CINXE.COM

Real closed field - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Real closed field - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"34ccdc26-1ea3-48c2-ada1-a3d439e5f38b","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Real_closed_field","wgTitle":"Real closed field","wgCurRevisionId":1242686827,"wgRevisionId":1242686827,"wgArticleId":1066093,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description matches Wikidata","Commons category link from Wikidata","Real closed field","Field (mathematics)","Real algebraic geometry"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Real_closed_field","wgRelevantArticleId":1066093,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia", "wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":20000,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q2068227","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles": "ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","ext.scribunto.logs","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface", "ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.16"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Real closed field - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Real_closed_field"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Real_closed_field&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Real_closed_field"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Real_closed_field rootpage-Real_closed_field skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" title="Main menu" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li><li id="n-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages"><span>Special pages</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Real+closed+field" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Real+closed+field" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Real+closed+field" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Real+closed+field" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Definition" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Definition"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Definition</span> </div> </a> <ul id="toc-Definition-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Examples_of_real_closed_fields" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Examples_of_real_closed_fields"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Examples of real closed fields</span> </div> </a> <ul id="toc-Examples_of_real_closed_fields-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Real_closure" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Real_closure"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Real closure</span> </div> </a> <ul id="toc-Real_closure-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Decidability_and_quantifier_elimination" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Decidability_and_quantifier_elimination"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Decidability and quantifier elimination</span> </div> </a> <button aria-controls="toc-Decidability_and_quantifier_elimination-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Decidability and quantifier elimination subsection</span> </button> <ul id="toc-Decidability_and_quantifier_elimination-sublist" class="vector-toc-list"> <li id="toc-Complexity_of_deciding_𝘛rcf" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Complexity_of_deciding_𝘛rcf"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Complexity of deciding 𝘛<sub>rcf</sub></span> </div> </a> <ul id="toc-Complexity_of_deciding_𝘛rcf-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Order_properties" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Order_properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Order properties</span> </div> </a> <ul id="toc-Order_properties-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-The_generalized_continuum_hypothesis" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#The_generalized_continuum_hypothesis"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>The generalized continuum hypothesis</span> </div> </a> <ul id="toc-The_generalized_continuum_hypothesis-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Elementary_Euclidean_geometry" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Elementary_Euclidean_geometry"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Elementary Euclidean geometry</span> </div> </a> <ul id="toc-Elementary_Euclidean_geometry-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" title="Table of Contents" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Real closed field</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 11 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-11" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">11 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%AD%D9%82%D9%84_%D9%85%D8%BA%D9%84%D9%82_%D8%AD%D9%82%D9%8A%D9%82%D9%8A" title="حقل مغلق حقيقي – Arabic" lang="ar" hreflang="ar" data-title="حقل مغلق حقيقي" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Reell_abgeschlossener_K%C3%B6rper" title="Reell abgeschlossener Körper – German" lang="de" hreflang="de" data-title="Reell abgeschlossener Körper" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Cuerpo_real_cerrado" title="Cuerpo real cerrado – Spanish" lang="es" hreflang="es" data-title="Cuerpo real cerrado" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Corps_r%C3%A9el_clos" title="Corps réel clos – French" lang="fr" hreflang="fr" data-title="Corps réel clos" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%8B%A4%ED%8F%90%EC%B2%B4" title="실폐체 – Korean" lang="ko" hreflang="ko" data-title="실폐체" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%A9%D7%93%D7%94_%D7%A1%D7%92%D7%95%D7%A8_%D7%9E%D7%9E%D7%A9%D7%99%D7%AA" title="שדה סגור ממשית – Hebrew" lang="he" hreflang="he" data-title="שדה סגור ממשית" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E5%AE%9F%E9%96%89%E4%BD%93" title="実閉体 – Japanese" lang="ja" hreflang="ja" data-title="実閉体" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-pms mw-list-item"><a href="https://pms.wikipedia.org/wiki/Camp_real_sar%C3%A0" title="Camp real sarà – Piedmontese" lang="pms" hreflang="pms" data-title="Camp real sarà" data-language-autonym="Piemontèis" data-language-local-name="Piedmontese" class="interlanguage-link-target"><span>Piemontèis</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Cia%C5%82o_(formalnie)_rzeczywiste" title="Ciało (formalnie) rzeczywiste – Polish" lang="pl" hreflang="pl" data-title="Ciało (formalnie) rzeczywiste" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Corpo_real_fechado" title="Corpo real fechado – Portuguese" lang="pt" hreflang="pt" data-title="Corpo real fechado" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%AF%A6%E9%96%89%E5%9F%9F" title="實閉域 – Chinese" lang="zh" hreflang="zh" data-title="實閉域" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q2068227#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Real_closed_field" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Real_closed_field" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Real_closed_field"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Real_closed_field&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Real_closed_field&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Real_closed_field"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Real_closed_field&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Real_closed_field&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Real_closed_field" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Real_closed_field" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Real_closed_field&amp;oldid=1242686827" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Real_closed_field&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Real_closed_field&amp;id=1242686827&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FReal_closed_field"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FReal_closed_field"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Real_closed_field&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Real_closed_field&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Real_closed_field" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q2068227" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Non algebraically closed field whose extension by sqrt(–1) is algebraically closed</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">"Artin–Schreier theorem" redirects here. For the branch of Galois theory, see <a href="/wiki/Artin%E2%80%93Schreier_theory" title="Artin–Schreier theory">Artin–Schreier theory</a>.</div> <p>In <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>, a <b>real closed field</b> is a <a href="/wiki/Field_(mathematics)" title="Field (mathematics)">field</a> <i>F</i> that has the same <a href="/wiki/First-order_logic" title="First-order logic">first-order</a> properties as the field of <a href="/wiki/Real_number" title="Real number">real numbers</a>. Some examples are the field of real numbers, the field of real <a href="/wiki/Algebraic_number" title="Algebraic number">algebraic numbers</a>, and the field of <a href="/wiki/Hyperreal_number" title="Hyperreal number">hyperreal numbers</a>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Definition">Definition</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Real_closed_field&amp;action=edit&amp;section=1" title="Edit section: Definition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A real closed field is a field <i>F</i> in which any of the following equivalent conditions is true: </p> <ol><li><i>F</i> is <a href="/wiki/Elementarily_equivalent" class="mw-redirect" title="Elementarily equivalent">elementarily equivalent</a> to the real numbers. In other words, it has the same first-order properties as the reals: any <a href="/wiki/Sentence_(mathematical_logic)" title="Sentence (mathematical logic)">sentence</a> in the first-order language of fields is true in <i>F</i> <a href="/wiki/If_and_only_if" title="If and only if">if and only if</a> it is true in the reals.</li> <li>There is a <a href="/wiki/Total_order" title="Total order">total order</a> on <i>F</i> making it an <a href="/wiki/Ordered_field" title="Ordered field">ordered field</a> such that, in this ordering, every positive element of <i>F</i> has a <a href="/wiki/Square_root#In_integral_domains,_including_fields" title="Square root">square root</a> in <i>F</i> and any <a href="/wiki/Polynomial" title="Polynomial">polynomial</a> of <a href="/wiki/Parity_(mathematics)" title="Parity (mathematics)">odd</a> <a href="/wiki/Degree_of_a_polynomial" title="Degree of a polynomial">degree</a> with <a href="/wiki/Coefficient" title="Coefficient">coefficients</a> in <i>F</i> has at least one <a href="/wiki/Root_of_a_function" class="mw-redirect" title="Root of a function">root</a> in <i>F</i>.</li> <li><i>F</i> is a <a href="/wiki/Formally_real_field" title="Formally real field">formally real field</a> such that every polynomial of odd degree with coefficients in <i>F</i> has at least one root in <i>F</i>, and for every element <i>a</i> of <i>F</i> there is <i>b</i> in <i>F</i> such that <i>a</i>&#160;=&#160;<i>b</i><sup>2</sup> or <i>a</i>&#160;=&#160;−<i>b</i><sup>2</sup>.</li> <li><i>F</i> is not <a href="/wiki/Algebraically_closed" class="mw-redirect" title="Algebraically closed">algebraically closed</a>, but its <a href="/wiki/Algebraic_closure" title="Algebraic closure">algebraic closure</a> is a <a href="/wiki/Finite_extension" class="mw-redirect" title="Finite extension">finite extension</a>.</li> <li><i>F</i> is not algebraically closed but the <a href="/wiki/Field_extension" title="Field extension">field extension</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F({\sqrt {-1}}\,)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </msqrt> </mrow> <mspace width="thinmathspace" /> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F({\sqrt {-1}}\,)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/825dd8f81e817c218b0190bf859b65df3420b054" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.844ex; height:3.009ex;" alt="{\displaystyle F({\sqrt {-1}}\,)}"></span> is algebraically closed.</li> <li>There is an ordering on <i>F</i> that does not extend to an ordering on any proper <a href="/wiki/Algebraic_extension" title="Algebraic extension">algebraic extension</a> of <i>F</i>.</li> <li><i>F</i> is a formally real field such that no proper algebraic extension of <i>F</i> is formally real. (In other words, the field is maximal in an algebraic closure with respect to the property of being formally real.)</li> <li>There is an ordering on <i>F</i> making it an ordered field such that, in this ordering, the <a href="/wiki/Intermediate_value_theorem" title="Intermediate value theorem">intermediate value theorem</a> holds for all polynomials over <i>F</i> with degree <i>≥</i> 0.</li> <li><i>F</i> is a <a href="/wiki/Weakly_o-minimal_structure" title="Weakly o-minimal structure">weakly o-minimal</a> ordered field.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup></li></ol> <div class="mw-heading mw-heading2"><h2 id="Examples_of_real_closed_fields">Examples of real closed fields</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Real_closed_field&amp;action=edit&amp;section=2" title="Edit section: Examples of real closed fields"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>the field of real <a href="/wiki/Algebraic_numbers" class="mw-redirect" title="Algebraic numbers">algebraic numbers</a></li> <li>the field of <a href="/wiki/Computable_number" title="Computable number">computable numbers</a></li> <li>the field of <a href="/wiki/Definable_number" class="mw-redirect" title="Definable number">definable numbers</a></li> <li>the field of <a href="/wiki/Real_number" title="Real number">real numbers</a></li> <li>the field of <a href="/wiki/Puiseux_series" title="Puiseux series">Puiseux series</a> with real coefficients</li> <li>the <a href="/wiki/Levi-Civita_field" title="Levi-Civita field">Levi-Civita field</a></li> <li>the <a href="/wiki/Hyperreal_number" title="Hyperreal number">hyperreal number</a> fields</li> <li>the <a href="/wiki/Superreal_number" title="Superreal number">superreal number</a> fields</li> <li>the field of <a href="/wiki/Surreal_number" title="Surreal number">surreal numbers</a> (this is a <a href="/wiki/Proper_class" class="mw-redirect" title="Proper class">proper class</a>, not a <a href="/wiki/Set_(mathematics)" title="Set (mathematics)">set</a>)</li></ul> <div class="mw-heading mw-heading2"><h2 id="Real_closure">Real closure</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Real_closed_field&amp;action=edit&amp;section=3" title="Edit section: Real closure"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If <i>F</i> is an ordered field, the <b>Artin–Schreier theorem</b> states that <i>F</i> has an algebraic extension, called the <b>real closure</b> <i>K</i> of <i>F</i>, such that <i>K</i> is a real closed field whose ordering is an extension of the given ordering on <i>F</i>, and is unique <a href="/wiki/Up_to" title="Up to">up to</a> a unique <a href="/wiki/Isomorphism" title="Isomorphism">isomorphism</a> of fields identical on <i>F</i><sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> (note that every <a href="/wiki/Ring_homomorphism" title="Ring homomorphism">ring homomorphism</a> between real closed fields automatically is <a href="/wiki/Order_isomorphism" title="Order isomorphism">order preserving</a>, because <i>x</i>&#160;≤&#160;<i>y</i> if and only if ∃<i>z</i>&#160;: <i>y</i>&#160;=&#160;<i>x</i>&#160;+&#160;<i>z</i><sup>2</sup>). For example, the real closure of the ordered field of <a href="/wiki/Rational_number" title="Rational number">rational numbers</a> is the field <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} _{\mathrm {alg} }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">l</mi> <mi mathvariant="normal">g</mi> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} _{\mathrm {alg} }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29c3fce98358133606c4d3048f836464fad54909" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:4.012ex; height:2.843ex;" alt="{\displaystyle \mathbb {R} _{\mathrm {alg} }}"></span> of real algebraic numbers. The <a href="/wiki/Theorem" title="Theorem">theorem</a> is named for <a href="/wiki/Emil_Artin" title="Emil Artin">Emil Artin</a> and <a href="/wiki/Otto_Schreier" title="Otto Schreier">Otto Schreier</a>, who <a href="/wiki/Mathematical_proof" title="Mathematical proof">proved</a> it in 1926. </p><p>If (<i>F</i>, <i>P</i>) is an ordered field, and <i>E</i> is a <a href="/wiki/Galois_extension" title="Galois extension">Galois extension</a> of <i>F</i>, then by <a href="/wiki/Zorn%27s_lemma" title="Zorn&#39;s lemma">Zorn's lemma</a> there is a maximal ordered field extension (<i>M</i>, <i>Q</i>) with <i>M</i> a <a href="/wiki/Field_extension" title="Field extension">subfield</a> of <i>E</i> containing <i>F</i> and the order on <i>M</i> extending <i>P</i>. This <i>M</i>, together with its ordering <i>Q</i>, is called the <b>relative real closure</b> of (<i>F</i>, <i>P</i>) in <i>E</i>. We call (<i>F</i>, <i>P</i>) <b> real closed relative to</b> <i>E</i> if <i>M</i> is just <i>F</i>. When <i>E</i> is the algebraic closure of <i>F</i> the relative real closure of <i>F</i> in <i>E</i> is actually the <b>real closure</b> of <i>F</i> described earlier.<sup id="cite_ref-Efr177_3-0" class="reference"><a href="#cite_note-Efr177-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> </p><p>If <i>F</i> is a field (no ordering compatible with the field operations is assumed, nor is it assumed that <i>F</i> is orderable) then <i>F</i> still has a real closure, which may not be a field anymore, but just a <a href="/wiki/Real_closed_ring" title="Real closed ring">real closed ring</a>. For example, the real closure of the field <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Q} ({\sqrt {2}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Q</mi> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Q} ({\sqrt {2}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a24f86d74924b1b3a2935e9fe1fddf3e32a567e5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.716ex; height:3.176ex;" alt="{\displaystyle \mathbb {Q} ({\sqrt {2}})}"></span> is the <a href="/wiki/Ring_(mathematics)" title="Ring (mathematics)">ring</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} _{\mathrm {alg} }\!\times \mathbb {R} _{\mathrm {alg} }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">l</mi> <mi mathvariant="normal">g</mi> </mrow> </mrow> </msub> <mspace width="negativethinmathspace" /> <mo>&#x00D7;<!-- × --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">l</mi> <mi mathvariant="normal">g</mi> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} _{\mathrm {alg} }\!\times \mathbb {R} _{\mathrm {alg} }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/44d7d15cf403e4d176075c5a2c7632f9c783b474" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:10.477ex; height:2.843ex;" alt="{\displaystyle \mathbb {R} _{\mathrm {alg} }\!\times \mathbb {R} _{\mathrm {alg} }}"></span> (the two copies correspond to the two orderings of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Q} ({\sqrt {2}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Q</mi> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Q} ({\sqrt {2}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a24f86d74924b1b3a2935e9fe1fddf3e32a567e5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.716ex; height:3.176ex;" alt="{\displaystyle \mathbb {Q} ({\sqrt {2}})}"></span>). On the other hand, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Q} ({\sqrt {2}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Q</mi> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Q} ({\sqrt {2}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a24f86d74924b1b3a2935e9fe1fddf3e32a567e5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.716ex; height:3.176ex;" alt="{\displaystyle \mathbb {Q} ({\sqrt {2}})}"></span> is considered as an ordered subfield of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span>, its real closure is again the field <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} _{\mathrm {alg} }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">l</mi> <mi mathvariant="normal">g</mi> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} _{\mathrm {alg} }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29c3fce98358133606c4d3048f836464fad54909" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:4.012ex; height:2.843ex;" alt="{\displaystyle \mathbb {R} _{\mathrm {alg} }}"></span>. </p> <div class="mw-heading mw-heading2"><h2 id="Decidability_and_quantifier_elimination">Decidability and quantifier elimination</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Real_closed_field&amp;action=edit&amp;section=4" title="Edit section: Decidability and quantifier elimination"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Formal_language" title="Formal language">language</a> of real closed fields <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}_{\text{rcf}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>rcf</mtext> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}_{\text{rcf}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d072ef411c420812eda7108cf7cd211947c5c8b1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.714ex; height:2.509ex;" alt="{\displaystyle {\mathcal {L}}_{\text{rcf}}}"></span> includes symbols for the operations of addition and multiplication, the constants 0 and 1, and the order relation <span class="texhtml">≤</span> (as well as equality, if this is not considered a logical symbol). In this language, the (first-order) theory of real closed fields, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {T}}_{\text{rcf}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">T</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>rcf</mtext> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {T}}_{\text{rcf}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5b501a04b7cd24cb39621647e71c24adb933c801" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.377ex; height:2.676ex;" alt="{\displaystyle {\mathcal {T}}_{\text{rcf}}}"></span>, consists of all sentences that follow from the following axioms: </p> <ul><li>the <a href="/wiki/Axiom" title="Axiom">axioms</a> of <a href="/wiki/Ordered_field" title="Ordered field">ordered fields</a>;</li> <li>the axiom asserting that every positive number has a square root;</li> <li>for every odd number <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e85ff03cbe0c7341af6b982e47e9f90d235c66ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.216ex; height:2.176ex;" alt="{\displaystyle d}"></span>, the axiom asserting that all polynomials of degree <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e85ff03cbe0c7341af6b982e47e9f90d235c66ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.216ex; height:2.176ex;" alt="{\displaystyle d}"></span> have at least one root.</li></ul> <p>All of these axioms can be expressed in <a href="/wiki/First-order_logic" title="First-order logic">first-order logic</a> (i.e. <a href="/wiki/Quantifier_(logic)" title="Quantifier (logic)">quantification</a> ranges only over elements of the field). Note that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {T}}_{\text{rcf}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">T</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>rcf</mtext> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {T}}_{\text{rcf}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5b501a04b7cd24cb39621647e71c24adb933c801" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.377ex; height:2.676ex;" alt="{\displaystyle {\mathcal {T}}_{\text{rcf}}}"></span> is just the set of all first-order sentences that are true about the field of real numbers. </p><p><a href="/wiki/Alfred_Tarski" title="Alfred Tarski">Tarski</a> showed that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {T}}_{\text{rcf}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">T</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>rcf</mtext> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {T}}_{\text{rcf}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5b501a04b7cd24cb39621647e71c24adb933c801" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.377ex; height:2.676ex;" alt="{\displaystyle {\mathcal {T}}_{\text{rcf}}}"></span> is <a href="/wiki/Complete_theory" title="Complete theory">complete</a>, meaning that any <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}_{\text{rcf}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>rcf</mtext> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}_{\text{rcf}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d072ef411c420812eda7108cf7cd211947c5c8b1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.714ex; height:2.509ex;" alt="{\displaystyle {\mathcal {L}}_{\text{rcf}}}"></span>-sentence can be proven either true or false from the above axioms. Furthermore, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {T}}_{\text{rcf}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">T</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>rcf</mtext> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {T}}_{\text{rcf}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5b501a04b7cd24cb39621647e71c24adb933c801" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.377ex; height:2.676ex;" alt="{\displaystyle {\mathcal {T}}_{\text{rcf}}}"></span> is <a href="/wiki/Decidability_(logic)" title="Decidability (logic)">decidable</a>, meaning that there is an <a href="/wiki/Algorithm" title="Algorithm">algorithm</a> to determine the truth or falsity of any such sentence. This was done by showing <a href="/wiki/Quantifier_elimination" title="Quantifier elimination">quantifier elimination</a>: there is an algorithm that, given any <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}_{\text{rcf}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>rcf</mtext> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}_{\text{rcf}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d072ef411c420812eda7108cf7cd211947c5c8b1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.714ex; height:2.509ex;" alt="{\displaystyle {\mathcal {L}}_{\text{rcf}}}"></span>-<a href="/wiki/Well-formed_formula" title="Well-formed formula">formula</a>, which may contain <a href="/wiki/Free_variable" class="mw-redirect" title="Free variable">free variables</a>, produces an equivalent quantifier-free formula in the same free variables, where <i>equivalent</i> means that the two formulas are true for exactly the same values of the variables. Tarski's proof uses a generalization of <a href="/wiki/Sturm%27s_theorem" title="Sturm&#39;s theorem">Sturm's theorem</a>. Since the truth of quantifier-free formulas without free variables can be easily checked, this yields the desired decision procedure. These results were obtained <abbr title="circa">c.</abbr><span style="white-space:nowrap;">&#8201;1930</span> and published in 1948.<sup id="cite_ref-:0_4-0" class="reference"><a href="#cite_note-:0-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> </p><p>The <a href="/wiki/Tarski%E2%80%93Seidenberg_theorem" title="Tarski–Seidenberg theorem">Tarski–Seidenberg theorem</a> extends this result to the following <i>projection theorem</i>. If <span class="texhtml"><b>R</b></span> is a real closed field, a formula with <span class="texhtml mvar" style="font-style:italic;">n</span> free variables defines a subset of <span class="texhtml"><b>R</b><sup><i>n</i></sup></span>, the set of the points that satisfy the formula. Such a subset is called a <a href="/wiki/Semialgebraic_set" title="Semialgebraic set">semialgebraic set</a>. Given a subset of <span class="texhtml mvar" style="font-style:italic;">k</span> variables, the <i>projection</i> from <span class="texhtml"><b>R</b><sup><i>n</i></sup></span> to <span class="texhtml"><b>R</b><sup><i>k</i></sup></span> is the <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a> that maps every <span class="texhtml mvar" style="font-style:italic;">n</span>-tuple to the <span class="texhtml mvar" style="font-style:italic;">k</span>-tuple of the components corresponding to the subset of variables. The projection theorem asserts that a projection of a semialgebraic set is a semialgebraic set, and that there is an algorithm that, given a quantifier-free formula defining a semialgebraic set, produces a quantifier-free formula for its projection. </p><p>In fact, the projection theorem is equivalent to quantifier elimination, as the projection of a semialgebraic set defined by the formula <span class="texhtml"><i>p</i>(<i>x</i>, <i>y</i>)</span> is defined by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\exists x)P(x,y),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo stretchy="false">)</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\exists x)P(x,y),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bca62774719a0fe1ac5a1baae608b09bb402524c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.152ex; height:2.843ex;" alt="{\displaystyle (\exists x)P(x,y),}"></span></dd></dl> <p>where <span class="texhtml mvar" style="font-style:italic;">x</span> and <span class="texhtml mvar" style="font-style:italic;">y</span> represent respectively the set of eliminated variables, and the set of kept variables. </p><p>The decidability of a first-order theory of the real numbers depends dramatically on the primitive operations and functions that are considered (here addition and multiplication). Adding other functions symbols, for example, the <a href="/wiki/Sine" class="mw-redirect" title="Sine">sine</a> or the <a href="/wiki/Exponential_function" title="Exponential function">exponential function</a>, can provide undecidable theories; see <a href="/wiki/Richardson%27s_theorem" title="Richardson&#39;s theorem">Richardson's theorem</a> and <a href="/wiki/Decidability_of_first-order_theories_of_the_real_numbers" title="Decidability of first-order theories of the real numbers">Decidability of first-order theories of the real numbers</a>. </p><p>Furthermore, the completeness and decidability of the first-order theory of the real numbers (using addition and multiplication) contrasts sharply with <a href="/wiki/Kurt_G%C3%B6del" title="Kurt Gödel">Gödel</a>'s and <a href="/wiki/Alan_Turing" title="Alan Turing">Turing</a>'s results about the incompleteness and undecidability of the first-order theory of the natural numbers (using addition and multiplication). There is no contradiction, since the statement "<i>x</i> is an integer" cannot be formulated as a first-order formula in the language <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}_{\text{rcf}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>rcf</mtext> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}_{\text{rcf}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d072ef411c420812eda7108cf7cd211947c5c8b1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.714ex; height:2.509ex;" alt="{\displaystyle {\mathcal {L}}_{\text{rcf}}}"></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Complexity_of_deciding_𝘛rcf"><span id="Complexity_of_deciding_.F0.9D.98.9Brcf"></span>Complexity of deciding 𝘛<sub>rcf</sub></h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Real_closed_field&amp;action=edit&amp;section=5" title="Edit section: Complexity of deciding 𝘛rcf"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Tarski's original algorithm for <a href="/wiki/Quantifier_elimination" title="Quantifier elimination">quantifier elimination</a> has <a href="/wiki/Nonelementary_problem" title="Nonelementary problem">nonelementary</a> <a href="/wiki/Computational_complexity" title="Computational complexity">computational complexity</a>, meaning that no tower </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{2^{\cdot ^{\cdot ^{\cdot ^{n}}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msup> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </msup> </mrow> </msup> </mrow> </msup> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{2^{\cdot ^{\cdot ^{\cdot ^{n}}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/960c6481fd65c45d8e0e28aa548fb929b9b96898" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.696ex; height:4.176ex;" alt="{\displaystyle 2^{2^{\cdot ^{\cdot ^{\cdot ^{n}}}}}}"></span></dd></dl> <p>can bound the execution time of the algorithm if <span class="texhtml mvar" style="font-style:italic;">n</span> is the size of the input formula. The <a href="/wiki/Cylindrical_algebraic_decomposition" title="Cylindrical algebraic decomposition">cylindrical algebraic decomposition</a>, introduced by <a href="/wiki/George_E._Collins" title="George E. Collins">George E. Collins</a>, provides a much more practicable algorithm of complexity </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d^{2^{O(n)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>O</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msup> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d^{2^{O(n)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0db3f9eb8e193641220f35716cb0dc2f91f92662" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.294ex; height:3.176ex;" alt="{\displaystyle d^{2^{O(n)}}}"></span></dd></dl> <p>where <span class="texhtml mvar" style="font-style:italic;">n</span> is the total number of variables (free and bound), <span class="texhtml mvar" style="font-style:italic;">d</span> is the product of the degrees of the polynomials occurring in the formula, and <span class="texhtml"><i>O</i>(<i>n</i>)</span> is <a href="/wiki/Big_O_notation" title="Big O notation">big O notation</a>. </p><p>Davenport and Heintz (1988) proved that this <a href="/wiki/Worst-case_complexity" title="Worst-case complexity">worst-case complexity</a> is nearly optimal for quantifier elimination by producing a family <span class="texhtml">Φ<sub><i>n</i></sub></span> of formulas of length <span class="texhtml"><i>O</i>(<i>n</i>)</span>, with <span class="texhtml mvar" style="font-style:italic;">n</span> quantifiers, and involving polynomials of constant degree, such that any quantifier-free formula equivalent to <span class="texhtml">Φ<sub><i>n</i></sub></span> must involve polynomials of degree <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{2^{\Omega (n)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msup> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{2^{\Omega (n)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/be01fb26016ef8e7a1a7951b95a6b3085823bb89" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.184ex; height:3.176ex;" alt="{\displaystyle 2^{2^{\Omega (n)}}}"></span> and length <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{2^{\Omega (n)}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msup> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{2^{\Omega (n)}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b05b04326beae993dfd47ff915e42dc061785e43" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.83ex; height:3.509ex;" alt="{\displaystyle 2^{2^{\Omega (n)}},}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega (n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega (n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6becc31c61ad3420a1e4ee9e39c28baf73bda24d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.882ex; height:2.843ex;" alt="{\displaystyle \Omega (n)}"></span> is <a href="/wiki/Big_Omega_notation" class="mw-redirect" title="Big Omega notation">big Omega notation</a>. This shows that both the time complexity and the space complexity of quantifier elimination are intrinsically <a href="/wiki/Double_exponential_time" class="mw-redirect" title="Double exponential time">double exponential</a>. </p><p>For the decision problem, Ben-Or, <a href="/wiki/Dexter_Kozen" title="Dexter Kozen">Kozen</a>, and <a href="/wiki/John_Reif" title="John Reif">Reif</a> (1986) claimed to have proved that the theory of real closed fields is decidable in <a href="/wiki/EXPSPACE" title="EXPSPACE">exponential space</a>, and therefore in double exponential time, but their argument (in the case of more than one variable) is generally held as flawed; see Renegar (1992) for a discussion. </p><p>For purely existential formulas, that is for formulas of the form </p> <dl><dd><span class="texhtml">∃<i>x</i><sub>1</sub>, ..., ∃<i>x</i><sub><i>k</i></sub> <i>P</i><sub>1</sub>(<i>x</i><sub>1</sub>, ..., <i>x</i><sub><i>k</i></sub>) ⋈ 0 ∧ ... ∧ <i>P</i><sub><i>s</i></sub>(<i>x</i><sub>1</sub>, ..., <i>x</i><sub><i>k</i></sub>) ⋈ 0,</span></dd></dl> <p>where <span class="texhtml">⋈</span> stands for either <span class="texhtml">&lt;, &gt;</span> or&#160;<span class="texhtml">=</span>, the complexity is lower. Basu and <a href="/wiki/Marie-Fran%C3%A7oise_Roy" title="Marie-Françoise Roy">Roy</a> (1996) provided a well-behaved algorithm to decide the truth of such an existential formula with complexity of <span class="texhtml"><i>s</i><sup><i>k</i>+1</sup><i>d</i><sup><i>O</i>(<i>k</i>)</sup></span> arithmetic operations and <a href="/wiki/PSPACE" title="PSPACE">polynomial space</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Order_properties">Order properties</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Real_closed_field&amp;action=edit&amp;section=6" title="Edit section: Order properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A crucially important property of the real numbers is that it is an <a href="/wiki/Archimedean_field" class="mw-redirect" title="Archimedean field">Archimedean field</a>, meaning it has the Archimedean property that for any real number, there is an <a href="/wiki/Integer" title="Integer">integer</a> larger than it in <a href="/wiki/Absolute_value" title="Absolute value">absolute value</a>. Note that this statement is not expressible in the first-order language of ordered fields, since it is not possible to quantify over integers in that language. </p><p>There are real-closed fields that are <a href="/wiki/Non-Archimedean_ordered_field" title="Non-Archimedean ordered field">non-Archimedean</a>; for example, any field of <a href="/wiki/Hyperreal_number" title="Hyperreal number">hyperreal numbers</a> is real closed and non-Archimedean. These fields contain infinitely large (larger than any integer) and infinitesimal (positive but smaller than any positive rational) elements. </p><p>The Archimedean property is related to the concept of <a href="/wiki/Cofinality" title="Cofinality">cofinality</a>. A set <i>X</i> contained in an ordered set <i>F</i> is cofinal in <i>F</i> if for every <i>y</i> in <i>F</i> there is an <i>x</i> in <i>X</i> such that <i>y</i> &lt; <i>x</i>. In other words, <i>X</i> is an unbounded sequence in <i>F</i>. The cofinality of <i>F</i> is the <a href="/wiki/Cardinality" title="Cardinality">cardinality</a> of the smallest cofinal set, which is to say, the size of the smallest cardinality giving an unbounded sequence. For example, <a href="/wiki/Natural_number" title="Natural number">natural numbers</a> are cofinal in the reals, and the cofinality of the reals is therefore <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \aleph _{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x2135;<!-- ℵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \aleph _{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/721cd7f8c15a2e72ad162bdfa5baea8eef98aab1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.475ex; height:2.509ex;" alt="{\displaystyle \aleph _{0}}"></span>. </p><p>We have therefore the following invariants defining the nature of a real closed field <i>F</i>: </p> <ul><li>The cardinality of <i>F</i>.</li> <li>The cofinality of <i>F</i>.</li></ul> <p>To this we may add </p> <ul><li>The weight of <i>F</i>, which is the minimum size of a dense subset of <i>F</i>.</li></ul> <p>These three cardinal numbers tell us much about the order properties of any real closed field, though it may be difficult to discover what they are, especially if we are not willing to invoke the <a href="/wiki/Continuum_hypothesis" title="Continuum hypothesis">generalized continuum hypothesis</a>. There are also particular properties that may or may not hold: </p> <ul><li>A field <i>F</i> is <b>complete</b> if there is no ordered field <i>K</i> properly containing <i>F</i> such that <i>F</i> is dense in <i>K</i>. If the cofinality of <i>F</i> is <i>κ</i>, this is equivalent to saying <a href="/wiki/Cauchy_sequence" title="Cauchy sequence">Cauchy sequences</a> indexed by <i>κ</i> are <a href="/wiki/Convergent_sequence" class="mw-redirect" title="Convergent sequence">convergent</a> in <i>F</i>.</li> <li>An ordered field <i>F</i> has the <a href="/wiki/Eta_set" class="mw-redirect" title="Eta set">eta set</a> property η<sub><i>α</i></sub>, for the <a href="/wiki/Ordinal_number" title="Ordinal number">ordinal number</a> <i>α</i>, if for any two subsets <i>L</i> and <i>U</i> of <i>F</i> of cardinality less than <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \aleph _{\alpha }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x2135;<!-- ℵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \aleph _{\alpha }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fd1f42a5a41f25dc3689817aa40dca0ad1649bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.704ex; height:2.509ex;" alt="{\displaystyle \aleph _{\alpha }}"></span> such that every element of <i>L</i> is less than every element of <i>U</i>, there is an element <i>x</i> in <i>F</i> with <i>x</i> larger than every element of <i>L</i> and smaller than every element of <i>U</i>. This is closely related to the <a href="/wiki/Model-theoretic" class="mw-redirect" title="Model-theoretic">model-theoretic</a> property of being a <a href="/wiki/Saturated_model" title="Saturated model">saturated model</a>; any two real closed fields are η<sub><i>α</i></sub> if and only if they are <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \aleph _{\alpha }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x2135;<!-- ℵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \aleph _{\alpha }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fd1f42a5a41f25dc3689817aa40dca0ad1649bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.704ex; height:2.509ex;" alt="{\displaystyle \aleph _{\alpha }}"></span>-saturated, and moreover two η<sub><i>α</i></sub> real closed fields both of cardinality <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \aleph _{\alpha }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x2135;<!-- ℵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \aleph _{\alpha }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fd1f42a5a41f25dc3689817aa40dca0ad1649bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.704ex; height:2.509ex;" alt="{\displaystyle \aleph _{\alpha }}"></span> are <a href="/wiki/Order_isomorphic" class="mw-redirect" title="Order isomorphic">order isomorphic</a>.</li></ul> <div class="mw-heading mw-heading2"><h2 id="The_generalized_continuum_hypothesis">The generalized continuum hypothesis</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Real_closed_field&amp;action=edit&amp;section=7" title="Edit section: The generalized continuum hypothesis"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The characteristics of real closed fields become much simpler if we are willing to assume the <a href="/wiki/Continuum_hypothesis" title="Continuum hypothesis">generalized continuum hypothesis</a>. If the continuum hypothesis holds, all real closed fields with <a href="/wiki/Cardinality_of_the_continuum" title="Cardinality of the continuum">cardinality of the continuum</a> and having the <i>η</i><sub>1</sub> property are order isomorphic. This unique field <i>Ϝ</i> can be defined by means of an <a href="/wiki/Ultraproduct" title="Ultraproduct">ultrapower</a>, as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{\mathbb {N} }/\mathbf {M} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">M</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{\mathbb {N} }/\mathbf {M} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eea02904b085b1af92724f063e88e7a8b75475f3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.797ex; height:3.176ex;" alt="{\displaystyle \mathbb {R} ^{\mathbb {N} }/\mathbf {M} }"></span>, where <b>M</b> is a maximal ideal not leading to a field order-isomorphic to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span>. This is the most commonly used <a href="/wiki/Hyperreal_number" title="Hyperreal number">hyperreal number field</a> in <a href="/wiki/Nonstandard_analysis" title="Nonstandard analysis">nonstandard analysis</a>, and its uniqueness is equivalent to the continuum hypothesis. (Even without the continuum hypothesis we have that if the cardinality of the continuum is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \aleph _{\beta }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x2135;<!-- ℵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \aleph _{\beta }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d90b9e53511cd7409630a24b5412a3cead28b6c8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.594ex; height:2.843ex;" alt="{\displaystyle \aleph _{\beta }}"></span> then we have a unique <a href="/wiki/Eta_set" class="mw-redirect" title="Eta set"><i>η</i><sub><i>β</i></sub> field</a> of size <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \aleph _{\beta }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x2135;<!-- ℵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \aleph _{\beta }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d90b9e53511cd7409630a24b5412a3cead28b6c8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.594ex; height:2.843ex;" alt="{\displaystyle \aleph _{\beta }}"></span>.) </p><p>Moreover, we do not need ultrapowers to construct <i>Ϝ</i>, we can do so much more constructively as the subfield of series with a <a href="/wiki/Countably_infinite" class="mw-redirect" title="Countably infinite">countable</a> number of nonzero terms of the field <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} [[G]]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">[</mo> <mo stretchy="false">[</mo> <mi>G</mi> <mo stretchy="false">]</mo> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} [[G]]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d0c679a432a1b7895539cefa2d46c1e1bbde771" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.092ex; height:2.843ex;" alt="{\displaystyle \mathbb {R} [[G]]}"></span> of <a href="/wiki/Formal_power_series" title="Formal power series">formal power series</a> on a <a href="/wiki/Totally_ordered_group" class="mw-redirect" title="Totally ordered group">totally ordered</a> <a href="/wiki/Abelian_group" title="Abelian group">abelian</a> <a href="/wiki/Divisible_group" title="Divisible group">divisible group</a> <i>G</i> that is an <a href="/wiki/Eta_set" class="mw-redirect" title="Eta set"><i>η</i><sub>1</sub> group</a> of cardinality <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \aleph _{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x2135;<!-- ℵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \aleph _{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/78c211ce8badf4ffbf9417ecceb0ef7ab0a8caed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.475ex; height:2.509ex;" alt="{\displaystyle \aleph _{1}}"></span> (<a href="#CITEREFAlling1962">Alling 1962</a>). </p><p><i>Ϝ</i> however is not a complete field; if we take its completion, we end up with a field <i>Κ</i> of larger cardinality. <i>Ϝ</i> has the cardinality of the continuum, which by hypothesis is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \aleph _{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x2135;<!-- ℵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \aleph _{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/78c211ce8badf4ffbf9417ecceb0ef7ab0a8caed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.475ex; height:2.509ex;" alt="{\displaystyle \aleph _{1}}"></span>, <i>Κ</i> has cardinality <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \aleph _{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x2135;<!-- ℵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \aleph _{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/765bb468708b2eec66bf2dc6505a4c92959d697d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.475ex; height:2.509ex;" alt="{\displaystyle \aleph _{2}}"></span>, and contains <i>Ϝ</i> as a dense subfield. It is not an ultrapower but it <i>is</i> a hyperreal field, and hence a suitable field for the usages of nonstandard analysis. It can be seen to be the higher-dimensional analogue of the real numbers; with cardinality <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \aleph _{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x2135;<!-- ℵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \aleph _{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/765bb468708b2eec66bf2dc6505a4c92959d697d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.475ex; height:2.509ex;" alt="{\displaystyle \aleph _{2}}"></span> instead of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \aleph _{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x2135;<!-- ℵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \aleph _{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/78c211ce8badf4ffbf9417ecceb0ef7ab0a8caed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.475ex; height:2.509ex;" alt="{\displaystyle \aleph _{1}}"></span>, cofinality <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \aleph _{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x2135;<!-- ℵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \aleph _{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/78c211ce8badf4ffbf9417ecceb0ef7ab0a8caed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.475ex; height:2.509ex;" alt="{\displaystyle \aleph _{1}}"></span> instead of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \aleph _{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x2135;<!-- ℵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \aleph _{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/721cd7f8c15a2e72ad162bdfa5baea8eef98aab1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.475ex; height:2.509ex;" alt="{\displaystyle \aleph _{0}}"></span>, and weight <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \aleph _{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x2135;<!-- ℵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \aleph _{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/78c211ce8badf4ffbf9417ecceb0ef7ab0a8caed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.475ex; height:2.509ex;" alt="{\displaystyle \aleph _{1}}"></span> instead of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \aleph _{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x2135;<!-- ℵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \aleph _{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/721cd7f8c15a2e72ad162bdfa5baea8eef98aab1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.475ex; height:2.509ex;" alt="{\displaystyle \aleph _{0}}"></span>, and with the <i>η</i><sub>1</sub> property in place of the <i>η</i><sub>0</sub> property (which merely means between any two real numbers we can find another). </p> <div class="mw-heading mw-heading2"><h2 id="Elementary_Euclidean_geometry">Elementary Euclidean geometry</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Real_closed_field&amp;action=edit&amp;section=8" title="Edit section: Elementary Euclidean geometry"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Tarski%27s_axioms" title="Tarski&#39;s axioms">Tarski's axioms</a> are an axiom system for the first-order ("elementary") portion of <a href="/wiki/Euclidean_geometry" title="Euclidean geometry">Euclidean geometry</a>. Using those axioms, one can show that the points on a line form a real closed field R, and one can introduce coordinates so that the Euclidean plane is identified with R<sup>2</sup> . Employing the decidability of the theory of real closed fields, Tarski then proved that the elementary theory of Euclidean geometry is complete and decidable.<sup id="cite_ref-:0_4-1" class="reference"><a href="#cite_note-:0-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Real_closed_field&amp;action=edit&amp;section=9" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text">D. Macpherson <i>et al.</i> (1998)</span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text">Rajwade (1993) pp.&#160;222–223</span> </li> <li id="cite_note-Efr177-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-Efr177_3-0">^</a></b></span> <span class="reference-text">Efrat (2006) p.&#160;177</span> </li> <li id="cite_note-:0-4"><span class="mw-cite-backlink">^ <a href="#cite_ref-:0_4-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:0_4-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFMcNaughton,_Robert1953" class="citation journal cs1">McNaughton, Robert (1953). <a rel="nofollow" class="external text" href="https://www.ams.org/journals/bull/1953-59-01/S0002-9904-1953-09664-1/S0002-9904-1953-09664-1.pdf">"Review: <i>A decision method for elementary algebra and geometry</i> by A. Tarski"</a> <span class="cs1-format">(PDF)</span>. <i>Bull. Amer. Math. Soc</i>. <b>59</b> (1): <span class="nowrap">91–</span>93. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1090%2Fs0002-9904-1953-09664-1">10.1090/s0002-9904-1953-09664-1</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Bull.+Amer.+Math.+Soc.&amp;rft.atitle=Review%3A+A+decision+method+for+elementary+algebra+and+geometry+by+A.+Tarski&amp;rft.volume=59&amp;rft.issue=1&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E91-%3C%2Fspan%3E93&amp;rft.date=1953&amp;rft_id=info%3Adoi%2F10.1090%2Fs0002-9904-1953-09664-1&amp;rft.au=McNaughton%2C+Robert&amp;rft_id=https%3A%2F%2Fwww.ams.org%2Fjournals%2Fbull%2F1953-59-01%2FS0002-9904-1953-09664-1%2FS0002-9904-1953-09664-1.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReal+closed+field" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Real_closed_field&amp;action=edit&amp;section=10" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAlling1962" class="citation cs2">Alling, Norman L. (1962), "On the existence of real-closed fields that are η<sub>α</sub>-sets of power ℵ<sub>α</sub>.", <i>Trans. Amer. Math. Soc.</i>, <b>103</b>: <span class="nowrap">341–</span>352, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1090%2FS0002-9947-1962-0146089-X">10.1090/S0002-9947-1962-0146089-X</a></span>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0146089">0146089</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Trans.+Amer.+Math.+Soc.&amp;rft.atitle=On+the+existence+of+real-closed+fields+that+are+%CE%B7%3Csub%3E%CE%B1%3C%2Fsub%3E-sets+of+power+%E2%84%B5%3Csub%3E%CE%B1%3C%2Fsub%3E.&amp;rft.volume=103&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E341-%3C%2Fspan%3E352&amp;rft.date=1962&amp;rft_id=info%3Adoi%2F10.1090%2FS0002-9947-1962-0146089-X&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0146089%23id-name%3DMR&amp;rft.aulast=Alling&amp;rft.aufirst=Norman+L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReal+closed+field" class="Z3988"></span></li> <li>Basu, Saugata, <a href="/wiki/Richard_M._Pollack" title="Richard M. Pollack">Richard Pollack</a>, and <a href="/wiki/Marie-Fran%C3%A7oise_Roy" title="Marie-Françoise Roy">Marie-Françoise Roy</a> (2003) "Algorithms in real algebraic geometry" in <i>Algorithms and computation in mathematics</i>. Springer. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/3-540-33098-4" title="Special:BookSources/3-540-33098-4">3-540-33098-4</a> (<a rel="nofollow" class="external text" href="http://perso.univ-rennes1.fr/marie-francoise.roy/bpr-ed2-posted1.html">online version</a>)</li> <li>Michael Ben-Or, Dexter Kozen, and John Reif, <i><a rel="nofollow" class="external text" href="http://www.cs.duke.edu/~reif/paper/benor/realclosed.pdf">The complexity of elementary algebra and geometry</a></i>, Journal of Computer and Systems Sciences 32 (1986), no. 2, pp.&#160;251–264.</li> <li>Caviness, B F, and Jeremy R. Johnson, eds. (1998) <i>Quantifier elimination and cylindrical algebraic decomposition</i>. Springer. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/3-211-82794-3" title="Special:BookSources/3-211-82794-3">3-211-82794-3</a></li> <li><a href="/wiki/Chen_Chung_Chang" title="Chen Chung Chang">Chen Chung Chang</a> and <a href="/wiki/Howard_Jerome_Keisler" title="Howard Jerome Keisler">Howard Jerome Keisler</a> (1989) <i>Model Theory</i>. North-Holland.</li> <li>Dales, H. G., and <a href="/wiki/W._Hugh_Woodin" title="W. Hugh Woodin">W. Hugh Woodin</a> (1996) <i>Super-Real Fields</i>. Oxford Univ. Press.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDavenportHeintz1988" class="citation journal cs1"><a href="/wiki/James_H._Davenport" title="James H. Davenport">Davenport, James H.</a>; <a href="/wiki/Joos_Ulrich_Heintz" title="Joos Ulrich Heintz">Heintz, Joos</a> (1988). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fs0747-7171%2888%2980004-x">"Real quantifier elimination is doubly exponential"</a>. <i>J. Symb. Comput</i>. <b>5</b> (<span class="nowrap">1–</span>2): <span class="nowrap">29–</span>35. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fs0747-7171%2888%2980004-x">10.1016/s0747-7171(88)80004-x</a></span>. <a href="/wiki/Zbl_(identifier)" class="mw-redirect" title="Zbl (identifier)">Zbl</a>&#160;<a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&amp;q=an:0663.03015">0663.03015</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=J.+Symb.+Comput.&amp;rft.atitle=Real+quantifier+elimination+is+doubly+exponential&amp;rft.volume=5&amp;rft.issue=%3Cspan+class%3D%22nowrap%22%3E1%E2%80%93%3C%2Fspan%3E2&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E29-%3C%2Fspan%3E35&amp;rft.date=1988&amp;rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A0663.03015%23id-name%3DZbl&amp;rft_id=info%3Adoi%2F10.1016%2Fs0747-7171%2888%2980004-x&amp;rft.aulast=Davenport&amp;rft.aufirst=James+H.&amp;rft.au=Heintz%2C+Joos&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fs0747-7171%252888%252980004-x&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReal+closed+field" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEfrat2006" class="citation book cs1">Efrat, Ido (2006). <i>Valuations, orderings, and Milnor </i>K<i>-theory</i>. Mathematical Surveys and Monographs. Vol.&#160;124. Providence, RI: <a href="/wiki/American_Mathematical_Society" title="American Mathematical Society">American Mathematical Society</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-8218-4041-X" title="Special:BookSources/0-8218-4041-X"><bdi>0-8218-4041-X</bdi></a>. <a href="/wiki/Zbl_(identifier)" class="mw-redirect" title="Zbl (identifier)">Zbl</a>&#160;<a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&amp;q=an:1103.12002">1103.12002</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Valuations%2C+orderings%2C+and+Milnor+K-theory&amp;rft.place=Providence%2C+RI&amp;rft.series=Mathematical+Surveys+and+Monographs&amp;rft.pub=American+Mathematical+Society&amp;rft.date=2006&amp;rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A1103.12002%23id-name%3DZbl&amp;rft.isbn=0-8218-4041-X&amp;rft.aulast=Efrat&amp;rft.aufirst=Ido&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReal+closed+field" class="Z3988"></span></li> <li>Macpherson, D., Marker, D. and Steinhorn, C., <i>Weakly o-minimal structures and real closed fields</i>, Trans. of the American Math. Soc., Vol. 352, No. 12, 1998.</li> <li>Mishra, Bhubaneswar (1997) "<a rel="nofollow" class="external text" href="http://www.cs.nyu.edu/mishra/PUBLICATIONS/97.real-alg.ps">Computational Real Algebraic Geometry</a>," in <i>Handbook of Discrete and Computational Geometry</i>. CRC Press. 2004 edition, p.&#160;743. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/1-58488-301-4" title="Special:BookSources/1-58488-301-4">1-58488-301-4</a></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRajwade1993" class="citation book cs1">Rajwade, A. R. (1993). <i>Squares</i>. London Mathematical Society Lecture Note Series. Vol.&#160;171. <a href="/wiki/Cambridge_University_Press" title="Cambridge University Press">Cambridge University Press</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-521-42668-5" title="Special:BookSources/0-521-42668-5"><bdi>0-521-42668-5</bdi></a>. <a href="/wiki/Zbl_(identifier)" class="mw-redirect" title="Zbl (identifier)">Zbl</a>&#160;<a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&amp;q=an:0785.11022">0785.11022</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Squares&amp;rft.series=London+Mathematical+Society+Lecture+Note+Series&amp;rft.pub=Cambridge+University+Press&amp;rft.date=1993&amp;rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A0785.11022%23id-name%3DZbl&amp;rft.isbn=0-521-42668-5&amp;rft.aulast=Rajwade&amp;rft.aufirst=A.+R.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReal+closed+field" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRenegar1992" class="citation journal cs1">Renegar, James (1992). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0747-7171%2810%2980003-3">"On the computational complexity and geometry of the first-order theory of the reals. Part I: Introduction. Preliminaries. The geometry of semi-algebraic sets. The decision problem for the existential theory of the reals"</a>. <i>Journal of Symbolic Computation</i>. <b>13</b> (3): <span class="nowrap">255–</span>299. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0747-7171%2810%2980003-3">10.1016/S0747-7171(10)80003-3</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Symbolic+Computation&amp;rft.atitle=On+the+computational+complexity+and+geometry+of+the+first-order+theory+of+the+reals.+Part+I%3A+Introduction.+Preliminaries.+The+geometry+of+semi-algebraic+sets.+The+decision+problem+for+the+existential+theory+of+the+reals&amp;rft.volume=13&amp;rft.issue=3&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E255-%3C%2Fspan%3E299&amp;rft.date=1992&amp;rft_id=info%3Adoi%2F10.1016%2FS0747-7171%2810%2980003-3&amp;rft.aulast=Renegar&amp;rft.aufirst=James&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252FS0747-7171%252810%252980003-3&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReal+closed+field" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPassmore2011" class="citation thesis cs1"><a href="/wiki/Grant_Olney" title="Grant Olney">Passmore, Grant</a> (2011). <a rel="nofollow" class="external text" href="https://www.cl.cam.ac.uk/~gp351/passmore-phd-thesis.pdf"><i>Combined Decision Procedures for Nonlinear Arithmetics, Real and Complex</i></a> <span class="cs1-format">(PDF)</span> (PhD). <a href="/wiki/University_of_Edinburgh" title="University of Edinburgh">University of Edinburgh</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adissertation&amp;rft.title=Combined+Decision+Procedures+for+Nonlinear+Arithmetics%2C+Real+and+Complex&amp;rft.inst=University+of+Edinburgh&amp;rft.date=2011&amp;rft.aulast=Passmore&amp;rft.aufirst=Grant&amp;rft_id=https%3A%2F%2Fwww.cl.cam.ac.uk%2F~gp351%2Fpassmore-phd-thesis.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReal+closed+field" class="Z3988"></span></li> <li><a href="/wiki/Alfred_Tarski" title="Alfred Tarski">Alfred Tarski</a> (1951) <i>A Decision Method for Elementary Algebra and Geometry</i>. Univ. of California Press.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFErdösGillmanHenriksen1955" class="citation cs2">Erdös, P.; Gillman, L.; Henriksen, M. (1955), <a rel="nofollow" class="external text" href="https://scholarship.claremont.edu/cgi/viewcontent.cgi?article=2016&amp;context=hmc_fac_pub">"An isomorphism theorem for real-closed fields"</a>, <i>Ann. of Math.</i>, 2, <b>61</b> (3): <span class="nowrap">542–</span>554, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F1969812">10.2307/1969812</a>, <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/1969812">1969812</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0069161">0069161</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Ann.+of+Math.&amp;rft.atitle=An+isomorphism+theorem+for+real-closed+fields&amp;rft.volume=61&amp;rft.issue=3&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E542-%3C%2Fspan%3E554&amp;rft.date=1955&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0069161%23id-name%3DMR&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F1969812%23id-name%3DJSTOR&amp;rft_id=info%3Adoi%2F10.2307%2F1969812&amp;rft.aulast=Erd%C3%B6s&amp;rft.aufirst=P.&amp;rft.au=Gillman%2C+L.&amp;rft.au=Henriksen%2C+M.&amp;rft_id=https%3A%2F%2Fscholarship.claremont.edu%2Fcgi%2Fviewcontent.cgi%3Farticle%3D2016%26context%3Dhmc_fac_pub&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AReal+closed+field" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Real_closed_field&amp;action=edit&amp;section=11" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r1237033735">@media print{body.ns-0 .mw-parser-output .sistersitebox{display:none!important}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}</style><div class="side-box side-box-right plainlinks sistersitebox"><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Commons-logo.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png" decoding="async" width="30" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/45px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/59px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></a></span></div> <div class="side-box-text plainlist">Wikimedia Commons has media related to <span style="font-weight: bold; font-style: italic;"><a href="https://commons.wikimedia.org/wiki/Category:Real_closed_field" class="extiw" title="commons:Category:Real closed field">Real closed field</a></span>.</div></div> </div> <ul><li><a rel="nofollow" class="external text" href="http://www.maths.manchester.ac.uk/raag/"><i>Real Algebraic and Analytic Geometry Preprint Server</i></a></li> <li><a rel="nofollow" class="external text" href="http://www.logique.jussieu.fr/modnet/Publications/Preprint%20server/"><i>Model Theory preprint server</i></a></li></ul> <!-- NewPP limit report Parsed by mw‐web.eqiad.main‐868759585b‐z7q8c Cached time: 20250214040653 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.372 seconds Real time usage: 0.541 seconds Preprocessor visited node count: 2554/1000000 Post‐expand include size: 29358/2097152 bytes Template argument size: 3057/2097152 bytes Highest expansion depth: 14/100 Expensive parser function count: 1/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 31734/5000000 bytes Lua time usage: 0.193/10.000 seconds Lua memory usage: 6821565/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 382.011 1 -total 24.13% 92.190 1 Template:Reflist 23.00% 87.867 3 Template:Cite_journal 18.74% 71.591 1 Template:Short_description 15.50% 59.230 1 Template:Commons_category 14.82% 56.597 1 Template:Sister_project 14.25% 54.442 1 Template:Side_box 12.03% 45.968 2 Template:Pagetype 8.30% 31.715 1 Template:Harv 7.57% 28.934 3 Template:Isbn --> <!-- Saved in parser cache with key enwiki:pcache:1066093:|#|:idhash:canonical and timestamp 20250214040653 and revision id 1242686827. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?useformat=desktop&amp;type=1x1&amp;usesul3=0" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Real_closed_field&amp;oldid=1242686827">https://en.wikipedia.org/w/index.php?title=Real_closed_field&amp;oldid=1242686827</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Real_closed_field" title="Category:Real closed field">Real closed field</a></li><li><a href="/wiki/Category:Field_(mathematics)" title="Category:Field (mathematics)">Field (mathematics)</a></li><li><a href="/wiki/Category:Real_algebraic_geometry" title="Category:Real algebraic geometry">Real algebraic geometry</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_matches_Wikidata" title="Category:Short description matches Wikidata">Short description matches Wikidata</a></li><li><a href="/wiki/Category:Commons_category_link_from_Wikidata" title="Category:Commons category link from Wikidata">Commons category link from Wikidata</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 28 August 2024, at 05:08<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Real_closed_field&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" lang="en" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><picture><source media="(min-width: 500px)" srcset="/w/resources/assets/poweredby_mediawiki.svg" width="88" height="31"><img src="/w/resources/assets/mediawiki_compact.svg" alt="Powered by MediaWiki" width="25" height="25" loading="lazy"></picture></a></li> </ul> </footer> </div> </div> </div> <div class="vector-header-container vector-sticky-header-container"> <div id="vector-sticky-header" class="vector-sticky-header"> <div class="vector-sticky-header-start"> <div class="vector-sticky-header-icon-start vector-button-flush-left vector-button-flush-right" aria-hidden="true"> <button class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-sticky-header-search-toggle" tabindex="-1" data-event-name="ui.vector-sticky-search-form.icon"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </button> </div> <div role="search" class="vector-search-box-vue vector-search-box-show-thumbnail vector-search-box"> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail"> <form action="/w/index.php" id="vector-sticky-search-form" class="cdx-search-input cdx-search-input--has-end-button"> <div class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia"> <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <div class="vector-sticky-header-context-bar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-sticky-header-toc" class="vector-dropdown mw-portlet mw-portlet-sticky-header-toc vector-sticky-header-toc vector-button-flush-left" > <input type="checkbox" id="vector-sticky-header-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-sticky-header-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-sticky-header-toc-label" for="vector-sticky-header-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-sticky-header-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div class="vector-sticky-header-context-bar-primary" aria-hidden="true" ><span class="mw-page-title-main">Real closed field</span></div> </div> </div> <div class="vector-sticky-header-end" aria-hidden="true"> <div class="vector-sticky-header-icons"> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-talk-sticky-header" tabindex="-1" data-event-name="talk-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbles mw-ui-icon-wikimedia-speechBubbles"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-subject-sticky-header" tabindex="-1" data-event-name="subject-sticky-header"><span class="vector-icon mw-ui-icon-article mw-ui-icon-wikimedia-article"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-history-sticky-header" tabindex="-1" data-event-name="history-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-history mw-ui-icon-wikimedia-wikimedia-history"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only mw-watchlink" id="ca-watchstar-sticky-header" tabindex="-1" data-event-name="watch-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-star mw-ui-icon-wikimedia-wikimedia-star"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-edit-sticky-header" tabindex="-1" data-event-name="wikitext-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-wikiText mw-ui-icon-wikimedia-wikimedia-wikiText"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-ve-edit-sticky-header" tabindex="-1" data-event-name="ve-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-edit mw-ui-icon-wikimedia-wikimedia-edit"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-viewsource-sticky-header" tabindex="-1" data-event-name="ve-edit-protected-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-editLock mw-ui-icon-wikimedia-wikimedia-editLock"></span> <span></span> </a> </div> <div class="vector-sticky-header-buttons"> <button class="cdx-button cdx-button--weight-quiet mw-interlanguage-selector" id="p-lang-btn-sticky-header" tabindex="-1" data-event-name="ui.dropdown-p-lang-btn-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-language mw-ui-icon-wikimedia-wikimedia-language"></span> <span>11 languages</span> </button> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive" id="ca-addsection-sticky-header" tabindex="-1" data-event-name="addsection-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbleAdd-progressive mw-ui-icon-wikimedia-speechBubbleAdd-progressive"></span> <span>Add topic</span> </a> </div> <div class="vector-sticky-header-icon-end"> <div class="vector-user-links"> </div> </div> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-b766959bd-zkbdn","wgBackendResponseTime":123,"wgPageParseReport":{"limitreport":{"cputime":"0.372","walltime":"0.541","ppvisitednodes":{"value":2554,"limit":1000000},"postexpandincludesize":{"value":29358,"limit":2097152},"templateargumentsize":{"value":3057,"limit":2097152},"expansiondepth":{"value":14,"limit":100},"expensivefunctioncount":{"value":1,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":31734,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 382.011 1 -total"," 24.13% 92.190 1 Template:Reflist"," 23.00% 87.867 3 Template:Cite_journal"," 18.74% 71.591 1 Template:Short_description"," 15.50% 59.230 1 Template:Commons_category"," 14.82% 56.597 1 Template:Sister_project"," 14.25% 54.442 1 Template:Side_box"," 12.03% 45.968 2 Template:Pagetype"," 8.30% 31.715 1 Template:Harv"," 7.57% 28.934 3 Template:Isbn"]},"scribunto":{"limitreport-timeusage":{"value":"0.193","limit":"10.000"},"limitreport-memusage":{"value":6821565,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFAlling1962\"] = 1,\n [\"CITEREFDavenportHeintz1988\"] = 1,\n [\"CITEREFEfrat2006\"] = 1,\n [\"CITEREFErdösGillmanHenriksen1955\"] = 1,\n [\"CITEREFMcNaughton,_Robert1953\"] = 1,\n [\"CITEREFPassmore2011\"] = 1,\n [\"CITEREFRajwade1993\"] = 1,\n [\"CITEREFRenegar1992\"] = 1,\n}\ntemplate_list = table#1 {\n [\"Circa\"] = 1,\n [\"Citation\"] = 2,\n [\"Cite book\"] = 2,\n [\"Cite journal\"] = 3,\n [\"Cite thesis\"] = 1,\n [\"Commons category\"] = 1,\n [\"Harv\"] = 1,\n [\"Hatnote\"] = 1,\n [\"Isbn\"] = 3,\n [\"Math\"] = 15,\n [\"Mvar\"] = 10,\n [\"Reflist\"] = 1,\n [\"Short description\"] = 1,\n [\"Sup\"] = 3,\n}\narticle_whitelist = table#1 {\n}\nciteref_patterns = table#1 {\n}\n"},"cachereport":{"origin":"mw-web.eqiad.main-868759585b-z7q8c","timestamp":"20250214040653","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Real closed field","url":"https:\/\/en.wikipedia.org\/wiki\/Real_closed_field","sameAs":"http:\/\/www.wikidata.org\/entity\/Q2068227","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q2068227","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2004-10-13T22:15:41Z","dateModified":"2024-08-28T05:08:21Z","headline":"Non algebraically closed field whose extension by sqrt(\u20131) is algebraically closed"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10