CINXE.COM
Search results for: sandstones
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: sandstones</title> <meta name="description" content="Search results for: sandstones"> <meta name="keywords" content="sandstones"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="sandstones" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="sandstones"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 50</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: sandstones</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50</span> Geochemical Investigation of Weathering and Sorting for Tepeköy Sandstones</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Yavuz%20H%C3%BCseyinca">M. Yavuz Hüseyinca</a>, <a href="https://publications.waset.org/abstracts/search?q=%C5%9Euayip%20K%C3%BCpeli"> Şuayip Küpeli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Chemical Index of Alteration (CIA) values of Late Eocene-Oligocene aged sandstones that exposed on the eastern edge of Tuz Lake (Central Anatolia, Turkey) range from 49 to 59 with an average of 51. The A-CN-K diagram indicates that sandstones underwent post-depositional K-metasomatism. The original average CIA value before the K-metasomatism is calculated as 55. This value is lower than that of Post Archean Australian Shale (PAAS) and defines a low intense chemical weathering in the source-area. Extrapolation of sandstones back to the plagioclase-alkali feldspar line in the A-CN-K diagram suggests a high average plagioclase to alkali feldspar ratio in the provenance and a composition close to granodiorite. The Zr/Sc and Th/Sc ratios with the Al₂O₃-Zr-TiO₂ space do not show zircon addition that refuse both recycling of sediments and sorting effect. All these data suggest direct and rapid transportation from the source due to topographic uplift and probably arid to semi-arid climate conditions for the sandstones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=central%20Anatolia" title="central Anatolia">central Anatolia</a>, <a href="https://publications.waset.org/abstracts/search?q=sandstone" title=" sandstone"> sandstone</a>, <a href="https://publications.waset.org/abstracts/search?q=sorting" title=" sorting"> sorting</a>, <a href="https://publications.waset.org/abstracts/search?q=weathering" title=" weathering"> weathering</a> </p> <a href="https://publications.waset.org/abstracts/48202/geochemical-investigation-of-weathering-and-sorting-for-tepekoy-sandstones" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48202.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">49</span> Modal Composition and Tectonic Provenance of the Sandstones of Ecca Group, Karoo Supergroup in the Eastern Cape Province, South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christopher%20Baiyegunhi">Christopher Baiyegunhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuiwu%20Liu"> Kuiwu Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Oswald%20Gwavava"> Oswald Gwavava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Petrography of the sandstones of Ecca Group, Karoo Supergroup in the Eastern Cape Province of South Africa have been investigated on composition, provenance and influence of weathering conditions. Petrographic studies based on quantitative analysis of the detrital minerals revealed that the sandstones are composed mostly of quartz, feldspar and lithic fragments of metamorphic and sedimentary rocks. The sandstones have an average framework composition of 24.3% quartz, 19.3% feldspar, 26.1% rock fragments, and 81.33% of the quartz grains are monocrystalline. These sandstones are generally very fine to fine grained, moderate to well sorted, and subangular to subrounded in shape. In addition, they are compositionally immature and can be classified as feldspathic wacke and lithic wacke. The absence of major petrographically distinctive compositional variations in the sandstones perhaps indicate homogeneity of their source. As a result of this, it is inferred that the transportation distance from the source area was quite short and the main mechanism of transportation was by river systems to the basin. The QFL ternary diagrams revealed dissected and transitional arc provenance pointing to an active margin and uplifted basement preserving the signature of a recycled provenance. This is an indication that the sandstones were derived from a magmatic arc provenance. Since magmatic provenance includes transitional arc and dissected arc, it also shows that the source area of the Ecca sediments had a secondary sedimentary and metasedimentary rocks from a marginal belt that developed as a result of rifting. The weathering diagrams and semi-quantitative weathering index indicate that the Ecca sandstones are mostly from a plutonic source area, with climatic conditions ranging from arid to humid. The compositional immaturity of the sandstones is suggested to be due to weathering or recycling and low relief or short transport from the source area. The detrital modal compositions of these sandstones are related to back arc to island and continental margin arc. The origin and deposition of the Ecca sandstones are due to low-moderate weathering, recycling of pre-existing rocks, erosion and transportation of debris from the orogeny of the Cape Fold Belt. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=petrography" title="petrography">petrography</a>, <a href="https://publications.waset.org/abstracts/search?q=tectonic%20setting" title=" tectonic setting"> tectonic setting</a>, <a href="https://publications.waset.org/abstracts/search?q=provenance" title=" provenance"> provenance</a>, <a href="https://publications.waset.org/abstracts/search?q=Ecca%20Group" title=" Ecca Group"> Ecca Group</a>, <a href="https://publications.waset.org/abstracts/search?q=Karoo%20Basin" title=" Karoo Basin"> Karoo Basin</a> </p> <a href="https://publications.waset.org/abstracts/66142/modal-composition-and-tectonic-provenance-of-the-sandstones-of-ecca-group-karoo-supergroup-in-the-eastern-cape-province-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66142.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">48</span> Porosity Characterization and Its Destruction by Authigenic Minerals: Reservoir Sandstones, Mamuniyat Formation, Murzuq Basin, SW Libya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamrd%20Ali%20Alrabib">Mohamrd Ali Alrabib</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sandstones samples were selected from cores of seven wells ranging in depth from 5040 to 7181.4 ft. The dominant authigenic cement phase is quartz overgrowth cement (up to 13% by volume) and this is the major mechanism for porosity reduction. Late stage carbonate cements (siderite and dolomite/ferroan dolomite) are present and these minerals infill intergranular porosity and, therefore, further reduce porosity and probably permeability. Authigenic clay minerals are represented by kaolinite, illite, and grain coating clay minerals. Kaolinite occurs as booklet and vermicular forms. Minor amounts of illite were noted in the studied samples, which commonly block pore throats, thereby reducing permeability. Primary porosity of up to 26.5% is present. Secondary porosity (up to 17%) is also present as a result of feldspar dissolution. The high intergranular volume (IGV) of the sandstones indicates that mechanical and chemical compaction played a more important role than cementation of porosity loss. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=authigenic%20minerals" title="authigenic minerals">authigenic minerals</a>, <a href="https://publications.waset.org/abstracts/search?q=porosity%20types" title=" porosity types"> porosity types</a>, <a href="https://publications.waset.org/abstracts/search?q=porosity%20reduction" title=" porosity reduction"> porosity reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=mamuniyat%20sandstone%20reservoir" title=" mamuniyat sandstone reservoir "> mamuniyat sandstone reservoir </a> </p> <a href="https://publications.waset.org/abstracts/2382/porosity-characterization-and-its-destruction-by-authigenic-minerals-reservoir-sandstones-mamuniyat-formation-murzuq-basin-sw-libya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2382.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">47</span> Rare Earth Element (REE) Geochemistry of Tepeköy Sandstones (Central Anatolia, Turkey)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Yavuz%20H%C3%BCseyinca">Mehmet Yavuz Hüseyinca</a>, <a href="https://publications.waset.org/abstracts/search?q=%C5%9Euayip%20K%C3%BCpeli"> Şuayip Küpeli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sandstones from Upper Eocene - Oligocene Tepeköy formation (Member of Mezgit Group) that exposed on the eastern edge of Tuz Gölü (Salt Lake) were analyzed for their rare earth element (REE) contents. Average concentrations of ΣREE, ΣLREE (Total light rare earth elements) and ΣHREE (Total heavy rare earth elements) were determined as 31.37, 26.47 and 4.55 ppm respectively. These values are lower than UCC (Upper continental crust) which indicates grain size and/or CaO dilution effect. The chondrite-normalized REE pattern is characterized by the average ratios of (La/Yb)cn = 6.20, (La/Sm)cn = 4.06, (Gd/Lu)cn = 1.10, Eu/Eu* = 0.99 and Ce/Ce* = 0.94. Lower values of ΣLREE/ΣHREE (Average 5.97) and (La/Yb)cn suggest lower fractionation of overall REE. Moreover (La/Sm)cn and (Gd/Lu)cn ratios define less inclined LREE and almost flat HREE pattern when compared with UCC. Almost no Ce anomaly (Ce/Ce*) emphasizes that REE were originated from terrigenous material. Also depleted LREE and no Eu anomaly (Eu/Eu*) suggest an undifferentiated mafic provenance for the sandstones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=central%20Anatolia" title="central Anatolia">central Anatolia</a>, <a href="https://publications.waset.org/abstracts/search?q=provenance" title=" provenance"> provenance</a>, <a href="https://publications.waset.org/abstracts/search?q=rare%20earth%20elements" title=" rare earth elements"> rare earth elements</a>, <a href="https://publications.waset.org/abstracts/search?q=REE" title=" REE"> REE</a>, <a href="https://publications.waset.org/abstracts/search?q=Tepek%C3%B6y%20sandstone" title=" Tepeköy sandstone"> Tepeköy sandstone</a> </p> <a href="https://publications.waset.org/abstracts/31994/rare-earth-element-ree-geochemistry-of-tepekoy-sandstones-central-anatolia-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31994.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">46</span> Assessment of Reservoir Quality and Heterogeneity in Middle Buntsandstein Sandstones of Southern Netherlands for Deep Geothermal Exploration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Husnain%20Yousaf">Husnain Yousaf</a>, <a href="https://publications.waset.org/abstracts/search?q=Rudy%20Swennen"> Rudy Swennen</a>, <a href="https://publications.waset.org/abstracts/search?q=Hannes%20Claes"> Hannes Claes</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Amjad"> Muhammad Amjad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, the Lower Triassic Main Buntsandstein sandstones in the southern Netherlands Basins have become a point of interest for their deep geothermal potential. To identify the most suitable reservoir for geothermal exploration, the diagenesis and factors affecting reservoir quality, such as porosity and permeability, are assessed. This is done by combining point-counted petrographic data with conventional core analysis. The depositional environments play a significant role in determining the distribution of lithofacies, cement, clays, and grain sizes. The position in the basin and proximity to the source areas determine the lateral variability of depositional environments. The stratigraphic distribution of depositional environments is linked to both local topography and climate, where high humidity leads to fluvial deposition and high aridity periods lead to aeolian deposition. The Middle Buntsandstein Sandstones in the southern part of the Netherlands shows high porosity and permeability in most sandstone intervals. There are various controls on reservoir quality in the examined sandstone samples. Grain sizes and total quartz content are the primary factors affecting reservoir quality. Conversely, carbonate and anhydrite cement, clay clasts, and intergranular clay represent a local control and cannot be applied on a regional scale. Similarly, enhanced secondary porosity due to feldspar dissolution is locally restricted and minor. The analysis of textural, mineralogical, and petrophysical data indicates that the aeolian and fluvial sandstones represent a heterogeneous reservoir system. The ephemeral fluvial deposits have an average porosity and permeability of <10% and <1mD, respectively, while the aeolian sandstones exhibit values of >18% and >100mD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reservoir%20quality" title="reservoir quality">reservoir quality</a>, <a href="https://publications.waset.org/abstracts/search?q=diagenesis" title=" diagenesis"> diagenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=porosity" title=" porosity"> porosity</a>, <a href="https://publications.waset.org/abstracts/search?q=permeability" title=" permeability"> permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=depositional%20environments" title=" depositional environments"> depositional environments</a>, <a href="https://publications.waset.org/abstracts/search?q=Buntsandstein" title=" Buntsandstein"> Buntsandstein</a>, <a href="https://publications.waset.org/abstracts/search?q=Netherlands" title=" Netherlands"> Netherlands</a> </p> <a href="https://publications.waset.org/abstracts/165287/assessment-of-reservoir-quality-and-heterogeneity-in-middle-buntsandstein-sandstones-of-southern-netherlands-for-deep-geothermal-exploration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165287.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">45</span> Detailed Depositional Resolutions in Upper Miocene Sands of HT-3X Well, Nam Con Son Basin, Vietnam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vo%20Thi%20Hai%20Quan">Vo Thi Hai Quan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nam Con Son sedimentary basin is one of the very important oil and gas basins in offshore Vietnam. Hai Thach field of block 05-2 contains mostly gas accumulations in fine-grained, sand/mud-rich turbidite system, which was deposited in a turbidite channel and fan environment. Major Upper Miocene reservoir of HT-3X lies above a well-developed unconformity. The main objectives of this study are to reconstruct depositional environment and to assess the reservoir quality using data from 14 meters of core samples and digital wireline data of the well HT-3X. The wireline log and core data showed that the vertical sequences of representative facies of the well mainly range from Tb to Te divisions of Bouma sequences with predominance of Tb and Tc compared to Td and Te divisions. Sediments in this well were deposited in a submarine fan association with very fine to fine-grained, homogeneous sandstones that have high porosity and permeability, high- density turbidity currents with longer transport route from the sediment source to the basin, indicating good quality of reservoir. Sediments are comprised mainly of the following sedimentary structures: massive, laminated sandstones, convoluted bedding, laminated ripples, cross-laminated ripples, deformed sandstones, contorted bedding. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hai%20Thach%20field" title="Hai Thach field">Hai Thach field</a>, <a href="https://publications.waset.org/abstracts/search?q=Miocene%20sand" title=" Miocene sand"> Miocene sand</a>, <a href="https://publications.waset.org/abstracts/search?q=turbidite" title=" turbidite"> turbidite</a>, <a href="https://publications.waset.org/abstracts/search?q=wireline%20data" title=" wireline data"> wireline data</a> </p> <a href="https://publications.waset.org/abstracts/69815/detailed-depositional-resolutions-in-upper-miocene-sands-of-ht-3x-well-nam-con-son-basin-vietnam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69815.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">44</span> Precambrian/Neoproterozoic Sediments of the Sirt Basin, Libya: New Palynological Evidence</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20D.%20El-mehdawi">Ali D. El-mehdawi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20E.%20Elkanouni"> Ibrahim E. Elkanouni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thick pre-Upper Cretaceous sandstones, sandstones intercalated with red/black shale or quarzitic sandstones, traditionally known to range in age from Cambrian to Early Cretaceous, mostly overlie the subsurface basement rocks of the Sirt Basin of Libya. These sediments known as Nubian, Sarir, Amal or Cambro-Ordovician sandstones. They are usually barren of any age datable palynomorphs and microfossils and represent the main hydrocarbon reservoirs in the basin. As a part of an ongoing regional project concerned with revision and updating of the stratigraphic nomenclature of the Sirt Basin and adjacent areas, sixteen core and ditch cutting samples from four wells penetrating the known Cambro-Ordovician sediments in the central and eastern parts of the basin were examined palynologicaly to investigate its age and the depositional paleoenvironment. The samples proved to be barren or yielded rare palynomorph assemblage, which dominated by dark grey to black small and large-sized sphaeromorph acritarchs assemblage of leiosphaerid types. The dominated species are Kildinosphaera chagrinata, K. cf. chagrinata, Kildinella ripheica, Kilinella timanica, Leiosphaeridia asperata and Leiosphaeridia spp. These leiosphaerides assemblage are comparable to those have been reported from the Late Precambrian, late Riphean age in Cyrenaica Platform, NE Libya, and would indicated shallow marine depositional environment. The age assignment suggests that this interval most probably equates to Mourizide, Bir Bayai and Wadi alHayt formations known in the Murzuq, Kufrah and Cyrenaica areas, respectively. This study proves the presence of Precambrian sediments in Jaghbub high and Amal Platform in the eastern part of Sirt Basin and probably in Maradah Trough and Aj Jahamah/Zoltun Platform northwestern part of the Sirt Basin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=palynology" title="palynology">palynology</a>, <a href="https://publications.waset.org/abstracts/search?q=leiosphaerides" title=" leiosphaerides"> leiosphaerides</a>, <a href="https://publications.waset.org/abstracts/search?q=precambrian" title=" precambrian"> precambrian</a>, <a href="https://publications.waset.org/abstracts/search?q=sirt%20basin" title=" sirt basin"> sirt basin</a>, <a href="https://publications.waset.org/abstracts/search?q=libya" title=" libya"> libya</a> </p> <a href="https://publications.waset.org/abstracts/172547/precambrianneoproterozoic-sediments-of-the-sirt-basin-libya-new-palynological-evidence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172547.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">43</span> Lower Cretaceous Bahi Sandstone Reservoir as Sourced of Co2 Accumulation Within the En-Naga Sub Basin, Sirte Basin, Libya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moawia%20Abulgader%20Gdara">Moawia Abulgader Gdara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> En -Naga sub - basin considered to be the most southern of the concessions in the Sirte Basin operated by HOO. En Naga Sub – basin have likely been point-sourced of CO2 accumulations during the last 7 million years from local satellite intrusives associated with the Haruj Al Aswad igneous complex. CO2 occurs in the En Naga Sub-basin as a result of the igneous activity of the Al Harouge Al Aswad complex. Igneous extrusive have been pierced in the subsurface are exposed at the surface. The lower cretaceous Bahi Sandstone facies are recognized in the En Naga Sub-basin. They result from the influence of paleotopography on the processes associated with continental deposition over the Sirt Unconformity and the Cenomanian marine transgression In the Lower Cretaceous Bahi Sandstones, the presence of trapped carbon dioxide is proven within the En Naga Sub-basin. This makes it unique in providing an abundance of CO2 gas reservoirs with almost pure magmatic CO2, which can be easily sampled. Huge amounts of CO2 exist in the Lower Cretaceous Bahi Sandstones in the En-Naga sub-basin, where the economic value of CO2 is related to its use for enhanced oil recovery (EOR) Based on the production tests for the drilled wells that makes Lower Cretaceous Bahi sandstones the principle reservoir rocks for CO2 where large volumes of CO2 gas have been discovered in the Bahi Formation on and near EPSA 120/136(En -Naga sub basin). The Bahi sandstones are generally described as a good reservoir rock. Intergranular porosities and permeabilities are highly variable and can exceed 25% and 100 MD.In the (En Naga sub – basin), The very high pressures assumed associated with local igneous intrusives may account for the abnormally high Bahi (and Lidam Formation) reservoir pressures. The best gas tests from this facies are at F1-72 on the (Barrut I structure) from part of a 458 feet+ section having an estimated high value of CO2 as 98% overpressured. Bahi CO2 prospectivity is thought to be excellent in the central to western areas where At U1-72 (En Naga O structure) a significant CO2 gas kick occurred at 11,971 feet and quickly led to blowout conditions due to uncontrollable leaks in the surface equipment. Which reflects a better reservoir quality sandstones associated with Paleostructural highs. Condensate and gas prospectivity increases to the east as the CO2 prospectivity decreases with distance away from the Al Haruj Al Aswad igneous complex. To date, it has not been possible to accurately determine the volume of these strategically valuable reserves although there are positive indications that they are very large. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=1%29en%20naga%20sub%20basin" title="1)en naga sub basin">1)en naga sub basin</a>, <a href="https://publications.waset.org/abstracts/search?q=2%29alharouge%20al%20aswad%20igneous%20complex" title=" 2)alharouge al aswad igneous complex"> 2)alharouge al aswad igneous complex</a>, <a href="https://publications.waset.org/abstracts/search?q=3%29co2%20generation%20and%20migration" title=" 3)co2 generation and migration"> 3)co2 generation and migration</a>, <a href="https://publications.waset.org/abstracts/search?q=4%29lower%20cretaceous%20bahi%20sandstone" title=" 4)lower cretaceous bahi sandstone"> 4)lower cretaceous bahi sandstone</a> </p> <a href="https://publications.waset.org/abstracts/168693/lower-cretaceous-bahi-sandstone-reservoir-as-sourced-of-co2-accumulation-within-the-en-naga-sub-basin-sirte-basin-libya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168693.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42</span> Diagnosis of the Hydrological and Hydrogeological Potential in the Mancomojan Basin for Estimations of Offer and Demand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Alzate">J. M. Alzate</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Baena"> J. Baena</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents the final results of the ‘Diagnosis of the hydrological and hydrogeological potential in the Mancomojan basin for estimations of offer and demand’ with the purpose of obtaining solutions of domestic supply for the communities of the zone of study. There was realized the projection of population of the paths by three different scenes. The highest water total demand appears with the considerations of the scene 3, with a total demand for the year 2050 of 59.275 m3/year (1,88 l/s), being the path San Francisco the one that exercises a major pressure on the resource with a demand for the same year of the order of 31.189 m3/year (0,99 l/s). As for the hydrogeological potential of the zone and as alternative of supply of the studied communities, the stratigraphic columns obtained of the geophysical polls do not show strata saturated with water that could be considered to be a potential source of supply for the communities. The water registered in the geophysics tests presents very low resistances what indicates that he presents ions, this water meets in the rock interstices very thin granulometries which indicates that it is a water of constitution, and the flow of this one towards more permeable granulometries is void or limited. The underground resource that is registered so much in electrical vertical polls (SEV) as in tomography and that is saturating rocks of thin granulometry (clays and slimes), was demonstrated by content of ions, which is consistent with the abundant presence of plaster and the genesis marinades with transition to continental of the geological units in the zone. Predominant rocks are sedimentary, sandy rocks of grain I die principally, in minor proportion were observed also sandstones of thick grain to conglomerate with clastic rock of quartz, chert and siltstone of the Formation Mess and sandstones (of thin, average and thick grain) alternating with caps conglomerate whose thickness is, in general, between 5 and 15 cm, the nodules of sandstones are frequent with the same composition of the sandstones that contain them, in some cases with calcareous and crossed stratification of the formation Sincelejo Miembro Morroa. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrological" title="hydrological">hydrological</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogeological%20potential" title=" hydrogeological potential"> hydrogeological potential</a>, <a href="https://publications.waset.org/abstracts/search?q=geotomography" title=" geotomography"> geotomography</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20electrical%20sounding%20%28VES%29" title=" vertical electrical sounding (VES)"> vertical electrical sounding (VES)</a> </p> <a href="https://publications.waset.org/abstracts/47857/diagnosis-of-the-hydrological-and-hydrogeological-potential-in-the-mancomojan-basin-for-estimations-of-offer-and-demand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47857.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">41</span> Generation and Migration of CO₂ in the Bahi Sandstone Reservoir within the Ennaga Sub Basin, Sirte Basin, Libya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moaawia%20Abdulgader%20Gdara">Moaawia Abdulgader Gdara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents a study of Carbone dioxide generation and migration in the Bahi sandstone reservoir over the EPSA 120/136 (conc 72). En Naga Sub Basin, Sirte Basin Libya. The Lower Cretaceous Bahi Sandstone is the result of deposition that occurred between the start of the Cretaceous rifting that formed the area's Horsts, Grabens and Cenomanian marine transgression. Bahi sediments were derived mainly from those Nubian sediments exposed on the structurally higher blocks, transported short distances into newly forming depocenters such as the En Naga Sub-basin and were deposited by continental processes over the Sirte Unconformity (pre-Late Cretaceous surface) Bahi Sandstone facies are recognized in the En Naga Sub-basin within different lithofacies distribution over this sub-base. One of the two lithofacies recognized in the Bahi is a very fine to very coarse, subangular to angular, pebbly and occasionally conglomeratic quartz sandstone, which is commonly described as being compacted but friable. This sandstone may contain pyrite and minor kaolinite. This facies was encountered at 11,042 feet in F1-72 well, and at 9,233 feet in L1-72. Good, reservoir quality sandstones are associated with paleotopographic highs within the sub-basin and around its margins where winnowing and/or deflationary processes occurred. The second Bahi Lithofacies is a thinly bedded sequence dominated by shales and siltstones with subordinate sandstones and carbonates. The sandstones become more abundant with depth. This facies was encountered at 12,580 feet in P1 -72 and at 11,850 feet in G1a -72. This argillaceous sequence is likely the Bahi sandstone's lateral facies equivalent deposited in paleotopographic lows, which received finer-grained material. The Bahi sandstones are generally described as a good reservoir rock, which after prolific production tests for the drilled wells makes Bahi sandstones the principal reservoir rocks for CO₂ where large volumes of CO₂ gas have been discovered in the Bahi Formation on and near EPSA 120/136, (conc 72). CO₂ occurs in this area as a result of the igneous activity of the Al Harouge Al Aswad complex. Igneous extrusive have been pierced in the subsurface and are exposed at the surface. Bahi CO₂ prospectivity is thought to be excellent in the central to western areas of EPSA 120/136 (CONC 72) where there are better reservoir quality sandstones associated with Paleostructural highs. Condensate and gas prospectivity increases to the east as the CO₂ productivity decreases with distance away from the Al Haruj Al Aswad igneous complex. To date, it has not been possible to accurately determine the volume of these strategically valuable reserves, although there are positive indications that they are very large. Three main structures (Barrut I, En Naga A and En Naga O) are thought to be prospective for the lower Cretaceous Bahi sandstone development. These leads are the most attractive on EPSA 120/136 for the deep potential. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=En%20Naga%20Sub%20Basin" title="En Naga Sub Basin">En Naga Sub Basin</a>, <a href="https://publications.waset.org/abstracts/search?q=Al%20Harouge%20Al%20Aswad%27s%20Igneous%20complex" title=" Al Harouge Al Aswad's Igneous complex"> Al Harouge Al Aswad's Igneous complex</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide%20generation" title=" carbon dioxide generation"> carbon dioxide generation</a>, <a href="https://publications.waset.org/abstracts/search?q=migration%20in%20the%20Bahi%20sandstone%20reservoir" title=" migration in the Bahi sandstone reservoir"> migration in the Bahi sandstone reservoir</a>, <a href="https://publications.waset.org/abstracts/search?q=lower%20cretaceous%20Bahi%20Sandstone" title=" lower cretaceous Bahi Sandstone"> lower cretaceous Bahi Sandstone</a> </p> <a href="https://publications.waset.org/abstracts/151300/generation-and-migration-of-co2-in-the-bahi-sandstone-reservoir-within-the-ennaga-sub-basin-sirte-basin-libya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151300.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">40</span> Generation and Migration of CO₂ in the Bahi Sandstone Reservoir within the Ennaga Sub Basin, Sirte Basin, Libya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moaawia%20Abdulgader%20Gdara">Moaawia Abdulgader Gdara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents a study of carbon dioxide generation and migration in the Bahi sandstone reservoir over the EPSA 120/136 (conc 72), En Naga Sub Basin, Sirte Basin, Libya. The Lower Cretaceous Bahi Sandstone is the result of deposition that occurred between the start of the Cretaceous rifting that formed the area's Horsts, Grabens, and Cenomanian marine transgression. Bahi sediments were derived mainly from those Nubian sediments exposed on the structurally higher blocks, transported short distances into newly forming depocenters such as the En Naga Sub-basin, and were deposited by continental processes over the Sirte Unconformity (pre-Late Cretaceous surface). Bahi Sandstone facies are recognized in the En Naga Sub-basin within different lithofacies distributed over this sub-base. One of the two lithofacies recognized in the Bahi is a very fine to very coarse, subangular to angular, pebbly, and occasionally conglomeratic quartz sandstone, which is commonly described as being compacted but friable. This sandstone may contain pyrite, minor kaolinite. This facies was encountered at 11,042 feet in F1-72 well and at 9,233 feet in L1-72. Good, reservoir quality sandstones are associated with paleotopographic highs within the sub-basin and around its margins where winnowing and/or deflationary processes occurred. The second Bahi Lithofacies is a thinly bedded sequence dominated by shales and siltstones with subordinate sandstones and carbonates. The sandstones become more abundant with depth. This facies was encountered at 12,580 feet in P1 -72 and at 11,850 feet in G1a -72. This argillaceous sequence is likely the Bahi sandstone's lateral facies equivalent deposited in paleotopographic lows, which received finer grained material. The Bahi sandstones are generally described as a good reservoir rock, which after prolific production tests for the drilled wells that makes Bahi sandstones the principal reservoir rocks for CO₂ where large volumes of CO₂ gas have been discovered in the Bahi Formation on and near EPSA 120/136, (conc 72). CO₂ occurs in this area as a result of the igneous activity of the Al Harouge Al Aswad complex. Igneous extrusive have been pierced in the subsurface and are exposed at the surface. Bahi CO₂ prospectivity is thought to be excellent in the central to western areas of EPSA 120/136 (CONC 72), where there are better reservoir quality sandstones associated with Paleostructural highs. Condensate and gas prospectivity increases to the east as the CO₂ prospectivity decreases with distance away from the Al Haruj Al Aswad igneous complex. To date, it has not been possible to accurately determine the volume of these strategically valuable reserves, although there are positive indications that they are very large. Three main structures (Barrut I, En Naga A, and En Naga O) are thought to be prospective for the lower Cretaceous Bahi sandstone development. These leads are the most attractive on EPSA 120/136 for the deep potential. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=En%20Naga%20Sub%20Basin" title="En Naga Sub Basin">En Naga Sub Basin</a>, <a href="https://publications.waset.org/abstracts/search?q=Al%20Harouge%20Al%20Aswad%E2%80%99s%20Igneous%20Complex" title=" Al Harouge Al Aswad’s Igneous Complex"> Al Harouge Al Aswad’s Igneous Complex</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide%20generation%20and%20migration%20in%20the%20Bahi%20sandstone%20reservoir" title=" carbon dioxide generation and migration in the Bahi sandstone reservoir"> carbon dioxide generation and migration in the Bahi sandstone reservoir</a>, <a href="https://publications.waset.org/abstracts/search?q=lower%20cretaceous%20Bahi%20sandstone" title=" lower cretaceous Bahi sandstone"> lower cretaceous Bahi sandstone</a> </p> <a href="https://publications.waset.org/abstracts/151882/generation-and-migration-of-co2-in-the-bahi-sandstone-reservoir-within-the-ennaga-sub-basin-sirte-basin-libya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151882.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">39</span> Non-Destructing Testing of Sandstones from Unconventional Reservoir in Poland with Use of Ultrasonic Pulse Velocity Technique and X-Ray Computed Microtomography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Micha%C5%82%20Maksimczuk">Michał Maksimczuk</a>, <a href="https://publications.waset.org/abstracts/search?q=%C5%81ukasz%20Kaczmarek"> Łukasz Kaczmarek</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomasz%20Wejrzanowski"> Tomasz Wejrzanowski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study concerns high-resolution X-ray computed microtomography (µCT) and ultrasonic pulse analysis of Cambrian sandstones from a borehole located in the Baltic Sea Coast of northern Poland. µCT and ultrasonic technique are non-destructive methods commonly used to determine the internal structure of reservoir rock sample. The spatial resolution of the µCT images obtained was 27 µm, which enabled the author to create accurate 3-D visualizations of structure geometry and to calculate the ratio of pores volume to the total sample volume. A copper X-ray source filter was used to reduce image artifacts. Furthermore, samples Young’s modulus and Poisson ratio were obtained with use of ultrasonic pulse technique. µCT and ultrasonic pulse technique provide complex information which can be used for explorations and characterization of reservoir rocks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elastic%20parameters" title="elastic parameters">elastic parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20absorption%20coefficient" title=" linear absorption coefficient"> linear absorption coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=northern%20Poland" title=" northern Poland"> northern Poland</a>, <a href="https://publications.waset.org/abstracts/search?q=tight%20gas" title=" tight gas"> tight gas</a> </p> <a href="https://publications.waset.org/abstracts/65737/non-destructing-testing-of-sandstones-from-unconventional-reservoir-in-poland-with-use-of-ultrasonic-pulse-velocity-technique-and-x-ray-computed-microtomography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65737.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38</span> Seismic Reflection Highlights of New Miocene Deep Aquifers in Eastern Tunisia Basin (North Africa)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mourad%20B%C3%A9dir">Mourad Bédir</a>, <a href="https://publications.waset.org/abstracts/search?q=Sami%20Khomsi"> Sami Khomsi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hakim%20Gabtni"> Hakim Gabtni</a>, <a href="https://publications.waset.org/abstracts/search?q=Hajer%20Azaiez"> Hajer Azaiez</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramzi%20Gharsalli"> Ramzi Gharsalli</a>, <a href="https://publications.waset.org/abstracts/search?q=Riadh%20Chebbi"> Riadh Chebbi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Eastern Tunisia is a semi-arid area; located in the northern Africa plate; southern Mediterranean side. It is facing water scarcity, overexploitation, and decreasing of water quality of phreatic water table. Water supply and storage will not respond to the demographic and economic growth and demand. In addition, only 5 109 m3 of rainwater from 35 109 m3 per year renewable rain water supply can be retained and remobilized. To remediate this water deficiency, researches had been focused to near new subsurface deep aquifers resources. Among them, Upper Miocene sandstone deposits of Béglia, Saouaf, and Somaa Formations. These sandstones are known for their proven Hydrogeologic and hydrocarbon reservoir characteristics in the Tunisian margin. They represent semi-confined to confined aquifers. This work is based on new integrated approaches of seismic stratigraphy, seismic tectonics, and hydrogeology, to highlight and characterize these reservoirs levels for aquifer exploitation in semi-arid area. As a result, five to six third order sequence deposits had been highlighted. They are composed of multi-layered extended sandstones reservoirs; separated by shales packages. These reservoir deposits represent lowstand and highstand system tracts of these sequences, which represent lowstand and highstand system tracts of these sequences. They constitute important strategic water resources volumes for the region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tunisia" title="Tunisia">Tunisia</a>, <a href="https://publications.waset.org/abstracts/search?q=Hydrogeology" title=" Hydrogeology"> Hydrogeology</a>, <a href="https://publications.waset.org/abstracts/search?q=sandstones" title=" sandstones"> sandstones</a>, <a href="https://publications.waset.org/abstracts/search?q=basin" title=" basin"> basin</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic" title=" seismic"> seismic</a>, <a href="https://publications.waset.org/abstracts/search?q=aquifers" title=" aquifers"> aquifers</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a> </p> <a href="https://publications.waset.org/abstracts/142805/seismic-reflection-highlights-of-new-miocene-deep-aquifers-in-eastern-tunisia-basin-north-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142805.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">37</span> On the Lithology of Paleocene-Lower Eocene Deposits of the Achara-Trialeti Fold Zone: The Lesser Caucasus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nino%20Kobakhidze">Nino Kobakhidze</a>, <a href="https://publications.waset.org/abstracts/search?q=Endi%20Varsimashvili"> Endi Varsimashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Davit%20Makadze"> Davit Makadze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Caucasus is a link of the Alpine-Himalayan fold belt and involves the Greater Caucasus and the Lesser Caucasus fold systems and the Intermountain area. The study object is located within the northernmost part of the Lesser Caucasus orogen, in the eastern part of Achara-Trialeti fold -thrust belt. This area was rather well surveyed in 70th of the twentieth century in terms of oil-and-gas potential, but to our best knowledge, detailed sedimentological studies have not been conducted so far. In order to fill this gap, the authors of the present thesis started research in this direction. One of the objects selected for the research was the deposits of the Kavtura river valley situated on the northern slope of the Trialeti ridge. Paleocene-Lower Eocene deposits known in scientific literature as ‘Borjomi Flysch’ (Turbidites) are exposed in the mentioned area. During the research, the following methodologies were applied: selection of key cross sections, a collection of rock samples, microscopic description of thin sections, mineralogical and petrological analysis of material and identification of trace fossils. The study of Paleocene-Lower Eocene deposits starts with Kavtura river valley in the east, where they are well characterized by microfauna. The cross-section of the deposits starts with Danian variegated marlstone conformably overlain by the alternation of thick and thin-bedded sandstones (thickness 40-50 cm). They are continued with interbedded of thin-bedded sandstones and shales(thickness 4-5 m). On the sole surface of sandstones ichnogenera ‘Helmintopsis’ and ‘Scolicia’ are recorded and within the bed –‘Chondrites’ is found. Towards the Riverhead, there is a 1-2 m gap in sedimentation; then again the Paleocene-Lower Eocene sediments crop out. They starting with alternation of grey-green medium-grained sandstones and shales enclosing dark color plant detritus. They are overlain by the interbedded of calcareous sandstones and marls, where the thickness of sandstones is variable (20-70 cm). Ichnogenus – ‘Scolicia’ is found here. Upwards the above-mentioned deposits pass into Middle Eocenian volcanogenic-sedimentary suits. In the Kavtura river valley, the thickness of the Paleocene-Lower Eocene deposits is 300-400 m. In the process of research, the following activities are conducted: the facial analysis of host rocks, correlation of the study section with other cross sections and interpretation of depositional environment of the area. In the area the authors have found and described ichnogenera; their preliminary determination have shown that they belong to pre-depositional (‘Helmintopsis’) and post-depositional (‘Chondrites’) forms. As known, during the Cretaceous-Paleogene time, the Achara-Trialeti fold-thrust belt extensional basin was the accumulation area with great thicknesses (from shallow to deep marine sediments). It is confirmed once more by the authors investigations preliminary results of paleoichnological studies inclusive. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flysh%20deposits" title="flysh deposits">flysh deposits</a>, <a href="https://publications.waset.org/abstracts/search?q=lithology" title=" lithology"> lithology</a>, <a href="https://publications.waset.org/abstracts/search?q=The%20Lesser%20Caucasus" title=" The Lesser Caucasus"> The Lesser Caucasus</a>, <a href="https://publications.waset.org/abstracts/search?q=trace%20fossils" title=" trace fossils"> trace fossils</a> </p> <a href="https://publications.waset.org/abstracts/106890/on-the-lithology-of-paleocene-lower-eocene-deposits-of-the-achara-trialeti-fold-zone-the-lesser-caucasus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106890.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">36</span> Generation & Migration Of Carbone Dioxid In The Lower Cretaceous Bahi Sandstone Reservoir Within The En-naga Sub Basin, Sirte Basin, Libya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moaawia%20Abdulgader%20Gdara">Moaawia Abdulgader Gdara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> En -Naga sub - basin considered to be the most southern of the concessions in the Sirte Basin operated by HOO. En Naga Sub – basin have likely been point-sourced of CO₂ accumulations during the last 7 million years from local satellite intrusives associated with the Haruj Al Aswad igneous complex. CO2 occurs in the En Naga Sub-basin as a result of the igneous activity of the Al Harouge Al Aswad complex.Igneous extrusive have been pierced in the subsurface are exposed at the surface. The lower cretaceous Bahi Sandstone facies are recognized in the En Naga Sub-basin. They result from the influence of paleotopography on the processes associated with continental deposition over the Sirt Unconformity and the Cenomanian marine transgression In the Lower Cretaceous Bahi Sandstones, the presence of trapped carbon dioxide is proven within the En Naga Sub-basin. This makes it unique in providing an abundance of CO₂ gas reservoirs with almost pure magmatic CO₂, which can be easily sampled. Huge amounts of CO2 exist in the Lower Cretaceous Bahi Sandstones in the En-Naga sub-basin, where the economic value of CO₂ is related to its use for enhanced oil recovery (EOR) Based on the production tests for the drilled wells that makes Lower Cretaceous Bahi sandstones the principle reservoir rocks for CO2 where large volumes of CO2 gas have been discovered in the Bahi Formation on and near EPSA 120/136(En -Naga sub basin). The Bahi sandstones are generally described as a good reservoir rock. Intergranular porosities and permeabilities are highly variable and can exceed 25% and 100 MD. In the (En Naga sub – basin), three main developed structures (Barrut I, En Naga A and En Naga O) are thought to be prospective for the lower Cretaceous Bahi sandstone reservoir. These structures represents a good example for the deep over pressure potential in (En Naga sub - basin). The very high pressures assumed associated with local igneous intrusives may account for the abnormally high Bahi (and Lidam) reservoir pressures. The best gas tests from this facies are at F1-72 on the (Barrut I structure) from part of a 458 feet+ section having an estimated high value of CO2 as 98% overpressured. Bahi CO) en naga sub basin, 2)al harouge al aswad igneous complex., 3) lower cretaceous bahi reservoir, 4)co) en naga sub basin, 2)al harouge al aswad igneous complex., 3) lower cretaceous bahi reservoir, 4)co) en naga sub basin, 2)al harouge al aswad igneous complex., 3) lower cretaceous bahi reservoir, 4)co) en naga sub basin, 2)al harouge al aswad igneous complex., 3) lower cretaceous bahi reservoir, 4)co₂ generation and migration to the bahi sandstone reservoir generation and migration to the bahi sandstone reservoir generation and migration to the bahi sandstone reservoir generation and migration to the bahi sandstone reservoir prospectivity is thought to be excellent in the central to western areas where At U1-72 (En Naga O structure) a significant CO2 gas kick occurred at 11,971 feet and quickly led to blowout conditions due to uncontrollable leaks in the surface equipment. Which reflects a better reservoir quality sandstones associated with Paleostructural highs. Condensate and gas prospectivity increases to the east as the CO₂) en naga sub basin, 2)al harouge al aswad igneous complex., 3) lower cretaceous bahi reservoir, 4)co) en naga sub basin, 2)al harouge al aswad igneous complex., 3) lower cretaceous bahi reservoir, 4)co₂ generation and migration to the bahi sandstone reservoir generation and migration to the bahi sandstone reservoir prospectivity decreases with distance away from the Al Haruj Al Aswad igneous complex. To date, it has not been possible to accurately determine the volume of these strategically valuable reserves although there are positive indications that they are very large. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=1%29%20en%20naga%20sub%20basin" title="1) en naga sub basin">1) en naga sub basin</a>, <a href="https://publications.waset.org/abstracts/search?q=2%29al%20harouge%20al%20aswad%20igneous%20complex." title=" 2)al harouge al aswad igneous complex."> 2)al harouge al aswad igneous complex.</a>, <a href="https://publications.waset.org/abstracts/search?q=3%29%20lower%20cretaceous%20bahi%20reservoir" title=" 3) lower cretaceous bahi reservoir"> 3) lower cretaceous bahi reservoir</a>, <a href="https://publications.waset.org/abstracts/search?q=4%29co2%20generation%20and%20migration%20to%20the%20bahi%20sandstone%20reservoir" title=" 4)co2 generation and migration to the bahi sandstone reservoir"> 4)co2 generation and migration to the bahi sandstone reservoir</a> </p> <a href="https://publications.waset.org/abstracts/173034/generation-migration-of-carbone-dioxid-in-the-lower-cretaceous-bahi-sandstone-reservoir-within-the-en-naga-sub-basin-sirte-basin-libya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">35</span> Grain Size Statistics and Depositional Pattern of the Ecca Group Sandstones, Karoo Supergroup in the Eastern Cape Province, South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christopher%20Baiyegunhi">Christopher Baiyegunhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuiwu%20Liu"> Kuiwu Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Oswald%20Gwavava"> Oswald Gwavava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Grain size analysis is a vital sedimentological tool used to unravel the hydrodynamic conditions, mode of transportation and deposition of detrital sediments. In this study, detailed grain-size analysis was carried out on thirty-five sandstone samples from the Ecca Group in the Eastern Cape Province of South Africa. Grain-size statistical parameters, bivariate analysis, linear discriminate functions, Passega diagrams and log-probability curves were used to reveal the depositional processes, sedimentation mechanisms, hydrodynamic energy conditions and to discriminate different depositional environments. The grain-size parameters show that most of the sandstones are very fine to fine grained, moderately well sorted, mostly near-symmetrical and mesokurtic in nature. The abundance of very fine to fine grained sandstones indicates the dominance of low energy environment. The bivariate plots that the samples are mostly grouped, except for the Prince Albert samples that show scattered trend, which is due to the either mixture of two modes in equal proportion in bimodal sediments or good sorting in unimodal sediments. The linear discriminant function (LDF) analysis is dominantly indicative of turbidity current deposits under shallow marine environments for samples from the Prince Albert, Collingham and Ripon Formations, while those samples from the Fort Brown Formation are fluvial (deltaic) deposits. The graphic mean value shows the dominance of fine sand-size particles, which point to relatively low energy conditions of deposition. In addition, the LDF results point to low energy conditions during the deposition of the Prince Albert, Collingham and part of the Ripon Formation (Pluto Vale and Wonderfontein Shale Members), whereas the Trumpeters Member of the Ripon Formation and the overlying Fort Brown Formation accumulated under high energy conditions. The CM pattern shows a clustered distribution of sediments in the PQ and QR segments, indicating that the sediments were deposited mostly by suspension and rolling/saltation, and graded suspension. Furthermore, the plots also show that the sediments are mainly deposited by turbidity currents. Visher diagrams show the variability of hydraulic depositional conditions for the Permian Ecca Group sandstones. Saltation is the major process of transportation, although suspension and traction also played some role during deposition of the sediments. The sediments were mainly in saltation and suspension before being deposited. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=grain%20size%20analysis" title="grain size analysis">grain size analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrodynamic%20condition" title=" hydrodynamic condition"> hydrodynamic condition</a>, <a href="https://publications.waset.org/abstracts/search?q=depositional%20environment" title=" depositional environment"> depositional environment</a>, <a href="https://publications.waset.org/abstracts/search?q=Ecca%20Group" title=" Ecca Group"> Ecca Group</a>, <a href="https://publications.waset.org/abstracts/search?q=South%20Africa" title=" South Africa"> South Africa</a> </p> <a href="https://publications.waset.org/abstracts/66143/grain-size-statistics-and-depositional-pattern-of-the-ecca-group-sandstones-karoo-supergroup-in-the-eastern-cape-province-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66143.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">481</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">34</span> Diagenesis of the Permian Ecca Sandstones and Mudstones, in the Eastern Cape Province, South Africa: Implications for the Shale Gas Potential of the Karoo Basin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Temitope%20L.%20Baiyegunhi">Temitope L. Baiyegunhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Christopher%20Baiyegunhi"> Christopher Baiyegunhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuiwu%20Liu"> Kuiwu Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Oswald%20Gwavava"> Oswald Gwavava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diagenesis is the most important factor that affects or impact the reservoir property. Despite the fact that published data gives a vast amount of information on the geology, sedimentology and lithostratigraphy of the Ecca Group in the Karoo Basin of South Africa, little is known of the diagenesis of the potentially feasible shales and sandstones of the Ecca Group. The study aims to provide a general account of the diagenesis of sandstones and mudstone of the Ecca Group. Twenty-five diagenetic textures and structures are identified and grouped into three regimes or stages that include eogenesis, mesogenesis and telogenesis. Clay minerals are the most common cementing materials in the Ecca sandstones and mudstones. Smectite, kaolinite and illite are the major clay minerals that act as pore lining rims and pore-filling cement. Most of the clay minerals and detrital grains were seriously attacked and replaced by calcite. Calcite precipitates locally in pore spaces and partly or completely replaced feldspar and quartz grains, mostly at their margins. Precipitation of cements and formation of pyrite and authigenic minerals as well as little lithification occurred during the eogenesis. This regime was followed by mesogenesis which brought about an increase in tightness of grain packing, loss of pore spaces and thinning of beds due to weight of overlying sediments and selective dissolution of framework grains. Compaction, mineral overgrowths, mineral replacement, clay-mineral authigenesis, deformation and pressure solution structures occurred during mesogenesis. During rocks were uplifted, weathered and unroofed by erosion, this resulted in additional grain fracturing, decementation and oxidation of iron-rich volcanic fragments and ferromagnesian minerals. The rocks of Ecca Group were subjected to moderate-intense mechanical and chemical compaction during its progressive burial. Intergranular pores, matrix micro pores, secondary intragranular, dissolution and fractured pores are the observed pores. The presence of fractured and dissolution pores tend to enhance reservoir quality. However, the isolated nature of the pores makes them unfavourable producers of hydrocarbons, which at best would require stimulation. The understanding of the space and time distribution of diagenetic processes in these rocks will allow the development of predictive models of their quality, which may contribute to the reduction of risks involved in their exploration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diagenesis" title="diagenesis">diagenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=reservoir%20quality" title=" reservoir quality"> reservoir quality</a>, <a href="https://publications.waset.org/abstracts/search?q=Ecca%20Group" title=" Ecca Group"> Ecca Group</a>, <a href="https://publications.waset.org/abstracts/search?q=Karoo%20Supergroup" title=" Karoo Supergroup"> Karoo Supergroup</a> </p> <a href="https://publications.waset.org/abstracts/100475/diagenesis-of-the-permian-ecca-sandstones-and-mudstones-in-the-eastern-cape-province-south-africa-implications-for-the-shale-gas-potential-of-the-karoo-basin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100475.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> Characterization of Anisotropic Deformation in Sandstones Using Micro-Computed Tomography Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Mehdi%20Seyed%20Alizadeh">Seyed Mehdi Seyed Alizadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Christoph%20Arns"> Christoph Arns</a>, <a href="https://publications.waset.org/abstracts/search?q=Shane%20Latham"> Shane Latham</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Geomechanical characterization of rocks in detail and its possible implications on flow properties is an important aspect of reservoir characterization workflow. In order to gain more understanding of the microstructure evolution of reservoir rocks under stress a series of axisymmetric triaxial tests were performed on two different analogue rock samples. In-situ compression tests were coupled with high resolution micro-Computed Tomography to elucidate the changes in the pore/grain network of the rocks under pressurized conditions. Two outcrop sandstones were chosen in the current study representing a various cementation status of well-consolidated and weakly-consolidated granular system respectively. High resolution images were acquired while the rocks deformed in a purpose-built compression cell. A detailed analysis of the 3D images in each series of step-wise compression tests (up to the failure point) was conducted which includes the registration of the deformed specimen images with the reference pristine dry rock image. Digital Image Correlation (DIC) technique based on the intensity of the registered 3D subsets and particle tracking are utilized to map the displacement fields in each sample. The results suggest the complex architecture of the localized shear zone in well-cemented Bentheimer sandstone whereas for the weakly-consolidated Castlegate sandstone no discernible shear band could be observed even after macroscopic failure. Post-mortem imaging a sister plug from the friable rock upon undergoing continuous compression reveals signs of a shear band pattern. This suggests that for friable sandstones at small scales loading mode may affect the pattern of deformation. Prior to mechanical failure, the continuum digital image correlation approach can reasonably capture the kinematics of deformation. As failure occurs, however, discrete image correlation (i.e. particle tracking) reveals superiority in both tracking the grains as well as quantifying their kinematics (in terms of translations/rotations) with respect to any stage of compaction. An attempt was made to quantify the displacement field in compression using continuum Digital Image Correlation which is based on the reference and secondary image intensity correlation. Such approach has only been previously applied to unconsolidated granular systems under pressure. We are applying this technique to sandstones with various degrees of consolidation. Such element of novelty will set the results of this study apart from previous attempts to characterize the deformation pattern in consolidated sands. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deformation%20mechanism" title="deformation mechanism">deformation mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=displacement%20field" title=" displacement field"> displacement field</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20behavior" title=" shear behavior"> shear behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=triaxial%20compression" title=" triaxial compression"> triaxial compression</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20micro-CT" title=" X-ray micro-CT "> X-ray micro-CT </a> </p> <a href="https://publications.waset.org/abstracts/79118/characterization-of-anisotropic-deformation-in-sandstones-using-micro-computed-tomography-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79118.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> Sand Production Modelled with Darcy Fluid Flow Using Discrete Element Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20N.%20Nwodo">M. N. Nwodo</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20P.%20Cheng"> Y. P. Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20H.%20Minh"> N. H. Minh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the process of recovering oil in weak sandstone formations, the strength of sandstones around the wellbore is weakened due to the increase of effective stress/load from the completion activities around the cavity. The weakened and de-bonded sandstone may be eroded away by the produced fluid, which is termed sand production. It is one of the major trending subjects in the petroleum industry because of its significant negative impacts, as well as some observed positive impacts. For efficient sand management therefore, there has been need for a reliable study tool to understand the mechanism of sanding. One method of studying sand production is the use of the widely recognized Discrete Element Method (DEM), Particle Flow Code (PFC3D) which represents sands as granular individual elements bonded together at contact points. However, there is limited knowledge of the particle-scale behavior of the weak sandstone, and the parameters that affect sanding. This paper aims to investigate the reliability of using PFC3D and a simple Darcy flow in understanding the sand production behavior of a weak sandstone. An isotropic tri-axial test on a weak oil sandstone sample was first simulated at a confining stress of 1MPa to calibrate and validate the parallel bond models of PFC3D using a 10m height and 10m diameter solid cylindrical model. The effect of the confining stress on the number of bonds failure was studied using this cylindrical model. With the calibrated data and sample material properties obtained from the tri-axial test, simulations without and with fluid flow were carried out to check on the effect of Darcy flow on bonds failure using the same model geometry. The fluid flow network comprised of every four particles connected with tetrahedral flow pipes with a central pore or flow domain. Parametric studies included the effects of confining stress, and fluid pressure; as well as validating flow rate – permeability relationship to verify Darcy’s fluid flow law. The effect of model size scaling on sanding was also investigated using 4m height, 2m diameter model. The parallel bond model successfully calibrated the sample’s strength of 4.4MPa, showing a sharp peak strength before strain-softening, similar to the behavior of real cemented sandstones. There seems to be an exponential increasing relationship for the bigger model, but a curvilinear shape for the smaller model. The presence of the Darcy flow induced tensile forces and increased the number of broken bonds. For the parametric studies, flow rate has a linear relationship with permeability at constant pressure head. The higher the fluid flow pressure, the higher the number of broken bonds/sanding. The DEM PFC3D is a promising tool to studying the micromechanical behavior of cemented sandstones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discrete%20element%20method" title="discrete element method">discrete element method</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20flow" title=" fluid flow"> fluid flow</a>, <a href="https://publications.waset.org/abstracts/search?q=parametric%20study" title=" parametric study"> parametric study</a>, <a href="https://publications.waset.org/abstracts/search?q=sand%20production%2Fbonds%20failure" title=" sand production/bonds failure"> sand production/bonds failure</a> </p> <a href="https://publications.waset.org/abstracts/39108/sand-production-modelled-with-darcy-fluid-flow-using-discrete-element-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39108.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> Petrographic Properties of Sedimentary-Exhalative Type Ores of Filizchay Polymetallic Deposit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samir%20Verdiyev">Samir Verdiyev</a>, <a href="https://publications.waset.org/abstracts/search?q=Fuad%20Huseynov"> Fuad Huseynov</a>, <a href="https://publications.waset.org/abstracts/search?q=Islam%20Guliyev"> Islam Guliyev</a>, <a href="https://publications.waset.org/abstracts/search?q=Co%C5%9Fqun%20%C4%B0smay%C4%B1l"> Coşqun İsmayıl</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Filizchay polymetallic deposit is located on the southern slope of the Greater Caucasus Mountain Range, northwest of Azerbaijan in the Balaken district. Filizchay is the largest polymetallic deposit in the region and the second-largest polymetallic deposit in Europe. The mineral deposits in the region are associated with two different geodynamic evolutions that began with the Mesozoic collision along the Eurasian continent and the formation of a magmatic arc after the collision and continued with subduction in the Cenozoic. The bedrocks associated with Filizchay mineralization are Early Jurassic aged. The stratigraphic sequence of the deposit is consisting of black metamorphic clay shales, sandstones, and ore layers. Shales, sandstones, and siltstones are encountered in the upper and middle sections of the ore body, while only shales are observed at the lowest ranges. The ore body is mainly layered by the geometric structure of the bedrock; folding can be observed in the ore layers along with the bedrock foliation, and just in few points indirect laying due to the metamorphism. This suggests that the Filizchay ore mineralization is syngenetic, which is proved by the mineralization by the bedrock. To determine the ore petrography properties of the Filizchay deposit, samples were collected from the region where the ore is concentrated, and a polished section was prepared. These collected samples were examined under the mineralogical microscope to reveal the paragenesis of the mineralization and to explain the relation of ore minerals to each other. In this study, macroscopically observed minerals and textures of these minerals were used in the cores revealed during drilling exploration made by AzerGold CJS company. As a result of all these studies, it has been determined that there are three main mineralization types in the Filizchay deposit: banded, massive, and veinlet ores. The mineralization is in the massive pyrite; furthermore, the basis of the ore-mass contains pyrite, chalcopyrite, sphalerite, and galena. The pyrite in some parts of the ore body transformed to pyrrhotite as a result of metamorphism. Pyrite-chalcopyrite, pyrite-sphalerite-galena, pyrite-pyrrhotite mineral assemblages were determined during microscopic studies of mineralization. The replacement texture is more developed in Filizchay ores. The banded polymetallic type mineralization and near bedrocks are cut by quartz-carbonate veins. The geotectonic position and lithological conditions of the Filizchay deposit, the texture, and interrelationship of the sulfide mineralization indicate that it is a sedimentary-exhalative type of Au-Cu-Ag-Zn-Pb polymetallic deposit that is genetically related to the massive sulfide deposits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Balaken" title="Balaken">Balaken</a>, <a href="https://publications.waset.org/abstracts/search?q=Filizchay" title=" Filizchay"> Filizchay</a>, <a href="https://publications.waset.org/abstracts/search?q=metamorphism" title=" metamorphism"> metamorphism</a>, <a href="https://publications.waset.org/abstracts/search?q=polymetallic%20mineralization" title=" polymetallic mineralization"> polymetallic mineralization</a> </p> <a href="https://publications.waset.org/abstracts/134980/petrographic-properties-of-sedimentary-exhalative-type-ores-of-filizchay-polymetallic-deposit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134980.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Lacustrine Sediments of the Poljanska Locality in the Miocene Climatic Optimum North Croatian Basin, Croatia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marijan%20Kova%C4%8DI%C4%87">Marijan KovačIć</a>, <a href="https://publications.waset.org/abstracts/search?q=Davor%20Paveli%C4%87"> Davor Pavelić</a>, <a href="https://publications.waset.org/abstracts/search?q=Darko%20Tiblja%C5%A1"> Darko Tibljaš</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivo%20Gali%C4%87"> Ivo Galić</a>, <a href="https://publications.waset.org/abstracts/search?q=Frane%20Markovi%C4%87"> Frane Marković</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivica%20Pavi%C4%8DI%C4%87"> Ivica PavičIć</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The North Croatian Basin (NCB) occupies the southwestern part of the Pannonian Basin System and belongs to the Central Paratethys realm. In a quarry near the village of Poljanska, on the southern slopes of Mt. Papuk in eastern Croatia, a 40-meter-thick section is exposed, consisting of well-bedded, mixed, carbonate-siliciclastic deposits with occurrences of pyroclastics. Sedimentological investigation indicates that a salina lake developed in the central NCB during the late early Miocene. Field studies and mineralogical and petrological analyses indicate that alternations of laminated crypto- characterize the lower part of the section to microcrystalline dolomite and analcimolite (sedimentary rocks composed essentially of authigenic analcime) associated with tuffites and marls. The pyroclastic material is a product of volcanic activity at the end of the early Miocene, while the formation of analcime, the zeolite group mineral, is a result of an alteration of pyroclastic material in an alkaline lacustrine environment. These sediments were deposited in a shallow, hydrologically closed lake that was controlled by an arid climate during the first phase of its development. The middle part of the section consists of dolomites interbedded with analcimolites and sandstones. The sandstone beds are a result of the increased supply of clastic material derived from the locally uplifted metamorphic and granitoid basement. The emplacement of sandstones and dolomites reflects a distinct alternation of hydrologically open and closed lacustrine environments controlled by the frequent alternation of humid and arid climates, representing the second phase of lake development. The siliciclastics of the third phase of lake development were deposited during the Middle Miocene in a hydrologically mostly open lake. All lacustrine deposition coincides with the Miocene Climatic Optimum, which was characterized by a hot and warm climate. The sedimentological data confirm the mostly wet conditions previously identified by paleobotanical studies in the region. The exception is the relatively long interval of arid climate in the late early Miocene that controlled the first phase of lake evolution, i.e., the salina-type lake. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=early%20Miocene" title="early Miocene">early Miocene</a>, <a href="https://publications.waset.org/abstracts/search?q=Pannonian%20basin%20System" title=" Pannonian basin System"> Pannonian basin System</a>, <a href="https://publications.waset.org/abstracts/search?q=pyroclastics" title=" pyroclastics"> pyroclastics</a>, <a href="https://publications.waset.org/abstracts/search?q=salina-type%20lake" title=" salina-type lake"> salina-type lake</a> </p> <a href="https://publications.waset.org/abstracts/139118/lacustrine-sediments-of-the-poljanska-locality-in-the-miocene-climatic-optimum-north-croatian-basin-croatia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139118.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> Lithological Mapping and Iron Deposits Identification in El-Bahariya Depression, Western Desert, Egypt, Using Remote Sensing Data Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Safaa%20M.%20Hassan%3B%20Safwat%20S.%20Gabr">Safaa M. Hassan; Safwat S. Gabr</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20F.%20Sadek"> Mohamed F. Sadek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is proposed for the lithological and iron oxides detection in the old mine areas of El-Bahariya Depression, Western Desert, using ASTER and Landsat-8 remote sensing data. Four old iron ore occurrences, namely; El-Gedida, El-Haraa, Ghurabi, and Nasir mine areas found in the El-Bahariya area. This study aims to find new high potential areas for iron mineralization around El-Baharyia depression. Image processing methods such as principle component analysis (PCA) and band ratios (b4/b5, b5/b6, b6/b7, and 4/2, 6/7, band 6) images were used for lithological identification/mapping that includes the iron content in the investigated area. ASTER and Landsat-8 visible and short-wave infrared data found to help mapping the ferruginous sandstones, iron oxides as well as the clay minerals in and around the old mines area of El-Bahariya depression. Landsat-8 band ratio and the principle component of this study showed well distribution of the lithological units, especially ferruginous sandstones and iron zones (hematite and limonite) along with detection of probable high potential areas for iron mineralization which can be used in the future and proved the ability of Landsat-8 and ASTER data in mapping these features. Minimum Noise Fraction (MNF), Mixture Tuned Matched Filtering (MTMF), pixel purity index methods as well as Spectral Ange Mapper classifier algorithm have been successfully discriminated the hematite and limonite content within the iron zones in the study area. Various ASTER image spectra and ASD field spectra of hematite and limonite and the surrounding rocks are compared and found to be consistent in terms of the presence of absorption features at range from 1.95 to 2.3 μm for hematite and limonite. Pixel purity index algorithm and two sub-pixel spectral methods, namely Mixture Tuned Matched Filtering (MTMF) and matched filtering (MF) methods, are applied to ASTER bands to delineate iron oxides (hematite and limonite) rich zones within the rock units. The results are validated in the field by comparing image spectra of spectrally anomalous zone with the USGS resampled laboratory spectra of hematite and limonite samples using ASD measurements. A number of iron oxides rich zones in addition to the main surface exposures of the El-Gadidah Mine, are confirmed in the field. The proposed method is a successful application of spectral mapping of iron oxides deposits in the exposed rock units (i.e., ferruginous sandstone) and present approach of both ASTER and ASD hyperspectral data processing can be used to delineate iron-rich zones occurring within similar geological provinces in any parts of the world. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Landsat-8" title="Landsat-8">Landsat-8</a>, <a href="https://publications.waset.org/abstracts/search?q=ASTER" title=" ASTER"> ASTER</a>, <a href="https://publications.waset.org/abstracts/search?q=lithological%20mapping" title=" lithological mapping"> lithological mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=iron%20exploration" title=" iron exploration"> iron exploration</a>, <a href="https://publications.waset.org/abstracts/search?q=western%20desert" title=" western desert"> western desert</a> </p> <a href="https://publications.waset.org/abstracts/114776/lithological-mapping-and-iron-deposits-identification-in-el-bahariya-depression-western-desert-egypt-using-remote-sensing-data-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114776.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> Streamlines: Paths of Fluid Flow through Sandstone Samples Based on Computed Microtomography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C5%81.%20Kaczmarek">Ł. Kaczmarek</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Wejrzanowski"> T. Wejrzanowski</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Maksimczuk"> M. Maksimczuk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study presents the use of the numerical calculations based on high-resolution computed microtomography in analysis of fluid flow through Miocene sandstones. Therefore, the permeability studies of rocks were performed. Miocene samples were taken from well S-3, located in the eastern part of the Carpathian Foredeep. For aforementioned analysis, two series of X-ray irradiation were performed. The first set of samples was selected to obtain the spatial distribution of grains and pores. At this stage of the study length of voxel side amounted 27 microns. The next set of X-ray irradation enabled recognition of microstructural components as well as petrophysical features. The length of voxel side in this stage was up to 2 µm. Based on this study, the samples were broken down into two distinct groups. The first one represents conventional reservoir deposits, in opposite to second one - unconventional type. Appropriate identification of petrophysical parameters such as porosity and permeability of the formation is a key element for optimization of the reservoir development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=grains" title="grains">grains</a>, <a href="https://publications.waset.org/abstracts/search?q=permeability" title=" permeability"> permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=pores" title=" pores"> pores</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20distribution" title=" pressure distribution"> pressure distribution</a> </p> <a href="https://publications.waset.org/abstracts/65715/streamlines-paths-of-fluid-flow-through-sandstone-samples-based-on-computed-microtomography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65715.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">253</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Element Distribution and REE Dispersal in Sandstone-Hosted Copper Mineralization within Oligo-Miocene Strata, NE Iran: Insights from Lithostratigraphy and Mineralogy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Feiz">Mostafa Feiz</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Safari"> Mohammad Safari</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Hadizadeh"> Hossein Hadizadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Chalpo copper area is located in northeastern Iran, which is part of the structural zone of central Iran and the back-arc basin of Sabzevar. This sedimentary basin accumulated in destructive-oligomiocene sediments is named the Nasr-Chalpo-Sangerd (NCS) basin. The sedimentary layers in this basin originated mainly from Upper Cretaceous ophiolitic rocks and intermediate to mafic-post ophiolitic volcanic rocks, deposited as a nonconformity. The mineralized sandstone layers in the Chalpo area include leached zones (with a thickness of 5 to 8 meters) and mineralized lenses with a thickness of 0.5 to 0.7 meters. Ore minerals include primary sulfide minerals, such as chalcocite, chalcopyrite, and pyrite, as well as secondary minerals, such as covellite, digenite, malachite, and azurite, formed in three stages that comprise primary, simultaneously, and supergene stage. The best agents that control the mineralization in this area include the permeability of host rocks, the presence of fault zones as the conduits for copper oxide solutions, and significant amounts of plant fossils, which create a reducing environment for the deposition of mineralized layers. The calculations of mass changes on copper-bearing layers and primary sandstone layers indicate that Pb, As, Cd, Te, and Mo are enriched in the mineralized zones, whereas SiO₂, TiO₂, Fe₂O₃, V, Sr, and Ba are depleted. The combination of geological, stratigraphic, and geochemical studies suggests that the origin of copper may have been the underlying red strata that contained hornblende, plagioclase, biotite, alkaline feldspar, and labile minerals. Dehydration and hydrolysis of these minerals during the diagenetic process caused the leaching of copper and associated elements by circling fluids, which formed an oxidant-hydrothermal solution. Copper and silver in this oxidant solution might have moved upwards through the basin-fault zones and deposited in the reducing environments in the sandstone layers that have had abundant organic matter. Copper in these solutions was probably carried by chloride complexes. The collision of oxidant and reduced solutions caused the deposition of Cu and Ag, whereas some s elements in oxidant environments (e.g., Fe₂O₃, TiO₂, SiO₂, REEs) become uns in the reduced condition. Therefore, the copper-bearing sandstones in the study area are depleted from these elements resulting from the leaching process. The results indicate that during the mineralization stage, LREEs and MREEs were depleted, but Cu, Ag, and S were enriched. Based on field evidence, it seems that the circulation of connate fluids in the reb-bed strata, produced by diagenetic processes, encountered to reduced facies, which formed earlier by abundant fossil-plant debris in the sandstones, is the best model for precipitating sulfide-copper minerals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chalpo" title="Chalpo">Chalpo</a>, <a href="https://publications.waset.org/abstracts/search?q=Oligo-Miocene%20red%20beds" title=" Oligo-Miocene red beds"> Oligo-Miocene red beds</a>, <a href="https://publications.waset.org/abstracts/search?q=sandstone-hosted%20copper%20mineralization" title=" sandstone-hosted copper mineralization"> sandstone-hosted copper mineralization</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20change" title=" mass change"> mass change</a>, <a href="https://publications.waset.org/abstracts/search?q=LREEs%20and%20MREEs" title=" LREEs and MREEs"> LREEs and MREEs</a> </p> <a href="https://publications.waset.org/abstracts/191077/element-distribution-and-ree-dispersal-in-sandstone-hosted-copper-mineralization-within-oligo-miocene-strata-ne-iran-insights-from-lithostratigraphy-and-mineralogy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191077.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">25</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Biogenic-Sedimentary Structures of the Ordovician-Khabour Formation from the Northern Thrust Zone, Kurdistan, Iraq</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Waleed%20Sulaiman%20Shingaly">Waleed Sulaiman Shingaly</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Ordivician-Khabour Formation from the Northern Thrust Zone of Iraqi-Kurdistan comprises between 500 and 800 m of alternating predominantly greenish-grey sandstones, siltstones and shales. The succession has revealed an abundant ichnofossils characterized by 11 ichnogenus, namely: Helminthopsis, Gordia, Cruziana, Rusophycus, Monomorphichnus, Rhizocorallium, Thalassinoide, Planolite, Paleophycus, Deplocraterion and Skolithose. Ethologically these ichnogenera display dwelling and feeding activities of the infaunal organisms. This association of ichnofossils contains elements of the Skolithose and Cruziana ichnofacies. The presence of Skolithos ichnofacies indicates sandy shifting substrate and high energy conditions in foreshore zone while the Cruziana ichnofacies indicate unconsolidated, poorly sorted soft substrate and low energy condition in the shore face/offshore zone. These ichnogenera indicate shoreface-offshore zone of shallow-marine environment for the deposition of the rocks of the Khabour Formation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ichnofossils" title="Ichnofossils">Ichnofossils</a>, <a href="https://publications.waset.org/abstracts/search?q=shoreface-offshore%20zone" title=" shoreface-offshore zone"> shoreface-offshore zone</a>, <a href="https://publications.waset.org/abstracts/search?q=Khabour%20Formation" title=" Khabour Formation"> Khabour Formation</a>, <a href="https://publications.waset.org/abstracts/search?q=Iraq" title=" Iraq"> Iraq</a> </p> <a href="https://publications.waset.org/abstracts/21587/biogenic-sedimentary-structures-of-the-ordovician-khabour-formation-from-the-northern-thrust-zone-kurdistan-iraq" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21587.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">524</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Optimization of Multi-Zone Unconventional (Shale) Gas Reservoir Using Hydraulic Fracturing Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20C.%20Amadi">F. C. Amadi</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20C.%20Enyi"> G. C. Enyi</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20G.%20Nasr"> G. G. Nasr</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydraulic fracturing is one of the most important stimulation techniques available to the petroleum engineer to extract hydrocarbons in tight gas sandstones. It allows more oil and gas production in tight reservoirs as compared to conventional means. The main aim of the study is to optimize the hydraulic fracturing as technique and for this purpose three multi-zones layer formation is considered and fractured contemporaneously. The three zones are named as Zone1 (upper zone), Zone2 (middle zone) and Zone3 (lower zone) respectively and they all occur in shale rock. Simulation was performed with Mfrac integrated software which gives a variety of 3D fracture options. This simulation process yielded an average fracture efficiency of 93.8%for the three respective zones and an increase of the average permeability of the rock system. An average fracture length of 909 ft with net height (propped height) of 210 ft (average) was achieved. Optimum fracturing results was also achieved with maximum fracture width of 0.379 inches at an injection rate of 13.01 bpm with 17995 Mscf of gas production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20fracturing" title="hydraulic fracturing">hydraulic fracturing</a>, <a href="https://publications.waset.org/abstracts/search?q=optimisation" title=" optimisation"> optimisation</a>, <a href="https://publications.waset.org/abstracts/search?q=shale" title=" shale"> shale</a>, <a href="https://publications.waset.org/abstracts/search?q=tight%20reservoir" title=" tight reservoir"> tight reservoir</a> </p> <a href="https://publications.waset.org/abstracts/35122/optimization-of-multi-zone-unconventional-shale-gas-reservoir-using-hydraulic-fracturing-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35122.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Artiodactyl Fossil Remains from Middle Miocene Locality of Lava, District Chakwal, Punjab, Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khizar%20Samiullah">Khizar Samiullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Khurram%20Faroz"> Khurram Faroz</a>, <a href="https://publications.waset.org/abstracts/search?q=Riffat%20Yasin"> Riffat Yasin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehwish%20Iftekhar"> Mehwish Iftekhar</a>, <a href="https://publications.waset.org/abstracts/search?q=Saleem%20Akhtar"> Saleem Akhtar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The fossil site Lava is highly fossiliferous locality in the Chinji Formation, Lower Siwalik Hills of Pakistan. The studied mammalian fossil fauna from this locality consists of Suids, Giraffids and Bovids. The presence of these groups indicates that this Miocene locality has age of approximately 14-11 Ma. Sedimentologically this site is characterized by sandstone and reddish shale which also represents Chinji Formation of the Siwaliks, it consists of shales, siltstones, sandstones and there sediments show large variations in their degree of cementation. Few scientists worked at this locality, as it was first time discovered in 2011. The outcrops of lava locality were selected to explore in detail and comparison with European mammalian assemblages. The main focus was on artiodactyl’s mammalian fauna and four different species have been recovered during field work, in which Giraffokeryx punjabiensis is dominant. Different aspect like biogeographic distribution, evolution and taxonomy of discovered fossils fauna has been discussed in detail in this research work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fossil%20remains" title="fossil remains">fossil remains</a>, <a href="https://publications.waset.org/abstracts/search?q=lava" title=" lava"> lava</a>, <a href="https://publications.waset.org/abstracts/search?q=Chinji%20Formation" title=" Chinji Formation"> Chinji Formation</a>, <a href="https://publications.waset.org/abstracts/search?q=Pakistan" title=" Pakistan"> Pakistan</a> </p> <a href="https://publications.waset.org/abstracts/57353/artiodactyl-fossil-remains-from-middle-miocene-locality-of-lava-district-chakwal-punjab-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57353.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Authigenic Mineralogy in Nubian Sandstone Reservoirs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20M.%20A.%20Rahoma">Mohamed M. A. Rahoma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the results of my sedimentological and petrographical study of the Nubian Formation in the north Gialo area in the Sirte basin in Libya that was used for identifying and recognizing the facies type and their changes through the studied interval. It also helped me to interpret the depositional processes and the depositional environments and describe the textural characteristics, detrital mineralogy, Authigenic mineralogy and porosity characteristics of the rocks within the cored interval. Thus, we can identify the principal controls on porosity and permeability within the reservoir sections for the studied interval. To achieve this study, I described the cores studied well and marked all features represented in color, grain size, lithology, and sedimentary structures and used them to identify the facies. Then, I chose a number of samples according to a noticeable change in the facies through the interval for microscopic investigation. The results of the microscopic investigation showed that the authigenic clays and the authigenic types of cement have an important influence on the reservoir quality by converting intergranular macropores to microporosity and reducing permeability. It is recommended to give these authigenic minerals more investigation in future studies since they have an essential influence on the potential of sandstones reservoirs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diagenesis%20processes" title="diagenesis processes">diagenesis processes</a>, <a href="https://publications.waset.org/abstracts/search?q=authigenic%20minerals" title=" authigenic minerals"> authigenic minerals</a>, <a href="https://publications.waset.org/abstracts/search?q=Nubian%20Sandstone" title=" Nubian Sandstone"> Nubian Sandstone</a>, <a href="https://publications.waset.org/abstracts/search?q=reservoir%20quality" title=" reservoir quality"> reservoir quality</a> </p> <a href="https://publications.waset.org/abstracts/148772/authigenic-mineralogy-in-nubian-sandstone-reservoirs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148772.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Subsurface Elastic Properties Determination for Site Characterization Using Seismic Refraction Tomography at the Pwalugu Dam Area</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Van-Dycke%20Sarpong%20Asare">Van-Dycke Sarpong Asare</a>, <a href="https://publications.waset.org/abstracts/search?q=Vincent%20Adongo"> Vincent Adongo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Field measurement of subsurface seismic p-wave velocities was undertaken through seismic refraction tomography. The aim of this work is to obtain a model of the shallow subsurface material elastic properties relevant for geotechnical site characterization. The survey area is at Pwalugu in Northern Ghana, where a multipurpose dam, for electricity generation, irrigation, and potable water delivery, is being planned. A 24-channel seismograph and 24, 10 Hz electromagnetic geophones, deployed 5 m apart constituted the acquisition hardware. Eleven (2-D) seismic refraction profiles, nine of which ran almost perpendicular and two parallel to the White Volta at Pwalugu, were acquired. The refraction tomograms of the thirteen profiles revealed a subsurface model consisting of one minor and one major acoustic impedance boundaries – the top dry/loose sand and the variably weathered sandstone contact, and the overburden-sandstones bedrock contact respectively. The p-wave velocities and by inference, with a priori values of poison ratios, the s-wave velocities, assisted in characterizing the geotechnical conditions of the proposed site and also in evaluating the dynamic properties such as the maximum shear modulus, the bulk modulus, and the Young modulus. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tomography" title="tomography">tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=consolidated" title=" consolidated"> consolidated</a>, <a href="https://publications.waset.org/abstracts/search?q=Pwalugu%20and%20seismograph" title=" Pwalugu and seismograph"> Pwalugu and seismograph</a> </p> <a href="https://publications.waset.org/abstracts/120294/subsurface-elastic-properties-determination-for-site-characterization-using-seismic-refraction-tomography-at-the-pwalugu-dam-area" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120294.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Sedimentological Study of Bivalve Fossils Site Locality in Hong Hoi Formation in Lampang, Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kritsada%20Moonpa">Kritsada Moonpa</a>, <a href="https://publications.waset.org/abstracts/search?q=Kannipa%20Motanated"> Kannipa Motanated</a>, <a href="https://publications.waset.org/abstracts/search?q=Weerapan%20Srichan"> Weerapan Srichan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hong Hoi Formation is a Middle Triassic deep marine succession presented in outcrops throughout the Lampang Basin of northern Thailand. The primary goal of this research is to diagnose the paleoenvironment, petrographic compositions, and sedimentary sources of the Hong Hoi Formation in Ban Huat, Ngao District. The Triassic Hong Hoi Formation is chosen because the outcrops are continuous and fossils are greatly exposed and abundant. Depositional environment is reconstructed through sedimentological studies along with facies analysis. The Hong Hoi Formation is petrographically divided into two major facies, they are: sandstones with mudstone interbeds, and mudstones or shale with sandstone interbeds. Sandstone beds are lithic arenite and lithic greywacke, volcanic lithic fragments are dominated. Sedimentary structures, paleocurrent data and lithofacies arrangement indicate that the formation deposited in a part of deep marine abyssal plain environment. The sedimentological and petrographic features suggest that during the deposition the Hong Hoi Formation received sediment supply from nearby volcanic arc. This suggested that the intensive volcanic activity within the Sukhothai Arc during the Middle Triassic is the main sediment source. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sukhothai%20zone" title="Sukhothai zone">Sukhothai zone</a>, <a href="https://publications.waset.org/abstracts/search?q=petrography" title=" petrography"> petrography</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong%20Hoi%20formation" title=" Hong Hoi formation"> Hong Hoi formation</a>, <a href="https://publications.waset.org/abstracts/search?q=Lampang" title=" Lampang"> Lampang</a>, <a href="https://publications.waset.org/abstracts/search?q=Triassic" title=" Triassic"> Triassic</a> </p> <a href="https://publications.waset.org/abstracts/111476/sedimentological-study-of-bivalve-fossils-site-locality-in-hong-hoi-formation-in-lampang-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111476.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sandstones&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sandstones&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>