CINXE.COM
Search results for: load settlement behavior
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: load settlement behavior</title> <meta name="description" content="Search results for: load settlement behavior"> <meta name="keywords" content="load settlement behavior"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="load settlement behavior" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="load settlement behavior"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 9033</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: load settlement behavior</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9033</span> Development of Interaction Factors Charts for Piled Raft Foundation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelazim%20Makki%20Ibrahim">Abdelazim Makki Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Esamaldeen%20Ali"> Esamaldeen Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims at analysing the load settlement behavior and predict the bearing capacity of piled raft foundation a series of finite element models with different foundation configurations and stiffness were established. Numerical modeling is used to study the behavior of the piled raft foundation due to the complexity of piles, raft, and soil interaction and also due to the lack of reliable analytical method that can predict the behavior of the piled raft foundation system. Simple analytical models are developed to predict the average settlement and the load sharing between the piles and the raft in piled raft foundation system. A simple example to demonstrate the applications of these charts is included. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title="finite element">finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=pile-raft%20foundation" title=" pile-raft foundation"> pile-raft foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=method" title=" method"> method</a>, <a href="https://publications.waset.org/abstracts/search?q=PLAXIS%20software" title=" PLAXIS software"> PLAXIS software</a>, <a href="https://publications.waset.org/abstracts/search?q=settlement" title=" settlement"> settlement</a> </p> <a href="https://publications.waset.org/abstracts/35331/development-of-interaction-factors-charts-for-piled-raft-foundation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35331.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">557</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9032</span> Load-Settlement Behaviour of Geogrid-Reinforced Sand Bed over Granular Piles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sateesh%20Kumar%20Pisini">Sateesh Kumar Pisini</a>, <a href="https://publications.waset.org/abstracts/search?q=Swetha%20Priya%20Darshini%20Thammadi"> Swetha Priya Darshini Thammadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20Kumar%20Shukla"> Sanjay Kumar Shukla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Granular piles are a popular ground improvement technique in soft cohesive soils as well as for loose non-cohesive soils. The present experimental study has been carried out on granular piles in loose (Relative density = 30%) and medium dense (Relative density = 60%) sands with geogrid reinforcement within the sand bed over the granular piles. A group of five piles were installed in the sand at different spacing, s = 2d, 3d and 4d, d being the diameter of the pile. The length (L = 0.4 m) and diameter (d = 50 mm) of the piles were kept constant for all the series of experiments. The load-settlement behavior of reinforced sand bed and granular piles system was studied by applying the load on a square footing. The results show that the effect of reinforcement increases the load bearing capacity of the piles. It is also found that an increase in spacing between piles decreases the settlement for both loose and medium dense soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=granular%20pile" title="granular pile">granular pile</a>, <a href="https://publications.waset.org/abstracts/search?q=load-carrying%20capacity" title=" load-carrying capacity"> load-carrying capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=settlement" title=" settlement"> settlement</a>, <a href="https://publications.waset.org/abstracts/search?q=geogrid%20reinforcement" title=" geogrid reinforcement"> geogrid reinforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=sand" title=" sand"> sand</a> </p> <a href="https://publications.waset.org/abstracts/95179/load-settlement-behaviour-of-geogrid-reinforced-sand-bed-over-granular-piles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95179.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9031</span> Settlement Analysis of Axially Loaded Bored Piles: A Case History</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Mert">M. Mert</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20T.%20Ozkan"> M. T. Ozkan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pile load tests should be applied to check the bearing capacity calculations and to determine the settlement of the pile corresponding to test load. Strain gauges can be installed into pile in order to determine the shaft resistance of the piles for every soil layer respectively. Detailed results can be obtained by means of strain gauges placed at certain levels into test piles. In the scope of this study, pile load test data obtained from two different projects are examined. Instrumented static pile load tests were applied on totally 7 test bored piles of different diameters (80 cm, 150 cm, and 200 cm) and different lengths (between 30-76 m) in two different project site. Settlement analysis of test piles is done by using some of load transfer methods and finite element method. Plaxis 3D which is a three-dimensional finite element program is also used for settlement analysis of the test piles. In this study, firstly bearing capacity of test piles are determined and compared with strain gauge data which is required for settlement analysis. Then, settlement values of the test piles are estimated by using load transfer methods developed in recent years and finite element method. The aim of this study is to show similarities and differences between the results obtained from settlement analysis methods and instrumented pile load tests. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=failure" title="failure">failure</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=monitoring%20and%20instrumentation" title=" monitoring and instrumentation"> monitoring and instrumentation</a>, <a href="https://publications.waset.org/abstracts/search?q=pile" title=" pile"> pile</a>, <a href="https://publications.waset.org/abstracts/search?q=settlement" title=" settlement"> settlement</a> </p> <a href="https://publications.waset.org/abstracts/103165/settlement-analysis-of-axially-loaded-bored-piles-a-case-history" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103165.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9030</span> Three Dimensional Model of Full Scale Plate Load Test on Stone Column in Sabkha Deposit: Case Study from Jubail Industrial City - Saudi Arabia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hassan.%20A.%20Abas">Hassan. A. Abas</a>, <a href="https://publications.waset.org/abstracts/search?q=Saad%20A.%20Aiban"> Saad A. Aiban</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil improvement by means of stone column method is used to improve sabkha soils in order to limit total and differential settlement and to achieve the required bearing capacity. Full-scale plate test was performed on site to confirm the achievement of required bearing capacity at the specified settlement. Despite the fact that this technique is widely used to improve sabkha soils, there are no studies focusing on the behavior of stone columns in such problematic soils. Sabkha soils are known for its high compressibility, low strength and water sensitivity due to loss of salt cementation upon flooding during installation of stone columns. Numerical modeling of plate load test assist to understand complicated behavior of sabkha – stone column interaction. This paper presents a three-dimensional Finite element model, using PLAXIS 3D software, to simulate vertical plate load tests on a stone column installed in sabkha. The predicted settlement values are in reasonable agreement with the field measure values and the field load - settlement curve can be predicted with good accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20improvement" title="soil improvement">soil improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=stone%20column" title=" stone column"> stone column</a>, <a href="https://publications.waset.org/abstracts/search?q=sabkha" title=" sabkha"> sabkha</a>, <a href="https://publications.waset.org/abstracts/search?q=PLAXIS%203D" title=" PLAXIS 3D "> PLAXIS 3D </a> </p> <a href="https://publications.waset.org/abstracts/31027/three-dimensional-model-of-full-scale-plate-load-test-on-stone-column-in-sabkha-deposit-case-study-from-jubail-industrial-city-saudi-arabia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31027.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9029</span> Settlement Performance of Soft Clay Reinforced with Granular Columns </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muneerah%20Jeludin">Muneerah Jeludin</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Sivakumar"> V. Sivakumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerous laboratory-based research studies on the behavior of ground improved with granular columns with respect to bearing capacity have been well-documented. However, information on its settlement performance is still scarce. Laboratory model study on the settlement behavior of soft clay reinforced with granular columns was conducted and results are presented. The investigation uses a soft kaolin clay sample of 300 mm in diameter and 400 mm in length. The clay samples were reinforced with single and multiple granular columns of various lengths using the displacement and replacement installation method. The results indicated that that no settlement reduction was achieved for a short single floating column. The settlement reduction factors reported for L/d ratios of 5.0, 7.5 and 10.0 are in the range of 1 to 2. The findings obtained in this research showed that the reduction factors are considerably less and that load-sharing mechanism between columns and surrounding clay is complex, particularly for column groups and is affected by other factors such as negative skin friction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ground%20improvement" title="ground improvement">ground improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20test" title=" model test"> model test</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20soil" title=" reinforced soil"> reinforced soil</a>, <a href="https://publications.waset.org/abstracts/search?q=settlement" title=" settlement"> settlement</a> </p> <a href="https://publications.waset.org/abstracts/36746/settlement-performance-of-soft-clay-reinforced-with-granular-columns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36746.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">466</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9028</span> Effect of Reinforcement Density on the Behaviour of Reinforced Sand Under a Square Footing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dhyaalddin%20Bahaalddin%20Noori%20Zangana">Dhyaalddin Bahaalddin Noori Zangana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study involves the behavior of reinforced sand under a square footing. A series of bearing capacity tests were performed on a small-scale laboratory model, which filled with a poorly-graded homogenous bed of sand, which was placed in a medium dense state using sand raining technique. The sand was reinforced with 40 mm wide household aluminum foil strips. The main studied parameters was to consider the effect of reinforcing strip length, with various linear density of reinforcement, number of reinforcement layers and depth of top layer of reinforcement below the footing, on load-settlement behavior, bearing capacity ratio and settlement reduction factor. The relation of load-settlement generally showed similar trend in all the tests. Failure was defined as settlement equal to 10% of the footing width. The recommended optimum reinforcing strip length, linear density of reinforcement, number of reinforcement layers and depth of top layer of reinforcing strips that give the maximum bearing capacity improvement and minimum settlement reduction factor were presented and discussed. Different bearing capacity ration versus length of the reinforcing strips and settlement reduction factor versus length of the reinforcing strips relations at failure were showed improvement of bearing capacity ratio by a factor of 3.82 and reduction of settlement reduction factor by a factor of 0.813. The optimum length of reinforcement was found to be 7.5 times the footing width. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=square%20footing" title="square footing">square footing</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20density" title=" relative density"> relative density</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20density%20of%20reinforcement" title=" linear density of reinforcement"> linear density of reinforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=bearing%20capacity%20ratio" title=" bearing capacity ratio"> bearing capacity ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=load-settlement%20behaviour" title=" load-settlement behaviour"> load-settlement behaviour</a> </p> <a href="https://publications.waset.org/abstracts/143978/effect-of-reinforcement-density-on-the-behaviour-of-reinforced-sand-under-a-square-footing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143978.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9027</span> A Review of Deformation and Settlement Monitoring on the Field: Types and Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Ali">Hassan Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulrahman%20Hamid"> Abdulrahman Hamid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper discusses using of instruments to monitor deformation and settlement. Specifically, it concentrates on field instruments such as inclinometer and plate load test and their applications in the field. Inclinometer has been used effectively to monitor lateral earth movements and settlement in landslide areas, embankments and foundations. They are also used to monitor the deflection of retaining walls and piles under load. This paper is reviewing types of inclinometer systems, comparison between systems, applications, field accuracy and correction. The paper also will present a case study of using inclinometer to monitor the creep movements within the ancient landslide on The Washington Park Station. Furthermore, the application of deformation and settlement instruments in Saudi Arabia will be discussed in this manuscript. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inclinometer" title="inclinometer">inclinometer</a>, <a href="https://publications.waset.org/abstracts/search?q=plate%20load%20test" title=" plate load test"> plate load test</a>, <a href="https://publications.waset.org/abstracts/search?q=backfills" title=" backfills"> backfills</a>, <a href="https://publications.waset.org/abstracts/search?q=sand" title=" sand"> sand</a>, <a href="https://publications.waset.org/abstracts/search?q=deformation%20and%20settlement" title=" deformation and settlement"> deformation and settlement</a> </p> <a href="https://publications.waset.org/abstracts/41331/a-review-of-deformation-and-settlement-monitoring-on-the-field-types-and-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41331.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9026</span> Numerical Investigation of Soft Clayey Soil Improved by Soil-Cement Columns under Harmonic Load</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Ziaie%20Moayed">R. Ziaie Moayed</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Ghanbari%20Alamouty"> E. Ghanbari Alamouty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Deep soil mixing is one of the improvement methods in geotechnical engineering which is widely used in soft soils. This article investigates the consolidation behavior of a soft clay soil which is improved by soil-cement column (SCC) by numerical modeling using Plaxis2D program. This behavior is simulated under vertical static and cyclic load which is applied on the soil surface. The static load problem is the simulation of a physical model test in an axisymmetric condition which uses a single SCC in the model center. The results of numerical modeling consist of settlement of soft soil composite, stress on soft soil and column, and excessive pore water pressure in the soil show a good correspondence with the test results. The response of soft soil composite to the cyclic load in vertical direction also compared with the static results. Also the effects of two variables namely the cement content used in a SCC and the area ratio (the ratio of the diameter of SCC to the diameter of composite soil model, a) is investigated. The results show that the stress on the column with the higher value of a, is lesser compared with the stress on other columns. Different rate of consolidation and excessive pore pressure distribution is observed in cyclic load problem. Also comparing the results of settlement of soil shows higher compressibility in the cyclic load problem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=area%20ratio" title="area ratio">area ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=consolidation%20behavior" title=" consolidation behavior"> consolidation behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20load" title=" cyclic load"> cyclic load</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20modeling" title=" numerical modeling"> numerical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=soil-cement%20column" title=" soil-cement column"> soil-cement column</a> </p> <a href="https://publications.waset.org/abstracts/96360/numerical-investigation-of-soft-clayey-soil-improved-by-soil-cement-columns-under-harmonic-load" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96360.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9025</span> Circular Raft Footings Strengthened by Stone Columns under Dynamic Harmonic Loads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Ziaie%20Moayed">R. Ziaie Moayed</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mahigir"> A. Mahigir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stone column technique has been successfully employed to improve the load-settlement characteristics of foundations. A series of finite element numerical analyses of harmonic dynamic loading have been conducted on strengthened raft footing to study the effects of single and group stone columns on settlement of circular footings. The settlement of circular raft footing that improved by single and group of stone columns are studied under harmonic dynamic loading. This loading is caused by heavy machinery foundations. A detailed numerical investigation on behavior of single column and group of stone columns is carried out by varying parameters like weight of machinery, loading frequency and period. The result implies that presence of single and group of stone columns enhanced dynamic behavior of the footing so that the maximum and residual settlement of footing significantly decreased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title="finite element analysis">finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=harmonic%20loading" title=" harmonic loading"> harmonic loading</a>, <a href="https://publications.waset.org/abstracts/search?q=settlement" title=" settlement"> settlement</a>, <a href="https://publications.waset.org/abstracts/search?q=stone%20column" title=" stone column"> stone column</a> </p> <a href="https://publications.waset.org/abstracts/78842/circular-raft-footings-strengthened-by-stone-columns-under-dynamic-harmonic-loads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78842.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9024</span> Soil-Structure Interaction Models for the Reinforced Foundation System – A State-of-the-Art Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashwini%20V.%20Chavan">Ashwini V. Chavan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sukhanand%20S.%20Bhosale"> Sukhanand S. Bhosale</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Challenges of weak soil subgrade are often resolved either by stabilization or reinforcing it. However, it is also practiced to reinforce the granular fill to improve the load-settlement behavior of over weak soil strata. The inclusion of reinforcement in the engineered granular fill provided a new impetus for the development of enhanced Soil-Structure Interaction (SSI) models, also known as mechanical foundation models or lumped parameter models. Several researchers have been working in this direction to understand the mechanism of granular fill-reinforcement interaction and the response of weak soil under the application of load. These models have been developed by extending available SSI models such as the Winkler Model, Pasternak Model, Hetenyi Model, Kerr Model etc., and are helpful to visualize the load-settlement behavior of a physical system through 1-D and 2-D analysis considering beam and plate resting on the foundation respectively. Based on the literature survey, these models are categorized as ‘Reinforced Pasternak Model,’ ‘Double Beam Model,’ ‘Reinforced Timoshenko Beam Model,’ and ‘Reinforced Kerr Model.’ The present work reviews the past 30+ years of research in the field of SSI models for reinforced foundation systems, presenting the conceptual development of these models systematically and discussing their limitations. Special efforts are taken to tabulate the parameters and their significance in the load-settlement analysis, which may be helpful in future studies for the comparison and enhancement of results and findings of physical models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geosynthetics" title="geosynthetics">geosynthetics</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modeling" title=" mathematical modeling"> mathematical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20foundation" title=" reinforced foundation"> reinforced foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=soil-structure%20interaction" title=" soil-structure interaction"> soil-structure interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20improvement" title=" ground improvement"> ground improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20soil" title=" soft soil"> soft soil</a> </p> <a href="https://publications.waset.org/abstracts/140460/soil-structure-interaction-models-for-the-reinforced-foundation-system-a-state-of-the-art-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140460.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9023</span> The Behavior of Polypropylene Fiber Reinforced Sand Loaded by Squair Footing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dhiaadin%20Bahaadin%20Noory">Dhiaadin Bahaadin Noory</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research involves the effect of both sizes of reinforced zone and the amount of polypropylene fiber reinforcement on the structural behavior of model-reinforced sand loaded by square footing. The ratio of the side of the square reinforced zone to the footing width (W/B) and the ratio of the square reinforced zone depth to footing width (H/B) has been varied from one to six and from one to three, respectively. The tests were carried out on a small-scale laboratory model in which uniform-graded sand was used as a fill material. It was placed in a highly dense state by hitting a thin wooden board placed on the sand surface with a hammer. The sand was reinforced with randomly oriented discrete fibrillated polypropylene fibers. The test results indicated a significant increase in the bearing capacity and stiffness of the subgrade and a modification of load–the settlement behavior of sand with the size of the reinforced zone and amount of fiber reinforcement. On the basis of the present test results, the optimal side width and depth of the reinforced zone were 4B and 2B, respectively, while the optimal percentage of fibers was 0.4%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=square%20footing" title="square footing">square footing</a>, <a href="https://publications.waset.org/abstracts/search?q=polypropylene%20fibers" title=" polypropylene fibers"> polypropylene fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=bearing%20capacity" title=" bearing capacity"> bearing capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=stiffness" title=" stiffness"> stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20settlement%20behavior" title=" load settlement behavior"> load settlement behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20density" title=" relative density"> relative density</a> </p> <a href="https://publications.waset.org/abstracts/183354/the-behavior-of-polypropylene-fiber-reinforced-sand-loaded-by-squair-footing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183354.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9022</span> Effect of Base Coarse Layer on Load-Settlement Characteristics of Sandy Subgrade Using Plate Load Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Nazeri">A. Nazeri</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Ziaie%20Moayed"> R. Ziaie Moayed</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Ghiasinejad"> H. Ghiasinejad </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present research has been performed to investigate the effect of base course application on load-settlement characteristics of sandy subgrade using plate load test. The main parameter investigated in this study was the subgrade reaction coefficient. The model tests were conducted in a 1.35 m long, 1 m wide, and 1 m deep steel test box of Imam Khomeini International University (IKIU Calibration Chamber). The base courses used in this research were in three different thicknesses of 15 cm, 20 cm, and 30 cm. The test results indicated that in the case of using base course over loose sandy subgrade, the values of subgrade reaction coefficient can be increased from 7 to 132 , 224 , and 396 in presence of 15 cm, 20 cm, and 30 cm base course, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modulus%20of%20subgrade%20reaction" title="modulus of subgrade reaction">modulus of subgrade reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=plate%20load%20test" title=" plate load test"> plate load test</a>, <a href="https://publications.waset.org/abstracts/search?q=base%20course" title=" base course"> base course</a>, <a href="https://publications.waset.org/abstracts/search?q=sandy%20subgrade" title=" sandy subgrade"> sandy subgrade</a> </p> <a href="https://publications.waset.org/abstracts/80835/effect-of-base-coarse-layer-on-load-settlement-characteristics-of-sandy-subgrade-using-plate-load-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80835.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9021</span> Experimental Study on Weak Cohesion Less Soil Using Granular Piles with Geogrid Reinforcement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sateesh%20Kumar%20Pisini">Sateesh Kumar Pisini</a>, <a href="https://publications.waset.org/abstracts/search?q=Swetha%20Priya%20Pisini"> Swetha Priya Pisini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Granular piles are becoming popular as a technique of deep ground improvement not only in soft cohesive soils but also in loose cohesionless deposits. The present experimental study has been carried out on granular piles in sand (loose sand and medium dense sand i.e. relative density at 15% and 30%) with geogrid reinforcement. In this experimental study, a group of five piles installed in sand (at different spacing i.e s = 2d, 3d and 4d) the length and diameter of the pile (L = 0.4 m and d= 50 mm) kept as same for all series of experiments. Geogrid reinforcement is provided on granular piles with a limited number of laboratory tests. It has been conducted in laboratory to study the behavior of a granular pile with reinforced geogrid layers supporting a square footing at different s/d ratios. The influence of geogrid layers providing on granular piles investigated through model tests. In this paper the experimental study carried out results in significant increase in load carrying capacity and decrease in settlement reduction of the weak cohesionless soil. Also, the behavior of load carrying capacity and settlement with changing the s/d ratio has been carried out through a parametric study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=granular%20piles" title="granular piles">granular piles</a>, <a href="https://publications.waset.org/abstracts/search?q=cohesionless%20soil" title=" cohesionless soil"> cohesionless soil</a>, <a href="https://publications.waset.org/abstracts/search?q=geogrid%20reinforcement" title=" geogrid reinforcement"> geogrid reinforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20carrying%20capacity" title=" load carrying capacity "> load carrying capacity </a> </p> <a href="https://publications.waset.org/abstracts/51022/experimental-study-on-weak-cohesion-less-soil-using-granular-piles-with-geogrid-reinforcement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51022.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9020</span> Settlement Performance of Granular Column Reinforced Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muneerah%20Jeludin">Muneerah Jeludin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The vibrated column has been widely used over the last three decades to improve the performance of soft ground and engineered compacted fill. The main reason for adopting this technique is that it is economically viable and environmental friendly. The performance of granular column with regards to bearing capacity has been well documented; however, information regarding the settlement behavior of granular columns is still limited. This paper aims to address the findings from a laboratory model study in terms of its settlement improvement. A 300 mm diameter and 400 mm high kaolin clay model was used in this investigation. Columns of various heights were installed in the clay bed using replacement method. The results in relation to load sharing mechanism between the column and surrounding clay just under the footing indicated that in short column, the available shaft resistance was not significant and introduces a potential for end braing failure as opposed to bulging failure in long columns. The settlement improvement factor corroborates well with field observations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ground%20improvement" title="ground improvement">ground improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20test" title=" model test"> model test</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20soil" title=" reinforced soil"> reinforced soil</a>, <a href="https://publications.waset.org/abstracts/search?q=foundation" title=" foundation"> foundation</a> </p> <a href="https://publications.waset.org/abstracts/59271/settlement-performance-of-granular-column-reinforced-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59271.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9019</span> Numerical Simulation of Axially Loaded to Failure Large Diameter Bored Pile </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Ezzat">M. Ezzat</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Zaghloul"> Y. Zaghloul</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Sorour"> T. Sorour</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Hefny"> A. Hefny</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Eid"> M. Eid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ultimate capacity of large diameter bored piles is usually determined from pile loading tests as recommended by several international codes and foundation design standards. However, loading of this type of piles till achieving apparent failure is practically seldom. In this paper, numerical analyses are carried out to simulate load test of a large diameter bored pile performed at the location of Alzey highway bridge project (Germany). Test results of pile load settlement relationship till failure as well as results of the base and shaft resistances are available. Apparent failure was indicated in this test by the significant increase of the induced settlement during the last load increment applied on the pile head. Measurements of this pile load test are used to assess the quality of the numerical models investigated. Three different material soil models are implemented in the analyses: Mohr coulomb (MC), Soft soil (SS), and Modified Mohr coulomb (MMC). Very good agreement is obtained between the field measured settlement and the calculated settlement using the MMC model. Results of analysis showed also that the MMC constitutive model is superior to MC, and SS models in predicting the ultimate base and shaft resistances of the large diameter bored pile. After calibrating the numerical model, behavior of large diameter bored piles under axial loads is discussed and the formation of the plastic zone around the pile is explored. Results obtained showed that the plastic zone below the base of the pile at failure extended laterally to about four times the pile diameter and vertically to about three times the pile diameter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultimate%20capacity" title="ultimate capacity">ultimate capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20diameter%20bored%20piles" title=" large diameter bored piles"> large diameter bored piles</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20zone" title=" plastic zone"> plastic zone</a>, <a href="https://publications.waset.org/abstracts/search?q=failure" title=" failure"> failure</a>, <a href="https://publications.waset.org/abstracts/search?q=pile%20load%20test" title=" pile load test"> pile load test</a> </p> <a href="https://publications.waset.org/abstracts/108010/numerical-simulation-of-axially-loaded-to-failure-large-diameter-bored-pile" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108010.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9018</span> Seismic Resistant Columns of Buildings against the Differential Settlement of the Foundation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Romaric%20Desbrousses">Romaric Desbrousses</a>, <a href="https://publications.waset.org/abstracts/search?q=Lan%20Lin"> Lan Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study is to determine how Canadian seismic design provisions affect the column axial load resistance of moment-resisting frame reinforced concrete buildings subjected to the differential settlement of their foundation. To do so, two four-storey buildings are designed in accordance with the seismic design provisions of the Canadian Concrete Design Standards. One building is located in Toronto, which is situated in a moderate seismic hazard zone in Canada, and the other in Vancouver, which is in Canada’s highest seismic hazard zone. A finite element model of each building is developed using SAP 2000. A 100 mm settlement is assigned to the base of the building’s center column. The axial load resistance of the column is represented by the demand capacity ratio. The analysis results show that settlement-induced tensile axial forces have a particularly detrimental effect on the conventional settling columns of the Toronto buildings which fail at a much smaller settlement that those in the Vancouver buildings. The results also demonstrate that particular care should be taken in the design of columns in short-span buildings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Columns" title="Columns">Columns</a>, <a href="https://publications.waset.org/abstracts/search?q=Demand" title=" Demand"> Demand</a>, <a href="https://publications.waset.org/abstracts/search?q=Foundation%20differential%20settlement" title=" Foundation differential settlement"> Foundation differential settlement</a>, <a href="https://publications.waset.org/abstracts/search?q=Seismic%20design" title=" Seismic design"> Seismic design</a>, <a href="https://publications.waset.org/abstracts/search?q=Non-linear%20analysis" title=" Non-linear analysis"> Non-linear analysis</a> </p> <a href="https://publications.waset.org/abstracts/128842/seismic-resistant-columns-of-buildings-against-the-differential-settlement-of-the-foundation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128842.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9017</span> The Characteristics of Settlement Owing to the Construction of Several Parallel Tunnels with Short Distances</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lojain%20Suliman">Lojain Suliman</a>, <a href="https://publications.waset.org/abstracts/search?q=Xinrong%20Liu"> Xinrong Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaohan%20Zhou"> Xiaohan Zhou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since most tunnels are built in crowded metropolitan settings, the excavation process must take place in highly condensed locations, including high-density cities. In this way, the tunnels are typically located close together, which leads to more interaction between the parallel existing tunnels, and this, in turn, leads to more settlement. This research presents an examination of the impact of a large-scale tunnel excavation on two forms of settlement: surface settlement and settlement surrounding the tunnel. Additionally, research has been done on the properties of interactions between two and three parallel tunnels. The settlement has been evaluated using three primary techniques: theoretical modeling, numerical simulation, and data monitoring. Additionally, a parametric investigation on how distance affects the settlement characteristic for parallel tunnels with short distances has been completed. Additionally, it has been observed that the sequence of excavation has an impact on the behavior of settlements. Nevertheless, a comparison of the model test and numerical simulation yields significant agreement in terms of settlement trend and value. Additionally, when compared to the FEM study, the suggested analytical solution exhibits reduced sensitivity in the settlement prediction. For example, the settlement of the small tunnel diameter does not appear clearly on the settlement curve, while it is notable in the FEM analysis. It is advised, however, that additional studies be conducted in the future employing analytical solutions for settlement prediction for parallel tunnels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=settlement" title="settlement">settlement</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM" title=" FEM"> FEM</a>, <a href="https://publications.waset.org/abstracts/search?q=analytical%20solution" title=" analytical solution"> analytical solution</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20tunnels" title=" parallel tunnels"> parallel tunnels</a> </p> <a href="https://publications.waset.org/abstracts/187803/the-characteristics-of-settlement-owing-to-the-construction-of-several-parallel-tunnels-with-short-distances" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187803.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">36</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9016</span> Foundation Retrofitting of Storage Tank under Seismic Load</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Abolhasan%20Naeini">Seyed Abolhasan Naeini</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Hossein%20Zade"> Mohammad Hossein Zade</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Izadi"> E. Izadi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hossein%20Zade"> M. Hossein Zade</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The different seismic behavior of liquid storage tanks rather than conventional structures makes their responses more complicated. Uplifting and excessive settlement due to liquid sloshing are the most frequent damages in cylindrical liquid tanks after shell bucking failure modes. As a matter of fact, uses of liquid storage tanks because of the simple construction on compact layer of soil as a foundation are very conventional, but in some cases need to retrofit are essential. The tank seismic behavior can be improved by modifying dynamic characteristic of tank with verifying seismic loads as well as retrofitting and improving base ground. This paper focuses on a typical steel tank on loose, medium and stiff sandy soil and describes an evaluation of displacement of the tank before and after retrofitting. The Abaqus program was selected for its ability to include shell and structural steel elements, soil-structure interaction, and geometrical nonlinearities and contact type elements. The result shows considerable decreasing in settlement and uplifting in the case of retrofitted tank. Also, by increasing shear strength parameter of soil, the performance of the liquid storage tank under the case of seismic load increased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=steel%20tank" title="steel tank">steel tank</a>, <a href="https://publications.waset.org/abstracts/search?q=soil-structure" title=" soil-structure"> soil-structure</a>, <a href="https://publications.waset.org/abstracts/search?q=sandy%20soil" title=" sandy soil"> sandy soil</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20load" title=" seismic load"> seismic load</a> </p> <a href="https://publications.waset.org/abstracts/48342/foundation-retrofitting-of-storage-tank-under-seismic-load" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48342.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9015</span> Dynamic Study on the Evaluation of the Settlement of Soil under Sea Dam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faroudja%20Meziani">Faroudja Meziani</a>, <a href="https://publications.waset.org/abstracts/search?q=Amar%20Kahil"> Amar Kahil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to study the variation in settlement of soil under a dyke dam, the modelisation in our study consists of applying an imposed displacement at the base of the mass of soil (consisting of a saturated sand). The imposed displacement follows the evolution of acceleration of the earthquake of Boumerdes 2003 in Algeria. Moreover, the gravity load is taken into consideration by taking account the specific weight of the materials constituting the dyke. The results obtained show that the gravity loads have a direct influence on the evolution of settlement, especially at the center of the dyke where these loads are higher. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=settlement" title="settlement">settlement</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20analysis" title=" dynamic analysis"> dynamic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=rockfill%20dam" title=" rockfill dam"> rockfill dam</a>, <a href="https://publications.waset.org/abstracts/search?q=effect%20of%20earthquake" title=" effect of earthquake"> effect of earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20dynamics" title=" soil dynamics"> soil dynamics</a> </p> <a href="https://publications.waset.org/abstracts/69980/dynamic-study-on-the-evaluation-of-the-settlement-of-soil-under-sea-dam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69980.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9014</span> Behavior of A Vertical Pile Under the Effect of an Inclined Load in Loose Sand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fathi%20Mohamed%20Abdrabbo">Fathi Mohamed Abdrabbo</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Esayed%20Gaaver"> Khaled Esayed Gaaver</a>, <a href="https://publications.waset.org/abstracts/search?q=Musab%20Musa%20Eldooma"> Musab Musa Eldooma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an attempt made to investigate the behavior of a single vertical steel hollow pile embedded in sand subjected to compressive inclined load at various inclination angles α through FEM package MIDAS GTS/NX 2019. The effect of the inclination angle and slenderness ratio on the performance of the pile was investigated. Inclined load caring capacity and pile stiffness, as well as lateral deformation profiles along with the pile, were presented. The global, vertical, and horizontal load displacements of pile head, as well as the deformation profiles along the pile and the pile stiffness, are significantly affected by α. It was observed that the P-Y curves of the pile-soil system are independent of α. Also, the slenderness ratios are markedly affecting the behavior of the pile. In addition, there was a noticeable effect of the horizontal load component of the applied load on the vertical behavior of the pile, whereas there was no influence of the presence of vertical load on the horizontal behavior of the pile. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20foundation" title="deep foundation">deep foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=piles" title=" piles"> piles</a>, <a href="https://publications.waset.org/abstracts/search?q=inclined%20load" title=" inclined load"> inclined load</a>, <a href="https://publications.waset.org/abstracts/search?q=pile%20deformations" title=" pile deformations"> pile deformations</a> </p> <a href="https://publications.waset.org/abstracts/145277/behavior-of-a-vertical-pile-under-the-effect-of-an-inclined-load-in-loose-sand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145277.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9013</span> Numerical Static and Seismic Evaluation of Pile Group Settlement: A Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Abolhassan%20Naeini">Seyed Abolhassan Naeini</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Yekehdehghan"> Hamed Yekehdehghan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shallow foundations cannot be used when the bedding soil is soft. A suitable method for constructing foundations on soft soil is to employ pile groups to transfer the load to the bottom layers. The present research used results from tests carried out in northern Iran (Langarud) and the FLAC3D software to model a pile group for investigating the effects of various parameters on pile cap settlement under static and seismic conditions. According to the results, changes in the strength parameters of the soil, groundwater level, and the length of and distance between the piles affect settlement differently. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FLACD%203D%20software" title="FLACD 3D software">FLACD 3D software</a>, <a href="https://publications.waset.org/abstracts/search?q=pile%20group" title=" pile group"> pile group</a>, <a href="https://publications.waset.org/abstracts/search?q=settlement" title=" settlement"> settlement</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a> </p> <a href="https://publications.waset.org/abstracts/147055/numerical-static-and-seismic-evaluation-of-pile-group-settlement-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147055.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9012</span> Behavior of a Vertical Pile under the Effect of an Inclined Load</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fathi%20Mohamed%20Abdrabbo">Fathi Mohamed Abdrabbo</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Elsayed%20Gaaver"> Khaled Elsayed Gaaver</a>, <a href="https://publications.waset.org/abstracts/search?q=Musab%20Musa%20Eldooma"> Musab Musa Eldooma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an attempt made to investigate the behavior of a single vertical steel hollow pile embedded in sand subjected to compressive inclined load at various inclination angles α through FEM package MIDAS GTS/NX 2019. The effect of the inclination angle and slenderness ratio on the performance of the pile was investigated. Inclined load caring capacity and pile stiffness, as well as lateral deformation profiles along with the pile, were presented. The global, vertical, and horizontal load displacements, as well as the deformation profiles along with the pile and the pile stiffness, are significantly affected by α. Whereas P-Y curves of the pile are independent of α., also the slenderness ratios are markedly affecting the behavior of the pile. In addition, there was a noticeable effect of the horizontal component on the vertical behavior of the pile, whereas there was no influence of the presence of vertical load on the horizontal behavior of the pile. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20foundations" title="deep foundations">deep foundations</a>, <a href="https://publications.waset.org/abstracts/search?q=piles" title=" piles"> piles</a>, <a href="https://publications.waset.org/abstracts/search?q=inclined%20load" title=" inclined load"> inclined load</a>, <a href="https://publications.waset.org/abstracts/search?q=pile%20deformations" title=" pile deformations"> pile deformations</a> </p> <a href="https://publications.waset.org/abstracts/145253/behavior-of-a-vertical-pile-under-the-effect-of-an-inclined-load" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145253.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9011</span> Parametric Study and Design on under Reamed Pile - An Experimental and Numerical Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Chandrakaran">S. Chandrakaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Aarthy%20D."> Aarthy D.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Abstract: Under reamed piles are piles which are of different types like bored cast in-situ pile or bored compaction concrete piles where one or more bulbs are provided. In this paper, the design procedure of under reamed pile by both experimental study and numerical study using PLAXIS 3D Foundation software was studied. The soil chosen for study was M Sand. The Single and double under reamed pile modelling was made using mild steel. The pile load test experiment was conducted in the laboratory and the ultimate compression load for 25 mm settlement on single and double under reamed pile was observed and finally the result was compared with conventional pile (pile without bulb). The parametric influence on under reamed pile was studied by varying the geometrical parameters like diameter of bulbs, spacing between bulbs, position of bulbs and number of bulbs. The results of the numerical model showed that when the diameter of bulb D u =2.5D, the ultimate compression load for an under-reamed pile with a single bulb increased by 55 % compared to a pile without a bulb. It was observed that when the spacing between the bulbs was S=6D u with three different positions of bulb from bottom of pile as D u , 2D u and 3D u , the ultimate compression load increased by 88%, 94% and 73 % respectively, compared to the ultimate compression load for 25 mm settlement on conventional pile and if spacing was more than 6D u , ultimate compression load for 25 mm settlement started to decrease. It was observed that when the bucket length was more than 2D u , the ultimate compression <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=load%20capcity" title="load capcity">load capcity</a>, <a href="https://publications.waset.org/abstracts/search?q=under%20remed%20bulb%20.%20sand" title=" under remed bulb . sand"> under remed bulb . sand</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20study" title=" model study"> model study</a>, <a href="https://publications.waset.org/abstracts/search?q=sand" title=" sand"> sand</a> </p> <a href="https://publications.waset.org/abstracts/169719/parametric-study-and-design-on-under-reamed-pile-an-experimental-and-numerical-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169719.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9010</span> The Quantitative Analysis of the Traditional Rural Settlement Plane Boundary</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yifan%20Dong">Yifan Dong</a>, <a href="https://publications.waset.org/abstracts/search?q=Xincheng%20Pu"> Xincheng Pu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rural settlements originate from the accumulation of residential building elements, and their agglomeration forms the settlement pattern and defines the relationship between the settlement and the inside and outside. The settlement boundary is an important part of the settlement pattern. Compared with the simplification of the urban settlement boundary, the settlement of the country is more complex, fuzzy and uncertain, and then presents a rich and diverse boundary morphological phenomenon. In this paper, China traditional rural settlements plane boundary as the research object, using fractal theory and fractal dimension method, quantitative analysis of planar shape boundary settlement, and expounds the research for the architectural design, ancient architecture protection and renewal and development and the significance of the protection of settlements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rural%20settlement" title="rural settlement">rural settlement</a>, <a href="https://publications.waset.org/abstracts/search?q=border" title=" border"> border</a>, <a href="https://publications.waset.org/abstracts/search?q=fractal" title=" fractal"> fractal</a>, <a href="https://publications.waset.org/abstracts/search?q=quantification" title=" quantification"> quantification</a> </p> <a href="https://publications.waset.org/abstracts/71276/the-quantitative-analysis-of-the-traditional-rural-settlement-plane-boundary" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71276.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">249</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9009</span> Study of the Behavior of Geogrid Mechanically Stabilized Earth Walls Under Cyclic Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yongzhe%20Zhao">Yongzhe Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Ying%20Liu"> Ying Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhiyong%20Liu"> Zhiyong Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hui%20You"> Hui You</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The soil behind retaining wall is normally subjected to cyclic loading, for example traffic loading. Geotextile has been widely used to reinforce the soil for the purpose of reducing the settlement of the soil. A series of physical model tests were performed to investigate the settlement of footing under cyclic loading. The settlement of the footing, ground deformation and the vertical earth pressure in subsoil were presented and discussed under different types of geotextiles. The results indicate that including geotextiles significantly decreases the footing settlement and the stiffer the geotextile, the less the settlement. Under cyclic loading, the soil below the footing shows dilation within certain depths and beyond that it experiences contraction. The location of footing relative to the retaining wall has important effects on the deformation behavior of the soil in the ground, and the closer the footing to the retaining wall, the greater the contraction soil shows. This is because the retaining wall experienced greater lateral displacement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=physical%20model%20tests" title="physical model tests">physical model tests</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20retaining%20wall" title=" reinforced retaining wall"> reinforced retaining wall</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20loading" title=" cyclic loading"> cyclic loading</a>, <a href="https://publications.waset.org/abstracts/search?q=footing" title=" footing"> footing</a> </p> <a href="https://publications.waset.org/abstracts/150601/study-of-the-behavior-of-geogrid-mechanically-stabilized-earth-walls-under-cyclic-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150601.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9008</span> Study on the Model Predicting Post-Construction Settlement of Soft Ground</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pingshan%20Chen">Pingshan Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhiliang%20Dong"> Zhiliang Dong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to estimate the post-construction settlement more objectively, the power-polynomial model is proposed, which can reflect the trend of settlement development based on the observed settlement data. It was demonstrated by an actual case history of an embankment, and during the prediction. Compared with the other three prediction models, the power-polynomial model can estimate the post-construction settlement more accurately with more simple calculation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=prediction" title="prediction">prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=model" title=" model"> model</a>, <a href="https://publications.waset.org/abstracts/search?q=post-construction%20settlement" title=" post-construction settlement"> post-construction settlement</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20ground" title=" soft ground"> soft ground</a> </p> <a href="https://publications.waset.org/abstracts/2187/study-on-the-model-predicting-post-construction-settlement-of-soft-ground" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2187.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9007</span> Foundation Settlement Determination: A Simplified Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adewoyin%20O.%20Olusegun">Adewoyin O. Olusegun</a>, <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20O.%20Joshua"> Emmanuel O. Joshua</a>, <a href="https://publications.waset.org/abstracts/search?q=Marvel%20L.%20Akinyemi"> Marvel L. Akinyemi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The heterogeneous nature of the subsurface requires the use of factual information to deal with rather than assumptions or generalized equations. Therefore, there is need to determine the actual rate of settlement possible in the soil before structures are built on it. This information will help in determining the type of foundation design and the kind of reinforcement that will be necessary in constructions. This paper presents a simplified and a faster approach for determining foundation settlement in any type of soil using real field data acquired from seismic refraction techniques and cone penetration tests. This approach was also able to determine the depth of settlement of each strata of soil. The results obtained revealed the different settlement time and depth of settlement possible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heterogeneous" title="heterogeneous">heterogeneous</a>, <a href="https://publications.waset.org/abstracts/search?q=settlement" title=" settlement"> settlement</a>, <a href="https://publications.waset.org/abstracts/search?q=foundation" title=" foundation"> foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic" title=" seismic"> seismic</a>, <a href="https://publications.waset.org/abstracts/search?q=technique" title=" technique"> technique</a> </p> <a href="https://publications.waset.org/abstracts/37473/foundation-settlement-determination-a-simplified-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37473.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">445</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9006</span> Performance of Bored Pile on Alluvial Deposit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Raja%20Rajan">K. Raja Rajan</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Nagarajan"> D. Nagarajan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bored cast in-situ pile is a popular choice amongst consultant and contractor due to the ability to adjust the pile length suitably in case if any variation found in the actual geological strata. Bangladesh geological strata are dominated by silt content. Design is normally based on field test such as Standard Penetration test N-values. Initially, pile capacity estimated through static formula with co-relation of N-value and angle of internal friction. Initial pile load test was conducted in order to validate the geotechnical parameters assumed in design. Initial pile load test was conducted on 1.5m diameter bored cast in-situ pile. Kentledge method is used to load the pile for 2.5 times of its working load. Initially, safe working load of pile has been estimated as 570T, so test load is fixed to 1425T. Max load applied is 777T for which the settlement reached around 155mm which is more than 10% of diameter of piles. Pile load test results was not satisfactory and compelled to increase the pile length approximately 20% of its total length. Due to unpredictable geotechnical parameters, length of each pile has been increased which is having a major impact on the project cost and as well as in project schedule. Extra bore holes have been planned along with lab test results in order to redefine the assumed geotechnical parameters. This article presents detailed design assumptions of geotechnical parameters in the design stage and the results of pile load test which made to redefine the assumed geotechnical properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=end%20bearing" title="end bearing">end bearing</a>, <a href="https://publications.waset.org/abstracts/search?q=pile%20load%20test" title=" pile load test"> pile load test</a>, <a href="https://publications.waset.org/abstracts/search?q=settlement" title=" settlement"> settlement</a>, <a href="https://publications.waset.org/abstracts/search?q=shaft%20friction" title=" shaft friction"> shaft friction</a> </p> <a href="https://publications.waset.org/abstracts/74868/performance-of-bored-pile-on-alluvial-deposit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74868.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9005</span> Experimental Stress Analysis on Pipeline in Condition of Frost Heave and Thaw Settlement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhiqiang%20Cheng">Zhiqiang Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Qingliang%20He"> Qingliang He</a>, <a href="https://publications.waset.org/abstracts/search?q=Lu%20Li"> Lu Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Jie%20Ren"> Jie Ren</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The safety of pipelines in the condition of frost heave or thaw settlement is necessarily evaluated. A full-scale experiment pipe with the typical structure configuration in station pipeline is constructed, the residual stress is tested with X-ray residual stress device, and the residual stress field of pipe is analyzed. The evolution of pipe strain with pressure in the scope of maximum allowable operation pressure (MAOP) is investigated by both strain gauge and X-ray methods. Load caused by frost heave or thaw settlement is simulated by two ways of lifting jack. The relation of maximum stress of pipe and clearances between supporter and pipe is studied in case of frost heave. The relation of maximum stress of pipe and maximum deformation of pipe on the ground is studied in case of thaw settlement. The study methods and results are valuable for safety assessment of station pipeline according to clearances or deformation in the condition of frost heave or thaw settlement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=frost%20heave" title="frost heave">frost heave</a>, <a href="https://publications.waset.org/abstracts/search?q=pipeline" title=" pipeline"> pipeline</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20analysis" title=" stress analysis"> stress analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=thaw%20settlement" title=" thaw settlement"> thaw settlement</a> </p> <a href="https://publications.waset.org/abstracts/101888/experimental-stress-analysis-on-pipeline-in-condition-of-frost-heave-and-thaw-settlement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101888.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9004</span> Effect of Adjacent Footings on Elastic Settlement of Shallow Foundations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Aytekin">Mustafa Aytekin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, impact of adjacent footings is considered on the estimation of elastic settlement of shallow foundations. In the estimation of elastic settlement, the Schmertmann’s method that is a very popular method in the elastic settlement estimation of shallow foundations is employed. In order to consider affect of neighboring footings on elastic settlement of main footing in different configurations, a MATLAB script has been generated. Elastic settlements of the various configurations are estimated by the script and several conclusions have been reached. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elastic%20%28immediate%29%20settlement" title="elastic (immediate) settlement">elastic (immediate) settlement</a>, <a href="https://publications.waset.org/abstracts/search?q=Schmertman%20Method" title=" Schmertman Method"> Schmertman Method</a>, <a href="https://publications.waset.org/abstracts/search?q=adjacent%20footings" title=" adjacent footings"> adjacent footings</a>, <a href="https://publications.waset.org/abstracts/search?q=shallow%20foundations" title=" shallow foundations"> shallow foundations</a> </p> <a href="https://publications.waset.org/abstracts/3005/effect-of-adjacent-footings-on-elastic-settlement-of-shallow-foundations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3005.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">467</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=load%20settlement%20behavior&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=load%20settlement%20behavior&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=load%20settlement%20behavior&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=load%20settlement%20behavior&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=load%20settlement%20behavior&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=load%20settlement%20behavior&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=load%20settlement%20behavior&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=load%20settlement%20behavior&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=load%20settlement%20behavior&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=load%20settlement%20behavior&page=301">301</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=load%20settlement%20behavior&page=302">302</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=load%20settlement%20behavior&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>