CINXE.COM

QFT with defects in nLab

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> QFT with defects in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> QFT with defects </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/4906/#Item_8" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="physics">Physics</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/physics">physics</a></strong>, <a class="existingWikiWord" href="/nlab/show/mathematical+physics">mathematical physics</a>, <a class="existingWikiWord" href="/nlab/show/philosophy+of+physics">philosophy of physics</a></p> <h2 id="surveys_textbooks_and_lecture_notes">Surveys, textbooks and lecture notes</h2> <ul> <li> <p><em><a class="existingWikiWord" href="/nlab/show/higher+category+theory+and+physics">(higher) category theory and physics</a></em></p> </li> <li> <p><em><a class="existingWikiWord" href="/nlab/show/geometry+of+physics">geometry of physics</a></em></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/books+and+reviews+in+mathematical+physics">books and reviews</a>, <a class="existingWikiWord" href="/nlab/show/physics+resources">physics resources</a></p> </li> </ul> <hr /> <p><a class="existingWikiWord" href="/nlab/show/theory+%28physics%29">theory (physics)</a>, <a class="existingWikiWord" href="/nlab/show/model+%28physics%29">model (physics)</a></p> <p><a class="existingWikiWord" href="/nlab/show/experiment">experiment</a>, <a class="existingWikiWord" href="/nlab/show/measurement">measurement</a>, <a class="existingWikiWord" href="/nlab/show/computable+physics">computable physics</a></p> <ul> <li> <p><strong><a class="existingWikiWord" href="/nlab/show/mechanics">mechanics</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/mass">mass</a>, <a class="existingWikiWord" href="/nlab/show/charge">charge</a>, <a class="existingWikiWord" href="/nlab/show/momentum">momentum</a>, <a class="existingWikiWord" href="/nlab/show/angular+momentum">angular momentum</a>, <a class="existingWikiWord" href="/nlab/show/moment+of+inertia">moment of inertia</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/dynamics+on+Lie+groups">dynamics on Lie groups</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/rigid+body+dynamics">rigid body dynamics</a></li> </ul> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/field+%28physics%29">field (physics)</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Lagrangian+mechanics">Lagrangian mechanics</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/configuration+space">configuration space</a>, <a class="existingWikiWord" href="/nlab/show/state">state</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/action+functional">action functional</a>, <a class="existingWikiWord" href="/nlab/show/Lagrangian">Lagrangian</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/covariant+phase+space">covariant phase space</a>, <a class="existingWikiWord" href="/nlab/show/Euler-Lagrange+equations">Euler-Lagrange equations</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Hamiltonian+mechanics">Hamiltonian mechanics</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/phase+space">phase space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/symplectic+geometry">symplectic geometry</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Poisson+manifold">Poisson manifold</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/symplectic+manifold">symplectic manifold</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/symplectic+groupoid">symplectic groupoid</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/multisymplectic+geometry">multisymplectic geometry</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/n-symplectic+manifold">n-symplectic manifold</a></li> </ul> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/spacetime">spacetime</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/smooth+Lorentzian+manifold">smooth Lorentzian manifold</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/special+relativity">special relativity</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/general+relativity">general relativity</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/gravity">gravity</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/supergravity">supergravity</a>, <a class="existingWikiWord" href="/nlab/show/dilaton+gravity">dilaton gravity</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/black+hole">black hole</a></p> </li> </ul> </li> </ul> </li> </ul> </li> <li> <p><strong><a class="existingWikiWord" href="/nlab/show/classical+field+theory">Classical field theory</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/classical+physics">classical physics</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/classical+mechanics">classical mechanics</a></li> <li><a class="existingWikiWord" href="/nlab/show/waves">waves</a> and <a class="existingWikiWord" href="/nlab/show/optics">optics</a></li> <li><a class="existingWikiWord" href="/nlab/show/thermodynamics">thermodynamics</a></li> </ul> </li> </ul> </li> <li> <p><strong><a class="existingWikiWord" href="/nlab/show/quantum+mechanics">Quantum Mechanics</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/quantum+mechanics+in+terms+of+dagger-compact+categories">in terms of ∞-compact categories</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/quantum+information">quantum information</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Hamiltonian+operator">Hamiltonian operator</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/density+matrix">density matrix</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Kochen-Specker+theorem">Kochen-Specker theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Bell%27s+theorem">Bell's theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Gleason%27s+theorem">Gleason's theorem</a></p> </li> </ul> </li> <li> <p><strong><a class="existingWikiWord" href="/nlab/show/quantization">Quantization</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/geometric+quantization">geometric quantization</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/deformation+quantization">deformation quantization</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/path+integral">path integral quantization</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/semiclassical+approximation">semiclassical approximation</a></p> </li> </ul> </li> <li> <p><strong><a class="existingWikiWord" href="/nlab/show/quantum+field+theory">Quantum Field Theory</a></strong></p> <ul> <li> <p>Axiomatizations</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/AQFT">algebraic QFT</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Wightman+axioms">Wightman axioms</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Haag-Kastler+axioms">Haag-Kastler axioms</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/operator+algebra">operator algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/local+net">local net</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/conformal+net">conformal net</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Reeh-Schlieder+theorem">Reeh-Schlieder theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Osterwalder-Schrader+theorem">Osterwalder-Schrader theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/PCT+theorem">PCT theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Bisognano-Wichmann+theorem">Bisognano-Wichmann theorem</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/modular+theory">modular theory</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/spin-statistics+theorem">spin-statistics theorem</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/boson">boson</a>, <a class="existingWikiWord" href="/nlab/show/fermion">fermion</a></li> </ul> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/FQFT">functorial QFT</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/cobordism">cobordism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2Cn%29-category+of+cobordisms">(∞,n)-category of cobordisms</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/cobordism+hypothesis">cobordism hypothesis</a>-theorem</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/extended+topological+quantum+field+theory">extended topological quantum field theory</a></p> </li> </ul> </li> </ul> </li> <li> <p>Tools</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/perturbative+quantum+field+theory">perturbative quantum field theory</a>, <a class="existingWikiWord" href="/nlab/show/vacuum">vacuum</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/effective+quantum+field+theory">effective quantum field theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/renormalization">renormalization</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/BV-BRST+formalism">BV-BRST formalism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/geometric+%E2%88%9E-function+theory">geometric ∞-function theory</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/particle+physics">particle physics</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/phenomenology">phenomenology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/model+%28in+particle+phyiscs%29">models</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/standard+model+of+particle+physics">standard model of particle physics</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fields+and+quanta+-+table">fields and quanta</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/GUT">Grand Unified Theories</a>, <a class="existingWikiWord" href="/nlab/show/MSSM">MSSM</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/scattering+amplitude">scattering amplitude</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/on-shell+recursion">on-shell recursion</a>, <a class="existingWikiWord" href="/nlab/show/KLT+relations">KLT relations</a></li> </ul> </li> </ul> </li> <li> <p>Structural phenomena</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/universality+class">universality class</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/quantum+anomaly">quantum anomaly</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Green-Schwarz+mechanism">Green-Schwarz mechanism</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/instanton">instanton</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/spontaneously+broken+symmetry">spontaneously broken symmetry</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Kaluza-Klein+mechanism">Kaluza-Klein mechanism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/integrable+systems">integrable systems</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/holonomic+quantum+fields">holonomic quantum fields</a></p> </li> </ul> </li> <li> <p>Types of quantum field thories</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/TQFT">TQFT</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/2d+TQFT">2d TQFT</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Dijkgraaf-Witten+theory">Dijkgraaf-Witten theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Chern-Simons+theory">Chern-Simons theory</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/TCFT">TCFT</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/A-model">A-model</a>, <a class="existingWikiWord" href="/nlab/show/B-model">B-model</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homological+mirror+symmetry">homological mirror symmetry</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/QFT+with+defects">QFT with defects</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/conformal+field+theory">conformal field theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%281%2C1%29-dimensional+Euclidean+field+theories+and+K-theory">(1,1)-dimensional Euclidean field theories and K-theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%282%2C1%29-dimensional+Euclidean+field+theory">(2,1)-dimensional Euclidean field theory and elliptic cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/CFT">CFT</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/WZW+model">WZW model</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/6d+%282%2C0%29-supersymmetric+QFT">6d (2,0)-supersymmetric QFT</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/gauge+theory">gauge theory</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/field+strength">field strength</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/gauge+group">gauge group</a>, <a class="existingWikiWord" href="/nlab/show/gauge+transformation">gauge transformation</a>, <a class="existingWikiWord" href="/nlab/show/gauge+fixing">gauge fixing</a></p> </li> <li> <p>examples</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/electromagnetic+field">electromagnetic field</a>, <a class="existingWikiWord" href="/nlab/show/QED">QED</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/electric+charge">electric charge</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/magnetic+charge">magnetic charge</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Yang-Mills+field">Yang-Mills field</a>, <a class="existingWikiWord" href="/nlab/show/QCD">QCD</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Yang-Mills+theory">Yang-Mills theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/spinors+in+Yang-Mills+theory">spinors in Yang-Mills theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+Yang-Mills+theory">topological Yang-Mills theory</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Kalb-Ramond+field">Kalb-Ramond field</a></li> <li><a class="existingWikiWord" href="/nlab/show/supergravity+C-field">supergravity C-field</a></li> <li><a class="existingWikiWord" href="/nlab/show/RR+field">RR field</a></li> <li><a class="existingWikiWord" href="/nlab/show/first-order+formulation+of+gravity">first-order formulation of gravity</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/general+covariance">general covariance</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/supergravity">supergravity</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/D%27Auria-Fre+formulation+of+supergravity">D'Auria-Fre formulation of supergravity</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/gravity+as+a+BF-theory">gravity as a BF-theory</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/sigma-model">sigma-model</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/particle">particle</a>, <a class="existingWikiWord" href="/nlab/show/relativistic+particle">relativistic particle</a>, <a class="existingWikiWord" href="/nlab/show/fundamental+particle">fundamental particle</a>, <a class="existingWikiWord" href="/nlab/show/spinning+particle">spinning particle</a>, <a class="existingWikiWord" href="/nlab/show/superparticle">superparticle</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/string">string</a>, <a class="existingWikiWord" href="/nlab/show/spinning+string">spinning string</a>, <a class="existingWikiWord" href="/nlab/show/superstring">superstring</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/membrane">membrane</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/AKSZ+theory">AKSZ theory</a></p> </li> </ul> </li> </ul> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/string+theory">String Theory</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/string+theory+results+applied+elsewhere">string theory results applied elsewhere</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/number+theory+and+physics">number theory and physics</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Riemann+hypothesis+and+physics">Riemann hypothesis and physics</a></li> </ul> </li> </ul> <div> <p> <a href="/nlab/edit/physicscontents">Edit this sidebar</a> </p> </div></div></div> <h4 id="functorial_quantum_field_theory">Functorial quantum field theory</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/FQFT">functorial quantum field theory</a></strong></p> <h2 id="contents">Contents</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/cobordism+category">cobordism category</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/cobordism">cobordism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/extended+cobordism">extended cobordism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2Cn%29-category+of+cobordisms">(∞,n)-category of cobordisms</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/bordism+categories+following+Stolz-Teichner">Riemannian bordism category</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/cobordism+hypothesis">cobordism hypothesis</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/generalized+tangle+hypothesis">generalized tangle hypothesis</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/On+the+Classification+of+Topological+Field+Theories">classification of TQFTs</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/functorial+field+theory">functorial field theory</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/unitary+functorial+field+theory">unitary functorial field theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/extended+functorial+field+theory">extended functorial field theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/conformal+field+theory">CFT</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/vertex+operator+algebra">vertex operator algebra</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/TQFT">TQFT</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Reshetikhin-Turaev+model">Reshetikhin-Turaev model</a> / <a class="existingWikiWord" href="/nlab/show/Chern-Simons+theory">Chern-Simons theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/HQFT">HQFT</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/TCFT">TCFT</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/A-model">A-model</a>, <a class="existingWikiWord" href="/nlab/show/B-model">B-model</a>, <a class="existingWikiWord" href="/nlab/show/Gromov-Witten+theory">Gromov-Witten theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homological+mirror+symmetry">homological mirror symmetry</a></p> </li> </ul> </li> </ul> </li> </ul> </li> <li> <p>FQFT and <a class="existingWikiWord" href="/nlab/show/cohomology">cohomology</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/%281%2C1%29-dimensional+Euclidean+field+theories+and+K-theory">(1,1)-dimensional Euclidean field theories and K-theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%282%2C1%29-dimensional+Euclidean+field+theory">(2,1)-dimensional Euclidean field theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/geometric+models+for+tmf">geometric models for tmf</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/holographic+principle+of+higher+category+theory">holographic principle of higher category theory</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/holographic+principle">holographic principle</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/AdS%2FCFT+correspondence">AdS/CFT correspondence</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/quantization+via+the+A-model">quantization via the A-model</a></p> </li> </ul> </li> </ul> </div></div> </div> </div> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#idea'>Idea</a></li> <li><a href='#definition'>Definition</a></li> <ul> <li><a href='#DefinitionGeneral'>General</a></li> <li><a href='#DefectsFromBrokenSymmetry'>Topological defects from spontaneously broken symmetry</a></li> </ul> <li><a href='#related_concepts'>Related concepts</a></li> <li><a href='#references'>References</a></li> <ul> <li><a href='#general_2'>General</a></li> <li><a href='#examples'>Examples</a></li> <ul> <li><a href='#general_3'>General</a></li> <li><a href='#in_2d_field_theory'>In 2d field theory</a></li> <li><a href='#in_chernsimons_theory'>In Chern-Simons theory</a></li> <li><a href='#in_rozanskywitten_theory'>In Rozansky-Witten theory</a></li> <li><a href='#TopologicalDefectsInGaugeTheories'>Topological defects in gauge theories with broken symmetry</a></li> <li><a href='#in_solid_state_physics'>In solid state physics</a></li> </ul> <li><a href='#ReferencesVortexAnyons'>Defect anyons</a></li> </ul> </ul> </div> <h2 id="idea">Idea</h2> <p>A (<a class="existingWikiWord" href="/nlab/show/prequantum+field+theory">pre</a>-)<a class="existingWikiWord" href="/nlab/show/quantum+field+theory">quantum</a> <a class="existingWikiWord" href="/nlab/show/field+theory">field theory</a> <em>with defects</em> is, roughly a <a class="existingWikiWord" href="/nlab/show/field+theory">field theory</a> that assigns data not just to plain <a class="existingWikiWord" href="/nlab/show/manifolds">manifolds</a>/<a class="existingWikiWord" href="/nlab/show/cobordisms">cobordisms</a>, but to spaces that may carry certain singularities and/or colorings. At the locus of such a singularity the <a class="existingWikiWord" href="/nlab/show/bulk">bulk</a> field theory may then undergo transitions.</p> <p>Such defects are known by many names. In <a class="existingWikiWord" href="/nlab/show/codimension">codimension</a> 1 they are often called <a class="existingWikiWord" href="/nlab/show/domain+walls">domain walls</a>. If they are <a class="existingWikiWord" href="/nlab/show/boundaries">boundaries</a> they are often called <em><a class="existingWikiWord" href="/nlab/show/branes">branes</a></em>, the corresponding domain walls are then sometimes called <a class="existingWikiWord" href="/nlab/show/bi-branes">bi-branes</a>. Examples of Dimension-1 defects are <a class="existingWikiWord" href="/nlab/show/Wilson+lines">Wilson lines</a> and <a class="existingWikiWord" href="/nlab/show/cosmic+strings">cosmic strings</a> (at least in <a class="existingWikiWord" href="/nlab/show/gauge+theory">gauge theory</a>) and dimension-0 defects are often called <a class="existingWikiWord" href="/nlab/show/monopoles">monopoles</a>.</p> <h2 id="definition">Definition</h2> <h3 id="DefinitionGeneral">General</h3> <p>A plain <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math>-dimensional local <a class="existingWikiWord" href="/nlab/show/FQFT">FQFT</a> (a <a class="existingWikiWord" href="/nlab/show/bulk">bulk</a> field theory) is a <a class="existingWikiWord" href="/nlab/show/monoidal+%28%E2%88%9E%2Cn%29-functor">symmetric monoidal</a> <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2Cn%29-functor">(∞,n)-functor</a> from the <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2Cn%29-category+of+cobordisms">(∞,n)-category of cobordisms</a>.</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>Z</mi><mo>:</mo><msub><mi>Bord</mi> <mi>n</mi></msub><mo>→</mo><msup><mi>𝒞</mi> <mo>⊗</mo></msup><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> Z : Bord_n \to \mathcal{C}^\otimes \,. </annotation></semantics></math></div> <p>If one replaces plain <a class="existingWikiWord" href="/nlab/show/cobordisms">cobordisms</a> here with cobordisms <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msubsup><mi>Bord</mi> <mi>n</mi> <mi>Def</mi></msubsup></mrow><annotation encoding="application/x-tex">Bord_n^{Def}</annotation></semantics></math> “with singularities” including <a class="existingWikiWord" href="/nlab/show/boundaries">boundaries</a> and <a class="existingWikiWord" href="/nlab/show/corners">corners</a> but also partitions labeled in a certain index set <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Def</mi></mrow><annotation encoding="application/x-tex">Def</annotation></semantics></math>, one calls a morphism</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>Z</mi><mo>:</mo><msubsup><mi>Bord</mi> <mi>n</mi> <mi>Def</mi></msubsup><mo>→</mo><mi>𝒞</mi></mrow><annotation encoding="application/x-tex"> Z : Bord_n^{Def} \to \mathcal{C} </annotation></semantics></math></div> <p>a TQFT <em>with defects</em>. A general formalization is in (<a href="#Lurie09">Lurie 09, section 4.3</a>), see at <em><a href="cobordism+hypothesis#ForCobordismsWithSingularities">Cobordism theorem – For cobordisms with singuarities (boundaries/branes and defects/domain walls)</a></em>. See also (<a href="#DavydovRunkelKong11">Davydov, Runkel &amp; Kong 2011</a> and <a href="#CarquevilleRunkelSchaumann">Carqueville-Runkel-Schaumann</a>).</p> <p>Such a morphism carries data as follows:</p> <ul> <li> <p>for each label in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Def</mi></mrow><annotation encoding="application/x-tex">Def</annotation></semantics></math> of codimension 0 there is an ordinary <a class="existingWikiWord" href="/nlab/show/bulk">bulk</a> field theory;</p> </li> <li> <p>for each label in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Def</mi></mrow><annotation encoding="application/x-tex">Def</annotation></semantics></math> of codimension 1 data on how to “connect” the two TQFTs on both sides</p> </li> <li> <p>etc.</p> </li> </ul> <p>So one may think of the codimension <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>k</mi></mrow><annotation encoding="application/x-tex">k</annotation></semantics></math> colors as <em>defects</em> where the TQFT that one is looking at changes its nature.</p> <p>In particular, when the QFT on one side of the defect is trivial, then the defect behaves like a <em>boundary condition</em> for the remaining QFT. Since at least for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi><mo>=</mo><mn>2</mn></mrow><annotation encoding="application/x-tex">n=2</annotation></semantics></math> QFT such boundary conditions are also called <em><a class="existingWikiWord" href="/nlab/show/branes">branes</a></em>, defects are also called <em><a class="existingWikiWord" href="/nlab/show/bi-branes">bi-branes</a></em>.</p> <p>The statement of the <strong>cobordism theorem with singularities</strong> (<a href="#Lurie09">Lurie 09, theorem 4.3.11</a>) is essentially the following:</p> <p>Given a <a class="existingWikiWord" href="/nlab/show/symmetric+monoidal+%28%E2%88%9E%2Cn%29-category">symmetric monoidal (∞,n)-category</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>𝒞</mi> <mo>⊗</mo></msup></mrow><annotation encoding="application/x-tex">\mathcal{C}^\otimes</annotation></semantics></math>, then for every choice of <a class="existingWikiWord" href="/nlab/show/pasting+diagram">pasting diagram</a> of <a class="existingWikiWord" href="/nlab/show/k-morphisms">k-morphisms</a> for all <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>k</mi></mrow><annotation encoding="application/x-tex">k</annotation></semantics></math>, there is a type of manifolds with singularity <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Def</mi></mrow><annotation encoding="application/x-tex">Def</annotation></semantics></math>, such that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msubsup><mi>Bord</mi> <mi>n</mi> <mi>Def</mi></msubsup></mrow><annotation encoding="application/x-tex">Bord_n^Def</annotation></semantics></math> is the free symmetric monoidal <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\infty,n)</annotation></semantics></math>-category on this data, hence such that TFTs with defects <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><msubsup><mi>Bord</mi> <mi>n</mi> <mi>Def</mi></msubsup><msup><mo stretchy="false">)</mo> <mo>⊗</mo></msup><mo>→</mo><msup><mi>𝒞</mi> <mo>⊗</mo></msup></mrow><annotation encoding="application/x-tex">(Bord_n^Def)^\otimes \to \mathcal{C}^\otimes</annotation></semantics></math> are equivalently given by realizing such a pasting diagram in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">\mathcal{C}</annotation></semantics></math>, where each of the given <a class="existingWikiWord" href="/nlab/show/k-morphism">k-morphism</a> appears as the value of a codimension <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>n</mi><mo>−</mo><mi>k</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(n-k)</annotation></semantics></math>-defect. (See also <a href="#Lurie09">Lurie 09, remark 4.3.14</a>).</p> <h3 id="DefectsFromBrokenSymmetry">Topological defects from spontaneously broken symmetry</h3> <blockquote> <p>under construction</p> </blockquote> <p>An old notion of <em>defects</em> in field theory – well preceeding the <a href="#DefinitionGeneral">above</a> general notion in the context of <a class="existingWikiWord" href="/nlab/show/FQFT">FQFT</a> – is that of <strong><a class="existingWikiWord" href="/nlab/show/topological+defects">topological defects</a> in the <a class="existingWikiWord" href="/nlab/show/vacuum">vacuum</a> structure of <a class="existingWikiWord" href="/nlab/show/gauge+theories">gauge theories</a> that exhibit <a class="existingWikiWord" href="/nlab/show/spontaneous+symmetry+breaking">spontaneous symmetry breaking</a> (such as a <a class="existingWikiWord" href="/nlab/show/Higgs+mechanism">Higgs mechanism</a>).</strong></p> <p>A comprehensive review in in (<a href="#VilenkinShellard94">Vilenkin-Shellard 94</a>. Steps towards conceptually systematizing these broken-symmetry defects and their interaction are made in <a href="#PreskillVilenkin92">Preskill-Vilenkin 92</a>. We now discuss this may be translated to and formalized in the general <a class="existingWikiWord" href="/nlab/show/FQFT">FQFT</a> definition <a href="#DefinitionGeneral">above</a> along the lines of (<a href="#FiorenzaValentino">Fiorenza-Valentino</a>, <a href="#FSS">FSS</a>).</p> <p>Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> be a <a class="existingWikiWord" href="/nlab/show/Lie+group">Lie group</a>, to be thought of as the (local or global) <a class="existingWikiWord" href="/nlab/show/gauge+group">gauge group</a> of some <a class="existingWikiWord" href="/nlab/show/gauge+theory">gauge theory</a>. Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>H</mi><mo>↪</mo><mi>G</mi></mrow><annotation encoding="application/x-tex">H \hookrightarrow G</annotation></semantics></math> a <a class="existingWikiWord" href="/nlab/show/subgroup">subgroup</a>, to be thought of as the subgroup of global symmetries preserved by some <a class="existingWikiWord" href="/nlab/show/vacuum">vacuum</a> configuration (which “<a class="existingWikiWord" href="/nlab/show/spontaneous+symmetry+breaking">spontaneously breaks</a>” the symmetry from <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>H</mi></mrow><annotation encoding="application/x-tex">H</annotation></semantics></math>, the archetypical example is the <a class="existingWikiWord" href="/nlab/show/Higgs+mechanism">Higgs mechanism</a>).</p> <p>Then the space of such vacuum configurations is the <a class="existingWikiWord" href="/nlab/show/coset">coset</a> space <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi><mo stretchy="false">/</mo><mi>H</mi></mrow><annotation encoding="application/x-tex">G/H</annotation></semantics></math>. So given a <a class="existingWikiWord" href="/nlab/show/manifold">manifold</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> (<a class="existingWikiWord" href="/nlab/show/spacetime">spacetime</a>), <a class="existingWikiWord" href="/nlab/show/vacuum">vacuum</a> configuratons are given by <a class="existingWikiWord" href="/nlab/show/functions">functions</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi><mo>→</mo><mi>G</mi><mo stretchy="false">/</mo><mi>H</mi></mrow><annotation encoding="application/x-tex">X \to G/H</annotation></semantics></math>. Hence <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi><mo stretchy="false">/</mo><msub><mi>H</mi> <mn>1</mn></msub></mrow><annotation encoding="application/x-tex">G/H_1</annotation></semantics></math> is the “<a class="existingWikiWord" href="/nlab/show/moduli+space">moduli space</a> of vacua” or “vacuum space” in this context.</p> <p>The functions <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi><mo>→</mo><mi>G</mi><mo stretchy="false">/</mo><mi>H</mi></mrow><annotation encoding="application/x-tex">X \to G/H</annotation></semantics></math> are to be <a class="existingWikiWord" href="/nlab/show/smooth+functions">smooth functions</a> in the <a class="existingWikiWord" href="/nlab/show/bulk">bulk</a> of spacetime. If they are allowed to be non-smooth or even non-<a class="existingWikiWord" href="/nlab/show/continuous+function">continuous</a> along given strata of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math>, then these are called <strong>defects</strong> in the sense of broken gauge symmetry.</p> <p>In particular (with counting adapted to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>dim</mi><mi>X</mi><mo>=</mo><mn>4</mn></mrow><annotation encoding="application/x-tex">dim X = 4</annotation></semantics></math>)</p> <ul> <li> <p>if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi><mo>→</mo><mi>G</mi><mo stretchy="false">/</mo><mi>H</mi></mrow><annotation encoding="application/x-tex">X \to G/H</annotation></semantics></math> is not smooth but is smooth on the pre-image of each element of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>π</mi> <mn>0</mn></msub><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">/</mo><mi>H</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\pi_0(G/H)</annotation></semantics></math> and becomes a smooth function on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi><mo>−</mo><msub><mi>S</mi> <mn>1</mn></msub></mrow><annotation encoding="application/x-tex">X-S_1</annotation></semantics></math> where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>S</mi> <mn>1</mn></msub><mo>↪</mo><mi>X</mi></mrow><annotation encoding="application/x-tex">S_1 \hookrightarrow X</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/codimension">codimension</a>-1 <a class="existingWikiWord" href="/nlab/show/submanifold">submanifold</a>, then <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>S</mi> <mn>1</mn></msub></mrow><annotation encoding="application/x-tex">S_1</annotation></semantics></math> is said to be a <a class="existingWikiWord" href="/nlab/show/domain+wall">domain wall</a> for vacuum configurations.</p> </li> <li> <p>if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi><mo>→</mo><mi>G</mi><mo stretchy="false">/</mo><mi>H</mi></mrow><annotation encoding="application/x-tex">X \to G/H</annotation></semantics></math> is not smooth but becomes smooth on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi><mo>−</mo><msub><mi>S</mi> <mn>2</mn></msub></mrow><annotation encoding="application/x-tex">X-S_2</annotation></semantics></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>S</mi> <mn>2</mn></msub></mrow><annotation encoding="application/x-tex">S_2</annotation></semantics></math> is a codimension-2 submanifold, then <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>S</mi> <mn>2</mn></msub></mrow><annotation encoding="application/x-tex">S_2</annotation></semantics></math> is calld a <a class="existingWikiWord" href="/nlab/show/cosmic+string">cosmic string</a>-defect of the vacuum configurations;</p> </li> <li> <p>if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi><mo>→</mo><mi>G</mi><mo stretchy="false">/</mo><mi>H</mi></mrow><annotation encoding="application/x-tex">X \to G/H</annotation></semantics></math> is not smooth but becomes smooth on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi><mo>−</mo><msub><mi>S</mi> <mn>3</mn></msub></mrow><annotation encoding="application/x-tex">X-S_3</annotation></semantics></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>S</mi> <mn>3</mn></msub></mrow><annotation encoding="application/x-tex">S_3</annotation></semantics></math> is a codimension-3 submanifold, then <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>S</mi> <mn>3</mn></msub></mrow><annotation encoding="application/x-tex">S_3</annotation></semantics></math> is calld a <a class="existingWikiWord" href="/nlab/show/monopole">monopole</a>-defect of the vacuum configurations.</p> </li> </ul> <blockquote> <p>hm, need to fine-tune the technical conditions here, to make the following statement come out right…</p> </blockquote> <p>So</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/domain+walls">domain walls</a> can appear when <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>π</mi> <mn>0</mn></msub><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">/</mo><mi>H</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\pi_0(G/H)</annotation></semantics></math> is non-trivial;</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/cosmic+strings">cosmic strings</a> can appear when <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>π</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">/</mo><mi>H</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\pi_1(G/H)</annotation></semantics></math> is non-trivial;</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monopoles">monopoles</a> can appear when <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>π</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">/</mo><mi>H</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\pi_2(G/H)</annotation></semantics></math> is non-trivial.</p> </li> </ul> <p>Next consider a sequence of <a class="existingWikiWord" href="/nlab/show/subgroups">subgroups</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo>↪</mo><msub><mi>H</mi> <mn>1</mn></msub><mo>↪</mo><msub><mi>H</mi> <mn>0</mn></msub><mo>≔</mo><mi>G</mi></mrow><annotation encoding="application/x-tex"> H_2 \hookrightarrow H_1 \hookrightarrow H_0 \coloneqq G </annotation></semantics></math></div> <p>to be thought of as coming from two consecutive steps of <a class="existingWikiWord" href="/nlab/show/spontaneous+symmetry+breaking">spontaneous symmetry breaking</a>, the first one down to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>H</mi> <mn>1</mn></msub></mrow><annotation encoding="application/x-tex">H_1</annotation></semantics></math> at some <a class="existingWikiWord" href="/nlab/show/energy">energy</a>-scale <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>E</mi> <mn>1</mn></msub></mrow><annotation encoding="application/x-tex">E_1</annotation></semantics></math>, and the second at some lower energy scale <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>E</mi> <mn>2</mn></msub><mo>&lt;</mo><msub><mi>E</mi> <mn>1</mn></msub></mrow><annotation encoding="application/x-tex">E_2 \lt E_1</annotation></semantics></math>.</p> <p>Then we say that vacuum defects at energy <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>E</mi> <mn>2</mn></msub></mrow><annotation encoding="application/x-tex">E_2</annotation></semantics></math> of codimension-<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>k</mi></mrow><annotation encoding="application/x-tex">k</annotation></semantics></math> which wind around an element <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>π</mi> <mi>k</mi></msub><mo stretchy="false">(</mo><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">/</mo><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\pi_k(H_1/H_2)</annotation></semantics></math> are <strong>metastable</strong> if they become unstable at energy <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>E</mi> <mn>1</mn></msub></mrow><annotation encoding="application/x-tex">E_1</annotation></semantics></math>, hence if their image in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>π</mi> <mi>k</mi></msub><mo stretchy="false">(</mo><msub><mi>H</mi> <mn>0</mn></msub><mo stretchy="false">/</mo><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\pi_k(H_0/H_2)</annotation></semantics></math> is trivial.</p> <p>So if we add to the singular cobordism category the <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>k</mi></mrow><annotation encoding="application/x-tex">k</annotation></semantics></math>-morphism which is the <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>k</mi></mrow><annotation encoding="application/x-tex">k</annotation></semantics></math>-dimenional unit cube with an open <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>k</mi></mrow><annotation encoding="application/x-tex">k</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/ball">ball</a> removed, then the boundary field data for metastable codimension <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi><mo>−</mo><mi>k</mi></mrow><annotation encoding="application/x-tex">n-k</annotation></semantics></math>-defects is</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mo stretchy="false">[</mo><mn>0</mn><mo>,</mo><mn>1</mn><msup><mo stretchy="false">]</mo> <mi>k</mi></msup><mo>−</mo><msup><mi>D</mi> <mi>k</mi></msup></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>Π</mi><mo stretchy="false">(</mo><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">/</mo><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">)</mo></mtd></mtr> <mtr><mtd><mo stretchy="false">↓</mo></mtd> <mtd><mo>⇙</mo></mtd> <mtd><mo stretchy="false">↓</mo></mtd></mtr> <mtr><mtd><mo stretchy="false">[</mo><mn>0</mn><mo>,</mo><mn>1</mn><msup><mo stretchy="false">]</mo> <mi>k</mi></msup></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>Π</mi><mo stretchy="false">(</mo><msub><mi>H</mi> <mn>0</mn></msub><mo stretchy="false">/</mo><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">)</mo></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>Π</mi><mo stretchy="false">(</mo><msub><mi>H</mi> <mn>0</mn></msub><mo stretchy="false">/</mo><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">)</mo></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ [0,1]^k - D^k &amp;\to &amp; \Pi(H_1/H_2) \\ \downarrow &amp;\swArrow&amp; \downarrow \\ [0,1]^k &amp;\to&amp; \Pi(H_0/H_2) &amp;\to&amp; \Pi(H_0/H_1) } </annotation></semantics></math></div> <p>we have a <a class="existingWikiWord" href="/nlab/show/homotopy+fiber+sequence">homotopy fiber sequence</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>Π</mi><mo stretchy="false">(</mo><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">/</mo><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">)</mo><mo>→</mo><mi>Π</mi><mo stretchy="false">(</mo><msub><mi>H</mi> <mn>0</mn></msub><mo stretchy="false">/</mo><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">)</mo><mo>→</mo><mi>Π</mi><mo stretchy="false">(</mo><msub><mi>H</mi> <mn>0</mn></msub><mo stretchy="false">/</mo><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">)</mo><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> \Pi(H_1/H_2) \to \Pi(H_0/H_2) \to \Pi(H_0/H_1) \,. </annotation></semantics></math></div> <p>This induces a <a class="existingWikiWord" href="/nlab/show/long+exact+sequence+of+homotopy+groups">long exact sequence of homotopy groups</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>⋯</mi><mo>→</mo><msub><mi>π</mi> <mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><msub><mi>H</mi> <mn>0</mn></msub><mo stretchy="false">/</mo><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">)</mo><mo>→</mo><msub><mi>π</mi> <mi>k</mi></msub><mo stretchy="false">(</mo><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">/</mo><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">)</mo><mo>→</mo><msub><mi>π</mi> <mi>k</mi></msub><mo stretchy="false">(</mo><msub><mi>H</mi> <mn>0</mn></msub><mo stretchy="false">/</mo><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">)</mo><mo>→</mo><msub><mi>π</mi> <mi>k</mi></msub><mo stretchy="false">(</mo><msub><mi>H</mi> <mn>0</mn></msub><mo stretchy="false">/</mo><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">)</mo><mo>→</mo><msub><mi>π</mi> <mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">/</mo><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">)</mo><mo>→</mo><mi>⋯</mi><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> \cdots \to \pi_{k+1}(H_0/H_1) \to \pi_k(H_1/H_2) \to \pi_k(H_0/H_2) \to \pi_k(H_0/H_1) \to \pi_{k-1}(H_1/H_2) \to \cdots \,. </annotation></semantics></math></div> <p>So for every metastable defect of codimension <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi><mo>−</mo><mi>k</mi></mrow><annotation encoding="application/x-tex">n-k</annotation></semantics></math> given by <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>c</mi><mo>∈</mo><mi>ker</mi><mo stretchy="false">(</mo><msub><mi>π</mi> <mi>k</mi></msub><mo stretchy="false">(</mo><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">/</mo><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">)</mo><mo>→</mo><msub><mi>π</mi> <mi>k</mi></msub><mo stretchy="false">(</mo><msub><mi>H</mi> <mn>0</mn></msub><mo stretchy="false">/</mo><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">c \in ker(\pi_k(H_1/H_2) \to \pi_k(H_0/H_2))</annotation></semantics></math> there is an element in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>π</mi> <mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><msub><mi>H</mi> <mn>0</mn></msub><mo stretchy="false">/</mo><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\pi_{k+1}(H_0/H_1)</annotation></semantics></math> of one codimension higher. One says (<a href="#PreskillVilenkin92">Preskill-Vilenkin 92</a>) that the codimenion <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>n</mi><mo>−</mo><mi>k</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(n-k)</annotation></semantics></math>-defect may end on that codimension <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>n</mi><mo>−</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(n-k-1)</annotation></semantics></math>-defect.</p> <p>(…)</p> <p>In order to formalize this we introduce, following the <a class="existingWikiWord" href="/nlab/show/cobordism+theorem">cobordism theorem</a> with singularities, cells in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>Span</mi> <mi>n</mi></msub><mo stretchy="false">(</mo><mstyle mathvariant="bold"><mi>H</mi></mstyle><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Span_n(\mathbf{H})</annotation></semantics></math> which label spontaneous-symmetriy-breaking defects as well as their defects-of-defects which exhibit their decay by higher codimension defects.</p> <p>Consider a span of the form</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mo stretchy="false">[</mo><mi>Π</mi><mo stretchy="false">(</mo><msup><mi>S</mi> <mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msup><mo stretchy="false">)</mo><mo>,</mo><mi>Π</mi><mo stretchy="false">(</mo><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">/</mo><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">)</mo><mo stretchy="false">]</mo></mtd> <mtd><mo>←</mo></mtd> <mtd><mo stretchy="false">[</mo><mi>Π</mi><mo stretchy="false">(</mo><msup><mi>S</mi> <mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msup><mo stretchy="false">)</mo><mo>,</mo><mi>Π</mi><mo stretchy="false">(</mo><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">/</mo><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">)</mo><mo stretchy="false">]</mo></mtd> <mtd><mo>→</mo></mtd> <mtd><mo>*</mo></mtd></mtr></mtable></mrow><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> \array{ [\Pi(S^{k-1}), \Pi(H_1/H_2)] &amp;\leftarrow&amp; [\Pi(S^{k-1}), \Pi(H_1/H_2)] &amp;\rightarrow&amp; \ast } \,. </annotation></semantics></math></div> <p>Comparing this to the span that comes from the “cap” <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>S</mi> <mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>→</mo><msup><mi>D</mi> <mi>k</mi></msup><mo>←</mo><mi>∅</mi></mrow><annotation encoding="application/x-tex">S^{k-1} \to D^{k} \leftarrow \emptyset</annotation></semantics></math> in the theory at energy level <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>E</mi> <mn>2</mn></msub></mrow><annotation encoding="application/x-tex">E_2</annotation></semantics></math>, which is just</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mo stretchy="false">[</mo><mi>Π</mi><mo stretchy="false">(</mo><msup><mi>S</mi> <mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msup><mo stretchy="false">)</mo><mo>,</mo><mi>Π</mi><mo stretchy="false">(</mo><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">/</mo><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">)</mo><mo stretchy="false">]</mo></mtd> <mtd><mo>←</mo></mtd> <mtd><mo stretchy="false">[</mo><mi>Π</mi><mo stretchy="false">(</mo><msup><mi>D</mi> <mi>k</mi></msup><mo stretchy="false">)</mo><mo>,</mo><mi>Π</mi><mo stretchy="false">(</mo><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">/</mo><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">)</mo><mo stretchy="false">]</mo></mtd> <mtd><mo>→</mo></mtd> <mtd><mo>*</mo></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ [\Pi(S^{k-1}), \Pi(H_1/H_2)] &amp;\leftarrow&amp; [\Pi(D^{k}), \Pi(H_1/H_2)] &amp;\rightarrow&amp; \ast } </annotation></semantics></math></div> <p>shows that the former models a <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>k</mi></mrow><annotation encoding="application/x-tex">k</annotation></semantics></math>-disk which is not filled with spacetime, but nevertheless closes the disk. This is the defect given as a removal of a piece of spacetime.</p> <p>In order to formalize how these defects may decay at higher energy, consider next a <a class="existingWikiWord" href="/nlab/show/span">span</a> of <a class="existingWikiWord" href="/nlab/show/field+%28physics%29">field</a> configurations of the form</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mo stretchy="false">[</mo><mi>Π</mi><mo stretchy="false">(</mo><msup><mi>S</mi> <mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msup><mo stretchy="false">)</mo><mo>,</mo><mi>Π</mi><mo stretchy="false">(</mo><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">/</mo><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">)</mo><mo stretchy="false">]</mo></mtd> <mtd><mo>←</mo></mtd> <mtd><mo stretchy="false">[</mo><mi>Π</mi><mo stretchy="false">(</mo><msup><mi>S</mi> <mi>k</mi></msup><mo stretchy="false">)</mo><mo>,</mo><mi>Π</mi><mo stretchy="false">(</mo><msub><mi>H</mi> <mn>0</mn></msub><mo stretchy="false">/</mo><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">)</mo><mo stretchy="false">]</mo></mtd> <mtd><mo>→</mo></mtd> <mtd><mo stretchy="false">[</mo><mo>*</mo><mo>,</mo><mi>Π</mi><mo stretchy="false">(</mo><msub><mi>H</mi> <mn>0</mn></msub><mo stretchy="false">/</mo><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">)</mo><mo stretchy="false">]</mo></mtd></mtr></mtable></mrow><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> \array{ [\Pi(S^{k-1}), \Pi(H_1/H_2)] &amp;\leftarrow&amp; [\Pi(S^{k}), \Pi(H_0/H_1)] &amp;\rightarrow&amp; [\ast, \Pi(H_0/H_2)] } \,. </annotation></semantics></math></div> <p>Comparing again to the span that comes from the “cap” <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>S</mi> <mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>→</mo><msup><mi>D</mi> <mi>k</mi></msup><mo>←</mo><mi>∅</mi></mrow><annotation encoding="application/x-tex">S^{k-1} \to D^{k} \leftarrow \emptyset</annotation></semantics></math> in the theory at energy level <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>E</mi> <mn>2</mn></msub></mrow><annotation encoding="application/x-tex">E_2</annotation></semantics></math>, which is just</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mo stretchy="false">[</mo><mi>Π</mi><mo stretchy="false">(</mo><msup><mi>S</mi> <mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msup><mo stretchy="false">)</mo><mo>,</mo><mi>Π</mi><mo stretchy="false">(</mo><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">/</mo><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">)</mo><mo stretchy="false">]</mo></mtd> <mtd><mo>←</mo></mtd> <mtd><mo stretchy="false">[</mo><mi>Π</mi><mo stretchy="false">(</mo><msup><mi>D</mi> <mi>k</mi></msup><mo stretchy="false">)</mo><mo>,</mo><mi>Π</mi><mo stretchy="false">(</mo><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">/</mo><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">)</mo><mo stretchy="false">]</mo></mtd> <mtd><mo>→</mo></mtd> <mtd><mo>*</mo></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ [\Pi(S^{k-1}), \Pi(H_1/H_2)] &amp;\leftarrow&amp; [\Pi(D^{k}), \Pi(H_1/H_2)] &amp;\rightarrow&amp; \ast } </annotation></semantics></math></div> <p>shows that the former models a <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>k</mi></mrow><annotation encoding="application/x-tex">k</annotation></semantics></math>-disk whose center point carries a singularity: the fields at the bounding <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>S</mi> <mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow><annotation encoding="application/x-tex">S^{k-1}</annotation></semantics></math> take values in the moduli space of the ambient theory <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Π</mi><mo stretchy="false">(</mo><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">/</mo><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\Pi(H_1/H_2)</annotation></semantics></math>, but then at the tip of the “cap” there is a “field insertion” of a field with values in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Π</mi><mo stretchy="false">(</mo><msub><mi>H</mi> <mn>0</mn></msub><mo stretchy="false">/</mo><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\Pi(H_0/H_2)</annotation></semantics></math>. Hence this labels a defect of codimension <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>k</mi></mrow><annotation encoding="application/x-tex">k</annotation></semantics></math>.</p> <p>To construct such a decay-process span that captures the above story from <a href="#PreskillVilenkin92">Preskill-Vilenkin 92</a>, consider the following diagram:</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd></mtd> <mtd></mtd> <mtd><mo stretchy="false">[</mo><mi>Π</mi><mo stretchy="false">(</mo><msup><mi>S</mi> <mi>k</mi></msup><mo stretchy="false">)</mo><mo>,</mo><mi>Π</mi><mo stretchy="false">(</mo><msub><mi>H</mi> <mn>0</mn></msub><mo stretchy="false">/</mo><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">)</mo><mo stretchy="false">]</mo></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd><mo stretchy="false">↓</mo></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd><mo stretchy="false">[</mo><mi>Π</mi><mo stretchy="false">(</mo><msup><mi>S</mi> <mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msup><mo stretchy="false">)</mo><mo>,</mo><mi>Ω</mi><mi>Π</mi><mo stretchy="false">(</mo><msub><mi>H</mi> <mn>0</mn></msub><mo stretchy="false">/</mo><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">)</mo><mo stretchy="false">]</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>↙</mo></mtd> <mtd></mtd> <mtd><mo>↘</mo></mtd></mtr> <mtr><mtd><mo stretchy="false">[</mo><mi>Π</mi><mo stretchy="false">(</mo><msup><mi>S</mi> <mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msup><mo stretchy="false">)</mo><mo>,</mo><mi>Π</mi><mo stretchy="false">(</mo><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">/</mo><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">)</mo><mo stretchy="false">]</mo></mtd> <mtd></mtd> <mtd><mo stretchy="false">(</mo><mi>pb</mi><mo stretchy="false">)</mo></mtd> <mtd></mtd> <mtd><mo stretchy="false">[</mo><mi>Π</mi><mo stretchy="false">(</mo><msup><mi>D</mi> <mi>k</mi></msup><mo stretchy="false">)</mo><mo>,</mo><mi>Π</mi><mo stretchy="false">(</mo><msub><mi>H</mi> <mn>0</mn></msub><mo stretchy="false">/</mo><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">)</mo><mo stretchy="false">]</mo></mtd> <mtd><mo>≃</mo></mtd> <mtd><mo stretchy="false">[</mo><mo>*</mo><mo>,</mo><mi>Π</mi><mo stretchy="false">(</mo><msub><mi>H</mi> <mn>0</mn></msub><mo stretchy="false">/</mo><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">)</mo><mo stretchy="false">]</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>↘</mo></mtd> <mtd></mtd> <mtd><mo>↙</mo></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd><mo stretchy="false">[</mo><mi>Π</mi><mo stretchy="false">(</mo><msup><mi>S</mi> <mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msup><mo stretchy="false">)</mo><mo>,</mo><mi>Π</mi><mo stretchy="false">(</mo><msub><mi>H</mi> <mn>0</mn></msub><mo stretchy="false">/</mo><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">)</mo><mo stretchy="false">]</mo></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ &amp;&amp; [\Pi(S^{k}), \Pi(H_0/H_1)] \\ &amp;&amp; \downarrow \\ &amp;&amp; [\Pi(S^{k-1}), \Omega\Pi(H_0/H_1)] \\ &amp; \swarrow &amp;&amp; \searrow \\ [\Pi(S^{k-1}), \Pi(H_1/H_2)] &amp;&amp; (pb) &amp;&amp; [\Pi(D^k), \Pi(H_0/H_2)] &amp; \simeq &amp; [\ast, \Pi(H_0/H_2)] \\ &amp; \searrow &amp; &amp; \swarrow \\ &amp;&amp; [\Pi(S^{k-1}), \Pi(H_0/H_2)] } </annotation></semantics></math></div> <p>This may be read as follows:</p> <ol> <li> <p>on the far left <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><mi>Π</mi><mo stretchy="false">(</mo><msup><mi>S</mi> <mi>k</mi></msup><mo stretchy="false">)</mo><mo>,</mo><mi>Π</mi><mo stretchy="false">(</mo><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">/</mo><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">)</mo><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">[\Pi(S^k), \Pi(H_1/H_2)]</annotation></semantics></math> is the space of fields of the ambient theory at energy scale <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>E</mi> <mn>2</mn></msub></mrow><annotation encoding="application/x-tex">E_2</annotation></semantics></math> around the defect;</p> </li> <li> <p>the bottom left map is the “fluctuation” map that sends these fields to fields at the higher energy scale <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>E</mi> <mn>1</mn></msub></mrow><annotation encoding="application/x-tex">E_1</annotation></semantics></math>;</p> </li> <li> <p>the bottom right map exhibt the possible “decays”: a lift through this map takes a field configuration that winds around a <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>k</mi></mrow><annotation encoding="application/x-tex">k</annotation></semantics></math>-ball and contracts it through that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>k</mi></mrow><annotation encoding="application/x-tex">k</annotation></semantics></math>-ball, hence going forth and back through the bottom two maps corresponds to carrying a defect over the energy barrier from <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>E</mi> <mn>2</mn></msub></mrow><annotation encoding="application/x-tex">E_2</annotation></semantics></math> to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>E</mi> <mn>1</mn></msub></mrow><annotation encoding="application/x-tex">E_1</annotation></semantics></math> and there having it decay away.</p> </li> <li> <p>these decaying configurations are therefore given by the <a class="existingWikiWord" href="/nlab/show/homotopy+fiber+product">homotopy fiber product</a> of the bottom two functions, which is <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><mi>Π</mi><mo stretchy="false">(</mo><msup><mi>S</mi> <mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msup><mo stretchy="false">)</mo><mo>,</mo><mi>Ω</mi><mi>Π</mi><mo stretchy="false">(</mo><msub><mi>H</mi> <mn>0</mn></msub><mo stretchy="false">/</mo><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">)</mo><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">[\Pi(S^{k-1}), \Omega\Pi(H_0/H_1)]</annotation></semantics></math>, as indicated. But this space is really given by field configurations at energy scale <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>E</mi> <mn>1</mn></msub></mrow><annotation encoding="application/x-tex">E_1</annotation></semantics></math> that wind around a <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(k+1)</annotation></semantics></math>-ball, as shown at the very top.</p> </li> </ol> <p>Hence the top part of this diagram is a span that exhibits a defect-of-defects which tells just the story that (<a href="#PreskillVilenkin92">Preskill-Vilenkin 92</a>) is telling: a codimension-<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>k</mi></mrow><annotation encoding="application/x-tex">k</annotation></semantics></math> defect of the low energy theory decays at higher energy, and the decay is witnessed by the appearance of a codimension <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(k+1)</annotation></semantics></math>-defect of the high energy theory.</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd></mtd> <mtd></mtd> <mtd><mfrac linethickness="0"><mrow><mi>high</mi><mspace width="thickmathspace"></mspace><mi>energy</mi></mrow><mrow><mi>codim</mi><mo>−</mo><mo stretchy="false">(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo stretchy="false">)</mo><mspace width="thickmathspace"></mspace><mi>defects</mi></mrow></mfrac></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd><mo stretchy="false">↓</mo></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd><mfrac linethickness="0"><mrow><mi>low</mi><mspace width="thickmathspace"></mspace><mi>energy</mi><mspace width="thickmathspace"></mspace><mi>codim</mi><mo>−</mo><mi>k</mi><mspace width="thickmathspace"></mspace><mi>defects</mi></mrow><mrow><mi>with</mi><mspace width="thickmathspace"></mspace><mi>their</mi><mspace width="thickmathspace"></mspace><mi>decay</mi><mspace width="thickmathspace"></mspace><mi>processes</mi></mrow></mfrac></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>↙</mo></mtd> <mtd></mtd> <mtd><mo>↘</mo></mtd></mtr> <mtr><mtd><mfrac linethickness="0"><mrow><mi>low</mi><mspace width="thickmathspace"></mspace><mi>energy</mi></mrow><mrow><mi>codim</mi><mo>−</mo><mi>k</mi><mspace width="thickmathspace"></mspace><mi>defects</mi></mrow></mfrac></mtd> <mtd></mtd> <mtd><mo stretchy="false">(</mo><mi>pb</mi><mo stretchy="false">)</mo></mtd> <mtd></mtd> <mtd><mfrac linethickness="0"><mrow><mi>high</mi><mspace width="thickmathspace"></mspace><mi>energy</mi></mrow><mrow><mi>decay</mi><mspace width="thickmathspace"></mspace><mi>processes</mi></mrow></mfrac></mtd></mtr> <mtr><mtd></mtd> <mtd><msub><mrow></mrow> <mpadded width="0" lspace="-100%width"><mi>tunnel</mi></mpadded></msub><mo>↘</mo></mtd> <mtd></mtd> <mtd><msub><mo>↙</mo> <mpadded width="0"><mi>apply</mi></mpadded></msub></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd><mfrac linethickness="0"><mrow><mi>codim</mi><mo>−</mo><mi>k</mi><mspace width="thickmathspace"></mspace><mi>defects</mi></mrow><mrow><mi>raised</mi><mspace width="thickmathspace"></mspace><mi>to</mi><mspace width="thickmathspace"></mspace><mi>higher</mi><mspace width="thickmathspace"></mspace><mi>energy</mi></mrow></mfrac></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ &amp;&amp; {high\;energy \atop codim-(k+1)\;defects} \\ &amp;&amp; \downarrow \\ &amp;&amp; {low\;energy\;codim-k\;defects \atop with\;their\;decay\;processes} \\ &amp; \swarrow &amp;&amp; \searrow \\ {low\;energy \atop codim-k\;defects} &amp;&amp; (pb) &amp;&amp; {high\;energy \atop decay\;processes} \\ &amp; {}_{\mathllap{tunnel}}\searrow &amp; &amp; \swarrow_{\mathrlap{apply}} \\ &amp;&amp; {codim-k\;defects \atop raised\;to\;higher\;energy} } </annotation></semantics></math></div> <p>(…)</p> <h2 id="related_concepts">Related concepts</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/defect+brane">defect brane</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/anyon">anyon</a>, <a class="existingWikiWord" href="/nlab/show/braid+group+statistics">braid group statistics</a>, <a class="existingWikiWord" href="/nlab/show/loop+braid+group">loop braid group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/generalized+global+symmetry">generalized global symmetry</a></p> </li> </ul> <p><br /></p> <div> <table><thead><tr><th>singularity</th><th><a class="existingWikiWord" href="/nlab/show/field+theory+with+singularities">field theory with singularities</a></th></tr></thead><tbody><tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/boundary+condition">boundary condition</a>/<a class="existingWikiWord" href="/nlab/show/brane">brane</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/boundary+field+theory">boundary field theory</a></td></tr> <tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/domain+wall">domain wall</a>/<a class="existingWikiWord" href="/nlab/show/bi-brane">bi-brane</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/QFT+with+defects">QFT with defects</a></td></tr> </tbody></table> </div> <h2 id="references">References</h2> <h3 id="general_2">General</h3> <p>A general formulation via an <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2Cn%29-category+of+cobordisms">(∞,n)-category of cobordisms</a> with defects:</p> <ul> <li id="Lurie09"><a class="existingWikiWord" href="/nlab/show/Jacob+Lurie">Jacob Lurie</a>, section 4.3 of: <em><a class="existingWikiWord" href="/nlab/show/On+the+Classification+of+Topological+Field+Theories">On the Classification of Topological Field Theories</a></em>, Current Developments in Mathematics Volume 2008 (2009) 129-280 &lbrack;<a href="http://arxiv.org/abs/0905.0465">arXiv:0905.0465</a>, <a href="https://dx.doi.org/10.4310/CDM.2008.v2008.n1.a3">doi:10.4310/CDM.2008.v2008.n1.a3</a>&rbrack;</li> </ul> <p>Defect TQFTs as 1-functors on stratified decorated bordisms are discussed in</p> <ul> <li id="DavydovRunkelKong11"> <p><a class="existingWikiWord" href="/nlab/show/Alexei+Davydov">Alexei Davydov</a>, <a class="existingWikiWord" href="/nlab/show/Ingo+Runkel">Ingo Runkel</a>, <a class="existingWikiWord" href="/nlab/show/Liang+Kong">Liang Kong</a>, <em>Field theories with defects and the centre functor</em> &lbrack;<a href="https://arxiv.org/abs/1107.0495">arXiv:1107.0495</a>&rbrack;, in <a class="existingWikiWord" href="/nlab/show/Hisham+Sati">Hisham Sati</a>, <a class="existingWikiWord" href="/nlab/show/Urs+Schreiber">Urs Schreiber</a> (eds.) <em><a class="existingWikiWord" href="/schreiber/show/Mathematical+Foundations+of+Quantum+Field+and+Perturbative+String+Theory">Mathematical Foundations of Quantum Field and Perturbative String Theory</a></em> AMS (2011) &lbrack;<a href="https://bookstore.ams.org/pspum-83">ams:pspum-83</a>&rbrack;</p> </li> <li id="CarquevilleRunkelSchaumann"> <p><a class="existingWikiWord" href="/nlab/show/Nils+Carqueville">Nils Carqueville</a>, <a class="existingWikiWord" href="/nlab/show/Ingo+Runkel">Ingo Runkel</a>, <a class="existingWikiWord" href="/nlab/show/Gregor+Schaumann">Gregor Schaumann</a>, <em>Orbifolds of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math>-dimensional defect TQFTs</em>, Geom. Topol. <strong>23</strong> (2019) 781-864 <em>lbrack;<a href="http://arxiv.org/abs/1705.06085">arXiv:1705.06085</a>, <a href="https://doi.org/10.2140/gt.2019.23.781">doi:10.2140/gt.2019.23.781</a>&rbrack;</em></p> </li> </ul> <p>Details in dimension 2 and 3 are discussed in</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Chris+Schommer-Pries">Chris Schommer-Pries</a>, <em>Topological Defects and Classification of Local TQFTs in Low Dimension</em>, <a class="existingWikiWord" href="/nlab/show/Oberwolfach+Workshop%2C+June+2009+--+Strings%2C+Fields%2C+Topology">Oberwolfach Workshop, June 2009 – Strings, Fields, Topology</a> (<a href="https://ncatlab.org/nlab/files/SchommerPriesDefects.pdf">pdf</a>)</p> </li> <li id="FuchsSchweigertValentino13"> <p><a class="existingWikiWord" href="/nlab/show/J%C3%BCrgen+Fuchs">Jürgen Fuchs</a>, <a class="existingWikiWord" href="/nlab/show/Christoph+Schweigert">Christoph Schweigert</a>, <a class="existingWikiWord" href="/nlab/show/Alessandro+Valentino">Alessandro Valentino</a>, <em>Bicategories for boundary conditions and for surface defects in 3-d TFT</em>, Commun. Math. Phys. <strong>321</strong> (2013) 543–575 &lbrack;<a href="https://arxiv.org/abs/1203.4568">arXiv:1203.4568</a>, <a href="https://doi.org/10.1007/s00220-013-1723-0">doi:10.1007/s00220-013-1723-0</a>&rbrack;</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Nils+Carqueville">Nils Carqueville</a>, <a class="existingWikiWord" href="/nlab/show/Catherine+Meusburger">Catherine Meusburger</a>, <a class="existingWikiWord" href="/nlab/show/Gregor+Schaumann">Gregor Schaumann</a>, <em>3-dimensional defect TQFTs and their tricategories</em>, Advances in Mathematics <strong>364</strong> (2020), &lbrack;<a href="http://arxiv.org/abs/1603.01171">arXiv:1603.01171</a>, <a href="https://doi.org/10.1016/j.aim.2020.107024">doi:10.1016/j.aim.2020.107024</a>&rbrack;</p> </li> </ul> <p>Review:</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Andrew+Neitzke">Andrew Neitzke</a>, <em>Some uses of defects in quantum field theory</em> (2016?) &lbrack;<a href="https://gauss.math.yale.edu/~an592/talks/html/defects-aspen/talk.html">html</a>&rbrack;</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Nils+Carqueville">Nils Carqueville</a>, <a class="existingWikiWord" href="/nlab/show/Michele+Del+Zotto">Michele Del Zotto</a>, <a class="existingWikiWord" href="/nlab/show/Ingo+Runkel">Ingo Runkel</a>, <em>Topological defects</em>, in: <em><a class="existingWikiWord" href="/nlab/show/Encyclopedia+of+Mathematical+Physics+2nd+ed">Encyclopedia of Mathematical Physics 2nd ed</a></em> &lbrack;<a href="https://arxiv.org/abs/2311.02449">arXiv:2311.02449</a>&rbrack;</p> </li> </ul> <p>Discussion of defects in <a class="existingWikiWord" href="/nlab/show/prequantum+field+theory">prequantum field theory</a>, hence for <a class="existingWikiWord" href="/nlab/show/coefficients">coefficients</a> in an <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2Cn%29-category+of+spans">(∞,n)-category of spans</a> is in</p> <ul> <li id="FiorenzaValentino"> <p><a class="existingWikiWord" href="/nlab/show/Domenico+Fiorenza">Domenico Fiorenza</a>, <a class="existingWikiWord" href="/nlab/show/Alessandro+Valentino">Alessandro Valentino</a>, <em>Boundary Conditions for Topological Quantum Field Theories, Anomalies and Projective Modular Functors</em>, Commun. Math. Phys. <strong>338</strong> (2015) 1043–1074 &lbrack;<a href="https://arxiv.org/abs/1409.5723">arXiv:1409.5723</a>, <a href="https://doi.org/10.1007/s00220-015-2371-3">doi:10.1007/s00220-015-2371-3</a>&rbrack;</p> </li> <li id="FSS"> <p><a class="existingWikiWord" href="/nlab/show/Domenico+Fiorenza">Domenico Fiorenza</a>, <a class="existingWikiWord" href="/nlab/show/Hisham+Sati">Hisham Sati</a>, <a class="existingWikiWord" href="/nlab/show/Urs+Schreiber">Urs Schreiber</a> et. al, <em><a class="existingWikiWord" href="/schreiber/show/Higher+Chern-Simons+local+prequantum+field+theory">Higher Chern-Simons local prequantum field theory</a></em></p> </li> </ul> <p>DIscussion with emphasis on <a class="existingWikiWord" href="/nlab/show/Koszul+duality">Koszul duality</a> such as in <a class="existingWikiWord" href="/nlab/show/holography+as+Koszul+duality">holography as Koszul duality</a>:</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Natalie+Paquette">Natalie Paquette</a>, Brian R. Williams, <em>Koszul duality in quantum field theory</em> (<a href="https://arxiv.org/abs/2110.10257">arXiv:2110.10257</a>)</li> </ul> <h3 id="examples">Examples</h3> <h4 id="general_3">General</h4> <p>Examples in physics of interaction of defects of various dimension is discussed in</p> <ul> <li>Muneto Nitta, <em>Defect formation from defect–anti-defect annihilations</em>, Phys. Rev. D85:101702,2012 (<a href="http://arxiv.org/abs/1205.2442">arXiv:1205.2442</a>)</li> </ul> <h4 id="in_2d_field_theory">In 2d field theory</h4> <p>Defects in <a class="existingWikiWord" href="/nlab/show/2-dimensional+conformal+field+theory">2-dimensional conformal field theory</a> have a long history in real-world application, for instance in <a class="existingWikiWord" href="/nlab/show/Kramers-Wannier+duality">Kramers-Wannier duality</a>. Formalization by <a class="existingWikiWord" href="/nlab/show/higher+algebra">higher</a> <a class="existingWikiWord" href="/nlab/show/categorical+algebra">categorical algebra</a> via the <a class="existingWikiWord" href="/nlab/show/FRS+theorem+on+rational+2d+CFT">FRS theorem on rational 2d CFT</a> is due to:</p> <ul> <li id="FRS04"><a class="existingWikiWord" href="/nlab/show/J%C3%BCrg+Fr%C3%B6hlich">Jürg Fröhlich</a>, <a class="existingWikiWord" href="/nlab/show/J%C3%BCrgen+Fuchs">Jürgen Fuchs</a>, <a class="existingWikiWord" href="/nlab/show/Ingo+Runkel">Ingo Runkel</a>, <a class="existingWikiWord" href="/nlab/show/Christoph+Schweigert">Christoph Schweigert</a>, <em>Kramers-Wannier duality from conformal defects</em>, Phys. Rev. Lett. <strong>93</strong> (2004) 070601 &lbrack;<a href="https://doi.org/10.1103/PhysRevLett.93.070601">doi:10.1103/PhysRevLett.93.070601</a>, <a href="http://arxiv.org/abs/cond-mat/0404051">arXiv:cond-mat/0404051</a>&rbrack;</li> </ul> <p>with a comprehensive review in</p> <ul> <li id="FFRS07"><a class="existingWikiWord" href="/nlab/show/J%C3%BCrg+Fr%C3%B6hlich">Jürg Fröhlich</a>, <a class="existingWikiWord" href="/nlab/show/J%C3%BCrgen+Fuchs">Jürgen Fuchs</a>, <a class="existingWikiWord" href="/nlab/show/Ingo+Runkel">Ingo Runkel</a>, <a class="existingWikiWord" href="/nlab/show/Christoph+Schweigert">Christoph Schweigert</a>, <em>Duality and defects in rational conformal field theory</em>, Nucl. Phys. B <strong>763</strong> (2007) 354-430 &lbrack;<a href="http://arxiv.org/abs/hep-th/0607247">arXiv:hep-th/0607247</a>, <a href="https://doi.org/10.1016/j.nuclphysb.2006.11.017">doi:10.1016/j.nuclphysb.2006.11.017</a>&rbrack;</li> </ul> <p>Realization in <a class="existingWikiWord" href="/nlab/show/lattice+field+theory">lattice field theory</a>:</p> <ul> <li> <p>David Aasen, Roger S. K. Mong, Paul Fendley, <em>Topological Defects on the Lattice I: The Ising model</em>, J. Phys. A: Math. Theor. <strong>49</strong> (2016) 354001 &lbrack;<a href="https://arxiv.org/abs/1601.07185">arXiv:1601.07185</a>, <a href="https://doi.org/10.1088/1751-8113/49/35/354001">doi:10.1088/1751-8113/49/35/354001</a>&rbrack;</p> </li> <li> <p>David Aasen, Paul Fendley, Roger S. K. Mong, <em>Topological Defects on the Lattice: Dualities and Degeneracies</em> &lbrack;<a href="https://arxiv.org/abs/2008.08598">arXiv:2008.08598</a>, <a href="https://inspirehep.net/literature/1812559">inspire:1812559</a>&rbrack;</p> </li> <li> <p>Mao Tian Tan, Yifan Wang, Aditi Mitra, <em>Topological Defects in Floquet Circuits</em> &lbrack;<a href="https://arxiv.org/abs/2206.06272">arXiv:2206.06272</a>&rbrack;</p> </li> </ul> <p>and simulation on a <a class="existingWikiWord" href="/nlab/show/quantum+computer">quantum computer</a>:</p> <ul> <li>Sutapa Samanta, Derek S. Wang, Armin Rahmani, Aditi Mitra, <em>Isolated Majorana mode in a quantum computer from a duality twist</em> &lbrack;<a href="https://arxiv.org/abs/2308.02387">arXiv:2308.02387</a>&rbrack;</li> </ul> <p>Defects in 2-dimensional <a class="existingWikiWord" href="/nlab/show/topological+field+theory">topological field theory</a> have been studied a lot in the context of genus-0 TFT, where they are described using the language of <a class="existingWikiWord" href="/nlab/show/planar+algebras">planar algebras</a>. See discussion at <em><a href="http://golem.ph.utexas.edu/category/2008/09/planar_algebras_tfts_with_defe.html">Planar Algebras, TFTs with Defects</a></em>.</p> <p>Lecture notes:</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Nils+Carqueville">Nils Carqueville</a>, <em>Lecture notes on 2-dimensional defect TQFT</em> &lbrack;<a href="http://arxiv.org/abs/1607.05747">arXiv:1607.05747</a>&rbrack;</li> </ul> <p>On the derivation of the relevant topological term in 2d theories with defects through the use of bi-branes and inter-bi-branes:</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Ingo+Runkel">Ingo Runkel</a>, Rafal R. Suszek. <em>Gerbe-holonomy for surfaces with defect networks</em> (2008). (<a href="https://arxiv.org/abs/0808.1419">arXiv:0808.1419</a>).</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/J%C3%BCrgen+Fuchs">Jürgen Fuchs</a>, <a class="existingWikiWord" href="/nlab/show/Thomas+Nikolaus">Thomas Nikolaus</a>, <a class="existingWikiWord" href="/nlab/show/Christoph+Schweigert">Christoph Schweigert</a>, <a class="existingWikiWord" href="/nlab/show/Konrad+Waldorf">Konrad Waldorf</a>. <em>Bundle Gerbes and Surface Holonomy</em> (2009). (<a href="https://arxiv.org/abs/0901.2085">arXiv:0901.2085</a>).</p> </li> <li> <p>Rafal R. Suszek. <em>Defects, dualities and the geometry of strings via gerbes. I. Dualities and state fusion through defects</em> (2011). (<a href="https://arxiv.org/abs/1101.1126">arXiv:1101.1126</a>).</p> </li> <li> <p>Rafal R. Suszek. <em>Defects, dualities and the geometry of strings via gerbes II. Generalised geometries with a twist, the gauge anomaly and the gauge-symmetry defect</em> (2012). (<a href="https://arxiv.org/abs/1209.2334">arXiv:1209.2334</a>).</p> </li> </ul> <p>Defects in Landau-Ginburg theory:</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Ilka+Brunner">Ilka Brunner</a>, Daniel Roggenkamp. <em>B-type defects in Landau-Ginzburg models</em> (<a href="https://arxiv.org/abs/0707.0922">arXiv:0707.0922</a>)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Nils+Carqueville">Nils Carqueville</a>, <a class="existingWikiWord" href="/nlab/show/Daniel+Murfet">Daniel Murfet</a>, <em>Adjunctions and defects in Landau-Ginzburg models</em>, (<a href="https://arxiv.org/abs/1208.1481">arXiv:1208.1481</a>)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Nils+Carqueville">Nils Carqueville</a>, <a class="existingWikiWord" href="/nlab/show/Ingo+Runkel">Ingo Runkel</a>, <em>Orbifold completion of defect bicategories</em>, (<a href="https://arxiv.org/abs/1210.6363">arXiv:1210.6363</a>)</p> </li> </ul> <h4 id="in_chernsimons_theory">In Chern-Simons theory</h4> <ul> <li>An old example is the class of <a class="existingWikiWord" href="/nlab/show/Turaev-Reshetikhin+TQFT">Turaev-Reshetikhin TQFT</a>, which is a functor on 3-dimensional <a class="existingWikiWord" href="/nlab/show/cobordisms">cobordisms</a> with codimension 3 and 2 defects. This is supposed to be the would-be result of <a class="existingWikiWord" href="/nlab/show/Chern-Simons+theory">Chern-Simons theory</a>, where the defect lines are the original <a class="existingWikiWord" href="/nlab/show/Wilson+lines">Wilson lines</a> in this context.</li> </ul> <p>Defects in <a class="existingWikiWord" href="/nlab/show/Chern-Simons+theory">Chern-Simons theory</a> and related systems are discussed in</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Davide+Gaiotto">Davide Gaiotto</a>, <a class="existingWikiWord" href="/nlab/show/Edward+Witten">Edward Witten</a>, <em>S-Duality of Boundary Conditions In N=4 Super Yang-Mills Theory</em> (<a href="http://arxiv.org/abs/0807.3720">arXiv:0807.3720</a>)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Anton+Kapustin">Anton Kapustin</a>, Mikhail Tikhonov, <em>Abelian duality, walls and boundary conditions in diverse dimensions</em>, JHEP 0911:006,2009 (<a href="http://arxiv.org/abs/0904.0840">arXiv:0904.0840</a>)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Anton+Kapustin">Anton Kapustin</a>, <a class="existingWikiWord" href="/nlab/show/Natalia+Saulina">Natalia Saulina</a>, <em>Surface operators in 3d TFT and 2d Rational CFT</em> in <a class="existingWikiWord" href="/nlab/show/Hisham+Sati">Hisham Sati</a>, <a class="existingWikiWord" href="/nlab/show/Urs+Schreiber">Urs Schreiber</a> (eds.) <em><a class="existingWikiWord" href="/schreiber/show/Mathematical+Foundations+of+Quantum+Field+and+Perturbative+String+Theory">Mathematical Foundations of Quantum Field and Perturbative String Theory</a></em> AMS, 2011</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Nils+Carqueville">Nils Carqueville</a>, <a class="existingWikiWord" href="/nlab/show/Ingo+Runkel">Ingo Runkel</a>, <a class="existingWikiWord" href="/nlab/show/Gregor+Schaumann">Gregor Schaumann</a>, <em>Line and surface defects in Reshetikhin-Turaev TQFT</em>, Quantum Topology <strong>10</strong> (2019), 399-439 (<a href="https://arxiv.org/abs/1710.10214">arXiv:1710.10214</a>)</p> </li> </ul> <p>In the context of the <a class="existingWikiWord" href="/nlab/show/3d-3d+correspondence">3d-3d correspondence</a>:</p> <ul> <li>Dongmin Gang, Nakwoo Kim, Mauricio Romo, Masahito Yamazaki, <em>Aspects of Defects in 3d-3d Correspondence</em>, J. High Energ. Phys. (2016) (<a href="https://arxiv.org/abs/1510.05011">arXiv:1510.05011</a>)</li> </ul> <p>Defects in <a class="existingWikiWord" href="/nlab/show/higher+dimensional+Chern-Simons+theory">higher dimensional Chern-Simons theory</a> on <a class="existingWikiWord" href="/nlab/show/manifolds+with+corners">manifolds with corners</a> are discussed in</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Hisham+Sati">Hisham Sati</a>, <em>Corners in M-theory</em>, J.Phys.A44:255402,2011 (<a href="http://arxiv.org/abs/1101.2793">arXiv:1101.2793</a>)</li> </ul> <h4 id="in_rozanskywitten_theory">In Rozansky-Witten theory</h4> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Anton+Kapustin">Anton Kapustin</a>, <a class="existingWikiWord" href="/nlab/show/Lev+Rozansky">Lev Rozansky</a>, <a class="existingWikiWord" href="/nlab/show/Natalia+Saulina">Natalia Saulina</a>, <em>Three-dimensional topological field theory and symplectic algebraic geometry I</em> (<a href="https://arxiv.org/abs/0810.5415">arXiv:0810.5415</a>)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Ilka+Brunner">Ilka Brunner</a>, <a class="existingWikiWord" href="/nlab/show/Nils+Carqueville">Nils Carqueville</a>, <a class="existingWikiWord" href="/nlab/show/Daniel+Roggenkamp">Daniel Roggenkamp</a>, <em>Truncated affine Rozansky-Witten models as extended TQFTs</em>, Comm. Math. Phys. (2023), (<a href="https://arxiv.org/abs/2201.03284">arXiv:2201.03284</a>)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Ilka+Brunner">Ilka Brunner</a>, <a class="existingWikiWord" href="/nlab/show/Nils+Carqueville">Nils Carqueville</a>, Pantelis Fragkos, <a class="existingWikiWord" href="/nlab/show/Daniel+Roggenkamp">Daniel Roggenkamp</a>, <em>Truncated affine Rozansky-Witten models as extended defect TQFTs</em>, (<a href="https://arxiv.org/abs/2307.06284">arXiv:2307.06284</a>)</p> </li> </ul> <h4 id="TopologicalDefectsInGaugeTheories">Topological defects in gauge theories with broken symmetry</h4> <p>The following references discuss the traditional notion of <em><a class="existingWikiWord" href="/nlab/show/topological+defects">topological defects</a> in the <a class="existingWikiWord" href="/nlab/show/vacuum">vacuum</a> structure of gauge theory with <a class="existingWikiWord" href="/nlab/show/spontaneous+symmetry+breaking">spontaneous symmetry breaking</a></em> such as <a class="existingWikiWord" href="/nlab/show/domain+walls">domain walls</a>, <a class="existingWikiWord" href="/nlab/show/cosmic+strings">cosmic strings</a> and <a class="existingWikiWord" href="/nlab/show/monopoles">monopoles</a>.</p> <p>Discussion of “topological defects in <a class="existingWikiWord" href="/nlab/show/gauge+theory">gauge theory</a>” in higher codimension is in</p> <ul> <li id="PreskillVilenkin92"> <p><a class="existingWikiWord" href="/nlab/show/John+Preskill">John Preskill</a>, <a class="existingWikiWord" href="/nlab/show/Alexander+Vilenkin">Alexander Vilenkin</a>, <em>Decay of Metastable Topological Defects</em>, Phys. Rev. D47 : 2324-2342 (1993) (<a href="http://arxiv.org/abs/hep-ph/9209210">arXiv:hep-ph/9209210</a>)</p> </li> <li id="VilenkinShellard94"> <p><a class="existingWikiWord" href="/nlab/show/Alexander+Vilenkin">Alexander Vilenkin</a>, E.P.S. Shellard, <em>Cosmic strings and other topological defects</em>, Cambridge University Press (1994)</p> </li> </ul> <h4 id="in_solid_state_physics">In solid state physics</h4> <p>Defects field theory motivated from <a class="existingWikiWord" href="/nlab/show/solid+state+physics">solid state physics</a> is discussed in</p> <ul> <li id="KitaevKong11"><a class="existingWikiWord" href="/nlab/show/Alexei+Kitaev">Alexei Kitaev</a>, <a class="existingWikiWord" href="/nlab/show/Liang+Kong">Liang Kong</a>, <em>Models for gapped boundaries and domain walls</em> Commun. Math. Phys. 313 (2012) 351-373 (<a href="http://arxiv.org/abs/1104.5047">arXiv:1104.5047</a>)</li> </ul> <div> <h3 id="ReferencesVortexAnyons">Defect anyons</h3> <p>Often the concept of <a class="existingWikiWord" href="/nlab/show/anyons">anyons</a> is introduced as if a generalization of <a class="existingWikiWord" href="/nlab/show/particle+statistics">particle statistics</a> of <a class="existingWikiWord" href="/nlab/show/perturbative+quantum+field+theory">perturbative</a> <a class="existingWikiWord" href="/nlab/show/quanta">quanta</a> like fundamental <a class="existingWikiWord" href="/nlab/show/bosons">bosons</a> and <a class="existingWikiWord" href="/nlab/show/fermions">fermions</a>. But many (concepts of) types of anyons are really <em><a class="existingWikiWord" href="/nlab/show/soliton">solitonic</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mspace width="thickmathspace"></mspace></mrow><annotation encoding="application/x-tex">\;</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/defects">defects</a></em> such as <a class="existingWikiWord" href="/nlab/show/vortices">vortices</a> whose <a class="existingWikiWord" href="/nlab/show/braiding">braiding</a> phases are <a class="existingWikiWord" href="/nlab/show/quantum+adiabatic+theorem">adiabatic</a> <a class="existingWikiWord" href="/nlab/show/Berry+phases">Berry phases</a>.</p> <p>The general concept of <a class="existingWikiWord" href="/nlab/show/braiding">braiding</a> of <a class="existingWikiWord" href="/nlab/show/defects">defects</a> in <a class="existingWikiWord" href="/nlab/show/solid+state+physics">solid state physics</a>:</p> <ul> <li id="Mermin79"><a class="existingWikiWord" href="/nlab/show/N.+David+Mermin">N. David Mermin</a>, <em>The topological theory of defects in ordered media</em>, Rev. Mod. Phys. <strong>51</strong> (1979) 591 <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo></mrow><annotation encoding="application/x-tex">[</annotation></semantics></math><a href="https://doi.org/10.1103/RevModPhys.51.591">doi:10.1103/RevModPhys.51.591</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">]</annotation></semantics></math> <blockquote> <p>(including a review of <a href="Introduction+to+Topology+--+2">basic homotopy theory</a>)</p> </blockquote> </li> </ul> <p>and more specifically for <a class="existingWikiWord" href="/nlab/show/vortices">vortices</a>:</p> <ul> <li id="LoPreskill93"><a class="existingWikiWord" href="/nlab/show/Hoi-Kwong+Lo">Hoi-Kwong Lo</a>, <a class="existingWikiWord" href="/nlab/show/John+Preskill">John Preskill</a>, <em>Non-Abelian vortices and non-Abelian statistics</em>, Phys. Rev. D <strong>48</strong> (1993) 4821 <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo></mrow><annotation encoding="application/x-tex">[</annotation></semantics></math><a href="https://doi.org/10.1103/PhysRevD.48.4821">doi:10.1103/PhysRevD.48.4821</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">]</annotation></semantics></math></li> </ul> <p>Explicit discussion as defect <a class="existingWikiWord" href="/nlab/show/anyons">anyons</a>:</p> <ul> <li id="Kitaev06"><a class="existingWikiWord" href="/nlab/show/Alexei+Kitaev">Alexei Kitaev</a>, <em>Anyons in an exactly solved model and beyond</em>, Annals of Physics <strong>321</strong> 1 (2006) 2-111 [<a href="https://doi.org/10.1016/j.aop.2005.10.005">doi:10.1016/j.aop.2005.10.005</a>] <blockquote> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mrow></mrow></mrow><annotation encoding="application/x-tex">{}</annotation></semantics></math> [p. 4:] “<em>Anyonic particles are best viewed as a kind of topological defects that reveal nontrivial properties of the ground state.</em>”</p> </blockquote> </li> </ul> <p id="ReferencesGenons"> Anyonic defects which act as <strong>genons</strong>, changing the effective <a class="existingWikiWord" href="/nlab/show/genus+of+a+surface">genus</a> of the ambient 2D <a class="existingWikiWord" href="/nlab/show/surface">surface</a>:</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Maissam+Barkeshli">Maissam Barkeshli</a>, <a class="existingWikiWord" href="/nlab/show/Xiao-Liang+Qi">Xiao-Liang Qi</a>: <em>Topological Nematic States and Non-Abelian Lattice Dislocations</em>, Phys. Rev. X <strong>2</strong> 031013 (2012) [<a href="https://doi.org/10.1103/PhysRevX.2.031013">doi:10.1103/PhysRevX.2.031013</a>, <a href="https://arxiv.org/abs/1112.3311">arXiv:1112.3311</a>]</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Maissam+Barkeshli">Maissam Barkeshli</a>, <a class="existingWikiWord" href="/nlab/show/Chao-Ming+Jian">Chao-Ming Jian</a>, <a class="existingWikiWord" href="/nlab/show/Xiao-Liang+Qi">Xiao-Liang Qi</a>: <em>Twist defects and projective non-Abelian braiding statistics</em>, Phys. Rev. B <strong>87</strong> (2013) 045130 [<a href="https://doi.org/10.1103/PhysRevB.87.045130">doi:10.1103/PhysRevB.87.045130</a>, <a href="https://arxiv.org/abs/1208.4834">arXiv:1208.4834</a>]</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Xiao-Liang+Qi">Xiao-Liang Qi</a>: <em>Defects in topologically ordered states</em>, talk notes (2014) [<a href="https://nationalmaglab.org/media/dlpayc5u/qi_1.pdf">pdf</a>, <a class="existingWikiWord" href="/nlab/files/Qi-DefectsInTopologicalOrder.pdf" title="pdf">pdf</a>]</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Andrey+Gromov">Andrey Gromov</a>: <em>Geometric Defects in Quantum Hall States</em>, Phys. Rev. B <strong>94</strong> 085116 (2016) [<a href="https://doi.org/10.1103/PhysRevB.94.085116">doi:10.1103/PhysRevB.94.085116</a>]</p> </li> </ul> <p>see also:</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Simon+Burton">Simon Burton</a>, Elijah Durso-Sabina, Natalie C. Brown: <em>Genons, Double Covers and Fault-tolerant Clifford Gates</em> [<a href="https://arxiv.org/abs/2406.09951">arXiv:2406.09951</a>]</li> </ul> <p>and their potential experimental realization:</p> <ul> <li>Zhao Liu, Gunnar Möller, Emil J. Bergholtz: <em>Exotic Non-Abelian Topological Defects in Lattice Fractional Quantum Hall States</em>, Phys. Rev. Lett. <strong>119</strong> (2017) 106801 [<a href="https://doi.org/10.1103/PhysRevLett.119.106801">doi:10.1103/PhysRevLett.119.106801</a>]</li> </ul> <p>Concrete <a class="existingWikiWord" href="/nlab/show/vortex">vortex</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mo lspace="verythinmathspace" rspace="0em">−</mo></mphantom></mrow><annotation encoding="application/x-tex">\phantom{-}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/anyons">anyons</a> in <a class="existingWikiWord" href="/nlab/show/Bose-Einstein+condensates">Bose-Einstein condensates</a>:</p> <ul> <li id="PFCZ01"> <p>B. Paredes, P. Fedichev, <a class="existingWikiWord" href="/nlab/show/J.+Ignacio+Cirac">J. Ignacio Cirac</a>, <a class="existingWikiWord" href="/nlab/show/Peter+Zoller">Peter Zoller</a>: <em>1/2-Anyons in small atomic Bose-Einstein condensates</em>, Phys. Rev. Lett. <strong>87</strong> (2001) 010402 [<a href="https://doi.org/10.1103/PhysRevLett.87.010402">doi:10.1103/PhysRevLett.87.010402</a>, <a href="https://arxiv.org/abs/cond-mat/0103251">arXiv:cond-mat/0103251</a>]</p> </li> <li> <p>Julien Garaud, Jin Dai, <a class="existingWikiWord" href="/nlab/show/Antti+J.+Niemi">Antti J. Niemi</a>, <em>Vortex precession and exchange in a Bose-Einstein condensate</em>, J. High Energ. Phys. <strong>2021</strong> 157 (2021) [<a href="https://arxiv.org/abs/2010.04549">arXiv:2010.04549</a>]</p> </li> <li id="MPSS19"> <p>Thomas Mawson, Timothy Petersen, <a class="existingWikiWord" href="/nlab/show/Joost+Slingerland">Joost Slingerland</a>, <a class="existingWikiWord" href="/nlab/show/Tapio+Simula">Tapio Simula</a>, <em>Braiding and fusion of non-Abelian vortex anyons</em>, Phys. Rev. Lett. <strong>123</strong> (2019) 140404 [<a href="https://doi.org/10.1103/PhysRevLett.123.140404">doi:10.1103/PhysRevLett.123.140404</a>]</p> </li> </ul> <p>and in (other) <a class="existingWikiWord" href="/nlab/show/superfluids">superfluids</a>:</p> <ul> <li id="MMN21">Yusuke Masaki, Takeshi Mizushima, Muneto Nitta, <em>Non-Abelian Half-Quantum Vortices in 3P2 Topological Superfluids</em> [<a href="https://arxiv.org/abs/2107.02448">arXiv:2107.02448</a>]</li> </ul> <p>and in condensates <em>of</em> non-defect anyons:</p> <ul> <li id="CDLR19">Michele Correggi, Romain Duboscq, Douglas Lundholm, Nicolas Rougerie: <em>Vortex patterns in the almost-bosonic anyon gas</em>, Europhys. Lett. <strong>126</strong> (2019) 20005 [<a href="https://doi.org/10.1209/0295-5075/126/20005">doi:10.1209/0295-5075/126/20005</a>, <a href="https://arxiv.org/abs/1901.10739">arXiv:1901.10739</a>]</li> </ul> <p>On analog behaviour in liquid crystals:</p> <ul> <li>Alexander Mietke, Jörn Dunkel: <em>Anyonic defect braiding and spontaneous chiral symmetry breaking in dihedral liquid crystals</em>, Phys. Rev. X <strong>12</strong> (2022) 011027 [<a href="https://arxiv.org/abs/2011.04648">arXiv:2011.04648</a>, <a href="https://doi.org/10.1103/PhysRevX.12.011027">doi:10.1103/PhysRevX.12.011027</a>]</li> </ul> <p>See also <a href="anyon#AhnParkYang19">Ahn, Park &amp; Yang 19</a> who refer to the band nodes in the <a class="existingWikiWord" href="/nlab/show/Brillouin+torus">Brillouin torus</a> of a <a class="existingWikiWord" href="/nlab/show/semi-metal">semi-metal</a> as “vortices in momentum space”.</p> <p>And see at <em><a class="existingWikiWord" href="/nlab/show/defect+brane">defect brane</a></em>.</p> </div></body></html> </div> <div class="revisedby"> <p> Last revised on August 19, 2024 at 10:15:22. See the <a href="/nlab/history/QFT+with+defects" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/QFT+with+defects" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/4906/#Item_8">Discuss</a><span class="backintime"><a href="/nlab/revision/QFT+with+defects/38" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/QFT+with+defects" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/QFT+with+defects" accesskey="S" class="navlink" id="history" rel="nofollow">History (38 revisions)</a> <a href="/nlab/show/QFT+with+defects/cite" style="color: black">Cite</a> <a href="/nlab/print/QFT+with+defects" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/QFT+with+defects" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10