CINXE.COM

Search results for: treatment methods

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: treatment methods</title> <meta name="description" content="Search results for: treatment methods"> <meta name="keywords" content="treatment methods"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="treatment methods" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="treatment methods"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 21375</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: treatment methods</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21375</span> Review on Optimization of Drinking Water Treatment Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Farhaoui">M. Farhaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Derraz"> M. Derraz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the drinking water treatment processes, the optimization of the treatment is an issue of particular concern. In general, the process consists of many units as settling, coagulation, flocculation, sedimentation, filtration and disinfection. The optimization of the process consists of some measures to decrease the managing and monitoring expenses and improve the quality of the produced water. The objective of this study is to provide water treatment operators with methods and practices that enable to attain the most effective use of the facility and, in consequence, optimize the of the cubic meter price of the treated water. This paper proposes a review on optimization of drinking water treatment process by analyzing all of the water treatment units and gives some solutions in order to maximize the water treatment performances without compromising the water quality standards. Some solutions and methods are performed in the water treatment plant located in the middle of Morocco (Meknes). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coagulation%20process" title="coagulation process">coagulation process</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=turbidity%20removal" title=" turbidity removal"> turbidity removal</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20treatment" title=" water treatment"> water treatment</a> </p> <a href="https://publications.waset.org/abstracts/44937/review-on-optimization-of-drinking-water-treatment-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44937.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">423</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21374</span> Assessment of Treatment Methods to Remove Hazardous Dyes from Synthetic Wastewater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abhiram%20Siva%20Prasad%20Pamula">Abhiram Siva Prasad Pamula</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Access to clean drinking water becomes scarce due to the increase in extreme weather events because of the rise in the average global temperatures and climate change. By 2030, approximately 47% of the world’s population will face water shortages due to uncertainty in seasonal rainfall. Over 10000 varieties of synthetic dyes are commercially available in the market and used by textile and paper industries, negatively impacting human health when ingested. Besides humans, textile dyes have a negative impact on aquatic ecosystems by increasing biological oxygen demand and chemical oxygen demand. This study assesses different treatment methods that remove dyes from textile wastewater while focusing on energy, economic, and engineering aspects of the treatment processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=textile%20wastewater" title="textile wastewater">textile wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=dye%20removal" title=" dye removal"> dye removal</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment%20methods" title=" treatment methods"> treatment methods</a>, <a href="https://publications.waset.org/abstracts/search?q=hazardous%20pollutants" title=" hazardous pollutants"> hazardous pollutants</a> </p> <a href="https://publications.waset.org/abstracts/162825/assessment-of-treatment-methods-to-remove-hazardous-dyes-from-synthetic-wastewater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162825.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21373</span> The Effect of Simultaneous Application of Laser Beam and Magnet in Treatment of Intervertebral Disc Herniation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Moghtaderi">Alireza Moghtaderi</a>, <a href="https://publications.waset.org/abstracts/search?q=Negin%20Khakpour"> Negin Khakpour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Disc Herniation is a common complication in the society and it is one of the main reasons for referring to physical medicine and rehabilitation clinics. Despite of various methods proposed for treatingthis disease, still there is disagreement on success of these methods especially in non-surgical methods, and thus current study aims at determining effect of laser beam and magnet on treatment of Intervertebral Disc Herniation. During a clinical trial study, 80 patients with Intervertebral Disc Herniation underwent a combined package of treatment including magnet, laser beam, PRP and Prolotherapy during 6 months. Average age of patients was 51.25 ± 10.7 with range of 25 – 71 years. 30 men (37.5%) and 50 women (62.5%) took part in the study. average weight of patients was 64.3 ± 7.2 with range of 49 – 79 kg. highest level of Disc Herniation was L5 – S1 with frequency of 17 cases (21.3%). Disc Herniation was severe in 30 cases before treatment, but it reduced to 3 casesafter treatment. This study indicates effect of combined treatment using non-invasive laser beam and magnet therapy on disco genic diseases and mechanical pains of spine is highly effective. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hallux" title="hallux">hallux</a>, <a href="https://publications.waset.org/abstracts/search?q=valgus" title=" valgus"> valgus</a>, <a href="https://publications.waset.org/abstracts/search?q=botulinum%20toxin%20a" title=" botulinum toxin a"> botulinum toxin a</a>, <a href="https://publications.waset.org/abstracts/search?q=pain" title=" pain"> pain</a> </p> <a href="https://publications.waset.org/abstracts/149944/the-effect-of-simultaneous-application-of-laser-beam-and-magnet-in-treatment-of-intervertebral-disc-herniation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149944.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21372</span> Advances in Natural Fiber Surface Treatment Methodologies for Upgradation in Properties of Their Reinforced Composites </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20L.%20Devnani">G. L. Devnani</a>, <a href="https://publications.waset.org/abstracts/search?q=Shishir%20Sinha"> Shishir Sinha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural fiber reinforced polymer composite is a very attractive area among the scientific community because of their low cost, eco-friendly and sustainable in nature. Among all advantages there are few issues which need to be addressed, those issues are the poor adhesion and compatibility between two opposite nature materials that is fiber and matrix and their relatively high water absorption. Therefore, natural fiber modifications are necessary to improve their adhesion with different matrices. Excellent properties could be achieved with the surface treatment of these natural fibers ultimately leads to property up-gradation of their reinforced composites with different polymer matrices. Lot of work is going on to improve the adhesion between reinforced fiber phase and polymer matrix phase to improve the properties of composites. Researchers have suggested various methods for natural fiber treatment like silane treatment, treatment with alkali, acetylation, acrylation, maleate coupling, etc. In this study a review is done on the different methods used for the surface treatment of natural fibers and what are the advance treatment methodologies for natural fiber surface treatment for property improvement of natural fiber reinforced polymer composites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composites" title="composites">composites</a>, <a href="https://publications.waset.org/abstracts/search?q=acetylation" title=" acetylation"> acetylation</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20fiber" title=" natural fiber"> natural fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20treatment" title=" surface treatment "> surface treatment </a> </p> <a href="https://publications.waset.org/abstracts/79476/advances-in-natural-fiber-surface-treatment-methodologies-for-upgradation-in-properties-of-their-reinforced-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79476.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21371</span> Pre-Malignant Breast Lesions, Methods of Treatment and Outcome</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Mostafa">Ahmed Mostafa</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Mahmoud"> Mohamed Mahmoud</a>, <a href="https://publications.waset.org/abstracts/search?q=Nesreen%20H.%20Hafez"> Nesreen H. Hafez</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Fahim"> Mohamed Fahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This retrospective study includes 60 patients with pre-invasive breast cancer. Aim of the study: Evaluation of premalignant lesions of the breast (DCIS), different treatment methods and outcome. Patients and methods: 60 patients with DCIS were studied from the period between 2005 to 2012, for 38 patients the primary surgical method was wide local resection (WLE) (63.3%) and the other cases (22 patients, 36.7%) had mastectomy, fourteen cases from those who underwent local excision received radiotherapy, while no adjuvant radiotherapy was given for those who underwent mastectomy. In case of hormonal receptor positive DCIS lesions hormonal treatment (Tamoxifen) was given after local control. Results: No difference in overall survival between mastectomy &amp; breast conserving therapy (wide local excision and adjuvant radiotherapy), however local recurrence rate is higher in case of breast conserving therapy, also no role of Axillary evacuation in case of DCIS. The use of hormonal therapy decreases the incidence of local recurrence by about 98%. Conclusion: The main management of DCIS is local treatment (wide local excision and radiotherapy) with hormonal treatment in case of hormone receptor positive lesions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ductal%20carcinoma%20in%20situ" title="ductal carcinoma in situ">ductal carcinoma in situ</a>, <a href="https://publications.waset.org/abstracts/search?q=surgical%20treatment" title=" surgical treatment"> surgical treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=radiotherapy" title=" radiotherapy"> radiotherapy</a>, <a href="https://publications.waset.org/abstracts/search?q=breast%20conserving%20therapy" title=" breast conserving therapy"> breast conserving therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=hormonal%20treatment" title=" hormonal treatment"> hormonal treatment</a> </p> <a href="https://publications.waset.org/abstracts/47658/pre-malignant-breast-lesions-methods-of-treatment-and-outcome" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47658.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21370</span> Comparative Pre-treatment Analysis of RNA-Extraction Methods and Efficient Detection of SARS-COV-2 and PMMoV in Influents and 1ˢᵗ Sedimentation from a Wastewater Treatment Plan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jesmin%20Akter">Jesmin Akter</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang%20Hyuk%20Ahn"> Chang Hyuk Ahn</a>, <a href="https://publications.waset.org/abstracts/search?q=Ilho%20Kim"> Ilho Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Fumitake%20Nishimura">Fumitake Nishimura</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaiyeop%20Lee"> Jaiyeop Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aimed to compare two pre-treatment and two RNA extraction methods, namely PEG, and Nano bubble, Viral RNA Soil, and Mini Kit, in terms of their efficiency in detecting SARS-CoV-2 and PMMoV in influent and 1st sedimentation samples from a wastewater treatment plant. The extracted RNA samples were quantified and evaluated for purity, yield, and integrity. The results indicated that the nanobubble PEG method provided the highest yield of RNA, while the QIAamp Viral RNA Mini Kit produced the purest RNA samples. In terms of sensitivity and specificity, all these methods were able to detect SARS-CoV-2 and PMMoV in both influent and 1st sedimentation samples. However, the nanobubble PEG method showed slightly higher sensitivity compared to the other methods. These findings suggest that the choice of RNA extraction method should depend on the downstream application and the quality of the RNA required. The study also highlights the potential of wastewater-based epidemiology as an effective and non-invasive method for monitoring the spread of infectious diseases in a community. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=influent" title="influent">influent</a>, <a href="https://publications.waset.org/abstracts/search?q=PMMoV" title=" PMMoV"> PMMoV</a>, <a href="https://publications.waset.org/abstracts/search?q=SARS-CoV-2" title=" SARS-CoV-2"> SARS-CoV-2</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20based%20epidemiology" title=" wastewater based epidemiology"> wastewater based epidemiology</a> </p> <a href="https://publications.waset.org/abstracts/167036/comparative-pre-treatment-analysis-of-rna-extraction-methods-and-efficient-detection-of-sars-cov-2-and-pmmov-in-influents-and-1-sedimentation-from-a-wastewater-treatment-plan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167036.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21369</span> Influence of Post Weld Heat Treatment on Mechanical and Metallurgical Properties of TIG Welded Aluminium Alloy Joints</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gurmeet%20Singh%20Cheema">Gurmeet Singh Cheema</a>, <a href="https://publications.waset.org/abstracts/search?q=Navjotinder%20Singh"> Navjotinder Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Gurjinder%20Singh"> Gurjinder Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Amardeep%20Singh"> Amardeep Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aluminium and its alloys play have excellent corrosion resistant properties, ease of fabrication and high specific strength to weight ratio. In this investigation an attempt has been made to study the effect of different post weld heat treatment methods on the mechanical and metallurgical properties of TIG welded joints of the commercial aluminium alloy. Three different methods of post weld heat treatments are, solution heat treatment, artificial aged and combination of solution heat treatment and artificial aging are given to TIG welded aluminium joints. Mechanical and metallurgical properties of as welded and post weld treated joints of the aluminium alloys was examined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminium%20alloys" title="aluminium alloys">aluminium alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=TIG%20welding" title=" TIG welding"> TIG welding</a>, <a href="https://publications.waset.org/abstracts/search?q=post%20weld%20heat%20treatment" title=" post weld heat treatment"> post weld heat treatment</a> </p> <a href="https://publications.waset.org/abstracts/14625/influence-of-post-weld-heat-treatment-on-mechanical-and-metallurgical-properties-of-tig-welded-aluminium-alloy-joints" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14625.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">575</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21368</span> Industrial Wastewater Sludge Treatment in Chongqing, China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Victor%20Emery%20David%20Jr.">Victor Emery David Jr.</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiang%20Wenchao"> Jiang Wenchao</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasinta%20John"> Yasinta John</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Sahadat%20Hossain"> Md. Sahadat Hossain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sludge originates from the process of treatment of wastewater. It is the byproduct of wastewater treatment containing concentrated heavy metals and poorly biodegradable trace organic compounds, as well as potentially pathogenic organisms (viruses, bacteria, etc.) which are usually difficult to treat or dispose of. China, like other countries, is no stranger to the challenges posed by an increase of wastewater. Treatment and disposal of sludge have been a problem for most cities in China. However, this problem has been exacerbated by other issues such as lack of technology, funding, and other factors. Suitable methods for such climatic conditions are still unavailable for modern cities in China. Against this background, this paper seeks to describe the methods used for treatment and disposal of sludge from industries and suggest a suitable method for treatment and disposal in Chongqing/China. From the research conducted, it was discovered that the highest treatment rate of sludge in Chongqing was 10.08%. The industrial waste piping system is not separated from the domestic system. Considering the proliferation of industry and urbanization, there is a likelihood that the production of sludge in Chongqing will increase. If the sludge produced is not properly managed, this may lead to adverse health and environmental effects. Disposal costs and methods for Chongqing were also included in this paper’s analysis. Research showed that incineration is the most expensive method of sludge disposal in China/Chongqing. Subsequent research, therefore, considered optional alternatives such as composting. Composting represents a relatively cheap waste disposal method considering the vast population, current technology and economic conditions of Chongqing, as well as China at large. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chongqing%2FChina" title="Chongqing/China">Chongqing/China</a>, <a href="https://publications.waset.org/abstracts/search?q=disposal" title=" disposal"> disposal</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial" title=" industrial"> industrial</a>, <a href="https://publications.waset.org/abstracts/search?q=sludge" title=" sludge"> sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment" title=" treatment"> treatment</a> </p> <a href="https://publications.waset.org/abstracts/46704/industrial-wastewater-sludge-treatment-in-chongqing-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46704.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21367</span> Wastes of Oil Drilling: Treatment Techniques and Their Effectiveness</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abbas%20Hadj%20Abbas">Abbas Hadj Abbas</a>, <a href="https://publications.waset.org/abstracts/search?q=Hacini%20%20Massaoud"> Hacini Massaoud</a>, <a href="https://publications.waset.org/abstracts/search?q=Aiad%20Lahcen"> Aiad Lahcen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Hassi-Messoud’s oil industry, the systems which are water based (WBM) are generally used for drilling in the first phase. For the rest of the well, the oil mud systems are employed (OBM). In the field of oil exploration, panoply of chemical products is employed in the drilling fluids formulation. These components of different natures and whose toxicity and biodegradability are of ill-defined parameters are; however, thrown into nature. In addition to the hydrocarbon (HC, such as diesel) which is a major constituent of oil based mud, we also can notice spills as well as a variety of other products and additives on the drilling sites. These wastes are usually stored in places called (crud wastes). These may cause major problems to the ecosystem. To treat these wastes, we have considered two methods which are: solidification/ stabilization (chemical) and thermal. So that we can evaluate the techniques of treatment, a series of analyses are performed on dozens of specimens of wastes before treatment. After that, and on the basis of our analyses of wastes, we opted for diagnostic treatments of pollution before and after solidification and stabilization. Finally, we have done some analyses before and after the thermal treatment to check the efficiency of the methods followed in the study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wastes%20treatment" title="wastes treatment">wastes treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20oil%20pollution" title=" the oil pollution"> the oil pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20norms" title=" the norms"> the norms</a>, <a href="https://publications.waset.org/abstracts/search?q=wastes%20drilling" title=" wastes drilling"> wastes drilling</a> </p> <a href="https://publications.waset.org/abstracts/52890/wastes-of-oil-drilling-treatment-techniques-and-their-effectiveness" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52890.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21366</span> Utilization of Torula Yeast (Zymomonas mobilis) as Main/Reciprocal for Degradation of Municipal Organic Waste as Feed for Goats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nkutere%20Chikezie%20Kanu">Nkutere Chikezie Kanu</a>, <a href="https://publications.waset.org/abstracts/search?q=Nnamdi%20M.%20Anigbogu"> Nnamdi M. Anigbogu</a>, <a href="https://publications.waset.org/abstracts/search?q=Johnson%20C.%20Ezike"> Johnson C. Ezike</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study was carried out to investigate the performance of Red Sokoto goats fed Municipal Oranic Wastes (MOW) subjected to two methods of in vivo degradation by Torula Yeast and Zymomonas mobilis. Two combination, Torula Yeast + Zymomonas mobilis (main degradation), and Zymomonas mobilis + Torula Yeast (Reciprocal degradation) were used to degrade MOW. Eighteen Red Sokoto goats of both sexes (9 males and 9 females) of ages between 6-8 were used for the study. The goats were randomly assigned into 3 treatments groups A, B and C respectively with 6 goats per treatment. The experiment was laid in a Completely Randomized Design and replicated 3 times. Treatment A groups were fed 30% Undegraded MOW base diet +concentrate mixture, Treatment B groups were fed 30% Main degraded MOW base diet +concentrate mixture, Treatment C groups were fed 30% Reciprocal degraded MOW base diet +concentrate mixture. The result of the daily weight gain was significantly (P<0.05) better than on the other Treatments. There was significant improvement (P<0.05) on the daily feed consumption in Treatment B than on the Treatments A and C. The feed conversion ratio revealed no significant (P>0.05) differences among the treatment groups but much better in the treatment B and C, the cost of feed consumed was much higher (P>0.05) in Treatment B followed by Treatment C, while Treatment A had the lowest. The cost/ kg weight gain that was recorded in Treatment A was better (P<0.05) than the Treatment B, followed by Treatment C, while the cost of production was high (P<0.05) in Treatment B than in other treatments. The gross profit was observed best (P<0.05) on the Treatment B, followed by Treatment C while Treatment A had the lowest. The net profit as noted in this study was much better (P<0.05) in Treatment B, and Treatment C, while the least was observed in Treatment A, where the return on investment was high in Treatments B and C, while Treatment A had the lowest. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reciprocal" title="reciprocal">reciprocal</a>, <a href="https://publications.waset.org/abstracts/search?q=torula%20yeast" title=" torula yeast"> torula yeast</a>, <a href="https://publications.waset.org/abstracts/search?q=Zymomonas%20mobilis" title=" Zymomonas mobilis"> Zymomonas mobilis</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20waste" title=" organic waste"> organic waste</a> </p> <a href="https://publications.waset.org/abstracts/56758/utilization-of-torula-yeast-zymomonas-mobilis-as-mainreciprocal-for-degradation-of-municipal-organic-waste-as-feed-for-goats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56758.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21365</span> Effect of Rubber Treatment on Compressive Strength and Modulus of Elasticity of Self-Compacting Rubberized Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Mili%C4%8Devi%C4%87">I. Miličević</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hadzima%20Nyarko"> M. Hadzima Nyarko</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Bu%C5%A1i%C4%87"> R. Bušić</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Simonovi%C4%87%20Radosavljevi%C4%87"> J. Simonović Radosavljević</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Prokopijevi%C4%87"> M. Prokopijević</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Vojisavljevi%C4%87"> K. Vojisavljević</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the effects of different treatment methods of rubber aggregates for self-compacting concrete (SCC) on compressive strength and modulus of elasticity. SCC mixtures with 10% replacement of fine aggregate with crumb rubber by total aggregate volume and with different aggregate treatment methods were investigated. The rubber aggregate was treated in three different methods: dry process, water-soaking, and NaOH treatment plus water soaking. Properties of SCC in a fresh and hardened state were tested and evaluated. Scanning electron microscope (SEM) analysis of three different SCC patches were made and discussed. It was observed that applying the proposed NaOH plus water soaking method resulted in the improvement of fresh and hardened concrete properties. It resulted in a more uniform distribution of rubber particles in the cement matrix, a better bond between rubber particles and the cement matrix, and higher compressive strength of SCC rubberized concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title="compressive strength">compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=modulus%20of%20elasticity" title=" modulus of elasticity"> modulus of elasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=NaOH%20treatment" title=" NaOH treatment"> NaOH treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=rubber%20aggregate" title=" rubber aggregate"> rubber aggregate</a>, <a href="https://publications.waset.org/abstracts/search?q=self-compacting%20rubberized%20concrete" title=" self-compacting rubberized concrete"> self-compacting rubberized concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscope%20analysis" title=" scanning electron microscope analysis"> scanning electron microscope analysis</a> </p> <a href="https://publications.waset.org/abstracts/128606/effect-of-rubber-treatment-on-compressive-strength-and-modulus-of-elasticity-of-self-compacting-rubberized-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128606.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21364</span> Removal of Hexavalent Chromium from Aqueous Solutions by Biosorption Using Macadamia Nutshells: Effect of Different Treatment Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vusumzi%20E.%20Pakade">Vusumzi E. Pakade</a>, <a href="https://publications.waset.org/abstracts/search?q=Themba%20D.%20Ntuli"> Themba D. Ntuli</a>, <a href="https://publications.waset.org/abstracts/search?q=Augustine%20E.%20Ofomaja"> Augustine E. Ofomaja</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Macadamia nutshell biosorbents treated in three different methods (raw Macadamia nutshell powder (RMN), acid-treated Macadamia nutshell (ATMN) and base-treated Macadamia nutshell (BTMN)) were investigated for the adsorption of Cr(VI) from aqueous solutions. Fourier transform infrared spectroscopy (FT-IR) spectra of free and Cr(VI)-loaded sorbents as well as thermogravimetric analysis (TGA) revealed that the acid and base treatments modified the surface properties of the sorbents. The optimum conditions for the adsorption of Cr(VI) by sorbents were pH 2, contact time 10 h, adsorbent dosage 0.2 g L-1, and concentration 100 mg L-1. The different treatment methods altered the surface characteristics of the sorbents and produced different maximum binding capacities of 42.5, 40.6 and 37.5 mg g-1 for RMN, ATMN and BTMN, respectively. The data was fitted into the Langmuir, Freundlich, Redlich-Peterson and Sips isotherms. No single model could clearly explain the data perhaps due to the complexity of process taking place. The kinetic modeling results showed that the process of Cr(VI) biosorption with Macadamia sorbents was better described by a process of chemical sorption in pseudo-second order. These results showed that the three treatment methods yielded different surface properties which then influenced adsorption of Cr(VI) differently. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosorption" title="biosorption">biosorption</a>, <a href="https://publications.waset.org/abstracts/search?q=chromium%28VI%29" title=" chromium(VI)"> chromium(VI)</a>, <a href="https://publications.waset.org/abstracts/search?q=isotherms" title=" isotherms"> isotherms</a>, <a href="https://publications.waset.org/abstracts/search?q=Macadamia" title=" Macadamia"> Macadamia</a>, <a href="https://publications.waset.org/abstracts/search?q=reduction" title=" reduction"> reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment" title=" treatment"> treatment</a> </p> <a href="https://publications.waset.org/abstracts/36927/removal-of-hexavalent-chromium-from-aqueous-solutions-by-biosorption-using-macadamia-nutshells-effect-of-different-treatment-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36927.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21363</span> An Efficient Propensity Score Method for Causal Analysis With Application to Case-Control Study in Breast Cancer Research</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ms%20Azam%20Najafkouchak">Ms Azam Najafkouchak</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Todem"> David Todem</a>, <a href="https://publications.waset.org/abstracts/search?q=Dorothy%20Pathak"> Dorothy Pathak</a>, <a href="https://publications.waset.org/abstracts/search?q=Pramod%20Pathak"> Pramod Pathak</a>, <a href="https://publications.waset.org/abstracts/search?q=Joseph%20Gardiner"> Joseph Gardiner</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Propensity score (PS) methods have recently become the standard analysis as a tool for the causal inference in the observational studies where exposure is not randomly assigned, thus, confounding can impact the estimation of treatment effect on the outcome. For the binary outcome, the effect of treatment on the outcome can be estimated by odds ratios, relative risks, and risk differences. However, using the different PS methods may give you a different estimation of the treatment effect on the outcome. Several methods of PS analyses have been used mainly, include matching, inverse probability of weighting, stratification, and covariate adjusted on PS. Due to the dangers of discretizing continuous variables (exposure, covariates), the focus of this paper will be on how the variation in cut-points or boundaries will affect the average treatment effect (ATE) utilizing the stratification of PS method. Therefore, we are trying to avoid choosing arbitrary cut-points, instead, we continuously discretize the PS and accumulate information across all cut-points for inferences. We will use Monte Carlo simulation to evaluate ATE, focusing on two PS methods, stratification and covariate adjusted on PS. We will then show how this can be observed based on the analyses of the data from a case-control study of breast cancer, the Polish Women’s Health Study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=average%20treatment%20effect" title="average treatment effect">average treatment effect</a>, <a href="https://publications.waset.org/abstracts/search?q=propensity%20score" title=" propensity score"> propensity score</a>, <a href="https://publications.waset.org/abstracts/search?q=stratification" title=" stratification"> stratification</a>, <a href="https://publications.waset.org/abstracts/search?q=covariate%20adjusted" title=" covariate adjusted"> covariate adjusted</a>, <a href="https://publications.waset.org/abstracts/search?q=monte%20Calro%20estimation" title=" monte Calro estimation"> monte Calro estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title=" breast cancer"> breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=case_control%20study" title=" case_control study"> case_control study</a> </p> <a href="https://publications.waset.org/abstracts/152765/an-efficient-propensity-score-method-for-causal-analysis-with-application-to-case-control-study-in-breast-cancer-research" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152765.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21362</span> Enhancing the Rollability of Cu-Ge-Ni Alloy through Heat Treatment Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Morteza%20Hadi">Morteza Hadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research investigates the potential enhancement of the rollability of Cu-Ge-Ni alloy through the mitigation of microstructural and compositional inhomogeneities via two distinct heat treatment methods: homogenization and solution treatment. To achieve this objective, the alloy with the desired composition was fabricated using a vacuum arc remelting furnace (VAR), followed by sample preparation for microstructural, compositional, and heat treatment analyses at varying temperatures and durations. Characterization was conducted employing optical and scanning electron microscopy (SEM), X-ray diffraction (XRD), and Vickers hardness testing. The results obtained indicate that a minimum duration of 10 hours is necessary for adequate homogenization of the alloy at 750°C. This heat treatment effectively removes coarse dendrites from the casting microstructure and significantly reduces elemental separations. However, despite these improvements, the presence of a second phase with markedly different hardness from the matrix results in poor rolling ability for the alloy. The optimal time for solution treatment at various temperatures was determined, with the most effective cycle identified as 750°C for 2 hours, followed by rapid quenching in water. This process induces the formation of a single-phase microstructure and complete elimination of the second  phase, as confirmed by X-ray diffraction analysis. Results demonstrate a reduction in hardness by 30 Vickers, and the elimination of microstructural unevenness enables successful thickness reduction by up to 50% through rolling without encountering cracking. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cu-Ge-Ni%20alloy" title="Cu-Ge-Ni alloy">Cu-Ge-Ni alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=homogenization.%20solution%20treatment" title=" homogenization. solution treatment"> homogenization. solution treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=rollability" title=" rollability"> rollability</a> </p> <a href="https://publications.waset.org/abstracts/184647/enhancing-the-rollability-of-cu-ge-ni-alloy-through-heat-treatment-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184647.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">52</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21361</span> Treatment of Leather Industry Wastewater with Advance Treatment Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seval%20Yilmaz">Seval Yilmaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Filiz%20Bayrakci%20Karel"> Filiz Bayrakci Karel</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Savas%20Koparal"> Ali Savas Koparal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Textile products produced by leather have been indispensable for human consumption. Various chemicals are used to enhance the durability of end-products in the processing of leather products. The wastewaters from the leather industry which contain these chemicals exhibit toxic effects on the receiving environment and threaten the natural ecosystem. In this study, leather industry wastewater (LIW), which has high loads of contaminants, was treated using advanced treatment techniques instead of conventional methods. During the experiments, the performance of electrochemical methods was investigated. During the electrochemical experiments, the performance of batch electrooxidation (EO) using boron-doped diamond (BDD) electrodes with monopolar configuration for removal of chemical oxygen demand (COD) from LIW were investigated. The influences of electrolysis time, current density (which varies as 5 mA/cm², 10 mA/cm², 20 mA/cm², 30 mA/cm², 50 mA/cm²) and initial pH (which varies as 3,80 (natural pH of LIW), 7, 9) on removal efficiency were investigated in a batch stirred cell to determine the best treatment conditions. The current density applied to the electrochemical reactors is directly proportional to the consumption of electric energy, so electrical energy consumption was monitored during the experiment. The best experimental conditions obtained in electrochemical studies were as follows: electrolysis time = 60 min, current density = 30.0 mA/cm², pH 7. Using these parameters, 53.59% COD removal rates for LIW was achieved and total energy consumption was obtained as 13.03 kWh/m³. It is concluded that electrooxidation process constitutes a plausible and developable method for the treatment of LIW. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BDD%20electrodes" title="BDD electrodes">BDD electrodes</a>, <a href="https://publications.waset.org/abstracts/search?q=COD%20removal" title=" COD removal"> COD removal</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20treatment" title=" electrochemical treatment"> electrochemical treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=leather%20industry%20wastewater" title=" leather industry wastewater"> leather industry wastewater</a> </p> <a href="https://publications.waset.org/abstracts/96331/treatment-of-leather-industry-wastewater-with-advance-treatment-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96331.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21360</span> The Effectiveness of Pretreatment Methods on COD and Ammonia Removal from Landfill Leachate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Poveda">M. Poveda</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Lozecznik"> S. Lozecznik</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Oleszkiewicz"> J. Oleszkiewicz</a>, <a href="https://publications.waset.org/abstracts/search?q=Q.%20Yuan"> Q. Yuan </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The goal of this experiment is to evaluate the effectiveness of different leachate pre-treatment options in terms of COD and ammonia removal. This research focused on the evaluation of physical-chemical methods for pre-treatment of leachate that would be effective and rapid in order to satisfy the requirements of the sewer discharge by-laws. The four pre-treatment options evaluated were: air stripping, chemical coagulation, electro-coagulation and advanced oxidation with sodium ferrate. Chemical coagulation reported the best COD removal rate at 43%, compared to 18 % for both air stripping and electro-coagulation, and 20 % for oxidation with sodium ferrate. On the other hand, air stripping was far superior to the other treatment options in terms of ammonia removal with 86 %. Oxidation with sodium ferrate reached only 16 %, while chemical coagulation and electro-coagulation removed less than 10 %. When combined, air stripping and chemical coagulation removed up to 50 % COD and 85 % ammonia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=leachate%20pretreatment" title="leachate pretreatment">leachate pretreatment</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20stripping" title=" air stripping"> air stripping</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20coagulation" title=" chemical coagulation"> chemical coagulation</a>, <a href="https://publications.waset.org/abstracts/search?q=electro-coagulation" title=" electro-coagulation"> electro-coagulation</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation" title=" oxidation"> oxidation</a> </p> <a href="https://publications.waset.org/abstracts/28457/the-effectiveness-of-pretreatment-methods-on-cod-and-ammonia-removal-from-landfill-leachate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28457.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">843</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21359</span> The Gold Standard Treatment Plan for Vitiligo: A Review on Conventional and Updated Treatment Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kritin%20K.%20Verma">Kritin K. Verma</a>, <a href="https://publications.waset.org/abstracts/search?q=Brian%20L.%20Ransdell"> Brian L. Ransdell</a> </p> <p class="card-text"><strong>Abstract:</strong></p> White patches are a symptom of vitiligo, a chronic autoimmune dermatological condition that causes a loss of pigmentation in the skin. Vitiligo can cause issues of self-esteem and quality of life while also progressing the development of other autoimmune diseases. Current treatments in allopathy and homeopathy exist; some treatments have been found to be toxic, whereas others have been helpful. Allopathy has seemed to offer several treatment plans, such as phototherapy, skin lightening preparations, immunosuppressive drugs, combined modality therapy, and steroid medications to improve vitiligo. This presentation will review the FDA-approved topical cream, Opzelura, a JAK inhibitor, and its effects on limiting vitiligo progression. Meanwhile, other non-conventional methods, such as Arsenic Sulphuratum Flavum used in homeopathy, will be debunked based on current literature. Most treatments still serve to arrest progression and induce skin repigmentation. Treatment plans may differ between patients due to depigmentation location on the skin. Since there is no gold standard plan for treating patients with vitiligo, the oral presentation will review all topical and systemic pharmacological therapies that fight the depigmentation of the skin and categorize their validity from a systematic review of the literature. Since treatment plans are limited in nature, all treatment methods will be mentioned and an attempt will be made to make a golden standard treatment process for these patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vitiligo" title="vitiligo">vitiligo</a>, <a href="https://publications.waset.org/abstracts/search?q=phototherapy" title=" phototherapy"> phototherapy</a>, <a href="https://publications.waset.org/abstracts/search?q=immunosuppressive%20drugs" title=" immunosuppressive drugs"> immunosuppressive drugs</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20lightening%20preparations" title=" skin lightening preparations"> skin lightening preparations</a>, <a href="https://publications.waset.org/abstracts/search?q=combined%20modality%20therapy" title=" combined modality therapy"> combined modality therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=arsenic%20sulphuratum%20flavum" title=" arsenic sulphuratum flavum"> arsenic sulphuratum flavum</a>, <a href="https://publications.waset.org/abstracts/search?q=homeopathy" title=" homeopathy"> homeopathy</a>, <a href="https://publications.waset.org/abstracts/search?q=allopathy" title=" allopathy"> allopathy</a>, <a href="https://publications.waset.org/abstracts/search?q=golden%20standard" title=" golden standard"> golden standard</a>, <a href="https://publications.waset.org/abstracts/search?q=Opzelura" title=" Opzelura"> Opzelura</a> </p> <a href="https://publications.waset.org/abstracts/156036/the-gold-standard-treatment-plan-for-vitiligo-a-review-on-conventional-and-updated-treatment-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156036.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21358</span> A Combinatorial Approach of Treatment for Landfill Leachate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anusha%20Atmakuri">Anusha Atmakuri</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20D.%20Tyagi"> R. D. Tyagi</a>, <a href="https://publications.waset.org/abstracts/search?q=Patrick%20Drogui"> Patrick Drogui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Landfilling is the most familiar and easy way to dispose solid waste. Landfill is generally received via wastes from municipal near to a landfill. The waste collected is from commercial, industrial, and residential areas and many more. Landfill leachate (LFL) is formed when rainwater passes through the waste placed in landfills and consists of several dissolved organic materials, for instance, aquatic humic substances (AHS), volatile fatty acids (VFAs), heavy metals, inorganic macro components, and xenobiotic organic matters, highly toxic to the environment. These components of LFL put a load on it, hence it necessitates the treatment of LFL prior to its discharge into the environment. Various methods have been used to treat LFL over the years, such as physical, chemical, biological, physicochemical, electrical, and advanced oxidation methods. This study focuses on the combination of biological and electrochemical methods- extracellular polymeric substances and electrocoagulation(EC). The coupling of electro-coagulation process with extracellular polymeric substances (EPS) (as flocculant) as pre and\or post treatment strategy provides efficient and economical process for the decontamination of landfill leachate contaminated with suspended matter, metals (e.g., Fe, Mn) and ammonical nitrogen. Electro-coagulation and EPS mediated coagulation approach could be an economically viable for the treatment of landfill leachate, along with possessing several other advantages over several other methods. This study utilised waste substrates such as activated sludge, crude glycerol and waste cooking oil for the production of EPS using fermentation technology. A comparison of different scenarios for the treatment of landfill leachate is presented- such as using EPS alone as bioflocculant, EPS and EC with EPS being the 1st stage, and EPS and EC with EC being the 1st stage. The work establishes the use of crude EPS as a bioflocculant for the treatment of landfill leachate and wastewater from a site near a landfill, along with EC being successful in removal of some major pollutants such as COD, turbidity, total suspended solids. A combination of these two methods is to be explored more for the complete removal of all pollutants from landfill leachate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=landfill%20leachate" title="landfill leachate">landfill leachate</a>, <a href="https://publications.waset.org/abstracts/search?q=extracellular%20polymeric%20substances" title=" extracellular polymeric substances"> extracellular polymeric substances</a>, <a href="https://publications.waset.org/abstracts/search?q=electrocoagulation" title=" electrocoagulation"> electrocoagulation</a>, <a href="https://publications.waset.org/abstracts/search?q=bioflocculant." title=" bioflocculant."> bioflocculant.</a> </p> <a href="https://publications.waset.org/abstracts/166716/a-combinatorial-approach-of-treatment-for-landfill-leachate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21357</span> Treatment of Cyanide Effluents with Platinum Impregned on Mg-Al Layered Hydroxides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mar%C3%ADa%20R.%20Contreras">María R. Contreras</a>, <a href="https://publications.waset.org/abstracts/search?q=Diana%20Endara"> Diana Endara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cyanide leaching is the most used technology for gold mining industry, which produces large amounts of effluents requiring treatment. In Ecuador the development of gold mining industry has increased, causing significant environmental impacts due to the highly use of cyanide, it is estimated that 10 gr of extracted gold generates 7000 liters of water contaminated with 300mg/L of free cyanide. The most common methods used nowadays are the treatment with peroxodisulfuric acid, ozonation, H₂O₂ and other reactants which are expensive and present disadvantages. Several methods have been developed to treat this contaminant such as heterogeneous catalysts. Layered double hydroxides (LDHs) have received much attention due to their wide applications like a catalysis support. Therefore, in this study, Mg-Al/ LDH was synthetized by coprecipitation method and then platinum was impregned on it, in order to enhance its catalytic activity. Two methods of impregnation were used, the first one, called incipient wet impregnation and the second one was developed by continuous agitation of LDH in contact with chloroplatinic acid solution for 24 h. The support impregnated was analyzed by X-ray diffraction, FTIR and SEM. Finally, the oxidation of cyanide ion was performed by preparing synthetic solutions of sodium cyanide (NaCN) with an initial concentration of 500 mg/L at pH 10,5 and air flow of 180 NL/h. After 8 hours of treatment, an 80% of oxidation of ion cyanide was achieved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catalysis" title="catalysis">catalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=cyanide" title=" cyanide"> cyanide</a>, <a href="https://publications.waset.org/abstracts/search?q=LDHs" title=" LDHs"> LDHs</a>, <a href="https://publications.waset.org/abstracts/search?q=mining" title=" mining"> mining</a> </p> <a href="https://publications.waset.org/abstracts/100903/treatment-of-cyanide-effluents-with-platinum-impregned-on-mg-al-layered-hydroxides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100903.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21356</span> Stability Analysis of SEIR Epidemic Model with Treatment Function</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sasiporn%20Rattanasupha">Sasiporn Rattanasupha</a>, <a href="https://publications.waset.org/abstracts/search?q=Settapat%20Chinviriyasit"> Settapat Chinviriyasit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The treatment function adopts a continuous and differentiable function which can describe the effect of delayed treatment when the number of infected individuals increases and the medical condition is limited. In this paper, the SEIR epidemic model with treatment function is studied to investigate the dynamics of the model due to the effect of treatment. It is assumed that the treatment rate is proportional to the number of infective patients. The stability of the model is analyzed. The model is simulated to illustrate the analytical results and to investigate the effects of treatment on the spread of infection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=basic%20reproduction%20number" title="basic reproduction number">basic reproduction number</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20stability" title=" local stability"> local stability</a>, <a href="https://publications.waset.org/abstracts/search?q=SEIR%20epidemic%20model" title=" SEIR epidemic model"> SEIR epidemic model</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment%20function" title=" treatment function "> treatment function </a> </p> <a href="https://publications.waset.org/abstracts/23797/stability-analysis-of-seir-epidemic-model-with-treatment-function" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23797.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">521</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21355</span> Evaluating the Potential of Microwave Treatment as a Rock Pre-Conditioning Method in Achieving a More Sustainable Mining</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adel%20Ahmadi%20Hosseini">Adel Ahmadi Hosseini</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatemeh%20Tavanaei"> Fatemeh Tavanaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Alessandro%20Navarra"> Alessandro Navarra</a>, <a href="https://publications.waset.org/abstracts/search?q=Ferri%20Hassani"> Ferri Hassani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mining engineering, as a part of geoscience, must address modern concerns. Traditional mining methods incorporate drill and blast technologies, which are followed by different issues, including excessive noise, vibration, air pollution, and safety hazards. Over the past two decades, mining engineers have sought alternative solutions to move from drill and blast to continuous methods to prevent such issues and improve sustainability in mining. Among the suggested methods, microwave treatment has shown promising results by creating micro/macro cracks in the rock structure prior to the operations. This research utilizes an energy-based analysis methodology to evaluate the efficiency of the microwave treatment in improving mining operations. The data analysis shows that increasing the input microwave energy dosage intensifies the rock damage. However, this approach can decrease the energy efficiency of the method by more than 50% in some cases. In this study, rock samples were treated with three power levels (3 kW, 7 kW, and 12 kW) and two energy dosages (20 kWh/t and 50 kWh/t), resulting in six conditions. To evaluate the impact of microwave treatment on the geomechanical behavior of the rocks, Unconfined Compressive Strength (UCS) tests were conducted on the microwave-treated samples, yielding stress-strain curves. Using the stress-strain curves, the effect of the different powers and energy dosages of microwaves are discussed. This research shows the potential of using microwave treatment to lead the industry to more sustainable mining. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microwave%20treatment" title="microwave treatment">microwave treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20energy%20dosage" title=" microwave energy dosage"> microwave energy dosage</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20mining" title=" sustainable mining"> sustainable mining</a>, <a href="https://publications.waset.org/abstracts/search?q=rock%20fragmentation" title=" rock fragmentation"> rock fragmentation</a> </p> <a href="https://publications.waset.org/abstracts/186898/evaluating-the-potential-of-microwave-treatment-as-a-rock-pre-conditioning-method-in-achieving-a-more-sustainable-mining" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186898.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">40</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21354</span> The Predictive Value of Extensor Grip Test for the Effectiveness of Treatment for Tennis Elbow: A Randomized Controlled Trial</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Javad%20Zehtab">Mohammad Javad Zehtab</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Alireza%20Mirghasemi"> S. Alireza Mirghasemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Majlesara"> Ali Majlesara</a>, <a href="https://publications.waset.org/abstracts/search?q=Parvin%20Tajik"> Parvin Tajik</a>, <a href="https://publications.waset.org/abstracts/search?q=Babak%20Siavashi"> Babak Siavashi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: There are different modalities proposed for tennis elbow treatment with few randomized trials comparing them. We designed a study to compare the effectiveness of five different modalities and determine the usefulness of recently proposed extensor grip test (EGT) in predicting the response to treatment. Methods: In a randomized controlled clinical trial 92 of 98 tennis elbow patients in Sina hospital of Tehran, Iran between 2006 and 2007 fulfill trial entry criteria, among these patients 56 (60.9%) had positive EGT result. Stratified on EGT result, patients allocated randomly to 5 treatment groups: Brace (B) group, physiotherapy (P), brace + physiotherapy (BP), injection (I) and injection + physiotherapy (IP). Results: Patients who had positive result of EGT had better response to treatments: less SOC (p = 0.06), less PFFQ and patients’ satisfaction scores (p < 0.001). Among the treatment IP was the most successful, then BP, P and B, respectively; injection was the worst treatment modality. Response to treatment was comparable in all groups between EGT positive and negative patients except bracing; in which positive EGT was correlated with a dramatic response to treatment. Conclusion: In all patients IP and then BP is recommended but in EGT negatives, bracing seems to be of no use. Injection alone is not recommended in either group. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tennis%20elbow" title="tennis elbow">tennis elbow</a>, <a href="https://publications.waset.org/abstracts/search?q=extensor%20grip%20test" title=" extensor grip test"> extensor grip test</a>, <a href="https://publications.waset.org/abstracts/search?q=physiotherapy" title=" physiotherapy"> physiotherapy</a>, <a href="https://publications.waset.org/abstracts/search?q=tennis%20elbow%20treatment" title=" tennis elbow treatment"> tennis elbow treatment</a> </p> <a href="https://publications.waset.org/abstracts/34774/the-predictive-value-of-extensor-grip-test-for-the-effectiveness-of-treatment-for-tennis-elbow-a-randomized-controlled-trial" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34774.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21353</span> Evaluation of the Effectiveness of a Sewage Treatment Plant in Oman: Samail Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azza%20Mohsin%20Al-Hashami">Azza Mohsin Al-Hashami</a>, <a href="https://publications.waset.org/abstracts/search?q=Reginald%20Victor"> Reginald Victor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Treatment of wastewater involves physical, chemical, and biological processes to remove the pollutants from wastewater. This study evaluates of the effectiveness of sewage treatment plants (STP) in Samail, Oman. Samail STP has tertiary treatment using conventional activated sludge with surface aeration. The collection of wastewater is through a network with a total length of about 60 km and also by tankers for the areas outside the network. Treated wastewater from this STP is used for the irrigation of vegetation in the STP premises and as a backwash for sand filters. Some treated water is supplied to the Samail municipality, which uses it for the landscaping, road construction, and 'the Million Date Palms' project. In this study, homogenous samples were taken from eight different treatment stages along the treatment continuum for one year, at a frequency of once a month, to evaluate the physical, chemical, and biological parameters. All samples were analyzed using the standard methods for the examination of water and wastewater. The spatial variations in water quality along the continuum are discussed. Despite these variations, the treated wastewater from Samail STP was of good quality, and most of the parameters are within class A category in Oman Standards for wastewater reuse and discharge. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wastewater" title="wastewater">wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=STP" title=" STP"> STP</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment" title=" treatment"> treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=processes" title=" processes"> processes</a> </p> <a href="https://publications.waset.org/abstracts/119536/evaluation-of-the-effectiveness-of-a-sewage-treatment-plant-in-oman-samail-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119536.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21352</span> Harnessing the Potential of Renewable Energy Sources to Reduce Fossil Energy Consumption in the Wastewater Treatment Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hen%20Friman">Hen Friman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Various categories of aqueous solutions are discharged within residential, institutional, commercial, and industrial structures. To safeguard public health and preserve the environment, it is imperative to subject wastewater to treatment processes that eliminate pathogens (such as bacteria and viruses), nutrients (such as nitrogen and phosphorus), and other compounds. Failure to address untreated sewage accumulation can result in an array of adverse consequences. Israel exemplifies a special case in wastewater management. Appropriate wastewater treatment significantly benefits sectors such as agriculture, tourism, horticulture, and industry. Nevertheless, untreated sewage in settlements lacking proper sewage collection or transportation networks remains an ongoing and substantial threat. Notably, the process of wastewater treatment entails substantial energy consumption. Consequently, this study explores the integration of solar energy as a renewable power source within the wastewater treatment framework. By incorporating renewable energy sources into the process, costs can be minimized, and decentralized facilities can be established even in areas lacking adequate infrastructure for traditional treatment methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title="renewable energy">renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=innovative" title=" innovative"> innovative</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20treatment" title=" wastewater treatment"> wastewater treatment</a> </p> <a href="https://publications.waset.org/abstracts/168354/harnessing-the-potential-of-renewable-energy-sources-to-reduce-fossil-energy-consumption-in-the-wastewater-treatment-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168354.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21351</span> A Review on Application of Waste Tire in Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Yazdi">M. A. Yazdi</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Yang"> J. Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Yihui"> L. Yihui</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Su"> H. Su</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The application of recycle waste tires into civil engineering practices, namely asphalt paving mixtures and cementbased materials has been gaining ground across the world. This review summarizes and compares the recent achievements in the area of plain rubberized concrete (PRC), in details. Different treatment methods have been discussed to improve the performance of rubberized Portland cement concrete. The review also includes the effects of size and amount of tire rubbers on mechanical and durability properties of PRC. The microstructure behaviour of the rubberized concrete was detailed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=waste%20rubber%20aggregates" title="waste rubber aggregates">waste rubber aggregates</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment%20methods" title=" treatment methods"> treatment methods</a>, <a href="https://publications.waset.org/abstracts/search?q=size%20and%20content%20effects" title=" size and content effects"> size and content effects</a> </p> <a href="https://publications.waset.org/abstracts/42883/a-review-on-application-of-waste-tire-in-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42883.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21350</span> Nickel-Titanium Endodontic Instruments: The Evolution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fadwa%20Chtioui">Fadwa Chtioui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The field of endodontics has witnessed constant advancements in treatment methods and instrument design, particularly for nickel-titanium (NiTi) files. Despite these developments, it remains crucial for clinicians to have a thorough understanding of their characteristics and behavior to choose the appropriate instruments for different clinical and anatomical situations. Research Aim: The aim of this work is to study and discuss the impact of heat treatment developments on the properties of endodontic NiTi files, with the ultimate goal of providing ways to adapt these files to the anatomical features of dental roots. Methodology: This study involves both clinical cases and extensive bibliographic research. Findings: The study highlights the importance of heat treatment in the design and manufacture of NiTi files, as it significantly affects their physical and mechanical properties. It also provides insights into the ways in which NiTi files can be adapted to the complex geometries of dental roots for more effective endodontic treatments. Theoretical Importance: Theoretical implications of this study include a better understanding of the relationship between heat treatment and the properties of NiTi files, leading to improvements in both their manufacturing methods and clinical applications. Data Collection and Analysis Procedures: The data for this study was collected through clinical cases and an extensive review of relevant literature. Analysis was performed through qualitative and quantitative methods, examining the impact of heat treatment on the physical and mechanical properties of NiTi files. Questions Addressed: This study aims to answer questions concerning the properties of NiTi files and the impact of heat treatment on their behavior. It also seeks to examine ways in which these files can be adapted to complex dental root geometries for more effective endodontic treatments. Conclusion: In conclusion, this study emphasizes the importance of heat treatment in the design and manufacture of NiTi files, as it significantly impacts their physical and mechanical properties. Further research is necessary to explore additional methods for adapting NiTi files to the unique anatomies of dental roots to improve endodontic treatments further. Ultimately, this study provides valuable insights into the continued evolution of endodontic treatment and instrument design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=endodontic%20files" title="endodontic files">endodontic files</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel-titanium" title=" nickel-titanium"> nickel-titanium</a>, <a href="https://publications.waset.org/abstracts/search?q=tooth%20anatomy" title=" tooth anatomy"> tooth anatomy</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20treatment" title=" heat treatment"> heat treatment</a> </p> <a href="https://publications.waset.org/abstracts/164719/nickel-titanium-endodontic-instruments-the-evolution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164719.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21349</span> Temporal Change in Bonding Strength and Antimicrobial Effect of a Zirconia after Nonthermal Atmospheric Pressure Plasma Treatment </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chan%20Park">Chan Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang-Won%20Park"> Sang-Won Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Kwi-Dug%20Yun"> Kwi-Dug Yun</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyun-Pil%20Lim"> Hyun-Pil Lim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: Plasma treatment under various conditions has been studied to increase the bonding strength and surface sterilization of dental ceramic materials. We assessed the evolution of the shear bond strength (SBS) and antimicrobial effect of nonthermal atmospheric pressure plasma (NTAPP) treatment over time. Methods: Presintered zirconia specimens were manufactured as discs (diameter: 15 mm, height: 2 mm) after final sintering. The specimens then received a 30-min treatment with argon gas (Ar², 99.999%; 10 L/min) using an NTAPP device. Five post-treatment intervals were evaluated: control (no treatment), P0 (within 1 h), P1 (24 h), P2 (48 h), and P3 (72 h). This study investigated the surface characteristics, SBS of two different resin cement (RelyXTM U200 self-adhesive resin cement, Panavia F2.0 methacryloyloxydecyl dihydrogen phosphate (MDP)-based resin cement), and Streptococcus mutans biofilm formation. Results: The SBS of RelyXTM U200 increased significantly (p < 0.05) within 2 days following plasma treatment (P0, P1, P2). For Panavia F 2.0, a significant decrease (p < 0.05) was detected only in the group that had undergone cementation immediately after plasma treatment (P0). S. mutans adhesion decreased significantly (p < 0.05) within 2 days of plasma treatment (P0, P1, P2) compared to the control group. The P0 group displayed a lower biofilm thickness than the P1 and P2 groups (p < 0.05). Conclusions: After NTAPP treatment of zirconia, the effects on bonding strength and antimicrobial growth persist for a limited duration. The effect of NTAPP treatment on bonding strength depends on the resin cement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=NTAPP" title="NTAPP">NTAPP</a>, <a href="https://publications.waset.org/abstracts/search?q=SBS" title=" SBS"> SBS</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20effect" title=" antimicrobial effect"> antimicrobial effect</a>, <a href="https://publications.waset.org/abstracts/search?q=zirconia" title=" zirconia"> zirconia</a> </p> <a href="https://publications.waset.org/abstracts/90214/temporal-change-in-bonding-strength-and-antimicrobial-effect-of-a-zirconia-after-nonthermal-atmospheric-pressure-plasma-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90214.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21348</span> Enhance Biogas Production by Enzymatic Pre-Treatment from Palm Oil Mill Effluent (POME)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Tajul%20Islam">M. S. Tajul Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Zahangir%20Alam"> Md. Zahangir Alam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To enhance biogas production through anaerobic digestion, the application of various type of pre-treatment method has some limitations in terms of sustainable environmental management. Many studies on pretreatments especially chemical and physical processes are carried out to evaluate the anaerobic digestion for enhanced biogas production. Among the pretreatment methods acid and alkali pre-treatments gained the highest importance. Previous studies have showed that although acid and alkali pretreatment has significant effect on degradation of biomass, these methods have some negative impact on environment due to their hazard in nature while enzymatic pre-treatment is environmentally friendly. One of the constrains to use of enzyme in pretreatment process for biogas production is high cost which is currently focused to reduce cost through fermentation of waste-based media. As such palm oil mill effluent (POME) as an abundant resource generated during palm oil processing at mill is being used a potential fermentation media for enzyme production. This low cost of enzyme could be an alternative to biogas pretreatment process. This review is to focus direct application of enzyme as enzymatic pre-treatment on POME to enhanced production of biogas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=POME" title="POME">POME</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymatic%20pre-treatment" title=" enzymatic pre-treatment"> enzymatic pre-treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=biogas" title=" biogas"> biogas</a>, <a href="https://publications.waset.org/abstracts/search?q=lignocellulosic%20biomass" title=" lignocellulosic biomass"> lignocellulosic biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20digestion" title=" anaerobic digestion"> anaerobic digestion</a> </p> <a href="https://publications.waset.org/abstracts/21350/enhance-biogas-production-by-enzymatic-pre-treatment-from-palm-oil-mill-effluent-pome" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21350.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">550</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21347</span> Endoscopic Treatment of Esophageal Injuries Using Vacuum Therapy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Murad%20Gasanov">Murad Gasanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Shagen%20Danielyan"> Shagen Danielyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Gasanov"> Ali Gasanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuri%20Teterin"> Yuri Teterin</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Yartsev"> Peter Yartsev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Despite the advances made in modern surgery, the treatment of patients with esophageal injuries remains one of the most topical and complex issues. In recent years, high-technology minimally invasive methods, such as endoscopic vacuum therapy (EVT) in the treatment of esophageal injuries. The effectiveness of EVT has been sufficiently studied in case of failure of esophageal anastomoses, however the application of this method in case of mechanical esophageal injuries is limited by a small series of observations, indicating the necessity of additional study. Aim: The aim was to аnalyzed of own experience in the use of endoscopic vacuum therapy (EVT) in a comprehensive examination of patients with esophageal injuries. Methods: We analyzed the results of treatment of 24 patients with mechanical injuries of the esophagus for the period 2019-2021. Complex treatment of patients included the use of minimally invasive technologies, including percutaneous endoscopic gastrostomy (PEG), EVT and video-assisted thoracoscopic debridement. Evaluation of the effectiveness of treatment was carried out using multislice computed tomography (MSCT), endoscopy and laboratory tests. The duration of inpatient treatment and the duration of EVT, the number of system replacements, complications and mortality were taken into account. Result: EVT in patients with mechanical injuries of the esophagus allowed to achieve epithelialization of the esophageal defect in 21 patients (87.5%) in the form of linear scar on the site of perforation or pseudodiverticulum. Complications were noted in 4 patients (16.6%), including bleeding (2) and and esophageal stenosis in the perforation area (2). Lethal outcome was in one observation (4.2%). Conclusion. EVT may be the method of choice in complex treatment in patients with esophageal lesions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=esophagus%20injuries" title="esophagus injuries">esophagus injuries</a>, <a href="https://publications.waset.org/abstracts/search?q=damage%20to%20the%20esophagus" title=" damage to the esophagus"> damage to the esophagus</a>, <a href="https://publications.waset.org/abstracts/search?q=perforation%20of%20the%20esophagus" title=" perforation of the esophagus"> perforation of the esophagus</a>, <a href="https://publications.waset.org/abstracts/search?q=spontaneous%20perforation%20of%20the%20esophagus" title=" spontaneous perforation of the esophagus"> spontaneous perforation of the esophagus</a>, <a href="https://publications.waset.org/abstracts/search?q=mediastinitis" title=" mediastinitis"> mediastinitis</a>, <a href="https://publications.waset.org/abstracts/search?q=endoscopic%20vacuum%20therapy" title=" endoscopic vacuum therapy"> endoscopic vacuum therapy</a> </p> <a href="https://publications.waset.org/abstracts/159374/endoscopic-treatment-of-esophageal-injuries-using-vacuum-therapy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159374.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21346</span> Ultrasonic Treatment of Baker’s Yeast Effluent</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emine%20Y%C4%B1lmaz">Emine Yılmaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Serap%20F%C4%B1nd%C4%B1k"> Serap Fındık</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Baker’s yeast industry uses molasses as a raw material. Molasses is end product of sugar industry. Wastewater from molasses processing presents large amount of coloured substances that give dark brown color and high organic load to the effluents. The main coloured compounds are known as melanoidins. Melanoidins are product of Maillard reaction between amino acid and carbonyl groups in molasses. Dark colour prevents sunlight penetration and reduces photosynthetic activity and dissolved oxygen level of surface waters. Various methods like biological processes (aerobic and anaerobic), ozonation, wet air oxidation, coagulation/flocculation are used to treatment of baker’s yeast effluent. Before effluent is discharged adequate treatment is imperative. In addition to this, increasingly stringent environmental regulations are forcing distilleries to improve existing treatment and also to find alternative methods of effluent management or combination of treatment methods. Sonochemical oxidation is one of the alternative methods. Sonochemical oxidation employs ultrasound resulting in cavitation phenomena. In this study, decolorization of baker’s yeast effluent was investigated by using ultrasound. Baker’s yeast effluent was supplied from a factory which is located in the north of Turkey. An ultrasonic homogenizator used for this study. Its operating frequency is 20 kHz. TiO2-ZnO catalyst has been used as sonocatalyst. The effects of molar proportion of TiO2-ZnO, calcination temperature and time, catalyst amount were investigated on the decolorization of baker’s yeast effluent. The results showed that prepared composite TiO2-ZnO with 4:1 molar proportion treated at 700°C for 90 min provides better result. Initial decolorization rate at 15 min is 3% without catalyst, 14,5% with catalyst treated at 700°C for 90 min respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=baker%E2%80%99s%20yeast%20effluent" title="baker’s yeast effluent">baker’s yeast effluent</a>, <a href="https://publications.waset.org/abstracts/search?q=decolorization" title=" decolorization"> decolorization</a>, <a href="https://publications.waset.org/abstracts/search?q=sonocatalyst" title=" sonocatalyst"> sonocatalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a> </p> <a href="https://publications.waset.org/abstracts/7535/ultrasonic-treatment-of-bakers-yeast-effluent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7535.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">474</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=treatment%20methods&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=treatment%20methods&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=treatment%20methods&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=treatment%20methods&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=treatment%20methods&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=treatment%20methods&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=treatment%20methods&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=treatment%20methods&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=treatment%20methods&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=treatment%20methods&amp;page=712">712</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=treatment%20methods&amp;page=713">713</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=treatment%20methods&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10