CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 111 results for author: <span class="mathjax">Shen, J</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Shen%2C+J">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Shen, J"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Shen%2C+J&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Shen, J"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Shen%2C+J&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Shen%2C+J&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Shen%2C+J&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Shen%2C+J&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.05748">arXiv:2502.05748</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.05748">pdf</a>, <a href="https://arxiv.org/format/2502.05748">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> A validated fluid-structure interaction simulation model for vortex-induced vibration of a flexible pipe in steady flow </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Fu%2C+X">Xuepeng Fu</a>, <a href="/search/physics?searchtype=author&amp;query=Fu%2C+S">Shixiao Fu</a>, <a href="/search/physics?searchtype=author&amp;query=Niu%2C+Z">Zhibo Niu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+B">Bing Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+J">Jiawei Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+P">Pengqian Deng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.05748v1-abstract-short" style="display: inline;"> We propose a validated fluid-structure interaction simulation framework based on strip methods for the vortex-induced vibration of a flexible pipe. The numerical results are compared with the experimental data from three previous steady flow conditions: uniform, linearly sheared, and bidirectionally sheared flow. The Reynolds number ranges from $10^4$ to $10^5$. The flow field is simulated via the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.05748v1-abstract-full').style.display = 'inline'; document.getElementById('2502.05748v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.05748v1-abstract-full" style="display: none;"> We propose a validated fluid-structure interaction simulation framework based on strip methods for the vortex-induced vibration of a flexible pipe. The numerical results are compared with the experimental data from three previous steady flow conditions: uniform, linearly sheared, and bidirectionally sheared flow. The Reynolds number ranges from $10^4$ to $10^5$. The flow field is simulated via the RANS model, which is based on the open-source software OpenFOAM. The solid field is modeled based on Euler-Bernoulli beam theory, and fluid-structure coupling is implemented via a weak coupling algorithm developed in MATLAB. The vortex-induced vibration response is assessed in terms of amplitude and frequency, along with the differences in strain. Additionally, wavelet analysis and traveling wave phenomena are investigated. The numerical simulation codes and experimental data in this manuscript are openly available, providing a foundation for more complex vortex-induced vibration simulations in the future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.05748v1-abstract-full').style.display = 'none'; document.getElementById('2502.05748v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 29 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.03797">arXiv:2502.03797</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.03797">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/nsr/nwae338">10.1093/nsr/nwae338 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Superior probabilistic computing using operationally stable probabilistic-bit constructed by manganite nanowire </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yadi Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+B">Bin Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+W">Wenping Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Ye%2C+B">Biying Ye</a>, <a href="/search/physics?searchtype=author&amp;query=Niu%2C+C">Chang Niu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+W">Wenbin Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+Y">Yinyan Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+W">Weichao Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+H">Hangwen Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+J">Jian Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.03797v1-abstract-short" style="display: inline;"> Probabilistic computing has emerged as a viable approach to treat optimization problems. To achieve superior computing performance, the key aspect during computation is massive sampling and tuning on the probability states of each probabilistic bit (p-bit), demanding its high stability under extensive operations. Here, we demonstrate a p-bit constructed by manganite nanowire that shows exceptional&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.03797v1-abstract-full').style.display = 'inline'; document.getElementById('2502.03797v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.03797v1-abstract-full" style="display: none;"> Probabilistic computing has emerged as a viable approach to treat optimization problems. To achieve superior computing performance, the key aspect during computation is massive sampling and tuning on the probability states of each probabilistic bit (p-bit), demanding its high stability under extensive operations. Here, we demonstrate a p-bit constructed by manganite nanowire that shows exceptionally high stability. The p-bit contains an electronic domain that fluctuates between metallic (low resistance) and insulating (high resistance) states near its transition temperature. The probability for the two states can be directly controlled by nano-ampere electrical current. Under extensive operations, the standard error of its probability values is less than 1.3%. Simulations show that our operationally stable p-bit plays the key role to achieve correct inference in Bayesian network by strongly suppressing the relative error, displaying the potential for superior computing performance. Our p-bit also serves as high quality random number generator without extra data-processing, beneficial for cryptographic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.03797v1-abstract-full').style.display = 'none'; document.getElementById('2502.03797v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 3 figures, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> National Science Review,2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.14167">arXiv:2501.14167</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.14167">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Wafer-scale Integration of Single-Crystalline MoS$_2$ for Flexible Electronics Enabled by Oxide Dry-transfer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xu%2C+X">Xiang Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yitong Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+J">Jichuang Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Q">Qi Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+T">Tong Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H">Han Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+H">Huaze Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+Y">Yaqing Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+H">Hao Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Wenhao Li</a>, <a href="/search/physics?searchtype=author&amp;query=Ji%2C+C">Chen Ji</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+D">Dingwei Li</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+S">Siyu Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yan Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+B">Bowen Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Kong%2C+W">Wei Kong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.14167v1-abstract-short" style="display: inline;"> Atomically thin, single-crystalline transition metal dichalcogenides (TMDCs) grown via chemical vapor deposition (CVD) on sapphire substrates exhibit exceptional mechanical and electrical properties, positioning them as excellent channel materials for flexible electronics. However, conventional wet-transfer processes for integrating these materials onto flexible substrates often introduce surface&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.14167v1-abstract-full').style.display = 'inline'; document.getElementById('2501.14167v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.14167v1-abstract-full" style="display: none;"> Atomically thin, single-crystalline transition metal dichalcogenides (TMDCs) grown via chemical vapor deposition (CVD) on sapphire substrates exhibit exceptional mechanical and electrical properties, positioning them as excellent channel materials for flexible electronics. However, conventional wet-transfer processes for integrating these materials onto flexible substrates often introduce surface contamination, significantly degrading device performance. Here, we present a wafer-scale dry-transfer technique using a high-dielectric oxide as the transfer medium, enabling the integration of 4-inch single-crystalline MoS$_2$ onto flexible substrates. This method eliminates contact with polymers or solvents, thus preserving the intrinsic electronic properties of MoS$_2$. As a result, the fabricated flexible field-effect transistor (FET) arrays exhibit remarkable performance, with a mobility of 117 cm$^2$/Vs, a subthreshold swing of 68.8 mV dec$^{-1}$, and an ultra-high current on/off ratio of $10^{12}$-values comparable to those achieved on rigid substrates. Leveraging the outstanding electrical characteristics, we demonstrated MoS$_2$-based flexible inverters operating in the subthreshold regime, achieving both a high gain of 218 and ultra-low power consumption of 1.4 pW/$渭$m. Additionally, we integrated a flexible tactile sensing system driven by active-matrix MoS$_2$ FET arrays onto a robotic gripper, enabling real-time object identification. These findings demonstrate the simultaneous achievement of high electrical performance and flexibility, highlighting the immense potential of single-crystalline TMDC-based flexible electronics for real-world applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.14167v1-abstract-full').style.display = 'none'; document.getElementById('2501.14167v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.01853">arXiv:2501.01853</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.01853">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1073/pnas.2416294121">10.1073/pnas.2416294121 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A self-learning magnetic Hopfield neural network with intrinsic gradient descent adaption </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Niu%2C+C">Chang Niu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+H">Huanyu Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+C">Chuanlong Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+W">Wenjie Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+Y">Yunzhuo Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+Y">Yu Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yadi Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+T">Tong Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+Y">Yi Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+Y">Yinyan Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+W">Wenbin Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+Y">Yizheng Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Yin%2C+L">Lifeng Yin</a>, <a href="/search/physics?searchtype=author&amp;query=Xiao%2C+J">Jiang Xiao</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+W">Weichao Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+H">Hangwen Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+J">Jian Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.01853v2-abstract-short" style="display: inline;"> Physical neural networks using physical materials and devices to mimic synapses and neurons offer an energy-efficient way to implement artificial neural networks. Yet, training physical neural networks are difficult and heavily relies on external computing resources. An emerging concept to solve this issue is called physical self-learning that uses intrinsic physical parameters as trainable weight&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.01853v2-abstract-full').style.display = 'inline'; document.getElementById('2501.01853v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.01853v2-abstract-full" style="display: none;"> Physical neural networks using physical materials and devices to mimic synapses and neurons offer an energy-efficient way to implement artificial neural networks. Yet, training physical neural networks are difficult and heavily relies on external computing resources. An emerging concept to solve this issue is called physical self-learning that uses intrinsic physical parameters as trainable weights. Under external inputs (i.e. training data), training is achieved by the natural evolution of physical parameters that intrinsically adapt modern learning rules via autonomous physical process, eliminating the requirements on external computation resources.Here, we demonstrate a real spintronic system that mimics Hopfield neural networks (HNN) and unsupervised learning is intrinsically performed via the evolution of physical process. Using magnetic texture defined conductance matrix as trainable weights, we illustrate that under external voltage inputs, the conductance matrix naturally evolves and adapts Oja&#39;s learning algorithm in a gradient descent manner. The self-learning HNN is scalable and can achieve associative memories on patterns with high similarities. The fast spin dynamics and reconfigurability of magnetic textures offer an advantageous platform towards efficient autonomous training directly in materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.01853v2-abstract-full').style.display = 'none'; document.getElementById('2501.01853v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proc. Natl. Acad. Sci. U.S.A. 121 (51) e2416294121,(2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.10622">arXiv:2412.10622</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.10622">pdf</a>, <a href="https://arxiv.org/format/2412.10622">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> A recent evaluation on the performance of LLMs on radiation oncology physics using questions of randomly shuffled options </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+P">Peilong Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Holmes%2C+J">Jason Holmes</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zhengliang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+D">Dequan Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+T">Tianming Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+J">Jiajian Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+W">Wei Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.10622v3-abstract-short" style="display: inline;"> Purpose: We present an updated study evaluating the performance of large language models (LLMs) in answering radiation oncology physics questions, focusing on the recently released models. Methods: A set of 100 multiple-choice radiation oncology physics questions, previously created by a well-experienced physicist, was used for this study. The answer options of the questions were randomly shuffl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.10622v3-abstract-full').style.display = 'inline'; document.getElementById('2412.10622v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.10622v3-abstract-full" style="display: none;"> Purpose: We present an updated study evaluating the performance of large language models (LLMs) in answering radiation oncology physics questions, focusing on the recently released models. Methods: A set of 100 multiple-choice radiation oncology physics questions, previously created by a well-experienced physicist, was used for this study. The answer options of the questions were randomly shuffled to create &#34;new&#34; exam sets. Five LLMs -- OpenAI o1-preview, GPT-4o, LLaMA 3.1 (405B), Gemini 1.5 Pro, and Claude 3.5 Sonnet -- with the versions released before September 30, 2024, were queried using these new exam sets. To evaluate their deductive reasoning ability, the correct answer options in the questions were replaced with &#34;None of the above.&#34; Then, the explain-first and step-by-step instruction prompts were used to test if this strategy improved their reasoning ability. The performance of the LLMs was compared with the answers from medical physicists. Results: All models demonstrated expert-level performance on these questions, with o1-preview even surpassing medical physicists with a majority vote. When replacing the correct answer options with &#39;None of the above&#39;, all models exhibited a considerable decline in performance, suggesting room for improvement. The explain-first and step-by-step instruction prompts helped enhance the reasoning ability of the LLaMA 3.1 (405B), Gemini 1.5 Pro, and Claude 3.5 Sonnet models. Conclusion: These recently released LLMs demonstrated expert-level performance in answering radiation oncology physics questions, exhibiting great potential to assist in radiation oncology physics education and training. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.10622v3-abstract-full').style.display = 'none'; document.getElementById('2412.10622v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.10149">arXiv:2412.10149</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.10149">pdf</a>, <a href="https://arxiv.org/format/2412.10149">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Learning Radical Excited States from Sparse Data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Shen%2C+J">Jingkun Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Walker%2C+L">Lucy Walker</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+K">Kevin Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Green%2C+J+D">James D. Green</a>, <a href="/search/physics?searchtype=author&amp;query=Bronstein%2C+H">Hugo Bronstein</a>, <a href="/search/physics?searchtype=author&amp;query=Butler%2C+K+T">Keith T. Butler</a>, <a href="/search/physics?searchtype=author&amp;query=Hele%2C+T+J+H">Timothy J. H. Hele</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.10149v1-abstract-short" style="display: inline;"> Emissive organic radicals are currently of great interest for their potential use in the next generation of highly efficient organic light emitting diode (OLED) devices and as molecular qubits. However, simulating their optoelectronic properties is challenging, largely due to spin-contamination and the multireference character of their excited states. Here we present a data-driven approach where,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.10149v1-abstract-full').style.display = 'inline'; document.getElementById('2412.10149v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.10149v1-abstract-full" style="display: none;"> Emissive organic radicals are currently of great interest for their potential use in the next generation of highly efficient organic light emitting diode (OLED) devices and as molecular qubits. However, simulating their optoelectronic properties is challenging, largely due to spin-contamination and the multireference character of their excited states. Here we present a data-driven approach where, for the first time, the excited electronic states of organic radicals are learned directly from experimental excited state data, using a much smaller amount of data than required by typical Machine Learning. We adopt ExROPPP, a fast and spin-pure semiempirical method for calculation of excited states of radicals, as a surrogate physical model for which we learn the optimal set of parameters. We train the model on 81 previously published radicals and find that the trained model is a huge improvement over ExROPPP with literature parameters, giving RMS and mean absolute errors of 0.24 and 0.16 eV respectively with R$^2$ and SRCC of 0.86 and 0.88 respectively. We synthesise four new radicals and validate the model on their spectra, finding even lower errors and similar correlation as for the testing set. This model paves the way for high throughput discovery of next-generation radical based optoelectronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.10149v1-abstract-full').style.display = 'none'; document.getElementById('2412.10149v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.00568">arXiv:2412.00568</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.00568">pdf</a>, <a href="https://arxiv.org/format/2412.00568">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> The Well: a Large-Scale Collection of Diverse Physics Simulations for Machine Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ohana%2C+R">Ruben Ohana</a>, <a href="/search/physics?searchtype=author&amp;query=McCabe%2C+M">Michael McCabe</a>, <a href="/search/physics?searchtype=author&amp;query=Meyer%2C+L">Lucas Meyer</a>, <a href="/search/physics?searchtype=author&amp;query=Morel%2C+R">Rudy Morel</a>, <a href="/search/physics?searchtype=author&amp;query=Agocs%2C+F+J">Fruzsina J. Agocs</a>, <a href="/search/physics?searchtype=author&amp;query=Beneitez%2C+M">Miguel Beneitez</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+M">Marsha Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Burkhart%2C+B">Blakesley Burkhart</a>, <a href="/search/physics?searchtype=author&amp;query=Dalziel%2C+S+B">Stuart B. Dalziel</a>, <a href="/search/physics?searchtype=author&amp;query=Fielding%2C+D+B">Drummond B. Fielding</a>, <a href="/search/physics?searchtype=author&amp;query=Fortunato%2C+D">Daniel Fortunato</a>, <a href="/search/physics?searchtype=author&amp;query=Goldberg%2C+J+A">Jared A. Goldberg</a>, <a href="/search/physics?searchtype=author&amp;query=Hirashima%2C+K">Keiya Hirashima</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+Y">Yan-Fei Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Kerswell%2C+R+R">Rich R. Kerswell</a>, <a href="/search/physics?searchtype=author&amp;query=Maddu%2C+S">Suryanarayana Maddu</a>, <a href="/search/physics?searchtype=author&amp;query=Miller%2C+J">Jonah Miller</a>, <a href="/search/physics?searchtype=author&amp;query=Mukhopadhyay%2C+P">Payel Mukhopadhyay</a>, <a href="/search/physics?searchtype=author&amp;query=Nixon%2C+S+S">Stefan S. Nixon</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+J">Jeff Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Watteaux%2C+R">Romain Watteaux</a>, <a href="/search/physics?searchtype=author&amp;query=Blancard%2C+B+R">Bruno R茅galdo-Saint Blancard</a>, <a href="/search/physics?searchtype=author&amp;query=Rozet%2C+F">Fran莽ois Rozet</a>, <a href="/search/physics?searchtype=author&amp;query=Parker%2C+L+H">Liam H. Parker</a>, <a href="/search/physics?searchtype=author&amp;query=Cranmer%2C+M">Miles Cranmer</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.00568v1-abstract-short" style="display: inline;"> Machine learning based surrogate models offer researchers powerful tools for accelerating simulation-based workflows. However, as standard datasets in this space often cover small classes of physical behavior, it can be difficult to evaluate the efficacy of new approaches. To address this gap, we introduce the Well: a large-scale collection of datasets containing numerical simulations of a wide va&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.00568v1-abstract-full').style.display = 'inline'; document.getElementById('2412.00568v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.00568v1-abstract-full" style="display: none;"> Machine learning based surrogate models offer researchers powerful tools for accelerating simulation-based workflows. However, as standard datasets in this space often cover small classes of physical behavior, it can be difficult to evaluate the efficacy of new approaches. To address this gap, we introduce the Well: a large-scale collection of datasets containing numerical simulations of a wide variety of spatiotemporal physical systems. The Well draws from domain experts and numerical software developers to provide 15TB of data across 16 datasets covering diverse domains such as biological systems, fluid dynamics, acoustic scattering, as well as magneto-hydrodynamic simulations of extra-galactic fluids or supernova explosions. These datasets can be used individually or as part of a broader benchmark suite. To facilitate usage of the Well, we provide a unified PyTorch interface for training and evaluating models. We demonstrate the function of this library by introducing example baselines that highlight the new challenges posed by the complex dynamics of the Well. The code and data is available at https://github.com/PolymathicAI/the_well. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.00568v1-abstract-full').style.display = 'none'; document.getElementById('2412.00568v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">38th Conference on Neural Information Processing Systems (NeurIPS 2024) Track on Datasets and Benchmarks</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.11245">arXiv:2411.11245</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.11245">pdf</a>, <a href="https://arxiv.org/ps/2411.11245">ps</a>, <a href="https://arxiv.org/format/2411.11245">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.cplett.2024.141840">10.1016/j.cplett.2024.141840 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Extension of the Active-Orbital-Based and Adaptive CC($P$;$Q$) Approaches to Excited Electronic States: Application to Potential Cuts of Water </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Gururangan%2C+K">Karthik Gururangan</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+J">Jun Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Piecuch%2C+P">Piotr Piecuch</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.11245v2-abstract-short" style="display: inline;"> We report the first study using active-orbital-based and adaptive CC($P$;$Q$) approaches to describe excited electronic states. These CC($P$;$Q$) methodologies are applied, alongside their completely renormalized (CR) coupled-cluster (CC) and equation-of-motion (EOM) CC counterparts, to recover the ground- and excited-state potential cuts of the water molecule along the O-H bond-breaking coordinat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11245v2-abstract-full').style.display = 'inline'; document.getElementById('2411.11245v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.11245v2-abstract-full" style="display: none;"> We report the first study using active-orbital-based and adaptive CC($P$;$Q$) approaches to describe excited electronic states. These CC($P$;$Q$) methodologies are applied, alongside their completely renormalized (CR) coupled-cluster (CC) and equation-of-motion (EOM) CC counterparts, to recover the ground- and excited-state potential cuts of the water molecule along the O-H bond-breaking coordinate obtained in the parent CC/EOMCC calculations with a full treatment of singles, doubles, and triples (CCSDT/EOMCCSDT). We demonstrate that the active-orbital-based and adaptive CC($P$;$Q$) approaches closely approximate the CCSDT/EOMCCSDT data using significantly reduced computational costs while improving the CR-CC and CR-EOMCC energetics in stretched regions of the O-H bond-breaking potentials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11245v2-abstract-full').style.display = 'none'; document.getElementById('2411.11245v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 3 tables, and 1 figure. Supporting Data as an ancillary file. This article has been accepted for publication in Chemical Physics Letters. After it is published, it will be found at</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chem. Phys. Lett. 862, 141840 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.11350">arXiv:2410.11350</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.11350">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> </div> <p class="title is-5 mathjax"> Azimuthal imaging of rock fractures by incorporating single borehole radar and optical data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Shen%2C+J">Jian Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+L">Liu Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+S">Shaojun Li</a>, <a href="/search/physics?searchtype=author&amp;query=Shi%2C+Z">Zhenming Shi</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yiteng Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Peng%2C+M">Ming Peng</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+M">Minzong Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.11350v2-abstract-short" style="display: inline;"> Single borehole radar detection suffers from azimuthal ambiguity, while borehole optical tests only provide information about the borehole wall. These limitations prevent either detection method from revealing the complete spatial patterns of rock fractures on their own. In this paper, we address these challenges by proposing a joint imaging method that combines the advantages of both borehole det&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.11350v2-abstract-full').style.display = 'inline'; document.getElementById('2410.11350v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.11350v2-abstract-full" style="display: none;"> Single borehole radar detection suffers from azimuthal ambiguity, while borehole optical tests only provide information about the borehole wall. These limitations prevent either detection method from revealing the complete spatial patterns of rock fractures on their own. In this paper, we address these challenges by proposing a joint imaging method that combines the advantages of both borehole detection methods. Geological azimuthal parameters are extracted from optical images by fitting the fracture curves to sinusoidal functions. A 2D Kirchhoff time migration is then implemented using radar common offset gather. Up-dip and down-dip events are separated by the f-k transform or z-s transform, depending on their geometric relation. The complete fracture planes, including trend, dip angle, gap width, and extension length, are finally reconstructed in 3D space by mapping the migration profile using azimuthal information from optical images. The method is proven reliable and high-resolution through both numerical tests and real field data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.11350v2-abstract-full').style.display = 'none'; document.getElementById('2410.11350v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages,5figures;Submitted to Journal of Geophysics and Engineering</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.18288">arXiv:2409.18288</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.18288">pdf</a>, <a href="https://arxiv.org/format/2409.18288">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> The track-length extension fitting algorithm for energy measurement of interacting particles in liquid argon TPCs and its performance with ProtoDUNE-SP data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&amp;query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&amp;query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&amp;query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&amp;query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&amp;query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&amp;query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&amp;query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&amp;query=Alex%2C+N+S">N. S. Alex</a>, <a href="/search/physics?searchtype=author&amp;query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&amp;query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&amp;query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&amp;query=Alves%2C+T">T. Alves</a>, <a href="/search/physics?searchtype=author&amp;query=Amar%2C+H">H. Amar</a>, <a href="/search/physics?searchtype=author&amp;query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Andreopoulos%2C+C">C. Andreopoulos</a> , et al. (1348 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.18288v3-abstract-short" style="display: inline;"> This paper introduces a novel track-length extension fitting algorithm for measuring the kinetic energies of inelastically interacting particles in liquid argon time projection chambers (LArTPCs). The algorithm finds the most probable offset in track length for a track-like object by comparing the measured ionization density as a function of position with a theoretical prediction of the energy los&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18288v3-abstract-full').style.display = 'inline'; document.getElementById('2409.18288v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.18288v3-abstract-full" style="display: none;"> This paper introduces a novel track-length extension fitting algorithm for measuring the kinetic energies of inelastically interacting particles in liquid argon time projection chambers (LArTPCs). The algorithm finds the most probable offset in track length for a track-like object by comparing the measured ionization density as a function of position with a theoretical prediction of the energy loss as a function of the energy, including models of electron recombination and detector response. The algorithm can be used to measure the energies of particles that interact before they stop, such as charged pions that are absorbed by argon nuclei. The algorithm&#39;s energy measurement resolutions and fractional biases are presented as functions of particle kinetic energy and number of track hits using samples of stopping secondary charged pions in data collected by the ProtoDUNE-SP detector, and also in a detailed simulation. Additional studies describe the impact of the dE/dx model on energy measurement performance. The method described in this paper to characterize the energy measurement performance can be repeated in any LArTPC experiment using stopping secondary charged pions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18288v3-abstract-full').style.display = 'none'; document.getElementById('2409.18288v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-24-0561-LBNF-PPD, CERN-EP-2024-256 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.09752">arXiv:2409.09752</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.09752">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Grafted AlGaAs/GeSn Optical Pumping Laser Operating up to 130 K </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+J">Jie Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Vincent%2C+D">Daniel Vincent</a>, <a href="/search/physics?searchtype=author&amp;query=Acharya%2C+S">Sudip Acharya</a>, <a href="/search/physics?searchtype=author&amp;query=Ojo%2C+S">Solomon Ojo</a>, <a href="/search/physics?searchtype=author&amp;query=Abrand%2C+A">Alireza Abrand</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Yang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+J">Jiarui Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+D">Dong Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Haessly%2C+S">Samuel Haessly</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+J">Jianping Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+S">Shining Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yiran Li</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+Y">Yi Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Stanchu%2C+H">Hryhorii Stanchu</a>, <a href="/search/physics?searchtype=author&amp;query=Mawst%2C+L">Luke Mawst</a>, <a href="/search/physics?searchtype=author&amp;query=Claflin%2C+B">Bruce Claflin</a>, <a href="/search/physics?searchtype=author&amp;query=Mohseni%2C+P+K">Parsian K. Mohseni</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+Z">Zhenqiang Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+S">Shui-Qing Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.09752v1-abstract-short" style="display: inline;"> Group IV GeSn double-heterostructure (DHS) lasers offer unique advantages of a direct bandgap and CMOS compatibility. However, further improvements in laser performance have been bottlenecked by limited junction properties of GeSn through conventional epitaxy and wafer bonding. This work leverages semiconductor grafting to synthesize and characterize optically pumped ridge edge-emitting lasers (EE&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09752v1-abstract-full').style.display = 'inline'; document.getElementById('2409.09752v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.09752v1-abstract-full" style="display: none;"> Group IV GeSn double-heterostructure (DHS) lasers offer unique advantages of a direct bandgap and CMOS compatibility. However, further improvements in laser performance have been bottlenecked by limited junction properties of GeSn through conventional epitaxy and wafer bonding. This work leverages semiconductor grafting to synthesize and characterize optically pumped ridge edge-emitting lasers (EELs) with an AlGaAs nanomembrane (NM) transfer-printed onto an epitaxially grown GeSn substrate, interfaced by an ultrathin Al2O3 layer. The grafted AlGaAs/GeSn DHS lasers show a lasing threshold of 11.06 mW at 77 K and a maximum lasing temperature of 130 K. These results highlight the potential of the grafting technique for enhancing charge carrier and optical field confinements, paving the way for room-temperature electrically injected GeSn lasers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09752v1-abstract-full').style.display = 'none'; document.getElementById('2409.09752v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures. Supplementary Information included</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.12725">arXiv:2408.12725</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.12725">pdf</a>, <a href="https://arxiv.org/format/2408.12725">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> DUNE Phase II: Scientific Opportunities, Detector Concepts, Technological Solutions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&amp;query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&amp;query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&amp;query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&amp;query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&amp;query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&amp;query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&amp;query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&amp;query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&amp;query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&amp;query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&amp;query=Alves%2C+T">T. Alves</a>, <a href="/search/physics?searchtype=author&amp;query=Amar%2C+H">H. Amar</a>, <a href="/search/physics?searchtype=author&amp;query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/physics?searchtype=author&amp;query=Andreotti%2C+M">M. Andreotti</a> , et al. (1347 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.12725v1-abstract-short" style="display: inline;"> The international collaboration designing and constructing the Deep Underground Neutrino Experiment (DUNE) at the Long-Baseline Neutrino Facility (LBNF) has developed a two-phase strategy toward the implementation of this leading-edge, large-scale science project. The 2023 report of the US Particle Physics Project Prioritization Panel (P5) reaffirmed this vision and strongly endorsed DUNE Phase I&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12725v1-abstract-full').style.display = 'inline'; document.getElementById('2408.12725v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.12725v1-abstract-full" style="display: none;"> The international collaboration designing and constructing the Deep Underground Neutrino Experiment (DUNE) at the Long-Baseline Neutrino Facility (LBNF) has developed a two-phase strategy toward the implementation of this leading-edge, large-scale science project. The 2023 report of the US Particle Physics Project Prioritization Panel (P5) reaffirmed this vision and strongly endorsed DUNE Phase I and Phase II, as did the European Strategy for Particle Physics. While the construction of the DUNE Phase I is well underway, this White Paper focuses on DUNE Phase II planning. DUNE Phase-II consists of a third and fourth far detector (FD) module, an upgraded near detector complex, and an enhanced 2.1 MW beam. The fourth FD module is conceived as a &#34;Module of Opportunity&#34;, aimed at expanding the physics opportunities, in addition to supporting the core DUNE science program, with more advanced technologies. This document highlights the increased science opportunities offered by the DUNE Phase II near and far detectors, including long-baseline neutrino oscillation physics, neutrino astrophysics, and physics beyond the standard model. It describes the DUNE Phase II near and far detector technologies and detector design concepts that are currently under consideration. A summary of key R&amp;D goals and prototyping phases needed to realize the Phase II detector technical designs is also provided. DUNE&#39;s Phase II detectors, along with the increased beam power, will complete the full scope of DUNE, enabling a multi-decadal program of groundbreaking science with neutrinos. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12725v1-abstract-full').style.display = 'none'; document.getElementById('2408.12725v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-TM-2833-LBNF </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.05796">arXiv:2408.05796</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.05796">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1017/jfm.2024.1040">10.1017/jfm.2024.1040 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamic hysteresis of an oscillatory contact line </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Shen%2C+J">Jiaxing Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+Y">Yaerim Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yuanzhe Li</a>, <a href="/search/physics?searchtype=author&amp;query=Zaleski%2C+S">St茅phane Zaleski</a>, <a href="/search/physics?searchtype=author&amp;query=Amberg%2C+G">Gustav Amberg</a>, <a href="/search/physics?searchtype=author&amp;query=Shiomi%2C+J">Junichiro Shiomi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.05796v1-abstract-short" style="display: inline;"> During oscillatory wetting, a phase retardation emerges between contact angle variation and contact line velocity, presenting as a hysteresis loop in their correlation -- an effect we term dynamic hysteresis. This phenomenon is found to be tunable by modifying the surface with different molecular layers. A comparative analysis of dynamic hysteresis, static hysteresis, and contact line friction coe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05796v1-abstract-full').style.display = 'inline'; document.getElementById('2408.05796v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.05796v1-abstract-full" style="display: none;"> During oscillatory wetting, a phase retardation emerges between contact angle variation and contact line velocity, presenting as a hysteresis loop in their correlation -- an effect we term dynamic hysteresis. This phenomenon is found to be tunable by modifying the surface with different molecular layers. A comparative analysis of dynamic hysteresis, static hysteresis, and contact line friction coefficients across diverse substrates reveals that dynamic hysteresis is not a result of dissipative effects but is instead proportionally linked to the flexibility of the grafted layer on the surface. In the quest for appropriate conditions to model oscillatory contact line motion, we identify the generalized Hocking&#39;s linear law and modified Generalized Navier Boundary Condition (GNBC) as alternative options for predicting realistic dynamic hysteresis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05796v1-abstract-full').style.display = 'none'; document.getElementById('2408.05796v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Fluid Mech. 1000 (2024) A34 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.05464">arXiv:2408.05464</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.05464">pdf</a>, <a href="https://arxiv.org/format/2408.05464">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11433-024-2403-x">10.1007/s11433-024-2403-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Physical Neural Networks with Self-Learning Capabilities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yu%2C+W">Weichao Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+H">Hangwen Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Xiao%2C+J">Jiang Xiao</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+J">Jian Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.05464v1-abstract-short" style="display: inline;"> Physical neural networks are artificial neural networks that mimic synapses and neurons using physical systems or materials. These networks harness the distinctive characteristics of physical systems to carry out computations effectively, potentially surpassing the constraints of conventional digital neural networks. A recent advancement known as ``physical self-learning&#39;&#39; aims to achieve learning&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05464v1-abstract-full').style.display = 'inline'; document.getElementById('2408.05464v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.05464v1-abstract-full" style="display: none;"> Physical neural networks are artificial neural networks that mimic synapses and neurons using physical systems or materials. These networks harness the distinctive characteristics of physical systems to carry out computations effectively, potentially surpassing the constraints of conventional digital neural networks. A recent advancement known as ``physical self-learning&#39;&#39; aims to achieve learning through intrinsic physical processes rather than relying on external computations. This article offers a comprehensive review of the progress made in implementing physical self-learning across various physical systems. Prevailing learning strategies are discussed that contribute to the realization of physical self-learning. Despite challenges in understanding fundamental mechanism of learning, this work highlights the progress towards constructing intelligent hardware from the ground up, incorporating embedded self-organizing and self-adaptive dynamics in physical systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05464v1-abstract-full').style.display = 'none'; document.getElementById('2408.05464v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sci. China Phys. Mech. Astron. 67, 287501 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.02438">arXiv:2408.02438</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.02438">pdf</a>, <a href="https://arxiv.org/format/2408.02438">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> A High-frequency, Low-power Resonant Radio-frequency Neutron Spin Flipper for High-resolution Spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=McKay%2C+S">Sam McKay</a>, <a href="/search/physics?searchtype=author&amp;query=Kuhn%2C+S+J">Stephen J. Kuhn</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+J">Jiazhou Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+F">Fankang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Doskow%2C+J">Jak Doskow</a>, <a href="/search/physics?searchtype=author&amp;query=Visser%2C+G">Gerard Visser</a>, <a href="/search/physics?searchtype=author&amp;query=Parnell%2C+S+R">Steven R. Parnell</a>, <a href="/search/physics?searchtype=author&amp;query=Burrage%2C+K">Kaleb Burrage</a>, <a href="/search/physics?searchtype=author&amp;query=Funama%2C+F">Fumiaki Funama</a>, <a href="/search/physics?searchtype=author&amp;query=Pynn%2C+R">Roger Pynn</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.02438v1-abstract-short" style="display: inline;"> We present a resonant-mode, transverse-field, radio-frequency (rf) neutron spin flipper design that uses high-temperature superconducting films to ensure sharp transitions between uniform magnetic field regions. Resonant mode allows for low power, high frequency operation but requires strict homogeneity of the magnetic fields inside the device. This design was found to efficiently flip neutrons at&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02438v1-abstract-full').style.display = 'inline'; document.getElementById('2408.02438v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.02438v1-abstract-full" style="display: none;"> We present a resonant-mode, transverse-field, radio-frequency (rf) neutron spin flipper design that uses high-temperature superconducting films to ensure sharp transitions between uniform magnetic field regions. Resonant mode allows for low power, high frequency operation but requires strict homogeneity of the magnetic fields inside the device. This design was found to efficiently flip neutrons at 96.6$\pm 0.6\%$ at an effective frequency of 4 MHz with a beam size of $2.5~\times~2.5$~cm and a wavelength of 0.4 nm. The high frequency and efficiency enable this device to perform high-resolution neutron spectroscopy with comparable performance to currently implemented rf flipper designs. The limitation of the maximum frequency was found due to the field homogeneity of the device. We numerically analyze the maximum possible efficiency of this design using a Bloch solver simulation with magnetic fields generated from finite-element simulations. We also discuss future improvements of the efficiency and frequency to the design based on the experimental and simulation results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02438v1-abstract-full').style.display = 'none'; document.getElementById('2408.02438v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.00582">arXiv:2408.00582</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.00582">pdf</a>, <a href="https://arxiv.org/format/2408.00582">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.110.092011">10.1103/PhysRevD.110.092011 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First Measurement of the Total Inelastic Cross-Section of Positively-Charged Kaons on Argon at Energies Between 5.0 and 7.5 GeV </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&amp;query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&amp;query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&amp;query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&amp;query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&amp;query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&amp;query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&amp;query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&amp;query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&amp;query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&amp;query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&amp;query=Alves%2C+T">T. Alves</a>, <a href="/search/physics?searchtype=author&amp;query=Amar%2C+H">H. Amar</a>, <a href="/search/physics?searchtype=author&amp;query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/physics?searchtype=author&amp;query=Andreotti%2C+M">M. Andreotti</a> , et al. (1341 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.00582v1-abstract-short" style="display: inline;"> ProtoDUNE Single-Phase (ProtoDUNE-SP) is a 770-ton liquid argon time projection chamber that operated in a hadron test beam at the CERN Neutrino Platform in 2018. We present a measurement of the total inelastic cross section of charged kaons on argon as a function of kaon energy using 6 and 7 GeV/$c$ beam momentum settings. The flux-weighted average of the extracted inelastic cross section at each&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00582v1-abstract-full').style.display = 'inline'; document.getElementById('2408.00582v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.00582v1-abstract-full" style="display: none;"> ProtoDUNE Single-Phase (ProtoDUNE-SP) is a 770-ton liquid argon time projection chamber that operated in a hadron test beam at the CERN Neutrino Platform in 2018. We present a measurement of the total inelastic cross section of charged kaons on argon as a function of kaon energy using 6 and 7 GeV/$c$ beam momentum settings. The flux-weighted average of the extracted inelastic cross section at each beam momentum setting was measured to be 380$\pm$26 mbarns for the 6 GeV/$c$ setting and 379$\pm$35 mbarns for the 7 GeV/$c$ setting. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00582v1-abstract-full').style.display = 'none'; document.getElementById('2408.00582v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-EP-2024-211, FERMILAB-PUB-24-0216-V </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 110, (2024) 092011 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.10339">arXiv:2407.10339</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.10339">pdf</a>, <a href="https://arxiv.org/format/2407.10339">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Supernova Pointing Capabilities of DUNE </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&amp;query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&amp;query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&amp;query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&amp;query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&amp;query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&amp;query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&amp;query=Aimard%2C+B">B. Aimard</a>, <a href="/search/physics?searchtype=author&amp;query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&amp;query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&amp;query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&amp;query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&amp;query=Alves%2C+T">T. Alves</a>, <a href="/search/physics?searchtype=author&amp;query=Amar%2C+H">H. Amar</a>, <a href="/search/physics?searchtype=author&amp;query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Andrade%2C+D+A">D. A. Andrade</a> , et al. (1340 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.10339v1-abstract-short" style="display: inline;"> The determination of the direction of a stellar core collapse via its neutrino emission is crucial for the identification of the progenitor for a multimessenger follow-up. A highly effective method of reconstructing supernova directions within the Deep Underground Neutrino Experiment (DUNE) is introduced. The supernova neutrino pointing resolution is studied by simulating and reconstructing electr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.10339v1-abstract-full').style.display = 'inline'; document.getElementById('2407.10339v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.10339v1-abstract-full" style="display: none;"> The determination of the direction of a stellar core collapse via its neutrino emission is crucial for the identification of the progenitor for a multimessenger follow-up. A highly effective method of reconstructing supernova directions within the Deep Underground Neutrino Experiment (DUNE) is introduced. The supernova neutrino pointing resolution is studied by simulating and reconstructing electron-neutrino charged-current absorption on $^{40}$Ar and elastic scattering of neutrinos on electrons. Procedures to reconstruct individual interactions, including a newly developed technique called ``brems flipping&#39;&#39;, as well as the burst direction from an ensemble of interactions are described. Performance of the burst direction reconstruction is evaluated for supernovae happening at a distance of 10 kpc for a specific supernova burst flux model. The pointing resolution is found to be 3.4 degrees at 68% coverage for a perfect interaction-channel classification and a fiducial mass of 40 kton, and 6.6 degrees for a 10 kton fiducial mass respectively. Assuming a 4% rate of charged-current interactions being misidentified as elastic scattering, DUNE&#39;s burst pointing resolution is found to be 4.3 degrees (8.7 degrees) at 68% coverage. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.10339v1-abstract-full').style.display = 'none'; document.getElementById('2407.10339v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 16 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-24-0319-LBNF </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.06883">arXiv:2406.06883</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.06883">pdf</a>, <a href="https://arxiv.org/ps/2406.06883">ps</a>, <a href="https://arxiv.org/format/2406.06883">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0196706">10.1063/5.0196706 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A way to identify whether a DFT gap is from right reasons or error cancellations: The case of copper chalcogenides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Shen%2C+J">Jiale Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+H">Haitao Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yuanchang Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.06883v1-abstract-short" style="display: inline;"> Gap opening remains elusive in copper chalcogenides (Cu$_{2}X$, $X$ = S, Se and Te), not least because Hubbard + $U$, hybrid functional and ${GW}$ methods have also failed. In this work, we elucidate that their failure originates from a severe underestimation of the 4$s$-3$d$ orbital splitting of the Cu atom, which leads to a band-order inversion in the presence of an anionic crystal field. As a r&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.06883v1-abstract-full').style.display = 'inline'; document.getElementById('2406.06883v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.06883v1-abstract-full" style="display: none;"> Gap opening remains elusive in copper chalcogenides (Cu$_{2}X$, $X$ = S, Se and Te), not least because Hubbard + $U$, hybrid functional and ${GW}$ methods have also failed. In this work, we elucidate that their failure originates from a severe underestimation of the 4$s$-3$d$ orbital splitting of the Cu atom, which leads to a band-order inversion in the presence of an anionic crystal field. As a result, the Fermi energy is pinned due to symmetry, yielding an invariant zero gap. Utilizing the hybrid pseudopotentials to correct the underestimation on the atomic side opens up gaps of experimental magnitude in Cu$_{2}X$, suggesting their predominantly electronic nature. Our work not only clarifies the debate about the Cu$_{2}X$ gap, but also provides a way to identify which of the different methods really captures the physical essence and which is the result of error cancellation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.06883v1-abstract-full').style.display = 'none'; document.getElementById('2406.06883v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by The Journal of Chemical Physics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Chem. Phys. 160, 244704 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.16769">arXiv:2405.16769</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.16769">pdf</a>, <a href="https://arxiv.org/format/2405.16769">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Learning phase transitions by siamese neural network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Shen%2C+J">Jianmin Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S">Shiyang Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+F">Feiyi Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Youju Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Wei Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.16769v1-abstract-short" style="display: inline;"> The wide application of machine learning (ML) techniques in statistics physics has presented new avenues for research in this field. In this paper, we introduce a semi-supervised learning method based on Siamese Neural Networks (SNN), trying to explore the potential of neural network (NN) in the study of critical behaviors beyond the approaches of supervised and unsupervised learning. By focusing&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.16769v1-abstract-full').style.display = 'inline'; document.getElementById('2405.16769v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.16769v1-abstract-full" style="display: none;"> The wide application of machine learning (ML) techniques in statistics physics has presented new avenues for research in this field. In this paper, we introduce a semi-supervised learning method based on Siamese Neural Networks (SNN), trying to explore the potential of neural network (NN) in the study of critical behaviors beyond the approaches of supervised and unsupervised learning. By focusing on the (1+1) dimensional bond directed percolation (DP) model of nonequilibrium phase transition, we use the SNN to predict the critical values and critical exponents of the system. Different from traditional ML methods, the input of SNN is a set of configuration data pairs and the output prediction is similarity, which prompts to find an anchor point of data for pair comparison during the test. In our study, during test we set different bond probability $p$ as anchors, and discuss the impact of the configurations at this anchors on predictions. More, we use an iterative method to find the optimal training interval to make the algorithm more efficient, and the prediction results are comparable to other ML methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.16769v1-abstract-full').style.display = 'none'; document.getElementById('2405.16769v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.15864">arXiv:2405.15864</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.15864">pdf</a>, <a href="https://arxiv.org/format/2405.15864">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> The Singlet-Triplet Gap of Cyclobutadiene: The CIPSI-Driven CC($P$;$Q$) Study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Priyadarsini%2C+S+S">Swati S. Priyadarsini</a>, <a href="/search/physics?searchtype=author&amp;query=Gururangan%2C+K">Karthik Gururangan</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+J">Jun Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Piecuch%2C+P">Piotr Piecuch</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.15864v1-abstract-short" style="display: inline;"> An accurate determination of singlet-triplet gaps in biradicals, including cyclobutadiene in the automerization barrier region where one has to balance the substantial nondynamical many-electron correlation effects characterizing the singlet ground state with the predominantly dynamical correlations of the lowest-energy triplet, remains a challenge for many quantum chemistry methods. High-level co&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.15864v1-abstract-full').style.display = 'inline'; document.getElementById('2405.15864v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.15864v1-abstract-full" style="display: none;"> An accurate determination of singlet-triplet gaps in biradicals, including cyclobutadiene in the automerization barrier region where one has to balance the substantial nondynamical many-electron correlation effects characterizing the singlet ground state with the predominantly dynamical correlations of the lowest-energy triplet, remains a challenge for many quantum chemistry methods. High-level coupled-cluster (CC) approaches, such as the CC method with a full treatment of singly, doubly, and triply excited clusters (CCSDT), are often capable of providing reliable results, but the routine application of such methods is hindered by their high computational costs. We have recently proposed a practical alternative to converging the CCSDT energetics at small fractions of the computational effort, even when electron correlations become stronger and connected triply excited clusters are larger and nonperturbative, by merging the CC($P$;$Q$) moment expansions with the selected configuration interaction methodology abbreviated as CIPSI. We demonstrate that one can accurately approximate the highly accurate CCSDT potential surfaces characterizing the lowest singlet and triplet states of cyclobutadiene along the automerization coordinate and the gap between them using tiny fractions of triply excited cluster amplitudes identified with the help of relatively inexpensive CIPSI Hamiltonian diagonalizations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.15864v1-abstract-full').style.display = 'none'; document.getElementById('2405.15864v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 3 tables, and 2 figures. This article has been submitted to the Journal of Physical Chemistry A</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.08984">arXiv:2405.08984</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.08984">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0173562">10.1063/5.0173562 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Charge-Transfer Hyperbolic Polaritons in $伪$-MoO$_3$/graphene heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Shen%2C+J">J. Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M">M. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Korostelev%2C+V">V. Korostelev</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+H">H. Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Fathi-Hafshejani%2C+P">P. Fathi-Hafshejani</a>, <a href="/search/physics?searchtype=author&amp;query=Mahjouri-Samani%2C+M">M. Mahjouri-Samani</a>, <a href="/search/physics?searchtype=author&amp;query=Klyukin%2C+K">K. Klyukin</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+G">G-H. Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Dai%2C+S">S. Dai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.08984v1-abstract-short" style="display: inline;"> Charge transfer is a fundamental interface process that can be harnessed for light detection, photovoltaics, and photosynthesis. Recently, charge transfer was exploited in nanophotonics to alter plasmon polaritons by involving additional non-polaritonic materials to activate the charge transfer. Yet, direct charge transfer between polaritonic materials hasn&#39;t been demonstrated. We report the direc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.08984v1-abstract-full').style.display = 'inline'; document.getElementById('2405.08984v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.08984v1-abstract-full" style="display: none;"> Charge transfer is a fundamental interface process that can be harnessed for light detection, photovoltaics, and photosynthesis. Recently, charge transfer was exploited in nanophotonics to alter plasmon polaritons by involving additional non-polaritonic materials to activate the charge transfer. Yet, direct charge transfer between polaritonic materials hasn&#39;t been demonstrated. We report the direct charge transfer in pure polaritonic van der Waals (vdW) heterostructures of $伪$-MoO$_3$/graphene. We extracted the Fermi energy of 0.6 eV for graphene by infrared nano-imaging of charge transfer hyperbolic polaritons in the vdW heterostructure. This unusually high Fermi energy is attributed to the charge transfer between graphene and $伪$-MoO$_3$. Moreover, we have observed charge transfer hyperbolic polaritons in multiple energy-momentum dispersion branches with a wavelength elongation of up to 150%. With support from the DFT calculation, we find that the charge transfer between graphene and $伪$-MoO$_3$, absent in mechanically assembled vdW heterostructures, is attributed to the relatively pristine heterointerface preserved in the epitaxially grown vdW heterostructure. The direct charge transfer and charge transfer hyperbolic polaritons demonstrated in our work hold great promise for developing nano-optical circuits, computational devices, communication systems, and light and energy manipulation devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.08984v1-abstract-full').style.display = 'none'; document.getElementById('2405.08984v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Applied Physics Reviews 11, 021409 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.03916">arXiv:2405.03916</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.03916">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> Robust Optimization for Spot Scanning Proton Therapy based on Dose-Linear Energy Transfer (LET) Volume Constraints </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chen%2C+J">Jingyuan Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+Y">Yunze Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Feng%2C+H">Hongying Feng</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+L">Lian Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Vargas%2C+C+E">Carlos E. Vargas</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+N+Y">Nathan Y. Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Rwigema%2C+J+M">Jean-Claude M. Rwigema</a>, <a href="/search/physics?searchtype=author&amp;query=Keole%2C+S+R">Sameer R. Keole</a>, <a href="/search/physics?searchtype=author&amp;query=Vora%2C+S+A">Sujay A. Vora</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+J">Jiajian Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+W">Wei Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.03916v1-abstract-short" style="display: inline;"> Purpose: Historically, spot scanning proton therapy (SSPT) treatment planning utilizes dose volume constraints and linear-energy-transfer (LET) volume constraints separately to balance tumor control and organs-at-risk (OARs) protection. We propose a novel dose-LET volume constraint (DLVC)-based robust optimization (DLVCRO) method for SSPT in treating prostate cancer to obtain a desirable joint dos&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.03916v1-abstract-full').style.display = 'inline'; document.getElementById('2405.03916v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.03916v1-abstract-full" style="display: none;"> Purpose: Historically, spot scanning proton therapy (SSPT) treatment planning utilizes dose volume constraints and linear-energy-transfer (LET) volume constraints separately to balance tumor control and organs-at-risk (OARs) protection. We propose a novel dose-LET volume constraint (DLVC)-based robust optimization (DLVCRO) method for SSPT in treating prostate cancer to obtain a desirable joint dose and LET distribution to minimize adverse events (AEs). Methods: DLVCRO treats DLVC as soft constraints controlling the joint distribution of dose and LET. Ten prostate cancer patients were included with rectum and bladder as OARs. DLVCRO was compared with the conventional robust optimization (RO) method using the worst-case analysis method. Besides the dose-volume histogram (DVH) indices, the analogous LETVH and extra-biological-dose (xBD)-volume histogram indices were also used. The Wilcoxon signed rank test was used to measure statistical significance. Results: In nominal scenario, DLVCRO significantly improved dose, LET and xBD distributions to protect OARs (rectum: V70Gy: 3.07\% vs. 2.90\%, p = .0063, RO vs. DLVCRO; $\text{LET}_{\max}$ (keV/um): 11.53 vs. 9.44, p = .0101; $\text{xBD}_{\max}$ (Gy$\cdot$keV/um): 420.55 vs. 398.79, p = .0086; bladder: V65Gy: 4.82\% vs. 4.61\%, p = .0032; $\text{LET}_{\max}$ 8.97 vs. 7.51, p = .0047; $\text{xBD}_{\max}$ 490.11 vs. 476.71, p = .0641). The physical dose distributions in targets are comparable (D2%: 98.57\% vs. 98.39\%; p = .0805; CTV D2% - D98%: 7.10\% vs. 7.75\%, p = .4624). In the worst-case scenario, DLVCRO robustly enhanced OAR while maintaining the similar plan robustness in target dose coverage and homogeneity. Conclusion: DLVCRO upgrades 2D DVH-based to 3D DLVH-based treatment planning to adjust dose/LET distributions simultaneously and robustly. DLVCRO is potentially a powerful tool to improve patient outcomes in SSPT. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.03916v1-abstract-full').style.display = 'none'; document.getElementById('2405.03916v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.07967">arXiv:2404.07967</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.07967">pdf</a>, <a href="https://arxiv.org/format/2404.07967">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.22.L031005">10.1103/PhysRevApplied.22.L031005 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin-Energy Entanglement of a Time-Focused Neutron </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Leiner%2C+J+C">J. C. Leiner</a>, <a href="/search/physics?searchtype=author&amp;query=Kuhn%2C+S+J">S. J. Kuhn</a>, <a href="/search/physics?searchtype=author&amp;query=McKay%2C+S">S. McKay</a>, <a href="/search/physics?searchtype=author&amp;query=Jochum%2C+J+K">J. K. Jochum</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+F">F. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Irfan%2C+A+A+M">A. A. M. Irfan</a>, <a href="/search/physics?searchtype=author&amp;query=Funama%2C+F">F. Funama</a>, <a href="/search/physics?searchtype=author&amp;query=Mettus%2C+D">D. Mettus</a>, <a href="/search/physics?searchtype=author&amp;query=Beddrich%2C+L">L. Beddrich</a>, <a href="/search/physics?searchtype=author&amp;query=Franz%2C+C">C. Franz</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+J">J. Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Parnell%2C+S+R">S. R. Parnell</a>, <a href="/search/physics?searchtype=author&amp;query=Dalgliesh%2C+R+M">R. M. Dalgliesh</a>, <a href="/search/physics?searchtype=author&amp;query=Loyd%2C+M">M. Loyd</a>, <a href="/search/physics?searchtype=author&amp;query=Geerits%2C+N">N. Geerits</a>, <a href="/search/physics?searchtype=author&amp;query=Ortiz%2C+G">G. Ortiz</a>, <a href="/search/physics?searchtype=author&amp;query=Pfleiderer%2C+C">C. Pfleiderer</a>, <a href="/search/physics?searchtype=author&amp;query=Pynn%2C+R">R. Pynn</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.07967v2-abstract-short" style="display: inline;"> Intra-particle entanglement of individual particles such as neutrons could enable another class of scattering probes that are sensitive to entanglement in quantum systems and materials. In this work, we present experimental results demonstrating quantum contextuality as a result of entanglement between the spin and energy modes (i.e., degrees of freedom) of single neutrons in a beam using a pair o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.07967v2-abstract-full').style.display = 'inline'; document.getElementById('2404.07967v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.07967v2-abstract-full" style="display: none;"> Intra-particle entanglement of individual particles such as neutrons could enable another class of scattering probes that are sensitive to entanglement in quantum systems and materials. In this work, we present experimental results demonstrating quantum contextuality as a result of entanglement between the spin and energy modes (i.e., degrees of freedom) of single neutrons in a beam using a pair of resonant radio-frequency neutron spin flippers in the MIEZE configuration (Modulated IntEnsity with Zero Effort). We verified the mode-entanglement by measuring a Clauser-Horne-Shimony-Holt (CHSH) contextuality witness $S$ defined in the spin and energy subsystems, observing a clear breach of the classical bound of $|S| \leq 2$, obtaining $S = 2.40 \pm 0.02$. These entangled beams could enable alternative approaches for directly probing dynamics and entanglement in quantum materials whose low-energy excitation scales match those of the incident entangled neutron. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.07967v2-abstract-full').style.display = 'none'; document.getElementById('2404.07967v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review Applied 22, L031005 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.04515">arXiv:2403.04515</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.04515">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Light-induced giant enhancement of nonreciprocal transport at KTaO3-based interfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+X">Xu Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+T">Tongshuai Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+S">Shuai Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Z">Zhongqiang Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Song%2C+A">Anke Song</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+C">Chong Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+R">Rongzheng Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Niu%2C+W">Wei Niu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yequan Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Fei%2C+F">Fucong Fei</a>, <a href="/search/physics?searchtype=author&amp;query=Tai%2C+Y">Yilin Tai</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+G">Guoan Li</a>, <a href="/search/physics?searchtype=author&amp;query=Ge%2C+B">Binghui Ge</a>, <a href="/search/physics?searchtype=author&amp;query=Lou%2C+W">Wenkai Lou</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+J">Jie Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+H">Haijun Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+K">Kai Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Song%2C+F">Fengqi Song</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+R">Rong Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+X">Xuefeng Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.04515v1-abstract-short" style="display: inline;"> Nonlinear transport is a unique functionality of noncentrosymmetric systems, which reflects profound physics, such as spin-orbit interaction, superconductivity and band geometry. However, it remains highly challenging to enhance the nonreciprocal transport for promising rectification devices. Here, we observe a light-induced giant enhancement of nonreciprocal transport at the superconducting and e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.04515v1-abstract-full').style.display = 'inline'; document.getElementById('2403.04515v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.04515v1-abstract-full" style="display: none;"> Nonlinear transport is a unique functionality of noncentrosymmetric systems, which reflects profound physics, such as spin-orbit interaction, superconductivity and band geometry. However, it remains highly challenging to enhance the nonreciprocal transport for promising rectification devices. Here, we observe a light-induced giant enhancement of nonreciprocal transport at the superconducting and epitaxial CaZrO3/KTaO3 (111) interfaces. The nonreciprocal transport coefficient undergoes a giant increase with three orders of magnitude up to 105 A-1T-1. Furthermore, a strong Rashba spin-orbit coupling effective field of 14.7 T is achieved with abundant high-mobility photocarriers under ultraviolet illumination, which accounts for the giant enhancement of nonreciprocal transport coefficient. Our first-principles calculations further disclose the stronger Rashba spin-orbit coupling strength and the longer relaxation time in the photocarrier excitation process, bridging the light-property quantitative relationship. Our work provides an alternative pathway to boost nonreciprocal transport in noncentrosymmetric systems and facilitates the promising applications in opto-rectification devices and spin-orbitronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.04515v1-abstract-full').style.display = 'none'; document.getElementById('2403.04515v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">38 pages, 17 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.03212">arXiv:2403.03212</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.03212">pdf</a>, <a href="https://arxiv.org/format/2403.03212">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Performance of a modular ton-scale pixel-readout liquid argon time projection chamber </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&amp;query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&amp;query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&amp;query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&amp;query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&amp;query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&amp;query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&amp;query=Aimard%2C+B">B. Aimard</a>, <a href="/search/physics?searchtype=author&amp;query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&amp;query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&amp;query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&amp;query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&amp;query=Alves%2C+T">T. Alves</a>, <a href="/search/physics?searchtype=author&amp;query=Amar%2C+H">H. Amar</a>, <a href="/search/physics?searchtype=author&amp;query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Andrade%2C+D+A">D. A. Andrade</a> , et al. (1340 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.03212v1-abstract-short" style="display: inline;"> The Module-0 Demonstrator is a single-phase 600 kg liquid argon time projection chamber operated as a prototype for the DUNE liquid argon near detector. Based on the ArgonCube design concept, Module-0 features a novel 80k-channel pixelated charge readout and advanced high-coverage photon detection system. In this paper, we present an analysis of an eight-day data set consisting of 25 million cosmi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03212v1-abstract-full').style.display = 'inline'; document.getElementById('2403.03212v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.03212v1-abstract-full" style="display: none;"> The Module-0 Demonstrator is a single-phase 600 kg liquid argon time projection chamber operated as a prototype for the DUNE liquid argon near detector. Based on the ArgonCube design concept, Module-0 features a novel 80k-channel pixelated charge readout and advanced high-coverage photon detection system. In this paper, we present an analysis of an eight-day data set consisting of 25 million cosmic ray events collected in the spring of 2021. We use this sample to demonstrate the imaging performance of the charge and light readout systems as well as the signal correlations between the two. We also report argon purity and detector uniformity measurements, and provide comparisons to detector simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03212v1-abstract-full').style.display = 'none'; document.getElementById('2403.03212v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">47 pages, 41 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-24-0073-LBNF </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.01854">arXiv:2403.01854</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.01854">pdf</a>, <a href="https://arxiv.org/format/2403.01854">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum counterdiabatic driving with local control </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+C">Changhao Li</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+J">Jiayu Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Shaydulin%2C+R">Ruslan Shaydulin</a>, <a href="/search/physics?searchtype=author&amp;query=Pistoia%2C+M">Marco Pistoia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.01854v1-abstract-short" style="display: inline;"> Suppression of diabatic transitions in quantum adiabatic evolution stands as a significant challenge for ground state preparations. Counterdiabatic driving has been proposed to compensate for diabatic losses and achieve shortcut to adiabaticity. However, its implementation necessitates the generation of adiabatic gauge potential, which requires knowledge of the spectral gap of instantaneous Hamilt&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.01854v1-abstract-full').style.display = 'inline'; document.getElementById('2403.01854v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.01854v1-abstract-full" style="display: none;"> Suppression of diabatic transitions in quantum adiabatic evolution stands as a significant challenge for ground state preparations. Counterdiabatic driving has been proposed to compensate for diabatic losses and achieve shortcut to adiabaticity. However, its implementation necessitates the generation of adiabatic gauge potential, which requires knowledge of the spectral gap of instantaneous Hamiltonians and involves highly non-local drivings in many-body systems. In this work, we consider local counterdiabatic (LCD) driving with approximate adiabatic gauge potential. Using transverse-field Ising model as an example, we present an in-depth study of the performance and optimization of LCD protocols. We then propose a novel two-step protocol based on LCD and simple local single-body control to further improve the performance. The optimization of these LCD-based protocols does not require knowledge of instantaneous Hamiltonians, and only additional local driving is involved. To benchmark the performance of LCD and the proposed local control-enhanced LCD technique, we experimentally implement digitized adiabatic quantum evolution in a trapped-ion system. We characterize the quality of the prepared states and explore the scaling behavior with system size up to 14 qubits. Our demonstration of quantum shortcut to adiabaticity opens a path towards preparing ground states of complex systems with accessible local controls. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.01854v1-abstract-full').style.display = 'none'; document.getElementById('2403.01854v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.17244">arXiv:2402.17244</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.17244">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.ijpt.2024.100020">10.1016/j.ijpt.2024.100020 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The status and challenges for prostate SBRT treatments in United States proton therapy centers: An NRG Oncology practice survey </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Shen%2C+J">Jiajian Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Taylor%2C+P+A">Paige A. Taylor</a>, <a href="/search/physics?searchtype=author&amp;query=Vargas%2C+C+E">Carlos E. Vargas</a>, <a href="/search/physics?searchtype=author&amp;query=Kang%2C+M">Minglei Kang</a>, <a href="/search/physics?searchtype=author&amp;query=Saini%2C+J">Jatinder Saini</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+J">Jun Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+P">Peilong Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+W">Wei Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Simone%2C+C+B">Charles B. Simone II</a>, <a href="/search/physics?searchtype=author&amp;query=Xiao%2C+Y">Ying Xiao</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+L">Liyong Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.17244v1-abstract-short" style="display: inline;"> A survey was designed to inquire about the practice of proton SBRT treatment for prostate cancer. The survey was distributed to all 30 proton therapy centers in the United States that participate in the National Clinical Trial Network in Feb. 2023. The survey focused on usage, patient selection criteria, prescriptions, target contours, dose constraints, treatment plan optimization and evaluation m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.17244v1-abstract-full').style.display = 'inline'; document.getElementById('2402.17244v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.17244v1-abstract-full" style="display: none;"> A survey was designed to inquire about the practice of proton SBRT treatment for prostate cancer. The survey was distributed to all 30 proton therapy centers in the United States that participate in the National Clinical Trial Network in Feb. 2023. The survey focused on usage, patient selection criteria, prescriptions, target contours, dose constraints, treatment plan optimization and evaluation methods, patient-specific QA, and IGRT methods. Results: We received responses from 25 centers (83% participation). Only 8 respondent proton centers (32%) reported performing SBRT of the prostate. The remaining 17 centers cited three primary reasons for not offering this treatment: no clinical need, lack of volumetric imaging, and/or lack of clinical evidence. Only 1 center cited the reduction in overall reimbursement as a concern for not offering prostate SBRT. Several common practices among the 8 centers offering SBRT for the prostate were noted, such as using Hydrogel spacers, fiducial markers, and MRI for target delineation. Most proton centers (87.5%) utilized pencil beam scanning (PBS) delivery and completed Imaging and Radiation Oncology Core (IROC) phantom credentialing. Treatment planning typically used parallel opposed lateral beams, and consistent parameters for setup and range uncertainties were used for plan optimization and robustness evaluation. Measurements-based patient-specific QA, beam delivery every other day, fiducial contours for IGRT, and total doses of 35-40 GyRBE were consistent across all centers. However, there was no consensus on the risk levels for patient selection. Conclusion: Prostate SBRT is used in about 1/3 of proton centers in the US. There was a significant consistency in practices among proton centers treating with proton SBRT. It is possible that the adoption of proton SBRT may become more common if proton SBRT is more commonly offered in clinical trials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.17244v1-abstract-full').style.display = 'none'; document.getElementById('2402.17244v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.17149">arXiv:2402.17149</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.17149">pdf</a>, <a href="https://arxiv.org/format/2402.17149">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Spatial Distribution of Inertial Particles in Turbulent Taylor-Couette Flow </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+H">Hao Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+Z">Zhi-ming Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+B">Bo-fu Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Meng%2C+X">Xiao-hui Meng</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+J">Jie Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Chong%2C+K+L">Kai Leong Chong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.17149v1-abstract-short" style="display: inline;"> This study investigates the spatial distribution of inertial particles in turbulent Taylor-Couette flow. Direct numerical simulations are performed using a one-way coupled Eulerian-Lagrangian approach, with a fixed inner wall Reynolds number of 2500 for the carrier flow, while the particle Stokes number varies from 0.034 to 1 for the dispersed phase. We first examine the issue of preferential conc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.17149v1-abstract-full').style.display = 'inline'; document.getElementById('2402.17149v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.17149v1-abstract-full" style="display: none;"> This study investigates the spatial distribution of inertial particles in turbulent Taylor-Couette flow. Direct numerical simulations are performed using a one-way coupled Eulerian-Lagrangian approach, with a fixed inner wall Reynolds number of 2500 for the carrier flow, while the particle Stokes number varies from 0.034 to 1 for the dispersed phase. We first examine the issue of preferential concentration of particles near the outer wall region. Employing two-dimensional (2D) Voronoi analysis, we observe a pronounced particle clustering with increasing $St$, particularly evident in regions of low fluid velocity. Additionally, we investigate the concentration balance equation, inspired by the work of johnson et al.(2020), to examine particle radial distribution. We discern the predominant sources of influence, namely biased sampling, turbophoresis, and centrifugal effects. Across all cases, centrifugal force emerges as the primary driver, causing particle migration towards the outer wall. Biased sampling predominantly affects smaller inertial particles, driving them towards the inner wall due to sampling within Taylor rolls with inward radial velocity. Conversely, turbophoresis primarily impacts larger inertial particles, inducing migration towards both walls where turbulent intensity is weaker compared to the bulk. With the revealed physics, our work provides a basis for predicting and controlling particle movement and distribution in industrial applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.17149v1-abstract-full').style.display = 'none'; document.getElementById('2402.17149v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.05298">arXiv:2402.05298</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.05298">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> High pressure X-Ray Photon Correlation Spectroscopy at 4th generation synchrotron sources </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Cornet%2C+A">Antoine Cornet</a>, <a href="/search/physics?searchtype=author&amp;query=Ronca%2C+A">Alberto Ronca</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+J">Jie Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Zontone%2C+F">Federico Zontone</a>, <a href="/search/physics?searchtype=author&amp;query=Chushkin%2C+Y">Yuriy Chushkin</a>, <a href="/search/physics?searchtype=author&amp;query=Cammarata%2C+M">Marco Cammarata</a>, <a href="/search/physics?searchtype=author&amp;query=Garbarino%2C+G">Gaston Garbarino</a>, <a href="/search/physics?searchtype=author&amp;query=Sprung%2C+M">Michael Sprung</a>, <a href="/search/physics?searchtype=author&amp;query=Westermaier%2C+F">Fabian Westermaier</a>, <a href="/search/physics?searchtype=author&amp;query=Deschamps%2C+T">Thierry Deschamps</a>, <a href="/search/physics?searchtype=author&amp;query=Ruta%2C+B">Beatrice Ruta</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.05298v2-abstract-short" style="display: inline;"> A new experimental setup combining X-Ray Photon Correlation Spectroscopy (XPCS) in the hard x-ray regime and a high-pressure sample environment is developed to monitor the pressure dependence of the internal motion of complex systems down to the atomic scale in the multi-GPa range, from room temperature to 600K. The high flux of coherent high energy x-rays at 4th generation synchrotron source solv&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.05298v2-abstract-full').style.display = 'inline'; document.getElementById('2402.05298v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.05298v2-abstract-full" style="display: none;"> A new experimental setup combining X-Ray Photon Correlation Spectroscopy (XPCS) in the hard x-ray regime and a high-pressure sample environment is developed to monitor the pressure dependence of the internal motion of complex systems down to the atomic scale in the multi-GPa range, from room temperature to 600K. The high flux of coherent high energy x-rays at 4th generation synchrotron source solves the problems caused by the absorption of the Diamond Anvil Cells used to generate the high pressure, enabling the measurement of the intermediate scattering function over 6 orders of magnitude in time, from $10^{-3}$ s to $10^{3}$s. The constraints posed by the high-pressure generation such as the preservation of the x-ray&#39;s coherence, as well as the sample, pressure and temperature stability are discussed, and the feasibility of high pressure XPCS is demonstrated through results obtained on metallic glasses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.05298v2-abstract-full').style.display = 'none'; document.getElementById('2402.05298v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.00489">arXiv:2402.00489</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.00489">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> Proton Pencil-Beam Scanning Stereotactic Body Radiation Therapy and Hypofractionated Radiation Therapy for Thoracic Malignancies: Patterns of Practice Survey and Recommendations for Future Development from NRG Oncology and PTCOG </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+W">Wei Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Feng%2C+H">Hongying Feng</a>, <a href="/search/physics?searchtype=author&amp;query=Taylor%2C+P+A">Paige A. Taylor</a>, <a href="/search/physics?searchtype=author&amp;query=Kang%2C+M">Minglei Kang</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+J">Jiajian Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Saini%2C+J">Jatinder Saini</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+J">Jun Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Giap%2C+H+B">Huan B. Giap</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+N+Y">Nathan Y. Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Sio%2C+T+S">Terence S. Sio</a>, <a href="/search/physics?searchtype=author&amp;query=Mohindra%2C+P">Pranshu Mohindra</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J+Y">Joe Y. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Bradley%2C+J+D">Jeffrey D. Bradley</a>, <a href="/search/physics?searchtype=author&amp;query=Xiao%2C+Y">Ying Xiao</a>, <a href="/search/physics?searchtype=author&amp;query=Simone%2C+C+B">Charles B. Simone II</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+L">Liyong Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.00489v1-abstract-short" style="display: inline;"> Stereotactic body radiation therapy (SBRT) and hypofractionation using pencil-beam scanning (PBS) proton therapy (PBSPT) is an attractive option for thoracic malignancies. Combining the advantages of target coverage conformity and critical organ sparing from both PBSPT and SBRT, this new delivery technique has great potential to improve the therapeutic ratio, particularly for tumors near critical&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.00489v1-abstract-full').style.display = 'inline'; document.getElementById('2402.00489v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.00489v1-abstract-full" style="display: none;"> Stereotactic body radiation therapy (SBRT) and hypofractionation using pencil-beam scanning (PBS) proton therapy (PBSPT) is an attractive option for thoracic malignancies. Combining the advantages of target coverage conformity and critical organ sparing from both PBSPT and SBRT, this new delivery technique has great potential to improve the therapeutic ratio, particularly for tumors near critical organs. Safe and effective implementation of PBSPT SBRT/hypofractionation to treat thoracic malignancies is more challenging than the conventionally-fractionated PBSPT due to concerns of amplified uncertainties at the larger dose per fraction. NRG Oncology and Particle Therapy Cooperative Group (PTCOG) Thoracic Subcommittee surveyed US proton centers to identify practice patterns of thoracic PBSPT SBRT/hypofractionation. From these patterns, we present recommendations for future technical development of proton SBRT/hypofractionation for thoracic treatment. Amongst other points, the recommendations highlight the need for volumetric image guidance and multiple CT-based robust optimization and robustness tools to minimize further the impact of uncertainties associated with respiratory motion. Advances in direct motion analysis techniques are urgently needed to supplement current motion management techniques. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.00489v1-abstract-full').style.display = 'none'; document.getElementById('2402.00489v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages, 4 figures, 4 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.10995">arXiv:2401.10995</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.10995">pdf</a>, <a href="https://arxiv.org/format/2401.10995">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> The Radiation Oncology NLP Database </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zhengliang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Holmes%2C+J">Jason Holmes</a>, <a href="/search/physics?searchtype=author&amp;query=Liao%2C+W">Wenxiong Liao</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+C">Chenbin Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+L">Lian Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Feng%2C+H">Hongying Feng</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+P">Peilong Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Elahi%2C+M+A">Muhammad Ali Elahi</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+H">Hongmin Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+L">Lichao Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Q">Quanzheng Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xiang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+T">Tianming Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+J">Jiajian Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+W">Wei Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.10995v1-abstract-short" style="display: inline;"> We present the Radiation Oncology NLP Database (ROND), the first dedicated Natural Language Processing (NLP) dataset for radiation oncology, an important medical specialty that has received limited attention from the NLP community in the past. With the advent of Artificial General Intelligence (AGI), there is an increasing need for specialized datasets and benchmarks to facilitate research and dev&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.10995v1-abstract-full').style.display = 'inline'; document.getElementById('2401.10995v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.10995v1-abstract-full" style="display: none;"> We present the Radiation Oncology NLP Database (ROND), the first dedicated Natural Language Processing (NLP) dataset for radiation oncology, an important medical specialty that has received limited attention from the NLP community in the past. With the advent of Artificial General Intelligence (AGI), there is an increasing need for specialized datasets and benchmarks to facilitate research and development. ROND is specifically designed to address this gap in the domain of radiation oncology, a field that offers many opportunities for NLP exploration. It encompasses various NLP tasks including Logic Reasoning, Text Classification, Named Entity Recognition (NER), Question Answering (QA), Text Summarization, and Patient-Clinician Conversations, each with a distinct focus on radiation oncology concepts and application cases. In addition, we have developed an instruction-tuning dataset consisting of over 20k instruction pairs (based on ROND) and trained a large language model, CancerChat. This serves to demonstrate the potential of instruction-tuning large language models within a highly-specialized medical domain. The evaluation results in this study could serve as baseline results for future research. ROND aims to stimulate advancements in radiation oncology and clinical NLP by offering a platform for testing and improving algorithms and models in a domain-specific context. The ROND dataset is a joint effort of multiple U.S. health institutions. The data is available at https://github.com/zl-liu/Radiation-Oncology-NLP-Database. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.10995v1-abstract-full').style.display = 'none'; document.getElementById('2401.10995v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures, 6 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.11674">arXiv:2312.11674</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.11674">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> In Vivo GABA Detection by Single Pulse Editing with One Shot </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=An%2C+L">Li An</a>, <a href="/search/physics?searchtype=author&amp;query=Hong%2C+S">Sungtak Hong</a>, <a href="/search/physics?searchtype=author&amp;query=Araneta%2C+M+F">Maria Ferraris Araneta</a>, <a href="/search/physics?searchtype=author&amp;query=Turon%2C+T">Tara Turon</a>, <a href="/search/physics?searchtype=author&amp;query=Johnson%2C+C+S">Christopher S. Johnson</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+J">Jun Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.11674v1-abstract-short" style="display: inline;"> Over the past two decades, magnetic resonance spectroscopy with two-shot difference editing has been widely employed to characterize altered levels of GABA, the primary inhibitory neurotransmitter in the brain, in various neuropsychiatric disorders. This conventional technique detects the GABA H4 resonance, making it unsuitable for investigating GABA metabolism. It also suffers from subtraction ar&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.11674v1-abstract-full').style.display = 'inline'; document.getElementById('2312.11674v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.11674v1-abstract-full" style="display: none;"> Over the past two decades, magnetic resonance spectroscopy with two-shot difference editing has been widely employed to characterize altered levels of GABA, the primary inhibitory neurotransmitter in the brain, in various neuropsychiatric disorders. This conventional technique detects the GABA H4 resonance, making it unsuitable for investigating GABA metabolism. It also suffers from subtraction artifacts, signal loss, and significant contamination by macromolecules. Here, we introduce a single-shot method for detecting GABA H2, effectively overcoming these difficulties. Since GABA turnover initiates at its protonated C2 and unprotonated C1 positions, we demonstrate, for the first time, noninvasive real-time monitoring of GABA metabolism in the human brain, utilizing GABA H2 as a highly sensitive reporter for GABA C2. This new method not only enhances the quantitative measurement of GABA levels but also opens up a new avenue to probe the metabolic processes underlying alterations in GABA levels in patients. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.11674v1-abstract-full').style.display = 'none'; document.getElementById('2312.11674v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.02479">arXiv:2312.02479</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.02479">pdf</a>, <a href="https://arxiv.org/format/2312.02479">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Applications of Domain Adversarial Neural Network in phase transition of 3D Potts model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chen%2C+X">Xiangna Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+F">Feiyi Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+W">Weibing Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S">Shiyang Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+J">Jianmin Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Papp%2C+G">Gabor Papp</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Wei Li</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+C">Chunbin Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.02479v2-abstract-short" style="display: inline;"> Machine learning techniques exhibit significant performance in discriminating different phases of matter and provide a new avenue for studying phase transitions. We investigate the phase transitions of three dimensional $q$-state Potts model on cubic lattice by using a transfer learning approach, Domain Adversarial Neural Network (DANN). With the unique neural network architecture, it could evalua&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.02479v2-abstract-full').style.display = 'inline'; document.getElementById('2312.02479v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.02479v2-abstract-full" style="display: none;"> Machine learning techniques exhibit significant performance in discriminating different phases of matter and provide a new avenue for studying phase transitions. We investigate the phase transitions of three dimensional $q$-state Potts model on cubic lattice by using a transfer learning approach, Domain Adversarial Neural Network (DANN). With the unique neural network architecture, it could evaluate the high-temperature (disordered) and low-temperature (ordered) phases, and identify the first and second order phase transitions. Meanwhile, by training the DANN with a few labeled configurations, the critical points for $q=2,3,4$ and $5$ can be predicted with high accuracy, which are consistent with those of the Monte Carlo simulations. These findings would promote us to learn and explore the properties of phase transitions in high-dimensional systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.02479v2-abstract-full').style.display = 'none'; document.getElementById('2312.02479v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18pages,36 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.00975">arXiv:2312.00975</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.00975">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Noisy probing dose facilitated dose prediction for pencil beam scanning proton therapy: physics enhances generalizability </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+L">Lian Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Holmes%2C+J+M">Jason M. Holmes</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zhengliang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Feng%2C+H">Hongying Feng</a>, <a href="/search/physics?searchtype=author&amp;query=Sio%2C+T+T">Terence T. Sio</a>, <a href="/search/physics?searchtype=author&amp;query=Vargas%2C+C+E">Carlos E. Vargas</a>, <a href="/search/physics?searchtype=author&amp;query=Keole%2C+S+R">Sameer R. Keole</a>, <a href="/search/physics?searchtype=author&amp;query=St%C3%BCtzer%2C+K">Kristin St眉tzer</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+S">Sheng Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+T">Tianming Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+J">Jiajian Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Wong%2C+W+W">William W. Wong</a>, <a href="/search/physics?searchtype=author&amp;query=Vora%2C+S+A">Sujay A. Vora</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+W">Wei Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.00975v1-abstract-short" style="display: inline;"> Purpose: Prior AI-based dose prediction studies in photon and proton therapy often neglect underlying physics, limiting their generalizability to handle outlier clinical cases, especially for pencil beam scanning proton therapy (PBSPT). Our aim is to design a physics-aware and generalizable AI-based PBSPT dose prediction method that has the underlying physics considered to achieve high generalizab&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.00975v1-abstract-full').style.display = 'inline'; document.getElementById('2312.00975v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.00975v1-abstract-full" style="display: none;"> Purpose: Prior AI-based dose prediction studies in photon and proton therapy often neglect underlying physics, limiting their generalizability to handle outlier clinical cases, especially for pencil beam scanning proton therapy (PBSPT). Our aim is to design a physics-aware and generalizable AI-based PBSPT dose prediction method that has the underlying physics considered to achieve high generalizability to properly handle the outlier clinical cases. Methods and Materials: This study analyzed PBSPT plans of 103 prostate and 78 lung cancer patients from our institution,with each case comprising CT images, structure sets, and plan doses from our Monte-Carlo dose engine (serving as the ground truth). Three methods were evaluated in the ablation study: the ROI-based method, the beam mask and sliding window method, and the noisy probing dose method. Twelve cases with uncommon beam angles or prescription doses tested the methods&#39; generalizability to rare treatment planning scenarios. Performance evaluation used DVH indices, 3D Gamma passing rates (3%/2mm/10%), and dice coefficients for dose agreement. Results: The noisy probing dose method showed improved agreement of DVH indices, 3D Gamma passing rates, and dice coefficients compared to the conventional methods for the testing cases. The noisy probing dose method showed better generalizability in the 6 outlier cases than the ROI-based and beam mask-based methods with 3D Gamma passing rates (for prostate cancer, targets: 89.32%$\pm$1.45% vs. 93.48%$\pm$1.51% vs. 96.79%$\pm$0.83%, OARs: 85.87%$\pm$1.73% vs. 91.15%$\pm$1.13% vs. 94.29%$\pm$1.01%). The dose predictions were completed within 0.3 seconds. Conclusions: We&#39;ve devised a novel noisy probing dose method for PBSPT dose prediction in prostate and lung cancer patients. With more physics included, it enhances the generalizability of dose prediction in handling outlier clinical cases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.00975v1-abstract-full').style.display = 'none'; document.getElementById('2312.00975v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.00448">arXiv:2311.00448</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.00448">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> Artificial Intelligence-Facilitated Online Adaptive Proton Therapy Using Pencil Beam Scanning Proton Therapy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Feng%2C+H">Hongying Feng</a>, <a href="/search/physics?searchtype=author&amp;query=Shan%2C+J">Jie Shan</a>, <a href="/search/physics?searchtype=author&amp;query=Vargas%2C+C+E">Carlos E. Vargas</a>, <a href="/search/physics?searchtype=author&amp;query=Keole%2C+S+R">Sameer R. Keole</a>, <a href="/search/physics?searchtype=author&amp;query=Rwigema%2C+J+M">Jean-Claude M. Rwigema</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+N+Y">Nathan Y. Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y">Yuzhen Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+L">Lian Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Schild%2C+S+E">Steven E. Schild</a>, <a href="/search/physics?searchtype=author&amp;query=Wong%2C+W+W">William W. Wong</a>, <a href="/search/physics?searchtype=author&amp;query=Vora%2C+S+A">Sujay A. Vora</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+J">JiaJian Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+W">Wei Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.00448v1-abstract-short" style="display: inline;"> We propose an oAPT workflow that incorporates all these functionalities and validate its clinical implementation feasibility with prostate patients. AI-based auto-segmentation tool AccuContourTM (Manteia, Xiamen, China) was seamlessly integrated into oAPT. Initial spot arrangement tool on the vCT for re-optimization was implemented using raytracing. An LET-based biological effect evaluation tool w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.00448v1-abstract-full').style.display = 'inline'; document.getElementById('2311.00448v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.00448v1-abstract-full" style="display: none;"> We propose an oAPT workflow that incorporates all these functionalities and validate its clinical implementation feasibility with prostate patients. AI-based auto-segmentation tool AccuContourTM (Manteia, Xiamen, China) was seamlessly integrated into oAPT. Initial spot arrangement tool on the vCT for re-optimization was implemented using raytracing. An LET-based biological effect evaluation tool was developed to assess the overlap region of high dose and high LET in selected OARs. Eleven prostate cancer patients were retrospectively selected to verify the efficacy and efficiency of the proposed oAPT workflow. The time cost of each component in the workflow was recorded for analysis. The verification plan showed significant degradation of the CTV coverage and rectum and bladder sparing due to the interfractional anatomical changes. Re-optimization on the vCT resulted in great improvement of the plan quality. No overlap regions of high dose and high LET distributions were observed in bladder or rectum in re-plans. 3D Gamma analyses in PSQA confirmed the accuracy of the re-plan doses before delivery (Gamma passing rate = 99.57%), and after delivery (98.59%). The robustness of the re-plans passed all clinical requirements. The average time for the complete execution of the workflow was 9.12minutes, excluding manual intervention time. The AI-facilitated oAPT workflow was demonstrated to be both efficient and effective by generating a re-plan that significantly improved the plan quality in prostate cancer treated with PBSPT. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.00448v1-abstract-full').style.display = 'none'; document.getElementById('2311.00448v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.20527">arXiv:2310.20527</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.20527">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> Study of linear energy transfer effect on rib fracture in breast patients receiving pencil-beam-scanning proton therapy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yang%2C+Y">Yunze Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Gergelis%2C+K+R">Kimberly R. Gergelis</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+J">Jiajian Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Afzal%2C+A">Arslan Afzal</a>, <a href="/search/physics?searchtype=author&amp;query=Mullikin%2C+T+C">Trey C. Mullikin</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+R+W">Robert W. Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Aziz%2C+K">Khaled Aziz</a>, <a href="/search/physics?searchtype=author&amp;query=Shumway%2C+D+A">Dean A. Shumway</a>, <a href="/search/physics?searchtype=author&amp;query=Corbin%2C+K+S">Kimberly S. Corbin</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+W">Wei Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Mutter%2C+R+W">Robert W. Mutter</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.20527v1-abstract-short" style="display: inline;"> Purpose: To study the effect of proton linear energy transfer (LET) on rib fracture in breast cancer patients treated with pencil-beam scanning proton therapy (PBS) using a novel tool of dose-LET volume histogram (DLVH). Methods: From a prospective registry of patients treated with post-mastectomy proton therapy to the chest wall and regional lymph nodes for breast cancer between 2015 and 2020,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.20527v1-abstract-full').style.display = 'inline'; document.getElementById('2310.20527v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.20527v1-abstract-full" style="display: none;"> Purpose: To study the effect of proton linear energy transfer (LET) on rib fracture in breast cancer patients treated with pencil-beam scanning proton therapy (PBS) using a novel tool of dose-LET volume histogram (DLVH). Methods: From a prospective registry of patients treated with post-mastectomy proton therapy to the chest wall and regional lymph nodes for breast cancer between 2015 and 2020, we retrospectively identified rib fracture cases detected after completing treatment. Contemporaneously treated control patients that did not develop rib fracture were matched to patients 2:1 considering prescription dose, boost location, reconstruction status, laterality, chest wall thickness, and treatment year. The DLVH index, V(d, l), defined as volume(V) of the structure with at least dose(d) and LET(l), was calculated. DLVH plots between the fracture and control group were compared. Conditional logistic regression (CLR) model was used to establish the relation of V(d, l) and the observed fracture at each combination of d and l. The p-value derived from CLR model shows the statistical difference between fracture patients and the matched control group. Using the 2D p-value map, the DLVH features associated with the patient outcomes were extracted. Results: Seven rib fracture patients were identified, and fourteen matched patients were selected for the control group. The median time from the completion of proton therapy to rib fracture diagnosis was 12 months (range 5 to 14 months). Two patients had grade 2 symptomatic rib fracture while the remaining 5 were grade 1 incidentally detected on imaging. The derived p-value map demonstrated larger V(0-36 Gy[RBE], 4.0-5.0 keV/um) in patients experiencing fracture (p&lt;0.1). Conclusions: In breast cancer patients receiving PBS, a larger volume of chest wall receiving moderate dose and high LET may result in increased risk of rib fracture. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.20527v1-abstract-full').style.display = 'none'; document.getElementById('2310.20527v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">1 Table and 3 Figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.15412">arXiv:2310.15412</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.15412">pdf</a>, <a href="https://arxiv.org/ps/2310.15412">ps</a>, <a href="https://arxiv.org/format/2310.15412">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/ad80b7">10.1088/1367-2630/ad80b7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum Multiphoton Rabi Oscillations in Waveguide QED </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Mukhopadhyay%2C+D">Debsuvra Mukhopadhyay</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+J">Jung-Tsung Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.15412v1-abstract-short" style="display: inline;"> The future of quantum information processing hinges on chip-scale nanophotonics, specifically cavity QED and waveguide QED. One of the foremost processes underpinning quantum photonic technologies is the phenomenon of Rabi oscillations, which manifests when a qubit is irradiated by an intense laser source. Departing from the conventional semiclassical framework, we expound on the more general, qua&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.15412v1-abstract-full').style.display = 'inline'; document.getElementById('2310.15412v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.15412v1-abstract-full" style="display: none;"> The future of quantum information processing hinges on chip-scale nanophotonics, specifically cavity QED and waveguide QED. One of the foremost processes underpinning quantum photonic technologies is the phenomenon of Rabi oscillations, which manifests when a qubit is irradiated by an intense laser source. Departing from the conventional semiclassical framework, we expound on the more general, quantum-theoretic case where the optical excitation takes the form of a multiphoton Fock state, and the qubit couples to a continuum of radiation modes. By employing the real-space formalism, we analytically explore the scattering dynamics of the photonic Fock state as it interfaces with a two-level emitter. The resulting amplitude for atomic excitation features a linear superposition of various independent scattering events that are triggered by the potential of sequential photon absorptions and emissions. The lowest-order excitation event, initiated by the stochastic scattering of one of the several photons, aptly characterizes the dynamics in a weak-field environment. This is complemented by a multitude of higher-order scattering events ensuing from repeated atom-photon interactions. The temporal evolution of the qubit excitation in our configuration closely mirrors the semiclassical predictions, particularly in the strong-pumping limit where Rabi oscillations unfold. Notably, this compatibility with the semiclassical paradigm applies both to the weak-driving and large-detuning limits. Our analysis, therefore, extends the existing results on quantum Rabi oscillations pertinent to single-mode cavity QED, to the multimode, waveguide-QED configurations wherein flying photons are the information carriers. Finally, we explore the scattering dynamics of pulsed wave packets, highlighting the potential to substantially enhance excitation efficiency, even in scenarios involving just a few photons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.15412v1-abstract-full').style.display = 'none'; document.getElementById('2310.15412v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> New Journal of Physics, Volume 26, October 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.14900">arXiv:2310.14900</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.14900">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Non-volatile memory based on PZT/FeGa thin film memtranstor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=He%2C+J">Jin-Cheng He</a>, <a href="/search/physics?searchtype=author&amp;query=Xing%2C+J">Jian Xing</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+J">Jian-Xin Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Su%2C+D">Dan Su</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+E">En-Ke Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+S">Shou-Guo Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+Y">Young Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.14900v1-abstract-short" style="display: inline;"> The PZT/FeGa thin film memtranstor was prepared and the modulation of the magnetoelectric coefficient by external magnetic and electric fields was studied. The magnetoelectric coefficient of the PZT/FeGa memtranstor can be reversed by flipping the direction of magnetization of FeGa or ferroelectric polarization of PZT. Notably, the sign of the magnetoelectric coefficient can be switched repeatedly&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.14900v1-abstract-full').style.display = 'inline'; document.getElementById('2310.14900v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.14900v1-abstract-full" style="display: none;"> The PZT/FeGa thin film memtranstor was prepared and the modulation of the magnetoelectric coefficient by external magnetic and electric fields was studied. The magnetoelectric coefficient of the PZT/FeGa memtranstor can be reversed by flipping the direction of magnetization of FeGa or ferroelectric polarization of PZT. Notably, the sign of the magnetoelectric coefficient can be switched repeatedly by reversing ferroelectric polarization of PZT when the external magnetic field remains constant. Moreover, the binary switching behavior can still be maintained under zero DC bias magnetic field. When the polarization direction remains stable, the magnetoelectric coefficient also does not change. This means that the magnetoelectric coefficient of PZT/FeGa is non-volatile. Furthermore, the retention and endurance characteristics of the PZT/FeGa thin film memtranstor have been investigated. These findings demonstrate the potential of the PZT/FeGa thin film memtranstor for non-volatile memory applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.14900v1-abstract-full').style.display = 'none'; document.getElementById('2310.14900v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.02888">arXiv:2308.02888</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.02888">pdf</a>, <a href="https://arxiv.org/format/2308.02888">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Multiagent Systems">cs.MA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> </div> <p class="title is-5 mathjax"> The coupling effect between the environment and strategies drives the emergence of group cooperation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Di%2C+C">Changyan Di</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+Q">Qingguo Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+J">Jun Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+J">Jinqiang Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+R">Rui Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+T">Tianyi Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.02888v1-abstract-short" style="display: inline;"> Introducing environmental feedback into evolutionary game theory has led to the development of eco-evolutionary games, which have gained popularity due to their ability to capture the intricate interplay between the environment and decision-making processes. However, current researches in this field focus on the study to macroscopic evolutionary dynamics in infinite populations. In this study, we&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.02888v1-abstract-full').style.display = 'inline'; document.getElementById('2308.02888v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.02888v1-abstract-full" style="display: none;"> Introducing environmental feedback into evolutionary game theory has led to the development of eco-evolutionary games, which have gained popularity due to their ability to capture the intricate interplay between the environment and decision-making processes. However, current researches in this field focus on the study to macroscopic evolutionary dynamics in infinite populations. In this study, we propose a multi-agent computational model based on reinforcement learning to explore the coupled dynamics between strategies and the environment in finite populations from a bottom-up perspective. Our findings indicate that even in environments that favor defectors, high levels of group cooperation can emerge from self-interested individuals, highlighting the significant role of the coupling effect between the environment and strategies. Over time, the higher payoff of defection can be diluted due to environmental degradation, while cooperation can become the dominant strategy when positively reinforced by the environment. Remarkably, individuals can accurately detect the inflection point of the environment solely through rewards, when a reinforcing positive feedback loop are triggered, resulting in a rapid increase in agents&#39; rewards and facilitating the establishment and maintenance of group cooperation. Our research provides a fresh perspective on understanding the emergence of group cooperation and sheds light on the underlying mechanisms involving individuals and the environment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.02888v1-abstract-full').style.display = 'none'; document.getElementById('2308.02888v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.01416">arXiv:2307.01416</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.01416">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> Modelling small block aperture in an in-house developed GPU-accelerated Monte Carlo-based dose engine for pencil beam scanning proton therapy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Feng%2C+H">Hongying Feng</a>, <a href="/search/physics?searchtype=author&amp;query=Holmes%2C+J+M">Jason M. Holmes</a>, <a href="/search/physics?searchtype=author&amp;query=Vora%2C+S+A">Sujay A. Vora</a>, <a href="/search/physics?searchtype=author&amp;query=Stoker%2C+J+B">Joshua B. Stoker</a>, <a href="/search/physics?searchtype=author&amp;query=Bues%2C+M">Martin Bues</a>, <a href="/search/physics?searchtype=author&amp;query=Wong%2C+W+W">William W. Wong</a>, <a href="/search/physics?searchtype=author&amp;query=Sio%2C+T+S">Terence S. Sio</a>, <a href="/search/physics?searchtype=author&amp;query=Foote%2C+R+L">Robert L. Foote</a>, <a href="/search/physics?searchtype=author&amp;query=Patel%2C+S+H">Samir H. Patel</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+J">Jiajian Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+W">Wei Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.01416v1-abstract-short" style="display: inline;"> Purpose: To enhance an in-house graphic-processing-unit (GPU) accelerated virtual particle (VP)-based Monte Carlo (MC) proton dose engine (VPMC) to model aperture blocks in both dose calculation and optimization for pencil beam scanning proton therapy (PBSPT)-based stereotactic radiosurgery (SRS). Methods and Materials: A block aperture module was integrated into VPMC. VPMC was validated by an ope&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.01416v1-abstract-full').style.display = 'inline'; document.getElementById('2307.01416v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.01416v1-abstract-full" style="display: none;"> Purpose: To enhance an in-house graphic-processing-unit (GPU) accelerated virtual particle (VP)-based Monte Carlo (MC) proton dose engine (VPMC) to model aperture blocks in both dose calculation and optimization for pencil beam scanning proton therapy (PBSPT)-based stereotactic radiosurgery (SRS). Methods and Materials: A block aperture module was integrated into VPMC. VPMC was validated by an opensource code, MCsquare, in eight water phantom simulations with 3cm thick brass apertures: four were with aperture openings of 1, 2, 3, and 4cm without a range shifter, while the other four were with same aperture opening configurations with a range shifter of 45mm water equivalent thickness. VPMC was benchmarked with MCsquare and RayStation MC for 10 patients with small targets (average volume 8.4 cc). Finally, 3 patients were selected for robust optimization with aperture blocks using VPMC. Results: In the water phantoms, 3D gamma passing rate (2%/2mm/10%) between VPMC and MCsquare were 99.71$\pm$0.23%. In the patient geometries, 3D gamma passing rates (3%/2mm/10%) between VPMC/MCsquare and RayStation MC were 97.79$\pm$2.21%/97.78$\pm$1.97%, respectively. The calculation time was greatly decreased from 112.45$\pm$114.08 seconds (MCsquare) to 8.20$\pm$6.42 seconds (VPMC), both having statistical uncertainties of about 0.5%. The robustly optimized plans met all the dose-volume-constraints (DVCs) for the targets and OARs per our institutional protocols. The mean calculation time for 13 influence matrices in robust optimization by VPMC was 41.6 seconds. Conclusion: VPMC has been successfully enhanced to model aperture blocks in dose calculation and optimization for the PBSPT-based SRS. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.01416v1-abstract-full').style.display = 'none'; document.getElementById('2307.01416v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">3 tables, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.18978">arXiv:2305.18978</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.18978">pdf</a>, <a href="https://arxiv.org/format/2305.18978">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> IDToolkit: A Toolkit for Benchmarking and Developing Inverse Design Algorithms in Nanophotonics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yang%2C+J">Jia-Qi Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+Y">Yucheng Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+J">Jia-Lei Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Fan%2C+K">Kebin Fan</a>, <a href="/search/physics?searchtype=author&amp;query=Zhan%2C+D">De-Chuan Zhan</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+Y">Yang Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.18978v2-abstract-short" style="display: inline;"> Aiding humans with scientific designs is one of the most exciting of artificial intelligence (AI) and machine learning (ML), due to their potential for the discovery of new drugs, design of new materials and chemical compounds, etc. However, scientific design typically requires complex domain knowledge that is not familiar to AI researchers. Further, scientific studies involve professional skills&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.18978v2-abstract-full').style.display = 'inline'; document.getElementById('2305.18978v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.18978v2-abstract-full" style="display: none;"> Aiding humans with scientific designs is one of the most exciting of artificial intelligence (AI) and machine learning (ML), due to their potential for the discovery of new drugs, design of new materials and chemical compounds, etc. However, scientific design typically requires complex domain knowledge that is not familiar to AI researchers. Further, scientific studies involve professional skills to perform experiments and evaluations. These obstacles prevent AI researchers from developing specialized methods for scientific designs. To take a step towards easy-to-understand and reproducible research of scientific design, we propose a benchmark for the inverse design of nanophotonic devices, which can be verified computationally and accurately. Specifically, we implemented three different nanophotonic design problems, namely a radiative cooler, a selective emitter for thermophotovoltaics, and structural color filters, all of which are different in design parameter spaces, complexity, and design targets. The benchmark environments are implemented with an open-source simulator. We further implemented 10 different inverse design algorithms and compared them in a reproducible and fair framework. The results revealed the strengths and weaknesses of existing methods, which shed light on several future directions for developing more efficient inverse design algorithms. Our benchmark can also serve as the starting point for more challenging scientific design problems. The code of IDToolkit is available at https://github.com/ThyrixYang/IDToolkit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.18978v2-abstract-full').style.display = 'none'; document.getElementById('2305.18978v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">KDD&#39;23</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.18572">arXiv:2305.18572</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.18572">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> Beam mask and sliding window-facilitated deep learning-based accurate and efficient dose prediction for pencil beam scanning proton therapy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+L">Lian Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Holmes%2C+J+M">Jason M. Holmes</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zhengliang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Vora%2C+S+A">Sujay A. Vora</a>, <a href="/search/physics?searchtype=author&amp;query=Sio%2C+T+T">Terence T. Sio</a>, <a href="/search/physics?searchtype=author&amp;query=Vargas%2C+C+E">Carlos E. Vargas</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+N+Y">Nathan Y. Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Keole%2C+S+R">Sameer R. Keole</a>, <a href="/search/physics?searchtype=author&amp;query=Schild%2C+S+E">Steven E. Schild</a>, <a href="/search/physics?searchtype=author&amp;query=Bues%2C+M">Martin Bues</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+S">Sheng Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+T">Tianming Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+J">Jiajian Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Wong%2C+W+W">William W. Wong</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+W">Wei Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.18572v1-abstract-short" style="display: inline;"> Purpose: To develop a DL-based PBSPT dose prediction workflow with high accuracy and balanced complexity to support on-line adaptive proton therapy clinical decision and subsequent replanning. Methods: PBSPT plans of 103 prostate cancer patients and 83 lung cancer patients previously treated at our institution were included in the study, each with CTs, structure sets, and plan doses calculated b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.18572v1-abstract-full').style.display = 'inline'; document.getElementById('2305.18572v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.18572v1-abstract-full" style="display: none;"> Purpose: To develop a DL-based PBSPT dose prediction workflow with high accuracy and balanced complexity to support on-line adaptive proton therapy clinical decision and subsequent replanning. Methods: PBSPT plans of 103 prostate cancer patients and 83 lung cancer patients previously treated at our institution were included in the study, each with CTs, structure sets, and plan doses calculated by the in-house developed Monte-Carlo dose engine. For the ablation study, we designed three experiments corresponding to the following three methods: 1) Experiment 1, the conventional region of interest (ROI) method. 2) Experiment 2, the beam mask (generated by raytracing of proton beams) method to improve proton dose prediction. 3) Experiment 3, the sliding window method for the model to focus on local details to further improve proton dose prediction. A fully connected 3D-Unet was adopted as the backbone. Dose volume histogram (DVH) indices, 3D Gamma passing rates, and dice coefficients for the structures enclosed by the iso-dose lines between the predicted and the ground truth doses were used as the evaluation metrics. The calculation time for each proton dose prediction was recorded to evaluate the method&#39;s efficiency. Results: Compared to the conventional ROI method, the beam mask method improved the agreement of DVH indices for both targets and OARs and the sliding window method further improved the agreement of the DVH indices. For the 3D Gamma passing rates in the target, OARs, and BODY (outside target and OARs), the beam mask method can improve the passing rates in these regions and the sliding window method further improved them. A similar trend was also observed for the dice coefficients. In fact, this trend was especially remarkable for relatively low prescription isodose lines. The dose predictions for all the testing cases were completed within 0.25s. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.18572v1-abstract-full').style.display = 'none'; document.getElementById('2305.18572v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.01938">arXiv:2304.01938</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.01938">pdf</a>, <a href="https://arxiv.org/format/2304.01938">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Physics Education">physics.ed-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3389/fonc.2023.1219326">10.3389/fonc.2023.1219326 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evaluating Large Language Models on a Highly-specialized Topic, Radiation Oncology Physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Holmes%2C+J">Jason Holmes</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zhengliang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+L">Lian Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y">Yuzhen Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Sio%2C+T+T">Terence T. Sio</a>, <a href="/search/physics?searchtype=author&amp;query=McGee%2C+L+A">Lisa A. McGee</a>, <a href="/search/physics?searchtype=author&amp;query=Ashman%2C+J+B">Jonathan B. Ashman</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xiang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+T">Tianming Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+J">Jiajian Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+W">Wei Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.01938v1-abstract-short" style="display: inline;"> We present the first study to investigate Large Language Models (LLMs) in answering radiation oncology physics questions. Because popular exams like AP Physics, LSAT, and GRE have large test-taker populations and ample test preparation resources in circulation, they may not allow for accurately assessing the true potential of LLMs. This paper proposes evaluating LLMs on a highly-specialized topic,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.01938v1-abstract-full').style.display = 'inline'; document.getElementById('2304.01938v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.01938v1-abstract-full" style="display: none;"> We present the first study to investigate Large Language Models (LLMs) in answering radiation oncology physics questions. Because popular exams like AP Physics, LSAT, and GRE have large test-taker populations and ample test preparation resources in circulation, they may not allow for accurately assessing the true potential of LLMs. This paper proposes evaluating LLMs on a highly-specialized topic, radiation oncology physics, which may be more pertinent to scientific and medical communities in addition to being a valuable benchmark of LLMs. We developed an exam consisting of 100 radiation oncology physics questions based on our expertise at Mayo Clinic. Four LLMs, ChatGPT (GPT-3.5), ChatGPT (GPT-4), Bard (LaMDA), and BLOOMZ, were evaluated against medical physicists and non-experts. ChatGPT (GPT-4) outperformed all other LLMs as well as medical physicists, on average. The performance of ChatGPT (GPT-4) was further improved when prompted to explain first, then answer. ChatGPT (GPT-3.5 and GPT-4) showed a high level of consistency in its answer choices across a number of trials, whether correct or incorrect, a characteristic that was not observed in the human test groups. In evaluating ChatGPTs (GPT-4) deductive reasoning ability using a novel approach (substituting the correct answer with &#34;None of the above choices is the correct answer.&#34;), ChatGPT (GPT-4) demonstrated surprising accuracy, suggesting the potential presence of an emergent ability. Finally, although ChatGPT (GPT-4) performed well overall, its intrinsic properties did not allow for further improvement when scoring based on a majority vote across trials. In contrast, a team of medical physicists were able to greatly outperform ChatGPT (GPT-4) using a majority vote. This study suggests a great potential for LLMs to work alongside radiation oncology experts as highly knowledgeable assistants. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.01938v1-abstract-full').style.display = 'none'; document.getElementById('2304.01938v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.15790">arXiv:2303.15790</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.15790">pdf</a>, <a href="https://arxiv.org/format/2303.15790">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11467-023-1333-z">10.1007/s11467-023-1333-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> STCF Conceptual Design Report: Volume 1 -- Physics &amp; Detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Achasov%2C+M">M. Achasov</a>, <a href="/search/physics?searchtype=author&amp;query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/physics?searchtype=author&amp;query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+L+P">L. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Q. An</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+X+Z">X. Z. Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+Y">Y. Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Bakina%2C+O">O. Bakina</a>, <a href="/search/physics?searchtype=author&amp;query=Barnyakov%2C+A">A. Barnyakov</a>, <a href="/search/physics?searchtype=author&amp;query=Blinov%2C+V">V. Blinov</a>, <a href="/search/physics?searchtype=author&amp;query=Bobrovnikov%2C+V">V. Bobrovnikov</a>, <a href="/search/physics?searchtype=author&amp;query=Bodrov%2C+D">D. Bodrov</a>, <a href="/search/physics?searchtype=author&amp;query=Bogomyagkov%2C+A">A. Bogomyagkov</a>, <a href="/search/physics?searchtype=author&amp;query=Bondar%2C+A">A. Bondar</a>, <a href="/search/physics?searchtype=author&amp;query=Boyko%2C+I">I. Boyko</a>, <a href="/search/physics?searchtype=author&amp;query=Bu%2C+Z+H">Z. H. Bu</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+F+M">F. M. Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+H">H. Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+J+J">J. J. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+Q+H">Q. H. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+Z">Z. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+Q">Q. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chao%2C+K+T">K. T. Chao</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+D+Y">D. Y. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H">H. Chen</a> , et al. (413 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.15790v3-abstract-short" style="display: inline;"> The Super $蟿$-Charm facility (STCF) is an electron-positron collider proposed by the Chinese particle physics community. It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of $0.5\times 10^{35}{\rm cm}^{-2}{\rm s}^{-1}$ or higher. The STCF will produce a data sample about a factor of 100 larger than that by the present $蟿$-Charm factory -- the BEPCII,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.15790v3-abstract-full').style.display = 'inline'; document.getElementById('2303.15790v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.15790v3-abstract-full" style="display: none;"> The Super $蟿$-Charm facility (STCF) is an electron-positron collider proposed by the Chinese particle physics community. It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of $0.5\times 10^{35}{\rm cm}^{-2}{\rm s}^{-1}$ or higher. The STCF will produce a data sample about a factor of 100 larger than that by the present $蟿$-Charm factory -- the BEPCII, providing a unique platform for exploring the asymmetry of matter-antimatter (charge-parity violation), in-depth studies of the internal structure of hadrons and the nature of non-perturbative strong interactions, as well as searching for exotic hadrons and physics beyond the Standard Model. The STCF project in China is under development with an extensive R\&amp;D program. This document presents the physics opportunities at the STCF, describes conceptual designs of the STCF detector system, and discusses future plans for detector R\&amp;D and physics case studies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.15790v3-abstract-full').style.display = 'none'; document.getElementById('2303.15790v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Front. Phys. 19(1), 14701 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.14230">arXiv:2303.14230</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.14230">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> In Vivo Magnetic Resonance Spectroscopy by J-Locked Chemical Shift Encoding for Determination of Neurochemical Concentration and Transverse Relaxation Time </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=An%2C+L">Li An</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+J">Jun Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.14230v1-abstract-short" style="display: inline;"> Cell pathology in neuropsychiatric disorders has mainly been accessible by analyzing postmortem tissue samples. Although molecular transverse relaxation informs local cellular microenvironment via molecule-environment interactions, precise determination of the transverse relaxation times of molecules with scalar couplings (J), such as glutamate and glutamine, is difficult using current in vivo mag&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.14230v1-abstract-full').style.display = 'inline'; document.getElementById('2303.14230v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.14230v1-abstract-full" style="display: none;"> Cell pathology in neuropsychiatric disorders has mainly been accessible by analyzing postmortem tissue samples. Although molecular transverse relaxation informs local cellular microenvironment via molecule-environment interactions, precise determination of the transverse relaxation times of molecules with scalar couplings (J), such as glutamate and glutamine, is difficult using current in vivo magnetic resonance spectroscopy (MRS) technologies, whose approach to measuring transverse relaxation has not changed for decades. We introduce an in vivo MRS technique that achieves chemical shift encoding with selectively locked J-couplings in each column of the acquired two-dimensional dataset, freeing up the entire row dimension for transverse relaxation encoding. This results in increased spectral resolution, minimized background signals, and markedly broadened dynamic range for transverse relaxation encoding. This technique enables determination of the transverse relaxation times of glutamate and glutamine in vivo with unprecedented high precision. Since glutamate predominantly resides in glutamatergic neurons and glutamine in glia in the brain, this noninvasive technique provides a way to probe cellular pathophysiology in neuropsychiatric disorders for characterizing disease progression and monitoring treatment response in a cell type-specific manner in vivo. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.14230v1-abstract-full').style.display = 'none'; document.getElementById('2303.14230v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.06053">arXiv:2302.06053</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.06053">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OPTICA.499059">10.1364/OPTICA.499059 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exciton Assisted Deeply Subwavelength Nano-Photonics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ling%2C+H">Haonan Ling</a>, <a href="/search/physics?searchtype=author&amp;query=Manna%2C+A">Arnab Manna</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+J">Jialiang Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Tung%2C+H">Ho-Ting Tung</a>, <a href="/search/physics?searchtype=author&amp;query=Sharp%2C+D">David Sharp</a>, <a href="/search/physics?searchtype=author&amp;query=Fr%C3%B6ch%2C+J">Johannes Fr枚ch</a>, <a href="/search/physics?searchtype=author&amp;query=Dai%2C+S">Siyuan Dai</a>, <a href="/search/physics?searchtype=author&amp;query=Majumdar%2C+A">Arka Majumdar</a>, <a href="/search/physics?searchtype=author&amp;query=Davoyan%2C+A+R">Artur R. Davoyan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.06053v1-abstract-short" style="display: inline;"> The wave nature of light sets a fundamental diffraction limit that challenges confinement and control of light in nanoscale structures with dimensions significantly smaller than the wavelength. Here, we demonstrate van der Waals MoS_2 nano-photonic devices with dimensions as small as ~ 位/16 (~60 nm at 1000 nm excitation wavelength). This deep subwavelength light confinement is achieved by exploiti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.06053v1-abstract-full').style.display = 'inline'; document.getElementById('2302.06053v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.06053v1-abstract-full" style="display: none;"> The wave nature of light sets a fundamental diffraction limit that challenges confinement and control of light in nanoscale structures with dimensions significantly smaller than the wavelength. Here, we demonstrate van der Waals MoS_2 nano-photonic devices with dimensions as small as ~ 位/16 (~60 nm at 1000 nm excitation wavelength). This deep subwavelength light confinement is achieved by exploiting the coupling between MoS_2 excitons and photons. We validate deep subwavelength light control via far- and near-field measurements. Our near-field measurements reveal detailed imaging of excitation, evolution, and guidance of fields in MoS_2 nanodevices, whereas our far-field study examines highly confined integrated photonics. Exciton-driven nano-photonics at a fraction of a wavelength demonstrated here could dramatically reduce the size of integrated photonic devices and opto-electronic circuits with potential applications in optical information science and engineering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.06053v1-abstract-full').style.display = 'none'; document.getElementById('2302.06053v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">39 pages, 32 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.12300">arXiv:2211.12300</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.12300">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> Ion Chamber Collection Efficiencies for Proton Spot Scanning Calibration </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Furutani%2C+K+M">Keith M. Furutani</a>, <a href="/search/physics?searchtype=author&amp;query=Remmes%2C+N+N">Nicholas N. Remmes</a>, <a href="/search/physics?searchtype=author&amp;query=Kruse%2C+J+J">Jon J. Kruse</a>, <a href="/search/physics?searchtype=author&amp;query=Herman%2C+M+G">Michael G. Herman</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+J">Jiajian Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Beltran%2C+C+J">Chris J. Beltran</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.12300v1-abstract-short" style="display: inline;"> Charge accumulation was measured under calibration conditions in the spread-out Bragg peak (SOBP) using the calibration bias as well as a range of voltages from 10V to 500V and a Farmer-style ion chamber. Collection efficiency was determined by extrapolating to infinite voltage. Similar measurements were taken in an identical dose distribution with a much shorter spot duration. The impact of each&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.12300v1-abstract-full').style.display = 'inline'; document.getElementById('2211.12300v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.12300v1-abstract-full" style="display: none;"> Charge accumulation was measured under calibration conditions in the spread-out Bragg peak (SOBP) using the calibration bias as well as a range of voltages from 10V to 500V and a Farmer-style ion chamber. Collection efficiency was determined by extrapolating to infinite voltage. Similar measurements were taken in an identical dose distribution with a much shorter spot duration. The impact of each of the three models on calibration was then quantified using the TRS-398 protocol. The collection efficiency for the standard calibration was determined to agree well with the prediction of a continuous beam recombination correction. The standard calibration field was found to persistently agree with a continuous beam recombination correction for much lower operating biases. The collection efficiency result for the short spot duration field did not agree with either the continuous or pulsed-beam correction. Using the incorrect recombination model under the standard calibration conditions resulted in a 0.5% calibration difference. We have determined that our spot scanning system would be most appropriately calibrated using a recombination correction with continuous beam model. Physicists responsible for the calibration of such systems are advised to take measurements described here to correctly identify the applicable recombination model for their clinics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.12300v1-abstract-full').style.display = 'none'; document.getElementById('2211.12300v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted December 16, 2015 to Medical Physics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.01365">arXiv:2211.01365</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.01365">pdf</a>, <a href="https://arxiv.org/format/2211.01365">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> QuACK: Accelerating Gradient-Based Quantum Optimization with Koopman Operator Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Luo%2C+D">Di Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+J">Jiayu Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Dangovski%2C+R">Rumen Dangovski</a>, <a href="/search/physics?searchtype=author&amp;query=Solja%C4%8Di%C4%87%2C+M">Marin Solja膷i膰</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.01365v3-abstract-short" style="display: inline;"> Quantum optimization, a key application of quantum computing, has traditionally been stymied by the linearly increasing complexity of gradient calculations with an increasing number of parameters. This work bridges the gap between Koopman operator theory, which has found utility in applications because it allows for a linear representation of nonlinear dynamical systems, and natural gradient metho&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.01365v3-abstract-full').style.display = 'inline'; document.getElementById('2211.01365v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.01365v3-abstract-full" style="display: none;"> Quantum optimization, a key application of quantum computing, has traditionally been stymied by the linearly increasing complexity of gradient calculations with an increasing number of parameters. This work bridges the gap between Koopman operator theory, which has found utility in applications because it allows for a linear representation of nonlinear dynamical systems, and natural gradient methods in quantum optimization, leading to a significant acceleration of gradient-based quantum optimization. We present Quantum-circuit Alternating Controlled Koopman learning (QuACK), a novel framework that leverages an alternating algorithm for efficient prediction of gradient dynamics on quantum computers. We demonstrate QuACK&#39;s remarkable ability to accelerate gradient-based optimization across a range of applications in quantum optimization and machine learning. In fact, our empirical studies, spanning quantum chemistry, quantum condensed matter, quantum machine learning, and noisy environments, have shown accelerations of more than 200x speedup in the overparameterized regime, 10x speedup in the smooth regime, and 3x speedup in the non-smooth regime. With QuACK, we offer a robust advancement that harnesses the advantage of gradient-based quantum optimization for practical benefits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.01365v3-abstract-full').style.display = 'none'; document.getElementById('2211.01365v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Advances in Neural Information Processing Systems 36 (NeurIPS 2023) spotlight</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5488 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.12395">arXiv:2210.12395</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.12395">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Joint Detections of Frequency and Direction of Arrival in Wideband Based on Programmable Metasurface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">He Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y+B">Yun Bo Li</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+W+S">Wang Sheng Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+S+J">Sheng Jie Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+J+L">Jia Lin Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+S+Y">Shi Yu Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+T+J">Tie Jun Cui</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.12395v1-abstract-short" style="display: inline;"> We propose to achieve joint detections of frequency and direction of arrival in wideband using single sensor based on an active metasurface with programmable transmission states of pass and stop. By integrating two PIN diodes with the opposite directions into the proposed single-layer and ultrathin meta-atom, the transmission performance with 10 dB difference between the pass and stop states is re&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.12395v1-abstract-full').style.display = 'inline'; document.getElementById('2210.12395v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.12395v1-abstract-full" style="display: none;"> We propose to achieve joint detections of frequency and direction of arrival in wideband using single sensor based on an active metasurface with programmable transmission states of pass and stop. By integrating two PIN diodes with the opposite directions into the proposed single-layer and ultrathin meta-atom, the transmission performance with 10 dB difference between the pass and stop states is realized in the bandwidth from 5.9 GHz to 8.8 GHz using field-circuit co-simulations. Accordingly, random receiving patterns are generated by controlling the programmable metasurface composed of the switchable meta-atoms. Afterwards, the frequency and direction information of sources located in the far field are detected using the modified algorithm of estimating signal parameters via rotational invariance techniques (ESPRIT) and the compressive sensing method, respectively. A sample of the programmable metasurface is fabricated and the voltage control system is built up correspondingly. To entirely verify the validity of the proposed method, we conduct three kinds of experiments with one single source, double sources with different frequencies, and double sources with the same frequency, respectively. In all cases, the source information of frequency and direction has been detected preciously in measurements in the frequency band from 6.2 GHz to 8.8 GHz. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.12395v1-abstract-full').style.display = 'none'; document.getElementById('2210.12395v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.11553">arXiv:2210.11553</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.11553">pdf</a>, <a href="https://arxiv.org/format/2210.11553">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum mechanical modeling of the multi-stage Stern$\unicode{x2013}$Gerlach experiment conducted by Frisch and Segr猫 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kahraman%2C+S+S">S. S眉leyman Kahraman</a>, <a href="/search/physics?searchtype=author&amp;query=Titimbo%2C+K">Kelvin Titimbo</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+Z">Zhe He</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+J">Jung-Tsung Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+L+V">Lihong V. Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.11553v5-abstract-short" style="display: inline;"> The multi-stage Stern$\unicode{x2013}$Gerlach experiment conducted by Frisch and Segr猫 includes two cascaded quantum measurements with a nonadiabatic flipper in between. The Frisch and Segr猫 experiment has been modeled analytically by Majorana without the nuclear effect and subsequently revised by Rabi with the hyperfine interaction. However, the theoretical predictions do not match the experiment&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.11553v5-abstract-full').style.display = 'inline'; document.getElementById('2210.11553v5-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.11553v5-abstract-full" style="display: none;"> The multi-stage Stern$\unicode{x2013}$Gerlach experiment conducted by Frisch and Segr猫 includes two cascaded quantum measurements with a nonadiabatic flipper in between. The Frisch and Segr猫 experiment has been modeled analytically by Majorana without the nuclear effect and subsequently revised by Rabi with the hyperfine interaction. However, the theoretical predictions do not match the experimental observation accurately. Here, we numerically solve the standard quantum mechanical model, via the von Neumann equation, including the hyperfine interaction for the time evolution of the spin. Thus far, the coefficients of determination from the standard quantum mechanical model without using free parameters are still low, indicating a mismatch between the theory and the experiment. Non-standard variants that improve the match are explored for discussion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.11553v5-abstract-full').style.display = 'none'; document.getElementById('2210.11553v5-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Shen%2C+J&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Shen%2C+J&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Shen%2C+J&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Shen%2C+J&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10