CINXE.COM
associated infinity-bundle in nLab
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> associated infinity-bundle in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> associated infinity-bundle </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussions/?CategoryID=0" title="Discuss this page on the nForum. It does not yet have a dedicated thread; feel free to create one, giving it the same name as the title of this page" style="color:black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="bundles">Bundles</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/bundles">bundles</a></strong></p> <ul> <li> <p>(<a class="existingWikiWord" href="/nlab/show/parameterized+stable+homotopy+theory">stable</a>) <a class="existingWikiWord" href="/nlab/show/parameterized+homotopy+theory">parameterized homotopy theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fiber+bundles+in+physics">fiber bundles in physics</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Chern-Weil+theory">Chern-Weil theory</a></p> </li> </ul> <h2 id="sidebar_context">Context</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/slice+topos">slice topos</a>, <a class="existingWikiWord" href="/nlab/show/slice+%28%E2%88%9E%2C1%29-topos">slice (∞,1)-topos</a></p> </li> <li> <p>(<a class="existingWikiWord" href="/nlab/show/dependent+linear+type+theory">linear</a>) <a class="existingWikiWord" href="/nlab/show/dependent+type+theory">dependent type theory</a></p> </li> </ul> <h2 id="sidebar_classes_of_bundles">Classes of bundles</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/covering+space">covering space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/retractive+space">retractive space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fiber+bundle">fiber bundle</a>, <a class="existingWikiWord" href="/nlab/show/fiber+%E2%88%9E-bundle">fiber ∞-bundle</a></p> <p><a class="existingWikiWord" href="/nlab/show/numerable+bundle">numerable bundle</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/sphere+bundle">sphere bundle</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/projective+bundle">projective bundle</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/principal+bundle">principal bundle</a>, <a class="existingWikiWord" href="/nlab/show/principal+%E2%88%9E-bundle">principal ∞-bundle</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/principal+2-bundle">principal 2-bundle</a>, <a class="existingWikiWord" href="/nlab/show/principal+3-bundle">principal 3-bundle</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/circle+bundle">circle bundle</a>, <a class="existingWikiWord" href="/nlab/show/circle+n-bundle+with+connection">circle n-bundle</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/orientation+bundle">orientation bundle</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/spinor+bundle">spinor bundle</a>, <a class="existingWikiWord" href="/nlab/show/stringor+bundle">stringor bundle</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/associated+bundle">associated bundle</a>, <a class="existingWikiWord" href="/nlab/show/associated+%E2%88%9E-bundle">associated ∞-bundle</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/gerbe">gerbe</a>, <a class="existingWikiWord" href="/nlab/show/2-gerbe">2-gerbe</a>, <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-gerbe">∞-gerbe</a>,</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/local+coefficient+bundle">local coefficient bundle</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/vector+bundle">vector bundle</a>, <a class="existingWikiWord" href="/nlab/show/2-vector+bundle">2-vector bundle</a>, <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-vector+bundle">(∞,1)-vector bundle</a></p> <p><a class="existingWikiWord" href="/nlab/show/real+vector+bundle">real</a>, <a class="existingWikiWord" href="/nlab/show/complex+vector+bundle">complex</a>/<a class="existingWikiWord" href="/nlab/show/holomorphic+vector+bundle">holomorphic</a>, <a class="existingWikiWord" href="/nlab/show/quaternionic+vector+bundle">quaternionic</a></p> <p><a class="existingWikiWord" href="/nlab/show/topological+vector+bundle">topological</a>, <a class="existingWikiWord" href="/nlab/show/differentiable+vector+bundle">differentiable</a>, <a class="existingWikiWord" href="/nlab/show/algebraic+vector+bundle">algebraic</a></p> <p><a class="existingWikiWord" href="/nlab/show/connection+on+a+vector+bundle">with connection</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/line+bundle">line bundle</a></p> <p><a class="existingWikiWord" href="/nlab/show/complex+line+bundle">complex</a>, <a class="existingWikiWord" href="/nlab/show/holomorphic+line+bundle">holomorphic</a>, <a class="existingWikiWord" href="/nlab/show/algebraic+line+bundle">algebraic</a></p> <p><a class="existingWikiWord" href="/nlab/show/cubical+structure+on+a+line+bundle">cubical structure</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Chern-Weil+theory">Chern-Weil theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+K-theory">topological K-theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/tensor+category">tensor category</a><a class="existingWikiWord" href="/nlab/show/Vect%28X%29">of vector bundles</a></p> <p>(<a class="existingWikiWord" href="/nlab/show/VectBund">VectBund</a>)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/direct+sum+of+vector+bundles">direct sum</a>, <a class="existingWikiWord" href="/nlab/show/tensor+product+of+vector+bundles">tensor product</a>, <a class="existingWikiWord" href="/nlab/show/external+tensor+product+of+vector+bundles">external tensor product</a>, <a class="existingWikiWord" href="/nlab/show/inner+product+of+vector+bundles">inner product</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/dual+vector+bundle">dual vector bundle</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/stable+vector+bundle">stable vector bundle</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/virtual+vector+bundle">virtual vector bundle</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/bundle+of+spectra">bundle of spectra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/natural+bundle">natural bundle</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/equivariant+bundle">equivariant bundle</a></p> </li> </ul> <h2 id="sidebar_universal_bundles">Universal bundles</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/universal+principal+bundle">universal principal bundle</a>, <a class="existingWikiWord" href="/nlab/show/universal+principal+%E2%88%9E-bundle">universal principal ∞-bundle</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/universal+vector+bundle">universal vector bundle</a>, <a class="existingWikiWord" href="/nlab/show/universal+complex+line+bundle">universal complex line bundle</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/subobject+classifier">subobject classifier</a>, <a class="existingWikiWord" href="/nlab/show/object+classifier">object classifier</a></p> </li> </ul> <h2 id="sidebar_presentations">Presentations</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/bundle+gerbe">bundle gerbe</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/groupal+model+for+universal+principal+%E2%88%9E-bundles">groupal model for universal principal ∞-bundles</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/microbundle">microbundle</a></p> </li> </ul> <h2 id="sidebar_examples">Examples</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/empty+bundle">empty bundle</a>, <a class="existingWikiWord" href="/nlab/show/zero+bundle">zero bundle</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/trivial+vector+bundle">trivial vector bundle</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/tangent+bundle">tangent bundle</a>, <a class="existingWikiWord" href="/nlab/show/normal+bundle">normal bundle</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/tautological+line+bundle">tautological line bundle</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/basic+line+bundle+on+the+2-sphere">basic line bundle on the 2-sphere</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Hopf+fibration">Hopf fibration</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/canonical+line+bundle">canonical line bundle</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/prequantum+circle+bundle">prequantum circle bundle</a>, <a class="existingWikiWord" href="/nlab/show/prequantum+circle+n-bundle">prequantum circle n-bundle</a></p> </li> </ul> <h2 id="sidebar_constructions">Constructions</h2> <ul> <li><a class="existingWikiWord" href="/nlab/show/clutching+construction">clutching construction</a></li> </ul> </div></div> <h4 id="cohomology">Cohomology</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/cohomology">cohomology</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/cocycle">cocycle</a>, <a class="existingWikiWord" href="/nlab/show/coboundary">coboundary</a>, <a class="existingWikiWord" href="/nlab/show/coefficient">coefficient</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homology">homology</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/chain">chain</a>, <a class="existingWikiWord" href="/nlab/show/cycle">cycle</a>, <a class="existingWikiWord" href="/nlab/show/boundary">boundary</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/characteristic+class">characteristic class</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/universal+characteristic+class">universal characteristic class</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/secondary+characteristic+class">secondary characteristic class</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/differential+characteristic+class">differential characteristic class</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fiber+sequence">fiber sequence</a>/<a class="existingWikiWord" href="/nlab/show/long+exact+sequence+in+cohomology">long exact sequence in cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fiber+%E2%88%9E-bundle">fiber ∞-bundle</a>, <a class="existingWikiWord" href="/nlab/show/principal+%E2%88%9E-bundle">principal ∞-bundle</a>, <a class="existingWikiWord" href="/nlab/show/associated+%E2%88%9E-bundle">associated ∞-bundle</a>,</p> <p><a class="existingWikiWord" href="/nlab/show/twisted+%E2%88%9E-bundle">twisted ∞-bundle</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-group+extension">∞-group extension</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/obstruction">obstruction</a></p> </li> </ul> <h3 id="special_and_general_types">Special and general types</h3> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/cochain+cohomology">cochain cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/ordinary+cohomology">ordinary cohomology</a>, <a class="existingWikiWord" href="/nlab/show/singular+cohomology">singular cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/group+cohomology">group cohomology</a>, <a class="existingWikiWord" href="/nlab/show/nonabelian+group+cohomology">nonabelian group cohomology</a>, <a class="existingWikiWord" href="/nlab/show/Lie+group+cohomology">Lie group cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Galois+cohomology">Galois cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/groupoid+cohomology">groupoid cohomology</a>, <a class="existingWikiWord" href="/nlab/show/nonabelian+groupoid+cohomology">nonabelian groupoid cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/generalized+%28Eilenberg-Steenrod%29+cohomology">generalized (Eilenberg-Steenrod) cohomology</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/cobordism+cohomology+theory">cobordism cohomology theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/integral+cohomology">integral cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/K-theory">K-theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/elliptic+cohomology">elliptic cohomology</a>, <a class="existingWikiWord" href="/nlab/show/tmf">tmf</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/taf">taf</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/abelian+sheaf+cohomology">abelian sheaf cohomology</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Deligne+cohomology">Deligne cohomology</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/de+Rham+cohomology">de Rham cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Dolbeault+cohomology">Dolbeault cohomology</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/etale+cohomology">etale cohomology</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/group+of+units">group of units</a>, <a class="existingWikiWord" href="/nlab/show/Picard+group">Picard group</a>, <a class="existingWikiWord" href="/nlab/show/Brauer+group">Brauer group</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/crystalline+cohomology">crystalline cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/syntomic+cohomology">syntomic cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/motivic+cohomology">motivic cohomology</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/cohomology+of+operads">cohomology of operads</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Hochschild+cohomology">Hochschild cohomology</a>, <a class="existingWikiWord" href="/nlab/show/cyclic+cohomology">cyclic cohomology</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/string+topology">string topology</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/nonabelian+cohomology">nonabelian cohomology</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/principal+%E2%88%9E-bundle">principal ∞-bundle</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/universal+principal+%E2%88%9E-bundle">universal principal ∞-bundle</a>, <a class="existingWikiWord" href="/nlab/show/groupal+model+for+universal+principal+%E2%88%9E-bundles">groupal model for universal principal ∞-bundles</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/principal+bundle">principal bundle</a>, <a class="existingWikiWord" href="/nlab/show/Atiyah+Lie+groupoid">Atiyah Lie groupoid</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/principal+2-bundle">principal 2-bundle</a>/<a class="existingWikiWord" href="/nlab/show/gerbe">gerbe</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/locally+constant+%E2%88%9E-stack">covering ∞-bundle</a>/<a class="existingWikiWord" href="/nlab/show/local+system">local system</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-vector+bundle">(∞,1)-vector bundle</a> / <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2Cn%29-vector+bundle">(∞,n)-vector bundle</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/quantum+anomaly">quantum anomaly</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/orientation">orientation</a>, <a class="existingWikiWord" href="/nlab/show/Spin+structure">Spin structure</a>, <a class="existingWikiWord" href="/nlab/show/Spin%5Ec+structure">Spin^c structure</a>, <a class="existingWikiWord" href="/nlab/show/String+structure">String structure</a>, <a class="existingWikiWord" href="/nlab/show/Fivebrane+structure">Fivebrane structure</a></li> </ul> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/cohomology+with+constant+coefficients">cohomology with constant coefficients</a> / <a class="existingWikiWord" href="/nlab/show/cohomology+with+a+local+system+of+coefficients">with a local system of coefficients</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-Lie+algebra+cohomology">∞-Lie algebra cohomology</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Lie+algebra+cohomology">Lie algebra cohomology</a>, <a class="existingWikiWord" href="/nlab/show/nonabelian+Lie+algebra+cohomology">nonabelian Lie algebra cohomology</a>, <a class="existingWikiWord" href="/nlab/show/Lie+algebra+extensions">Lie algebra extensions</a>, <a class="existingWikiWord" href="/nlab/show/Gelfand-Fuks+cohomology">Gelfand-Fuks cohomology</a>,</li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Gerstenhaber-Schack+cohomology">bialgebra cohomology</a></p> </li> </ul> <h3 id="special_notions">Special notions</h3> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/%C4%8Cech+cohomology">Čech cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/hypercohomology">hypercohomology</a></p> </li> </ul> <h3 id="variants">Variants</h3> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/equivariant+cohomology">equivariant cohomology</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/equivariant+homotopy+theory">equivariant homotopy theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Bredon+cohomology">Bredon cohomology</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/twisted+cohomology">twisted cohomology</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/twisted+bundle">twisted bundle</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/twisted+K-theory">twisted K-theory</a>, <a class="existingWikiWord" href="/nlab/show/twisted+spin+structure">twisted spin structure</a>, <a class="existingWikiWord" href="/nlab/show/twisted+spin%5Ec+structure">twisted spin^c structure</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/twisted+differential+c-structures">twisted differential c-structures</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/twisted+differential+string+structure">twisted differential string structure</a>, <a class="existingWikiWord" href="/nlab/show/twisted+differential+fivebrane+structure">twisted differential fivebrane structure</a></li> </ul> </li> </ul> </li> <li> <p>differential cohomology</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/differential+cohomology">differential generalized (Eilenberg-Steenrod) cohomology</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/differential+cobordism+cohomology">differential cobordism cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Deligne+cohomology">Deligne cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/differential+K-theory">differential K-theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/differential+elliptic+cohomology">differential elliptic cohomology</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/schreiber/show/differential+cohomology+in+a+cohesive+topos">differential cohomology in a cohesive topos</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Chern-Weil+theory">Chern-Weil theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-Chern-Weil+theory">∞-Chern-Weil theory</a></p> </li> </ul> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/relative+cohomology">relative cohomology</a></p> </li> </ul> <h3 id="extra_structure">Extra structure</h3> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Hodge+structure">Hodge structure</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/orientation">orientation</a>, <a class="existingWikiWord" href="/nlab/show/orientation+in+generalized+cohomology">in generalized cohomology</a></p> </li> </ul> <h3 id="operations">Operations</h3> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/cohomology+operations">cohomology operations</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/cup+product">cup product</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/connecting+homomorphism">connecting homomorphism</a>, <a class="existingWikiWord" href="/nlab/show/Bockstein+homomorphism">Bockstein homomorphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fiber+integration">fiber integration</a>, <a class="existingWikiWord" href="/nlab/show/transgression">transgression</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/cohomology+localization">cohomology localization</a></p> </li> </ul> <h3 id="theorems">Theorems</h3> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/universal+coefficient+theorem">universal coefficient theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/K%C3%BCnneth+theorem">Künneth theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/de+Rham+theorem">de Rham theorem</a>, <a class="existingWikiWord" href="/nlab/show/Poincare+lemma">Poincare lemma</a>, <a class="existingWikiWord" href="/nlab/show/Stokes+theorem">Stokes theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Hodge+theory">Hodge theory</a>, <a class="existingWikiWord" href="/nlab/show/Hodge+theorem">Hodge theorem</a></p> <p><a class="existingWikiWord" href="/nlab/show/nonabelian+Hodge+theory">nonabelian Hodge theory</a>, <a class="existingWikiWord" href="/nlab/show/noncommutative+Hodge+theory">noncommutative Hodge theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Brown+representability+theorem">Brown representability theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/abelian+sheaf+cohomology">hypercovering theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Eckmann-Hilton+duality">Eckmann-Hilton-Fuks duality</a></p> </li> </ul> <div> <p> <a href="/nlab/edit/cohomology+-+contents">Edit this sidebar</a> </p> </div></div></div> </div> </div> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#idea'>Idea</a></li> <li><a href='#definition'>Definition</a></li> <li><a href='#Properties'>Properties</a></li> <ul> <li><a href='#general'>General</a></li> <li><a href='#presentation_in_simplicial_presheaves'>Presentation in simplicial presheaves</a></li> </ul> <li><a href='#examples'>Examples</a></li> <ul> <li><a href='#fibrations_of_topological_spaces__simplicial_sets'>Fibrations of topological spaces / simplicial sets</a></li> <li><a href='#gerbes'><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn></mrow><annotation encoding="application/x-tex">\infty</annotation></semantics></math>-Gerbes</a></li> </ul> <li><a href='#related_concepts'>Related concepts</a></li> <li><a href='#References'>References</a></li> </ul> </div> <h2 id="idea">Idea</h2> <p>An <strong>associated <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn></mrow><annotation encoding="application/x-tex">\infty</annotation></semantics></math>-bundle</strong> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>E</mi><mo>→</mo><mi>X</mi></mrow><annotation encoding="application/x-tex">E \to X</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/fiber+bundle">fiber bundle</a> in an <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-topos">(∞,1)-topos</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mstyle mathvariant="bold"><mi>H</mi></mstyle></mrow><annotation encoding="application/x-tex">\mathbf{H}</annotation></semantics></math> with typical fiber <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi><mo>∈</mo><mstyle mathvariant="bold"><mi>H</mi></mstyle></mrow><annotation encoding="application/x-tex">F \in \mathbf{H}</annotation></semantics></math> that is classified by a <a class="existingWikiWord" href="/nlab/show/cocycle">cocycle</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi><mo>→</mo><mstyle mathvariant="bold"><mi>B</mi></mstyle><munder><mi>Aut</mi><mo>̲</mo></munder><mo stretchy="false">(</mo><mi>F</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">X \to \mathbf{B}\underline{Aut}(F)</annotation></semantics></math> with coefficients in the <a class="existingWikiWord" href="/nlab/show/delooping">delooping</a> of the <a class="existingWikiWord" href="/nlab/show/internalization">internal</a> <a class="existingWikiWord" href="/nlab/show/automorphism+%E2%88%9E-group">automorphism ∞-group</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi></mrow><annotation encoding="application/x-tex">F</annotation></semantics></math>. We say this is <em>associated to</em> the corresponding <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><munder><mi>Aut</mi><mo>̲</mo></munder><mo stretchy="false">(</mo><mi>F</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\underline{Aut}(F)</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/principal+%E2%88%9E-bundle">principal ∞-bundle</a>.</p> <p>More generally there should be notions of associated <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn></mrow><annotation encoding="application/x-tex">\infty</annotation></semantics></math>-bundles whose fibers are objects in an <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2Cn%29-topos">(∞,n)-topos</a> over <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mstyle mathvariant="bold"><mi>H</mi></mstyle></mrow><annotation encoding="application/x-tex">\mathbf{H}</annotation></semantics></math> for some <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi><mo>></mo><mn>1</mn></mrow><annotation encoding="application/x-tex">n \gt 1</annotation></semantics></math>.</p> <h2 id="definition">Definition</h2> <p>Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mstyle mathvariant="bold"><mi>H</mi></mstyle></mrow><annotation encoding="application/x-tex">\mathbf{H}</annotation></semantics></math> be an <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-topos">(∞,1)-topos</a>.</p> <div class="num_def"> <h6 id="definition_2">Definition</h6> <p>For <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>V</mi><mo>,</mo><mi>X</mi><mo>∈</mo><mstyle mathvariant="bold"><mi>H</mi></mstyle></mrow><annotation encoding="application/x-tex">V,X \in \mathbf{H}</annotation></semantics></math> two objects, say a <em><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/fiber+%E2%88%9E-bundle">fiber ∞-bundle</a> over <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math></em> is a <a class="existingWikiWord" href="/nlab/show/morphism">morphism</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>E</mi><mo>→</mo><mi>X</mi></mrow><annotation encoding="application/x-tex">E \to X</annotation></semantics></math> (an object in the <a class="existingWikiWord" href="/nlab/show/slice+%28%E2%88%9E%2C1%29-topos">slice (∞,1)-topos</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mstyle mathvariant="bold"><mi>H</mi></mstyle> <mrow><mo stretchy="false">/</mo><mi>X</mi></mrow></msub></mrow><annotation encoding="application/x-tex">\mathbf{H}_{/X}</annotation></semantics></math>) such that there exists an <a class="existingWikiWord" href="/nlab/show/effective+epimorphism+in+an+%28%E2%88%9E%2C1%29-category">effective epimorphism</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>U</mi><mo>→</mo><mi>X</mi></mrow><annotation encoding="application/x-tex">U \to X</annotation></semantics></math> and an <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-pullback">(∞,1)-pullback</a> square</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mi>U</mi><mo>×</mo><mi>V</mi></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>E</mi></mtd></mtr> <mtr><mtd><mo stretchy="false">↓</mo></mtd> <mtd></mtd> <mtd><mo stretchy="false">↓</mo></mtd></mtr> <mtr><mtd><mi>U</mi></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>X</mi></mtd></mtr></mtable></mrow><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> \array{ U \times V &\to& E \\ \downarrow && \downarrow \\ U &\to& X } \,. </annotation></semantics></math></div></div> <div class="num_def"> <h6 id="definition_3">Definition</h6> <p>Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi><mo>∈</mo><mi>Grp</mi><mo stretchy="false">(</mo><mstyle mathvariant="bold"><mi>H</mi></mstyle><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">G \in Grp(\mathbf{H})</annotation></semantics></math> be an <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-group">∞-group</a> equipped with an <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-action">∞-action</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ρ</mi></mrow><annotation encoding="application/x-tex">\rho</annotation></semantics></math> on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math>. Then for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>P</mi><mo>→</mo><mi>X</mi></mrow><annotation encoding="application/x-tex">P \to X</annotation></semantics></math> a <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/principal+%E2%88%9E-bundle">principal ∞-bundle</a> over <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math>, the <em><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ρ</mi></mrow><annotation encoding="application/x-tex">\rho</annotation></semantics></math>-associated <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn></mrow><annotation encoding="application/x-tex">\infty</annotation></semantics></math>-bundle</em> is</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>P</mi><msub><mo>×</mo> <mi>G</mi></msub><mi>V</mi><mo>→</mo><mi>X</mi><mspace width="thinmathspace"></mspace><mo>,</mo></mrow><annotation encoding="application/x-tex"> P \times_G V \to X \,, </annotation></semantics></math></div> <p>where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>P</mi><msub><mo>×</mo> <mi>G</mi></msub><mi>V</mi><mo>:</mo><mo>=</mo><mo stretchy="false">(</mo><mi>P</mi><mo>×</mo><mi>V</mi><mo stretchy="false">)</mo><mo stretchy="false">/</mo><mo stretchy="false">/</mo><mi>G</mi></mrow><annotation encoding="application/x-tex">P \times_G V := (P \times V)//G</annotation></semantics></math> is the homotopy quotient of the diagonal <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math>-action.</p> </div> <div class="num_remark"> <h6 id="remark">Remark</h6> <p>Below in <em><a href="#Properties">Properties</a></em> we see that every <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ρ</mi></mrow><annotation encoding="application/x-tex">\rho</annotation></semantics></math>-associated <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn></mrow><annotation encoding="application/x-tex">\infty</annotation></semantics></math>-bundle is a <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math>-fiber <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn></mrow><annotation encoding="application/x-tex">\infty</annotation></semantics></math>-bundle and that every <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math>-fiber <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn></mrow><annotation encoding="application/x-tex">\infty</annotation></semantics></math>-bundle arises as associated to an <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mstyle mathvariant="bold"><mi>Aut</mi></mstyle><mo stretchy="false">(</mo><mi>V</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathbf{Aut}(V)</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/principal+%E2%88%9E-bundle">principal ∞-bundle</a></p> </div> <h2 id="Properties">Properties</h2> <h3 id="general">General</h3> <div class="num_prop" id="Classification"> <h6 id="proposition">Proposition</h6> <p>For <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>V</mi><mo>∈</mo><mstyle mathvariant="bold"><mi>H</mi></mstyle></mrow><annotation encoding="application/x-tex">V \in \mathbf{H}</annotation></semantics></math>, write <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mstyle mathvariant="bold"><mi>Aut</mi></mstyle><mo stretchy="false">(</mo><mi>V</mi><mo stretchy="false">)</mo><mo>∈</mo><mi>Grp</mi><mo stretchy="false">(</mo><mstyle mathvariant="bold"><mi>H</mi></mstyle><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathbf{Aut}(V) \in Grp(\mathbf{H})</annotation></semantics></math> for the internal <a class="existingWikiWord" href="/nlab/show/automorphism+%E2%88%9E-group">automorphism ∞-group</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math>. This comes with a canonical action on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math>. Then the operation of sending an <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mstyle mathvariant="bold"><mi>Aut</mi></mstyle></mrow><annotation encoding="application/x-tex">\mathbf{Aut}</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/principal+%E2%88%9E-bundle">principal ∞-bundle</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>P</mi><mo>→</mo><mi>X</mi></mrow><annotation encoding="application/x-tex">P \to X</annotation></semantics></math> to the associated <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>P</mi><msub><mo>×</mo> <mi>G</mi></msub><mi>V</mi><mo>→</mo><mi>X</mi></mrow><annotation encoding="application/x-tex">P \times_G V \to X</annotation></semantics></math> establishes an equivalence</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msup><mi>H</mi> <mn>1</mn></msup><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mstyle mathvariant="bold"><mi>Aut</mi></mstyle><mo stretchy="false">(</mo><mi>V</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>≃</mo><mo stretchy="false">{</mo><mi>V</mi><mo>−</mo><mi>fiber</mi><mspace width="thickmathspace"></mspace><mn>∞</mn><mo>−</mo><mi>bundles</mi><mo stretchy="false">}</mo><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> H^1(X, \mathbf{Aut}(V)) \simeq \{V-fiber\;\infty-bundles\} \,. </annotation></semantics></math></div></div> <p>More specifically, if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ρ</mi></mrow><annotation encoding="application/x-tex">\rho</annotation></semantics></math> is an <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-action">∞-action</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> on some <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>V</mi><mo>∈</mo><mstyle mathvariant="bold"><mi>H</mi></mstyle></mrow><annotation encoding="application/x-tex">V \in \mathbf{H}</annotation></semantics></math>, then under the <a class="existingWikiWord" href="/nlab/show/equivalence+of+%28%E2%88%9E%2C1%29-categories">equivalence of (∞,1)-categories</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>G</mi><mi>Act</mi><mo>≃</mo><msub><mstyle mathvariant="bold"><mi>H</mi></mstyle> <mrow><mo stretchy="false">/</mo><mstyle mathvariant="bold"><mi>B</mi></mstyle><mi>G</mi></mrow></msub></mrow><annotation encoding="application/x-tex"> G Act \simeq \mathbf{H}_{/\mathbf{B}G} </annotation></semantics></math></div> <p>it corresponds to a <a class="existingWikiWord" href="/nlab/show/fiber+sequence">fiber sequence</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mi>V</mi></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>V</mi><mo stretchy="false">/</mo><mo stretchy="false">/</mo><mi>G</mi></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd><msup><mo stretchy="false">↓</mo> <mpadded width="0"><mover><mi>ρ</mi><mo>¯</mo></mover></mpadded></msup></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd><mstyle mathvariant="bold"><mi>B</mi></mstyle><mi>G</mi></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ V &\to& V//G \\ && \downarrow^{\mathrlap{\overline{\rho}}} \\ && \mathbf{B}G } </annotation></semantics></math></div> <p>in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mstyle mathvariant="bold"><mi>H</mi></mstyle></mrow><annotation encoding="application/x-tex">\mathbf{H}</annotation></semantics></math>. This is the <strong>universal <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ρ</mi></mrow><annotation encoding="application/x-tex">\rho</annotation></semantics></math>-associated <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math>-bundle</strong> in that for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>P</mi><mo>→</mo><mi>X</mi></mrow><annotation encoding="application/x-tex">P \to X</annotation></semantics></math> any <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/principal+%E2%88%9E-bundle">principal ∞-bundle</a> modulated by <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>g</mi><mo lspace="verythinmathspace">:</mo><mi>X</mi><mo>→</mo><mstyle mathvariant="bold"><mi>B</mi></mstyle><mi>G</mi></mrow><annotation encoding="application/x-tex">g \colon X \to \mathbf{B}G</annotation></semantics></math> we have a natural equivalence</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>P</mi><msub><mo>×</mo> <mi>G</mi></msub><mi>V</mi><mo>≃</mo><msup><mi>g</mi> <mo>*</mo></msup><mover><mi>ρ</mi><mo>¯</mo></mover><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> P \times_G V \simeq g^* \overline{\rho} \,. </annotation></semantics></math></div> <p>This is discussed in (<a href="#NSS">NSS, section I 4.1</a>).</p> <h3 id="presentation_in_simplicial_presheaves">Presentation in simplicial presheaves</h3> <p>In (<a href="#Wendt">Wendt</a>), section 5.5, a <a class="existingWikiWord" href="/nlab/show/presentable+%28infinity%2C1%29-category">presentation</a> of the general situation for <a class="existingWikiWord" href="/nlab/show/n-localic+%28infinity%2C1%29-topos">1-localic</a> <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-toposes">(∞,1)-toposes</a> is given in terms of the <a class="existingWikiWord" href="/nlab/show/model+structure+on+simplicial+presheaves">model structure on simplicial presheaves</a> (as discussed at <a class="existingWikiWord" href="/nlab/show/models+for+%E2%88%9E-stack+%28%E2%88%9E%2C1%29-toposes">models for ∞-stack (∞,1)-toposes</a>) .</p> <p>Under this presentation we have:</p> <div class="num_prop"> <h6 id="proposition_2">Proposition</h6> <p>The universal <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi></mrow><annotation encoding="application/x-tex">F</annotation></semantics></math>-<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn></mrow><annotation encoding="application/x-tex">\infty</annotation></semantics></math>-bundle <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mstyle mathvariant="bold"><mi>E</mi></mstyle><mi>F</mi><mo>→</mo><mstyle mathvariant="bold"><mi>B</mi></mstyle><mi>Aut</mi><mo stretchy="false">(</mo><mi>F</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathbf{E} F \to \mathbf{B}Aut(F)</annotation></semantics></math> is presented by the <a class="existingWikiWord" href="/nlab/show/bar+construction">bar construction</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>F</mi><mo>→</mo><mi>B</mi><mo stretchy="false">(</mo><mo>*</mo><mo>,</mo><mi>Aut</mi><mo stretchy="false">(</mo><mi>F</mi><mo stretchy="false">)</mo><mo>,</mo><mi>F</mi><mo stretchy="false">)</mo><mo>→</mo><mi>B</mi><mo stretchy="false">(</mo><mo>*</mo><mo>,</mo><mi>Aut</mi><mo stretchy="false">(</mo><mi>F</mi><mo stretchy="false">)</mo><mo>,</mo><mo>*</mo><mo stretchy="false">)</mo><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> F \to B(*, Aut(F), F) \to B(*, Aut(F), *) \,. </annotation></semantics></math></div></div> <p>Compare <a class="existingWikiWord" href="/nlab/show/universal+principal+%E2%88%9E-bundle">universal principal ∞-bundle</a>.</p> <h2 id="examples">Examples</h2> <h3 id="fibrations_of_topological_spaces__simplicial_sets">Fibrations of topological spaces / simplicial sets</h3> <p>For the special case that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mstyle mathvariant="bold"><mi>H</mi></mstyle><mo>=</mo></mrow><annotation encoding="application/x-tex">\mathbf{H} = </annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/%E2%88%9EGrpd">∞Grpd</a> and using the <a class="existingWikiWord" href="/nlab/show/presentable+%28%E2%88%9E%2C1%29-category">presentation</a> by the <a class="existingWikiWord" href="/nlab/show/model+structure+on+topological+spaces">model structure on topological spaces</a>/<a class="existingWikiWord" href="/nlab/show/model+structure+on+simplicial+sets">model structure on simplicial sets</a> the classification theorem <a class="maruku-ref" href="#Classification"></a> reduces to the classical statement of (<a href="#Stasheff">Stasheff</a>, <a href="#May">May</a>).</p> <h3 id="gerbes"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn></mrow><annotation encoding="application/x-tex">\infty</annotation></semantics></math>-Gerbes</h3> <p>In the case that the fiber <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi></mrow><annotation encoding="application/x-tex">F</annotation></semantics></math> is the <a class="existingWikiWord" href="/nlab/show/delooping">delooping</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi><mo>=</mo><mstyle mathvariant="bold"><mi>B</mi></mstyle><mi>G</mi></mrow><annotation encoding="application/x-tex">F = \mathbf{B}G</annotation></semantics></math> of an <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-group">∞-group</a> object <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math>, the <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><munder><mi>Aut</mi><mo>̲</mo></munder><mo stretchy="false">(</mo><mstyle mathvariant="bold"><mi>B</mi></mstyle><mi>G</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\underline{Aut}(\mathbf{B}G)</annotation></semantics></math>-associated <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn></mrow><annotation encoding="application/x-tex">\infty</annotation></semantics></math>-bundles are called <strong><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/%E2%88%9E-gerbes">∞-gerbes</a></strong>. See there for more details.</p> <h2 id="related_concepts">Related concepts</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/action">action</a>, <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-action">∞-action</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/representation">representation</a>, <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-representation">∞-representation</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/principal+bundle">principal bundle</a> / <a class="existingWikiWord" href="/nlab/show/torsor">torsor</a> / <a class="existingWikiWord" href="/nlab/show/associated+bundle">associated bundle</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/principal+2-bundle">principal 2-bundle</a> / <a class="existingWikiWord" href="/nlab/show/gerbe">gerbe</a> / <a class="existingWikiWord" href="/nlab/show/bundle+gerbe">bundle gerbe</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/principal+3-bundle">principal 3-bundle</a> / <a class="existingWikiWord" href="/nlab/show/2-gerbe">2-gerbe</a> / <a class="existingWikiWord" href="/nlab/show/bundle+2-gerbe">bundle 2-gerbe</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/principal+%E2%88%9E-bundle">principal ∞-bundle</a> / <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-gerbe">∞-gerbe</a> / <strong>associated <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn></mrow><annotation encoding="application/x-tex">\infty</annotation></semantics></math>-bundle</strong></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/vector+bundle">vector bundle</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-vector+bundle">(∞,1)-vector bundle</a></p> </li> </ul> <h2 id="References">References</h2> <p>Early work on associated <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn></mrow><annotation encoding="application/x-tex">\infty</annotation></semantics></math>-bundles takes place in the <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\infty,1)</annotation></semantics></math>-topos <a class="existingWikiWord" href="/nlab/show/%E2%88%9EGrpd">∞Grpd</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>≃</mo></mrow><annotation encoding="application/x-tex">\simeq</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/Top">Top</a>. In</p> <ul id="Stasheff"> <li><a class="existingWikiWord" href="/nlab/show/Jim+Stasheff">Jim Stasheff</a>, <em>A classification theorem for fiber spaces</em> , Topology 2 (1963) 239-246</li> </ul> <ul> <li><a class="existingWikiWord" href="/nlab/show/Jim+Stasheff">Jim Stasheff</a>, <em>H-spaces and classifying spaces: foundations and recent developments</em>. Algebraic topology (Proc. Sympos. Pure Math., Vol. XXII, Univ. Wisconsin, Madison, Wis., 1970), pp. 247–272. MR0321079 (47 #9612)</li> </ul> <p>a classification of <a class="existingWikiWord" href="/nlab/show/fibrations">fibrations</a> of <a class="existingWikiWord" href="/nlab/show/CW-complexes">CW-complexes</a> with given CW-complex fiber in terms of maps into a classifying CW-complex is given.</p> <p>In</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Daniel+Gottlieb">Daniel Gottlieb</a>, <em>The total space of universal fibrations.</em> Pacific J. Math. Volume 46, Number 2 (1973), 415-417.</li> </ul> <p>the total space of the universal <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi></mrow><annotation encoding="application/x-tex">F</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/fiber+%E2%88%9E-bundle">fiber ∞-bundle</a> in the pointed context is identified with <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mstyle mathvariant="bold"><mi>B</mi></mstyle><msub><mi>Aut</mi> <mo>*</mo></msub><mo stretchy="false">(</mo><mi>F</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathbf{B}Aut_*(F)</annotation></semantics></math> (the pointed <a class="existingWikiWord" href="/nlab/show/automorphism+%E2%88%9E-group">automorphism ∞-group</a>).</p> <p>A generalization or more systematic account of the classification theory is then given in</p> <ul id="May"> <li><a class="existingWikiWord" href="/nlab/show/Peter+May">Peter May</a>, <em>Classifying Spaces and Fibrations</em> Mem. Amer. Math. Soc. 155 (1975) (<a href="http://www.math.uchicago.edu/~may/BOOKS/Classifying.pdf">pdf</a>)</li> </ul> <p>This has been reproven in various guises, such as the statement of <a class="existingWikiWord" href="/nlab/show/univalence">univalence</a> in the <a class="existingWikiWord" href="/nlab/show/model">model</a> <a class="existingWikiWord" href="/nlab/show/sSet">sSet</a> for <a class="existingWikiWord" href="/nlab/show/homotopy+type+theory">homotopy type theory</a>. See the references at <em><a class="existingWikiWord" href="/nlab/show/univalence">univalence</a></em> for more on this.</p> <p>Generalizations with extra structure on the fibers are discussed in</p> <ul> <li>Claudio Pacati, Petar Pavesic, Renzo Piccinini, <em>On the classification of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℱ</mi></mrow><annotation encoding="application/x-tex">\mathcal{F}</annotation></semantics></math>-fibrations</em>, Topology and its applications 87 (1998) (<a href="http://www.fmf.uni-lj.si/~pavesic/RESEARCH/On%20the%20classification%20of%20F-fibrations.pdf">pdf</a>)</li> </ul> <p>Consideration of associated <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn></mrow><annotation encoding="application/x-tex">\infty</annotation></semantics></math>-bundles / <a class="existingWikiWord" href="/nlab/show/fiber+sequences">fiber sequences</a> in general <a class="existingWikiWord" href="/nlab/show/n-localic+%28infinity%2C1%29-topos">1-localic</a> <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-toposes">(∞,1)-toposes</a> <a class="existingWikiWord" href="/nlab/show/presentable+%28infinity%2C1%29-category">presented</a> by a <a class="existingWikiWord" href="/nlab/show/model+structure+on+simplicial+presheaves">model structure on simplicial presheaves</a> (which subsumes the above case for the trivial site) is discussed in</p> <ul id="Wendt"> <li><a class="existingWikiWord" href="/nlab/show/Matthias+Wendt">Matthias Wendt</a>, <em>Classifying spaces and fibrations of simplicial sheaves</em> , Journal of Homotopy and Related Structures 6(1), 2011, pp. 1–38. (<a href="http://arxiv.org/abs/1009.2930">arXiv</a>) (<a href="http://tcms.org.ge/Journals/JHRS/volumes/2011/volume6-1.htm">published version</a>)</li> </ul> <p>Related discussion on the behaviour of <a class="existingWikiWord" href="/nlab/show/fiber+sequences">fiber sequences</a> under left <a class="existingWikiWord" href="/nlab/show/Bousfield+localization+of+model+categories">Bousfield localization of model categories</a> is in</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Matthias+Wendt">Matthias Wendt</a>, <em>Fibre sequences and localization of simplicial sheaves</em> (<a href="http://home.mathematik.uni-freiburg.de/arithmetische-geometrie/preprints/wendt-flocal.pdf">pdf</a>)</li> </ul> <p>Similar considerations and results are in</p> <ul id="BlomgrenChacholski"> <li>Martin Blomgren, <a class="existingWikiWord" href="/nlab/show/Wojciech+Chacholski">Wojciech Chacholski</a>, <em>On the classification of fibrations</em> (<a href="http://arxiv.org/abs/1206.4443">arXiv:1206.4443</a>)</li> </ul> <p>With the advent of <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-topos+theory">(∞,1)-topos theory</a> all these statements and their generalizations follow from the existence of <a class="existingWikiWord" href="/nlab/show/object+classifiers">object classifiers</a> in an <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-topos">(∞,1)-topos</a>. For the classical case in <a class="existingWikiWord" href="/nlab/show/%E2%88%9EGrpd">∞Grpd</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>≃</mo></mrow><annotation encoding="application/x-tex">\simeq</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/Top">Top</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mrow></mrow> <mo>∘</mo></msup></mrow><annotation encoding="application/x-tex">{}^\circ</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/sSet">sSet</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mrow></mrow> <mo>∘</mo></msup></mrow><annotation encoding="application/x-tex">{}^\circ</annotation></semantics></math> this is discussed in</p> <ul> <li><em><a href="http://ncatlab.org/nlab/show/%28sub%29object+classifier+in+an+%28infinity%2C1%29-topos#ObjectClassifierInInfinityGroupoid">object classifier in ∞Grpd</a></em>,</li> </ul> <p>which reproduces the classical results (<a href="#Stasheff">Stasheff</a>, <a href="#May">May</a>).</p> <p>For general <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-toposes">(∞,1)-toposes</a> the classification of associated <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn></mrow><annotation encoding="application/x-tex">\infty</annotation></semantics></math>-bundles is discussed in section I 4.1 of</p> <ul> <li><a class="existingWikiWord" href="/schreiber/show/Principal+%E2%88%9E-bundles+--+theory%2C+presentations+and+applications">Principal ∞-bundles – theory, presentations and applications</a></li> </ul> <p>Models in <a class="existingWikiWord" href="/nlab/show/rational+homotopy+theory">rational homotopy theory</a> of classifying spaces for homotopy types <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Aut</mi><mo stretchy="false">(</mo><mi>F</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Aut(F)</annotation></semantics></math> go back to <a class="existingWikiWord" href="/nlab/show/Sullivan">Sullivan</a>‘s remarks on the <a class="existingWikiWord" href="/nlab/show/automorphism+L-infinity+algebra">automorphism L-infinity algebra</a>. Further developments are reviewed and developed in</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Andrey+Lazarev">Andrey Lazarev</a>, <em>Models for classifying spaces and derived deformation theory</em> (<a href="http://arxiv.org/abs/1209.3866">arXiv:1209.3866</a>)</li> </ul> </body></html> </div> <div class="revisedby"> <p> Last revised on December 8, 2013 at 08:29:38. See the <a href="/nlab/history/associated+infinity-bundle" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/associated+infinity-bundle" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussions/?CategoryID=0">Discuss</a><span class="backintime"><a href="/nlab/revision/associated+infinity-bundle/26" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/associated+infinity-bundle" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/associated+infinity-bundle" accesskey="S" class="navlink" id="history" rel="nofollow">History (26 revisions)</a> <a href="/nlab/show/associated+infinity-bundle/cite" style="color: black">Cite</a> <a href="/nlab/print/associated+infinity-bundle" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/associated+infinity-bundle" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>