CINXE.COM
Search results for: intracranial pressure
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: intracranial pressure</title> <meta name="description" content="Search results for: intracranial pressure"> <meta name="keywords" content="intracranial pressure"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="intracranial pressure" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="intracranial pressure"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4084</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: intracranial pressure</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4084</span> Deformation Analysis of Pneumatized Sphenoid Bone Caused Due to Elevated Intracranial Pressure Using Finite Element Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dilesh%20Mogre">Dilesh Mogre</a>, <a href="https://publications.waset.org/abstracts/search?q=Jitendra%20Toravi"> Jitendra Toravi</a>, <a href="https://publications.waset.org/abstracts/search?q=Saurabh%20Joshi"> Saurabh Joshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Prutha%20Deshpande"> Prutha Deshpande</a>, <a href="https://publications.waset.org/abstracts/search?q=Aishwarya%20Kura"> Aishwarya Kura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In earlier days of technology, it was not possible to understand the nature of complex biomedical problems and were only left to clinical postulations. With advancement in science today, we have tools like Finite Element Modelling and simulation to solve complex biomedical problems. This paper presents how ANSYS WORKBENCH can be used to study deformation of pneumatized sphenoid bone caused by increased intracranial pressure. Intracranial pressure refers to the pressure inside the skull. The increase in the pressure above the normal range of 15mmhg can lead to serious conditions due to developed stresses and deformation. One of the areas where the deformation is suspected to occur is Sphenoid Bone. Moreover, the varying degree of pneumatization increases the complexity of the conditions. It is necessary to study deformation patterns on pneumatized sphenoid bone model at elevated intracranial pressure. Finite Element Analysis plays a major role in developing and analyzing model and give quantitative results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intracranial%20pressure" title="intracranial pressure">intracranial pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=pneumatized%20sphenoid%20bone" title=" pneumatized sphenoid bone"> pneumatized sphenoid bone</a>, <a href="https://publications.waset.org/abstracts/search?q=deformation" title=" deformation"> deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a> </p> <a href="https://publications.waset.org/abstracts/114448/deformation-analysis-of-pneumatized-sphenoid-bone-caused-due-to-elevated-intracranial-pressure-using-finite-element-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114448.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4083</span> Malignant Idiopathic Intracranial Hypertension Revealed a Hidden Primary Spinal Leptomeningeal Medulloblastoma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naim%20Izet%20Kajtazi">Naim Izet Kajtazi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Context: Frequently, the cause of raised intracranial pressure remains unresolved and rarely is related to spinal tumors, moreover less to spinal medulloblastoma without primary brain focus. Process: An 18-year-old woman had a 3-month history of headaches and impaired vision. Neurological examination revealed bilateral sixth cranial nerve palsies with bilateral papilloedema of grade III. No focal brain or spine lesion was found on imaging. Consecutive lumbar punctures showed high opening pressure and subsequent increasing protein level. The meningeal biopsy was negative. At one point, she developed an increasing headache, vomiting and back pain. Spine MRI showed diffuse nodular leptomeningeal enhancement with the largest nodule at T6–T7. Malignant cells were detected in cerebrospinal fluid. She underwent laminectomy with excisional biopsy, and pathology showed medulloblastoma WHO grade IV. Outcome: She was treated with chemotherapy and craniospinal irradiation and made a good recovery. Relevance: Primary spinal leptomeningeal medulloblastoma is extremely rare, especially without primary brain focus, but may cause increased intracranial pressure, even in the early microscopic phases, and it should be considered in the differential diagnosis if conventional and aggressive treatment of idiopathic intracranial hypertension fails. We assume that arachnoiditis from tumor seeding caused increased intracranial pressure. Appropriate neurosurgical intervention and surgical biopsy are mandated if a suspicious lesion is detected. Consider proper rescreening of the whole neuroaxis in refractory cases of intracranial hypertension. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CNS%20infection" title="CNS infection">CNS infection</a>, <a href="https://publications.waset.org/abstracts/search?q=IIH" title=" IIH"> IIH</a>, <a href="https://publications.waset.org/abstracts/search?q=headache" title=" headache"> headache</a>, <a href="https://publications.waset.org/abstracts/search?q=primary%20spinal%20leptomeningeal%20medulloblastoma" title=" primary spinal leptomeningeal medulloblastoma"> primary spinal leptomeningeal medulloblastoma</a> </p> <a href="https://publications.waset.org/abstracts/160863/malignant-idiopathic-intracranial-hypertension-revealed-a-hidden-primary-spinal-leptomeningeal-medulloblastoma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160863.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4082</span> Functions and Pathophysiology of the Ventricular System: Review of the Underlying Basic Physics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Abdelrahman%20Abdalla">Mohamed Abdelrahman Abdalla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Apart from their function in producing CSF, the brain ventricles have been recognized as the mere remnant of the embryological neural tube with no clear role. The lack of proper definition of the function of the brain ventricles and the central spinal canal has made it difficult to ascertain the pathophysiology of its different disease conditions or to treat them. This study aims to review the simple physics that could explain the basic function of the CNS ventricular system and to suggest new ways of approaching its pathology. There are probably more physical factors to consider than only the pressure. Monro-Killie hypothesis focuses on volume and subsequently pressure to direct our surgical management in different disease conditions. However, the enlarged volume of the ventricles in normal pressure hydrocephalus does not move any blood or brain outside the skull. Also, in idiopathic intracranial hypertension, the very high intracranial pressure rarely causes brain herniation. On this note, the continuum of the intracranial cavity with the spinal canal makes it a whole unit and hence the defect in the theory. In this study, adding different factors to the equation like brain and CSF density and positions of the brain in space, in addition to the volume and pressure, aims to identify how the ventricles are important in the CNS homeostasis. In addition, increasing the variables that we analyze to treat different CSF pathological conditions should increase our understanding and hence accuracy of treatment of such conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=communicating%20hydrocephalus" title="communicating hydrocephalus">communicating hydrocephalus</a>, <a href="https://publications.waset.org/abstracts/search?q=functions%20of%20the%20ventricles" title=" functions of the ventricles"> functions of the ventricles</a>, <a href="https://publications.waset.org/abstracts/search?q=idiopathic%20intracranial%20hypertension%20physics%20of%20CSF" title=" idiopathic intracranial hypertension physics of CSF"> idiopathic intracranial hypertension physics of CSF</a> </p> <a href="https://publications.waset.org/abstracts/129705/functions-and-pathophysiology-of-the-ventricular-system-review-of-the-underlying-basic-physics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129705.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4081</span> Optic Nerve Sheath Measurement in Children with Head Trauma </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sabiha%20Sahin">Sabiha Sahin</a>, <a href="https://publications.waset.org/abstracts/search?q=Kursad%20Bora%20Carman"> Kursad Bora Carman</a>, <a href="https://publications.waset.org/abstracts/search?q=Coskun%20Yarar"> Coskun Yarar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Measuring the diameter of the optic nerve sheath is a noninvasive and easy to use imaging technique to predict intracranial pressure in children and adults. The aim was to measure the diameter of the optic nerve sheath in pediatric head trauma. Methods: The study group consisted of 40 children with healthy and 40 patients with head trauma. Transorbital sonographic measurement of the optic nerve sheath diameter was performed. Conclusion: The mean diameters of the optic nerve sheath of right and left eyes were 0.408 ± 0.064 mm and 0.417 ± 0.065 mm, respectively, in the trauma group. These results were higher in patients than in control group. There was a negative correlation between optic nerve sheath diameters and Glasgow Coma Scales in patients with head trauma (p < 0.05). There was a positive correlation between optic nerve sheath diameters and positive CT findings, systolic blood pressure in patients with head trauma. The clinical status of the patients at admission, blood pH and lactate level were related to the optic nerve sheath diameter. Conclusion: Measuring the diameter of the optic nerve sheath is not an invasive technique and can be easily used to predict increased intracranial pressure and to prevent secondary brain injury. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=head%20trauma" title="head trauma">head trauma</a>, <a href="https://publications.waset.org/abstracts/search?q=intracranial%20pressure" title=" intracranial pressure"> intracranial pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=optic%20nerve" title=" optic nerve"> optic nerve</a>, <a href="https://publications.waset.org/abstracts/search?q=sonography" title=" sonography"> sonography</a> </p> <a href="https://publications.waset.org/abstracts/104676/optic-nerve-sheath-measurement-in-children-with-head-trauma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104676.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4080</span> Intracranial Hypertension without CVST in Apla Syndrome: An Unique Association</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Camelia%20Porey">Camelia Porey</a>, <a href="https://publications.waset.org/abstracts/search?q=Binaya%20Kumar%20Jaiswal"> Binaya Kumar Jaiswal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> BACKGROUND: Antiphospholipid antibody (APLA) syndrome is an autoimmune disorder predisposing to thrombotic complications affecting CNS either by arterial vasooclusion or venous thrombosis. Cerebral venous sinus thrombosis (CVST) secondarily causes raised intracranial pressure (ICP). However, intracranial hypertension without evidence of CVST is a rare entity. Here we present two cases of elevated ICP with absence of identifiable CVST. CASE SUMMARY: Case 1, 28-year female had a 2 months history of holocranial headache followed by bilateral painless vision loss reaching lack of light perception over 20 days. CSF opening pressure was elevated. Fundoscopy showed bilateral grade 4 papilledema. MRI revealed a partially empty sella with bilateral optic nerve tortuosity. Idiopathic intracranial hypertension (IIH) was diagnosed. With acetazolamide, there was complete resolution of the clinical and radiological abnormalities. 5 months later she presented with acute onset right-sided hemiparesis. MRI was suggestive of acute left MCA infarct.MR venogram was normal. APLA came positive with high titres of Anticardiolipin and Beta 2 glycoprotein both IgG and IgM. Case 2, 23-year female, presented with headache and diplopia of 2 months duration. CSF pressure was elevated and Grade 3 papilledema was seen. MRI showed bilateral optic nerve hyperintensities with nerve head protrusion with normal MRV. APLA profile showed elevated beta 2 glycoprotein IgG and IgA. CONCLUSION: This is an important non thrombotic complication of APLA syndrome and requires further large-scale study for insight into the pathogenesis and early recognition to avoid future complications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=APLA%20syndrome" title="APLA syndrome">APLA syndrome</a>, <a href="https://publications.waset.org/abstracts/search?q=idiopathic%20intracranial%20hypertension" title=" idiopathic intracranial hypertension"> idiopathic intracranial hypertension</a>, <a href="https://publications.waset.org/abstracts/search?q=MR%20venogram" title=" MR venogram"> MR venogram</a>, <a href="https://publications.waset.org/abstracts/search?q=papilledema" title=" papilledema"> papilledema</a> </p> <a href="https://publications.waset.org/abstracts/147679/intracranial-hypertension-without-cvst-in-apla-syndrome-an-unique-association" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147679.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4079</span> The Rupture Potential of Nerve Tissue Constrained Intracranial Saccular Aneurysm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Alam">M. Alam</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Seshaiyer"> P. Seshaiyer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rupture predictability of intracranial aneurysm is one of the most important parameters for physicians in surgical treatment. As most of the intracranial aneurysms are asymptomatic, still the rupture potential of both symptomatic and asymptomatic lesions is relatively unknown. Moreover, an intracranial aneurysm constrained by a nerve tissue might be a common scenario for a physician to deal with during the treatment process. Here, we perform a computational modeling of nerve tissue constrained intracranial saccular aneurysm to show a protective role of constrained tissue on the aneurysm. A comparative parametric study of the model also performs taking long constraint, medium constraint, short constraint, point contact, narrow neck aneurysm, wide neck aneurysm as parameters for the analysis. Results show that contact constraint aneurysm generates less stress near the fundus compared to no constraint aneurysm, hence works as a protective wall for the aneurysm not to be ruptured. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rupture%20potential" title="rupture potential">rupture potential</a>, <a href="https://publications.waset.org/abstracts/search?q=intracranial%20saccular%20aneurysm" title=" intracranial saccular aneurysm"> intracranial saccular aneurysm</a>, <a href="https://publications.waset.org/abstracts/search?q=anisotropic%20hyper-elastic%20material" title=" anisotropic hyper-elastic material"> anisotropic hyper-elastic material</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a> </p> <a href="https://publications.waset.org/abstracts/82839/the-rupture-potential-of-nerve-tissue-constrained-intracranial-saccular-aneurysm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82839.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4078</span> A Benchtop Experiment to Study Changes in Tracer Distribution in the Subarachnoid Space</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Smruti%20Mahapatra">Smruti Mahapatra</a>, <a href="https://publications.waset.org/abstracts/search?q=Dipankar%20Biswas"> Dipankar Biswas</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20Um"> Richard Um</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Meggyesy"> Michael Meggyesy</a>, <a href="https://publications.waset.org/abstracts/search?q=Riccardo%20Serra"> Riccardo Serra</a>, <a href="https://publications.waset.org/abstracts/search?q=Noah%20Gorelick"> Noah Gorelick</a>, <a href="https://publications.waset.org/abstracts/search?q=Steven%20Marra"> Steven Marra</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Manbachi"> Amir Manbachi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mark%20G.%20Luciano"> Mark G. Luciano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Intracranial pressure (ICP) is profoundly regulated by the effects of cardiac pulsation and the volume of the incoming blood. Furthermore, these effects on ICP are incremented by the presence of a rigid skull that does not allow for changes in total volume during the cardiac cycle. These factors play a pivotal role in cerebrospinal fluid (CSF) dynamics and distribution, with consequences that are not well understood to this date and that may have a deep effect on the Central Nervous System (CNS) functioning. We designed this study with two specific aims: (a) To study how pulsatility influences local CSF flow, and (b) To study how modulating intracranial pressure affects drug distribution throughout the SAS globally. In order to achieve these aims, we built an elaborate in-vitro model of the SAS closely mimicking the dimensions and flow rates of physiological systems. To modulate intracranial pressure, we used an intracranially implanted, cardiac-gated, volume-oscillating balloon (CADENCE device). Commercially available dye was used to visualize changes in CSF flow. We first implemented two control cases, seeing how the tracer behaves in the presence of pulsations from the brain phantom and the balloon individually. After establishing the controls, we tested 2 cases, having the brain and the balloon pulsate together in sync and out of sync. We then analyzed the distribution area using image processing software. The in-sync case produced a significant increase, 5x times, in the tracer distribution area relative to the out-of-sync case. Assuming that the tracer fluid would mimic blood flow movement, a drug introduced in the SAS with such a system in place would enhance drug distribution and increase the bioavailability of therapeutic drugs to a wider spectrum of brain tissue. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blood-brain%20barrier" title="blood-brain barrier">blood-brain barrier</a>, <a href="https://publications.waset.org/abstracts/search?q=cardiac-gated" title=" cardiac-gated"> cardiac-gated</a>, <a href="https://publications.waset.org/abstracts/search?q=cerebrospinal%20fluid" title=" cerebrospinal fluid"> cerebrospinal fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20delivery" title=" drug delivery"> drug delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=neurosurgery" title=" neurosurgery"> neurosurgery</a> </p> <a href="https://publications.waset.org/abstracts/139079/a-benchtop-experiment-to-study-changes-in-tracer-distribution-in-the-subarachnoid-space" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139079.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4077</span> Clinical Profile, Evaluation, Management and Visual Outcome of Idiopathic Intracranial Hypertension in a Neuro-Ophthalmology Clinic in Jeddah, Saudi Arabia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rahaf%20Mandura">Rahaf Mandura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Idiopathic intracranial hypertension (IIH) is a disorder with elevated intracranial pressure (ICP) more than 250 mm H₂O, without evidence of meningeal inflammation, space-occupying lesion, or venous thrombosis. The aim of this research is to study the clinical profile, evaluation, management, and visual outcome in a hospital-based population of IIH cases in Jeddah. Methodology: This is a retrospective observational study that included the medical records of all patients referred to neuro-ophthalmology service for evaluation of papilledema. The medical records have been reviewed from October 2018 to February 2020 at Jeddah Eye Hospital (JEH), Saudi Arabia. A total of fifty-one patients presented with papilledema in the studied period. Forty-seven patients met our inclusion criteria and were included in the study. Results: Most of the patients were females (43, 91.5%) with a mean age of presentation of 30.83±11.40 years. The most common presenting symptom was headache (40 patients, 85.1%), followed by transient visual obscuration (20 patients, 42.6%), and reduced visual acuity (15 patients, 31.9%). All 47 patients were started on medical treatment with oral acetazolamide with four patients (8.5%) shifted to topiramate because of the lack of response or intolerance to acetazolamide while four patients (8.5%) underwent lumbar-peritoneal shunt because of inadequate control of the disease despite the treatment with medical therapy. For both eyes, the change in visual acuity across all assessment points was statistically significant. Nevertheless, there were no significant changes in the visual field findings among all of the compared assessment points. Conclusion: The present study has shown that IIH-related papilledema is common in young female patients with headaches, transient visual obscurations and reduced visual acuity. Those are the commonest symptoms in our IIH population. Medical treatment of IIH is significantly efficacious and should be considered in order to enhance the prognosis of IIH-related complications. Therefore, the visual status should be frequently monitored for these patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=idiopathic%20intracranial%20hypertension" title="idiopathic intracranial hypertension">idiopathic intracranial hypertension</a>, <a href="https://publications.waset.org/abstracts/search?q=intracranial%20hypertension" title=" intracranial hypertension"> intracranial hypertension</a>, <a href="https://publications.waset.org/abstracts/search?q=papilledema" title=" papilledema"> papilledema</a>, <a href="https://publications.waset.org/abstracts/search?q=headache" title=" headache"> headache</a> </p> <a href="https://publications.waset.org/abstracts/136916/clinical-profile-evaluation-management-and-visual-outcome-of-idiopathic-intracranial-hypertension-in-a-neuro-ophthalmology-clinic-in-jeddah-saudi-arabia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136916.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">191</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4076</span> A Framework for Teaching the Intracranial Pressure Measurement through an Experimental Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christina%20Klippel">Christina Klippel</a>, <a href="https://publications.waset.org/abstracts/search?q=Lucia%20Pezzi"> Lucia Pezzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Silvio%20Neto"> Silvio Neto</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafael%20Bertani"> Rafael Bertani</a>, <a href="https://publications.waset.org/abstracts/search?q=Priscila%20Mendes"> Priscila Mendes</a>, <a href="https://publications.waset.org/abstracts/search?q=Flavio%20Machado"> Flavio Machado</a>, <a href="https://publications.waset.org/abstracts/search?q=Aline%20Szeliga"> Aline Szeliga</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Cosendey"> Maria Cosendey</a>, <a href="https://publications.waset.org/abstracts/search?q=Adilson%20Mariz"> Adilson Mariz</a>, <a href="https://publications.waset.org/abstracts/search?q=Raquel%20Santos"> Raquel Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=Lys%20Bendett"> Lys Bendett</a>, <a href="https://publications.waset.org/abstracts/search?q=Pedro%20Velasco"> Pedro Velasco</a>, <a href="https://publications.waset.org/abstracts/search?q=Thalita%20Rolleigh"> Thalita Rolleigh</a>, <a href="https://publications.waset.org/abstracts/search?q=Bruna%20Bellote"> Bruna Bellote</a>, <a href="https://publications.waset.org/abstracts/search?q=Daria%20Coelho"> Daria Coelho</a>, <a href="https://publications.waset.org/abstracts/search?q=Bruna%20Martins"> Bruna Martins</a>, <a href="https://publications.waset.org/abstracts/search?q=Julia%20Almeida"> Julia Almeida</a>, <a href="https://publications.waset.org/abstracts/search?q=Juliana%20Cerqueira"> Juliana Cerqueira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This project presents a framework for teaching intracranial pressure monitoring (ICP) concepts using a low-cost experimental model in a neurointensive care education program. Data concerning ICP monitoring contribute to the patient's clinical assessment and may dictate the course of action of a health team (nursing, medical staff) and influence decisions to determine the appropriate intervention. This study aims to present a safe method for teaching ICP monitoring to medical students in a Simulation Center. Methodology: Medical school teachers, along with students from the 4th year, built an experimental model for teaching ICP measurement. The model consists of a mannequin's head with a plastic bag inside simulating the cerebral ventricle and an inserted ventricular catheter connected to the ICP monitoring system. The bag simulating the ventricle can also be changed for others containing bloody or infected simulated cerebrospinal fluid. On the mannequin's ear, there is a blue point indicating the right place to set the "zero point" for accurate pressure reading. The educational program includes four steps: 1st - Students receive a script on ICP measurement for reading before training; 2nd - Students watch a video about the subject created in the Simulation Center demonstrating each step of the ICP monitoring and the proper care, such as: correct positioning of the patient, anatomical structures to establish the zero point for ICP measurement and a secure range of ICP; 3rd - Students train the procedure in the model. Teachers help students during training; 4th - Student assessment based on a checklist form. Feedback and correction of wrong actions. Results: Students expressed interest in learning ICP monitoring. Tests concerning the hit rate are still being performed. ICP's final results and video will be shown at the event. Conclusion: The study of intracranial pressure measurement based on an experimental model consists of an effective and controlled method of learning and research, more appropriate for teaching neurointensive care practices. Assessment based on a checklist form helps teachers keep track of student learning progress. This project offers medical students a safe method to develop intensive neurological monitoring skills for clinical assessment of patients with neurological disorders. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neurology" title="neurology">neurology</a>, <a href="https://publications.waset.org/abstracts/search?q=intracranial%20pressure" title=" intracranial pressure"> intracranial pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20education" title=" medical education"> medical education</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/115934/a-framework-for-teaching-the-intracranial-pressure-measurement-through-an-experimental-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115934.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4075</span> Intracranial Hypotension: A Brief Review of the Pathophysiology and Diagnostic Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ana%20Bermudez%20de%20Castro%20Muela">Ana Bermudez de Castro Muela</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiomara%20Santos%20Salas"> Xiomara Santos Salas</a>, <a href="https://publications.waset.org/abstracts/search?q=Silvia%20Cayon%20Somacarrera"> Silvia Cayon Somacarrera</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this review is to explain what is the intracranial hypotension and its main causes, and also to approach to the diagnostic management in the different clinical situations, understanding radiological findings, and physiopathological substrate. An approach to the diagnostic management is presented: what are the guidelines to follow, the different tests available, and the typical findings. We review the myelo-CT and myelo-RM studies in patients with suspected CSF fistula or hypotension of unknown cause during the last 10 years in three centers. Signs of intracranial hypotension (subdural hygromas/hematomas, pachymeningeal enhancement, venous sinus engorgement, pituitary hyperemia, and lowering of the brain) that are evident in baseline CT and MRI are also sought. The intracranial hypotension is defined as a lower opening pressure of 6 cmH₂O. It is a relatively rare disorder with an annual incidence of 5 per 100.000, with a female to male ratio 2:1. The clinical features it’s an orthostatic headache, which is defined as development or aggravation of headache when patients move from a supine to an upright position and disappear or typically relieve after lay down. The etiology is a decrease in the amount of cerebrospinal fluid (CSF), usually by loss of it, either spontaneous or secondary (post-traumatic, post-surgical, systemic disease, post-lumbar puncture etc.) and rhinorrhea and/or otorrhea may exist. The pathophysiological mechanisms of hypotension and CSF hypertension are interrelated, as a situation of hypertension may lead to hypotension secondary to spontaneous CSF leakage. The diagnostic management of intracranial hypotension in our center includes, in the case of being spontaneous and without rhinorrhea and/or otorrhea and according to necessity, a range of available tests, which will be performed from less to more complex: cerebral CT, cerebral MRI and spine without contrast and CT/MRI with intrathecal contrast. If we are in a situation of intracranial hypotension with the presence of rhinorrhea/otorrhea, a sample can be obtained for the detection of b2-transferrin, which is found in the CSF physiologically, as well as sinus CT and cerebral MRI including constructive interference steady state (CISS) sequences. If necessary, cisternography studies are performed to locate the exact point of leakage. It is important to emphasize the significance of myelo-CT / MRI to establish the diagnosis and location of CSF leak, which is indispensable for therapeutic planning (whether surgical or not) in patients with more than one lesion or doubts in the baseline tests. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cerebrospinal%20fluid" title="cerebrospinal fluid">cerebrospinal fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=neuroradiology%20brain" title=" neuroradiology brain"> neuroradiology brain</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20resonance%20imaging" title=" magnetic resonance imaging"> magnetic resonance imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=fistula" title=" fistula"> fistula</a> </p> <a href="https://publications.waset.org/abstracts/121701/intracranial-hypotension-a-brief-review-of-the-pathophysiology-and-diagnostic-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121701.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4074</span> A Comparative Study to Evaluate Changes in Intraocular Pressure with Thiopentone Sodium and Etomidate in Patients Undergoing Surgery for Traumatic Brain Injury</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vasudha%20Govil">Vasudha Govil</a>, <a href="https://publications.waset.org/abstracts/search?q=Prashant%20Kumar"> Prashant Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ishwar%20Singh"> Ishwar Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Kiranpreet%20Kaur"> Kiranpreet Kaur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traumatic brain injury leads to elevated intracranial pressure. Intraocular pressure (IOP) may also be affected by intracranial pressure. Increased venous pressure in the cavernous sinus is transmitted to the episcleral veins, resulting in an increase in IOP. All drugs used in anesthesia induction can change IOP. Irritation of the gag reflex after usage of the endotracheal tube can also increase IOP; therefore, the administration of anesthetic drugs, which make the lowest change in IOP, is important, while cardiovascular depression must also be avoided. Thiopentone decreases IOP by 40%, whereas etomidate decreases IOP by 30-60% for up to 5 minutes. Hundred patients (age 18-55 years) who underwent emergency craniotomy for TBI are selected for the study. Patients are randomly assigned to two groups of 50 patients each accord¬ing to the drugs used for induction: group T was given thiopentone sodium (5mg kg-1) and group E was given etomi¬date (0.3mg kg-1). Preanaesthesia intraocular pressure (IOP) was measured using Schiotz tonometer. Induction of anesthesia was achieved with etomidate (0.3mg kg-1) or thiopentone (5mg kg-1) along with fentanyl (2 mcg kg-1). Intravenous rocuronium (0.9mg kg-1) was given to facilitate intubation. Intraocular pressure was measured after 1 minute of induction agent administration and 5 minutes after intubation. Maintainance of anesthesia was done with isoflurane in 50% nitrous oxide with fresh gas flow of 5 litres. At the end of the surgery, the residual neuromuscular block was reversed and the patient was shifted to ward/ICU. Patients in both groups were comparable in terms of demographic profile. There was no significant difference between the groups for the hemody¬namic and respiratory variables prior to thiopentone or etomidate administration. Intraocular pressure in thiopentone group in left eye and right eye before induction was 14.97±3.94 mmHg and 14.72±3.75 mmHg respectively and for etomidate group was 15.28±3.69 mmHg and 15.54±4.46 mmHg respectively. After induction IOP decreased significantly in both the eyes (p<0.001) in both the groups. After 5 min of intubation IOP was significantly less than the baseline in both the eyes but it was more than the IOP after induction with the drug. It was found that there was no statistically significant difference in IOP between the two groups at any point of time. Both the drugs caused a significant decrease in IOP after induction and after 5 minutes of endotracheal intubation. The mechanism of decrease in IOP by intravenous induction agents is debatable. Systemic hypotension after the induction of anaesthesia has been shown to cause a decrease in intra-ocular pressure. A decrease in the tone of the extra-ocular muscles can also result in a decrease in intra-ocular pressure. We observed that it is appropriate to use etomidate as an induction agent when elevation of intra-ocular pressure is undesirable owing to the cardiovascular stability it confers in the patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=etomidate" title="etomidate">etomidate</a>, <a href="https://publications.waset.org/abstracts/search?q=intraocular%20pressure" title=" intraocular pressure"> intraocular pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=thiopentone" title=" thiopentone"> thiopentone</a>, <a href="https://publications.waset.org/abstracts/search?q=traumatic" title=" traumatic"> traumatic</a> </p> <a href="https://publications.waset.org/abstracts/134745/a-comparative-study-to-evaluate-changes-in-intraocular-pressure-with-thiopentone-sodium-and-etomidate-in-patients-undergoing-surgery-for-traumatic-brain-injury" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134745.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4073</span> Preventive Effects of Motorcycle Helmets on Clinical Outcomes in Motorcycle Crashes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seung%20Chul%20Lee">Seung Chul Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Jooyeong%20Kim"> Jooyeong Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ki%20Ok%20Ahn"> Ki Ok Ahn</a>, <a href="https://publications.waset.org/abstracts/search?q=Juok%20Park"> Juok Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Injuries caused by motorcycle crashes are one of the major public health burdens leading to high mortality, functional disability. The risk of death among motorcyclists is 30 times greater than that among car drivers, with head injuries the leading cause of death. The motorcycle helmet is crucial protective equipment for motorcyclists. Aims: This study aimed to measure the protective effect of motorcycle helmet use on intracranial injury and mortality and to compare the preventive effect in drivers and passengers. Methods: This is a cross-sessional study based on the Emergency Department (ED)–based Injury In-depth Surveillance (EDIIS) database from 23 EDs in Korea. All of the trauma patients injured in motorcycle crashes between January 1, 2013 and December 31, 2016 were eligible, excluding cases with unknown helmet use and outcomes. The primary and secondary outcomes were intracranial injury and in-hospital mortality. We calculated adjusted odds ratios (AORs) of helmet use for study outcomes after adjusting for potential confounders. Using interaction models, we compared the protective effect of helmet use on outcomes across driving status (driver and passenger). Results: Among 17,791 eligible patients, 10,668 (60.0%) patients were wearing helmets at the time of the crash, 2,128 (12.0%) patients had intracranial injuries and 331 (1.9%) patients had in-hospital death. 16,381 (92.1%) patients were drivers and 1410 (7.9%) patients were passengers. 62.6% of drivers and 29.1% of passengers were wearing helmets at the time of the crash. Compared to un-helmeted group, the helmeted group was less likely to have an intracranial injury(8.0% vs. 17.9%, AOR: 0.43 (0.39-0.48)) and in-hospital mortality (1.0% vs. 3.2%, AOR: 0.29 (0.22-0.37)).In the interaction model, AORs (95% CIs) of helmet use for intracranial injury were 0.42 (0.38-0.47) in drivers and 0.61(0.41-0.90) in passengers, respectively. There was a significant preventive effect of helmet use on in-hospital mortality in drivers (AOR: 0.26(0.21–0.34)). Discussion and conclusions: Wearing helmets in motorcycle crashes reduced intracranial injuries and in-hospital mortality. The preventive effect of motorcycle helmet use on intracranial injury was stronger in drivers than in passengers. There was a significant preventive effect of helmet use on in-hospital mortality in driver but not in passengers. Public health efforts to increase motorcycle helmet use are needed to reduce health burden from injuries caused by motorcycle crashes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intracranial%20injury" title="intracranial injury">intracranial injury</a>, <a href="https://publications.waset.org/abstracts/search?q=helmet" title=" helmet"> helmet</a>, <a href="https://publications.waset.org/abstracts/search?q=mortality" title=" mortality"> mortality</a>, <a href="https://publications.waset.org/abstracts/search?q=motorcycle%20crashes" title=" motorcycle crashes"> motorcycle crashes</a> </p> <a href="https://publications.waset.org/abstracts/82624/preventive-effects-of-motorcycle-helmets-on-clinical-outcomes-in-motorcycle-crashes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82624.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4072</span> Computational Study on Traumatic Brain Injury Using Magnetic Resonance Imaging-Based 3D Viscoelastic Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tanu%20Khanuja">Tanu Khanuja</a>, <a href="https://publications.waset.org/abstracts/search?q=Harikrishnan%20N.%20Unni"> Harikrishnan N. Unni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Head is the most vulnerable part of human body and may cause severe life threatening injuries. As the in vivo brain response cannot be recorded during injury, computational investigation of the head model could be really helpful to understand the injury mechanism. Majority of the physical damage to living tissues are caused by relative motion within the tissue due to tensile and shearing structural failures. The present Finite Element study focuses on investigating intracranial pressure and stress/strain distributions resulting from impact loads on various sites of human head. This is performed by the development of the 3D model of a human head with major segments like cerebrum, cerebellum, brain stem, CSF (cerebrospinal fluid), and skull from patient specific MRI (magnetic resonance imaging). The semi-automatic segmentation of head is performed using AMIRA software to extract finer grooves of the brain. To maintain the accuracy high number of mesh elements are required followed by high computational time. Therefore, the mesh optimization has also been performed using tetrahedral elements. In addition, model validation with experimental literature is performed as well. Hard tissues like skull is modeled as elastic whereas soft tissues like brain is modeled with viscoelastic prony series material model. This paper intends to obtain insights into the severity of brain injury by analyzing impacts on frontal, top, back, and temporal sites of the head. Yield stress (based on von Mises stress criterion for tissues) and intracranial pressure distribution due to impact on different sites (frontal, parietal, etc.) are compared and the extent of damage to cerebral tissues is discussed in detail. This paper finds that how the back impact is more injurious to overall head than the other. The present work would be helpful to understand the injury mechanism of traumatic brain injury more effectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20impact%20analysis" title="dynamic impact analysis">dynamic impact analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=intracranial%20pressure" title=" intracranial pressure"> intracranial pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=MRI" title=" MRI"> MRI</a>, <a href="https://publications.waset.org/abstracts/search?q=traumatic%20brain%20injury" title=" traumatic brain injury"> traumatic brain injury</a>, <a href="https://publications.waset.org/abstracts/search?q=von%20Misses%20stress" title=" von Misses stress"> von Misses stress</a> </p> <a href="https://publications.waset.org/abstracts/93335/computational-study-on-traumatic-brain-injury-using-magnetic-resonance-imaging-based-3d-viscoelastic-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93335.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4071</span> Clinical Outcomes of Mild Traumatic Brain Injury with Acute Traumatic Intracranial Hemorrhage on Initial Emergency Ward Neuroimaging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Shafiee%20Ardestani">S. Shafiee Ardestani</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Najafi"> A. Najafi</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Valizadeh"> N. Valizadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Payani"> E. Payani</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Karimian"> H. Karimian </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objectives: Treatment of mild traumatic brain injury in emergency ward patients with any type of traumatic intracranial hemorrhage is flexible. The aim of this study is to assess the clinical outcomes of mild traumatic brain injury patients who had acute traumatic intracranial hemorrhage on initial emergency ward neuroimaging. Materials-Methods: From March 2011 to November 2012 in a retrospective cohort study we enrolled emergency ward patients with mild traumatic brain injury with Glasgow Coma Scale (GCS) scores of 14 or 15 and who had stable vital signs. Patients who had any type of intracranial hemorrhage on first head CT and repeat head CT within 24 hours were included. Patients with initial GCS < 14, injury > 24 hours old, pregnancy, concomitant non-minor injuries, and coagulopathy were excluded. Primary endpoints were neurosurgical procedures and/or death and for discharged patients, return to the emergency ward during one week. Results: Among 755 patients who were referred to the emergency ward and underwent two head CTs during first 24 hours, 302 (40%) were included. The median interval between CT scans was 6 hours (ranging 4 to 8 hours). Consequently, 135 (45%) patients had subarachnoid hemorrhage, 124 (41%) patients had subdural hemorrhage, 15 (5%) patients had epidural hemorrhage, 28 (9%) patients had cerebral contusions, and 54 (18%) patients had intra-parenchymal hemorrhage. Six of 302 patients died within 15 days of injury. 200 patients (66%) have been discharged from the emergency ward, 25 (12%) of whom returned to the emergency ward after one week. Conclusion: Discharge of the head trauma patients after a repeat head CT and brief period of observation in the emergency ward lead to early discharge of mild traumatic brain injury patients with traumatic ICH without adverse events. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clinical%20outcomes" title="clinical outcomes">clinical outcomes</a>, <a href="https://publications.waset.org/abstracts/search?q=emergency%20ward" title=" emergency ward"> emergency ward</a>, <a href="https://publications.waset.org/abstracts/search?q=mild%20traumatic%20intracranial%20hemorrhage" title=" mild traumatic intracranial hemorrhage"> mild traumatic intracranial hemorrhage</a>, <a href="https://publications.waset.org/abstracts/search?q=Glasgow%20Coma%20Scale%20%28GCS%29" title=" Glasgow Coma Scale (GCS)"> Glasgow Coma Scale (GCS)</a> </p> <a href="https://publications.waset.org/abstracts/18252/clinical-outcomes-of-mild-traumatic-brain-injury-with-acute-traumatic-intracranial-hemorrhage-on-initial-emergency-ward-neuroimaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18252.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4070</span> Construction of a Dynamic Migration Model of Extracellular Fluid in Brain for Future Integrated Control of Brain State</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tomohiko%20Utsuki">Tomohiko Utsuki</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyoka%20Sato"> Kyoka Sato </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In emergency medicine, it is recognized that brain resuscitation is very important for the reduction of mortality rate and neurological sequelae. Especially, the control of brain temperature (BT), intracranial pressure (ICP), and cerebral blood flow (CBF) are most required for stabilizing brain’s physiological state in the treatment for such as brain injury, stroke, and encephalopathy. However, the manual control of BT, ICP, and CBF frequently requires the decision and operation of medical staff, relevant to medication and the setting of therapeutic apparatus. Thus, the integration and the automation of the control of those is very effective for not only improving therapeutic effect but also reducing staff burden and medical cost. For realizing such integration and automation, a mathematical model of brain physiological state is necessary as the controlled object in simulations, because the performance test of a prototype of the control system using patients is not ethically allowed. A model of cerebral blood circulation has already been constructed, which is the most basic part of brain physiological state. Also, a migration model of extracellular fluid in brain has been constructed, however the condition that the total volume of intracranial cavity is almost changeless due to the hardness of cranial bone has not been considered in that model. Therefore, in this research, the dynamic migration model of extracellular fluid in brain was constructed on the consideration of the changelessness of intracranial cavity’s total volume. This model is connectable to the cerebral blood circulation model. The constructed model consists of fourteen compartments, twelve of which corresponds to perfused area of bilateral anterior, middle and posterior cerebral arteries, the others corresponds to cerebral ventricles and subarachnoid space. This model enable to calculate the migration of tissue fluid from capillaries to gray matter and white matter, the flow of tissue fluid between compartments, the production and absorption of cerebrospinal fluid at choroid plexus and arachnoid granulation, and the production of metabolic water. Further, the volume, the colloid concentration, and the tissue pressure of/in each compartment are also calculable by solving 40-dimensional non-linear simultaneous differential equations. In this research, the obtained model was analyzed for its validation under the four condition of a normal adult, an adult with higher cerebral capillary pressure, an adult with lower cerebral capillary pressure, and an adult with lower colloid concentration in cerebral capillary. In the result, calculated fluid flow, tissue volume, colloid concentration, and tissue pressure were all converged to suitable value for the set condition within 60 minutes at a maximum. Also, because these results were not conflict with prior knowledge, it is certain that the model can enough represent physiological state of brain under such limited conditions at least. One of next challenges is to integrate this model and the already constructed cerebral blood circulation model. This modification enable to simulate CBF and ICP more precisely due to calculating the effect of blood pressure change to extracellular fluid migration and that of ICP change to CBF. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20model" title="dynamic model">dynamic model</a>, <a href="https://publications.waset.org/abstracts/search?q=cerebral%20extracellular%20migration" title=" cerebral extracellular migration"> cerebral extracellular migration</a>, <a href="https://publications.waset.org/abstracts/search?q=brain%20resuscitation" title=" brain resuscitation"> brain resuscitation</a>, <a href="https://publications.waset.org/abstracts/search?q=automatic%20control" title=" automatic control"> automatic control</a> </p> <a href="https://publications.waset.org/abstracts/93072/construction-of-a-dynamic-migration-model-of-extracellular-fluid-in-brain-for-future-integrated-control-of-brain-state" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93072.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4069</span> Construction of a Dynamic Model of Cerebral Blood Circulation for Future Integrated Control of Brain State</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tomohiko%20Utsuki">Tomohiko Utsuki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, brain resuscitation becomes increasingly important due to revising various clinical guidelines pertinent to emergency care. In brain resuscitation, the control of brain temperature (BT), intracranial pressure (ICP), and cerebral blood flow (CBF) is required for stabilizing physiological state of brain, and is described as the essential treatment points in many guidelines of disorder and/or disease such as brain injury, stroke, and encephalopathy. Thus, an integrated control system of BT, ICP, and CBF will greatly contribute to alleviating the burden on medical staff and improving treatment effect in brain resuscitation. In order to develop such a control system, models related to BT, ICP, and CBF are required for control simulation, because trial and error experiments using patients are not ethically allowed. A static model of cerebral blood circulation from intracranial arteries and vertebral artery to jugular veins has already constructed and verified. However, it is impossible to represent the pooling of blood in blood vessels, which is one cause of cerebral hypertension in this model. And, it is also impossible to represent the pulsing motion of blood vessels caused by blood pressure change which can have an affect on the change of cerebral tissue pressure. Thus, a dynamic model of cerebral blood circulation is constructed in consideration of the elasticity of the blood vessel and the inertia of the blood vessel wall. The constructed dynamic model was numerically analyzed using the normal data, in which each arterial blood flow in cerebral blood circulation, the distribution of blood pressure in the Circle of Willis, and the change of blood pressure along blood flow were calculated for verifying against physiological knowledge. As the result, because each calculated numerical value falling within the generally known normal range, this model has no problem in representing at least the normal physiological state of the brain. It is the next task to verify the accuracy of the present model in the case of disease or disorder. Currently, the construction of a migration model of extracellular fluid and a model of heat transfer in cerebral tissue are in progress for making them parts of an integrated model of brain physiological state, which is necessary for developing an future integrated control system of BT, ICP and CBF. The present model is applicable to constructing the integrated model representing at least the normal condition of brain physiological state by uniting with such models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20model" title="dynamic model">dynamic model</a>, <a href="https://publications.waset.org/abstracts/search?q=cerebral%20blood%20circulation" title=" cerebral blood circulation"> cerebral blood circulation</a>, <a href="https://publications.waset.org/abstracts/search?q=brain%20resuscitation" title=" brain resuscitation"> brain resuscitation</a>, <a href="https://publications.waset.org/abstracts/search?q=automatic%20control" title=" automatic control"> automatic control</a> </p> <a href="https://publications.waset.org/abstracts/84991/construction-of-a-dynamic-model-of-cerebral-blood-circulation-for-future-integrated-control-of-brain-state" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84991.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4068</span> Network Based Molecular Profiling of Intracranial Ependymoma over Spinal Ependymoma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyeon%20Su%20Kim">Hyeon Su Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sungjin%20Park"> Sungjin Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Hae%20Ryung%20Chang"> Hae Ryung Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hae%20Rim%20Jung"> Hae Rim Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%20Zoo%20Ahn"> Young Zoo Ahn</a>, <a href="https://publications.waset.org/abstracts/search?q=Yon%20Hui%20Kim"> Yon Hui Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Seungyoon%20Nam"> Seungyoon Nam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ependymoma, one of the most common parenchymal spinal cord tumor, represents 3-6% of all CNS tumor. Especially intracranial ependymomas, which are more frequent in childhood, have a more poor prognosis and more malignant than spinal ependymomas. Although there are growing needs to understand pathogenesis, detailed molecular understanding of pathogenesis remains to be explored. A cancer cell is composed of complex signaling pathway networks, and identifying interaction between genes and/or proteins are crucial for understanding these pathways. Therefore, we explored each ependymoma in terms of differential expressed genes and signaling networks. We used Microsoft Excel™ to manipulate microarray data gathered from NCBI’s GEO Database. To analyze and visualize signaling network, we used web-based PATHOME algorithm and Cytoscape. We show HOX family and NEFL are down-regulated but SCL family is up-regulated in cerebrum and posterior fossa cancers over a spinal cancer, and JAK/STAT signaling pathway and Chemokine signaling pathway are significantly different in the both intracranial ependymoma comparing to spinal ependymoma. We are considering there may be an age-dependent mechanism under different histological pathogenesis. We annotated mutation data of each gene subsequently in order to find potential target genes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=systems%20biology" title="systems biology">systems biology</a>, <a href="https://publications.waset.org/abstracts/search?q=ependymoma" title=" ependymoma"> ependymoma</a>, <a href="https://publications.waset.org/abstracts/search?q=deg" title=" deg"> deg</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20analysis" title=" network analysis"> network analysis</a> </p> <a href="https://publications.waset.org/abstracts/50168/network-based-molecular-profiling-of-intracranial-ependymoma-over-spinal-ependymoma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50168.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4067</span> The Dual Catastrophe of Behçet’s Disease Visual Loss Followed by Acute Spinal Shock After Lumbar Drain Removal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naim%20Izet%20Kajtazi">Naim Izet Kajtazi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Context: Increased intracranial pressure and associated symptoms such as headache, papilledema, motor or sensory deficits, seizures, and conscious disturbance are well-known in acute CVT. However, visual loss is not commonly associated with this disease, except in the case of secondary IIH associated with it. Process: We report a case of a 40-year-old male with Behçet’s disease and cerebral venous thrombosis, and other multiple comorbidities admitted with a four-day history of increasing headache and rapidly progressive visual loss bilaterally. The neurological examination was positive for bilateral papilledema of grade 3 with light perception on the left eye and counting fingers on the right eye. Brain imaging showed old findings of cerebral venous thrombosis without any intraparenchymal lesions to suggest a flare-up of Behçet’s disease. The lumbar puncture, followed by the lumbar drain insertion, gave no benefit in headache or vision. However, he completely lost sight. The right optic nerve sheath fenestration did not result in vision improvement. The acute spinal shock complicated the lumbar drain removal due to epidural hematoma. An urgent lumbar laminectomy with hematoma evacuation undertook. Intra-operatively, the neurosurgeon noted suspicious abnormal vessels at conus medullaris with the possibility of an arteriovenous malformation. Outcome: In a few days following the spinal surgery, the patient vision started to improve. Further improvement was achieved after plasma exchange sessions followed by cyclophosphamide. In the recent follow-up in the clinic, he reported better vision, drove, and completed his Ph.D. studies. Relevance: Visual loss in patients with Behçet’s disease should always be anticipated and taken reasonable care of, ensuring that they receive well-combined immunosuppression with anticoagulation and agents to reduce intracranial pressure. This patient’s story is significant for a high disease burden and complicated hospital course by acute spinal shock due to spinal lumbar drain removal with a possible underlying spinal arteriovenous malformation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Behcet%20disease" title="Behcet disease">Behcet disease</a>, <a href="https://publications.waset.org/abstracts/search?q=optic%20neuritis" title=" optic neuritis"> optic neuritis</a>, <a href="https://publications.waset.org/abstracts/search?q=IIH" title=" IIH"> IIH</a>, <a href="https://publications.waset.org/abstracts/search?q=CVT" title=" CVT"> CVT</a> </p> <a href="https://publications.waset.org/abstracts/160866/the-dual-catastrophe-of-behcets-disease-visual-loss-followed-by-acute-spinal-shock-after-lumbar-drain-removal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160866.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4066</span> Valuation on MEMS Pressure Sensors and Device Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nurul%20Amziah%20Md%20Yunus">Nurul Amziah Md Yunus</a>, <a href="https://publications.waset.org/abstracts/search?q=Izhal%20Abdul%20Halin"> Izhal Abdul Halin</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasri%20Sulaiman"> Nasri Sulaiman</a>, <a href="https://publications.waset.org/abstracts/search?q=Noor%20Faezah%20Ismail"> Noor Faezah Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Ong%20Kai%20Sheng"> Ong Kai Sheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The MEMS pressure sensor has been introduced and presented in this paper. The types of pressure sensor and its theory of operation are also included. The latest MEMS technology, the fabrication processes of pressure sensor are explored and discussed. Besides, various device applications of pressure sensor such as tire pressure monitoring system, diesel particulate filter and others are explained. Due to further miniaturization of the device nowadays, the pressure sensor with nanotechnology (NEMS) is also reviewed. The NEMS pressure sensor is expected to have better performance as well as lower in its cost. It has gained an excellent popularity in many applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pressure%20sensor" title="pressure sensor">pressure sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=diaphragm" title=" diaphragm"> diaphragm</a>, <a href="https://publications.waset.org/abstracts/search?q=MEMS" title=" MEMS"> MEMS</a>, <a href="https://publications.waset.org/abstracts/search?q=automotive%20application" title=" automotive application"> automotive application</a>, <a href="https://publications.waset.org/abstracts/search?q=biomedical%20application" title=" biomedical application"> biomedical application</a>, <a href="https://publications.waset.org/abstracts/search?q=NEMS" title=" NEMS"> NEMS</a> </p> <a href="https://publications.waset.org/abstracts/28395/valuation-on-mems-pressure-sensors-and-device-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28395.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">671</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4065</span> Computed Tomography Brain and Inpatient Falls: An Audit Evaluating the Indications and Outcomes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zain%20Khan">Zain Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Steve%20Ahn"> Steve Ahn</a>, <a href="https://publications.waset.org/abstracts/search?q=Kathy%20Monypenny"> Kathy Monypenny</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20Fink"> James Fink</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Australian public hospitals, there were approximately 34,000 reported inpatient falls between 2015 to 2016. The gold standard for diagnosing intracranial injury is non-contrast enhanced brain computed tomography (CTB). Over a three-month timeframe, a total of one hundred and eighty (180) falls were documented between the hours of 4pm and 8am at a large metro hospital. Only three (3) of these scans demonstrated a positive intra-cranial finding. The rationale for scanning varied. The common indications included a fall with head strike, the presence of blood thinning medication, loss of consciousness, reduced Glasgow Coma Scale (GCS), vomiting and new neurological findings. There are several validated tools to aid in decision-making around ordering CTB scans in the acute setting, but no such accepted tool exists for the inpatient space. With further data collection, spanning a greater length of time and through involving multiple centres, work can be done towards generating such a tool that can be utilized for inpatient falls. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computed%20tomography" title="computed tomography">computed tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=falls" title=" falls"> falls</a>, <a href="https://publications.waset.org/abstracts/search?q=inpatient" title=" inpatient"> inpatient</a>, <a href="https://publications.waset.org/abstracts/search?q=intracranial%20hemorrhage" title=" intracranial hemorrhage"> intracranial hemorrhage</a> </p> <a href="https://publications.waset.org/abstracts/178242/computed-tomography-brain-and-inpatient-falls-an-audit-evaluating-the-indications-and-outcomes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178242.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4064</span> Comprehensive Ultrasonography During Low-flow Bypass in Patients with Symptomatic Internal Carotid Artery (ICA) Occlusion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20K.%20Guseynova">G. K. Guseynova</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20V.%20Krylov"> V. V. Krylov</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20T.%20Khamidova"> L. T. Khamidova</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20A.%20Polunina"> N. A. Polunina</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20A.%20Lukyanchikov"> V. A. Lukyanchikov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The report presents complex ultrasound diagnostics in patients with symptomatic steno-occlusive lesions of extra- and intracranial branches of brachiocephalic arteries (BCA). The tasks and possibilities of ultrasound diagnostics at different stages of treatment of patients with symptomatic occlusion of internal carotid artery (ICA) are covered in detail; qualitative and quantitative characteristics of blood flow; parameters of the wall and lumen of the main arteries of the head; methods of ultrasound examination of indirect assessment of the functional status are presented. Special attention is paid to the description of indicators that are predictors of the consistency of formed extra-intracranial low-flow shunts, examples of functioning and failed anastomoses are analyzed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CBF" title="CBF">CBF</a>, <a href="https://publications.waset.org/abstracts/search?q=cerebral%20blood%20flow%3B%20CTA" title=" cerebral blood flow; CTA"> cerebral blood flow; CTA</a>, <a href="https://publications.waset.org/abstracts/search?q=external%20carotid%20artery%3B%20ICA" title=" external carotid artery; ICA"> external carotid artery; ICA</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20carotid%20artery%3B%20MCA" title=" internal carotid artery; MCA"> internal carotid artery; MCA</a>, <a href="https://publications.waset.org/abstracts/search?q=middle%20cerebral%20artery%3B%20MRA" title=" middle cerebral artery; MRA"> middle cerebral artery; MRA</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20resonance%20angiography%3B%20OEF" title=" magnetic resonance angiography; OEF"> magnetic resonance angiography; OEF</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen%20extraction%20fraction%3B%20TIA" title=" oxygen extraction fraction; TIA"> oxygen extraction fraction; TIA</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20ischaemic%20attack" title=" transient ischaemic attack"> transient ischaemic attack</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a>, <a href="https://publications.waset.org/abstracts/search?q=low-flow%20bypass" title=" low-flow bypass"> low-flow bypass</a>, <a href="https://publications.waset.org/abstracts/search?q=anastomoses" title=" anastomoses"> anastomoses</a> </p> <a href="https://publications.waset.org/abstracts/186846/comprehensive-ultrasonography-during-low-flow-bypass-in-patients-with-symptomatic-internal-carotid-artery-ica-occlusion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186846.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">42</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4063</span> Place of Radiotherapy in the Treatment of Intracranial Meningiomas: Experience of the Cancer Center Emir Abdelkader of Oran Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Taleb%20L.">Taleb L.</a>, <a href="https://publications.waset.org/abstracts/search?q=Benarbia%20M."> Benarbia M.</a>, <a href="https://publications.waset.org/abstracts/search?q=Boutira%20F.%20M."> Boutira F. M.</a>, <a href="https://publications.waset.org/abstracts/search?q=Allam%20H."> Allam H.</a>, <a href="https://publications.waset.org/abstracts/search?q=Boukerche%20A."> Boukerche A.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction and purpose of the study: Meningiomas are the most common non-glial intracranial tumors in adults, accounting for approximately 30% of all central nervous system tumors. The aim of our study is to determine the epidemiological, clinical, therapeutic, and evolutionary characteristics of a cohort of patients with intracranial meningioma treated with radiotherapy at the Emir Abdelkader Cancer Center in Oran. Material and methods: This is a retrospective study of 44 patients during the period from 2014 to 2020. The overall survival and relapse-free survival curves were calculated using the Kaplan-Meier method. Results and statistical analysis: The median age of the patients was 49 years [21-76 years] with a clear female predominance (sex ratio=2.4). The average diagnostic delay was seven months [2 to 24 months], the circumstances of the discovery of which were dominated by headaches in 54.5% of cases (n=24), visual disturbances in 40.9% (n=18), and motor disorders in 15.9% (n=7). The seat of the tumor was essentially at the level of the base of the skull in 52.3% of patients (n=23), including 29.5% (n=13) at the level of the cavernous sinus, 27.3% (n=12) at the parasagittal level and 20.5% (n=9) at the convexity. The diagnosis was confirmed surgically in 36 patients (81.8%) whose anatomopathological study returned in favor of grades I, II, and III in respectively 40.9%, 29.5%, and 11.4% of the cases. Radiotherapy was indicated postoperatively in 45.5% of patients (n=20), exclusive in 27.3% (n=12) and after tumor recurrence in 27.3% of cases (n=18). The irradiation doses delivered were as follows: 50 Gy (20.5%), 54 Gy (65.9%), and 60 Gy (13.6%). With a median follow-up of 69 months, the probabilities of relapse-free survival and overall survival at three years are 93.2% and 95.4%, respectively, whereas they are 71.2% and 80.7% at five years. Conclusion: Meningiomas are common primary brain tumors. Most often benign but can also progress aggressively. Their treatment is essentially surgical, but radiotherapy retains its place in specific situations, allowing good tumor control and overall survival. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diagnosis" title="diagnosis">diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=meningioma" title=" meningioma"> meningioma</a>, <a href="https://publications.waset.org/abstracts/search?q=surgery" title=" surgery"> surgery</a>, <a href="https://publications.waset.org/abstracts/search?q=radiotherapy" title=" radiotherapy"> radiotherapy</a>, <a href="https://publications.waset.org/abstracts/search?q=survival" title=" survival"> survival</a> </p> <a href="https://publications.waset.org/abstracts/158324/place-of-radiotherapy-in-the-treatment-of-intracranial-meningiomas-experience-of-the-cancer-center-emir-abdelkader-of-oran-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158324.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4062</span> Improving the Design of Blood Pressure and Blood Saturation Monitors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Parisi">L. Parisi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A blood pressure monitor or sphygmomanometer can be either manual or automatic, employing respectively either the auscultatory method or the oscillometric method. The manual version of the sphygmomanometer involves an inflatable cuff with a stethoscope adopted to detect the sounds generated by the arterial walls to measure blood pressure in an artery. An automatic sphygmomanometer can be effectively used to monitor blood pressure through a pressure sensor, which detects vibrations provoked by oscillations of the arterial walls. The pressure sensor implemented in this device improves the accuracy of the measurements taken. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blood%20pressure" title="blood pressure">blood pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=blood%20saturation" title=" blood saturation"> blood saturation</a>, <a href="https://publications.waset.org/abstracts/search?q=sensors" title=" sensors"> sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=actuators" title=" actuators"> actuators</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20improvement" title=" design improvement"> design improvement</a> </p> <a href="https://publications.waset.org/abstracts/14649/improving-the-design-of-blood-pressure-and-blood-saturation-monitors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14649.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">455</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4061</span> Signal Processing of the Blood Pressure and Characterization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hadj%20Abd%20El%20Kader%20Benghenia">Hadj Abd El Kader Benghenia</a>, <a href="https://publications.waset.org/abstracts/search?q=Fethi%20Bereksi%20Reguig"> Fethi Bereksi Reguig</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In clinical medicine, blood pressure, raised blood hemodynamic monitoring is rich pathophysiological information of cardiovascular system, of course described through factors such as: blood volume, arterial compliance and peripheral resistance. In this work, we are interested in analyzing these signals to propose a detection algorithm to delineate the different sequences and especially systolic blood pressure (SBP), diastolic blood pressure (DBP), and the wave and dicrotic to do their analysis in order to extract the cardiovascular parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blood%20pressure" title="blood pressure">blood pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=SBP" title=" SBP"> SBP</a>, <a href="https://publications.waset.org/abstracts/search?q=DBP" title=" DBP"> DBP</a>, <a href="https://publications.waset.org/abstracts/search?q=detection%20algorithm" title=" detection algorithm"> detection algorithm</a> </p> <a href="https://publications.waset.org/abstracts/9946/signal-processing-of-the-blood-pressure-and-characterization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9946.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">439</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4060</span> Calibration Methods of Direct and Indirect Reading Pressure Sensor and Uncertainty Determination</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sinem%20O.%20Aktan">Sinem O. Aktan</a>, <a href="https://publications.waset.org/abstracts/search?q=Musa%20Y.%20Akkurt"> Musa Y. Akkurt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Experimental pressure calibration methods can be classified into three areas: (1) measurements in liquid or gas systems, (2) measurements in static-solid media systems, and (3) measurements in dynamic shock systems. Fluid (liquid and gas) systems high accuracies can be obtainable and commonly used for the calibration method of a pressure sensor. Pressure calibrations can be performed for metrological traceability in two ways, which are on-site (field) and in the laboratory. Laboratory and on-site calibration procedures and the requirements of the DKD-R-6-1 and Euramet cg-17 guidelines will also be addressed. In this study, calibration methods of direct and indirect reading pressure sensor and measurement uncertainty contributions will be explained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pressure%20metrology" title="pressure metrology">pressure metrology</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20calibration" title=" pressure calibration"> pressure calibration</a>, <a href="https://publications.waset.org/abstracts/search?q=dead-weight%20tester" title=" dead-weight tester"> dead-weight tester</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20uncertainty" title=" pressure uncertainty"> pressure uncertainty</a> </p> <a href="https://publications.waset.org/abstracts/128491/calibration-methods-of-direct-and-indirect-reading-pressure-sensor-and-uncertainty-determination" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128491.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4059</span> How Addictive Are They: Effects of E-Cigarette Vapor on Intracranial Self-Stimulation Compared to Nicotine Alone</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Annika%20Skansberg">Annika Skansberg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electronic cigarettes (e-cigarettes) use vapor to deliver nicotine, have recently become popular, especially amongst adolescents. Because of this, the FDA has decided to regulate e-cigarettes, and therefore would like to determine the abuse liability of the products compared to traditional nicotine products. This will allow them to determine the impact of regulating them on public health and shape the decisions they make when creating new laws. This study assessed the abuse liability of Aroma E-juice Dark Honey Tobacco compared to nicotine using an animal model. This e-liquid contains minor alkaloids that may increase abuse liability compared to nicotine alone. The abuse liability of nicotine alone and e-juice liquid were compared in rats using intracranial self-stimulation (ICSS) thresholds. E-liquid had less aversive effects at high nicotine doses in the ICSS model, suggesting that the minor alkaloids in the e-liquid allow users to use higher doses without experiencing the negative effects felt when using high doses of nicotine alone. This finding could mean that e-cigarettes have a higher abuse liability than nicotine alone, but more research is needed before this can be concluded. These findings are useful in observing the abuse liability of e-cigarettes and will help inform the FDA while regulating these products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electronic%20cigarettes" title="electronic cigarettes">electronic cigarettes</a>, <a href="https://publications.waset.org/abstracts/search?q=intra-cranial%20self%20stimulation" title=" intra-cranial self stimulation"> intra-cranial self stimulation</a>, <a href="https://publications.waset.org/abstracts/search?q=abuse%20liability" title=" abuse liability"> abuse liability</a>, <a href="https://publications.waset.org/abstracts/search?q=anhedonia" title=" anhedonia"> anhedonia</a> </p> <a href="https://publications.waset.org/abstracts/63952/how-addictive-are-they-effects-of-e-cigarette-vapor-on-intracranial-self-stimulation-compared-to-nicotine-alone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63952.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4058</span> Investigation and Analysis on Pore Pressure Variation by Sonic Impedance under Influence of Compressional, Shear, and Stonely Waves in High Pressure Zones</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nouri">Nouri</a>, <a href="https://publications.waset.org/abstracts/search?q=K."> K.</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghassem%20Alaskari"> Ghassem Alaskari</a>, <a href="https://publications.waset.org/abstracts/search?q=M."> M.</a>, <a href="https://publications.waset.org/abstracts/search?q=K."> K.</a>, <a href="https://publications.waset.org/abstracts/search?q=Amiri%20Hazaveh"> Amiri Hazaveh</a>, <a href="https://publications.waset.org/abstracts/search?q=A."> A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Nabi%20Bidhendi"> Nabi Bidhendi</a>, <a href="https://publications.waset.org/abstracts/search?q=M."> M. </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pore pressure is one on the key Petrophysical parameter in exploration discussion and survey on hydrocarbon reservoir. Determination of pore pressure in various levels of drilling and integrity of drilling mud and high pressure zones in order to restrict blow-out and following damages are significant. The pore pressure is obtained by seismic and well logging data. In this study the pore pressure and over burden pressure through the matrix stress and Tarzaqi equation and other related formulas are calculated. By making a comparison on variation of density log in over normal pressure zones with change of sonic impedance under influence of compressional, shear, and Stonely waves, the correlation level of sonic impedance with density log is studied. The level of correlation and variation trend is recorded in sonic impedance under influence Stonely wave with density log that key factor in recording of over burden pressure and pore pressure in Tarzaqi equation is high. The transition time is in divert relation with porosity and fluid type in the formation and as a consequence to the pore pressure. The density log is a key factor in determination of pore pressure therefore sonic impedance under Stonley wave is denotes well the identification of high pressure besides other used factors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pore%20pressure" title="pore pressure">pore pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=stonely%20wave" title=" stonely wave"> stonely wave</a>, <a href="https://publications.waset.org/abstracts/search?q=density%20log" title=" density log"> density log</a>, <a href="https://publications.waset.org/abstracts/search?q=sonic%20impedance" title=" sonic impedance"> sonic impedance</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20pressure%20zone" title=" high pressure zone"> high pressure zone</a> </p> <a href="https://publications.waset.org/abstracts/14187/investigation-and-analysis-on-pore-pressure-variation-by-sonic-impedance-under-influence-of-compressional-shear-and-stonely-waves-in-high-pressure-zones" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14187.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4057</span> Evaluation of Carbon Dioxide Pressure through Radial Velocity Difference in Arterial Blood Modeled by Drift Flux Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aicha%20Rima%20Cheniti">Aicha Rima Cheniti</a>, <a href="https://publications.waset.org/abstracts/search?q=Hatem%20Besbes"> Hatem Besbes</a>, <a href="https://publications.waset.org/abstracts/search?q=Joseph%20Haggege"> Joseph Haggege</a>, <a href="https://publications.waset.org/abstracts/search?q=Christophe%20Sintes"> Christophe Sintes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we are interested to determine the carbon dioxide pressure in the arterial blood through radial velocity difference. The blood was modeled as a two phase mixture (an aqueous carbon dioxide solution with carbon dioxide gas) by Drift flux model and the Young-Laplace equation. The distributions of mixture velocities determined from the considered model permitted the calculation of the radial velocity distributions with different values of mean mixture pressure and the calculation of the mean carbon dioxide pressure knowing the mean mixture pressure. The radial velocity distributions are used to deduce a calculation method of the mean mixture pressure through the radial velocity difference between two positions which is measured by ultrasound. The mean carbon dioxide pressure is then deduced from the mean mixture pressure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mean%20carbon%20dioxide%20pressure" title="mean carbon dioxide pressure">mean carbon dioxide pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20mixture%20pressure" title=" mean mixture pressure"> mean mixture pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=mixture%20velocity" title=" mixture velocity"> mixture velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20velocity%20difference" title=" radial velocity difference"> radial velocity difference</a> </p> <a href="https://publications.waset.org/abstracts/51601/evaluation-of-carbon-dioxide-pressure-through-radial-velocity-difference-in-arterial-blood-modeled-by-drift-flux-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51601.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4056</span> Design of Saddle Support for Horizontal Pressure Vessel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vinod%20Kumar">Vinod Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Navin%20Kumar"> Navin Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Surjit%20Angra"> Surjit Angra</a>, <a href="https://publications.waset.org/abstracts/search?q=Prince%20Sharma"> Prince Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the design analysis of saddle support of a horizontal pressure vessel. Since saddle have the vital role to support the pressure vessel and to maintain its stability, it should be designed in such a way that it can afford the vessel load and internal pressure of the vessel due to liquid contained in the vessel. A model of horizontal pressure vessel and saddle support is created in Ansys. Stresses are calculated using mathematical approach and Ansys software. The analysis reveals the zone of high localized stress at the junction part of the pressure vessel and saddle support due to operating conditions. The results obtained by both the methods are compared with allowable stress value for safe designing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ANSYS" title="ANSYS">ANSYS</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20vessel" title=" pressure vessel"> pressure vessel</a>, <a href="https://publications.waset.org/abstracts/search?q=saddle" title=" saddle"> saddle</a>, <a href="https://publications.waset.org/abstracts/search?q=support" title=" support"> support</a> </p> <a href="https://publications.waset.org/abstracts/14966/design-of-saddle-support-for-horizontal-pressure-vessel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14966.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">742</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4055</span> Metal Berthelot Tubes with Windows for Observing Cavitation under Static Negative Pressure </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Hiro">K. Hiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Imai"> Y. Imai</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Sasayama"> T. Sasayama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cavitation under static negative pressure is not revealed well. The Berthelot method to generate such negative pressure can be a means to study cavitation inception. In this study, metal Berthelot tubes built in observation windows are newly developed and are checked whether high static negative pressure is generated or not. Negative pressure in the tube with a pair of a corundum plate and an aluminum gasket increased with temperature cycles. The trend was similar to that as reported before. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Berthelot%20method" title="Berthelot method">Berthelot method</a>, <a href="https://publications.waset.org/abstracts/search?q=cavitation" title=" cavitation"> cavitation</a>, <a href="https://publications.waset.org/abstracts/search?q=negative%20pressure" title=" negative pressure"> negative pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=observation" title=" observation"> observation</a> </p> <a href="https://publications.waset.org/abstracts/48683/metal-berthelot-tubes-with-windows-for-observing-cavitation-under-static-negative-pressure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48683.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=intracranial%20pressure&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=intracranial%20pressure&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=intracranial%20pressure&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=intracranial%20pressure&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=intracranial%20pressure&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=intracranial%20pressure&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=intracranial%20pressure&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=intracranial%20pressure&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=intracranial%20pressure&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=intracranial%20pressure&page=136">136</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=intracranial%20pressure&page=137">137</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=intracranial%20pressure&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>