CINXE.COM
PEP 327 – Decimal Data Type | peps.python.org
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="color-scheme" content="light dark"> <title>PEP 327 – Decimal Data Type | peps.python.org</title> <link rel="shortcut icon" href="../_static/py.png"> <link rel="canonical" href="https://peps.python.org/pep-0327/"> <link rel="stylesheet" href="../_static/style.css" type="text/css"> <link rel="stylesheet" href="../_static/mq.css" type="text/css"> <link rel="stylesheet" href="../_static/pygments.css" type="text/css" media="(prefers-color-scheme: light)" id="pyg-light"> <link rel="stylesheet" href="../_static/pygments_dark.css" type="text/css" media="(prefers-color-scheme: dark)" id="pyg-dark"> <link rel="alternate" type="application/rss+xml" title="Latest PEPs" href="https://peps.python.org/peps.rss"> <meta property="og:title" content='PEP 327 – Decimal Data Type | peps.python.org'> <meta property="og:description" content="The idea is to have a Decimal data type, for every use where decimals are needed but binary floating point is too inexact."> <meta property="og:type" content="website"> <meta property="og:url" content="https://peps.python.org/pep-0327/"> <meta property="og:site_name" content="Python Enhancement Proposals (PEPs)"> <meta property="og:image" content="https://peps.python.org/_static/og-image.png"> <meta property="og:image:alt" content="Python PEPs"> <meta property="og:image:width" content="200"> <meta property="og:image:height" content="200"> <meta name="description" content="The idea is to have a Decimal data type, for every use where decimals are needed but binary floating point is too inexact."> <meta name="theme-color" content="#3776ab"> </head> <body> <svg xmlns="http://www.w3.org/2000/svg" style="display: none;"> <symbol id="svg-sun-half" viewBox="0 0 24 24" pointer-events="all"> <title>Following system colour scheme</title> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"> <circle cx="12" cy="12" r="9"></circle> <path d="M12 3v18m0-12l4.65-4.65M12 14.3l7.37-7.37M12 19.6l8.85-8.85"></path> </svg> </symbol> <symbol id="svg-moon" viewBox="0 0 24 24" pointer-events="all"> <title>Selected dark colour scheme</title> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"> <path stroke="none" d="M0 0h24v24H0z" fill="none"></path> <path d="M12 3c.132 0 .263 0 .393 0a7.5 7.5 0 0 0 7.92 12.446a9 9 0 1 1 -8.313 -12.454z"></path> </svg> </symbol> <symbol id="svg-sun" viewBox="0 0 24 24" pointer-events="all"> <title>Selected light colour scheme</title> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"> <circle cx="12" cy="12" r="5"></circle> <line x1="12" y1="1" x2="12" y2="3"></line> <line x1="12" y1="21" x2="12" y2="23"></line> <line x1="4.22" y1="4.22" x2="5.64" y2="5.64"></line> <line x1="18.36" y1="18.36" x2="19.78" y2="19.78"></line> <line x1="1" y1="12" x2="3" y2="12"></line> <line x1="21" y1="12" x2="23" y2="12"></line> <line x1="4.22" y1="19.78" x2="5.64" y2="18.36"></line> <line x1="18.36" y1="5.64" x2="19.78" y2="4.22"></line> </svg> </symbol> </svg> <script> document.documentElement.dataset.colour_scheme = localStorage.getItem("colour_scheme") || "auto" </script> <section id="pep-page-section"> <header> <h1>Python Enhancement Proposals</h1> <ul class="breadcrumbs"> <li><a href="https://www.python.org/" title="The Python Programming Language">Python</a> » </li> <li><a href="../pep-0000/">PEP Index</a> » </li> <li>PEP 327</li> </ul> <button id="colour-scheme-cycler" onClick="setColourScheme(nextColourScheme())"> <svg aria-hidden="true" class="colour-scheme-icon-when-auto"><use href="#svg-sun-half"></use></svg> <svg aria-hidden="true" class="colour-scheme-icon-when-dark"><use href="#svg-moon"></use></svg> <svg aria-hidden="true" class="colour-scheme-icon-when-light"><use href="#svg-sun"></use></svg> <span class="visually-hidden">Toggle light / dark / auto colour theme</span> </button> </header> <article> <section id="pep-content"> <h1 class="page-title">PEP 327 – Decimal Data Type</h1> <dl class="rfc2822 field-list simple"> <dt class="field-odd">Author<span class="colon">:</span></dt> <dd class="field-odd">Facundo Batista <facundo at taniquetil.com.ar></dd> <dt class="field-even">Status<span class="colon">:</span></dt> <dd class="field-even"><abbr title="Accepted and implementation complete, or no longer active">Final</abbr></dd> <dt class="field-odd">Type<span class="colon">:</span></dt> <dd class="field-odd"><abbr title="Normative PEP with a new feature for Python, implementation change for CPython or interoperability standard for the ecosystem">Standards Track</abbr></dd> <dt class="field-even">Created<span class="colon">:</span></dt> <dd class="field-even">17-Oct-2003</dd> <dt class="field-odd">Python-Version<span class="colon">:</span></dt> <dd class="field-odd">2.4</dd> <dt class="field-even">Post-History<span class="colon">:</span></dt> <dd class="field-even">30-Nov-2003, 02-Jan-2004, 29-Jan-2004</dd> </dl> <hr class="docutils" /> <section id="contents"> <details><summary>Table of Contents</summary><ul class="simple"> <li><a class="reference internal" href="#abstract">Abstract</a></li> <li><a class="reference internal" href="#motivation">Motivation</a><ul> <li><a class="reference internal" href="#the-problem-with-binary-float">The problem with binary float</a></li> <li><a class="reference internal" href="#why-floating-point">Why floating point?</a></li> <li><a class="reference internal" href="#why-not-rational">Why not rational?</a></li> <li><a class="reference internal" href="#so-what-do-we-have">So, what do we have?</a></li> </ul> </li> <li><a class="reference internal" href="#general-decimal-arithmetic-specification">General Decimal Arithmetic Specification</a><ul> <li><a class="reference internal" href="#the-arithmetic-model">The Arithmetic Model</a></li> <li><a class="reference internal" href="#numbers">Numbers</a></li> <li><a class="reference internal" href="#context">Context</a></li> <li><a class="reference internal" href="#default-contexts">Default Contexts</a></li> <li><a class="reference internal" href="#exceptional-conditions">Exceptional Conditions</a></li> <li><a class="reference internal" href="#rounding-algorithms">Rounding Algorithms</a></li> </ul> </li> <li><a class="reference internal" href="#rationale">Rationale</a><ul> <li><a class="reference internal" href="#explicit-construction">Explicit construction</a><ul> <li><a class="reference internal" href="#from-int-or-long">From int or long</a></li> <li><a class="reference internal" href="#from-string">From string</a></li> <li><a class="reference internal" href="#from-float">From float</a></li> <li><a class="reference internal" href="#from-tuples">From tuples</a></li> <li><a class="reference internal" href="#from-decimal">From Decimal</a></li> <li><a class="reference internal" href="#syntax-for-all-cases">Syntax for All Cases</a></li> <li><a class="reference internal" href="#creating-from-context">Creating from Context</a></li> </ul> </li> <li><a class="reference internal" href="#implicit-construction">Implicit construction</a><ul> <li><a class="reference internal" href="#id15">From int or long</a></li> <li><a class="reference internal" href="#id16">From string</a></li> <li><a class="reference internal" href="#id17">From float</a></li> <li><a class="reference internal" href="#id18">From Decimal</a></li> </ul> </li> <li><a class="reference internal" href="#use-of-context">Use of Context</a></li> <li><a class="reference internal" href="#python-usability">Python Usability</a></li> </ul> </li> <li><a class="reference internal" href="#documentation">Documentation</a><ul> <li><a class="reference internal" href="#decimal-attributes">Decimal Attributes</a></li> <li><a class="reference internal" href="#decimal-methods">Decimal Methods</a></li> <li><a class="reference internal" href="#context-attributes">Context Attributes</a></li> <li><a class="reference internal" href="#context-methods">Context Methods</a></li> </ul> </li> <li><a class="reference internal" href="#reference-implementation">Reference Implementation</a></li> <li><a class="reference internal" href="#references">References</a></li> <li><a class="reference internal" href="#copyright">Copyright</a></li> </ul> </details></section> <section id="abstract"> <h2><a class="toc-backref" href="#abstract" role="doc-backlink">Abstract</a></h2> <p>The idea is to have a Decimal data type, for every use where decimals are needed but binary floating point is too inexact.</p> <p>The Decimal data type will support the Python standard functions and operations, and must comply with the decimal arithmetic ANSI standard X3.274-1996 <a class="footnote-reference brackets" href="#id19" id="id1">[1]</a>.</p> <p>Decimal will be floating point (as opposed to fixed point) and will have bounded precision (the precision is the upper limit on the number of significant digits in a result). However, precision is user-settable, and a notion of significant trailing zeroes is supported so that fixed-point usage is also possible.</p> <p>This work is based on code and test functions written by Eric Price, Aahz and Tim Peters. Just before Python 2.4a1, the decimal.py <a class="reference internal" href="#reference-implementation">reference implementation</a> was moved into the standard library; along with the documentation and the test suite, this was the work of Raymond Hettinger. Much of the explanation in this PEP is taken from Cowlishaw’s work <a class="footnote-reference brackets" href="#id20" id="id2">[2]</a>, comp.lang.python and python-dev.</p> </section> <section id="motivation"> <h2><a class="toc-backref" href="#motivation" role="doc-backlink">Motivation</a></h2> <p>Here I’ll expose the reasons of why I think a Decimal data type is needed and why other numeric data types are not enough.</p> <p>I wanted a Money data type, and after proposing a pre-PEP in comp.lang.python, the community agreed to have a numeric data type with the needed arithmetic behaviour, and then build Money over it: all the considerations about quantity of digits after the decimal point, rounding, etc., will be handled through Money. It is not the purpose of this PEP to have a data type that can be used as Money without further effort.</p> <p>One of the biggest advantages of implementing a standard is that someone already thought out all the creepy cases for you. And to a standard GvR redirected me: Mike Cowlishaw’s General Decimal Arithmetic specification <a class="footnote-reference brackets" href="#id20" id="id3">[2]</a>. This document defines a general purpose decimal arithmetic. A correct implementation of this specification will conform to the decimal arithmetic defined in ANSI/IEEE standard 854-1987, except for some minor restrictions, and will also provide unrounded decimal arithmetic and integer arithmetic as proper subsets.</p> <section id="the-problem-with-binary-float"> <h3><a class="toc-backref" href="#the-problem-with-binary-float" role="doc-backlink">The problem with binary float</a></h3> <p>In decimal math, there are many numbers that can’t be represented with a fixed number of decimal digits, e.g. 1/3 = 0.3333333333…….</p> <p>In base 2 (the way that standard floating point is calculated), 1/2 = 0.1, 1/4 = 0.01, 1/8 = 0.001, etc. Decimal 0.2 equals 2/10 equals 1/5, resulting in the binary fractional number 0.001100110011001… As you can see, the problem is that some decimal numbers can’t be represented exactly in binary, resulting in small roundoff errors.</p> <p>So we need a decimal data type that represents exactly decimal numbers. Instead of a binary data type, we need a decimal one.</p> </section> <section id="why-floating-point"> <h3><a class="toc-backref" href="#why-floating-point" role="doc-backlink">Why floating point?</a></h3> <p>So we go to decimal, but why <em>floating point</em>?</p> <p>Floating point numbers use a fixed quantity of digits (precision) to represent a number, working with an exponent when the number gets too big or too small. For example, with a precision of 5:</p> <div class="highlight-default notranslate"><div class="highlight"><pre><span></span> <span class="mi">1234</span> <span class="o">==></span> <span class="mf">1234e0</span> <span class="mi">12345</span> <span class="o">==></span> <span class="mf">12345e0</span> <span class="mi">123456</span> <span class="o">==></span> <span class="mf">12346e1</span> </pre></div> </div> <p>(note that in the last line the number got rounded to fit in five digits).</p> <p>In contrast, we have the example of a <code class="docutils literal notranslate"><span class="pre">long</span></code> integer with infinite precision, meaning that you can have the number as big as you want, and you’ll never lose any information.</p> <p>In a fixed point number, the position of the decimal point is fixed. For a fixed point data type, check Tim Peter’s FixedPoint at SourceForge <a class="footnote-reference brackets" href="#id22" id="id4">[4]</a>. I’ll go for floating point because it’s easier to implement the arithmetic behaviour of the standard, and then you can implement a fixed point data type over Decimal.</p> <p>But why can’t we have a floating point number with infinite precision? It’s not so easy, because of inexact divisions. E.g.: 1/3 = 0.3333333333333… ad infinitum. In this case you should store an infinite amount of 3s, which takes too much memory, ;).</p> <p>John Roth proposed to eliminate the division operator and force the user to use an explicit method, just to avoid this kind of trouble. This generated adverse reactions in comp.lang.python, as everybody wants to have support for the <code class="docutils literal notranslate"><span class="pre">/</span></code> operator in a numeric data type.</p> <p>With this exposed maybe you’re thinking “Hey! Can we just store the 1 and the 3 as numerator and denominator?”, which takes us to the next point.</p> </section> <section id="why-not-rational"> <h3><a class="toc-backref" href="#why-not-rational" role="doc-backlink">Why not rational?</a></h3> <p>Rational numbers are stored using two integer numbers, the numerator and the denominator. This implies that the arithmetic operations can’t be executed directly (e.g. to add two rational numbers you first need to calculate the common denominator).</p> <p>Quoting Alex Martelli:</p> <blockquote> <div>The performance implications of the fact that summing two rationals (which take O(M) and O(N) space respectively) gives a rational which takes O(M+N) memory space is just too troublesome. There are excellent Rational implementations in both pure Python and as extensions (e.g., gmpy), but they’ll always be a “niche market” IMHO. Probably worth PEPping, not worth doing without Decimal – which is the right way to represent sums of money, a truly major use case in the real world.</div></blockquote> <p>Anyway, if you’re interested in this data type, you maybe will want to take a look at <a class="pep reference internal" href="../pep-0239/" title="PEP 239 – Adding a Rational Type to Python">PEP 239</a>: Adding a Rational Type to Python.</p> </section> <section id="so-what-do-we-have"> <h3><a class="toc-backref" href="#so-what-do-we-have" role="doc-backlink">So, what do we have?</a></h3> <p>The result is a Decimal data type, with bounded precision and floating point.</p> <p>Will it be useful? I can’t say it better than Alex Martelli:</p> <blockquote> <div>Python (out of the box) doesn’t let you have binary floating point numbers <em>with whatever precision you specify</em>: you’re limited to what your hardware supplies. Decimal, be it used as a fixed or floating point number, should suffer from no such limitation: whatever bounded precision you may specify on number creation (your memory permitting) should work just as well. Most of the expense of programming simplicity can be hidden from application programs and placed in a suitable decimal arithmetic type. As per <a class="reference external" href="http://speleotrove.com/decimal/">http://speleotrove.com/decimal/</a>, <em>a single data type can be used for integer, fixed-point, and floating-point decimal arithmetic</em> – and for money arithmetic which doesn’t drive the application programmer crazy.</div></blockquote> <p>There are several uses for such a data type. As I said before, I will use it as base for Money. In this case the bounded precision is not an issue; quoting Tim Peters:</p> <blockquote> <div>A precision of 20 would be way more than enough to account for total world economic output, down to the penny, since the beginning of time.</div></blockquote> </section> </section> <section id="general-decimal-arithmetic-specification"> <h2><a class="toc-backref" href="#general-decimal-arithmetic-specification" role="doc-backlink">General Decimal Arithmetic Specification</a></h2> <p>Here I’ll include information and descriptions that are part of the specification <a class="footnote-reference brackets" href="#id20" id="id5">[2]</a> (the structure of the number, the context, etc.). All the requirements included in this section are not for discussion (barring typos or other mistakes), as they are in the standard, and the PEP is just for implementing the standard.</p> <p>Because of copyright restrictions, I can not copy here explanations taken from the specification, so I’ll try to explain it in my own words. I firmly encourage you to read the original specification document <a class="footnote-reference brackets" href="#id20" id="id6">[2]</a> for details or if you have any doubt.</p> <section id="the-arithmetic-model"> <h3><a class="toc-backref" href="#the-arithmetic-model" role="doc-backlink">The Arithmetic Model</a></h3> <p>The specification is based on a decimal arithmetic model, as defined by the relevant standards: IEEE 854 <a class="footnote-reference brackets" href="#id21" id="id7">[3]</a>, ANSI X3-274 <a class="footnote-reference brackets" href="#id19" id="id8">[1]</a>, and the proposed revision <a class="footnote-reference brackets" href="#id23" id="id9">[5]</a> of IEEE 754 <a class="footnote-reference brackets" href="#id24" id="id10">[6]</a>.</p> <p>The model has three components:</p> <ul class="simple"> <li>Numbers: just the values that the operation uses as input or output.</li> <li>Operations: addition, multiplication, etc.</li> <li>Context: a set of parameters and rules that the user can select and which govern the results of operations (for example, the precision to be used).</li> </ul> </section> <section id="numbers"> <h3><a class="toc-backref" href="#numbers" role="doc-backlink">Numbers</a></h3> <p>Numbers may be finite or special values. The former can be represented exactly. The latter are infinites and undefined (such as 0/0).</p> <p>Finite numbers are defined by three parameters:</p> <ul class="simple"> <li>Sign: 0 (positive) or 1 (negative).</li> <li>Coefficient: a non-negative integer.</li> <li>Exponent: a signed integer, the power of ten of the coefficient multiplier.</li> </ul> <p>The numerical value of a finite number is given by:</p> <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span><span class="o">**</span><span class="n">sign</span> <span class="o">*</span> <span class="n">coefficient</span> <span class="o">*</span> <span class="mi">10</span><span class="o">**</span><span class="n">exponent</span> </pre></div> </div> <p>Special values are named as following:</p> <ul class="simple"> <li>Infinity: a value which is infinitely large. Could be positive or negative.</li> <li>Quiet NaN (“qNaN”): represent undefined results (<em>Not a Number</em>). Does not cause an Invalid operation condition. The sign in a NaN has no meaning.</li> <li>Signaling NaN (“sNaN”): also <em>Not a Number</em>, but will cause an Invalid operation condition if used in any operation.</li> </ul> </section> <section id="context"> <h3><a class="toc-backref" href="#context" role="doc-backlink">Context</a></h3> <p>The context is a set of parameters and rules that the user can select and which govern the results of operations (for example, the precision to be used).</p> <p>The context gets that name because it surrounds the Decimal numbers, with parts of context acting as input to, and output of, operations. It’s up to the application to work with one or several contexts, but definitely the idea is not to get a context per Decimal number. For example, a typical use would be to set the context’s precision to 20 digits at the start of a program, and never explicitly use context again.</p> <p>These definitions don’t affect the internal storage of the Decimal numbers, just the way that the arithmetic operations are performed.</p> <p>The context is mainly defined by the following parameters (see <a class="reference internal" href="#context-attributes">Context Attributes</a> for all context attributes):</p> <ul class="simple"> <li>Precision: The maximum number of significant digits that can result from an arithmetic operation (integer > 0). There is no maximum for this value.</li> <li>Rounding: The name of the algorithm to be used when rounding is necessary, one of “round-down”, “round-half-up”, “round-half-even”, “round-ceiling”, “round-floor”, “round-half-down”, and “round-up”. See <a class="reference internal" href="#rounding-algorithms">Rounding Algorithms</a> below.</li> <li>Flags and trap-enablers: <a class="reference internal" href="#exceptional-conditions">Exceptional conditions</a> are grouped into signals, controllable individually, each consisting of a flag (boolean, set when the signal occurs) and a trap-enabler (a boolean that controls behavior). The signals are: “clamped”, “division-by-zero”, “inexact”, “invalid-operation”, “overflow”, “rounded”, “subnormal” and “underflow”.</li> </ul> </section> <section id="default-contexts"> <h3><a class="toc-backref" href="#default-contexts" role="doc-backlink">Default Contexts</a></h3> <p>The specification defines two default contexts, which should be easily selectable by the user.</p> <p>Basic Default Context:</p> <ul class="simple"> <li>flags: all set to 0</li> <li>trap-enablers: inexact, rounded, and subnormal are set to 0; all others are set to 1</li> <li>precision: is set to 9</li> <li>rounding: is set to round-half-up</li> </ul> <p>Extended Default Context:</p> <ul class="simple"> <li>flags: all set to 0</li> <li>trap-enablers: all set to 0</li> <li>precision: is set to 9</li> <li>rounding: is set to round-half-even</li> </ul> </section> <section id="exceptional-conditions"> <h3><a class="toc-backref" href="#exceptional-conditions" role="doc-backlink">Exceptional Conditions</a></h3> <p>The table below lists the exceptional conditions that may arise during the arithmetic operations, the corresponding signal, and the defined result. For details, see the specification <a class="footnote-reference brackets" href="#id20" id="id11">[2]</a>.</p> <table class="docutils align-default"> <thead> <tr class="row-odd"><th class="head">Condition</th> <th class="head">Signal</th> <th class="head">Result</th> </tr> </thead> <tbody> <tr class="row-even"><td>Clamped</td> <td>clamped</td> <td>see spec <a class="footnote-reference brackets" href="#id20" id="id12">[2]</a></td> </tr> <tr class="row-odd"><td>Division by zero</td> <td>division-by-zero</td> <td>[sign,inf]</td> </tr> <tr class="row-even"><td>Inexact</td> <td>inexact</td> <td>unchanged</td> </tr> <tr class="row-odd"><td>Invalid operation</td> <td>invalid-operation</td> <td>[0,qNaN] (or [s,qNaN] or [s,qNaN,d] when the cause is a signaling NaN)</td> </tr> <tr class="row-even"><td>Overflow</td> <td>overflow</td> <td>depends on the rounding mode</td> </tr> <tr class="row-odd"><td>Rounded</td> <td>rounded</td> <td>unchanged</td> </tr> <tr class="row-even"><td>Subnormal</td> <td>subnormal</td> <td>unchanged</td> </tr> <tr class="row-odd"><td>Underflow</td> <td>underflow</td> <td>see spec <a class="footnote-reference brackets" href="#id20" id="id13">[2]</a></td> </tr> </tbody> </table> <p>Note: when the standard talks about “Insufficient storage”, as long as this is implementation-specific behaviour about not having enough storage to keep the internals of the number, this implementation will raise MemoryError.</p> <p>Regarding Overflow and Underflow, there’s been a long discussion in python-dev about artificial limits. The general consensus is to keep the artificial limits only if there are important reasons to do that. Tim Peters gives us three:</p> <blockquote> <div>…eliminating bounds on exponents effectively means overflow (and underflow) can never happen. But overflow <em>is</em> a valuable safety net in real life fp use, like a canary in a coal mine, giving danger signs early when a program goes insane.<p>Virtually all implementations of 854 use (and as IBM’s standard even suggests) “forbidden” exponent values to encode non-finite numbers (infinities and NaNs). A bounded exponent can do this at virtually no extra storage cost. If the exponent is unbounded, then additional bits have to be used instead. This cost remains hidden until more time- and space- efficient implementations are attempted.</p> <p>Big as it is, the IBM standard is a tiny start at supplying a complete numeric facility. Having no bound on exponent size will enormously complicate the implementations of, e.g., decimal sin() and cos() (there’s then no a priori limit on how many digits of pi effectively need to be known in order to perform argument reduction).</p> </div></blockquote> <p>Edward Loper give us an example of when the limits are to be crossed: probabilities.</p> <p>That said, Robert Brewer and Andrew Lentvorski want the limits to be easily modifiable by the users. Actually, this is quite possible:</p> <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">d1</span> <span class="o">=</span> <span class="n">Decimal</span><span class="p">(</span><span class="s2">"1e999999999"</span><span class="p">)</span> <span class="c1"># at the exponent limit</span> <span class="gp">>>> </span><span class="n">d1</span> <span class="go">Decimal("1E+999999999")</span> <span class="gp">>>> </span><span class="n">d1</span> <span class="o">*</span> <span class="mi">10</span> <span class="c1"># exceed the limit, got infinity</span> <span class="gt">Traceback (most recent call last):</span> File <span class="nb">"<pyshell#3>"</span>, line <span class="m">1</span>, in <span class="n">?</span> <span class="w"> </span><span class="n">d1</span> <span class="o">*</span> <span class="mi">10</span> <span class="w"> </span><span class="c">...</span> <span class="w"> </span><span class="c">...</span> <span class="gr">Overflow</span>: <span class="n">above Emax</span> <span class="gp">>>> </span><span class="n">getcontext</span><span class="p">()</span><span class="o">.</span><span class="n">Emax</span> <span class="o">=</span> <span class="mi">1000000000</span> <span class="c1"># increase the limit</span> <span class="gp">>>> </span><span class="n">d1</span> <span class="o">*</span> <span class="mi">10</span> <span class="c1"># does not exceed any more</span> <span class="go">Decimal("1.0E+1000000000")</span> <span class="gp">>>> </span><span class="n">d1</span> <span class="o">*</span> <span class="mi">100</span> <span class="c1"># exceed again</span> <span class="gt">Traceback (most recent call last):</span> File <span class="nb">"<pyshell#3>"</span>, line <span class="m">1</span>, in <span class="n">?</span> <span class="w"> </span><span class="n">d1</span> <span class="o">*</span> <span class="mi">100</span> <span class="w"> </span><span class="c">...</span> <span class="w"> </span><span class="c">...</span> <span class="gr">Overflow</span>: <span class="n">above Emax</span> </pre></div> </div> </section> <section id="rounding-algorithms"> <h3><a class="toc-backref" href="#rounding-algorithms" role="doc-backlink">Rounding Algorithms</a></h3> <p><code class="docutils literal notranslate"><span class="pre">round-down</span></code>: The discarded digits are ignored; the result is unchanged (round toward 0, truncate):</p> <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="mf">1.123</span> <span class="o">--></span> <span class="mf">1.12</span> <span class="mf">1.128</span> <span class="o">--></span> <span class="mf">1.12</span> <span class="mf">1.125</span> <span class="o">--></span> <span class="mf">1.12</span> <span class="mf">1.135</span> <span class="o">--></span> <span class="mf">1.13</span> </pre></div> </div> <p><code class="docutils literal notranslate"><span class="pre">round-half-up</span></code>: If the discarded digits represent greater than or equal to half (0.5) then the result should be incremented by 1; otherwise the discarded digits are ignored:</p> <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="mf">1.123</span> <span class="o">--></span> <span class="mf">1.12</span> <span class="mf">1.128</span> <span class="o">--></span> <span class="mf">1.13</span> <span class="mf">1.125</span> <span class="o">--></span> <span class="mf">1.13</span> <span class="mf">1.135</span> <span class="o">--></span> <span class="mf">1.14</span> </pre></div> </div> <p><code class="docutils literal notranslate"><span class="pre">round-half-even</span></code>: If the discarded digits represent greater than half (0.5) then the result coefficient is incremented by 1; if they represent less than half, then the result is not adjusted; otherwise the result is unaltered if its rightmost digit is even, or incremented by 1 if its rightmost digit is odd (to make an even digit):</p> <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="mf">1.123</span> <span class="o">--></span> <span class="mf">1.12</span> <span class="mf">1.128</span> <span class="o">--></span> <span class="mf">1.13</span> <span class="mf">1.125</span> <span class="o">--></span> <span class="mf">1.12</span> <span class="mf">1.135</span> <span class="o">--></span> <span class="mf">1.14</span> </pre></div> </div> <p><code class="docutils literal notranslate"><span class="pre">round-ceiling</span></code>: If all of the discarded digits are zero or if the sign is negative the result is unchanged; otherwise, the result is incremented by 1 (round toward positive infinity):</p> <div class="highlight-default notranslate"><div class="highlight"><pre><span></span> <span class="mf">1.123</span> <span class="o">--></span> <span class="mf">1.13</span> <span class="mf">1.128</span> <span class="o">--></span> <span class="mf">1.13</span> <span class="o">-</span><span class="mf">1.123</span> <span class="o">--></span> <span class="o">-</span><span class="mf">1.12</span> <span class="o">-</span><span class="mf">1.128</span> <span class="o">--></span> <span class="o">-</span><span class="mf">1.12</span> </pre></div> </div> <p><code class="docutils literal notranslate"><span class="pre">round-floor</span></code>: If all of the discarded digits are zero or if the sign is positive the result is unchanged; otherwise, the absolute value of the result is incremented by 1 (round toward negative infinity):</p> <div class="highlight-default notranslate"><div class="highlight"><pre><span></span> <span class="mf">1.123</span> <span class="o">--></span> <span class="mf">1.12</span> <span class="mf">1.128</span> <span class="o">--></span> <span class="mf">1.12</span> <span class="o">-</span><span class="mf">1.123</span> <span class="o">--></span> <span class="o">-</span><span class="mf">1.13</span> <span class="o">-</span><span class="mf">1.128</span> <span class="o">--></span> <span class="o">-</span><span class="mf">1.13</span> </pre></div> </div> <p><code class="docutils literal notranslate"><span class="pre">round-half-down</span></code>: If the discarded digits represent greater than half (0.5) then the result is incremented by 1; otherwise the discarded digits are ignored:</p> <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="mf">1.123</span> <span class="o">--></span> <span class="mf">1.12</span> <span class="mf">1.128</span> <span class="o">--></span> <span class="mf">1.13</span> <span class="mf">1.125</span> <span class="o">--></span> <span class="mf">1.12</span> <span class="mf">1.135</span> <span class="o">--></span> <span class="mf">1.13</span> </pre></div> </div> <p><code class="docutils literal notranslate"><span class="pre">round-up</span></code>: If all of the discarded digits are zero the result is unchanged, otherwise the result is incremented by 1 (round away from 0):</p> <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="mf">1.123</span> <span class="o">--></span> <span class="mf">1.13</span> <span class="mf">1.128</span> <span class="o">--></span> <span class="mf">1.13</span> <span class="mf">1.125</span> <span class="o">--></span> <span class="mf">1.13</span> <span class="mf">1.135</span> <span class="o">--></span> <span class="mf">1.14</span> </pre></div> </div> </section> </section> <section id="rationale"> <h2><a class="toc-backref" href="#rationale" role="doc-backlink">Rationale</a></h2> <p>I must separate the requirements in two sections. The first is to comply with the ANSI standard. All the requirements for this are specified in the Mike Cowlishaw’s work <a class="footnote-reference brackets" href="#id20" id="id14">[2]</a>. He also provided a <strong>very large</strong> suite of test cases.</p> <p>The second section of requirements (standard Python functions support, usability, etc.) is detailed from here, where I’ll include all the decisions made and why, and all the subjects still being discussed.</p> <section id="explicit-construction"> <h3><a class="toc-backref" href="#explicit-construction" role="doc-backlink">Explicit construction</a></h3> <p>The explicit construction does not get affected by the context (there is no rounding, no limits by the precision, etc.), because the context affects just operations’ results. The only exception to this is when you’re <a class="reference internal" href="#creating-from-context">Creating from Context</a>.</p> <section id="from-int-or-long"> <h4><a class="toc-backref" href="#from-int-or-long" role="doc-backlink">From int or long</a></h4> <p>There’s no loss and no need to specify any other information:</p> <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">Decimal</span><span class="p">(</span><span class="mi">35</span><span class="p">)</span> <span class="n">Decimal</span><span class="p">(</span><span class="o">-</span><span class="mi">124</span><span class="p">)</span> </pre></div> </div> </section> <section id="from-string"> <h4><a class="toc-backref" href="#from-string" role="doc-backlink">From string</a></h4> <p>Strings containing Python decimal integer literals and Python float literals will be supported. In this transformation there is no loss of information, as the string is directly converted to Decimal (there is not an intermediate conversion through float):</p> <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">Decimal</span><span class="p">(</span><span class="s2">"-12"</span><span class="p">)</span> <span class="n">Decimal</span><span class="p">(</span><span class="s2">"23.2e-7"</span><span class="p">)</span> </pre></div> </div> <p>Also, you can construct in this way all special values (Infinity and Not a Number):</p> <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">Decimal</span><span class="p">(</span><span class="s2">"Inf"</span><span class="p">)</span> <span class="n">Decimal</span><span class="p">(</span><span class="s2">"NaN"</span><span class="p">)</span> </pre></div> </div> </section> <section id="from-float"> <h4><a class="toc-backref" href="#from-float" role="doc-backlink">From float</a></h4> <p>The initial discussion on this item was what should happen when passing floating point to the constructor:</p> <ol class="arabic simple"> <li><code class="docutils literal notranslate"><span class="pre">Decimal(1.1)</span> <span class="pre">==</span> <span class="pre">Decimal('1.1')</span></code></li> <li><code class="docutils literal notranslate"><span class="pre">Decimal(1.1)</span> <span class="pre">==</span> <span class="pre">Decimal('110000000000000008881784197001252...e-51')</span></code></li> <li>an exception is raised</li> </ol> <p>Several people alleged that (1) is the better option here, because it’s what you expect when writing <code class="docutils literal notranslate"><span class="pre">Decimal(1.1)</span></code>. And quoting John Roth, it’s easy to implement:</p> <blockquote> <div>It’s not at all difficult to find where the actual number ends and where the fuzz begins. You can do it visually, and the algorithms to do it are quite well known.</div></blockquote> <p>But If I <em>really</em> want my number to be <code class="docutils literal notranslate"><span class="pre">Decimal('110000000000000008881784197001252...e-51')</span></code>, why can’t I write <code class="docutils literal notranslate"><span class="pre">Decimal(1.1)</span></code>? Why should I expect Decimal to be “rounding” it? Remember that <code class="docutils literal notranslate"><span class="pre">1.1</span></code> <em>is</em> binary floating point, so I can predict the result. It’s not intuitive to a beginner, but that’s the way it is.</p> <p>Anyway, Paul Moore showed that (1) can’t work, because:</p> <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="p">(</span><span class="mi">1</span><span class="p">)</span> <span class="n">says</span> <span class="n">D</span><span class="p">(</span><span class="mf">1.1</span><span class="p">)</span> <span class="o">==</span> <span class="n">D</span><span class="p">(</span><span class="s1">'1.1'</span><span class="p">)</span> <span class="n">but</span> <span class="mf">1.1</span> <span class="o">==</span> <span class="mf">1.1000000000000001</span> <span class="n">so</span> <span class="n">D</span><span class="p">(</span><span class="mf">1.1</span><span class="p">)</span> <span class="o">==</span> <span class="n">D</span><span class="p">(</span><span class="mf">1.1000000000000001</span><span class="p">)</span> <span class="n">together</span><span class="p">:</span> <span class="n">D</span><span class="p">(</span><span class="mf">1.1000000000000001</span><span class="p">)</span> <span class="o">==</span> <span class="n">D</span><span class="p">(</span><span class="s1">'1.1'</span><span class="p">)</span> </pre></div> </div> <p>which is wrong, because if I write <code class="docutils literal notranslate"><span class="pre">Decimal('1.1')</span></code> it is exact, not <code class="docutils literal notranslate"><span class="pre">D(1.1000000000000001)</span></code>. He also proposed to have an explicit conversion to float. bokr says you need to put the precision in the constructor and mwilson agreed:</p> <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">d</span> <span class="o">=</span> <span class="n">Decimal</span> <span class="p">(</span><span class="mf">1.1</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span> <span class="c1"># take float value to 1 decimal place</span> <span class="n">d</span> <span class="o">=</span> <span class="n">Decimal</span> <span class="p">(</span><span class="mf">1.1</span><span class="p">)</span> <span class="c1"># gets `places` from pre-set context</span> </pre></div> </div> <p>But Alex Martelli says that:</p> <blockquote> <div>Constructing with some specified precision would be fine. Thus, I think “construction from float with some default precision” runs a substantial risk of tricking naive users.</div></blockquote> <p>So, the accepted solution through c.l.p is that you can not call Decimal with a float. Instead you must use a method: Decimal.from_float(). The syntax:</p> <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">Decimal</span><span class="o">.</span><span class="n">from_float</span><span class="p">(</span><span class="n">floatNumber</span><span class="p">,</span> <span class="p">[</span><span class="n">decimal_places</span><span class="p">])</span> </pre></div> </div> <p>where <code class="docutils literal notranslate"><span class="pre">floatNumber</span></code> is the float number origin of the construction and <code class="docutils literal notranslate"><span class="pre">decimal_places</span></code> are the number of digits after the decimal point where you apply a round-half-up rounding, if any. In this way you can do, for example:</p> <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">Decimal</span><span class="o">.</span><span class="n">from_float</span><span class="p">(</span><span class="mf">1.1</span><span class="p">,</span> <span class="mi">2</span><span class="p">):</span> <span class="n">The</span> <span class="n">same</span> <span class="k">as</span> <span class="n">doing</span> <span class="n">Decimal</span><span class="p">(</span><span class="s1">'1.1'</span><span class="p">)</span><span class="o">.</span> <span class="n">Decimal</span><span class="o">.</span><span class="n">from_float</span><span class="p">(</span><span class="mf">1.1</span><span class="p">,</span> <span class="mi">16</span><span class="p">):</span> <span class="n">The</span> <span class="n">same</span> <span class="k">as</span> <span class="n">doing</span> <span class="n">Decimal</span><span class="p">(</span><span class="s1">'1.1000000000000001'</span><span class="p">)</span><span class="o">.</span> <span class="n">Decimal</span><span class="o">.</span><span class="n">from_float</span><span class="p">(</span><span class="mf">1.1</span><span class="p">):</span> <span class="n">The</span> <span class="n">same</span> <span class="k">as</span> <span class="n">doing</span> <span class="n">Decimal</span><span class="p">(</span><span class="s1">'1100000000000000088817841970012523233890533447265625e-51'</span><span class="p">)</span><span class="o">.</span> </pre></div> </div> <p>Based on later discussions, it was decided to omit from_float() from the API for Py2.4. Several ideas contributed to the thought process:</p> <ul> <li>Interactions between decimal and binary floating point force the user to deal with tricky issues of representation and round-off. Avoidance of those issues is a primary reason for having the module in the first place.</li> <li>The first release of the module should focus on that which is safe, minimal, and essential.</li> <li>While theoretically nice, real world use cases for interactions between floats and decimals are lacking. Java included float/decimal conversions to handle an obscure case where calculations are best performed in decimal even though a legacy data structure requires the inputs and outputs to be stored in binary floating point.</li> <li>If the need arises, users can use string representations as an intermediate type. The advantage of this approach is that it makes explicit the assumptions about precision and representation (no wondering what is going on under the hood).</li> <li>The Java docs for BigDecimal(double val) reflected their experiences with the constructor:<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">The</span> <span class="n">results</span> <span class="n">of</span> <span class="n">this</span> <span class="n">constructor</span> <span class="n">can</span> <span class="n">be</span> <span class="n">somewhat</span> <span class="n">unpredictable</span> <span class="ow">and</span> <span class="n">its</span> <span class="n">use</span> <span class="ow">is</span> <span class="n">generally</span> <span class="ow">not</span> <span class="n">recommended</span><span class="o">.</span> </pre></div> </div> </li> </ul> </section> <section id="from-tuples"> <h4><a class="toc-backref" href="#from-tuples" role="doc-backlink">From tuples</a></h4> <p>Aahz suggested to construct from tuples: it’s easier to implement <code class="docutils literal notranslate"><span class="pre">eval()</span></code>’s round trip and “someone who has numeric values representing a Decimal does not need to convert them to a string.”</p> <p>The structure will be a tuple of three elements: sign, number and exponent. The sign is 1 or 0, the number is a tuple of decimal digits and the exponent is a signed int or long:</p> <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">Decimal</span><span class="p">((</span><span class="mi">1</span><span class="p">,</span> <span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">5</span><span class="p">),</span> <span class="o">-</span><span class="mi">2</span><span class="p">))</span> <span class="c1"># for -32.25</span> </pre></div> </div> <p>Of course, you can construct in this way all special values:</p> <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">Decimal</span><span class="p">(</span> <span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="p">(</span><span class="mi">0</span><span class="p">,),</span> <span class="s1">'F'</span><span class="p">)</span> <span class="p">)</span> <span class="c1"># for Infinity</span> <span class="n">Decimal</span><span class="p">(</span> <span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="p">(</span><span class="mi">0</span><span class="p">,),</span> <span class="s1">'n'</span><span class="p">)</span> <span class="p">)</span> <span class="c1"># for Not a Number</span> </pre></div> </div> </section> <section id="from-decimal"> <h4><a class="toc-backref" href="#from-decimal" role="doc-backlink">From Decimal</a></h4> <p>No mystery here, just a copy.</p> </section> <section id="syntax-for-all-cases"> <h4><a class="toc-backref" href="#syntax-for-all-cases" role="doc-backlink">Syntax for All Cases</a></h4> <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">Decimal</span><span class="p">(</span><span class="n">value1</span><span class="p">)</span> <span class="n">Decimal</span><span class="o">.</span><span class="n">from_float</span><span class="p">(</span><span class="n">value2</span><span class="p">,</span> <span class="p">[</span><span class="n">decimal_places</span><span class="p">])</span> </pre></div> </div> <p>where <code class="docutils literal notranslate"><span class="pre">value1</span></code> can be int, long, string, 3-tuple or Decimal, <code class="docutils literal notranslate"><span class="pre">value2</span></code> can only be float, and <code class="docutils literal notranslate"><span class="pre">decimal_places</span></code> is an optional non negative int.</p> </section> <section id="creating-from-context"> <h4><a class="toc-backref" href="#creating-from-context" role="doc-backlink">Creating from Context</a></h4> <p>This item arose in python-dev from two sources in parallel. Ka-Ping Yee proposes to pass the context as an argument at instance creation (he wants the context he passes to be used only in creation time: “It would not be persistent”). Tony Meyer asks from_string to honor the context if it receives a parameter “honour_context” with a True value. (I don’t like it, because the doc specifies that the context be honored and I don’t want the method to comply with the specification regarding the value of an argument.)</p> <p>Tim Peters gives us a reason to have a creation that uses context:</p> <blockquote> <div>In general number-crunching, literals may be given to high precision, but that precision isn’t free and <em>usually</em> isn’t needed</div></blockquote> <p>Casey Duncan wants to use another method, not a bool arg:</p> <blockquote> <div>I find boolean arguments a general anti-pattern, especially given we have class methods. Why not use an alternate constructor like Decimal.rounded_to_context(“3.14159265”).</div></blockquote> <p>In the process of deciding the syntax of that, Tim came up with a better idea: he proposes not to have a method in Decimal to create with a different context, but having instead a method in Context to create a Decimal instance. Basically, instead of:</p> <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">D</span><span class="o">.</span><span class="n">using_context</span><span class="p">(</span><span class="n">number</span><span class="p">,</span> <span class="n">context</span><span class="p">)</span> </pre></div> </div> <p>it will be:</p> <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">context</span><span class="o">.</span><span class="n">create_decimal</span><span class="p">(</span><span class="n">number</span><span class="p">)</span> </pre></div> </div> <p>From Tim:</p> <blockquote> <div>While all operations in the spec except for the two to-string operations use context, no operations in the spec support an optional local context. That the Decimal() constructor ignores context by default is an extension to the spec. We must supply a context-honoring from-string operation to meet the spec. I recommend against any concept of “local context” in any operation – it complicates the model and isn’t necessary.</div></blockquote> <p>So, we decided to use a context method to create a Decimal that will use (only to be created) that context in particular (for further operations it will use the context of the thread). But, a method with what name?</p> <p>Tim Peters proposes three methods to create from diverse sources (from_string, from_int, from_float). I proposed to use one method, <code class="docutils literal notranslate"><span class="pre">create_decimal()</span></code>, without caring about the data type. Michael Chermside: “The name just fits my brain. The fact that it uses the context is obvious from the fact that it’s Context method”.</p> <p>The community agreed with that. I think that it’s OK because a newbie will not be using the creation method from Context (the separate method in Decimal to construct from float is just to prevent newbies from encountering binary floating point issues).</p> <p>So, in short, if you want to create a Decimal instance using a particular context (that will be used just at creation time and not any further), you’ll have to use a method of that context:</p> <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="c1"># n is any datatype accepted in Decimal(n) plus float</span> <span class="n">mycontext</span><span class="o">.</span><span class="n">create_decimal</span><span class="p">(</span><span class="n">n</span><span class="p">)</span> </pre></div> </div> <p>Example:</p> <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="c1"># create a standard decimal instance</span> <span class="gp">>>> </span><span class="n">Decimal</span><span class="p">(</span><span class="s2">"11.2233445566778899"</span><span class="p">)</span> <span class="go">Decimal("11.2233445566778899")</span> <span class="gp">>>></span> <span class="gp">>>> </span><span class="c1"># create a decimal instance using the thread context</span> <span class="gp">>>> </span><span class="n">thread_context</span> <span class="o">=</span> <span class="n">getcontext</span><span class="p">()</span> <span class="gp">>>> </span><span class="n">thread_context</span><span class="o">.</span><span class="n">prec</span> <span class="go">28</span> <span class="gp">>>> </span><span class="n">thread_context</span><span class="o">.</span><span class="n">create_decimal</span><span class="p">(</span><span class="s2">"11.2233445566778899"</span><span class="p">)</span> <span class="go">Decimal("11.2233445566778899")</span> <span class="gp">>>></span> <span class="gp">>>> </span><span class="c1"># create a decimal instance using other context</span> <span class="gp">>>> </span><span class="n">other_context</span> <span class="o">=</span> <span class="n">thread_context</span><span class="o">.</span><span class="n">copy</span><span class="p">()</span> <span class="gp">>>> </span><span class="n">other_context</span><span class="o">.</span><span class="n">prec</span> <span class="o">=</span> <span class="mi">4</span> <span class="gp">>>> </span><span class="n">other_context</span><span class="o">.</span><span class="n">create_decimal</span><span class="p">(</span><span class="s2">"11.2233445566778899"</span><span class="p">)</span> <span class="go">Decimal("11.22")</span> </pre></div> </div> </section> </section> <section id="implicit-construction"> <h3><a class="toc-backref" href="#implicit-construction" role="doc-backlink">Implicit construction</a></h3> <p>As the implicit construction is the consequence of an operation, it will be affected by the context as is detailed in each point.</p> <p>John Roth suggested that “The other type should be handled in the same way the decimal() constructor would handle it”. But Alex Martelli thinks that</p> <blockquote> <div>this total breach with Python tradition would be a terrible mistake. 23+”43” is NOT handled in the same way as 23+int(“45”), and a VERY good thing that is too. It’s a completely different thing for a user to EXPLICITLY indicate they want construction (conversion) and to just happen to sum two objects one of which by mistake could be a string.</div></blockquote> <p>So, here I define the behaviour again for each data type.</p> <section id="id15"> <h4><a class="toc-backref" href="#id15" role="doc-backlink">From int or long</a></h4> <p>An int or long is a treated like a Decimal explicitly constructed from Decimal(str(x)) in the current context (meaning that the to-string rules for rounding are applied and the appropriate flags are set). This guarantees that expressions like <code class="docutils literal notranslate"><span class="pre">Decimal('1234567')</span> <span class="pre">+</span> <span class="pre">13579</span></code> match the mental model of <code class="docutils literal notranslate"><span class="pre">Decimal('1234567')</span> <span class="pre">+</span> <span class="pre">Decimal('13579')</span></code>. That model works because all integers are representable as strings without representation error.</p> </section> <section id="id16"> <h4><a class="toc-backref" href="#id16" role="doc-backlink">From string</a></h4> <p>Everybody agrees to raise an exception here.</p> </section> <section id="id17"> <h4><a class="toc-backref" href="#id17" role="doc-backlink">From float</a></h4> <p>Aahz is strongly opposed to interact with float, suggesting an explicit conversion:</p> <blockquote> <div>The problem is that Decimal is capable of greater precision, accuracy, and range than float.</div></blockquote> <p>The example of the valid python expression, <code class="docutils literal notranslate"><span class="pre">35</span> <span class="pre">+</span> <span class="pre">1.1</span></code>, seems to suggest that <code class="docutils literal notranslate"><span class="pre">Decimal(35)</span> <span class="pre">+</span> <span class="pre">1.1</span></code> should also be valid. However, a closer look shows that it only demonstrates the feasibility of integer to floating point conversions. Hence, the correct analog for decimal floating point is <code class="docutils literal notranslate"><span class="pre">35</span> <span class="pre">+</span> <span class="pre">Decimal(1.1)</span></code>. Both coercions, int-to-float and int-to-Decimal, can be done without incurring representation error.</p> <p>The question of how to coerce between binary and decimal floating point is more complex. I proposed allowing the interaction with float, making an exact conversion and raising ValueError if exceeds the precision in the current context (this is maybe too tricky, because for example with a precision of 9, <code class="docutils literal notranslate"><span class="pre">Decimal(35)</span> <span class="pre">+</span> <span class="pre">1.2</span></code> is OK but <code class="docutils literal notranslate"><span class="pre">Decimal(35)</span> <span class="pre">+</span> <span class="pre">1.1</span></code> raises an error).</p> <p>This resulted to be too tricky. So tricky, that c.l.p agreed to raise TypeError in this case: you could not mix Decimal and float.</p> </section> <section id="id18"> <h4><a class="toc-backref" href="#id18" role="doc-backlink">From Decimal</a></h4> <p>There isn’t any issue here.</p> </section> </section> <section id="use-of-context"> <h3><a class="toc-backref" href="#use-of-context" role="doc-backlink">Use of Context</a></h3> <p>In the last pre-PEP I said that “The Context must be omnipresent, meaning that changes to it affects all the current and future Decimal instances”. I was wrong. In response, John Roth said:</p> <blockquote> <div>The context should be selectable for the particular usage. That is, it should be possible to have several different contexts in play at one time in an application.</div></blockquote> <p>In comp.lang.python, Aahz explained that the idea is to have a “context per thread”. So, all the instances of a thread belongs to a context, and you can change a context in thread A (and the behaviour of the instances of that thread) without changing nothing in thread B.</p> <p>Also, and again correcting me, he said:</p> <blockquote> <div>(the) Context applies only to operations, not to Decimal instances; changing the Context does not affect existing instances if there are no operations on them.</div></blockquote> <p>Arguing about special cases when there’s need to perform operations with other rules that those of the current context, Tim Peters said that the context will have the operations as methods. This way, the user “can create whatever private context object(s) it needs, and spell arithmetic as explicit method calls on its private context object(s), so that the default thread context object is neither consulted nor modified”.</p> </section> <section id="python-usability"> <h3><a class="toc-backref" href="#python-usability" role="doc-backlink">Python Usability</a></h3> <ul> <li>Decimal should support the basic arithmetic (<code class="docutils literal notranslate"><span class="pre">+,</span> <span class="pre">-,</span> <span class="pre">*,</span> <span class="pre">/,</span> <span class="pre">//,</span> <span class="pre">**,</span> <span class="pre">%,</span> <span class="pre">divmod</span></code>) and comparison (<code class="docutils literal notranslate"><span class="pre">==,</span> <span class="pre">!=,</span> <span class="pre"><,</span> <span class="pre">>,</span> <span class="pre"><=,</span> <span class="pre">>=,</span> <span class="pre">cmp</span></code>) operators in the following cases (check <a class="reference internal" href="#implicit-construction">Implicit Construction</a> to see what types could OtherType be, and what happens in each case):<ul class="simple"> <li>Decimal op Decimal</li> <li>Decimal op otherType</li> <li>otherType op Decimal</li> <li>Decimal op= Decimal</li> <li>Decimal op= otherType</li> </ul> </li> <li>Decimal should support unary operators (<code class="docutils literal notranslate"><span class="pre">-,</span> <span class="pre">+,</span> <span class="pre">abs</span></code>).</li> <li>repr() should round trip, meaning that:<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">m</span> <span class="o">=</span> <span class="n">Decimal</span><span class="p">(</span><span class="o">...</span><span class="p">)</span> <span class="n">m</span> <span class="o">==</span> <span class="nb">eval</span><span class="p">(</span><span class="nb">repr</span><span class="p">(</span><span class="n">m</span><span class="p">))</span> </pre></div> </div> </li> <li>Decimal should be immutable.</li> <li>Decimal should support the built-in methods:<ul class="simple"> <li>min, max</li> <li>float, int, long</li> <li>str, repr</li> <li>hash</li> <li>bool (0 is false, otherwise true)</li> </ul> </li> </ul> <p>There’s been some discussion in python-dev about the behaviour of <code class="docutils literal notranslate"><span class="pre">hash()</span></code>. The community agrees that if the values are the same, the hashes of those values should also be the same. So, while Decimal(25) == 25 is True, hash(Decimal(25)) should be equal to hash(25).</p> <p>The detail is that you can NOT compare Decimal to floats or strings, so we should not worry about them giving the same hashes. In short:</p> <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="nb">hash</span><span class="p">(</span><span class="n">n</span><span class="p">)</span> <span class="o">==</span> <span class="nb">hash</span><span class="p">(</span><span class="n">Decimal</span><span class="p">(</span><span class="n">n</span><span class="p">))</span> <span class="c1"># Only if n is int, long, or Decimal</span> </pre></div> </div> <p>Regarding str() and repr() behaviour, Ka-Ping Yee proposes that repr() have the same behaviour as str() and Tim Peters proposes that str() behave like the to-scientific-string operation from the Spec.</p> <p>This is possible, because (from Aahz): “The string form already contains all the necessary information to reconstruct a Decimal object”.</p> <p>And it also complies with the Spec; Tim Peters:</p> <blockquote> <div>There’s no requirement to have a method <em>named</em> “to_sci_string”, the only requirement is that <em>some</em> way to spell to-sci-string’s functionality be supplied. The meaning of to-sci-string is precisely specified by the standard, and is a good choice for both str(Decimal) and repr(Decimal).</div></blockquote> </section> </section> <section id="documentation"> <h2><a class="toc-backref" href="#documentation" role="doc-backlink">Documentation</a></h2> <p>This section explains all the public methods and attributes of Decimal and Context.</p> <section id="decimal-attributes"> <h3><a class="toc-backref" href="#decimal-attributes" role="doc-backlink">Decimal Attributes</a></h3> <p>Decimal has no public attributes. The internal information is stored in slots and should not be accessed by end users.</p> </section> <section id="decimal-methods"> <h3><a class="toc-backref" href="#decimal-methods" role="doc-backlink">Decimal Methods</a></h3> <p>Following are the conversion and arithmetic operations defined in the Spec, and how that functionality can be achieved with the actual implementation.</p> <ul> <li>to-scientific-string: Use builtin function <code class="docutils literal notranslate"><span class="pre">str()</span></code>:<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">d</span> <span class="o">=</span> <span class="n">Decimal</span><span class="p">(</span><span class="s1">'123456789012.345'</span><span class="p">)</span> <span class="gp">>>> </span><span class="nb">str</span><span class="p">(</span><span class="n">d</span><span class="p">)</span> <span class="go">'1.23456789E+11'</span> </pre></div> </div> </li> <li>to-engineering-string: Use method <code class="docutils literal notranslate"><span class="pre">to_eng_string()</span></code>:<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">d</span> <span class="o">=</span> <span class="n">Decimal</span><span class="p">(</span><span class="s1">'123456789012.345'</span><span class="p">)</span> <span class="gp">>>> </span><span class="n">d</span><span class="o">.</span><span class="n">to_eng_string</span><span class="p">()</span> <span class="go">'123.456789E+9'</span> </pre></div> </div> </li> <li>to-number: Use Context method <code class="docutils literal notranslate"><span class="pre">create_decimal()</span></code>. The standard constructor or <code class="docutils literal notranslate"><span class="pre">from_float()</span></code> constructor cannot be used because these do not use the context (as is specified in the Spec for this conversion).</li> <li>abs: Use builtin function <code class="docutils literal notranslate"><span class="pre">abs()</span></code>:<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">d</span> <span class="o">=</span> <span class="n">Decimal</span><span class="p">(</span><span class="s1">'-15.67'</span><span class="p">)</span> <span class="gp">>>> </span><span class="nb">abs</span><span class="p">(</span><span class="n">d</span><span class="p">)</span> <span class="go">Decimal('15.67')</span> </pre></div> </div> </li> <li>add: Use operator <code class="docutils literal notranslate"><span class="pre">+</span></code>:<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">d</span> <span class="o">=</span> <span class="n">Decimal</span><span class="p">(</span><span class="s1">'15.6'</span><span class="p">)</span> <span class="gp">>>> </span><span class="n">d</span> <span class="o">+</span> <span class="mi">8</span> <span class="go">Decimal('23.6')</span> </pre></div> </div> </li> <li>subtract: Use operator <code class="docutils literal notranslate"><span class="pre">-</span></code>:<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">d</span> <span class="o">=</span> <span class="n">Decimal</span><span class="p">(</span><span class="s1">'15.6'</span><span class="p">)</span> <span class="gp">>>> </span><span class="n">d</span> <span class="o">-</span> <span class="mi">8</span> <span class="go">Decimal('7.6')</span> </pre></div> </div> </li> <li>compare: Use method <code class="docutils literal notranslate"><span class="pre">compare()</span></code>. This method (and not the built-in function cmp()) should only be used when dealing with <em>special values</em>:<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">d</span> <span class="o">=</span> <span class="n">Decimal</span><span class="p">(</span><span class="s1">'-15.67'</span><span class="p">)</span> <span class="gp">>>> </span><span class="n">nan</span> <span class="o">=</span> <span class="n">Decimal</span><span class="p">(</span><span class="s1">'NaN'</span><span class="p">)</span> <span class="gp">>>> </span><span class="n">d</span><span class="o">.</span><span class="n">compare</span><span class="p">(</span><span class="mi">23</span><span class="p">)</span> <span class="go">'-1'</span> <span class="gp">>>> </span><span class="n">d</span><span class="o">.</span><span class="n">compare</span><span class="p">(</span><span class="n">nan</span><span class="p">)</span> <span class="go">'NaN'</span> <span class="gp">>>> </span><span class="n">cmp</span><span class="p">(</span><span class="n">d</span><span class="p">,</span> <span class="mi">23</span><span class="p">)</span> <span class="go">-1</span> <span class="gp">>>> </span><span class="n">cmp</span><span class="p">(</span><span class="n">d</span><span class="p">,</span> <span class="n">nan</span><span class="p">)</span> <span class="go">1</span> </pre></div> </div> </li> <li>divide: Use operator <code class="docutils literal notranslate"><span class="pre">/</span></code>:<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">d</span> <span class="o">=</span> <span class="n">Decimal</span><span class="p">(</span><span class="s1">'-15.67'</span><span class="p">)</span> <span class="gp">>>> </span><span class="n">d</span> <span class="o">/</span> <span class="mi">2</span> <span class="go">Decimal('-7.835')</span> </pre></div> </div> </li> <li>divide-integer: Use operator <code class="docutils literal notranslate"><span class="pre">//</span></code>:<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">d</span> <span class="o">=</span> <span class="n">Decimal</span><span class="p">(</span><span class="s1">'-15.67'</span><span class="p">)</span> <span class="gp">>>> </span><span class="n">d</span> <span class="o">//</span> <span class="mi">2</span> <span class="go">Decimal('-7')</span> </pre></div> </div> </li> <li>max: Use method <code class="docutils literal notranslate"><span class="pre">max()</span></code>. Only use this method (and not the built-in function max()) when dealing with <em>special values</em>:<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">d</span> <span class="o">=</span> <span class="n">Decimal</span><span class="p">(</span><span class="s1">'15'</span><span class="p">)</span> <span class="gp">>>> </span><span class="n">nan</span> <span class="o">=</span> <span class="n">Decimal</span><span class="p">(</span><span class="s1">'NaN'</span><span class="p">)</span> <span class="gp">>>> </span><span class="n">d</span><span class="o">.</span><span class="n">max</span><span class="p">(</span><span class="mi">8</span><span class="p">)</span> <span class="go">Decimal('15')</span> <span class="gp">>>> </span><span class="n">d</span><span class="o">.</span><span class="n">max</span><span class="p">(</span><span class="n">nan</span><span class="p">)</span> <span class="go">Decimal('NaN')</span> </pre></div> </div> </li> <li>min: Use method <code class="docutils literal notranslate"><span class="pre">min()</span></code>. Only use this method (and not the built-in function min()) when dealing with <em>special values</em>:<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">d</span> <span class="o">=</span> <span class="n">Decimal</span><span class="p">(</span><span class="s1">'15'</span><span class="p">)</span> <span class="gp">>>> </span><span class="n">nan</span> <span class="o">=</span> <span class="n">Decimal</span><span class="p">(</span><span class="s1">'NaN'</span><span class="p">)</span> <span class="gp">>>> </span><span class="n">d</span><span class="o">.</span><span class="n">min</span><span class="p">(</span><span class="mi">8</span><span class="p">)</span> <span class="go">Decimal('8')</span> <span class="gp">>>> </span><span class="n">d</span><span class="o">.</span><span class="n">min</span><span class="p">(</span><span class="n">nan</span><span class="p">)</span> <span class="go">Decimal('NaN')</span> </pre></div> </div> </li> <li>minus: Use unary operator <code class="docutils literal notranslate"><span class="pre">-</span></code>:<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">d</span> <span class="o">=</span> <span class="n">Decimal</span><span class="p">(</span><span class="s1">'-15.67'</span><span class="p">)</span> <span class="gp">>>> </span><span class="o">-</span><span class="n">d</span> <span class="go">Decimal('15.67')</span> </pre></div> </div> </li> <li>plus: Use unary operator <code class="docutils literal notranslate"><span class="pre">+</span></code>:<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">d</span> <span class="o">=</span> <span class="n">Decimal</span><span class="p">(</span><span class="s1">'-15.67'</span><span class="p">)</span> <span class="gp">>>> </span><span class="o">+</span><span class="n">d</span> <span class="go">Decimal('-15.67')</span> </pre></div> </div> </li> <li>multiply: Use operator <code class="docutils literal notranslate"><span class="pre">*</span></code>:<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">d</span> <span class="o">=</span> <span class="n">Decimal</span><span class="p">(</span><span class="s1">'5.7'</span><span class="p">)</span> <span class="gp">>>> </span><span class="n">d</span> <span class="o">*</span> <span class="mi">3</span> <span class="go">Decimal('17.1')</span> </pre></div> </div> </li> <li>normalize: Use method <code class="docutils literal notranslate"><span class="pre">normalize()</span></code>:<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">d</span> <span class="o">=</span> <span class="n">Decimal</span><span class="p">(</span><span class="s1">'123.45000'</span><span class="p">)</span> <span class="gp">>>> </span><span class="n">d</span><span class="o">.</span><span class="n">normalize</span><span class="p">()</span> <span class="go">Decimal('123.45')</span> <span class="gp">>>> </span><span class="n">d</span> <span class="o">=</span> <span class="n">Decimal</span><span class="p">(</span><span class="s1">'120.00'</span><span class="p">)</span> <span class="gp">>>> </span><span class="n">d</span><span class="o">.</span><span class="n">normalize</span><span class="p">()</span> <span class="go">Decimal('1.2E+2')</span> </pre></div> </div> </li> <li>quantize: Use method <code class="docutils literal notranslate"><span class="pre">quantize()</span></code>:<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">d</span> <span class="o">=</span> <span class="n">Decimal</span><span class="p">(</span><span class="s1">'2.17'</span><span class="p">)</span> <span class="gp">>>> </span><span class="n">d</span><span class="o">.</span><span class="n">quantize</span><span class="p">(</span><span class="n">Decimal</span><span class="p">(</span><span class="s1">'0.001'</span><span class="p">))</span> <span class="go">Decimal('2.170')</span> <span class="gp">>>> </span><span class="n">d</span><span class="o">.</span><span class="n">quantize</span><span class="p">(</span><span class="n">Decimal</span><span class="p">(</span><span class="s1">'0.1'</span><span class="p">))</span> <span class="go">Decimal('2.2')</span> </pre></div> </div> </li> <li>remainder: Use operator <code class="docutils literal notranslate"><span class="pre">%</span></code>:<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">d</span> <span class="o">=</span> <span class="n">Decimal</span><span class="p">(</span><span class="s1">'10'</span><span class="p">)</span> <span class="gp">>>> </span><span class="n">d</span> <span class="o">%</span> <span class="mi">3</span> <span class="go">Decimal('1')</span> <span class="gp">>>> </span><span class="n">d</span> <span class="o">%</span> <span class="mi">6</span> <span class="go">Decimal('4')</span> </pre></div> </div> </li> <li>remainder-near: Use method <code class="docutils literal notranslate"><span class="pre">remainder_near()</span></code>:<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">d</span> <span class="o">=</span> <span class="n">Decimal</span><span class="p">(</span><span class="s1">'10'</span><span class="p">)</span> <span class="gp">>>> </span><span class="n">d</span><span class="o">.</span><span class="n">remainder_near</span><span class="p">(</span><span class="mi">3</span><span class="p">)</span> <span class="go">Decimal('1')</span> <span class="gp">>>> </span><span class="n">d</span><span class="o">.</span><span class="n">remainder_near</span><span class="p">(</span><span class="mi">6</span><span class="p">)</span> <span class="go">Decimal('-2')</span> </pre></div> </div> </li> <li>round-to-integral-value: Use method <code class="docutils literal notranslate"><span class="pre">to_integral()</span></code>:<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">d</span> <span class="o">=</span> <span class="n">Decimal</span><span class="p">(</span><span class="s1">'-123.456'</span><span class="p">)</span> <span class="gp">>>> </span><span class="n">d</span><span class="o">.</span><span class="n">to_integral</span><span class="p">()</span> <span class="go">Decimal('-123')</span> </pre></div> </div> </li> <li>same-quantum: Use method <code class="docutils literal notranslate"><span class="pre">same_quantum()</span></code>:<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">d</span> <span class="o">=</span> <span class="n">Decimal</span><span class="p">(</span><span class="s1">'123.456'</span><span class="p">)</span> <span class="gp">>>> </span><span class="n">d</span><span class="o">.</span><span class="n">same_quantum</span><span class="p">(</span><span class="n">Decimal</span><span class="p">(</span><span class="s1">'0.001'</span><span class="p">))</span> <span class="go">True</span> <span class="gp">>>> </span><span class="n">d</span><span class="o">.</span><span class="n">same_quantum</span><span class="p">(</span><span class="n">Decimal</span><span class="p">(</span><span class="s1">'0.01'</span><span class="p">))</span> <span class="go">False</span> </pre></div> </div> </li> <li>square-root: Use method <code class="docutils literal notranslate"><span class="pre">sqrt()</span></code>:<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">d</span> <span class="o">=</span> <span class="n">Decimal</span><span class="p">(</span><span class="s1">'123.456'</span><span class="p">)</span> <span class="gp">>>> </span><span class="n">d</span><span class="o">.</span><span class="n">sqrt</span><span class="p">()</span> <span class="go">Decimal('11.1110756')</span> </pre></div> </div> </li> <li>power: User operator <code class="docutils literal notranslate"><span class="pre">**</span></code>:<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">d</span> <span class="o">=</span> <span class="n">Decimal</span><span class="p">(</span><span class="s1">'12.56'</span><span class="p">)</span> <span class="gp">>>> </span><span class="n">d</span> <span class="o">**</span> <span class="mi">2</span> <span class="go">Decimal('157.7536')</span> </pre></div> </div> </li> </ul> <p>Following are other methods and why they exist:</p> <ul> <li><code class="docutils literal notranslate"><span class="pre">adjusted()</span></code>: Returns the adjusted exponent. This concept is defined in the Spec: the adjusted exponent is the value of the exponent of a number when that number is expressed as though in scientific notation with one digit before any decimal point:<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">d</span> <span class="o">=</span> <span class="n">Decimal</span><span class="p">(</span><span class="s1">'12.56'</span><span class="p">)</span> <span class="gp">>>> </span><span class="n">d</span><span class="o">.</span><span class="n">adjusted</span><span class="p">()</span> <span class="go">1</span> </pre></div> </div> </li> <li><code class="docutils literal notranslate"><span class="pre">from_float()</span></code>: Class method to create instances from float data types:<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">d</span> <span class="o">=</span> <span class="n">Decimal</span><span class="o">.</span><span class="n">from_float</span><span class="p">(</span><span class="mf">12.35</span><span class="p">)</span> <span class="gp">>>> </span><span class="n">d</span> <span class="go">Decimal('12.3500000')</span> </pre></div> </div> </li> <li><code class="docutils literal notranslate"><span class="pre">as_tuple()</span></code>: Show the internal structure of the Decimal, the triple tuple. This method is not required by the Spec, but Tim Peters proposed it and the community agreed to have it (it’s useful for developing and debugging):<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">d</span> <span class="o">=</span> <span class="n">Decimal</span><span class="p">(</span><span class="s1">'123.4'</span><span class="p">)</span> <span class="gp">>>> </span><span class="n">d</span><span class="o">.</span><span class="n">as_tuple</span><span class="p">()</span> <span class="go">(0, (1, 2, 3, 4), -1)</span> <span class="gp">>>> </span><span class="n">d</span> <span class="o">=</span> <span class="n">Decimal</span><span class="p">(</span><span class="s1">'-2.34e5'</span><span class="p">)</span> <span class="gp">>>> </span><span class="n">d</span><span class="o">.</span><span class="n">as_tuple</span><span class="p">()</span> <span class="go">(1, (2, 3, 4), 3)</span> </pre></div> </div> </li> </ul> </section> <section id="context-attributes"> <h3><a class="toc-backref" href="#context-attributes" role="doc-backlink">Context Attributes</a></h3> <p>These are the attributes that can be changed to modify the context.</p> <ul> <li><code class="docutils literal notranslate"><span class="pre">prec</span></code> (int): the precision:<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">c</span><span class="o">.</span><span class="n">prec</span> <span class="go">9</span> </pre></div> </div> </li> <li><code class="docutils literal notranslate"><span class="pre">rounding</span></code> (str): rounding type (how to round):<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">c</span><span class="o">.</span><span class="n">rounding</span> <span class="go">'half_even'</span> </pre></div> </div> </li> <li><code class="docutils literal notranslate"><span class="pre">trap_enablers</span></code> (dict): if trap_enablers[exception] = 1, then an exception is raised when it is caused:<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">c</span><span class="o">.</span><span class="n">trap_enablers</span><span class="p">[</span><span class="n">Underflow</span><span class="p">]</span> <span class="go">0</span> <span class="gp">>>> </span><span class="n">c</span><span class="o">.</span><span class="n">trap_enablers</span><span class="p">[</span><span class="n">Clamped</span><span class="p">]</span> <span class="go">0</span> </pre></div> </div> </li> <li><code class="docutils literal notranslate"><span class="pre">flags</span></code> (dict): when an exception is caused, flags[exception] is incremented (whether or not the trap_enabler is set). Should be reset by the user of Decimal instance:<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">c</span><span class="o">.</span><span class="n">flags</span><span class="p">[</span><span class="n">Underflow</span><span class="p">]</span> <span class="go">0</span> <span class="gp">>>> </span><span class="n">c</span><span class="o">.</span><span class="n">flags</span><span class="p">[</span><span class="n">Clamped</span><span class="p">]</span> <span class="go">0</span> </pre></div> </div> </li> <li><code class="docutils literal notranslate"><span class="pre">Emin</span></code> (int): minimum exponent:<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">c</span><span class="o">.</span><span class="n">Emin</span> <span class="go">-999999999</span> </pre></div> </div> </li> <li><code class="docutils literal notranslate"><span class="pre">Emax</span></code> (int): maximum exponent:<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">c</span><span class="o">.</span><span class="n">Emax</span> <span class="go">999999999</span> </pre></div> </div> </li> <li><code class="docutils literal notranslate"><span class="pre">capitals</span></code> (int): boolean flag to use ‘E’ (True/1) or ‘e’ (False/0) in the string (for example, ‘1.32e+2’ or ‘1.32E+2’):<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">c</span><span class="o">.</span><span class="n">capitals</span> <span class="go">1</span> </pre></div> </div> </li> </ul> </section> <section id="context-methods"> <h3><a class="toc-backref" href="#context-methods" role="doc-backlink">Context Methods</a></h3> <p>The following methods comply with Decimal functionality from the Spec. Be aware that the operations that are called through a specific context use that context and not the thread context.</p> <p>To use these methods, take note that the syntax changes when the operator is binary or unary, for example:</p> <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">mycontext</span><span class="o">.</span><span class="n">abs</span><span class="p">(</span><span class="n">Decimal</span><span class="p">(</span><span class="s1">'-2'</span><span class="p">))</span> <span class="go">'2'</span> <span class="gp">>>> </span><span class="n">mycontext</span><span class="o">.</span><span class="n">multiply</span><span class="p">(</span><span class="n">Decimal</span><span class="p">(</span><span class="s1">'2.3'</span><span class="p">),</span> <span class="mi">5</span><span class="p">)</span> <span class="go">'11.5'</span> </pre></div> </div> <p>So, the following are the Spec operations and conversions and how to achieve them through a context (where <code class="docutils literal notranslate"><span class="pre">d</span></code> is a Decimal instance and <code class="docutils literal notranslate"><span class="pre">n</span></code> a number that can be used in an <a class="reference internal" href="#implicit-construction">Implicit construction</a>):</p> <ul class="simple"> <li>to-scientific-string: <code class="docutils literal notranslate"><span class="pre">to_sci_string(d)</span></code></li> <li>to-engineering-string: <code class="docutils literal notranslate"><span class="pre">to_eng_string(d)</span></code></li> <li>to-number: <code class="docutils literal notranslate"><span class="pre">create_decimal(number)</span></code>, see <a class="reference internal" href="#explicit-construction">Explicit construction</a> for <code class="docutils literal notranslate"><span class="pre">number</span></code>.</li> <li>abs: <code class="docutils literal notranslate"><span class="pre">abs(d)</span></code></li> <li>add: <code class="docutils literal notranslate"><span class="pre">add(d,</span> <span class="pre">n)</span></code></li> <li>subtract: <code class="docutils literal notranslate"><span class="pre">subtract(d,</span> <span class="pre">n)</span></code></li> <li>compare: <code class="docutils literal notranslate"><span class="pre">compare(d,</span> <span class="pre">n)</span></code></li> <li>divide: <code class="docutils literal notranslate"><span class="pre">divide(d,</span> <span class="pre">n)</span></code></li> <li>divide-integer: <code class="docutils literal notranslate"><span class="pre">divide_int(d,</span> <span class="pre">n)</span></code></li> <li>max: <code class="docutils literal notranslate"><span class="pre">max(d,</span> <span class="pre">n)</span></code></li> <li>min: <code class="docutils literal notranslate"><span class="pre">min(d,</span> <span class="pre">n)</span></code></li> <li>minus: <code class="docutils literal notranslate"><span class="pre">minus(d)</span></code></li> <li>plus: <code class="docutils literal notranslate"><span class="pre">plus(d)</span></code></li> <li>multiply: <code class="docutils literal notranslate"><span class="pre">multiply(d,</span> <span class="pre">n)</span></code></li> <li>normalize: <code class="docutils literal notranslate"><span class="pre">normalize(d)</span></code></li> <li>quantize: <code class="docutils literal notranslate"><span class="pre">quantize(d,</span> <span class="pre">d)</span></code></li> <li>remainder: <code class="docutils literal notranslate"><span class="pre">remainder(d)</span></code></li> <li>remainder-near: <code class="docutils literal notranslate"><span class="pre">remainder_near(d)</span></code></li> <li>round-to-integral-value: <code class="docutils literal notranslate"><span class="pre">to_integral(d)</span></code></li> <li>same-quantum: <code class="docutils literal notranslate"><span class="pre">same_quantum(d,</span> <span class="pre">d)</span></code></li> <li>square-root: <code class="docutils literal notranslate"><span class="pre">sqrt(d)</span></code></li> <li>power: <code class="docutils literal notranslate"><span class="pre">power(d,</span> <span class="pre">n)</span></code></li> </ul> <p>The <code class="docutils literal notranslate"><span class="pre">divmod(d,</span> <span class="pre">n)</span></code> method supports decimal functionality through Context.</p> <p>These are methods that return useful information from the Context:</p> <ul> <li><code class="docutils literal notranslate"><span class="pre">Etiny()</span></code>: Minimum exponent considering precision.<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">c</span><span class="o">.</span><span class="n">Emin</span> <span class="go">-999999999</span> <span class="gp">>>> </span><span class="n">c</span><span class="o">.</span><span class="n">Etiny</span><span class="p">()</span> <span class="go">-1000000007</span> </pre></div> </div> </li> <li><code class="docutils literal notranslate"><span class="pre">Etop()</span></code>: Maximum exponent considering precision.<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">c</span><span class="o">.</span><span class="n">Emax</span> <span class="go">999999999</span> <span class="gp">>>> </span><span class="n">c</span><span class="o">.</span><span class="n">Etop</span><span class="p">()</span> <span class="go">999999991</span> </pre></div> </div> </li> <li><code class="docutils literal notranslate"><span class="pre">copy()</span></code>: Returns a copy of the context.</li> </ul> </section> </section> <section id="reference-implementation"> <h2><a class="toc-backref" href="#reference-implementation" role="doc-backlink">Reference Implementation</a></h2> <p>As of Python 2.4-alpha, the code has been checked into the standard library. The latest version is available from:</p> <p><a class="reference external" href="http://svn.python.org/view/python/trunk/Lib/decimal.py">http://svn.python.org/view/python/trunk/Lib/decimal.py</a></p> <p>The test cases are here:</p> <p><a class="reference external" href="http://svn.python.org/view/python/trunk/Lib/test/test_decimal.py">http://svn.python.org/view/python/trunk/Lib/test/test_decimal.py</a></p> </section> <section id="references"> <h2><a class="toc-backref" href="#references" role="doc-backlink">References</a></h2> <aside class="footnote-list brackets"> <aside class="footnote brackets" id="id19" role="doc-footnote"> <dt class="label" id="id19">[1]<em> (<a href='#id1'>1</a>, <a href='#id8'>2</a>) </em></dt> <dd>ANSI standard X3.274-1996 (Programming Language REXX): <a class="reference external" href="http://www.rexxla.org/Standards/ansi.html">http://www.rexxla.org/Standards/ansi.html</a></aside> <aside class="footnote brackets" id="id20" role="doc-footnote"> <dt class="label" id="id20">[2]<em> (<a href='#id2'>1</a>, <a href='#id3'>2</a>, <a href='#id5'>3</a>, <a href='#id6'>4</a>, <a href='#id11'>5</a>, <a href='#id12'>6</a>, <a href='#id13'>7</a>, <a href='#id14'>8</a>) </em></dt> <dd>General Decimal Arithmetic specification (Cowlishaw): <a class="reference external" href="http://speleotrove.com/decimal/decarith.html">http://speleotrove.com/decimal/decarith.html</a> (related documents and links at <a class="reference external" href="http://speleotrove.com/decimal/">http://speleotrove.com/decimal/</a>)</aside> <aside class="footnote brackets" id="id21" role="doc-footnote"> <dt class="label" id="id21">[<a href="#id7">3</a>]</dt> <dd>ANSI/IEEE standard 854-1987 (Radix-Independent Floating-Point Arithmetic): <a class="reference external" href="http://www.cs.berkeley.edu/~ejr/projects/754/private/drafts/854-1987/dir.html">http://www.cs.berkeley.edu/~ejr/projects/754/private/drafts/854-1987/dir.html</a> (unofficial text; official copies can be ordered from <a class="reference external" href="http://standards.ieee.org/catalog/ordering.html">http://standards.ieee.org/catalog/ordering.html</a>)</aside> <aside class="footnote brackets" id="id22" role="doc-footnote"> <dt class="label" id="id22">[<a href="#id4">4</a>]</dt> <dd>Tim Peter’s FixedPoint at SourceForge: <a class="reference external" href="http://fixedpoint.sourceforge.net/">http://fixedpoint.sourceforge.net/</a></aside> <aside class="footnote brackets" id="id23" role="doc-footnote"> <dt class="label" id="id23">[<a href="#id9">5</a>]</dt> <dd>IEEE 754 revision: <a class="reference external" href="http://grouper.ieee.org/groups/754/revision.html">http://grouper.ieee.org/groups/754/revision.html</a></aside> <aside class="footnote brackets" id="id24" role="doc-footnote"> <dt class="label" id="id24">[<a href="#id10">6</a>]</dt> <dd>IEEE 754 references: <a class="reference external" href="http://babbage.cs.qc.edu/courses/cs341/IEEE-754references.html">http://babbage.cs.qc.edu/courses/cs341/IEEE-754references.html</a></aside> </aside> </section> <section id="copyright"> <h2><a class="toc-backref" href="#copyright" role="doc-backlink">Copyright</a></h2> <p>This document has been placed in the public domain.</p> </section> </section> <hr class="docutils" /> <p>Source: <a class="reference external" href="https://github.com/python/peps/blob/main/peps/pep-0327.rst">https://github.com/python/peps/blob/main/peps/pep-0327.rst</a></p> <p>Last modified: <a class="reference external" href="https://github.com/python/peps/commits/main/peps/pep-0327.rst">2025-02-01 08:59:27 GMT</a></p> </article> <nav id="pep-sidebar"> <h2>Contents</h2> <ul> <li><a class="reference internal" href="#abstract">Abstract</a></li> <li><a class="reference internal" href="#motivation">Motivation</a><ul> <li><a class="reference internal" href="#the-problem-with-binary-float">The problem with binary float</a></li> <li><a class="reference internal" href="#why-floating-point">Why floating point?</a></li> <li><a class="reference internal" href="#why-not-rational">Why not rational?</a></li> <li><a class="reference internal" href="#so-what-do-we-have">So, what do we have?</a></li> </ul> </li> <li><a class="reference internal" href="#general-decimal-arithmetic-specification">General Decimal Arithmetic Specification</a><ul> <li><a class="reference internal" href="#the-arithmetic-model">The Arithmetic Model</a></li> <li><a class="reference internal" href="#numbers">Numbers</a></li> <li><a class="reference internal" href="#context">Context</a></li> <li><a class="reference internal" href="#default-contexts">Default Contexts</a></li> <li><a class="reference internal" href="#exceptional-conditions">Exceptional Conditions</a></li> <li><a class="reference internal" href="#rounding-algorithms">Rounding Algorithms</a></li> </ul> </li> <li><a class="reference internal" href="#rationale">Rationale</a><ul> <li><a class="reference internal" href="#explicit-construction">Explicit construction</a><ul> <li><a class="reference internal" href="#from-int-or-long">From int or long</a></li> <li><a class="reference internal" href="#from-string">From string</a></li> <li><a class="reference internal" href="#from-float">From float</a></li> <li><a class="reference internal" href="#from-tuples">From tuples</a></li> <li><a class="reference internal" href="#from-decimal">From Decimal</a></li> <li><a class="reference internal" href="#syntax-for-all-cases">Syntax for All Cases</a></li> <li><a class="reference internal" href="#creating-from-context">Creating from Context</a></li> </ul> </li> <li><a class="reference internal" href="#implicit-construction">Implicit construction</a><ul> <li><a class="reference internal" href="#id15">From int or long</a></li> <li><a class="reference internal" href="#id16">From string</a></li> <li><a class="reference internal" href="#id17">From float</a></li> <li><a class="reference internal" href="#id18">From Decimal</a></li> </ul> </li> <li><a class="reference internal" href="#use-of-context">Use of Context</a></li> <li><a class="reference internal" href="#python-usability">Python Usability</a></li> </ul> </li> <li><a class="reference internal" href="#documentation">Documentation</a><ul> <li><a class="reference internal" href="#decimal-attributes">Decimal Attributes</a></li> <li><a class="reference internal" href="#decimal-methods">Decimal Methods</a></li> <li><a class="reference internal" href="#context-attributes">Context Attributes</a></li> <li><a class="reference internal" href="#context-methods">Context Methods</a></li> </ul> </li> <li><a class="reference internal" href="#reference-implementation">Reference Implementation</a></li> <li><a class="reference internal" href="#references">References</a></li> <li><a class="reference internal" href="#copyright">Copyright</a></li> </ul> <br> <a id="source" href="https://github.com/python/peps/blob/main/peps/pep-0327.rst">Page Source (GitHub)</a> </nav> </section> <script src="../_static/colour_scheme.js"></script> <script src="../_static/wrap_tables.js"></script> <script src="../_static/sticky_banner.js"></script> </body> </html>