograms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=laser" title="laser">laser</a>, <a href="https://publications.waset.org/search?q=shock%20wave" title=" shock wave"> shock wave</a>, <a href="https://publications.waset.org/search?q=metal%20target" title=" metal target"> metal target</a>, <a href="https://publications.waset.org/search?q=underwater" title=" underwater"> underwater</a> </p> <a href="https://publications.waset.org/13550/underwater-interaction-of-1064-nm-laser-radiation-with-metal-target" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/13550/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/13550/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/13550/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/13550/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/13550/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/13550/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/13550/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/13550/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/13550/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/13550/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/13550.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1669</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">638</span> Richtmyer-Meshkov Instability and Gas-Particle Interaction of Contoured Shock-Tube Flows: A Numerical Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Yi%20Liu">Yi Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this paper, computational fluid dynamics (CFD) is utilized to characterize a prototype biolistic delivery system, the biomedical device based on the contoured-shock-tube design (CST), with the aim at investigating shocks induced flow instabilities within the contoured shock tube. The shock/interface interactions, the growth of perturbation at an interface between two fluids of different density are interrogated. The key features of the gas dynamics and gas-particle interaction are discussed</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Simulation" title="Simulation">Simulation</a>, <a href="https://publications.waset.org/search?q=Shock%20wave" title=" Shock wave"> Shock wave</a>, <a href="https://publications.waset.org/search?q=Particle" title=" Particle"> Particle</a>, <a href="https://publications.waset.org/search?q=Interface" title=" Interface"> Interface</a>, <a href="https://publications.waset.org/search?q=Supersonic" title=" Supersonic"> Supersonic</a>, <a href="https://publications.waset.org/search?q=Richtmyer-Meshkov%20Instability" title=" Richtmyer-Meshkov Instability"> Richtmyer-Meshkov Instability</a> </p> <a href="https://publications.waset.org/212/richtmyer-meshkov-instability-and-gas-particle-interaction-of-contoured-shock-tube-flows-a-numerical-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/212/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/212/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/212/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/212/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/212/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/212/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/212/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/212/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/212/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/212/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/212.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1763</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">637</span> Numerical Simulation of Inviscid Transient Flows in Shock Tube and its Validations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Al-Falahi%20Amir">Al-Falahi Amir</a>, <a href="https://publications.waset.org/search?q=Yusoff%20M.%20Z"> Yusoff M. Z</a>, <a href="https://publications.waset.org/search?q=Yusaf%20T"> Yusaf T</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The aim of this paper is to develop a new two dimensional time accurate Euler solver for shock tube applications. The solver was developed to study the performance of a newly built short-duration hypersonic test facility at Universiti Tenaga Nasional “UNITEN" in Malaysia. The facility has been designed, built, and commissioned for different values of diaphragm pressure ratios in order to get wide range of Mach number. The developed solver uses second order accurate cell-vertex finite volume spatial discretization and forth order accurate Runge-Kutta temporal integration and it is designed to simulate the flow process for similar driver/driven gases (e.g. air-air as working fluids). The solver is validated against analytical solution and experimental measurements in the high speed flow test facility. Further investigations were made on the flow process inside the shock tube by using the solver. The shock wave motion, reflection and interaction were investigated and their influence on the performance of the shock tube was determined. The results provide very good estimates for both shock speed and shock pressure obtained after diaphragm rupture. Also detailed information on the gasdynamic processes over the full length of the facility is available. The agreements obtained have been reasonable.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=shock%20tunnel" title="shock tunnel">shock tunnel</a>, <a href="https://publications.waset.org/search?q=shock%20tube" title=" shock tube"> shock tube</a>, <a href="https://publications.waset.org/search?q=shock%20wave" title=" shock wave"> shock wave</a>, <a href="https://publications.waset.org/search?q=CFD." title=" CFD."> CFD.</a> </p> <a href="https://publications.waset.org/4112/numerical-simulation-of-inviscid-transient-flows-in-shock-tube-and-its-validations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/4112/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/4112/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/4112/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/4112/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/4112/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/4112/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/4112/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/4112/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/4112/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/4112/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/4112.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2751</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">636</span> Numerical Investigation of Nozzle Shape Effect on Shock Wave in Natural Gas Processing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Esam%20I.%20Jassim">Esam I. Jassim</a>, <a href="https://publications.waset.org/search?q=Mohamed%20M.%20Awad"> Mohamed M. Awad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural gas flow contains undesirable solid particles, liquid condensation, and/or oil droplets and requires reliable removing equipment to perform filtration. Recent natural gas processing applications are demanded compactness and reliability of process equipment. Since conventional means are sophisticated in design, poor in efficiency, and continue lacking robust, a supersonic nozzle has been introduced as an alternative means to meet such demands. A 3-D Convergent-Divergent Nozzle is simulated using commercial Code for pressure ratio (NPR) varies from 1.2 to 2. Six different shapes of nozzle are numerically examined to illustrate the position of shock-wave as such spot could be considered as a benchmark of particle separation. Rectangle, triangle, circular, elliptical, pentagon, and hexagon nozzles are simulated using Fluent Code with all have same cross-sectional area. The simple one-dimensional inviscid theory does not describe the actual features of fluid flow precisely as it ignores the impact of nozzle configuration on the flow properties. CFD Simulation results, however, show that nozzle geometry influences the flow structures including location of shock wave. The CFD analysis predicts shock appearance when p01/pa>1.2 for almost all geometry and locates at the lower area ratio (Ae/At). Simulation results showed that shock wave in Elliptical nozzle has the farthest distance from the throat among the others at relatively small NPR. As NPR increases, hexagon would be the farthest. The numerical result is compared with available experimental data and has shown good agreement in terms of shock location and flow structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/search?q=Particle%20Separation" title=" Particle Separation"> Particle Separation</a>, <a href="https://publications.waset.org/search?q=Shock%20wave" title=" Shock wave"> Shock wave</a>, <a href="https://publications.waset.org/search?q=Supersonic%20Nozzle." title=" Supersonic Nozzle."> Supersonic Nozzle.</a> </p> <a href="https://publications.waset.org/3767/numerical-investigation-of-nozzle-shape-effect-on-shock-wave-in-natural-gas-processing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/3767/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/3767/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/3767/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/3767/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/3767/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/3767/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/3767/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/3767/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/3767/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/3767/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/3767.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3250</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">635</span> Effect of Atmospheric Pressure on the Flow at the Outlet of a Propellant Nozzle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=R.%20Haoui">R. Haoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The purpose of this work is to simulate the flow at the exit of Vulcan 1 engine of European launcher Ariane 5. The geometry of the propellant nozzle is already determined using the characteristics method. The pressure in the outlet section of the nozzle is less than atmospheric pressure on the ground, causing the existence of oblique and normal shock waves at the exit. During the rise of the launcher, the atmospheric pressure decreases and the shock wave disappears. The code allows the capture of shock wave at exit of nozzle. The numerical technique uses the Flux Vector Splitting method of Van Leer to ensure convergence and avoid the calculation instabilities. The Courant, Friedrichs and Lewy coefficient (CFL) and mesh size level are selected to ensure the numerical convergence. The nonlinear partial derivative equations system which governs this flow is solved by an explicit unsteady numerical scheme by the finite volume method. The accuracy of the solution depends on the size of the mesh and also the step of time used in the discretized equations. We have chosen in this study the mesh that gives us a stationary solution with good accuracy.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Launchers" title="Launchers">Launchers</a>, <a href="https://publications.waset.org/search?q=supersonic%20flow" title=" supersonic flow"> supersonic flow</a>, <a href="https://publications.waset.org/search?q=finite%20volume" title=" finite volume"> finite volume</a>, <a href="https://publications.waset.org/search?q=nozzles" title=" nozzles"> nozzles</a>, <a href="https://publications.waset.org/search?q=shock%20wave." title=" shock wave."> shock wave.</a> </p> <a href="https://publications.waset.org/10007031/effect-of-atmospheric-pressure-on-the-flow-at-the-outlet-of-a-propellant-nozzle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10007031/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10007031/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10007031/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10007031/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10007031/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10007031/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10007031/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10007031/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10007031/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10007031/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10007031.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">877</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">634</span> Desktop High-Speed Aerodynamics by Shallow Water Analogy in a Tin Box for Engineering Students</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Etsuo%20Morishita">Etsuo Morishita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this paper, we show shallow water in a tin box as an analogous simulation tool for high-speed aerodynamics education and research. It is customary that we use a water tank to create shallow water flow. While a flow in a water tank is not necessarily uniform and is sometimes wavy, we can visualize a clear supercritical flow even when we move a body manually in stationary water in a simple shallow tin box. We can visualize a blunt shock wave around a moving circular cylinder together with a shock pattern around a diamond airfoil. Another interesting analogous experiment is a hydrodynamic shock tube with water and tea. We observe the contact surface clearly due to color difference of the two liquids those are invisible in the real gas dynamics experiment. We first revisit the similarities between high-speed aerodynamics and shallow water hydraulics. Several educational and research experiments are then introduced for engineering students. Shallow water experiments in a tin box simulate properly the high-speed flows.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Aerodynamics%20compressible%20flow" title="Aerodynamics compressible flow">Aerodynamics compressible flow</a>, <a href="https://publications.waset.org/search?q=gas%20dynamics" title=" gas dynamics"> gas dynamics</a>, <a href="https://publications.waset.org/search?q=hydraulics" title=" hydraulics"> hydraulics</a>, <a href="https://publications.waset.org/search?q=shock%20wave." title=" shock wave."> shock wave.</a> </p> <a href="https://publications.waset.org/10009896/desktop-high-speed-aerodynamics-by-shallow-water-analogy-in-a-tin-box-for-engineering-students" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10009896/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10009896/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10009896/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10009896/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10009896/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10009896/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10009896/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10009896/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10009896/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10009896/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10009896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">949</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">633</span> Simulation of Irregular Waves by CFD</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Muniyandy%20Elangovan">Muniyandy Elangovan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wave generation methodology has been developed and validated by simulating wave in CFD. In this analysis, Flap type wave maker has been modeled numerically with wave basin to generate waves for marine experimental analysis. Irregular waves are arrived from the wave spectrum, and this wave has been simulated in CFD. Generated irregular wave has been compared with an analytical wave. Simulated wave has been processed for FFT analysis, and the wave spectrum is validated with original wave spectrum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Numerical%20wave%20tank" title="Numerical wave tank">Numerical wave tank</a>, <a href="https://publications.waset.org/search?q=irregular%20wave" title=" irregular wave"> irregular wave</a>, <a href="https://publications.waset.org/search?q=FFT" title=" FFT"> FFT</a>, <a href="https://publications.waset.org/search?q=wavespectrum" title=" wavespectrum"> wavespectrum</a> </p> <a href="https://publications.waset.org/10960/simulation-of-irregular-waves-by-cfd" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10960/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10960/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10960/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10960/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10960/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10960/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10960/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10960/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10960/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10960/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10960.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">4044</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">632</span> Study of Unsteady Behaviour of Dynamic Shock Systems in Supersonic Engine Intakes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Siddharth%20Ahuja">Siddharth Ahuja</a>, <a href="https://publications.waset.org/search?q=T.%20M.%20Muruganandam"> T. M. Muruganandam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>An analytical investigation is performed to study the unsteady response of a one-dimensional, non-linear dynamic shock system to external downstream pressure perturbations in a supersonic flow in a varying area duct. For a given pressure ratio across a wind tunnel, the normal shock's location can be computed as per one-dimensional steady gas dynamics. Similarly, for some other pressure ratio, the location of the normal shock will change accordingly, again computed using one-dimensional gas dynamics. This investigation focuses on the small-time interval between the first steady shock location and the new steady shock location (corresponding to different pressure ratios). In essence, this study aims to shed light on the motion of the shock from one steady location to another steady location. Further, this study aims to create the foundation of the Unsteady Gas Dynamics field enabling further insight in future research work. According to the new pressure ratio, a pressure pulse, generated at the exit of the tunnel which travels and perturbs the shock from its original position, setting it into motion. During such activity, other numerous physical phenomena also happen at the same time. However, three broad phenomena have been focused on, in this study - Traversal of a Wave, Fluid Element Interactions and Wave Interactions. The above mentioned three phenomena create, alter and kill numerous waves for different conditions. The waves which are created by the above-mentioned phenomena eventually interact with the shock and set it into motion. Numerous such interactions with the shock will slowly make it settle into its final position owing to the new pressure ratio across the duct, as estimated by one-dimensional gas dynamics. This analysis will be extremely helpful in the prediction of inlet 'unstart' of the flow in a supersonic engine intake and its prominence with the incoming flow Mach number, incoming flow pressure and the external perturbation pressure is also studied to help design more efficient supersonic intakes for engines like ramjets and scramjets.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Analytical%20investigation" title="Analytical investigation">Analytical investigation</a>, <a href="https://publications.waset.org/search?q=compression%20and%20expansion%20waves" title=" compression and expansion waves"> compression and expansion waves</a>, <a href="https://publications.waset.org/search?q=fluid%20element%20interactions" title=" fluid element interactions"> fluid element interactions</a>, <a href="https://publications.waset.org/search?q=shock%20trajectory" title=" shock trajectory"> shock trajectory</a>, <a href="https://publications.waset.org/search?q=supersonic%20flow" title=" supersonic flow"> supersonic flow</a>, <a href="https://publications.waset.org/search?q=unsteady%20gas%20dynamics" title=" unsteady gas dynamics"> unsteady gas dynamics</a>, <a href="https://publications.waset.org/search?q=varying%20area%20duct" title=" varying area duct"> varying area duct</a>, <a href="https://publications.waset.org/search?q=wave%20interactions." title=" wave interactions."> wave interactions.</a> </p> <a href="https://publications.waset.org/10007923/study-of-unsteady-behaviour-of-dynamic-shock-systems-in-supersonic-engine-intakes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10007923/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10007923/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10007923/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10007923/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10007923/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10007923/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10007923/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10007923/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10007923/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10007923/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10007923.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">882</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">631</span> A New Shock Model for Systems Subject to Random Threshold Failure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20Rangan">A. Rangan</a>, <a href="https://publications.waset.org/search?q=A.%20Tansu"> A. Tansu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper generalizes Yeh Lam-s shock model for renewal shock arrivals and random threshold. Several interesting statistical measures are explicitly obtained. A few special cases and an optimal replacement problem are also discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=shock%20model" title="shock model">shock model</a>, <a href="https://publications.waset.org/search?q=optimal%20replacement" title=" optimal replacement"> optimal replacement</a>, <a href="https://publications.waset.org/search?q=random%0Athreshold" title=" random threshold"> random threshold</a>, <a href="https://publications.waset.org/search?q=shocks." title=" shocks."> shocks.</a> </p> <a href="https://publications.waset.org/14071/a-new-shock-model-for-systems-subject-to-random-threshold-failure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/14071/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/14071/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/14071/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/14071/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/14071/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/14071/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/14071/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/14071/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/14071/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/14071/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/14071.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1584</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">630</span> Interaction between Unsteady Supersonic Jet and Vortex Rings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Kazumasa%20Kitazono">Kazumasa Kitazono</a>, <a href="https://publications.waset.org/search?q=Hiroshi%20Fukuoka"> Hiroshi Fukuoka</a>, <a href="https://publications.waset.org/search?q=Nao%20Kuniyoshi"> Nao Kuniyoshi</a>, <a href="https://publications.waset.org/search?q=Minoru%20Yaga"> Minoru Yaga</a>, <a href="https://publications.waset.org/search?q=Eri%20Ueno"> Eri Ueno</a>, <a href="https://publications.waset.org/search?q=Naoaki%20Fukuda"> Naoaki Fukuda</a>, <a href="https://publications.waset.org/search?q=Toshio%20Takiya"> Toshio Takiya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The unsteady supersonic jet formed by a shock tube with a small high-pressure chamber was used as a simple alternative model for pulsed laser ablation. Understanding the vortex ring formed by the shock wave is crucial in clarifying the behavior of unsteady supersonic jet discharged from an elliptical cell. Therefore, this study investigated the behavior of vortex rings and a jet. The experiment and numerical calculation were conducted using the schlieren method and by solving the axisymmetric two-dimensional compressible Navier–Stokes equations, respectively. In both, the calculation and the experiment, laser ablation is conducted for a certain duration, followed by discharge through the exit. Moreover, a parametric study was performed to demonstrate the effect of pressure ratio on the interaction among vortex rings and the supersonic jet. The interaction between the supersonic jet and the vortex rings increased the velocity of the supersonic jet up to the magnitude of the velocity at the center of the vortex rings. The interaction between the vortex rings increased the velocity at the center of the vortex ring. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Computational%20fluid%20dynamics" title="Computational fluid dynamics">Computational fluid dynamics</a>, <a href="https://publications.waset.org/search?q=shock%20wave" title=" shock wave"> shock wave</a>, <a href="https://publications.waset.org/search?q=unsteady%20jet" title=" unsteady jet"> unsteady jet</a>, <a href="https://publications.waset.org/search?q=vortex%20ring." title=" vortex ring."> vortex ring.</a> </p> <a href="https://publications.waset.org/10005566/interaction-between-unsteady-supersonic-jet-and-vortex-rings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10005566/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10005566/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10005566/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10005566/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10005566/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10005566/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10005566/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10005566/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10005566/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10005566/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10005566.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1382</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">629</span> Shock Response Analysis of Soil–Structure Systems Induced by Near–Fault Pulses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=H.%20Masaeli">H. Masaeli</a>, <a href="https://publications.waset.org/search?q=R.%20Ziaei"> R. Ziaei</a>, <a href="https://publications.waset.org/search?q=F.%20Khoshnoudian"> F. Khoshnoudian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Shock response analysis of the soil–structure systems induced by near–fault pulses is investigated. Vibration transmissibility of the soil–structure systems is evaluated by shock response spectra (SRS). Medium–to–high rise buildings with different aspect ratios located on different soil types as well as different foundations with respect to vertical load bearing safety factors are studied. Two types of mathematical near–fault pulses, i.e. forward directivity and fling step, with different pulse periods as well as pulse amplitudes are selected as incident ground shock. Linear versus nonlinear soil–structure interaction (SSI) condition are considered alternatively and the corresponding results are compared. The results show that nonlinear SSI is likely to amplify the acceleration responses when subjected to long–period incident pulses with normalized period exceeding a threshold. It is also shown that this threshold correlates with soil type, so that increased shear–wave velocity of the underlying soil makes the threshold period decrease.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Nonlinear%20soil%E2%80%93structure%20interaction" title="Nonlinear soil–structure interaction">Nonlinear soil–structure interaction</a>, <a href="https://publications.waset.org/search?q=shock%20response%20spectrum" title=" shock response spectrum"> shock response spectrum</a>, <a href="https://publications.waset.org/search?q=near%E2%80%93fault%20ground%20shock" title=" near–fault ground shock"> near–fault ground shock</a>, <a href="https://publications.waset.org/search?q=rocking%20isolation." title=" rocking isolation."> rocking isolation.</a> </p> <a href="https://publications.waset.org/9998001/shock-response-analysis-of-soil-structure-systems-induced-by-near-fault-pulses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9998001/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9998001/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9998001/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9998001/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9998001/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9998001/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9998001/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9998001/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9998001/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9998001/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9998001.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2378</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">628</span> Amplification of Compression Waves in Clean and Bubbly Liquid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Robert%20I.%20Nigmatulin">Robert I. Nigmatulin</a>, <a href="https://publications.waset.org/search?q=Raisa%20Kh.%20Bolotnova"> Raisa Kh. Bolotnova</a>, <a href="https://publications.waset.org/search?q=Nailya%20K.%20Vakhitova"> Nailya K. Vakhitova</a>, <a href="https://publications.waset.org/search?q=Andrey%20S.%20Topolnikov"> Andrey S. Topolnikov</a>, <a href="https://publications.waset.org/search?q=Svetlana%20I.%20Konovalova"> Svetlana I. Konovalova</a>, <a href="https://publications.waset.org/search?q=Nikolai%20A.%20Makhota"> Nikolai A. Makhota</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The theoretical investigation is carried out to describe the effect of increase of pressure waves amplitude in clean and bubbly liquid. The goal of the work is to capture the regime of multiple magnification of acoustic and shock waves in the liquid, which enables to get appropriate conditions to enlarge collapses of micro-bubbles. The influence of boundary conditions and frequency of the governing acoustic field is studied for the case of the cylindrical acoustic resonator. It has been observed the formation of standing waves with large amplitude at resonant frequencies. The interaction of the compression wave with gas and vapor bubbles is investigated for the convergent channel. It is shown theoretically that the chemical reactions, which occur inside gas bubbles, provide additional impulse to the wave, that affect strongly on the collapses of the vapor bubbles <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=acoustics" title="acoustics">acoustics</a>, <a href="https://publications.waset.org/search?q=cavitation" title=" cavitation"> cavitation</a>, <a href="https://publications.waset.org/search?q=detonation" title=" detonation"> detonation</a>, <a href="https://publications.waset.org/search?q=shock%20waves" title=" shock waves"> shock waves</a> </p> <a href="https://publications.waset.org/1855/amplification-of-compression-waves-in-clean-and-bubbly-liquid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/1855/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/1855/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/1855/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/1855/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/1855/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/1855/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/1855/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/1855/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/1855/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/1855/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/1855.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1815</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">627</span> Estimation of Shock Velocity and Pressure of Detonations and Finding Their Flow Parameters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mahmoud%20Zarrini">Mahmoud Zarrini</a>, <a href="https://publications.waset.org/search?q=R.%20N.%20Pralhad"> R. N. Pralhad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this paper, mathematical modeling of detonation in the ground is studied. Estimation of flow parameters such as velocity, maximum velocity, acceleration, maximum acceleration, shock pressure as a result of an explosion in the ground have been computed in an appropriate dynamic model approach. The variation of these parameters with the diameter of detonation place (L), density of earth or stone (¤ü), time decay of detonation (T), peak pressure (Pm), and time (t) have been analyzed. The model has been developed from the concept of underwater explosions [Refs. [1]-[3]] with appropriate changes to the present model requirements.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Shock%20velocity" title="Shock velocity">Shock velocity</a>, <a href="https://publications.waset.org/search?q=detonation" title=" detonation"> detonation</a>, <a href="https://publications.waset.org/search?q=shock%20acceleration" title=" shock acceleration"> shock acceleration</a>, <a href="https://publications.waset.org/search?q=shock%20pressure." title=" shock pressure."> shock pressure.</a> </p> <a href="https://publications.waset.org/3315/estimation-of-shock-velocity-and-pressure-of-detonations-and-finding-their-flow-parameters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/3315/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/3315/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/3315/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/3315/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/3315/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/3315/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/3315/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/3315/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/3315/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/3315/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/3315.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1299</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">626</span> An Approximate Engineering Method for Aerodynamic Heating Solution around Blunt Body Nose</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Sahar%20Noori">Sahar Noori</a>, <a href="https://publications.waset.org/search?q=Seyed%20Amir%20Hossein"> Seyed Amir Hossein</a>, <a href="https://publications.waset.org/search?q=Mohammad%20Ebrahimi"> Mohammad Ebrahimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is devoted to predict laminar and turbulent heating rates around blunt re-entry spacecraft at hypersonic conditions. Heating calculation of a hypersonic body is normally performed during the critical part of its flight trajectory. The procedure is of an inverse method, where a shock wave is assumed, and the body shape that supports this shock, as well as the flowfield between the shock and body, are calculated. For simplicity the normal momentum equation is replaced with a second order pressure relation; this simplification significantly reduces computation time. The geometries specified in this research, are parabola and ellipsoids which may have conical after bodies. An excellent agreement is observed between the results obtained in this paper and those calculated by others- research. Since this method is much faster than Navier-Stokes solutions, it can be used in preliminary design, parametric study of hypersonic vehicles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Aerodynamic%20Heating" title="Aerodynamic Heating">Aerodynamic Heating</a>, <a href="https://publications.waset.org/search?q=Blunt%20Body" title=" Blunt Body"> Blunt Body</a>, <a href="https://publications.waset.org/search?q=Hypersonic%0AFlow" title=" Hypersonic Flow"> Hypersonic Flow</a>, <a href="https://publications.waset.org/search?q=Laminar" title=" Laminar"> Laminar</a>, <a href="https://publications.waset.org/search?q=Turbulent." title=" Turbulent."> Turbulent.</a> </p> <a href="https://publications.waset.org/14786/an-approximate-engineering-method-for-aerodynamic-heating-solution-around-blunt-body-nose" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/14786/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/14786/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/14786/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/14786/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/14786/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/14786/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/14786/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/14786/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/14786/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/14786/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/14786.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3720</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">625</span> Dust Acoustic Shock Waves in Coupled Dusty Plasmas with Kappa-Distributed Ions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Hamid%20Reza%20Pakzad">Hamid Reza Pakzad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>We have considered an unmagnetized dusty plasma system consisting of ions obeying superthermal distribution and strongly coupled negatively charged dust. We have used reductive perturbation method and derived the Kordeweg-de Vries-Burgers (KdV-Burgers) equation. The behavior of the shock waves in the plasma has been investigated.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Shock" title="Shock">Shock</a>, <a href="https://publications.waset.org/search?q=Soliton" title=" Soliton"> Soliton</a>, <a href="https://publications.waset.org/search?q=Coupling" title=" Coupling"> Coupling</a>, <a href="https://publications.waset.org/search?q=Superthermal%20ions." title=" Superthermal ions."> Superthermal ions.</a> </p> <a href="https://publications.waset.org/9338/dust-acoustic-shock-waves-in-coupled-dusty-plasmas-with-kappa-distributed-ions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9338/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9338/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9338/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9338/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9338/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9338/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9338/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9338/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9338/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9338/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9338.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1901</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">624</span> A Study of the Relation of Wave Height and Erosion at Bangkhuntien Shoreline, Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Prasertsak%20Ekphisutsuntorn">Prasertsak Ekphisutsuntorn</a>, <a href="https://publications.waset.org/search?q=Prungchan%20Wongwises"> Prungchan Wongwises</a>, <a href="https://publications.waset.org/search?q=Chaiyuth%20Chinnarasri"> Chaiyuth Chinnarasri</a>, <a href="https://publications.waset.org/search?q=Usa%20Humphries">Usa Humphries</a>, <a href="https://publications.waset.org/search?q=Suphat%20Vongvisessomjai"> Suphat Vongvisessomjai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this paper, the significant wave height at the Upper Gulf of Thailand and the changing of wave height at Bangkhuntien shoreline were simulated by using the Simulating WAves Nearshore Model (SWAN) version 40.51. The simulated results indicated that the significant wave height by SWAN model corresponded with the observed data. The results showed that the maximum significant wave height at the Bangkhuntien shoreline were 1.06-2.05 m. and the average significant wave height at the Bangkhuntien shoreline were 0.30-0.47 m. The significant wave height can be used to calculate the erosion through the Bangkhuntien shoreline. The erosion rates at the Bangkhuntien shoreline were prepared by using the aerial photo and they were about 1.80 m/yr. from 1980- 1986, 4.75 m/yr from 1987-1993, 15.28 m/yr from 1994-1996 and 10.03 m/yr from 1997-2002. The relation between the wave energy and the erosion were in good agreement. Therefore, the significant wave height was one of the major factors of the erosion at the Bangkhuntien shoreline.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=significant%20wave%20height" title="significant wave height">significant wave height</a>, <a href="https://publications.waset.org/search?q=erosion" title=" erosion"> erosion</a>, <a href="https://publications.waset.org/search?q=SWAN" title=" SWAN"> SWAN</a>, <a href="https://publications.waset.org/search?q=relation" title=" relation"> relation</a>, <a href="https://publications.waset.org/search?q=Bangkhuntien%20shoreline" title="Bangkhuntien shoreline">Bangkhuntien shoreline</a> </p> <a href="https://publications.waset.org/10648/a-study-of-the-relation-of-wave-height-and-erosion-at-bangkhuntien-shoreline-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10648/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10648/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10648/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10648/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10648/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10648/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10648/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10648/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10648/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10648/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10648.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2018</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">623</span> Quantum Ion Acoustic Solitary and Shock Waves in Dissipative Warm Plasma with Fermi Electron and Positron</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Hamid%20Reza%20Pakzad">Hamid Reza Pakzad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ion-acoustic solitary and shock waves in dense quantum plasmas whose constituents are electrons, positrons, and positive ions are investigated. We assume that ion velocity is weakly relativistic and also the effects of kinematic viscosity among the plasma constituents is considered. By using the reductive perturbation method, the Korteweg–deVries–Burger (KdV-B) equation is derived. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Ion%20acoustic%20shock%20waves%3B%20Quantum%20plasmas" title="Ion acoustic shock waves; Quantum plasmas">Ion acoustic shock waves; Quantum plasmas</a> </p> <a href="https://publications.waset.org/11846/quantum-ion-acoustic-solitary-and-shock-waves-in-dissipative-warm-plasma-with-fermi-electron-and-positron" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/11846/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/11846/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/11846/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/11846/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/11846/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/11846/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/11846/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/11846/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/11846/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/11846/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/11846.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1745</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">622</span> Wave Vortex Parameters as an Indicator of Breaking Intensity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=B.%20Robertson">B. Robertson</a>, <a href="https://publications.waset.org/search?q=K.%20Hall"> K. Hall</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The study of the geometric shape of the plunging wave enclosed vortices as a possible indicator for the breaking intensity of ocean waves has been ongoing for almost 50 years with limited success. This paper investigates the validity of using the vortex ratio and vortex angle as methods of predicting breaking intensity. Previously published works on vortex parameters, based on regular wave flume results or solitary wave theory, present contradictory results and conclusions. Through the first complete analysis of field collected irregular wave breaking vortex parameters it is illustrated that the vortex ratio and vortex angle cannot be accurately predicted using standard breaking wave characteristics and hence are not suggested as a possible indicator for breaking intensity.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Breaking%20Wave%20Measurement" title="Breaking Wave Measurement">Breaking Wave Measurement</a>, <a href="https://publications.waset.org/search?q=Wave%20Vortex%20Parameters" title=" Wave Vortex Parameters"> Wave Vortex Parameters</a>, <a href="https://publications.waset.org/search?q=Analytical%20Techniques" title=" Analytical Techniques"> Analytical Techniques</a>, <a href="https://publications.waset.org/search?q=Ocean%20Remote%20Sensing." title=" Ocean Remote Sensing."> Ocean Remote Sensing.</a> </p> <a href="https://publications.waset.org/6937/wave-vortex-parameters-as-an-indicator-of-breaking-intensity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/6937/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/6937/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/6937/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/6937/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/6937/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/6937/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/6937/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/6937/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/6937/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/6937/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/6937.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1768</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">621</span> Simulation of an Auto-Tuning Bicycle Suspension Fork with Quick Releasing Valves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Y.%20C.%20Mao">Y. C. Mao</a>, <a href="https://publications.waset.org/search?q=G.%20S.%20Chen"> G. S. Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Bicycle configuration is not as large as those of motorcycles or automobiles, while it indeed composes a complicated dynamic system. People-s requirements on comfortability, controllability and safety grow higher as the research and development technologies improve. The shock absorber affects the vehicle suspension performances enormously. The absorber takes the vibration energy and releases it at a suitable time, keeping the wheel under a proper contact condition with road surface, maintaining the vehicle chassis stability. Suspension design for mountain bicycles is more difficult than that of city bikes since it encounters dynamic variations on road and loading conditions. Riders need a stiff damper as they exert to tread on the pedals when climbing, while a soft damper when they descend downhill. Various switchable shock absorbers are proposed in markets, however riders have to manually switch them among soft, hard and lock positions. This study proposes a novel design of the bicycle shock absorber, which provides automatic smooth tuning of the damping coefficient, from a predetermined lower bound to theoretically unlimited. An automatic quick releasing valve is involved in this design so that it can release the peak pressure when the suspension fork runs into a square-wave type obstacle and prevent the chassis from damage, avoiding the rider skeleton from injury. This design achieves the automatic tuning process by innovative plunger valve and fluidic passage arrangements without any electronic devices. Theoretical modelling of the damper and spring are established in this study. Design parameters of the valves and fluidic passages are determined. Relations between design parameters and shock absorber performances are discussed in this paper. The analytical results give directions to the shock absorber manufacture.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Modelling" title="Modelling">Modelling</a>, <a href="https://publications.waset.org/search?q=Simulation" title=" Simulation"> Simulation</a>, <a href="https://publications.waset.org/search?q=Bicycle" title=" Bicycle"> Bicycle</a>, <a href="https://publications.waset.org/search?q=Shock%20Absorber" title=" Shock Absorber"> Shock Absorber</a>, <a href="https://publications.waset.org/search?q=Damping" title=" Damping"> Damping</a>, <a href="https://publications.waset.org/search?q=Releasing%20Valve" title=" Releasing Valve"> Releasing Valve</a> </p> <a href="https://publications.waset.org/3770/simulation-of-an-auto-tuning-bicycle-suspension-fork-with-quick-releasing-valves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/3770/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/3770/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/3770/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/3770/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/3770/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/3770/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/3770/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/3770/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/3770/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/3770/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/3770.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2890</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">620</span> Traveling Wave Solutions for Shallow Water Wave Equation by (G'/G)-Expansion Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Anjali%20Verma">Anjali Verma</a>, <a href="https://publications.waset.org/search?q=Ram%20Jiwari"> Ram Jiwari</a>, <a href="https://publications.waset.org/search?q=Jitender%20Kumar"> Jitender Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper presents a new function expansion method for finding traveling wave solution of a non-linear equation and calls it the (G'/G)-expansion method. The shallow water wave equation is reduced to a non linear ordinary differential equation by using a simple transformation. As a result the traveling wave solutions of shallow water wave equation are expressed in three forms: hyperbolic solutions, trigonometric solutions and rational solutions.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Shallow%20water%20wave%20equation" title="Shallow water wave equation">Shallow water wave equation</a>, <a href="https://publications.waset.org/search?q=Exact%20solutions" title=" Exact solutions"> Exact solutions</a>, <a href="https://publications.waset.org/search?q=%02%28G%27%2FG%29%20expansion%20method." title=" (G'/G) expansion method."> (G'/G) expansion method.</a> </p> <a href="https://publications.waset.org/16740/traveling-wave-solutions-for-shallow-water-wave-equation-by-gg-expansion-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/16740/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/16740/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/16740/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/16740/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/16740/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/16740/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/16740/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/16740/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/16740/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/16740/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/16740.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1839</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">619</span> CFD Simulation and Validation of Flap Type Wave-Maker</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Anant%20Lal">Anant Lal</a>, <a href="https://publications.waset.org/search?q=M.%20Elangovan"> M. Elangovan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A general purpose viscous flow solver Ansys CFX was used to solve the unsteady three-dimensional (3D) Reynolds Averaged Navier-Stokes Equation (RANSE) for simulating a 3D numerical viscous wave tank. A flap-type wave generator was incorporated in the computational domain to generate the desired incident waves. Authors have made effort to study the physical behaviors of Flap type wave maker with governing parameters. Dependency of the water fill depth, Time period of oscillations and amplitude of oscillations of flap were studied. Effort has been made to establish relations between parameters. A validation study was also carried out against CFD methodology with wave maker theory. It has been observed that CFD results are in good agreement with theoretical results. Beaches of different slopes were introduced to damp the wave, so that it should not cause any reflection from boundary. As a conclusion this methodology can simulate the experimental wave-maker for regular wave generation for different wave length and amplitudes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/search?q=RANSE" title=" RANSE"> RANSE</a>, <a href="https://publications.waset.org/search?q=Flap%20type" title=" Flap type"> Flap type</a>, <a href="https://publications.waset.org/search?q=wave-maker" title=" wave-maker"> wave-maker</a>, <a href="https://publications.waset.org/search?q=VOF" title=" VOF"> VOF</a>, <a href="https://publications.waset.org/search?q=seakeeping" title="seakeeping">seakeeping</a>, <a href="https://publications.waset.org/search?q=numerical%20method." title=" numerical method."> numerical method.</a> </p> <a href="https://publications.waset.org/3457/cfd-simulation-and-validation-of-flap-type-wave-maker" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/3457/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/3457/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/3457/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/3457/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/3457/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/3457/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/3457/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/3457/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/3457/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/3457/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/3457.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3922</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">618</span> Investigation of Stoneley Waves in Multilayered Plates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Bing%20Li">Bing Li</a>, <a href="https://publications.waset.org/search?q=Tong%20Lu"> Tong Lu</a>, <a href="https://publications.waset.org/search?q=Lei%20Qiang"> Lei Qiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Stoneley waves are interface waves that propagate at the interface between two solid media. In this study, the dispersion characteristics and wave structures of Stoneley waves in elastic multilayered plates are displayed and investigated. With a perspective of bulk wave, a reasonable assumption of the potential function forms of the expansion wave and shear wave in <em>n</em>th layer medium is adopted, and the characteristic equation of Stoneley waves in a three-layered plate is given in a determinant form. The dispersion curves and wave structures are solved and presented in both numerical and simulation results. It is observed that two Stoneley wave modes exist in a three-layered plate, that conspicuous dispersion occurs on low frequency band, that the velocity of each Stoneley wave mode approaches the corresponding Stoneley wave velocity at interface between two half infinite spaces. The wave structures reveal that the in-plane displacement of Stoneley waves are relatively high at interfaces, which shows great potential for interface defects detection.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Characteristic%20equation" title="Characteristic equation">Characteristic equation</a>, <a href="https://publications.waset.org/search?q=interface%20waves" title=" interface waves"> interface waves</a>, <a href="https://publications.waset.org/search?q=dispersion%20curves" title=" dispersion curves"> dispersion curves</a>, <a href="https://publications.waset.org/search?q=potential%20function" title=" potential function"> potential function</a>, <a href="https://publications.waset.org/search?q=Stoneley%20waves" title=" Stoneley waves"> Stoneley waves</a>, <a href="https://publications.waset.org/search?q=wave%20structures." title=" wave structures. "> wave structures. </a> </p> <a href="https://publications.waset.org/10003913/investigation-of-stoneley-waves-in-multilayered-plates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10003913/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10003913/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10003913/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10003913/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10003913/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10003913/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10003913/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10003913/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10003913/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10003913/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10003913.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1684</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">617</span> Real-time Interactive Ocean Wave Simulation using Multithread</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=K.%20Prachumrak">K. Prachumrak</a>, <a href="https://publications.waset.org/search?q=T.%20Kanchanapornchai"> T. Kanchanapornchai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research simulates one of the natural phenomena, the ocean wave. Our goal is to be able to simulate the ocean wave at real-time rate with the water surface interacting with objects. The wave in this research is calm and smooth caused by the force of the wind above the ocean surface. In order to make the simulation of the wave real-time, the implementation of the GPU and the multithreading techniques are used here. Based on the fact that the new generation CPUs, for personal computers, have multi cores, they are useful for the multithread. This technique utilizes more than one core at a time. This simulation is programmed by C language with OpenGL. To make the simulation of the wave look more realistic, we applied an OpenGL technique called cube mapping (environmental mapping) to make water surface reflective and more realistic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Interactive%20wave" title="Interactive wave">Interactive wave</a>, <a href="https://publications.waset.org/search?q=ocean%20wave" title=" ocean wave"> ocean wave</a>, <a href="https://publications.waset.org/search?q=wind%20effect" title=" wind effect"> wind effect</a>, <a href="https://publications.waset.org/search?q=multithread" title="multithread">multithread</a> </p> <a href="https://publications.waset.org/8374/real-time-interactive-ocean-wave-simulation-using-multithread" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/8374/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/8374/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/8374/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/8374/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/8374/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/8374/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/8374/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/8374/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/8374/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/8374/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/8374.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2481</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">616</span> The Radial Pulse Wave and Blood Viscosity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Hyunhee%20Ryu"> Hyunhee Ryu</a>, <a href="https://publications.waset.org/search?q=Young%20Ju%20Jeon"> Young Ju Jeon</a>, <a href="https://publications.waset.org/search?q=Jaeuk%20U.%20Kim"> Jaeuk U. Kim</a>, <a href="https://publications.waset.org/search?q=Hae%20Jung%20Lee"> Hae Jung Lee</a>, <a href="https://publications.waset.org/search?q=Yu%20Jung%20Lee"> Yu Jung Lee</a>, <a href="https://publications.waset.org/search?q=Jong%20Yeol%20Kim"> Jong Yeol Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The aim of this study was to investigate the effect of blood viscosity on the radial pulse wave. For this, we obtained the radial pulse wave of 15 males with abnormal high hematocrit level and 47 males with normal hematocrit level at the age of thirties and forties. Various variables of the radial pulse wave between two groups were analyzed and compared by Student's T test. There are significant differences in several variables about height, time and area of the pulse wave. The first peak of the radial pulse wave was higher in abnormal high hematocrit group, but the third peak was higher and longer in normal hematocrit group. Our results suggest that the radial pulse wave can be used for diagnosis of high blood viscosity and more clinical application.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Radial%20pulse%20wave" title="Radial pulse wave">Radial pulse wave</a>, <a href="https://publications.waset.org/search?q=Blood%20viscosity" title=" Blood viscosity"> Blood viscosity</a>, <a href="https://publications.waset.org/search?q=Hematocrit." title=" Hematocrit."> Hematocrit.</a> </p> <a href="https://publications.waset.org/2731/the-radial-pulse-wave-and-blood-viscosity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/2731/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/2731/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/2731/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/2731/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/2731/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/2731/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/2731/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/2731/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/2731/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/2731/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/2731.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1969</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">615</span> A FE-Based Scheme for Computing Wave Interaction with Nonlinear Damage and Generation of Harmonics in Layered Composite Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=R.%20K.%20Apalowo">R. K. Apalowo</a>, <a href="https://publications.waset.org/search?q=D.%20Chronopoulos"> D. Chronopoulos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A Finite Element (FE) based scheme is presented for quantifying guided wave interaction with Localised Nonlinear Structural Damage (LNSD) within structures of arbitrary layering and geometric complexity. The through-thickness mode-shape of the structure is obtained through a wave and finite element method. This is applied in a time domain FE simulation in order to generate time harmonic excitation for a specific wave mode. Interaction of the wave with LNSD within the system is computed through an element activation and deactivation iteration. The scheme is validated against experimental measurements and a WFE-FE methodology for calculating wave interaction with damage. Case studies for guided wave interaction with crack and delamination are presented to verify the robustness of the proposed method in classifying and identifying damage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Layered%20Structures" title="Layered Structures">Layered Structures</a>, <a href="https://publications.waset.org/search?q=nonlinear%20ultrasound" title=" nonlinear ultrasound"> nonlinear ultrasound</a>, <a href="https://publications.waset.org/search?q=wave%0D%0Ainteraction%20with%20nonlinear%20damage" title=" wave interaction with nonlinear damage"> wave interaction with nonlinear damage</a>, <a href="https://publications.waset.org/search?q=wave%20finite%20element" title=" wave finite element"> wave finite element</a>, <a href="https://publications.waset.org/search?q=finite%0D%0Aelement." title=" finite element."> finite element.</a> </p> <a href="https://publications.waset.org/10011417/a-fe-based-scheme-for-computing-wave-interaction-with-nonlinear-damage-and-generation-of-harmonics-in-layered-composite-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10011417/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10011417/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10011417/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10011417/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10011417/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10011417/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10011417/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10011417/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10011417/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10011417/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10011417.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">544</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">614</span> Effect of Assumptions of Normal Shock Location on the Design of Supersonic Ejectors for Refrigeration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Payam%20Haghparast">Payam Haghparast</a>, <a href="https://publications.waset.org/search?q=Mikhail%20V.%20Sorin"> Mikhail V. Sorin</a>, <a href="https://publications.waset.org/search?q=Hakim%20Nesreddine"> Hakim Nesreddine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The complex oblique shock phenomenon can be simply assumed as a normal shock at the constant area section to simulate a sharp pressure increase and velocity decrease in 1-D thermodynamic models. The assumed normal shock location is one of the greatest sources of error in ejector thermodynamic models. Most researchers consider an arbitrary location without justifying it. Our study compares the effect of normal shock place on ejector dimensions in 1-D models. To this aim, two different ejector experimental test benches, a constant area-mixing ejector (CAM) and a constant pressure-mixing (CPM) are considered, with different known geometries, operating conditions and working fluids (R245fa, R141b). In the first step, in order to evaluate the real value of the efficiencies in the different ejector parts and critical back pressure, a CFD model was built and validated by experimental data for two types of ejectors. These reference data are then used as input to the 1D model to calculate the lengths and the diameters of the ejectors. Afterwards, the design output geometry calculated by the 1D model is compared directly with the corresponding experimental geometry. It was found that there is a good agreement between the ejector dimensions obtained by the 1D model, for both CAM and CPM, with experimental ejector data. Furthermore, it is shown that normal shock place affects only the constant area length as it is proven that the inlet normal shock assumption results in more accurate length. Taking into account previous 1D models, the results suggest the use of the assumed normal shock location at the inlet of the constant area duct to design the supersonic ejectors.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=1D%20model" title="1D model">1D model</a>, <a href="https://publications.waset.org/search?q=constant%20area-mixing" title=" constant area-mixing"> constant area-mixing</a>, <a href="https://publications.waset.org/search?q=constant%20pressure-mixing" title=" constant pressure-mixing"> constant pressure-mixing</a>, <a href="https://publications.waset.org/search?q=normal%20shock%20location" title=" normal shock location"> normal shock location</a>, <a href="https://publications.waset.org/search?q=ejector%20dimensions." title=" ejector dimensions."> ejector dimensions.</a> </p> <a href="https://publications.waset.org/10008683/effect-of-assumptions-of-normal-shock-location-on-the-design-of-supersonic-ejectors-for-refrigeration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10008683/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10008683/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10008683/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10008683/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10008683/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10008683/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10008683/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10008683/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10008683/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10008683/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10008683.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">954</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=shock%20wave.&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=shock%20wave.&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=shock%20wave.&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=shock%20wave.&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=shock%20wave.&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=shock%20wave.&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=shock%20wave.&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=shock%20wave.&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=shock%20wave.&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=shock%20wave.&page=21">21</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=shock%20wave.&page=22">22</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=shock%20wave.&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>