CINXE.COM

Search results for: TEM micrographs

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: TEM micrographs</title> <meta name="description" content="Search results for: TEM micrographs"> <meta name="keywords" content="TEM micrographs"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="TEM micrographs" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="TEM micrographs"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 75</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: TEM micrographs</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">45</span> Comparative Study of Essential Oils Extracted from Algerian Citrus fruits Using Microwaves and Hydrodistillation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ferhat%20Mohamed%20Amine">Ferhat Mohamed Amine</a>, <a href="https://publications.waset.org/abstracts/search?q=Boukhatem%20Mohamed%20Nadjib"> Boukhatem Mohamed Nadjib</a>, <a href="https://publications.waset.org/abstracts/search?q=Chemat%20Farid"> Chemat Farid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solvent-free-microwave-extraction (SFME) is a combination of microwave heating and distillation, performed at atmospheric pressure without added any solvent or water. Isolation and concentration of volatile compounds are performed by a single stage. SFME extraction of orange essential oil was studied using fresh orange peel from Valencia late cultivar oranges as the raw material. SFME has been compared with a conventional technique, which used a Clevenger apparatus with hydro-distillation (HD). SFME and HD were compared in term of extraction time, yields, chemical composition and quality of the essential oil, efficiency and costs of the process. Extraction of essential oils from orange peels with SFME was better in terms of energy saving, extraction time (30 min versus 3 h), oxygenated fraction (11.7% versus 7.9%), product yield (0.42% versus 0.39%) and product quality. Orange peels treated by SFME and HD were observed by scanning electronic microscopy (SEM). Micrographs provide evidence of more rapid opening of essential oil glands treated by SFME, in contrast to conventional hydro-distillation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydro-distillation" title="hydro-distillation">hydro-distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oil" title=" essential oil"> essential oil</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave" title=" microwave"> microwave</a>, <a href="https://publications.waset.org/abstracts/search?q=orange%20peel" title=" orange peel"> orange peel</a>, <a href="https://publications.waset.org/abstracts/search?q=solvent%20free%20microwave" title=" solvent free microwave"> solvent free microwave</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction%20SFME" title=" extraction SFME"> extraction SFME</a> </p> <a href="https://publications.waset.org/abstracts/38432/comparative-study-of-essential-oils-extracted-from-algerian-citrus-fruits-using-microwaves-and-hydrodistillation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38432.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">485</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">44</span> Effect of Multi Walled Carbon Nanotubes on Pyrolysis Behavior of Unsaturated Polyester Resin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rosli%20Mohd%20Yunus">Rosli Mohd Yunus</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20M.%20Moshiul%20Alam"> A. K. M. Moshiul Alam</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Dalour%20Beg"> Mohammad Dalour Beg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the case of advance polymeric materials reinforcement and thermal stability of matrix is a focused arena of researchers. The distribution of carbon nanotubes (CNTs) in polymer matrix influences material properties. In this study, multi-walled carbon nanotubes (MWCNTs) have been dispersed in unsaturated polyester resin (UPR) through solution mixing and sonication techniques using tetra hydro furan (THF) solvent. Nanocomposites have been fabricated with solution mixing and without solution mixing. Viscosity, Fourier-transform infrared spectroscopy, Field emission scanning electron microscopy (FESEM) investigations have been conducted to study the distribution as well as interaction between matrix and MWCNT. The differential scanning calorimetry (DSC), thermogravimetric analyses (TGA) and pyrolysis behavior have been conducted to study the thermal degradation and stability of nanocomposites. In addition, the SEM micrographs of nanocomposite residual chars were exhibited more packed together. Incorporation of CNT enhances crystallinity and mechanical and thermal properties of the nanocomposites. Correlations among MWCNTs dispersion, nucleation, fracture morphology and various properties have been made. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=char" title="char">char</a>, <a href="https://publications.waset.org/abstracts/search?q=multiwall%20carbon%20nanotubes" title=" multiwall carbon nanotubes"> multiwall carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=nano%20composite" title=" nano composite"> nano composite</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrolysis" title=" pyrolysis"> pyrolysis</a> </p> <a href="https://publications.waset.org/abstracts/16054/effect-of-multi-walled-carbon-nanotubes-on-pyrolysis-behavior-of-unsaturated-polyester-resin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16054.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">43</span> Microstracture of Iranian Processed Cheese</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Ezzati">R. Ezzati</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Dezyani"> M. Dezyani</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Mirzaei"> H. Mirzaei </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effects of the concentration of trisodium citrate (TSC) emulsifying salt (0.25 to 2.75%) and holding time (0 to 20 min) on the textural, rheological, and microstructural properties of Iranian Processed Cheese Cheddar cheese were studied using a central composite rotatable design. The loss tangent parameter (from small amplitude oscillatory rheology), extent of flow, and melt area (from the Schreiber test) all indicated that the meltability of process cheese decreased with increased concentration of TSC and that holding time led to a slight reduction in meltability. Hardness increased as the concentration of TSC increased. Fluorescence micrographs indicated that the size of fat droplets decreased with an increase in the concentration of TSC and with longer holding times. Acid-base titration curves indicated that the buffering peak at pH 4.8, which is due to residual colloidal calcium phosphate, decreased as the concentration of TSC increased. The soluble phosphate content increased as concentration of TSC increased. However, the insoluble Ca decreased with increasing concentration of TSC. The results of this study suggest that TSC chelated Ca from colloidal calcium phosphate and dispersed casein; the citrate-Ca complex remained trapped within the process cheese matrix. Increasing the concentration of TSC helped to improve fat emulsification and casein dispersion during cooking, both of which probably helped to reinforce the structure of process cheese. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iranian%20processed%20cheese" title="Iranian processed cheese">Iranian processed cheese</a>, <a href="https://publications.waset.org/abstracts/search?q=cheddar%20cheese" title=" cheddar cheese"> cheddar cheese</a>, <a href="https://publications.waset.org/abstracts/search?q=emulsifying%20salt" title=" emulsifying salt"> emulsifying salt</a>, <a href="https://publications.waset.org/abstracts/search?q=rheology" title=" rheology"> rheology</a> </p> <a href="https://publications.waset.org/abstracts/26295/microstracture-of-iranian-processed-cheese" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26295.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42</span> Hot Air Flow Annealing of MAPbI₃ Perovskite: Structural and Optical Properties </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mouad%20Ouafi">Mouad Ouafi</a>, <a href="https://publications.waset.org/abstracts/search?q=Lahoucine%20Atourki"> Lahoucine Atourki</a>, <a href="https://publications.waset.org/abstracts/search?q=Larbi%20Laanab"> Larbi Laanab</a>, <a href="https://publications.waset.org/abstracts/search?q=Erika%20Vega"> Erika Vega</a>, <a href="https://publications.waset.org/abstracts/search?q=Miguel%20Mollar"> Miguel Mollar</a>, <a href="https://publications.waset.org/abstracts/search?q=Bernabe%20Marib"> Bernabe Marib</a>, <a href="https://publications.waset.org/abstracts/search?q=Boujemaa%20Jaber"> Boujemaa Jaber</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Despite the astonishing emergence of the methylammonium lead triiodide perovskite as a promising light harvester for solar cells, their physical properties in solution-processed MAPbI₃ are still crucial and need to be improved. The objective of this work is to investigate the hot airflow effect during the growth of MAPbI₃ films using the spin-coating process on their structural, optical and morphological proprieties. The experimental results show that many physical proprieties of the perovskite strongly depend on the air flow temperature and the optimization which has a beneficial effect on the perovskite quality. In fact, a clear improvement of the crystallinity and the crystallite size of MAPbI₃ perovskite is demonstrated by the XRD analyses, when the airflow temperature is increased up to 100°C. Alternatively, as far as the surface morphology is concerned, SEM micrographs show that significant homogenous nucleation, uniform surface distribution and pin holes free with highest surface coverture of 98% are achieved when the airflow temperature reaches 100°C. At this temperature, the improvement is also observed when considering the optical properties of the films. By contrast, a remarkable degradation of the MAPbI₃ perovskites associated to the PbI₂ phase formation is noticed, when the hot airflow temperature is higher than 100°C, especially 300°C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hot%20air%20flow" title="hot air flow">hot air flow</a>, <a href="https://publications.waset.org/abstracts/search?q=crystallinity" title=" crystallinity"> crystallinity</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20coverage" title=" surface coverage"> surface coverage</a>, <a href="https://publications.waset.org/abstracts/search?q=perovskite%20morphology" title=" perovskite morphology"> perovskite morphology</a> </p> <a href="https://publications.waset.org/abstracts/102435/hot-air-flow-annealing-of-mapbi3-perovskite-structural-and-optical-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102435.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">41</span> Enhancing the Structural, Optical, and Dielectric Properties of the Polymer Nanocomposites Based on Polymer Blend and Gold Nanoparticles for Application in Energy Storage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Omar">Mohammed Omar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Using Chenopodium murale leaf, gold nanoparticles (Au NP's) were biosynthesized effectively in an amicable strategy. The casting process was used to create composite layers of sodium alginate and polyvinyl pyrrolidone. Gold nanoparticles were incorporated into the polyvinyl pyrrolidone (PVP)/ sodium alginate (NaAlg) polymer blend by casting technique. Before and after exposure to different doses of gamma irradiation (2, 4, 6 Mrad), thin films of synthesized nanocomposites were analyzed. XRD revealed the amorphous nature of polymer blends (PVP/ NaAlg), which decreased by both Au NP's embedding and consecutive doses of irradiation. FT-IR spectra revealed interactions and differences within the functional groups of their respective pristine components and dopant nano-fillers. The optical properties of PVP/NaAlg – Au NP thin films (refractive index n, energy gap Eg, Urbach energy Eu) were examined before and after the irradiation procedure. Transmission electron micrographs (TEM) demonstrated a decrease in the size of Au NP’s and narrow size distribution as the gamma irradiation dose was increased. Gamma irradiation was found to influence the electrical conductivity of synthesized composite films, as well as dielectric permittivity (ɛ′) and dielectric losses (ε″). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PVP" title="PVP">PVP</a>, <a href="https://publications.waset.org/abstracts/search?q=SPR" title=" SPR"> SPR</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B3-radiations" title=" γ-radiations"> γ-radiations</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a> </p> <a href="https://publications.waset.org/abstracts/146577/enhancing-the-structural-optical-and-dielectric-properties-of-the-polymer-nanocomposites-based-on-polymer-blend-and-gold-nanoparticles-for-application-in-energy-storage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146577.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">40</span> Preparation and Evaluation of siRNA Loaded Polymeric Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Riddhi%20Trivedi">Riddhi Trivedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shrenik%20Shah"> Shrenik Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For Si RNA to be delivered various biodegradable polymers are trialed by many researchers. One of them is Chitosan (CS) nanoparticles which have been extensively studied for siRNA delivery but the stability and efficacy of such particles are highly dependent on the types of cross-linker used. Hence the attempts are made in this study with PGA To address this issue, three common cross-linkers; Ethylene glycol diacrylate (ED) and poly-D-glutamic acid (PGA) were used to prepare siRNA loaded CS-ED/PGA nanoparticles by ionic gelation method. The nanoparticles which were obtained were compared for its characterization in terms of its physicochemical properties i.e. particle size of the resultant particles, zeta potential, its encapsulation capacity in the polymer. Among all the formulations prepared with different crosslinker PGA siRNA had the smallest particle size (ranged from 120 ± 1.7 to 500 ± 10.9 nm) with zeta potential ranged from 22.1 ± 1.5 to +32.4 ± 0.5 mV, and high entrapment ( > 91%) and binding efficiencies. Similarly, CS-ED nanoparticles showed better siRNA protection during storage at 4˚C and as determined by serum protection assay. TEM micrographs revealed the assorted morphology of CS-PGA-siRNA nanoparticles in contrast to irregular morphology displayed by CS-ED-siRNA. All siRNA loaded nanoparticles were found to give initial burst release which after some time followed by a sustained release of siRNA which were loaded inside. All the formulations showed concentration-dependent cytotoxicity with when cytotoxicity performed by HeLa and normal vero cell lines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chitosan" title="chitosan">chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=siRNA" title=" siRNA"> siRNA</a>, <a href="https://publications.waset.org/abstracts/search?q=cytotoxicity" title=" cytotoxicity"> cytotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20line%20study" title=" cell line study"> cell line study</a> </p> <a href="https://publications.waset.org/abstracts/69438/preparation-and-evaluation-of-sirna-loaded-polymeric-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69438.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">39</span> Mechanical Properties of Graphene Nano-Platelets Coated Carbon-Fiber Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alok%20Srivastava">Alok Srivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=Vidit%20Gupta"> Vidit Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Aparna%20Singh"> Aparna Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Chandra%20Sekher%20Yerramalli"> Chandra Sekher Yerramalli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon-fiber epoxy composites show extremely high modulus and strength in the uniaxial direction. However, they are prone to fail under low load in transverse direction due to the weak nature of the interface between the carbon-fiber and epoxy. In the current study, we have coated graphene nano-platelets (GNPs) on the carbon-fibers in an attempt to strengthen the interface/interphase between the fiber and the matrix. Vacuum Assisted Resin Transfer Moulding (VARTM) has been used to make the laminates of eight cross-woven fabrics. Tensile, flexural and fracture toughness tests have been performed on pristine carbon-fiber composite (P-CF), GNP coated carbon-fiber composite (GNP-CF) and functionalized-GNP coated carbon-fiber composite (F-GNP-CF). The tensile strength and flexural strength values are pretty similar for P-CF and GNP-CF. The micro-structural examination of the GNP coated carbon-fibers, as well as the fracture surfaces, have been carried out using scanning electron microscopy (SEM). The micrographs reveal the deposition of GNPs onto the carbon fibers in transverse and longitudinal direction. Fracture surfaces show the debonding and pull outs of the carbon fibers in P-CF and GNP-CF samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20fiber" title="carbon fiber">carbon fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20nanoplatelets" title=" graphene nanoplatelets"> graphene nanoplatelets</a>, <a href="https://publications.waset.org/abstracts/search?q=strength" title=" strength"> strength</a>, <a href="https://publications.waset.org/abstracts/search?q=VARTM" title=" VARTM"> VARTM</a>, <a href="https://publications.waset.org/abstracts/search?q=Vacuum%20Assisted%20Resin%20Transfer%20Moulding" title=" Vacuum Assisted Resin Transfer Moulding"> Vacuum Assisted Resin Transfer Moulding</a> </p> <a href="https://publications.waset.org/abstracts/93687/mechanical-properties-of-graphene-nano-platelets-coated-carbon-fiber-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93687.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38</span> Influence of Fiber Loading and Surface Treatments on Mechanical Properties of Pineapple Leaf Fiber Reinforced Polymer Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jain%20Jyoti">Jain Jyoti</a>, <a href="https://publications.waset.org/abstracts/search?q=Jain%20Shorab"> Jain Shorab</a>, <a href="https://publications.waset.org/abstracts/search?q=Sinha%20Shishir"> Sinha Shishir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the current scenario, development of new biodegradable composites with the reinforcement of some plant derived natural fibers are in major research concern. Abundant quantity of these natural plant derived fibers including sisal, ramp, jute, wheat straw, pine, pineapple, bagasse, etc. can be used exclusively or in combination with other natural or synthetic fibers to augment their specific properties like chemical, mechanical or thermal properties. Among all natural fibers, wheat straw, bagasse, kenaf, pineapple leaf, banana, coir, ramie, flax, etc. pineapple leaf fibers have very good mechanical properties. Being hydrophilic in nature, pineapple leaf fibers have very less affinity towards all types of polymer matrixes. Not much work has been carried out in this area. Surface treatments like alkaline treatment in different concentrations were conducted to improve its compatibility towards hydrophobic polymer matrix. Pineapple leaf fiber epoxy composites have been prepared using hand layup method. Effect of variation in fiber loading up to 20% in epoxy composites has been studied for mechanical properties like tensile strength and flexural strength. Analysis of fiber morphology has also been studied using FTIR, XRD. SEM micrographs have also been studied for fracture surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite" title="composite">composite</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical" title=" mechanical"> mechanical</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20fiber" title=" natural fiber"> natural fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=pineapple%20leaf%20fiber" title=" pineapple leaf fiber"> pineapple leaf fiber</a> </p> <a href="https://publications.waset.org/abstracts/75998/influence-of-fiber-loading-and-surface-treatments-on-mechanical-properties-of-pineapple-leaf-fiber-reinforced-polymer-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75998.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">37</span> Scanning Electron Microscopy of the Erythrocytes of Channa punctatus (Bloch) Exposed to Mercuric Chloride</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shweta%20Maheshwari">Shweta Maheshwari</a>, <a href="https://publications.waset.org/abstracts/search?q=Anish%20Dua"> Anish Dua</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hematological changes reflect the adverse effects of heavy metals on fish. Hematology is a valuable tool to evaluate pathological condition of the fish. It helps in diagnosing the structural and functional status of fish exposed to toxicants. Morphological alteration in erythrocytes due to environmental stress can be studied through ultra-structural analysis. The aim of the present study was to assess the toxicity of mercuric chloride on red blood cells of an air breathing fish, Channa punctatus. Fish were subjected to chronic experiments using three sublethal concentration of mercuric chloride (0.020mg/L, 0.027mg/L, 0.040mg/L) for a period of 15, 30 and 60 days. Exposed fish of all the three concentrations were subjected to a recovery period of 30 days. A control was maintained in tap water simultaneously. For SEM analysis, blood from caudal vein of fish was taken and examined at an accelerating voltage of 20kV. Scanning electron micrographs revealed elliptical shaped erythrocytes of control fish. Alterations in the erythrocyte morphology such as presence of spherocytes, membrane internalization, crenation of membrane and development of lobopodial projections were observed in the exposed fish. The study revealed that ultra-structural analysis appears to be a sensitive method to evaluate the toxicity of various toxicants to fish. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Channa%20punctatus" title="Channa punctatus">Channa punctatus</a>, <a href="https://publications.waset.org/abstracts/search?q=erythrocytes" title=" erythrocytes"> erythrocytes</a>, <a href="https://publications.waset.org/abstracts/search?q=mercuric%20chloride" title=" mercuric chloride"> mercuric chloride</a>, <a href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscopy" title=" scanning electron microscopy"> scanning electron microscopy</a> </p> <a href="https://publications.waset.org/abstracts/37384/scanning-electron-microscopy-of-the-erythrocytes-of-channa-punctatus-bloch-exposed-to-mercuric-chloride" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37384.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">36</span> Effect of Different Carbon Fabric Orientations on the Fracture Properties of Carbon Fabric Reinforced Polymer Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20F.%20Halim">S. F. Halim</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20F.%20Naguib"> H. F. Naguib</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20N.%20Lawandy"> S. N. Lawandy</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20S.%20Hegazy"> R. S. Hegazy</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20N.%20Baheg"> M. N. Baheg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main drawbacks of the traditional carbon fabric reinforced epoxy resin (CFRP) are low strain failure, delamination between composites layers, and low impact resistance due to the brittleness of epoxy resin. The aim of this study is to enhance the fracture properties of the CFRP composites laminates via the variation of composite's designs. A series of composites were fabricated in which bidirectional (00/900) carbon fabric (CF) layers were laid inside the resin matrix with orientation codes as F1 [(00, 900)/ (00, 900)], F2 [(900, 00)/ (00, 900)] and F3 [(00,900)/ (900, 00). The mechanical and dynamic properties of the composites were estimated. In addition, the morphology of samples surface was examined by scanning electron microscope (SEM) after impact fracture. The results revealed that the CFRP properties could be tailored fitting specific applications by controlling the fabric orientation inside the CFRP composite design. F2 orientation [(900, 00)/ (00.900)] showed the highest tensile and flexural strength values. On the other hand, the impact strength values of composites were in the order F1 > F2 > F3. The storage modulus, loss modulus, and glass transition temperature Tg values obtained from the dynamic mechanical analysis (DMA) examination was in the order F1 > F2 > F3. The variation in the properties of the composite was clearly explained by the SEM micrographs as the failure of F3 orientation properties was referred to as the complete breakage of the CF layers upon fracture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20fiber" title="carbon fiber">carbon fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=CFRP" title=" CFRP"> CFRP</a>, <a href="https://publications.waset.org/abstracts/search?q=composites" title=" composites"> composites</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy%20resins" title=" epoxy resins"> epoxy resins</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20strength" title=" flexural strength"> flexural strength</a> </p> <a href="https://publications.waset.org/abstracts/124057/effect-of-different-carbon-fabric-orientations-on-the-fracture-properties-of-carbon-fabric-reinforced-polymer-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124057.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">35</span> Mechanical Properties of Polyurethane Scaffolds Reinforced with Green Nanofibers for Applications in Soft Tissue Regeneration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Abu%20Ghalia">Mustafa Abu Ghalia</a>, <a href="https://publications.waset.org/abstracts/search?q=Yaser%20Dahman"> Yaser Dahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new class of polyurethane (PU) reinforced with green bacterial cellulose nanofibers (BC) were prepared using a solvent casting method, with the goal of fabricating green nanocomposites. Four series classes of BC (1, 2.5, 5, and 10 wt%) were reinforced into PU matrices via BC surface modification and subsequently BC-grafted into PU throughout silane coupling agent to improve BC dispersion and its interfacial interaction. The experiment results from the tensile tester were evaluated according to the response surface method (RSM) for optimizing the impacts of variable parameters, pore size, porosity, and BC contents on the mechanical properties. The compressive strength for PU-5 BC wt% was about 9.8 MPa, and decrease when being generated prosperity to recorded at 4.9 MPa. Nielson model was applied to investigate the BC stress concentration on the PU matrices. Likewise, krenche and Hapli-Tasi model were employed to evaluate the BC nanofiber reinforcement potential and BC orientation into PU matrices. The analysis of variance (ANOVA) demonstrated that only BC loading has a significant effect in increases tensile strength, young’s modulus, and a flexural modulus of the PU-BC nanocomposites. The optimal factors of the variables experiment confirmed to be 5 wt% for BC, 230 for pore size, and 80 % for porosity. Scanning electron microscopy (SEM) micrographs showed that the uniform distribution of nanofibers in the PU matrices with the addition of BC 5 wt %. Hydrolytic degradation revealed that the weight loss in PU-BC scaffold is higher than PU-BC wt %. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polyurethane%20scaffold" title="polyurethane scaffold">polyurethane scaffold</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20engineering" title=" tissue engineering"> tissue engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=polyurethane" title=" polyurethane"> polyurethane</a> </p> <a href="https://publications.waset.org/abstracts/138391/mechanical-properties-of-polyurethane-scaffolds-reinforced-with-green-nanofibers-for-applications-in-soft-tissue-regeneration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138391.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">34</span> Biosorption of Manganese Mine Effluents Using Crude Chitin from Philippine Bivalves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Randy%20Molejona%20Jr.">Randy Molejona Jr.</a>, <a href="https://publications.waset.org/abstracts/search?q=Elaine%20Nicole%20Saquin"> Elaine Nicole Saquin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The area around the Ajuy river in Iloilo, Philippines, is currently being mined for manganese ore, and river water samples exceed the maximum manganese contaminant level set by US-EPA. At the same time, the surplus of local bivalve waste is another environmental concern. Synthetic chemical treatment compromises water quality, leaving toxic residues. Therefore, an alternative treatment process is biosorption or using the physical and chemical properties of biomass to adsorb heavy metals in contaminated water. The study aims to extract crude chitin from shell wastes of Bractechlamys vexillum, Perna viridis, and Placuna placenta and determine its adsorption capacity on manganese in simulated and actual mine water. Crude chitin was obtained by pulverization, deproteinization, demineralization, and decolorization of shells. Biosorption by flocculation followed 5 g: 50 mL chitin-to-water ratio. Filtrates were analyzed using MP-AES after 24 hours. In both actual and simulated mine water, respectively, B. vexillum yielded the highest adsorption percentage of 91.43% and 99.58%, comparable to P. placenta of 91.43% and 99.37%, while significantly different to P. viridis of -57.14% and 31.53%, (p < 0.05). FT-IR validated the presence of chitin in shells based on carbonyl-containing functional groups at peaks 1530-1560 cm⁻¹ and 1660-1680 cm⁻¹. SEM micrographs showed the amorphous and non-homogenous structure of chitin. Thus, crude chitin from B. vexillum and P. placenta can be bio-sorbents for water treatment of manganese-impacted effluents, and promote appropriate waste management of local bivalves. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosorption" title="biosorption">biosorption</a>, <a href="https://publications.waset.org/abstracts/search?q=chitin" title=" chitin"> chitin</a>, <a href="https://publications.waset.org/abstracts/search?q=FT-IR" title=" FT-IR"> FT-IR</a>, <a href="https://publications.waset.org/abstracts/search?q=mine%20effluents" title=" mine effluents"> mine effluents</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a> </p> <a href="https://publications.waset.org/abstracts/119862/biosorption-of-manganese-mine-effluents-using-crude-chitin-from-philippine-bivalves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119862.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> Tribological Behavior of PTFE Composites Used for Guide Rings of Hydraulic Actuating Cylinders under Oil-Lubricated Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Trabelsi%20Mohamed">Trabelsi Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Kharrat%20Mohamed"> Kharrat Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Dammak%20Maher"> Dammak Maher</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Guide rings play an important role in the performance and durability of hydraulic actuating cylinders. In service, guide rings surfaces are subjected to friction and wear against steel counterface. A good mastery of these phenomena is required for the improvement of the energy safeguard and the durability of the actuating cylinder. Polytetrafluoroethylene (PTFE) polymer is extensively used in guide rings thanks to its low coefficient of friction, its good resistance to solvents as well as its high temperature stability. In this study, friction and wear behavior of two PTFE composites filled with bronze and bronze plus MoS2 were evaluated under oil-lubricated condition, aiming as guide rings for hydraulic actuating cylinder. Wear tests of the PTFE composite specimen sliding against steel ball were conducted using reciprocating linear tribometer. The wear mechanisms of the composites under the same sliding condition were discussed, based on Scanning Electron Microscopy examination of the worn composite surface and the optical micrographs of the steel counter surface. As for the results, comparative friction behaviors of the PTFE composites and lower friction coefficients were recorded under oil lubricated condition. The wear behavior was considerably improved to compare with this in dry sliding, while the oil adsorbed layer limited the transfer of the PTFE to the steel counter face during the sliding test. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PTFE" title="PTFE">PTFE</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=bronze" title=" bronze"> bronze</a>, <a href="https://publications.waset.org/abstracts/search?q=MoS2" title=" MoS2"> MoS2</a>, <a href="https://publications.waset.org/abstracts/search?q=friction" title=" friction"> friction</a>, <a href="https://publications.waset.org/abstracts/search?q=wear" title=" wear"> wear</a>, <a href="https://publications.waset.org/abstracts/search?q=oil-lubrication" title=" oil-lubrication"> oil-lubrication</a> </p> <a href="https://publications.waset.org/abstracts/12663/tribological-behavior-of-ptfe-composites-used-for-guide-rings-of-hydraulic-actuating-cylinders-under-oil-lubricated-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12663.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> Phosphate Sludge Ceramics: Effects of Firing Cycle Parameters on Technological Properties and Ceramic Suitability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Loutou">Mohamed Loutou</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Hajjaji"> Mohamed Hajjaji</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Ait%20Babram"> Mohamed Ait Babram</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Mansori"> Mohammed Mansori</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachid%20Hakkou"> Rachid Hakkou</a>, <a href="https://publications.waset.org/abstracts/search?q=Claude%20Favotto"> Claude Favotto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> More than 26,4 million tons of phosphates are produced by the phosphates industries in Morocco (2010), generating huge amounts of sludge by flocculation during the ore beneficiation. They way are stored at the end of the process in open air ponds. Its accumulation and storage may have an impact on several scales such as ground water and human being. For this purpose, an efficient way to use it the field of the ceramic is proposed. The as received sludge and a clay-rich sediment have been studied in terms of chemical, mineralogical and micro-structural side using various analytical methods. Several formulations have been performed by mixing the sludge with the binder shaped in the form of granules. After being dried at 105 °C, the samples were heated in the range of 900-1200 °C. As well as the ceramic properties (firing shrinkage, water absorption, total porosity and compressive strength) the micro structure has been investigated using X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy. The relations between properties and the operating factors were formulated using the design of experiments (DOE). Gehlenite was the only phase neo-formed in the sintering samples. SEM micrographs revealed the presence of nano metric stains. Based on RSM results, all factors had positive effects on Firing shrinkage, compressive strength and total porosity. However, they manifested opposite effects on density and water absorption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phosphate%20sludge" title="phosphate sludge">phosphate sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=clay" title=" clay"> clay</a>, <a href="https://publications.waset.org/abstracts/search?q=ceramic%20properties" title=" ceramic properties"> ceramic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=granule" title=" granule"> granule</a> </p> <a href="https://publications.waset.org/abstracts/18271/phosphate-sludge-ceramics-effects-of-firing-cycle-parameters-on-technological-properties-and-ceramic-suitability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18271.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">505</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> In-Situ Fabrication of ZnO PES Membranes for Treatment of Pharmaceuticals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oranso%20T.%20Mahlangi">Oranso T. Mahlangi</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhekie%20B.%20Mamba"> Bhekie B. Mamba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The occurrence of trace organic compounds (TOrCs) in water has raised health concerns for living organisms. The majority of TorCs, including pharmaceuticals and volatile organic compounds, are poorly monitored, partly due to the high cost of analysis and less strict water quality guidelines in South Africa. Therefore, the removal of TorCs is important to guarantee safe potable water. In this study, ZnO nanoparticles were fabricated in situ in polyethersulfone (PES) polymer solutions. This was followed by membrane synthesis using the phase inversion technique. Techniques such as FTIR, Raman, SEM, AFM, EDS, and contact angle measurements were used to characterize the membranes for several physicochemical properties. The membranes were then evaluated for their efficiency in treating pharmaceutical wastewater and resistance to organic (sodium alginate) and protein (bovine serum albumin) fouling. EDS micrographs revealed uniform distribution of ZnO nanoparticles within the polymer matrix, while SEM images showed uniform fingerlike structures. The addition of ZnO increased membrane roughness as well as hydrophilicity (which in turn improved water fluxes). The membranes poorly rejected monovalent and divalent salts (< 10%), making them resistant to flux decline due to concentration polarization effects. However, the membranes effectively removed carbamazepine, caffeine, sulfamethoxazole, ibuprofen, and naproxen by over 50%. ZnO PES membranes were resistant to organic and protein fouling compared to the neat membrane. ZnO PES ultrafiltration membranes may provide a solution in the reclamation of wastewater. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=trace%20organic%20compounds" title="trace organic compounds">trace organic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=pharmaceuticals" title=" pharmaceuticals"> pharmaceuticals</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20fouling" title=" membrane fouling"> membrane fouling</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20reclamation" title=" wastewater reclamation"> wastewater reclamation</a> </p> <a href="https://publications.waset.org/abstracts/147068/in-situ-fabrication-of-zno-pes-membranes-for-treatment-of-pharmaceuticals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147068.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Fungicidal Action of the Mycogenic Silver Nanoparticles Against Aspergillus niger Inciting Collar Rot Disease in Groundnut (Arachis hypogaea L.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Sarada%20Jayalakshmi%20Devi%20B.%20Bhaskar">R. Sarada Jayalakshmi Devi B. Bhaskar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Khayum%20Ahammed"> S. Khayum Ahammed</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20N.%20V.%20K.%20V.%20Prasad"> T. N. V. K. V. Prasad </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Use of bioagents and biofungicides is safe to manage the plant diseases and to avoid human health hazards which improves food security. Myconanotechnology is the study of nanoparticles synthesis using fungi and their applications. The present work reports on preparation, characterization and antifungal activity of biogenic silver nanoparticles produced by the fungus Trichoderma sp. which was collected from groundnut rhizosphere. The culture filtrate of Trichoderma sp. was used for the reduction of silver ions (Ag+) in AgNO3 solution to the silver (Ag0) nanoparticles. The different ages (4 days, 6 days, 8 days, 12 days, and 15 days) of culture filtrates were screened for the synthesis of silver nanoparticles. Synthesized silver nanoparticles were characterized using UV-Vis spectrophotometer, particle size and zeta potential analyzer, Fourier Transform Infrared Spectrophotometer (FTIR) and Transmission Electron Microscopy. Among all the treatments the silver nitrate solution treated with six days aged culture filtrate of Trichoderma sp. showed the UV absorption peak at 440 nm with maximum intensity (0.59) after 24 hrs incubation. The TEM micrographs showed the spherical shaped silver nanoparticles with an average size of 30 nm. The antifungal activity of silver nanoparticles against Aspergillus niger causing collar rot disease in groundnut and aspergillosis in humans showed the highest per cent inhibition at 100 ppm concentration (74.8%). The results points to the usage of these mycogenic AgNPs in agriculture to control plant diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=groundnut%20rhizosphere" title="groundnut rhizosphere">groundnut rhizosphere</a>, <a href="https://publications.waset.org/abstracts/search?q=Trichoderma%20sp." title=" Trichoderma sp."> Trichoderma sp.</a>, <a href="https://publications.waset.org/abstracts/search?q=silver%20nanoparticles%20synthesis" title=" silver nanoparticles synthesis"> silver nanoparticles synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=antifungal%20activity" title=" antifungal activity"> antifungal activity</a> </p> <a href="https://publications.waset.org/abstracts/26859/fungicidal-action-of-the-mycogenic-silver-nanoparticles-against-aspergillus-niger-inciting-collar-rot-disease-in-groundnut-arachis-hypogaea-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26859.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">499</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> Enhancement of Mechanical Properties for Al-Mg-Si Alloy Using Equal Channel Angular Pressing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20H.%20El%20Garaihy">W. H. El Garaihy</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Nassef"> A. Nassef</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Samy"> S. Samy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Equal channel angular pressing (ECAP) of commercial Al-Mg-Si alloy was conducted using two strain rates. The ECAP processing was conducted at room temperature and at 250 °C. Route A was adopted up to a total number of four passes in the present work. Structural evolution of the aluminum alloy discs was investigated before and after ECAP processing using optical microscopy (OM). Following ECAP, simple compression tests and Vicker’s hardness were performed. OM micrographs showed that, the average grain size of the as-received Al-Mg-Si disc tends to be larger than the size of the ECAP processed discs. Moreover, significant difference in the grain morphologies of the as-received and processed discs was observed. Intensity of deformation was observed via the alignment of the Al-Mg-Si consolidated particles (grains) in the direction of shear, which increased with increasing the number of passes via ECAP. Increasing the number of passes up to 4 resulted in increasing the grains aspect ratio up to ~5. It was found that the pressing temperature has a significant influence on the microstructure, Hv-values, and compressive strength of the processed discs. Hardness measurements demonstrated that 1-pass resulted in increase of Hv-value by 42% compared to that of the as-received alloy. 4-passes of ECAP processing resulted in additional increase in the Hv-value. A similar trend was observed for the yield and compressive strength. Experimental data of the Hv-values demonstrated that there is a lack of any significant dependence on the processing strain rate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al-Mg-Si%20alloy" title="Al-Mg-Si alloy">Al-Mg-Si alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=equal%20channel%20angular%20pressing" title=" equal channel angular pressing"> equal channel angular pressing</a>, <a href="https://publications.waset.org/abstracts/search?q=grain%20refinement" title=" grain refinement"> grain refinement</a>, <a href="https://publications.waset.org/abstracts/search?q=severe%20plastic%20deformation" title=" severe plastic deformation "> severe plastic deformation </a> </p> <a href="https://publications.waset.org/abstracts/23250/enhancement-of-mechanical-properties-for-al-mg-si-alloy-using-equal-channel-angular-pressing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23250.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> Preparation of Conductive Composite Fiber by the Reduction of Silver Particles onto Hydrolyzed Polyacrylonitrile Fiber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20Okay">Z. Okay</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kalkan%20Erdo%C4%9Fan"> M. Kalkan Erdoğan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20%C5%9Eahin"> M. Şahin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sa%C3%A7ak"> M. Saçak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polyacrylonitrile (PAN) is one of the most common and cheap fiber-forming polymers because of its high strength and high abrasion resistance properties. The result of alkaline hydrolysis of PAN fiber could be formed the products with conjugated sequences of –C=N–, acrylamide, sodium acrylate, and amidine. In this study, PAN fiber was hydrolyzed in a solution of sodium hydroxide, and this hydrolyzed PAN (HPAN) fiber was used to prepare conductive composite fiber by silver particles. The electrically conductive PAN fiber has the usage potential to produce variety of materials such as antistatic materials, life jackets and static charge reducing products. We monitored the change in the weight loss values of the PAN fiber with hydrolysis time. It was observed that a 60 % of weight loss was obtained in the fiber weight after 7h hydrolysis under the investigated conditions, but the fiber lost its fibrous structure. The hydrolysis time of 5h was found to be suitable in terms of preserving its fibrous structure. The change in the conductivity values of the composite with the preparation conditions such as hydrolysis time, silver ion concentration was studied. PAN fibers with different degrees of hydrolysis were treated with aqueous solutions containing different concentrations of silver ions by continuous stirring at 20 oC for 30 min, and the composite having the maximum conductivity of 2 S/cm could be prepared. The antibacterial property of the conductive HPAN fibers participated silver was also investigated. While the hydrolysis of the PAN fiber was characterized with FTIR and SEM techniques, the silver reduction process of the HPAN fiber was investigated with SEM and TGA-DTA techniques. The SEM micrographs showed that the surface of HPAN fiber was rougher and much more corroded than that of the PAN fiber. Composite, Conducting polymer, Fiber, Polyacrylonitrile. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite" title="composite">composite</a>, <a href="https://publications.waset.org/abstracts/search?q=conducting%20polymer" title=" conducting polymer"> conducting polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber" title=" fiber"> fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=polyacrylonitrile" title=" polyacrylonitrile"> polyacrylonitrile</a> </p> <a href="https://publications.waset.org/abstracts/37131/preparation-of-conductive-composite-fiber-by-the-reduction-of-silver-particles-onto-hydrolyzed-polyacrylonitrile-fiber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37131.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">478</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Estimation of Particle Size Distribution Using Magnetization Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Navneet%20Kaur">Navneet Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20D.%20Tiwari"> S. D. Tiwari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magnetic nanoparticles possess fascinating properties which make their behavior unique in comparison to corresponding bulk materials. Superparamagnetism is one such interesting phenomenon exhibited only by small particles of magnetic materials. In this state, the thermal energy of particles become more than their magnetic anisotropy energy, and so particle magnetic moment vectors fluctuate between states of minimum energy. This situation is similar to paramagnetism of non-interacting ions and termed as superparamagnetism. The magnetization of such systems has been described by Langevin function. But, the estimated fit parameters, in this case, are found to be unphysical. It is due to non-consideration of particle size distribution. In this work, analysis of magnetization data on NiO nanoparticles is presented considering the effect of particle size distribution. Nanoparticles of NiO of two different sizes are prepared by heating freshly synthesized Ni(OH)₂ at different temperatures. Room temperature X-ray diffraction patterns confirm the formation of single phase of NiO. The diffraction lines are seen to be quite broad indicating the nanocrystalline nature of the samples. The average crystallite size are estimated to be about 6 and 8 nm. The samples are also characterized by transmission electron microscope. Magnetization of both sample is measured as function of temperature and applied magnetic field. Zero field cooled and field cooled magnetization are measured as a function of temperature to determine the bifurcation temperature. The magnetization is also measured at several temperatures in superparamagnetic region. The data are fitted to an appropriate expression considering a distribution in particle size following a least square fit procedure. The computer codes are written in PYTHON. The presented analysis is found to be very useful for estimating the particle size distribution present in the samples. The estimated distributions are compared with those determined from transmission electron micrographs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anisotropy" title="anisotropy">anisotropy</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetization" title=" magnetization"> magnetization</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=superparamagnetism" title=" superparamagnetism"> superparamagnetism</a> </p> <a href="https://publications.waset.org/abstracts/100769/estimation-of-particle-size-distribution-using-magnetization-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100769.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Characterization of Biogenic Silver Nanoparticles by Salvadora persica Leaves Extract and its Application Against Some MDR Pathogens E. Coli and S. Aureus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mudawi%20M.%20Nour">Mudawi M. Nour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Now a days, the multidisciplinary scientific research conception in the field of nanotechnology has witnessed development with regard to the numerous applications and synthesis of nanomaterials. Objective: The current investigation has been conducted with the main focus on the green synthesis of silver nanoparticles from the leaves of Salvadora persica and its antibacterial activity against MDR pathogens E. coli and S. aureus. Methodology: Silver nanoparticles (AgNPs) were prepared after addition of aqueous extract of Salvadora persica leaves. The UV-Vis spectrophotometer, Transmission Electron Microscopy (TEM), zeta potential and Scanning Electron Microscopy (SEM) were employed to detect the particle size and morphology, besides Fourier transform infra-red spectrometer (FTIR) analysis was performed to determine the capping and stabilizing agents in the extract. Antibacterial assay for the biogenic AgNPs was conducted against E. coli and S. aureus. Results: Color change of the mixture from yellow to dark brown is the first indication to AgNPs formation. Furthermore, 420 nm was the peak value for UV-Vis spectroscopy absorption of the mixture. Besides, TEM and SEM micrographs showed wide variability in the diameter of smaller NPs aggregated together with spherical shapes, and zeta sizer showed about 153.3 nm as an average size of nanoparticles. Microbial suppression was noticed for the tested microorganisms. Furthermore, with the help of FTIR analysis, the biomolecules that act as capping and stabilizing agents of AgNPs are proteins and phenols present in the plant extract. Conclusion: Salvadora persica leaves extract act as a reducing and stabilizing agent for the synthesis of AgNPs, keeping its ability to suppress the MDR pathogen. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20synthesis" title="green synthesis">green synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=FTIR" title=" FTIR"> FTIR</a>, <a href="https://publications.waset.org/abstracts/search?q=MDR%20pathogen" title=" MDR pathogen"> MDR pathogen</a>, <a href="https://publications.waset.org/abstracts/search?q=salvadora%20persica" title=" salvadora persica"> salvadora persica</a> </p> <a href="https://publications.waset.org/abstracts/169496/characterization-of-biogenic-silver-nanoparticles-by-salvadora-persica-leaves-extract-and-its-application-against-some-mdr-pathogens-e-coli-and-s-aureus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169496.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Investigating the Suitability of Utilizing Lyophilized Gels to Improve the Stability of Ufasomes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mona%20Hassan%20Aburahma">Mona Hassan Aburahma</a>, <a href="https://publications.waset.org/abstracts/search?q=Alaa%20Hamed%20Salama"> Alaa Hamed Salama </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ufasomes “unsaturated fatty acids liposomes” are unique nano-sized self-assembled bilayered vesicles that can be easily created from the readily available unsaturated fatty acid. Ufasomes are formed due to weak associative interaction of the fully ionized and unionized fatty acids into bilayers structures. In the ufasomes constructs, the fatty acid molecules are oriented with their hydrocarbon tails directed toward the membrane interior and the carboxyl groups are in contact with water. Although ufasomes can be employed as a safe vesicular carrier for drugs, the extreme instability of their aqueous dispersions hinders their effective use in drug delivery field. Accordingly, in our study, lyophilized gels containing ufasomes were prepared using a simple assembling technique form the readily available oleic acid to overcome the colloidal instability of the ufasomes dispersions and convert them into accurate unit dosage forms. The influence of changing cholesterol percentage relative to oleic acid on the ufasomes vesicles were investigated using factorial design. The optimized oleic acid ufasomes comprised nanoscaled spherical vesicles. Scanning electron micrographs of the lyophilized gels revealed that the included ufasomes were intact, non-aggregating, and preserved their spherical morphology. Rheological characterization (viscosity and shear stress versus shear rate) of reconstituted ufasomal lyophilized gel ensured the ease of application. The capability of the ufasomes, included in the gel, to penetrate deep through the mucosa layers was illustrated using ex-vivo confocal laser imaging, thereby, highlighting the feasibility of stabilizing ufasomes using lyophilized gel platforms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ufasomes" title="ufasomes">ufasomes</a>, <a href="https://publications.waset.org/abstracts/search?q=lyophilized%20gel" title=" lyophilized gel"> lyophilized gel</a>, <a href="https://publications.waset.org/abstracts/search?q=confocal%20scanning%20microscopy" title=" confocal scanning microscopy"> confocal scanning microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=rheological%20characterization" title=" rheological characterization"> rheological characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=oleic%20acid" title=" oleic acid "> oleic acid </a> </p> <a href="https://publications.waset.org/abstracts/21763/investigating-the-suitability-of-utilizing-lyophilized-gels-to-improve-the-stability-of-ufasomes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21763.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> ZnO Nanoparticles as Photocatalysts: Synthesis, Characterization and Application </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pachari%20Chuenta">Pachari Chuenta</a>, <a href="https://publications.waset.org/abstracts/search?q=Suwat%20Nanan"> Suwat Nanan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> ZnO nanostructures have been synthesized successfully in high yield via catalyst-free chemical precipitation technique by varying zinc source (either zinc nitrate or zinc acetate) and oxygen source (either oxalic acid or urea) without using any surfactant, organic solvent or capping agent. The ZnO nanostructures were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffractometry (XRD), scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), UV-vis diffuse reflection spectroscopy (UV-vis DRS), and photoluminescence spectroscopy (PL). The FTIR peak in the range of 450-470 cm-1 corresponded to Zn-O stretching in ZnO structure. The synthesized ZnO samples showed well crystalized hexagonal wurtzite structure. SEM micrographs displayed spherical droplet of about 50-100 nm. The band gap of prepared ZnO was found to be 3.4-3.5 eV. The presence of PL peak at 468 nm was attributed to surface defect state. The photocatalytic activity of ZnO was studied by monitoring the photodegradation of reactive red (RR141) azo dye under ultraviolet (UV) light irradiation. Blank experiment was also separately carried out by irradiating the aqueous solution of the dye in absence of the photocatalyst. The initial concentration of the dye was fixed at 10 mgL-1. About 50 mg of ZnO photocatalyst was dispersed in 200 mL dye solution. The sample was collected at a regular time interval during the irradiation and then was analyzed after centrifugation. The concentration of the dye was determined by monitoring the absorbance at its maximum wavelength (λₘₐₓ) of 544 nm using UV-vis spectroscopic analysis technique. The sources of Zn and O played an important role on photocatalytic performance of the ZnO photocatalyst. ZnO nanoparticles which prepared by zinc acetate and oxalic acid at molar ratio of 1:1 showed high photocatalytic performance of about 97% toward photodegradation of reactive red azo dye (RR141) under UV light irradiation for only 60 min. This work demonstrates the promising potential of ZnO nanomaterials as photocatalysts for environmental remediation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=azo%20dye" title="azo dye">azo dye</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20precipitation" title=" chemical precipitation"> chemical precipitation</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalytic" title=" photocatalytic"> photocatalytic</a>, <a href="https://publications.waset.org/abstracts/search?q=ZnO" title=" ZnO"> ZnO</a> </p> <a href="https://publications.waset.org/abstracts/81626/zno-nanoparticles-as-photocatalysts-synthesis-characterization-and-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81626.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Using Recycled Wastes (Glass Powder) as Partially Replacement for Cement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Passant%20Youssef">Passant Youssef</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20El-Tair"> Ahmed El-Tair</a>, <a href="https://publications.waset.org/abstracts/search?q=Amr%20El-Nemr"> Amr El-Nemr </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lately, with the environmental changes, enthusiasts trigger to stop the contamination of environment. Thus, various efforts were exerted for innovating environmental friendly concrete to sustain as a ‘Green Building’ material. Green building materials consider the cement industry as one of the most sources of air pollutant with high rate of carbon dioxide (CO₂) emissions. Several methods were developed to extensively reduce the influence of cement industry on environment. These methods such as using supplementary cementitious material or improving the cement manufacturing process are still under investigation. However, with the presence of recycled wastes from construction and finishing materials, the use of supplementary cementitious materials seems to provide an economic solution. Furthermore, it improves the mechanical properties of cement paste, in addition to; it modulates the workability and durability of concrete. In this paper, the glass powder was considered to be used as partial replacement of cement. This study provided the mechanical influence for using the glass powder as partial replacement of cement. In addition, it examines the microstructure of cement mortar using scanning electron microscope and X-ray diffraction. The cement in concrete is replaced by waste glass powder in steps of 5%, 10%, 15%, 20% and 25% by weight of cement and its effects on compressive and flexure strength were determined after 7 and 28 days. It was found that the 5% glass powder replacement increased the 7 days compressive strength by 20.5%, however, there was no increase in compressive strength after 28 days; which means that the glass powder did not react in the cement mortar due to its amorphous nature on the long run, and it can act as fine aggregate better that cement replacement. As well as, the 5% and 10% glass powder replacement increased the 28 days flexural strength by 46.9%. SEM micrographs showed very dense matrix for the optimum specimen compared to control specimen as well; some glass particles were clearly observed. High counts of silica were optimized from XRD while amorphous materials such as calcium silicate cannot be directly detected. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supplementary%20materials" title="supplementary materials">supplementary materials</a>, <a href="https://publications.waset.org/abstracts/search?q=glass%20powder" title=" glass powder"> glass powder</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=cementitious%20materials" title=" cementitious materials"> cementitious materials</a> </p> <a href="https://publications.waset.org/abstracts/76780/using-recycled-wastes-glass-powder-as-partially-replacement-for-cement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76780.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Friction Stir Processing of the AA7075T7352 Aluminum Alloy Microstructures Mechanical Properties and Texture Characteristics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roopchand%20Tandon">Roopchand Tandon</a>, <a href="https://publications.waset.org/abstracts/search?q=Zaheer%20Khan%20Yusufzai"> Zaheer Khan Yusufzai</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Manna"> R. Manna</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20K.%20Mandal"> R. K. Mandal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Present work describes microstructures, mechanical properties, and texture characteristics of the friction stir processed AA7075T7352 aluminum alloy. Phases were analyzed with the help of x-ray diffractometre (XRD), transmission electron microscope (TEM) along with the differential scanning calorimeter (DSC). Depth-wise microstructures and dislocation characteristics from the nugget-zone of the friction stir processed specimens were studied using the bright field (BF) and weak beam dark-field (WBDF) TEM micrographs, and variation in the microstructures as well as dislocation characteristics were the noteworthy features found. XRD analysis display changes in the chemistry as well as size of the phases in the nugget and heat affected zones (Nugget and HAZ). Whereas the base metal (BM) microstructures remain un-affected. High density dislocations were noticed in the nugget regions of the processed specimen, along with the formation of dislocation contours and tangles. .The ɳ’ and ɳ phases, along with the GP-Zones were completely dissolved and trapped by the dislocations. Such an observations got corroborated to the improved mechanical as well as stress corrosion cracking (SCC) performances. Bulk texture and residual stress measurements were done by the Panalytical Empyrean MRD system with Co- kα radiation. Nugget zone (NZ) display compressive residual stress as compared to thermo-mechanically(TM) and heat affected zones (HAZ). Typical f.c.c. deformation texture components (e.g. Copper, Brass, and Goss) were seen. Such a phenomenon is attributed to the enhanced hardening as well as other mechanical performance of the alloy. Mechanical characterizations were done using the tensile test and Anton Paar Instrumented Micro Hardness tester. Enhancement in the yield strength value is reported from the 89MPa to the 170MPa; on the other hand, highest hardness value was reported in the nugget-zone of the processed specimens. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminum%20%20alloy" title="aluminum alloy">aluminum alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20characterization" title=" mechanical characterization"> mechanical characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=texture%20characterstics" title=" texture characterstics"> texture characterstics</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20stir%20processing" title=" friction stir processing"> friction stir processing</a> </p> <a href="https://publications.waset.org/abstracts/151836/friction-stir-processing-of-the-aa7075t7352-aluminum-alloy-microstructures-mechanical-properties-and-texture-characteristics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151836.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Fexofenadine Hydrochloride Orodispersisble Tablets: Formulation and in vitro/in vivo Evaluation in Healthy Human Volunteers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soad%20Ali%20Yehia">Soad Ali Yehia</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Shafik%20El-Ridi"> Mohamed Shafik El-Ridi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mina%20Ibrahim%20Tadros"> Mina Ibrahim Tadros</a>, <a href="https://publications.waset.org/abstracts/search?q=Nolwa%20Gamal%20El-Sherif"> Nolwa Gamal El-Sherif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fexofenadine hydrochloride (FXD) is a slightly soluble, bitter-tasting, drug having an oral bioavailability of 35%. The maximum plasma concentration is reached 2.6 hours (Tmax) post-dose. The current work aimed to develop taste-masked FXD orodispersible tablets (ODTs) to increase extent of drug absorption and reduce Tmax. Taste masking was achieved via solid dispersion (SD) with chitosan (CS) or sodium alginate (ALG). FT-IR, DSC and XRD were performed to identify physicochemical interactions and FXD crystallinity. Taste-masked FXD-ODTs were developed via addition of superdisintegrants (crosscarmelose sodium or sodium starch glycolate, 5% and 10%, w/w) or sublimable agents (camphor, menthol or thymol; 10% and 20%, w/w) to FXD-SDs. ODTs were evaluated for weight variation, drug-content, friability, wetting time, disintegration time and drug release. Camphor-based (20%, w/w) FXD-ODT (F12) was optimized (F23) by incorporation of a more hydrophilic lubricant, sodium stearyl fumarate (Pruv®). The topography of the latter formula was examined via scanning electron microscopy (SEM). The in vivo estimation of FXD pharmacokinetics, relative to Allegra® tablets, was evaluated in healthy human volunteers. Based on the gustatory sensation test in healthy volunteers, FXD:CS (1:1) and FXD:ALG (1:0.5) SDs were selected. Taste-masked FXD-ODTs had appropriate physicochemical properties and showed short wetting and disintegration times. Drug release profiles of F23 and phenylalanine-containing Allegra® ODT were similar (f2 = 96) showing a complete release in two minutes. SEM micrographs revealed pores following camphor sublimation. Compared to Allegra® tablets, pharmacokinetic studies in healthy volunteers proved F23 ability to increase extent of FXD absorption (14%) and reduce Tmax to 1.83 h. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fexofenadine%20hydrochloride" title="fexofenadine hydrochloride">fexofenadine hydrochloride</a>, <a href="https://publications.waset.org/abstracts/search?q=taste%20masking" title=" taste masking"> taste masking</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan" title=" chitosan"> chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=orodispersible" title=" orodispersible"> orodispersible</a> </p> <a href="https://publications.waset.org/abstracts/4762/fexofenadine-hydrochloride-orodispersisble-tablets-formulation-and-in-vitroin-vivo-evaluation-in-healthy-human-volunteers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4762.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Processing and Characterization of Aluminum Matrix Composite Reinforced with Amorphous Zr₃₇.₅Cu₁₈.₆₇Al₄₃.₉₈ Phase</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Abachi">P. Abachi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Karami"> S. Karami</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Purazrang"> K. Purazrang </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The amorphous reinforcements (metallic glasses) can be considered as promising options for reinforcing light-weight aluminum and its alloys. By using the proper type of reinforcement, one can overcome to drawbacks such as interfacial de-cohesion and undesirable reactions which can be created at ceramic particle and metallic matrix interface. In this work, the Zr-based amorphous phase was produced via mechanical milling of elemental powders. Based on Miedema semi-empirical Model and diagrams for formation enthalpies and/or Gibbs free energies of Zr-Cu amorphous phase in comparison with the crystalline phase, the glass formability range was predicted. The composite was produced using the powder mixture of the aluminum and metallic glass and spark plasma sintering (SPS) at the temperature slightly above the glass transition Tg of the metallic glass particles. The selected temperature and rapid sintering route were suitable for consolidation of an aluminum matrix without crystallization of amorphous phase. To characterize amorphous phase formation, X-ray diffraction (XRD) phase analyses were performed on powder mixture after specified intervals of milling. The microstructure of the composite was studied by optical and scanning electron microscope (SEM). Uniaxial compression tests were carried out on composite specimens with the dimension of 4 mm long and a cross-section of 2 ˟ 2mm2. The micrographs indicated an appropriate reinforcement distribution in the metallic matrix. The comparison of stress–strain curves of the consolidated composite and the non-reinforced Al matrix alloy in compression showed that the enhancement of yield strength and mechanical strength are combined with an appreciable plastic strain at fracture. It can be concluded that metallic glasses (amorphous phases) are alternative reinforcement material for lightweight metal matrix composites capable of producing high strength and adequate ductility. However, this is in the expense of minor density increase. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminum%20matrix%20composite" title="aluminum matrix composite">aluminum matrix composite</a>, <a href="https://publications.waset.org/abstracts/search?q=amorphous%20phase" title=" amorphous phase"> amorphous phase</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20alloying" title=" mechanical alloying"> mechanical alloying</a>, <a href="https://publications.waset.org/abstracts/search?q=spark%20plasma%20sintering" title=" spark plasma sintering"> spark plasma sintering</a> </p> <a href="https://publications.waset.org/abstracts/64307/processing-and-characterization-of-aluminum-matrix-composite-reinforced-with-amorphous-zr375cu1867al4398-phase" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64307.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Investigation of Electrochemical, Morphological, Rheological and Mechanical Properties of Nano-Layered Graphene/Zinc Nanoparticles Incorporated Cold Galvanizing Compound at Reduced Pigment Volume Concentration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Abid">Muhammad Abid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ultimate goal of this research was to produce a cold galvanizing compound (CGC) at reduced pigment volume concentration (PVC) to protect metallic structures from corrosion. The influence of the partial replacement of Zn dust by nano-layered graphene (NGr) and Zn metal nanoparticles on the electrochemical, morphological, rheological, and mechanical properties of CGC was investigated. EIS was used to explore the electrochemical nature of coatings. The EIS results revealed that the partial replacement of Zn by NGr and Zn nanoparticles enhanced the cathodic protection at reduced PVC (4:1) by improving the electrical contact between the Zn particles and the metal substrate. The Tafel scan was conducted to support the cathodic behaviour of the coatings. The sample formulated solely with Zn at PVC 4:1 was found to be dominated in physical barrier characteristics over cathodic protection. By increasing the concentration of NGr in the formulation, the corrosion potential shifted towards a more negative side. The coating with 1.5% NGr showed the highest galvanic action at reduced PVC. FE-SEM confirmed the interconnected network of conducting particles. The coating without NGr and Zn nanoparticles at PVC 4:1 showed significant gaps between the Zn dust particles. The novelty was evidenced when micrographs showed the consistent distribution of NGr and Zn nanoparticles all over the surface, which acted as a bridge between spherical Zn particles and provided cathodic protection at a reduced PVC. The layered structure of graphene also improved the physical shielding effect of the coatings, which limited the diffusion of electrolytes and corrosion products (oxides/hydroxides) into the coatings, which was reflected by the salt spray test. The rheological properties of coatings showed good liquid/fluid properties. All the coatings showed excellent adhesion but had different strength values. A real-time scratch resistance assessment showed all the coatings had good scratch resistance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=protective%20coatings" title="protective coatings">protective coatings</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-corrosion" title=" anti-corrosion"> anti-corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=galvanization" title=" galvanization"> galvanization</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=nanomaterials" title=" nanomaterials"> nanomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=polymers" title=" polymers"> polymers</a> </p> <a href="https://publications.waset.org/abstracts/161551/investigation-of-electrochemical-morphological-rheological-and-mechanical-properties-of-nano-layered-graphenezinc-nanoparticles-incorporated-cold-galvanizing-compound-at-reduced-pigment-volume-concentration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161551.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Morphology Analysis of Apple-Carrot Juice Treated by Manothermosonication (MTS) and High Temperature Short Time (HTST) Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ozan%20Kahraman">Ozan Kahraman</a>, <a href="https://publications.waset.org/abstracts/search?q=Hao%20Feng"> Hao Feng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Manothermosonication (MTS), which consists of the simultaneous application of heat and ultrasound under moderate pressure (100-700 kPa), is one of the technologies which destroy microorganisms and inactivates enzymes. Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through an ultra-thin specimen, interacting with the specimen as it passes through it. The environmental scanning electron microscope or ESEM is a scanning electron microscope (SEM) that allows for the option of collecting electron micrographs of specimens that are "wet," uncoated. These microscopy techniques allow us to observe the processing effects on the samples. This study was conducted to investigate the effects of MTS and HTST treatments on the morphology of apple-carrot juices by using TEM and ESEM microscopy. Apple-carrot juices treated with HTST (72 0C, 15 s), MTS 50 °C (60 s, 200 kPa), and MTS 60 °C (30 s, 200 kPa) were observed in both ESEM and TEM microscopy. For TEM analysis, a drop of the solution dispersed in fixative solution was put onto a Parafilm ® sheet. The copper coated side of the TEM sample holder grid was gently laid on top of the droplet and incubated for 15 min. A drop of a 7% uranyl acetate solution was added and held for 2 min. The grid was then removed from the droplet and allowed to dry at room temperature and presented into the TEM. For ESEM analysis, a critical point drying of the filters was performed using a critical point dryer (CPD) (Samdri PVT- 3D, Tousimis Research Corp., Rockville, MD, USA). After the CPD, each filter was mounted onto a stub and coated with gold/palladium with a sputter coater (Desk II TSC Denton Vacuum, Moorestown, NJ, USA). E.Coli O157:H7 cells on the filters were observed with an ESEM (Philips XL30 ESEM-FEG, FEI Co., Eindhoven, The Netherland). ESEM (Environmental Scanning Electron Microscopy) and TEM (Transmission Electron Microscopy) images showed extensive damage for the samples treated with MTS at 50 and 60 °C such as ruptured cells and breakage on cell membranes. The damage was increasing with increasing exposure time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MTS" title="MTS">MTS</a>, <a href="https://publications.waset.org/abstracts/search?q=HTST" title=" HTST"> HTST</a>, <a href="https://publications.waset.org/abstracts/search?q=ESEM" title=" ESEM"> ESEM</a>, <a href="https://publications.waset.org/abstracts/search?q=TEM" title=" TEM"> TEM</a>, <a href="https://publications.waset.org/abstracts/search?q=E.COLI%20O157%3AH7" title=" E.COLI O157:H7"> E.COLI O157:H7</a> </p> <a href="https://publications.waset.org/abstracts/57139/morphology-analysis-of-apple-carrot-juice-treated-by-manothermosonication-mts-and-high-temperature-short-time-htst-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57139.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Enzymatic Degradation of Poly (Butylene Adipate Terephthalate) Copolymer Using Lipase B From Candida Antarctica and Effect of Poly (Butylene Adipate Terephthalate) on Plant Growth</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aqsa%20Kanwal">Aqsa Kanwal</a>, <a href="https://publications.waset.org/abstracts/search?q=Min%20Zhang"> Min Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Faisal%20Sharaf"> Faisal Sharaf</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Chengtao"> Li Chengtao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The globe is facing increasing challenges of plastic pollution due to single-use of plastic-based packaging material. The plastic material is continuously being dumped into the natural environment, which causes serious harm to the entire ecosystem. Polymer degradation in nature is very difficult, so the use of biodegradable polymers instead of conventional polymers can mitigate this issue. Due to the good mechanical properties and biodegradability, aliphatic-aromatic polymers are being widely commercialized. Due to the advancement in molecular biology, many studies have reported specific microbes that can effectively degrade PBAT. Aliphatic polyesters undergo hydrolytic cleavage of ester groups, so they can be easily degraded by microorganisms. In this study, we investigated the enzymatic degradation of poly (butylene adipate terephthalate) (PBAT) copolymer using lipase B from Candida Antarctica (CALB). Results of the study displayed approximately 5.16 % loss in PBAT mass after 2 days which significantly increased to approximately 15.7 % at the end of the experiment (12 days) as compared to blank. The pH of the degradation solution also displayed significant reduction and reached the minimum value of 6.85 at the end of the experiment. The structure and morphology of PBAT after degradation were characterized by FTIR, XRD, SEM, and TGA. FTIR analysis showed that after degradation many peaks become weaker and the peak at 2950 cm-1 almost disappeared after 12 days. The XRD results indicated that as the degradation time increases the intensity of diffraction peaks slightly increases as compared to the blank PBAT. TGA analysis also confirmed the successful degradation of PBAT with time. SEM micrographs further confirmed that degradation has occurred. Hence, biodegradable polymers can widely be used. The effect of PBAT biodegradation on plant growth was also studied and it was found that PBAT has no toxic effect on the growth of plants. Hence PBAT can be employed in a wide range of applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aliphatic-aromatic%20co-polyesters" title="aliphatic-aromatic co-polyesters">aliphatic-aromatic co-polyesters</a>, <a href="https://publications.waset.org/abstracts/search?q=polybutylene%20adipate%20terephthalate" title=" polybutylene adipate terephthalate"> polybutylene adipate terephthalate</a>, <a href="https://publications.waset.org/abstracts/search?q=lipase%20%28CALB%29" title=" lipase (CALB)"> lipase (CALB)</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradation" title=" biodegradation"> biodegradation</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20growth" title=" plant growth"> plant growth</a> </p> <a href="https://publications.waset.org/abstracts/151114/enzymatic-degradation-of-poly-butylene-adipate-terephthalate-copolymer-using-lipase-b-from-candida-antarctica-and-effect-of-poly-butylene-adipate-terephthalate-on-plant-growth" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151114.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Effect of Varying Zener-Hollomon Parameter (Temperature and Flow Stress) and Stress Relaxation on Creep Response of Hot Deformed AA3104 Can Body Stock</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oyindamola%20Kayode">Oyindamola Kayode</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarah%20George"> Sarah George</a>, <a href="https://publications.waset.org/abstracts/search?q=Roberto%20Borrageiro"> Roberto Borrageiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Mike%20Shirran"> Mike Shirran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A phenomenon identified by our industrial partner has experienced sag on AA3104 can body stock (CBS) transfer bar during transportation of the slab from the breakdown mill to the finishing mill. Excessive sag results in bottom scuffing of the slab onto the roller table, resulting in surface defects on the final product. It has been found that increasing the strain rate on the breakdown mill final pass results in a slab resistant to sag. The creep response for materials hot deformed at different Zener–Holloman parameter values needs to be evaluated experimentally to gain better understanding of the operating mechanism. This study investigates this identified phenomenon through laboratory simulation of the breakdown mill conditions for various strain rates by utilizing the Gleeble at UCT Centre for Materials Engineering. The experiment will determine the creep response for a range of conditions as well as quantifying the associated material microstructure (sub-grain size, grain structure etc). The experimental matrices were determined based on experimental conditions approximate to industrial hot breakdown rolling and carried out on the Gleeble 3800 at the Centre for Materials Engineering, University of Cape Town. Plane strain compression samples were used for this series of tests at an applied load that allow for better contact and exaggerated creep displacement. A tantalum barrier layer was used for increased conductivity and decreased risk of anvil welding. One set of tests with no in-situ hold time was performed, where the samples were quenched after deformation. The samples were retained for microstructure analysis of the micrographs from the light microscopy (LM), quantitative data and images from scanning electron microscopy (SEM) and energy dispersive X-ray (EDX), sub-grain size and grain structure from electron back scattered diffraction (EBSD). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminium%20alloy" title="aluminium alloy">aluminium alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=can-body%20stock" title=" can-body stock"> can-body stock</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20rolling" title=" hot rolling"> hot rolling</a>, <a href="https://publications.waset.org/abstracts/search?q=creep%20response" title=" creep response"> creep response</a>, <a href="https://publications.waset.org/abstracts/search?q=Zener-Hollomon%20parameter" title=" Zener-Hollomon parameter"> Zener-Hollomon parameter</a> </p> <a href="https://publications.waset.org/abstracts/152728/effect-of-varying-zener-hollomon-parameter-temperature-and-flow-stress-and-stress-relaxation-on-creep-response-of-hot-deformed-aa3104-can-body-stock" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152728.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=TEM%20micrographs&amp;page=1" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=TEM%20micrographs&amp;page=1">1</a></li> <li class="page-item active"><span class="page-link">2</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=TEM%20micrographs&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=TEM%20micrographs&amp;page=3" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10