CINXE.COM

Electro-organic synthesis – a 21 st century technique - Chemical Science (RSC Publishing) DOI:10.1039/D0SC01848A

<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE html><html xmlns="http://www.w3.org/1999/xhtml" xmlns:epub="http://www.idpf.org/2007/ops" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:content="http://purl.org/rss/1.0/modules/content/" xmlns:rsc="urn:rsc.org" xmlns:art="http://www.rsc.org/schema/rscart38" xml:lang="en" lang="en"><head><!--Google Tag Manager--><script>(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&amp;l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer','GTM-5HVSFVCN');</script><!--End Google Tag Manager--><!--OneTrust--><script type="text/javascript" src="https://cdn-ukwest.onetrust.com/consent/4858ece2-d985-4da2-982d-42219fead606/OtAutoBlock.js"><!----></script><script src="https://cdn-ukwest.onetrust.com/scripttemplates/otSDKStub.js" type="text/javascript" charset="UTF-8" data-domain-script="4858ece2-d985-4da2-982d-42219fead606"><!----></script><script type="text/javascript"> function OptanonWrapper() { } </script><!--End OneTrust--><title>Electro-organic synthesis – a 21 st century technique - Chemical Science (RSC Publishing) DOI:10.1039/D0SC01848A</title><link rel="canonical" href="https://pubs.rsc.org/en/content/articlehtml/2020/sc/d0sc01848a"/><meta http-equiv="content-type" content="application/xhtml+xml; charset=utf-8"/><script type="text/javascript">window.NREUM||(NREUM={});NREUM.info = {"beacon":"bam.nr-data.net","errorBeacon":"bam.nr-data.net","licenseKey":"NRJS-aaa897feae8feeca979","applicationID":"1313546638","transactionName":"M1wANxQFCEcDVU0PWgoWLzUlSyVbDEJcCEEnVgwXFAsKWAdEFgdHEFABDwMMElkO","queueTime":0,"applicationTime":79,"agent":"","atts":""}</script><script type="text/javascript">(window.NREUM||(NREUM={})).init={privacy:{cookies_enabled:true},ajax:{deny_list:["bam.nr-data.net"]},distributed_tracing:{enabled:true}};(window.NREUM||(NREUM={})).loader_config={agentID:"1386013924",accountID:"2851366",trustKey:"1029994",xpid:"Vg4CUFVVDhABV1BRAgUBUFcJ",licenseKey:"NRJS-aaa897feae8feeca979",applicationID:"1313546638"};window.NREUM||(NREUM={}),__nr_require=function(t,e,n){function r(n){if(!e[n]){var o=e[n]={exports:{}};t[n][0].call(o.exports,function(e){var o=t[n][1][e];return r(o||e)},o,o.exports)}return e[n].exports}if("function"==typeof __nr_require)return __nr_require;for(var o=0;o<n.length;o++)r(n[o]);return r}({1:[function(t,e,n){function r(t){try{s.console&&console.log(t)}catch(e){}}var o,i=t("ee"),a=t(31),s={};try{o=localStorage.getItem("__nr_flags").split(","),console&&"function"==typeof console.log&&(s.console=!0,o.indexOf("dev")!==-1&&(s.dev=!0),o.indexOf("nr_dev")!==-1&&(s.nrDev=!0))}catch(c){}s.nrDev&&i.on("internal-error",function(t){r(t.stack)}),s.dev&&i.on("fn-err",function(t,e,n){r(n.stack)}),s.dev&&(r("NR AGENT IN DEVELOPMENT MODE"),r("flags: "+a(s,function(t,e){return t}).join(", ")))},{}],2:[function(t,e,n){function r(t,e,n,r,s){try{l?l-=1:o(s||new UncaughtException(t,e,n),!0)}catch(f){try{i("ierr",[f,c.now(),!0])}catch(d){}}return"function"==typeof u&&u.apply(this,a(arguments))}function UncaughtException(t,e,n){this.message=t||"Uncaught error with no additional information",this.sourceURL=e,this.line=n}function o(t,e){var n=e?null:c.now();i("err",[t,n])}var i=t("handle"),a=t(32),s=t("ee"),c=t("loader"),f=t("gos"),u=window.onerror,d=!1,p="nr@seenError";if(!c.disabled){var l=0;c.features.err=!0,t(1),window.onerror=r;try{throw new Error}catch(h){"stack"in h&&(t(14),t(13),"addEventListener"in window&&t(7),c.xhrWrappable&&t(15),d=!0)}s.on("fn-start",function(t,e,n){d&&(l+=1)}),s.on("fn-err",function(t,e,n){d&&!n[p]&&(f(n,p,function(){return!0}),this.thrown=!0,o(n))}),s.on("fn-end",function(){d&&!this.thrown&&l>0&&(l-=1)}),s.on("internal-error",function(t){i("ierr",[t,c.now(),!0])})}},{}],3:[function(t,e,n){var r=t("loader");r.disabled||(r.features.ins=!0)},{}],4:[function(t,e,n){function r(){U++,L=g.hash,this[u]=y.now()}function o(){U--,g.hash!==L&&i(0,!0);var t=y.now();this[h]=~~this[h]+t-this[u],this[d]=t}function i(t,e){E.emit("newURL",[""+g,e])}function a(t,e){t.on(e,function(){this[e]=y.now()})}var s="-start",c="-end",f="-body",u="fn"+s,d="fn"+c,p="cb"+s,l="cb"+c,h="jsTime",m="fetch",v="addEventListener",w=window,g=w.location,y=t("loader");if(w[v]&&y.xhrWrappable&&!y.disabled){var x=t(11),b=t(12),E=t(9),R=t(7),O=t(14),T=t(8),S=t(15),P=t(10),M=t("ee"),C=M.get("tracer"),N=t(23);t(17),y.features.spa=!0;var L,U=0;M.on(u,r),b.on(p,r),P.on(p,r),M.on(d,o),b.on(l,o),P.on(l,o),M.buffer([u,d,"xhr-resolved"]),R.buffer([u]),O.buffer(["setTimeout"+c,"clearTimeout"+s,u]),S.buffer([u,"new-xhr","send-xhr"+s]),T.buffer([m+s,m+"-done",m+f+s,m+f+c]),E.buffer(["newURL"]),x.buffer([u]),b.buffer(["propagate",p,l,"executor-err","resolve"+s]),C.buffer([u,"no-"+u]),P.buffer(["new-jsonp","cb-start","jsonp-error","jsonp-end"]),a(T,m+s),a(T,m+"-done"),a(P,"new-jsonp"),a(P,"jsonp-end"),a(P,"cb-start"),E.on("pushState-end",i),E.on("replaceState-end",i),w[v]("hashchange",i,N(!0)),w[v]("load",i,N(!0)),w[v]("popstate",function(){i(0,U>1)},N(!0))}},{}],5:[function(t,e,n){function r(){var t=new PerformanceObserver(function(t,e){var n=t.getEntries();s(v,[n])});try{t.observe({entryTypes:["resource"]})}catch(e){}}function o(t){if(s(v,[window.performance.getEntriesByType(w)]),window.performance["c"+p])try{window.performance[h](m,o,!1)}catch(t){}else try{window.performance[h]("webkit"+m,o,!1)}catch(t){}}function i(t){}if(window.performance&&window.performance.timing&&window.performance.getEntriesByType){var a=t("ee"),s=t("handle"),c=t(14),f=t(13),u=t(6),d=t(23),p="learResourceTimings",l="addEventListener",h="removeEventListener",m="resourcetimingbufferfull",v="bstResource",w="resource",g="-start",y="-end",x="fn"+g,b="fn"+y,E="bstTimer",R="pushState",O=t("loader");if(!O.disabled){O.features.stn=!0,t(9),"addEventListener"in window&&t(7);var T=NREUM.o.EV;a.on(x,function(t,e){var n=t[0];n instanceof T&&(this.bstStart=O.now())}),a.on(b,function(t,e){var n=t[0];n instanceof T&&s("bst",[n,e,this.bstStart,O.now()])}),c.on(x,function(t,e,n){this.bstStart=O.now(),this.bstType=n}),c.on(b,function(t,e){s(E,[e,this.bstStart,O.now(),this.bstType])}),f.on(x,function(){this.bstStart=O.now()}),f.on(b,function(t,e){s(E,[e,this.bstStart,O.now(),"requestAnimationFrame"])}),a.on(R+g,function(t){this.time=O.now(),this.startPath=location.pathname+location.hash}),a.on(R+y,function(t){s("bstHist",[location.pathname+location.hash,this.startPath,this.time])}),u()?(s(v,[window.performance.getEntriesByType("resource")]),r()):l in window.performance&&(window.performance["c"+p]?window.performance[l](m,o,d(!1)):window.performance[l]("webkit"+m,o,d(!1))),document[l]("scroll",i,d(!1)),document[l]("keypress",i,d(!1)),document[l]("click",i,d(!1))}}},{}],6:[function(t,e,n){e.exports=function(){return"PerformanceObserver"in window&&"function"==typeof window.PerformanceObserver}},{}],7:[function(t,e,n){function r(t){for(var e=t;e&&!e.hasOwnProperty(u);)e=Object.getPrototypeOf(e);e&&o(e)}function o(t){s.inPlace(t,[u,d],"-",i)}function i(t,e){return t[1]}var a=t("ee").get("events"),s=t("wrap-function")(a,!0),c=t("gos"),f=XMLHttpRequest,u="addEventListener",d="removeEventListener";e.exports=a,"getPrototypeOf"in Object?(r(document),r(window),r(f.prototype)):f.prototype.hasOwnProperty(u)&&(o(window),o(f.prototype)),a.on(u+"-start",function(t,e){var n=t[1];if(null!==n&&("function"==typeof n||"object"==typeof n)){var r=c(n,"nr@wrapped",function(){function t(){if("function"==typeof n.handleEvent)return n.handleEvent.apply(n,arguments)}var e={object:t,"function":n}[typeof n];return e?s(e,"fn-",null,e.name||"anonymous"):n});this.wrapped=t[1]=r}}),a.on(d+"-start",function(t){t[1]=this.wrapped||t[1]})},{}],8:[function(t,e,n){function r(t,e,n){var r=t[e];"function"==typeof r&&(t[e]=function(){var t=i(arguments),e={};o.emit(n+"before-start",[t],e);var a;e[m]&&e[m].dt&&(a=e[m].dt);var s=r.apply(this,t);return o.emit(n+"start",[t,a],s),s.then(function(t){return o.emit(n+"end",[null,t],s),t},function(t){throw o.emit(n+"end",[t],s),t})})}var o=t("ee").get("fetch"),i=t(32),a=t(31);e.exports=o;var s=window,c="fetch-",f=c+"body-",u=["arrayBuffer","blob","json","text","formData"],d=s.Request,p=s.Response,l=s.fetch,h="prototype",m="nr@context";d&&p&&l&&(a(u,function(t,e){r(d[h],e,f),r(p[h],e,f)}),r(s,"fetch",c),o.on(c+"end",function(t,e){var n=this;if(e){var r=e.headers.get("content-length");null!==r&&(n.rxSize=r),o.emit(c+"done",[null,e],n)}else o.emit(c+"done",[t],n)}))},{}],9:[function(t,e,n){var r=t("ee").get("history"),o=t("wrap-function")(r);e.exports=r;var i=window.history&&window.history.constructor&&window.history.constructor.prototype,a=window.history;i&&i.pushState&&i.replaceState&&(a=i),o.inPlace(a,["pushState","replaceState"],"-")},{}],10:[function(t,e,n){function r(t){function e(){f.emit("jsonp-end",[],l),t.removeEventListener("load",e,c(!1)),t.removeEventListener("error",n,c(!1))}function n(){f.emit("jsonp-error",[],l),f.emit("jsonp-end",[],l),t.removeEventListener("load",e,c(!1)),t.removeEventListener("error",n,c(!1))}var r=t&&"string"==typeof t.nodeName&&"script"===t.nodeName.toLowerCase();if(r){var o="function"==typeof t.addEventListener;if(o){var a=i(t.src);if(a){var d=s(a),p="function"==typeof d.parent[d.key];if(p){var l={};u.inPlace(d.parent,[d.key],"cb-",l),t.addEventListener("load",e,c(!1)),t.addEventListener("error",n,c(!1)),f.emit("new-jsonp",[t.src],l)}}}}}function o(){return"addEventListener"in window}function i(t){var e=t.match(d);return e?e[1]:null}function a(t,e){var n=t.match(l),r=n[1],o=n[3];return o?a(o,e[r]):e[r]}function s(t){var e=t.match(p);return e&&e.length>=3?{key:e[2],parent:a(e[1],window)}:{key:t,parent:window}}var c=t(23),f=t("ee").get("jsonp"),u=t("wrap-function")(f);if(e.exports=f,o()){var d=/[?&](?:callback|cb)=([^&#]+)/,p=/(.*)\.([^.]+)/,l=/^(\w+)(\.|$)(.*)$/,h=["appendChild","insertBefore","replaceChild"];Node&&Node.prototype&&Node.prototype.appendChild?u.inPlace(Node.prototype,h,"dom-"):(u.inPlace(HTMLElement.prototype,h,"dom-"),u.inPlace(HTMLHeadElement.prototype,h,"dom-"),u.inPlace(HTMLBodyElement.prototype,h,"dom-")),f.on("dom-start",function(t){r(t[0])})}},{}],11:[function(t,e,n){var r=t("ee").get("mutation"),o=t("wrap-function")(r),i=NREUM.o.MO;e.exports=r,i&&(window.MutationObserver=function(t){return this instanceof i?new i(o(t,"fn-")):i.apply(this,arguments)},MutationObserver.prototype=i.prototype)},{}],12:[function(t,e,n){function r(t){var e=i.context(),n=s(t,"executor-",e,null,!1),r=new f(n);return i.context(r).getCtx=function(){return e},r}var o=t("wrap-function"),i=t("ee").get("promise"),a=t("ee").getOrSetContext,s=o(i),c=t(31),f=NREUM.o.PR;e.exports=i,f&&(window.Promise=r,["all","race"].forEach(function(t){var e=f[t];f[t]=function(n){function r(t){return function(){i.emit("propagate",[null,!o],a,!1,!1),o=o||!t}}var o=!1;c(n,function(e,n){Promise.resolve(n).then(r("all"===t),r(!1))});var a=e.apply(f,arguments),s=f.resolve(a);return s}}),["resolve","reject"].forEach(function(t){var e=f[t];f[t]=function(t){var n=e.apply(f,arguments);return t!==n&&i.emit("propagate",[t,!0],n,!1,!1),n}}),f.prototype["catch"]=function(t){return this.then(null,t)},f.prototype=Object.create(f.prototype,{constructor:{value:r}}),c(Object.getOwnPropertyNames(f),function(t,e){try{r[e]=f[e]}catch(n){}}),o.wrapInPlace(f.prototype,"then",function(t){return function(){var e=this,n=o.argsToArray.apply(this,arguments),r=a(e);r.promise=e,n[0]=s(n[0],"cb-",r,null,!1),n[1]=s(n[1],"cb-",r,null,!1);var c=t.apply(this,n);return r.nextPromise=c,i.emit("propagate",[e,!0],c,!1,!1),c}}),i.on("executor-start",function(t){t[0]=s(t[0],"resolve-",this,null,!1),t[1]=s(t[1],"resolve-",this,null,!1)}),i.on("executor-err",function(t,e,n){t[1](n)}),i.on("cb-end",function(t,e,n){i.emit("propagate",[n,!0],this.nextPromise,!1,!1)}),i.on("propagate",function(t,e,n){this.getCtx&&!e||(this.getCtx=function(){if(t instanceof Promise)var e=i.context(t);return e&&e.getCtx?e.getCtx():this})}),r.toString=function(){return""+f})},{}],13:[function(t,e,n){var r=t("ee").get("raf"),o=t("wrap-function")(r),i="equestAnimationFrame";e.exports=r,o.inPlace(window,["r"+i,"mozR"+i,"webkitR"+i,"msR"+i],"raf-"),r.on("raf-start",function(t){t[0]=o(t[0],"fn-")})},{}],14:[function(t,e,n){function r(t,e,n){t[0]=a(t[0],"fn-",null,n)}function o(t,e,n){this.method=n,this.timerDuration=isNaN(t[1])?0:+t[1],t[0]=a(t[0],"fn-",this,n)}var i=t("ee").get("timer"),a=t("wrap-function")(i),s="setTimeout",c="setInterval",f="clearTimeout",u="-start",d="-";e.exports=i,a.inPlace(window,[s,"setImmediate"],s+d),a.inPlace(window,[c],c+d),a.inPlace(window,[f,"clearImmediate"],f+d),i.on(c+u,r),i.on(s+u,o)},{}],15:[function(t,e,n){function r(t,e){d.inPlace(e,["onreadystatechange"],"fn-",s)}function o(){var t=this,e=u.context(t);t.readyState>3&&!e.resolved&&(e.resolved=!0,u.emit("xhr-resolved",[],t)),d.inPlace(t,y,"fn-",s)}function i(t){x.push(t),m&&(E?E.then(a):w?w(a):(R=-R,O.data=R))}function a(){for(var t=0;t<x.length;t++)r([],x[t]);x.length&&(x=[])}function s(t,e){return e}function c(t,e){for(var n in t)e[n]=t[n];return e}t(7);var f=t("ee"),u=f.get("xhr"),d=t("wrap-function")(u),p=t(23),l=NREUM.o,h=l.XHR,m=l.MO,v=l.PR,w=l.SI,g="readystatechange",y=["onload","onerror","onabort","onloadstart","onloadend","onprogress","ontimeout"],x=[];e.exports=u;var b=window.XMLHttpRequest=function(t){var e=new h(t);try{u.emit("new-xhr",[e],e),e.addEventListener(g,o,p(!1))}catch(n){try{u.emit("internal-error",[n])}catch(r){}}return e};if(c(h,b),b.prototype=h.prototype,d.inPlace(b.prototype,["open","send"],"-xhr-",s),u.on("send-xhr-start",function(t,e){r(t,e),i(e)}),u.on("open-xhr-start",r),m){var E=v&&v.resolve();if(!w&&!v){var R=1,O=document.createTextNode(R);new m(a).observe(O,{characterData:!0})}}else f.on("fn-end",function(t){t[0]&&t[0].type===g||a()})},{}],16:[function(t,e,n){function r(t){if(!s(t))return null;var e=window.NREUM;if(!e.loader_config)return null;var n=(e.loader_config.accountID||"").toString()||null,r=(e.loader_config.agentID||"").toString()||null,f=(e.loader_config.trustKey||"").toString()||null;if(!n||!r)return null;var h=l.generateSpanId(),m=l.generateTraceId(),v=Date.now(),w={spanId:h,traceId:m,timestamp:v};return(t.sameOrigin||c(t)&&p())&&(w.traceContextParentHeader=o(h,m),w.traceContextStateHeader=i(h,v,n,r,f)),(t.sameOrigin&&!u()||!t.sameOrigin&&c(t)&&d())&&(w.newrelicHeader=a(h,m,v,n,r,f)),w}function o(t,e){return"00-"+e+"-"+t+"-01"}function i(t,e,n,r,o){var i=0,a="",s=1,c="",f="";return o+"@nr="+i+"-"+s+"-"+n+"-"+r+"-"+t+"-"+a+"-"+c+"-"+f+"-"+e}function a(t,e,n,r,o,i){var a="btoa"in window&&"function"==typeof window.btoa;if(!a)return null;var s={v:[0,1],d:{ty:"Browser",ac:r,ap:o,id:t,tr:e,ti:n}};return i&&r!==i&&(s.d.tk=i),btoa(JSON.stringify(s))}function s(t){return f()&&c(t)}function c(t){var e=!1,n={};if("init"in NREUM&&"distributed_tracing"in NREUM.init&&(n=NREUM.init.distributed_tracing),t.sameOrigin)e=!0;else if(n.allowed_origins instanceof Array)for(var r=0;r<n.allowed_origins.length;r++){var o=h(n.allowed_origins[r]);if(t.hostname===o.hostname&&t.protocol===o.protocol&&t.port===o.port){e=!0;break}}return e}function f(){return"init"in NREUM&&"distributed_tracing"in NREUM.init&&!!NREUM.init.distributed_tracing.enabled}function u(){return"init"in NREUM&&"distributed_tracing"in NREUM.init&&!!NREUM.init.distributed_tracing.exclude_newrelic_header}function d(){return"init"in NREUM&&"distributed_tracing"in NREUM.init&&NREUM.init.distributed_tracing.cors_use_newrelic_header!==!1}function p(){return"init"in NREUM&&"distributed_tracing"in NREUM.init&&!!NREUM.init.distributed_tracing.cors_use_tracecontext_headers}var l=t(28),h=t(18);e.exports={generateTracePayload:r,shouldGenerateTrace:s}},{}],17:[function(t,e,n){function r(t){var e=this.params,n=this.metrics;if(!this.ended){this.ended=!0;for(var r=0;r<p;r++)t.removeEventListener(d[r],this.listener,!1);return e.protocol&&"data"===e.protocol?void g("Ajax/DataUrl/Excluded"):void(e.aborted||(n.duration=a.now()-this.startTime,this.loadCaptureCalled||4!==t.readyState?null==e.status&&(e.status=0):i(this,t),n.cbTime=this.cbTime,s("xhr",[e,n,this.startTime,this.endTime,"xhr"],this)))}}function o(t,e){var n=c(e),r=t.params;r.hostname=n.hostname,r.port=n.port,r.protocol=n.protocol,r.host=n.hostname+":"+n.port,r.pathname=n.pathname,t.parsedOrigin=n,t.sameOrigin=n.sameOrigin}function i(t,e){t.params.status=e.status;var n=v(e,t.lastSize);if(n&&(t.metrics.rxSize=n),t.sameOrigin){var r=e.getResponseHeader("X-NewRelic-App-Data");r&&(t.params.cat=r.split(", ").pop())}t.loadCaptureCalled=!0}var a=t("loader");if(a.xhrWrappable&&!a.disabled){var s=t("handle"),c=t(18),f=t(16).generateTracePayload,u=t("ee"),d=["load","error","abort","timeout"],p=d.length,l=t("id"),h=t(24),m=t(22),v=t(19),w=t(23),g=t(25).recordSupportability,y=NREUM.o.REQ,x=window.XMLHttpRequest;a.features.xhr=!0,t(15),t(8),u.on("new-xhr",function(t){var e=this;e.totalCbs=0,e.called=0,e.cbTime=0,e.end=r,e.ended=!1,e.xhrGuids={},e.lastSize=null,e.loadCaptureCalled=!1,e.params=this.params||{},e.metrics=this.metrics||{},t.addEventListener("load",function(n){i(e,t)},w(!1)),h&&(h>34||h<10)||t.addEventListener("progress",function(t){e.lastSize=t.loaded},w(!1))}),u.on("open-xhr-start",function(t){this.params={method:t[0]},o(this,t[1]),this.metrics={}}),u.on("open-xhr-end",function(t,e){"loader_config"in NREUM&&"xpid"in NREUM.loader_config&&this.sameOrigin&&e.setRequestHeader("X-NewRelic-ID",NREUM.loader_config.xpid);var n=f(this.parsedOrigin);if(n){var r=!1;n.newrelicHeader&&(e.setRequestHeader("newrelic",n.newrelicHeader),r=!0),n.traceContextParentHeader&&(e.setRequestHeader("traceparent",n.traceContextParentHeader),n.traceContextStateHeader&&e.setRequestHeader("tracestate",n.traceContextStateHeader),r=!0),r&&(this.dt=n)}}),u.on("send-xhr-start",function(t,e){var n=this.metrics,r=t[0],o=this;if(n&&r){var i=m(r);i&&(n.txSize=i)}this.startTime=a.now(),this.listener=function(t){try{"abort"!==t.type||o.loadCaptureCalled||(o.params.aborted=!0),("load"!==t.type||o.called===o.totalCbs&&(o.onloadCalled||"function"!=typeof e.onload))&&o.end(e)}catch(n){try{u.emit("internal-error",[n])}catch(r){}}};for(var s=0;s<p;s++)e.addEventListener(d[s],this.listener,w(!1))}),u.on("xhr-cb-time",function(t,e,n){this.cbTime+=t,e?this.onloadCalled=!0:this.called+=1,this.called!==this.totalCbs||!this.onloadCalled&&"function"==typeof n.onload||this.end(n)}),u.on("xhr-load-added",function(t,e){var n=""+l(t)+!!e;this.xhrGuids&&!this.xhrGuids[n]&&(this.xhrGuids[n]=!0,this.totalCbs+=1)}),u.on("xhr-load-removed",function(t,e){var n=""+l(t)+!!e;this.xhrGuids&&this.xhrGuids[n]&&(delete this.xhrGuids[n],this.totalCbs-=1)}),u.on("xhr-resolved",function(){this.endTime=a.now()}),u.on("addEventListener-end",function(t,e){e instanceof x&&"load"===t[0]&&u.emit("xhr-load-added",[t[1],t[2]],e)}),u.on("removeEventListener-end",function(t,e){e instanceof x&&"load"===t[0]&&u.emit("xhr-load-removed",[t[1],t[2]],e)}),u.on("fn-start",function(t,e,n){e instanceof x&&("onload"===n&&(this.onload=!0),("load"===(t[0]&&t[0].type)||this.onload)&&(this.xhrCbStart=a.now()))}),u.on("fn-end",function(t,e){this.xhrCbStart&&u.emit("xhr-cb-time",[a.now()-this.xhrCbStart,this.onload,e],e)}),u.on("fetch-before-start",function(t){function e(t,e){var n=!1;return e.newrelicHeader&&(t.set("newrelic",e.newrelicHeader),n=!0),e.traceContextParentHeader&&(t.set("traceparent",e.traceContextParentHeader),e.traceContextStateHeader&&t.set("tracestate",e.traceContextStateHeader),n=!0),n}var n,r=t[1]||{};"string"==typeof t[0]?n=t[0]:t[0]&&t[0].url?n=t[0].url:window.URL&&t[0]&&t[0]instanceof URL&&(n=t[0].href),n&&(this.parsedOrigin=c(n),this.sameOrigin=this.parsedOrigin.sameOrigin);var o=f(this.parsedOrigin);if(o&&(o.newrelicHeader||o.traceContextParentHeader))if("string"==typeof t[0]||window.URL&&t[0]&&t[0]instanceof URL){var i={};for(var a in r)i[a]=r[a];i.headers=new Headers(r.headers||{}),e(i.headers,o)&&(this.dt=o),t.length>1?t[1]=i:t.push(i)}else t[0]&&t[0].headers&&e(t[0].headers,o)&&(this.dt=o)}),u.on("fetch-start",function(t,e){this.params={},this.metrics={},this.startTime=a.now(),this.dt=e,t.length>=1&&(this.target=t[0]),t.length>=2&&(this.opts=t[1]);var n,r=this.opts||{},i=this.target;if("string"==typeof i?n=i:"object"==typeof i&&i instanceof y?n=i.url:window.URL&&"object"==typeof i&&i instanceof URL&&(n=i.href),o(this,n),"data"!==this.params.protocol){var s=(""+(i&&i instanceof y&&i.method||r.method||"GET")).toUpperCase();this.params.method=s,this.txSize=m(r.body)||0}}),u.on("fetch-done",function(t,e){if(this.endTime=a.now(),this.params||(this.params={}),"data"===this.params.protocol)return void g("Ajax/DataUrl/Excluded");this.params.status=e?e.status:0;var n;"string"==typeof this.rxSize&&this.rxSize.length>0&&(n=+this.rxSize);var r={txSize:this.txSize,rxSize:n,duration:a.now()-this.startTime};s("xhr",[this.params,r,this.startTime,this.endTime,"fetch"],this)})}},{}],18:[function(t,e,n){var r={};e.exports=function(t){if(t in r)return r[t];if(0===(t||"").indexOf("data:"))return{protocol:"data"};var e=document.createElement("a"),n=window.location,o={};e.href=t,o.port=e.port;var i=e.href.split("://");!o.port&&i[1]&&(o.port=i[1].split("/")[0].split("@").pop().split(":")[1]),o.port&&"0"!==o.port||(o.port="https"===i[0]?"443":"80"),o.hostname=e.hostname||n.hostname,o.pathname=e.pathname,o.protocol=i[0],"/"!==o.pathname.charAt(0)&&(o.pathname="/"+o.pathname);var a=!e.protocol||":"===e.protocol||e.protocol===n.protocol,s=e.hostname===document.domain&&e.port===n.port;return o.sameOrigin=a&&(!e.hostname||s),"/"===o.pathname&&(r[t]=o),o}},{}],19:[function(t,e,n){function r(t,e){var n=t.responseType;return"json"===n&&null!==e?e:"arraybuffer"===n||"blob"===n||"json"===n?o(t.response):"text"===n||""===n||void 0===n?o(t.responseText):void 0}var o=t(22);e.exports=r},{}],20:[function(t,e,n){function r(){}function o(t,e,n,r){return function(){return u.recordSupportability("API/"+e+"/called"),i(t+e,[f.now()].concat(s(arguments)),n?null:this,r),n?void 0:this}}var i=t("handle"),a=t(31),s=t(32),c=t("ee").get("tracer"),f=t("loader"),u=t(25),d=NREUM;"undefined"==typeof window.newrelic&&(newrelic=d);var p=["setPageViewName","setCustomAttribute","setErrorHandler","finished","addToTrace","inlineHit","addRelease"],l="api-",h=l+"ixn-";a(p,function(t,e){d[e]=o(l,e,!0,"api")}),d.addPageAction=o(l,"addPageAction",!0),d.setCurrentRouteName=o(l,"routeName",!0),e.exports=newrelic,d.interaction=function(){return(new r).get()};var m=r.prototype={createTracer:function(t,e){var n={},r=this,o="function"==typeof e;return i(h+"tracer",[f.now(),t,n],r),function(){if(c.emit((o?"":"no-")+"fn-start",[f.now(),r,o],n),o)try{return e.apply(this,arguments)}catch(t){throw c.emit("fn-err",[arguments,this,t],n),t}finally{c.emit("fn-end",[f.now()],n)}}}};a("actionText,setName,setAttribute,save,ignore,onEnd,getContext,end,get".split(","),function(t,e){m[e]=o(h,e)}),newrelic.noticeError=function(t,e){"string"==typeof t&&(t=new Error(t)),u.recordSupportability("API/noticeError/called"),i("err",[t,f.now(),!1,e])}},{}],21:[function(t,e,n){function r(t){if(NREUM.init){for(var e=NREUM.init,n=t.split("."),r=0;r<n.length-1;r++)if(e=e[n[r]],"object"!=typeof e)return;return e=e[n[n.length-1]]}}e.exports={getConfiguration:r}},{}],22:[function(t,e,n){e.exports=function(t){if("string"==typeof t&&t.length)return t.length;if("object"==typeof t){if("undefined"!=typeof ArrayBuffer&&t instanceof ArrayBuffer&&t.byteLength)return t.byteLength;if("undefined"!=typeof Blob&&t instanceof Blob&&t.size)return t.size;if(!("undefined"!=typeof FormData&&t instanceof FormData))try{return JSON.stringify(t).length}catch(e){return}}}},{}],23:[function(t,e,n){var r=!1;try{var o=Object.defineProperty({},"passive",{get:function(){r=!0}});window.addEventListener("testPassive",null,o),window.removeEventListener("testPassive",null,o)}catch(i){}e.exports=function(t){return r?{passive:!0,capture:!!t}:!!t}},{}],24:[function(t,e,n){var r=0,o=navigator.userAgent.match(/Firefox[\/\s](\d+\.\d+)/);o&&(r=+o[1]),e.exports=r},{}],25:[function(t,e,n){function r(t,e){var n=[a,t,{name:t},e];return i("storeMetric",n,null,"api"),n}function o(t,e){var n=[s,t,{name:t},e];return i("storeEventMetrics",n,null,"api"),n}var i=t("handle"),a="sm",s="cm";e.exports={constants:{SUPPORTABILITY_METRIC:a,CUSTOM_METRIC:s},recordSupportability:r,recordCustom:o}},{}],26:[function(t,e,n){function r(){return s.exists&&performance.now?Math.round(performance.now()):(i=Math.max((new Date).getTime(),i))-a}function o(){return i}var i=(new Date).getTime(),a=i,s=t(33);e.exports=r,e.exports.offset=a,e.exports.getLastTimestamp=o},{}],27:[function(t,e,n){function r(t,e){var n=t.getEntries();n.forEach(function(t){"first-paint"===t.name?l("timing",["fp",Math.floor(t.startTime)]):"first-contentful-paint"===t.name&&l("timing",["fcp",Math.floor(t.startTime)])})}function o(t,e){var n=t.getEntries();if(n.length>0){var r=n[n.length-1];if(f&&f<r.startTime)return;var o=[r],i=a({});i&&o.push(i),l("lcp",o)}}function i(t){t.getEntries().forEach(function(t){t.hadRecentInput||l("cls",[t])})}function a(t){var e=navigator.connection||navigator.mozConnection||navigator.webkitConnection;if(e)return e.type&&(t["net-type"]=e.type),e.effectiveType&&(t["net-etype"]=e.effectiveType),e.rtt&&(t["net-rtt"]=e.rtt),e.downlink&&(t["net-dlink"]=e.downlink),t}function s(t){if(t instanceof w&&!y){var e=Math.round(t.timeStamp),n={type:t.type};a(n),e<=h.now()?n.fid=h.now()-e:e>h.offset&&e<=Date.now()?(e-=h.offset,n.fid=h.now()-e):e=h.now(),y=!0,l("timing",["fi",e,n])}}function c(t){"hidden"===t&&(f=h.now(),l("pageHide",[f]))}if(!("init"in NREUM&&"page_view_timing"in NREUM.init&&"enabled"in NREUM.init.page_view_timing&&NREUM.init.page_view_timing.enabled===!1)){var f,u,d,p,l=t("handle"),h=t("loader"),m=t(30),v=t(23),w=NREUM.o.EV;if("PerformanceObserver"in window&&"function"==typeof window.PerformanceObserver){u=new PerformanceObserver(r);try{u.observe({entryTypes:["paint"]})}catch(g){}d=new PerformanceObserver(o);try{d.observe({entryTypes:["largest-contentful-paint"]})}catch(g){}p=new PerformanceObserver(i);try{p.observe({type:"layout-shift",buffered:!0})}catch(g){}}if("addEventListener"in document){var y=!1,x=["click","keydown","mousedown","pointerdown","touchstart"];x.forEach(function(t){document.addEventListener(t,s,v(!1))})}m(c)}},{}],28:[function(t,e,n){function r(){function t(){return e?15&e[n++]:16*Math.random()|0}var e=null,n=0,r=window.crypto||window.msCrypto;r&&r.getRandomValues&&(e=r.getRandomValues(new Uint8Array(31)));for(var o,i="xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx",a="",s=0;s<i.length;s++)o=i[s],"x"===o?a+=t().toString(16):"y"===o?(o=3&t()|8,a+=o.toString(16)):a+=o;return a}function o(){return a(16)}function i(){return a(32)}function a(t){function e(){return n?15&n[r++]:16*Math.random()|0}var n=null,r=0,o=window.crypto||window.msCrypto;o&&o.getRandomValues&&Uint8Array&&(n=o.getRandomValues(new Uint8Array(t)));for(var i=[],a=0;a<t;a++)i.push(e().toString(16));return i.join("")}e.exports={generateUuid:r,generateSpanId:o,generateTraceId:i}},{}],29:[function(t,e,n){function r(t,e){if(!o)return!1;if(t!==o)return!1;if(!e)return!0;if(!i)return!1;for(var n=i.split("."),r=e.split("."),a=0;a<r.length;a++)if(r[a]!==n[a])return!1;return!0}var o=null,i=null,a=/Version\/(\S+)\s+Safari/;if(navigator.userAgent){var s=navigator.userAgent,c=s.match(a);c&&s.indexOf("Chrome")===-1&&s.indexOf("Chromium")===-1&&(o="Safari",i=c[1])}e.exports={agent:o,version:i,match:r}},{}],30:[function(t,e,n){function r(t){function e(){t(s&&document[s]?document[s]:document[i]?"hidden":"visible")}"addEventListener"in document&&a&&document.addEventListener(a,e,o(!1))}var o=t(23);e.exports=r;var i,a,s;"undefined"!=typeof document.hidden?(i="hidden",a="visibilitychange",s="visibilityState"):"undefined"!=typeof document.msHidden?(i="msHidden",a="msvisibilitychange"):"undefined"!=typeof document.webkitHidden&&(i="webkitHidden",a="webkitvisibilitychange",s="webkitVisibilityState")},{}],31:[function(t,e,n){function r(t,e){var n=[],r="",i=0;for(r in t)o.call(t,r)&&(n[i]=e(r,t[r]),i+=1);return n}var o=Object.prototype.hasOwnProperty;e.exports=r},{}],32:[function(t,e,n){function r(t,e,n){e||(e=0),"undefined"==typeof n&&(n=t?t.length:0);for(var r=-1,o=n-e||0,i=Array(o<0?0:o);++r<o;)i[r]=t[e+r];return i}e.exports=r},{}],33:[function(t,e,n){e.exports={exists:"undefined"!=typeof window.performance&&window.performance.timing&&"undefined"!=typeof window.performance.timing.navigationStart}},{}],ee:[function(t,e,n){function r(){}function o(t){function e(t){return t&&t instanceof r?t:t?f(t,c,a):a()}function n(n,r,o,i,a){if(a!==!1&&(a=!0),!l.aborted||i){t&&a&&t(n,r,o);for(var s=e(o),c=m(n),f=c.length,u=0;u<f;u++)c[u].apply(s,r);var p=d[y[n]];return p&&p.push([x,n,r,s]),s}}function i(t,e){g[t]=m(t).concat(e)}function h(t,e){var n=g[t];if(n)for(var r=0;r<n.length;r++)n[r]===e&&n.splice(r,1)}function m(t){return g[t]||[]}function v(t){return p[t]=p[t]||o(n)}function w(t,e){l.aborted||u(t,function(t,n){e=e||"feature",y[n]=e,e in d||(d[e]=[])})}var g={},y={},x={on:i,addEventListener:i,removeEventListener:h,emit:n,get:v,listeners:m,context:e,buffer:w,abort:s,aborted:!1};return x}function i(t){return f(t,c,a)}function a(){return new r}function s(){(d.api||d.feature)&&(l.aborted=!0,d=l.backlog={})}var c="nr@context",f=t("gos"),u=t(31),d={},p={},l=e.exports=o();e.exports.getOrSetContext=i,l.backlog=d},{}],gos:[function(t,e,n){function r(t,e,n){if(o.call(t,e))return t[e];var r=n();if(Object.defineProperty&&Object.keys)try{return Object.defineProperty(t,e,{value:r,writable:!0,enumerable:!1}),r}catch(i){}return t[e]=r,r}var o=Object.prototype.hasOwnProperty;e.exports=r},{}],handle:[function(t,e,n){function r(t,e,n,r){o.buffer([t],r),o.emit(t,e,n)}var o=t("ee").get("handle");e.exports=r,r.ee=o},{}],id:[function(t,e,n){function r(t){var e=typeof t;return!t||"object"!==e&&"function"!==e?-1:t===window?0:a(t,i,function(){return o++})}var o=1,i="nr@id",a=t("gos");e.exports=r},{}],loader:[function(t,e,n){function r(){if(!T++){var t=O.info=NREUM.info,e=m.getElementsByTagName("script")[0];if(setTimeout(f.abort,3e4),!(t&&t.licenseKey&&t.applicationID&&e))return f.abort();c(E,function(e,n){t[e]||(t[e]=n)});var n=a();s("mark",["onload",n+O.offset],null,"api"),s("timing",["load",n]);var r=m.createElement("script");0===t.agent.indexOf("http://")||0===t.agent.indexOf("https://")?r.src=t.agent:r.src=l+"://"+t.agent,e.parentNode.insertBefore(r,e)}}function o(){"complete"===m.readyState&&i()}function i(){s("mark",["domContent",a()+O.offset],null,"api")}var a=t(26),s=t("handle"),c=t(31),f=t("ee"),u=t(29),d=t(21),p=t(23),l=d.getConfiguration("ssl")===!1?"http":"https",h=window,m=h.document,v="addEventListener",w="attachEvent",g=h.XMLHttpRequest,y=g&&g.prototype,x=!1;NREUM.o={ST:setTimeout,SI:h.setImmediate,CT:clearTimeout,XHR:g,REQ:h.Request,EV:h.Event,PR:h.Promise,MO:h.MutationObserver};var b=""+location,E={beacon:"bam.nr-data.net",errorBeacon:"bam.nr-data.net",agent:"js-agent.newrelic.com/nr-spa-1216.min.js"},R=g&&y&&y[v]&&!/CriOS/.test(navigator.userAgent),O=e.exports={offset:a.getLastTimestamp(),now:a,origin:b,features:{},xhrWrappable:R,userAgent:u,disabled:x};if(!x){t(20),t(27),m[v]?(m[v]("DOMContentLoaded",i,p(!1)),h[v]("load",r,p(!1))):(m[w]("onreadystatechange",o),h[w]("onload",r)),s("mark",["firstbyte",a.getLastTimestamp()],null,"api");var T=0}},{}],"wrap-function":[function(t,e,n){function r(t,e){function n(e,n,r,c,f){function nrWrapper(){var i,a,u,p;try{a=this,i=d(arguments),u="function"==typeof r?r(i,a):r||{}}catch(l){o([l,"",[i,a,c],u],t)}s(n+"start",[i,a,c],u,f);try{return p=e.apply(a,i)}catch(h){throw s(n+"err",[i,a,h],u,f),h}finally{s(n+"end",[i,a,p],u,f)}}return a(e)?e:(n||(n=""),nrWrapper[p]=e,i(e,nrWrapper,t),nrWrapper)}function r(t,e,r,o,i){r||(r="");var s,c,f,u="-"===r.charAt(0);for(f=0;f<e.length;f++)c=e[f],s=t[c],a(s)||(t[c]=n(s,u?c+r:r,o,c,i))}function s(n,r,i,a){if(!h||e){var s=h;h=!0;try{t.emit(n,r,i,e,a)}catch(c){o([c,n,r,i],t)}h=s}}return t||(t=u),n.inPlace=r,n.flag=p,n}function o(t,e){e||(e=u);try{e.emit("internal-error",t)}catch(n){}}function i(t,e,n){if(Object.defineProperty&&Object.keys)try{var r=Object.keys(t);return r.forEach(function(n){Object.defineProperty(e,n,{get:function(){return t[n]},set:function(e){return t[n]=e,e}})}),e}catch(i){o([i],n)}for(var a in t)l.call(t,a)&&(e[a]=t[a]);return e}function a(t){return!(t&&t instanceof Function&&t.apply&&!t[p])}function s(t,e){var n=e(t);return n[p]=t,i(t,n,u),n}function c(t,e,n){var r=t[e];t[e]=s(r,n)}function f(){for(var t=arguments.length,e=new Array(t),n=0;n<t;++n)e[n]=arguments[n];return e}var u=t("ee"),d=t(32),p="nr@original",l=Object.prototype.hasOwnProperty,h=!1;e.exports=r,e.exports.wrapFunction=s,e.exports.wrapInPlace=c,e.exports.argsToArray=f},{}]},{},["loader",2,17,5,3,4]);</script><meta charset="UTF-8"/><meta name="robots" content="index, follow"/><meta name="DC.Creator" content="Dennis Pollok"/><meta name="DC.Creator" content="Siegfried R. Waldvogel"/><meta name="DC.title" content="Electro-organic synthesis – a 21 st century technique "/><meta name="DC.publisher" content="Royal Society of Chemistry"/><meta name="DC.Date" content="2020/12/07"/><meta name="DC.Identifier" scheme="doi" content="10.1039/D0SC01848A"/><meta name="DC.Language" content="en"/><meta name="citation_title" content="Electro-organic synthesis – a 21 st century technique "/><meta name="citation_author" content="Dennis Pollok"/><meta name="citation_author" content="Siegfried R. Waldvogel"/><meta name="citation_online_date" content="2020/05/20"/><meta name="citation_date" content="2020"/><meta name="citation_journal_title" content="Chemical Science"/><meta name="citation_volume" content="11"/><meta name="citation_issue" content="46"/><meta name="citation_firstpage" content="12386"/><meta name="citation_lastpage" content="12400"/><meta name="citation_doi" content="10.1039/D0SC01848A"/><meta name="citation_pdf_url" content="https://pubs.rsc.org/en/content/articlepdf/2020/sc/d0sc01848a"/><meta name="citation_abstract_html_url" content="https://pubs.rsc.org/en/content/articlelanding/2020/sc/d0sc01848a"/><meta name="citation_fulltext_html_url" content="https://pubs.rsc.org/en/content/articlehtml/2020/sc/d0sc01848a"/><link rel="shortcut icon" href=""/><link type="text/css" rel="stylesheet" href="/content/stylesheets/rschtml2.css?ver=6_2_3"/><link href="https://www.rsc-cdn.org/oxygen/assets/webfonts/fonts.min.css" rel="stylesheet" type="text/css"/><link type="text/css" rel="stylesheet" href="/content/stylesheets/pubs-ui.min.css"/><meta name="viewport" content="width=device-width, initial-scale=1"/><script type="text/javascript" src="/content/scripts/JQueryPlugins.min.js"> </script><script type="text/javascript" src="/content/scripts/GetAnchorText.js"> </script><script type="text/javascript"> $(function() { $("table.tgroup tfoot th").attr("colspan", "100"); $("table.tgroup.rtable").each( function (idx, el) { var tw = $(this).width(); $(this).parent().css("min-width", tw+"px"); }); }); </script><!--6_2_3--></head><body class="oxy-ui pubs-ui ahtml-page"><!--Google Tag Manager (noscript)--><noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5HVSFVCN" height="0" width="0" style="display:none;visibility:hidden"> </iframe></noscript><!--End Google Tag Manager (noscript)--><div class="viewport autopad"><div class="pnl pnl--drop autopad"><span id="top"/><div id="wrapper"><div class="left_head"><a class="simple" href="/"><img class="rsc-logo" border="0" src="/content/NewImages/royal-society-of-chemistry-logo.png" alt="Royal Society of Chemistry"/></a><br/><span class="btnContainer"><a class="btn btn--tiny btn--primary" target="_blank" title="Link to PDF version" href="/en/content/articlepdf/2020/sc/d0sc01848a">View PDF Version</a></span><span class="btnContainer"><a class="btn btn--tiny btn--nobg" title="Link to previous article (id:d0sc90262d)" href="/en/content/articlehtml/2020/sc/d0sc90262d" target="_BLANK">Previous Article</a></span><span class="btnContainer"><a class="btn btn--tiny btn--nobg" title="Link to next article (id:d0sc04112b)" href="/en/content/articlehtml/2020/sc/d0sc04112b" target="_BLANK">Next Article</a></span></div><div class="right_head"><div id="crossmark_container"><div id="crossmark-content"><a id="open-crossmark" href="#" data-target="crossmark"><img style="max-width:100px" id="crossmark-logo" src="https://crossmark-cdn.crossref.org/widget/v2.0/logos/CROSSMARK_Color_square.svg" alt="Check for updates"/></a><script src="https://crossmark-cdn.crossref.org/widget/v2.0/widget.js"> </script></div></div><br/><span class="oa"><img src="/content/newimages/open_access_blue.png" alt=""/> Open Access Article<br/><img src="/content/newimages/CCBY-NC.svg" alt=""/> This Open Access Article is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-nc/3.0/">Creative Commons Attribution-Non Commercial 3.0 Unported Licence</a></span></div><div class="article_info"> DOI: <a target="_blank" title="Link to landing page via DOI" href="https://doi.org/10.1039/D0SC01848A">10.1039/D0SC01848A</a> (Perspective) <span class="italic"><a title="Link to journal home page" href="https://doi.org/10.1039/2041-6539/2010">Chem. Sci.</a></span>, 2020, <strong>11</strong>, 12386-12400</div><h1 id="sect206"><span class="title_heading">Electro-organic synthesis – a 21<small><sup>st</sup></small> century technique</span></h1><p class="header_text"> <span class="bold"> Dennis Pollok </span><span class="bold"> and </span> <span class="bold"> Siegfried R. Waldvogel </span><span class="orcid"><a target="_blank" title="Select to open ORCID record for Siegfried R. Waldvogel (orcid.org/0000-0002-7949-9638) in a new window" id="connect-orcid-link" href="http://orcid.org/0000-0002-7949-9638"><img id="orcid-id-logo" src="/content/NewImages/orcid_16x16.png" alt="ORCID logo"/></a></span>* <br/><span class="italic">Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10–14, 55128 Mainz, Germany. E-mail: <a href="mailto:waldvogel@uni-mainz.de">waldvogel@uni-mainz.de</a>; Web: www.aksw.uni-mainz.de</span> </p><div id="art-admin"><span class="italic bold">Received 31st March 2020 </span><span class="bold italic">, Accepted 18th May 2020</span></div><p class="bold italic">First published on 20th May 2020</p><hr/><div class="abstract"><h2>Abstract</h2><p>The severe limitations of fossil fuels and finite resources influence the scientific community to reconsider chemical synthesis and establish sustainable techniques. Several promising methods have emerged, and electro-organic conversion has attracted particular attention from international academia and industry as an environmentally benign and cost-effective technique. The easy application, precise control, and safe conversion of substrates with intermediates only accessible by this method reveal novel pathways in synthetic organic chemistry. The popularity of electricity as a reagent is accompanied by the feasible conversion of bio-based feedstocks to limit the carbon footprint. Several milestones have been achieved in electro-organic conversion at rapid frequency, which have opened up various perspectives for forthcoming processes.</p></div><hr/><table><tr><td class="biogPlate"><a href="/image/article/2020/SC/d0sc01848a/d0sc01848a-p1_hi-res.gif" title="Select to open image in new window" onclick="open(this.href, &#34;_blank&#34;, &#34;toolbar=1,scrollbars=yes,resizable=1&#34;); return false;"><img alt="image file: d0sc01848a-p1.tif" src="/image/article/2020/SC/d0sc01848a/d0sc01848a-p1.gif"/></a><p><span class="graphic_title">Dennis Pollok</span></p></td><td><i><p>Dennis Pollok received his B.Sc. degree in chemistry from Johannes Gutenberg University Mainz/Max Planck Institute for Polymer Research in Mainz working on polyphosphate-based flame retardants under the supervision of Dr habil. Frederik R. Wurm. During an internship at University of Toronto he worked in the group of Prof. Dr Dwight S. Seferos on conducting polyselenophenes. He received his M.Sc. in 2018 from Johannes Gutenberg University Mainz working under the supervision of Prof. Dr Siegfried R. Waldvogel where he is currently conducting research as a graduate student on electro-organic synthesis.</p></i></td></tr></table><table><tr><td class="biogPlate"><a href="/image/article/2020/SC/d0sc01848a/d0sc01848a-p2_hi-res.gif" title="Select to open image in new window" onclick="open(this.href, &#34;_blank&#34;, &#34;toolbar=1,scrollbars=yes,resizable=1&#34;); return false;"><img alt="image file: d0sc01848a-p2.tif" src="/image/article/2020/SC/d0sc01848a/d0sc01848a-p2.gif"/></a><p><span class="graphic_title">Siegfried R. Waldvogel</span></p></td><td><i><p>Siegfried R. Waldvogel studied chemistry in Konstanz and received his PhD in 1996 from University of Bochum/Max Planck Institute for Coal Research with Prof. Dr M. T. Reetz as supervisor. After postdoctoral research at Scripps Research Institute in La Jolla, CA (Prof. Dr J. Rebek, Jr), he started his own research career in 1998 at University of Münster. After his professorship in 2004 at University of Bonn, he became a full professor for organic chemistry at Johannes Gutenberg University Mainz in 2010. His research interests are novel electro-organic transformations including bio-based feedstocks from electrosynthetic screening to scale-up. In 2018, he co-founded ESy-Labs GmbH, which provides custom electrosynthesis and contract R&amp;D.</p></i></td></tr></table><hr/> <h2 id="sect246"><span class="a_heading">Motivation and background</span></h2> <span>Current social movement reveals a rising awareness of 21<small><sup>st</sup></small> century challenges. Wide spread news of dramatic natural disasters has led to discussions about climate change and the need for urgent changes. There have already been responses which also reach out to the scientific community to contribute to the restriction of greenhouse gas emissions. The severe limitations of fossil resources intensify the movement towards sustainable synthesis techniques with a strict cutback in the ecological footprint.<a title="Select to navigate to references" href="#cit1"><sup><span class="sup_ref">1</span></sup></a> Thus, several techniques have arisen, and amongst them electro-organic synthesis is rising in popularity.<a title="Select to navigate to reference" href="#cit2"><sup><span class="sup_ref">2–7</span></sup></a> This methodology has re-emerged for synthetic organic chemists after being neglected for several decades, although this approach is common for inorganic transformations including industrial scale basic chemical production, like the chlor-alkali electrolysis and aluminium production by the Hall–Héroult process.<a title="Select to navigate to references" href="#cit8"><sup><span class="sup_ref">8</span></sup></a> Since Kolbe’s discoveries using electricity as a reagent for organic transformations over 170 years ago, this technique has not been accepted by the broad organic chemistry community, although less hazardous materials are being used.<a title="Select to navigate to references" href="#cit9"><sup><span class="sup_ref">9</span></sup></a> Therefore, several groups have shown interest and explored this subject to provide sufficient knowledge for further research. However, its broad application in organic synthesis is still low, although electro-organic transformations enable access to novel structures due to the unique reactivity and selectivity provided. Technical-scale electro-organic reactions, like the Baizer process carried out by Monsanto, have only rarely been performed since the 1970s.<a title="Select to navigate to references" href="#cit8"><sup><span class="sup_ref">8</span></sup></a></span> <p class="otherpara">The broader use of electro-organic transformations will gain increasing influence due to sustainable transformations when electricity is obtained from renewable resources like wind-, solar-, or hydropower. They could profit from the emerging energy surplus from these sources to serve as a feasible Power-to-X method for storage of abundant electricity in the production of valuable fine chemicals.<a title="Select to navigate to reference" href="#cit10"><sup><span class="sup_ref">10,11</span></sup></a> Electro-organic synthesis is involved in areas like electrocatalysis, redox-tags, the cation-pool method, bio-electrochemistry, and electro-organic synthesis in continuous flow.<a title="Select to navigate to reference" href="#cit3"><sup><span class="sup_ref">3,4,12</span></sup></a> These techniques have also gained significant interest from industry and open pathways for various novel developments. This perspective should provide insight into recent electro-organic methods and general trends in this field, and open up prospects for future viewpoints.</p> <h2 id="sect258"><span class="a_heading">Modes of operation</span></h2> <span>The application of electric current as a reagent in synthetic organic chemistry offers a vast variety of opportunities but many scientists are reluctant due to the essential adaptation of laboratories and ways of thinking with this technique. However, more and more literature is encouraging the use of this method and providing guidelines, showing the simplicity of this technique.<a title="Select to navigate to reference" href="#cit13"><sup><span class="sup_ref">13,14</span></sup></a> The versatile toolbox of electro-organic synthesis relies on the fundamental principles of redox reactions using electric current as the essential reagent. Oxidations will occur as anodic transformations, whereas reductive processes adding an electron to a substrate in a single electron transfer (SET) take place at the cathode. Thus, the electrodes represent crucial parameters for electro-organic conversions, which take place as heterogenous chemical reactions between a commonly solid electrode and a substrate in a liquid electrolyte system. This electrolyte system consists of a (electro-)chemically inert solvent and supporting electrolytes to facilitate sufficient electrical conductivity. This supporting electrolyte can be a salt, acid, or base and will contribute to the formation of an electrochemical double layer at the electrode surface. This underlines that the electrode and electrolyte system can be considered as a couple that determines the electrochemical features. Inert ions which are highly soluble in organic solvents, like tetraalkylammonium hexafluorophosphate or tetrafluoroborate, have shown versatile applications and excellent performance (<a title="Select to navigate to figure" href="#imgfig1">Fig. 1</a>). It is worth noting that the use of perchlorates is strongly discouraged since explosive events could occur through the precipitation of organic perchlorates. Further parameters which have a major influence on the electrolysis process are the applied charge which represents the number of equivalents of reagent, the current density which controls the speed of an electrochemical process, and temperature.</span> <br/><div class="image_table"><table><tr><td colspan="3" class="imgHolder" id="imgfig1"><a href="/image/article/2020/SC/d0sc01848a/d0sc01848a-f1_hi-res.gif" title="Select to open image in new window" onclick="open(this.href, &#34;_blank&#34;, &#34;toolbar=1,scrollbars=yes,resizable=1&#34;); return false;"><img alt="image file: d0sc01848a-f1.tif" src="/image/article/2020/SC/d0sc01848a/d0sc01848a-f1.gif"/></a></td></tr><tr><td class="pushTitleRight"> </td><td class="image_title"><b>Fig. 1 </b> <span id="fig1"><span class="graphic_title">Modes of operation for electro-organic synthesis and electrochemical facts at a glance. Photography reproduced with permission from <a title="Select to navigate to references" href="#cit7">ref. 7</a>. Copyright 2018 ACS.</span></span></td><td class="pushTitleLeft"> </td></tr></table></div> <p class="otherpara">Good electrode materials are (electro-)chemically inert, facilitating easy handling, and ecologically and economically beneficial use. The most common inert electrode materials are noble metals like platinum or carbon allotropes such as low-cost graphite, glassy carbon, or the high-performance material boron-doped diamond (BDD). Novel conversions can be facilitated using active electrode materials to generate immobilized high-valent metal species which catalyse the electron transfer and are regenerated by the electric current. The layer acts as a redox filter to improve selectivity, as shown for Ni or Mo in fluorinated alcohols, NiOOH in alkaline media, or PbO<small><sub>2</sub></small> in acids.<a title="Select to navigate to reference" href="#cit15"><sup><span class="sup_ref">15,16</span></sup></a></p> <p class="otherpara">The appropriate design of devices used for electro-organic conversions offers various adjustments. Electrolysis can be performed in conventional laboratory glassware like beakers or round bottom flasks. Besides these self-made setups using standard batteries, some setups are commercially distributed like ElectraSyn and the more advanced screening and flow setups with controllable power sources sold by IKA®.<a title="Select to navigate to reference" href="#cit17"><sup><span class="sup_ref">17,18</span></sup></a> The application of flow electrolysis is of major importance for scaling up electrolysis for technical application and will be discussed throughout this perspective.<a title="Select to navigate to references" href="#cit19"><sup><span class="sup_ref">19</span></sup></a> Suitable undivided cells involve the parallel installation of planar electrodes to ensure a homogeneous electrical field without local potential hot spots leading to uncontrolled side reactions.<a title="Select to navigate to references" href="#cit7"><sup><span class="sup_ref">7</span></sup></a> A semipermeable membrane or porous glass frit is used in divided cells to separate the anolyte and catholyte to suppress non-desired diffusion to the counter electrode. This is necessary when the starting material, intermediates, and products are unstable towards the counter electrode. However, a “quick and dirty” but rather practical approach combining these characteristics is a quasi-divided cell. A undivided cell is used with electrodes with electrode surface areas of dramatically different sizes. The decreased surface area of the counter electrode results in an increased current density, thus elevating the electrode potential/driving force. The chemoselectivity of the electron transfer might be reduced, leading to a statistical preference for electrolyte degradation. However, the small electrode surface area of the counter electrode affects only a small quantity of electrolyte – approx. 5% is sacrificed in side reactions which favours recyclability (<a title="Select to navigate to figure" href="#imgfig1">Fig. 1</a>).<a title="Select to navigate to reference" href="#cit20"><sup><span class="sup_ref">20,21</span></sup></a></p> <p class="otherpara">Electrolysis can be performed galvanostatically with constant current using an easy and low-cost setup with equipment available in common hardware stores. This robust process facilitates the possibility of fast reactions and is of high interest for scale-up in organic synthesis or technical application. However, if the substrates are more sophisticated and lack of selectivity occurs, a three-electrode setup with constant potential can be used. This potentiostatic electrolysis offers selectivity towards the desired functionalities by controlling the applied potential but prolongs electrolysis times in an elaborated setup.</p> <p class="otherpara">A further approach for electro-organic conversion of sensitive substrates carrying labile functionalities deviates from conventional one-pot “in-cell” electrolysis with all chemicals present during electrolysis. The “ex-cell” approach generates reactive intermediates with electricity, and after completion, a substrate is added to react with the reactive species in a conventional manner.</p> <p class="otherpara">When specific reactivity is required which is difficult to address in sophisticated substrates, mediators can be used. Mediators are electrochemically generated reagents which promote reactions, shifting the heterogenous substrate redox reactions at the electrodes towards homogeneous electron transfers from the mediator to the substrate in solution. The redox potential of the substrate is thus decoupled from the electrode, revealing novel reaction pathways of the reagent or catalyst <span class="italic">via</span> outer and inner sphere mechanisms.<a title="Select to navigate to references" href="#cit22"><sup><span class="sup_ref">22</span></sup></a></p> <p class="otherpara">Despite the broad application of electrosynthesis in redox reactions, the possibility of using electric current in small amounts for redox-neutral transformations is an underexplored area. This electrochemical catalysis can enhance the performance of thermodynamically favoured but kinetically hindered transformations <span class="italic">via</span> an electron transfer with subsequent chemical reaction and final backward electron transfer, where the latter can either occur at the electrode surface or intermolecularly (<a title="Select to navigate to figure" href="#imgfig1">Fig. 1</a>).<a title="Select to navigate to references" href="#cit23"><sup><span class="sup_ref">23</span></sup></a></p> <h2 id="sect284"><span class="a_heading">Current state of the art</span></h2> <span>The revival of electro-organic conversions has led to an immense variety of processes successfully replacing harmful terminal oxidizers and reducing agents, thus making chemistry “greener”.<a title="Select to navigate to references" href="#cit24"><sup><span class="sup_ref">24</span></sup></a> A good survey of these developments was provided by Baran <span class="italic">et al.</span>, revealing the broad variety of approaches.<a title="Select to navigate to references" href="#cit6"><sup><span class="sup_ref">6</span></sup></a></span> <p class="otherpara">Carbon–carbon bond formation has been a crucial tool in synthetic organic chemistry over years of research and is an integral part of organic synthesis. Several approaches use organo-catalysis or transition metal-based catalysts to selectively form these bonds. Little <span class="italic">et al.</span> investigated electro-organic approaches such as reductive carbon–carbon couplings with olefin and carbonyl compounds focusing on mechanistic investigations to provide deeper insight into electro-organic reaction mechanisms.<a title="Select to navigate to references" href="#cit25"><sup><span class="sup_ref">25</span></sup></a> Schäfer <span class="italic">et al.</span> used Kolbe electrolysis for cascade reactions, forming novel carbon–carbon bonds in complex architectures (<a title="Select to navigate to scheme" href="#imgsch1">Scheme 1</a>).<a title="Select to navigate to references" href="#cit26"><sup><span class="sup_ref">26</span></sup></a></p> <br/><div class="image_table"><table><tr><td colspan="3" class="imgHolder" id="imgsch1"><a href="/image/article/2020/SC/d0sc01848a/d0sc01848a-s1_hi-res.gif" title="Select to open image in new window" onclick="open(this.href, &#34;_blank&#34;, &#34;toolbar=1,scrollbars=yes,resizable=1&#34;); return false;"><img alt="image file: d0sc01848a-s1.tif" src="/image/article/2020/SC/d0sc01848a/d0sc01848a-s1.gif"/></a></td></tr><tr><td class="pushTitleRight"> </td><td class="image_title"><b>Scheme 1 </b> <span id="sch1"><span class="graphic_title">Kolbe cascade reaction by Schäfer <span class="italic">et al.</span></span></span></td><td class="pushTitleLeft"> </td></tr></table></div> <p class="otherpara">One of the major challenges in organic chemistry is direct, selective C–H activation due to the high oxidation potentials. In this regard, Moeller <span class="italic">et al.</span> have established anodic olefin coupling reactions to access cyclic substrates which include sophisticated functionalities using a conventional 6 V battery in an undivided beaker cell (<a title="Select to navigate to scheme" href="#imgsch2">Scheme 2</a>).<a title="Select to navigate to reference" href="#cit11"><sup><span class="sup_ref">11,27,28</span></sup></a></p> <br/><div class="image_table"><table><tr><td colspan="3" class="imgHolder" id="imgsch2"><a href="/image/article/2020/SC/d0sc01848a/d0sc01848a-s2_hi-res.gif" title="Select to open image in new window" onclick="open(this.href, &#34;_blank&#34;, &#34;toolbar=1,scrollbars=yes,resizable=1&#34;); return false;"><img alt="image file: d0sc01848a-s2.tif" src="/image/article/2020/SC/d0sc01848a/d0sc01848a-s2.gif"/></a></td></tr><tr><td class="pushTitleRight"> </td><td class="image_title"><b>Scheme 2 </b> <span id="sch2"><span class="graphic_title">Anodic olefin coupling reactions by Moeller <span class="italic">et al.</span></span></span></td><td class="pushTitleLeft"> </td></tr></table></div> <p class="otherpara">Major contributions to direct electrochemical C–H activation have been made by Yoshida <span class="italic">et al.</span> with the development of the “cation-pool” method, which traps electro-chemically generated highly reactive intermediates at low temperature, and the addition of a nucleophile enables the formation of new bonds including valuable carbon–carbon bonds (<a title="Select to navigate to scheme" href="#imgsch3">Scheme 3</a>).<a title="Select to navigate to reference" href="#cit5"><sup><span class="sup_ref">5,29</span></sup></a></p> <br/><div class="image_table"><table><tr><td colspan="3" class="imgHolder" id="imgsch3"><a href="/image/article/2020/SC/d0sc01848a/d0sc01848a-s3_hi-res.gif" title="Select to open image in new window" onclick="open(this.href, &#34;_blank&#34;, &#34;toolbar=1,scrollbars=yes,resizable=1&#34;); return false;"><img alt="image file: d0sc01848a-s3.tif" src="/image/article/2020/SC/d0sc01848a/d0sc01848a-s3.gif"/></a></td></tr><tr><td class="pushTitleRight"> </td><td class="image_title"><b>Scheme 3 </b> <span id="sch3"><span class="graphic_title">Versatile cation-pool method by Yoshida <span class="italic">et al.</span></span></span></td><td class="pushTitleLeft"> </td></tr></table></div> <p class="otherpara">Focusing on biaryls which are highly important for materials science and active pharmaceutical ingredients (APIs), and occur in natural products, electro-organic transformations enable a broad variety of possibilities.<a title="Select to navigate to references" href="#cit30"><sup><span class="sup_ref">30</span></sup></a> Conventional reductive cross-couplings require pre-functionalization of the substrates, and oxidative reagent-mediated reactions lack selectivity.<a title="Select to navigate to references" href="#cit31"><sup><span class="sup_ref">31</span></sup></a> Selective electro-catalysis employing halide functionalized substrates for challenging transformations enables less waste generation but still requires pre-functionalization for arenes with high oxidation potentials.<a title="Select to navigate to references" href="#cit7"><sup><span class="sup_ref">7</span></sup></a> However, these approaches are hindered by waste production or reagent necessity. Thus, important developments in direct oxidative couplings have been made by Waldvogel <span class="italic">et al.</span> who gained access to several symmetric and non-symmetric biphenols as well as phenol–(hetero)arene cross-coupled products with reagent- and metal-free electro-organic protocols (<a title="Select to navigate to scheme" href="#imgsch4">Scheme 4</a>). The application of boron-doped diamond (BDD) electrodes in combination with 1,1,1,3,3,3-hexafluoropropan-2-ol (HFIP) as solvent exhibited high performance and robustness.<a title="Select to navigate to references" href="#cit32"><sup><span class="sup_ref">32</span></sup></a> It is worth noting that the selectivity for cross-coupling is determined by a solvent effect.<a title="Select to navigate to references" href="#cit33"><sup><span class="sup_ref">33</span></sup></a></p> <br/><div class="image_table"><table><tr><td colspan="3" class="imgHolder" id="imgsch4"><a href="/image/article/2020/SC/d0sc01848a/d0sc01848a-s4_hi-res.gif" title="Select to open image in new window" onclick="open(this.href, &#34;_blank&#34;, &#34;toolbar=1,scrollbars=yes,resizable=1&#34;); return false;"><img alt="image file: d0sc01848a-s4.tif" src="/image/article/2020/SC/d0sc01848a/d0sc01848a-s4.gif"/></a></td></tr><tr><td class="pushTitleRight"> </td><td class="image_title"><b>Scheme 4 </b> <span id="sch4"><span class="graphic_title">Phenol/aniline–arene cross-coupling by Waldvogel <span class="italic">et al.</span></span></span></td><td class="pushTitleLeft"> </td></tr></table></div> <p class="otherpara">Despite the necessity for additional reagents and increasing distance from the principles of green and sustainable chemistry, electro-catalytic transformations are gaining increasing attention for promoting novel reactions with metal complexes, organo-catalysts, or bio-electro catalysts. In comparison to photo-redox catalysis, electro-catalysis can not only use a small part of the solar spectrum but take advantage of the whole energy range without loss.<a title="Select to navigate to references" href="#cit34"><sup><span class="sup_ref">34</span></sup></a> Ackermann <span class="italic">et al.</span> are among the leading researchers in this field, achieving a broad variety of different selective C–H activations towards valuable structural motifs using earth-abundant 3d metals. They found outstanding properties for cobalt electro-catalysts in oxidations involving alcohols, alkenes, alkynes, amines, allenes, carbon monoxide, carboxylic acids, and isocyanides (<a title="Select to navigate to scheme" href="#imgsch5">Scheme 5</a>).<a title="Select to navigate to reference" href="#cit34"><sup><span class="sup_ref">34,35</span></sup></a> Mei <span class="italic">et al.</span> adopted these transformations for unsaturated and saturated aliphatic substrates using palladium, copper, and iridium in electro-catalysis.<a title="Select to navigate to references" href="#cit36"><sup><span class="sup_ref">36</span></sup></a></p> <br/><div class="image_table"><table><tr><td colspan="3" class="imgHolder" id="imgsch5"><a href="/image/article/2020/SC/d0sc01848a/d0sc01848a-s5_hi-res.gif" title="Select to open image in new window" onclick="open(this.href, &#34;_blank&#34;, &#34;toolbar=1,scrollbars=yes,resizable=1&#34;); return false;"><img alt="image file: d0sc01848a-s5.tif" src="/image/article/2020/SC/d0sc01848a/d0sc01848a-s5.gif"/></a></td></tr><tr><td class="pushTitleRight"> </td><td class="image_title"><b>Scheme 5 </b> <span id="sch5"><span class="graphic_title">Electro-catalytic C–H activation by Ackermann <span class="italic">et al.</span></span></span></td><td class="pushTitleLeft"> </td></tr></table></div> <p class="otherpara">The di-functionalization of unsaturated aliphatic carbon–carbon bonds was intensively studied by Lin <span class="italic">et al.</span> The application of transition metal electro-catalysts promoted the shuttle of electrons and atoms for a broad substrate scope with installed azide, chloride, bromide, trifluoromethyl, phosphonate, and nitrile moieties including tandem reactions for intramolecular ring closure (<a title="Select to navigate to scheme" href="#imgsch6">Scheme 6</a>).<a title="Select to navigate to references" href="#cit37"><sup><span class="sup_ref">37</span></sup></a> Nitrogen moieties are crucial in natural products and APIs and thus among the hot topics in contemporary research.<a title="Select to navigate to references" href="#cit38"><sup><span class="sup_ref">38</span></sup></a> Thus, the importance of azide functionalities for subsequent reduction to primary amines is highly acknowledged.<a title="Select to navigate to references" href="#cit39"><sup><span class="sup_ref">39</span></sup></a></p> <br/><div class="image_table"><table><tr><td colspan="3" class="imgHolder" id="imgsch6"><a href="/image/article/2020/SC/d0sc01848a/d0sc01848a-s6_hi-res.gif" title="Select to open image in new window" onclick="open(this.href, &#34;_blank&#34;, &#34;toolbar=1,scrollbars=yes,resizable=1&#34;); return false;"><img alt="image file: d0sc01848a-s6.tif" src="/image/article/2020/SC/d0sc01848a/d0sc01848a-s6.gif"/></a></td></tr><tr><td class="pushTitleRight"> </td><td class="image_title"><b>Scheme 6 </b> <span id="sch6"><span class="graphic_title">Electro-catalysis for alkene di-functionalization by Lin <span class="italic">et al.</span></span></span></td><td class="pushTitleLeft"> </td></tr></table></div> <p class="otherpara">Various valuable structures carrying primary aromatic amine functionalities are found in APIs, natural products, and advanced materials.<a title="Select to navigate to reference" href="#cit40"><sup><span class="sup_ref">40,41</span></sup></a> However, electrochemical access to anilines faces the issue of low oxidation potentials of arylamines and overoxidation of the products. A game-changing breakthrough was achieved by Yoshida <span class="italic">et al.</span> by the C–H amination of arenes through trapping radical cations with pyridinium intermediates and subsequent aminolysis using piperidine (<a title="Select to navigate to scheme" href="#imgsch7">Scheme 7</a>).<a title="Select to navigate to reference" href="#cit41"><sup><span class="sup_ref">41,42</span></sup></a></p> <br/><div class="image_table"><table><tr><td colspan="3" class="imgHolder" id="imgsch7"><a href="/image/article/2020/SC/d0sc01848a/d0sc01848a-s7_hi-res.gif" title="Select to open image in new window" onclick="open(this.href, &#34;_blank&#34;, &#34;toolbar=1,scrollbars=yes,resizable=1&#34;); return false;"><img alt="image file: d0sc01848a-s7.tif" src="/image/article/2020/SC/d0sc01848a/d0sc01848a-s7.gif"/></a></td></tr><tr><td class="pushTitleRight"> </td><td class="image_title"><b>Scheme 7 </b> <span id="sch7"><span class="graphic_title">Arene C–H amination by Yoshida <span class="italic">et al.</span></span></span></td><td class="pushTitleLeft"> </td></tr></table></div> <p class="otherpara">The positively charged intermediate Zincke salts prevent overoxidation.<a title="Select to navigate to references" href="#cit43"><sup><span class="sup_ref">43</span></sup></a> The high tolerance of labile functional groups was extended by Waldvogel <span class="italic">et al.</span> using BDD anodes to overcome the limitations of electron-rich substrates.<a title="Select to navigate to references" href="#cit40"><sup><span class="sup_ref">40</span></sup></a> Primary amines are of high importance, whereas secondary amines can only be electro-generated by using heterocyclic compounds with further ring opening or subsequent ring closure.<a title="Select to navigate to reference" href="#cit42"><sup><span class="sup_ref">42,44</span></sup></a></p> <p class="otherpara">Baran <span class="italic">et al.</span> demonstrated the electro-catalytic amination of arenes with different amino moieties using nickel compounds to form secondary and tertiary amino moieties.<a title="Select to navigate to references" href="#cit45"><sup><span class="sup_ref">45</span></sup></a> Xu <span class="italic">et al.</span> developed a variety of protocols for generating radicals, leading to a broad variety of heterocyclic motifs. Using the properties of (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) or ferrocene as efficient redox mediators, the researchers accessed valuable nitrogen-containing heterocycles. They achieved these transformations by the generation of N-centred radicals like <span class="italic">N</span>-amidyl radicals or iminoxyl radicals.<a title="Select to navigate to references" href="#cit46"><sup><span class="sup_ref">46</span></sup></a> A further approach for utilization of N-centred radicals was reported by Waldvogel <span class="italic">et al.</span> for the facilitation of intramolecular N–N bond formation.<a title="Select to navigate to references" href="#cit47"><sup><span class="sup_ref">47</span></sup></a></p> <p class="otherpara">The biological activity of modern APIs is highly enhanced by installation of fluoro moieties which increases cell penetration and leads to effective drugs.<a title="Select to navigate to references" href="#cit48"><sup><span class="sup_ref">48</span></sup></a> Thus, replacing hazardous conventional fluorination agents like Selectfluor with electrochemically generated fluoride is of major importance. Waldvogel <span class="italic">et al.</span> have reported several transformations towards heterocyclic compounds using less harmful reagents like triethylamine–hydrogen fluoride to anodically generate hypervalent difluoroiodoarenes to serve as mediators.<a title="Select to navigate to references" href="#cit49"><sup><span class="sup_ref">49</span></sup></a> Fuchigami <span class="italic">et al.</span> developed various techniques for selective electro-organic fluorinations (<a title="Select to navigate to scheme" href="#imgsch8">Scheme 8</a>).<a title="Select to navigate to references" href="#cit50"><sup><span class="sup_ref">50</span></sup></a> Anhydrous reaction conditions are key for these transformations due to the decreased nucleophilicity of fluoride in the presence of water, and ionic liquids are viable media (<a title="Select to navigate to scheme" href="#imgsch8">Scheme 8</a>).<a title="Select to navigate to references" href="#cit51"><sup><span class="sup_ref">51</span></sup></a> Alkali-metal fluorides and poly(ethylene glycol) provide appropriate fluoride nucleophilicity.<a title="Select to navigate to references" href="#cit52"><sup><span class="sup_ref">52</span></sup></a></p> <br/><div class="image_table"><table><tr><td colspan="3" class="imgHolder" id="imgsch8"><a href="/image/article/2020/SC/d0sc01848a/d0sc01848a-s8_hi-res.gif" title="Select to open image in new window" onclick="open(this.href, &#34;_blank&#34;, &#34;toolbar=1,scrollbars=yes,resizable=1&#34;); return false;"><img alt="image file: d0sc01848a-s8.tif" src="/image/article/2020/SC/d0sc01848a/d0sc01848a-s8.gif"/></a></td></tr><tr><td class="pushTitleRight"> </td><td class="image_title"><b>Scheme 8 </b> <span id="sch8"><span class="graphic_title">Electro-organic fluorination reactions by Fuchigami <span class="italic">et al.</span></span></span></td><td class="pushTitleLeft"> </td></tr></table></div> <p class="otherpara">These seminal developments in the successful replacement of hazardous oxidizers and reducing agents and the unique reactivity of electro-organic conversions promote novel reaction pathways with highly tuneable selectivity. The opportunity to generate intermediates which are only accessible in this way promotes the application of electro-organic conversions in future organic chemical synthesis and enables transformations which are difficult to perform with conventional techniques. Therefore, industrial processes are even performed on the several ton scale, for example the production of precursors for nylon by the Baizer process, the production of fragrances, or the fluorination of hydrocarbons in the Simons process. Besides these, various other electro-organic transformations are carried out on a smaller scale in industry for the production of agrochemicals, anti-inflammatories, or antibiotics (<a title="Select to navigate to figure" href="#imgfig2">Fig. 2</a>).<a title="Select to navigate to reference" href="#cit8"><sup><span class="sup_ref">8,16,20,53,54</span></sup></a></p> <br/><div class="image_table"><table><tr><td colspan="3" class="imgHolder" id="imgfig2"><a href="/image/article/2020/SC/d0sc01848a/d0sc01848a-f2_hi-res.gif" title="Select to open image in new window" onclick="open(this.href, &#34;_blank&#34;, &#34;toolbar=1,scrollbars=yes,resizable=1&#34;); return false;"><img alt="image file: d0sc01848a-f2.tif" src="/image/article/2020/SC/d0sc01848a/d0sc01848a-f2.gif"/></a></td></tr><tr><td class="pushTitleRight"> </td><td class="image_title"><b>Fig. 2 </b> <span id="fig2"><span class="graphic_title">Some electro-organic processes on the technical scale.</span></span></td><td class="pushTitleLeft"> </td></tr></table></div> <p class="otherpara">As stated above, electro-organic transformations offer a significant advantage for organic laboratories in cases where (I) appropriate reagents are not easily accessible, (II) the reactivity has to be precisely controlled, (III) acceleration of complex catalytic cycles using electricity is possible, (IV) redox reactions with disadvantageous kinetics can be performed easily, and (V) no runaway reactions are possible. These aspects show clearly that electro-organic synthesis is a technique with future prospects.</p> <h2 id="sect383"><span class="a_heading">New frontiers in electro-organic conversions</span></h2> <span>As increasing numbers of organic chemists stumble upon the benefits of electro-organic conversions, the field offers a broad perspective for developments in the near future. However, several emerging branches have to consider holding to the principles of “green chemistry” which is not always considered now.<a title="Select to navigate to reference" href="#cit55"><sup><span class="sup_ref">55,56</span></sup></a></span> <h3 id="sect387"><span class="b_heading">Reproducibility as a key parameter in process development</span></h3> <span>For successful establishment of electro-organic synthesis in laboratories, crucial aspects have to be considered to facilitate its application. A major criterion is the parameter of reproducibility of experiments which is accompanied by a variety of different parameters influencing the reaction (<a title="Select to navigate to figure" href="#imgfig3">Fig. 3</a>).</span> <br/><div class="image_table"><table><tr><td colspan="3" class="imgHolder" id="imgfig3"><a href="/image/article/2020/SC/d0sc01848a/d0sc01848a-f3_hi-res.gif" title="Select to open image in new window" onclick="open(this.href, &#34;_blank&#34;, &#34;toolbar=1,scrollbars=yes,resizable=1&#34;); return false;"><img alt="image file: d0sc01848a-f3.tif" src="/image/article/2020/SC/d0sc01848a/d0sc01848a-f3.gif"/></a></td></tr><tr><td class="pushTitleRight"> </td><td class="image_title"><b>Fig. 3 </b> <span id="fig3"><span class="graphic_title">Crucial parameters for reproducibility in electro-organic synthesis (batch-type).</span></span></td><td class="pushTitleLeft"> </td></tr></table></div> <p class="otherpara">Electro-organic chemistry is in an early stage of development and faces the challenge that entire data sets need to be given. Newcomers in this interdisciplinary field are often unaware of important electrolysis parameters. This hinders reproducibility and thus further distribution of the technique. Thus, standardization of the data sets given has to be established along with an inexpensive and easily applicable setup for beginners and advanced researchers, where beaker cells are the desired design due to their availability in every laboratory. The first developments have been made by Baran <span class="italic">et al.</span> with ElectraSyn and Waldvogel <span class="italic">et al.</span> with a screening system for up to eight simultaneous reactions in undivided or divided cells as well as a package for electro-organic synthesis in flow-reactors.<a title="Select to navigate to reference" href="#cit17"><sup><span class="sup_ref">17,18</span></sup></a> These systems should be chosen in preference to amateurish home-made flasks with non-defined parameters which were used in the past, for example using simple batteries as electricity sources does not allow sufficient control over the reaction and hinders reproducibility, although it demonstrates the easy application of electro-organic setups.<a title="Select to navigate to references" href="#cit57"><sup><span class="sup_ref">57</span></sup></a> Parameters such as the electrode distance are often not given but are crucial for electrochemical success.<a title="Select to navigate to references" href="#cit58"><sup><span class="sup_ref">58</span></sup></a> It is important for the literature to distinguish between simple demonstrations of possible electrolysis and their application in a useful laboratory synthetic protocol. These challenges can be overcome through the widespread establishment of electro-organic synthesis in education.</p> <h3 id="sect399"><span class="b_heading">Novel electrode materials beyond limits</span></h3> <span>The development of novel electrode materials enhances the performance of electro-organic conversions. Less electrode corrosion with metal-free, carbon-based materials such as boron-doped diamond (BDD) is preferred.<a title="Select to navigate to references" href="#cit59"><sup><span class="sup_ref">59</span></sup></a> Electrode materials like BDD offer unique selectivity, and are (electro-)chemically robust, resistant to fouling processes, and self-cleaning, enabling easy, maintenance-free application in electro-organic chemistry in a wide potential window.<a title="Select to navigate to references" href="#cit60"><sup><span class="sup_ref">60</span></sup></a> Thus, outstanding performances in the synthesis of complex molecular structures with good yields are feasible for the synthesis of drugs like licarin A (<strong>14</strong>, <a title="Select to navigate to scheme" href="#imgsch9">Scheme 9</a>).<a title="Select to navigate to references" href="#cit61"><sup><span class="sup_ref">61</span></sup></a></span> <br/><div class="image_table"><table><tr><td colspan="3" class="imgHolder" id="imgsch9"><a href="/image/article/2020/SC/d0sc01848a/d0sc01848a-s9_hi-res.gif" title="Select to open image in new window" onclick="open(this.href, &#34;_blank&#34;, &#34;toolbar=1,scrollbars=yes,resizable=1&#34;); return false;"><img alt="image file: d0sc01848a-s9.tif" src="/image/article/2020/SC/d0sc01848a/d0sc01848a-s9.gif"/></a></td></tr><tr><td class="pushTitleRight"> </td><td class="image_title"><b>Scheme 9 </b> <span id="sch9"><span class="graphic_title">Performance of boron-doped diamond anodes in electro-organic synthesis.</span></span></td><td class="pushTitleLeft"> </td></tr></table></div> <p class="otherpara">In particular, carbon allotrope materials will gain significant influence in society due to the sustainable character of the materials and their short- to long-term economic benefits in comparison to the scarcity of transition metals. Still, metal electrodes offer potential for development in the application of alloys, for example using leaded bronze instead of lead as the cathode preserves the properties of lead but suppresses cathodic corrosion. This enables easier handling due to the lowered toxicity and enhanced mechanical properties of this material.<a title="Select to navigate to reference" href="#cit12"><sup><span class="sup_ref">12,62</span></sup></a> The efficiency of electro-organic transformations can be improved by the design of three-dimensional structured electrodes like foams or meshes which increases the active electrode surface area which results in shorter reaction times. A well-known, inert, and sustainable electrode material in this category used by many groups is reticulated vitreous carbon (RVC).<a title="Select to navigate to reference" href="#cit27"><sup><span class="sup_ref">27,41,44,63</span></sup></a> Alternatives with successful performance are graphite felt or foam materials like nickel.<a title="Select to navigate to references" href="#cit64"><sup><span class="sup_ref">64</span></sup></a> Moreover, several electro-organic processes generate gaseous products in side reactions, which makes safe handling challenging, and the adsorption of gases at the electrode lowers the active electrode surface area. Novel designs can include gas-diffusion electrodes which are already employed as oxygen-depolarized cathodes in the chlor-alkali process to enable the addition of gaseous reagents to suppress cathodic hydrogen evolution.<a title="Select to navigate to references" href="#cit65"><sup><span class="sup_ref">65</span></sup></a> The design of novel electrodes has to focus on performance, sustainability, and economical aspects. For cathodic processes, the counter anode requires cost-intensive maintenance which is a barrier for technical application.</p> <h3 id="sect414"><span class="b_heading">Robust processes for broad applications</span></h3> <span>A major drawback of electro-organic transformations is the long reaction time due to the sensitivity of substrates towards higher current densities, which hampers broader acceptance of the technique in organic chemical laboratories. A broad current density range is beneficial for easy application and makes the system robust towards fluctuations in electricity consumption and reaction parameters.<a title="Select to navigate to references" href="#cit66"><sup><span class="sup_ref">66</span></sup></a> Still, only a few electro-organic processes are carried out at high current densities, for example the Kolbe electrolysis and the Baizer process.<a title="Select to navigate to references" href="#cit54"><sup><span class="sup_ref">54</span></sup></a> Exemplary developments have been reported by Waldvogel <span class="italic">et al.</span> for the anodic cross-coupling of phenols with arenes, yielding the product <strong>17</strong> with excellent selectivity and good yields of up to 70% at a high current density of 100 mA cm<small><sup>−2</sup></small> which shortens the electrolysis time drastically (<a title="Select to navigate to scheme" href="#imgsch10">Scheme 10</a>).<a title="Select to navigate to references" href="#cit67"><sup><span class="sup_ref">67</span></sup></a> Mass transport is enhanced by the low viscosity and microdomains in the HFIP–methanol mixture to facilitate robustness over a current density range of two orders of magnitude.</span> <br/><div class="image_table"><table><tr><td colspan="3" class="imgHolder" id="imgsch10"><a href="/image/article/2020/SC/d0sc01848a/d0sc01848a-s10_hi-res.gif" title="Select to open image in new window" onclick="open(this.href, &#34;_blank&#34;, &#34;toolbar=1,scrollbars=yes,resizable=1&#34;); return false;"><img alt="image file: d0sc01848a-s10.tif" src="/image/article/2020/SC/d0sc01848a/d0sc01848a-s10.gif"/></a></td></tr><tr><td class="pushTitleRight"> </td><td class="image_title"><b>Scheme 10 </b> <span id="sch10"><span class="graphic_title">Robust anodic carbon–carbon bond formation at different current densities; selectivity for the cross-coupling reaction &gt;100<img class="charmap" src="https://www.rsc.org/images/entities/char_2009.gif" alt="[thin space (1/6-em)]"/>:<img class="charmap" src="https://www.rsc.org/images/entities/char_2009.gif" alt="[thin space (1/6-em)]"/>1.</span></span></td><td class="pushTitleLeft"> </td></tr></table></div> <p class="otherpara">Galvanostatic electrolyses are robust processes which yield the desired product and are unaffected by potential fluctuations, leading to selective reactions with limited waste stream. The reactions are unsusceptible to over-conversion of substrates which would lead to a vast range of undesired by-products and therefore a demanding workup procedure. For the limited examples of robust electro-organic processes, research should focus on considering variations in the parameters which do not lead to inferior results or failure. This is important for researchers who wish to start using electro-organic conversions, as it will facilitate a trouble-free start.</p> <h3 id="sect427"><span class="b_heading">Paired electrolysis</span></h3> <span>The development of novel processes is driven by the issues of sustainability and cost-efficiency. However, awareness of the whole electrolysis system is often neglected and could reveal powerful processes if both electrode reactions generate value-added products.<a title="Select to navigate to reference" href="#cit3"><sup><span class="sup_ref">3,4</span></sup></a> Decomposition of the solvent resulting in hydrogen evolution is not considered as such. This approach is known as a paired electrochemical process and can facilitate highly sustainable synthesis due to the efficient use of electricity and minimization of energy and chemical requirements as well as waste generation. Industrial scale inorganic electrolysis is already taking advantage of this concept in the refining of metals as well as the generation of chlorine and sodium hydroxide in the chlor-alkali process. Paired electrolysis can be performed using different approaches including undivided setups (<a title="Select to navigate to scheme" href="#imgsch11">Scheme 11</a>).<a title="Select to navigate to references" href="#cit68"><sup><span class="sup_ref">68</span></sup></a></span> <br/><div class="image_table"><table><tr><td colspan="3" class="imgHolder" id="imgsch11"><a href="/image/article/2020/SC/d0sc01848a/d0sc01848a-s11_hi-res.gif" title="Select to open image in new window" onclick="open(this.href, &#34;_blank&#34;, &#34;toolbar=1,scrollbars=yes,resizable=1&#34;); return false;"><img alt="image file: d0sc01848a-s11.tif" src="/image/article/2020/SC/d0sc01848a/d0sc01848a-s11.gif"/></a></td></tr><tr><td class="pushTitleRight"> </td><td class="image_title"><b>Scheme 11 </b> <span id="sch11"><span class="graphic_title">Different types of paired electrolysis.</span></span></td><td class="pushTitleLeft"> </td></tr></table></div> <p class="otherpara">An example of paired electrolysis on a multi-ton scale is performed by BASF SE to obtain <span class="italic">p-tert</span>-butylbenzaldehyde dimethyl acetal (<strong>10</strong>) and phthalide (<strong>7</strong>) in a single paired process with 100% atom efficiency and 180% current efficiency (<a title="Select to navigate to scheme" href="#imgsch12">Scheme 12</a>).<a title="Select to navigate to references" href="#cit69"><sup><span class="sup_ref">69</span></sup></a> This process is only feasible if the chemicals involved can be easily separated and purified by distillation, crystallization, and filtration, which is applicable for this reaction.</p> <br/><div class="image_table"><table><tr><td colspan="3" class="imgHolder" id="imgsch12"><a href="/image/article/2020/SC/d0sc01848a/d0sc01848a-s12_hi-res.gif" title="Select to open image in new window" onclick="open(this.href, &#34;_blank&#34;, &#34;toolbar=1,scrollbars=yes,resizable=1&#34;); return false;"><img alt="image file: d0sc01848a-s12.tif" src="/image/article/2020/SC/d0sc01848a/d0sc01848a-s12.gif"/></a></td></tr><tr><td class="pushTitleRight"> </td><td class="image_title"><b>Scheme 12 </b> <span id="sch12"><span class="graphic_title">Paired electrolysis in the synthesis of phthalide and <span class="italic">p-tert</span>-butylbenzaldehyde dimethyl acetal performed by BASF SE.</span></span></td><td class="pushTitleLeft"> </td></tr></table></div> <p class="otherpara">Convergent electrolysis generates one product from two substrates and depends on accurate matching of the oxidation potentials, for example the synthesis of glyoxylic acid from glyoxal and oxalic acid.<a title="Select to navigate to references" href="#cit70"><sup><span class="sup_ref">70</span></sup></a> Divergent electrolysis transforms one substrate into two different products, for example the conversion of glucose into gluconic acid and sorbitol.<a title="Select to navigate to references" href="#cit71"><sup><span class="sup_ref">71</span></sup></a> An elaborate technique using mediated electrolysis generates the desired product at both electrodes from a single substrate. A substrate is converted into a product whereby the counter electrode generates a powerful redox reagent which facilitates substrate conversion to the desired product. Sodium gluconate can be converted into <span class="small_caps">D</span>-arabinose in a linear paired electrolysis with a Fe<small><sup>2+</sup></small>/Fe<small><sup>3+</sup></small> mediator system with current efficiencies of up to 127%. This counterintuitive process is enabled by the direct anodic transformation and indirect cathodic oxidation by electrogenerated peroxide species as powerful oxidizers produced by reduction of oxygen in aqueous medium.<a title="Select to navigate to references" href="#cit72"><sup><span class="sup_ref">72</span></sup></a> Successful linear paired electrolysis depends on the cooperation of several kinetic processes and detailed reaction optimization. A further possibility is domino synthesis where a substrate is firstly converted at the working electrode and then after diffusion is converted at the counter electrode in an undivided cell. An example was reported by Waldvogel <span class="italic">et al.</span> for converting aldoximes into the corresponding nitriles <span class="italic">via</span> nitrile oxide intermediates.<a title="Select to navigate to references" href="#cit73"><sup><span class="sup_ref">73</span></sup></a></p> <h3 id="sect454"><span class="b_heading">Scale-up – electro-organic synthesis in flow cells</span></h3> <span>Despite the successful development of electro-organic processes, the challenging task of scale-up for industrial application has to be faced. The barrier for technical application is mainly centred in the limitations of less robust electro-organic transformations.<a title="Select to navigate to reference" href="#cit8"><sup><span class="sup_ref">8,20,74</span></sup></a> This is accompanied by one of the most significant disadvantages of electrochemical processes, the frequently used potentiostatic approach. This requires an elaborate three-electrode arrangement and long reaction times due to the decreasing amount of substrate undergoing electrolysis which lowers the current in order to maintain the fixed potential. Similar to conventional transformations, several parameters have to be considered for scale-up. The volume-to-surface area ratio shrinks in larger batch reactors which can be encountered in the application of bipolar stacked electrode setups.<a title="Select to navigate to references" href="#cit7"><sup><span class="sup_ref">7</span></sup></a> Besides this, mass transport occurs from an electrode into the bulk solution for post-electrolysis processes and requires efficient mixing. Moreover, electrolysis generates huge amounts of heat, which mostly occurs at the electrodes and therefore, a larger surface area faces challenges in efficient cooling. These issues have led to the development of flow-electrolysis cells which can operate in galvanostatic electrolysis and do not require a sophisticated and cost-intensive electronic setup to convert large amounts of substrates with high efficiency.<a title="Select to navigate to references" href="#cit18"><sup><span class="sup_ref">18</span></sup></a> Flow-electrolysis enables the economically beneficial continuous generation of value-added products. Several flow-electrolysis cells in a row, each applying a certain part of the necessary charge, can be used to tackle the mentioned challenges (<span class="italic">vide supra</span>).<a title="Select to navigate to references" href="#cit75"><sup><span class="sup_ref">75</span></sup></a> The conversion of sensitive substrates can be enabled by continuous removal of products, decreasing potential overoxidation (<a title="Select to navigate to table" href="#tab1">Table 1</a>).</span> <div class="table_caption"><b>Table 1</b> <span id="tab1">Comparison of batch and flow electrolysis</span> </div> <div class="rtable__wrapper"><div class="rtable__inner"><table class="tgroup rtable" border="0"><colgroup><col/><col/><col/></colgroup> <thead align="left"> <tr align="left" valign="bottom"> <th align="left" valign="bottom" class="border_black">Parameter</th> <th align="left" valign="bottom" class="border_black">Batch <p align="center"><a href="/image/article/2020/SC/d0sc01848a/d0sc01848a-u1_hi-res.gif" title="Select to open image in new window" onclick="open(this.href, &#34;_blank&#34;, &#34;toolbar=1,scrollbars=yes,resizable=1&#34;); return false;"><img alt="image file: d0sc01848a-u1.tif" src="/image/article/2020/SC/d0sc01848a/d0sc01848a-u1.gif"/></a></p></th> <th align="left" valign="bottom" class="border_black">Flow <p align="center"><a href="/image/article/2020/SC/d0sc01848a/d0sc01848a-u2_hi-res.gif" title="Select to open image in new window" onclick="open(this.href, &#34;_blank&#34;, &#34;toolbar=1,scrollbars=yes,resizable=1&#34;); return false;"><img alt="image file: d0sc01848a-u2.tif" src="/image/article/2020/SC/d0sc01848a/d0sc01848a-u2.gif"/></a></p></th> </tr> </thead> <tbody align="left"> <tr align="left"> <td valign="top">Continuous</td> <td valign="top">No</td> <td valign="top">Yes</td> </tr> <tr align="left"> <td valign="top">Sensitive substrates</td> <td valign="top">Potentiostatic</td> <td valign="top">Galvanostatic</td> </tr> <tr align="left"> <td valign="top">Temperature control</td> <td valign="top">Less efficient</td> <td valign="top">Efficient</td> </tr> <tr align="left"> <td valign="top">Volume-to-surface area ratio</td> <td valign="top">Low</td> <td valign="top">High</td> </tr> </tbody> </table></div></div> <hr class="hrule"/><br/> <p class="otherpara">Several systems have been developed for flow-electrolysis, in which micro-flow setups suffer from a small electrode surface area and inefficient economic productivity. Long-channel flow cells are only applicable for processes which are robust towards a wide range of current densities and lack possibilities for gas liberation (single pass conversions).<a title="Select to navigate to references" href="#cit76"><sup><span class="sup_ref">76</span></sup></a> Thus, scale-up is usually achieved by increasing the number of flow cells and switching between flow cells to optimize the electrolysis conditions and increase the overall capacity. Despite this, research has revealed the benefits of flow cells including high surface area-to-volume ratio, narrow electrode gaps for low electrical resistance, and efficient temperature control.<a title="Select to navigate to reference" href="#cit19"><sup><span class="sup_ref">19,77</span></sup></a> Narrow gap electrolysis cells need no supporting electrolyte when residual conductivity is present, <span class="italic">e.g.</span> due to traces of water.<a title="Select to navigate to references" href="#cit75"><sup><span class="sup_ref">75</span></sup></a></p> <h3 id="sect499"><span class="b_heading">Electrochemistry in the synthesis of natural products and APIs</span></h3> <span>The improvement of several syntheses which use electricity has initiated the application of these transformations in complex total synthesis protocols, as reviewed by Kärkäs <span class="italic">et al.</span><a title="Select to navigate to reference" href="#cit27"><sup><span class="sup_ref">27,57,78</span></sup></a> The major advantage of electro-organic synthesis in comparison to conventional transformation is the absence of metal contamination in the products if carbon allotropes are used as electrodes, which is highly favoured in the synthesis of active pharmaceutical ingredients (APIs).<a title="Select to navigate to references" href="#cit79"><sup><span class="sup_ref">79</span></sup></a> Electro-organic synthesis possesses several relevant features for these syntheses like mild reaction conditions, shortened pathways, atom- and cost-efficiency, and avoidance of (over-)stoichiometric hazardous reagents. However, electro-organic conversions of complex molecules are still rare because most electro-organic protocols use ordinary substrates containing a single redox-active functionality.<a title="Select to navigate to references" href="#cit80"><sup><span class="sup_ref">80</span></sup></a> This hampers their application in total syntheses due to selectivity challenges as well as difficulties in scalability. Some electro-organic syntheses of complex molecular architectures are only possible using electricity and/or are not accessible with conventional methods, for example the synthesis of dixiamycin B (<strong>20</strong>). This natural product was synthesized using a direct intermolecular anodic N–N coupling reaction of two xiamycin B molecules (<a title="Select to navigate to figure" href="#imgfig4">Fig. 4</a>).<a title="Select to navigate to references" href="#cit81"><sup><span class="sup_ref">81</span></sup></a></span> <br/><div class="image_table"><table><tr><td colspan="3" class="imgHolder" id="imgfig4"><a href="/image/article/2020/SC/d0sc01848a/d0sc01848a-f4_hi-res.gif" title="Select to open image in new window" onclick="open(this.href, &#34;_blank&#34;, &#34;toolbar=1,scrollbars=yes,resizable=1&#34;); return false;"><img alt="image file: d0sc01848a-f4.tif" src="/image/article/2020/SC/d0sc01848a/d0sc01848a-f4.gif"/></a></td></tr><tr><td class="pushTitleRight"> </td><td class="image_title"><b>Fig. 4 </b> <span id="fig4"><span class="graphic_title">Natural products and APIs with electro-organic key transformations.</span></span></td><td class="pushTitleLeft"> </td></tr></table></div> <p class="otherpara">An early and prominent example of late stage functionalization in electro-organic synthesis is the cyclization technique used by Moeller <span class="italic">et al.</span> to form alliacol A (<strong>22</strong>). A carbon–carbon bond was formed intramolecularly between a protected enol and a furan moiety.<a title="Select to navigate to reference" href="#cit27"><sup><span class="sup_ref">27,57</span></sup></a> Alkaloids are a major class of naturally occurring compounds used in medicine. Thus, shortened synthesis protocols for kopsidine A (<strong>21</strong>), (−)-thebaine (<strong>23</strong>), and (−)-oxycodone are of high importance.<a title="Select to navigate to references" href="#cit82"><sup><span class="sup_ref">82</span></sup></a> The synthesis of kopsidine A involved an oxidation at the bridging nitrogen which resulted in the formation of an intramolecular C–O bond for ring closure after addition of methanol. (−)-Thebaine and (−)-oxycodone were formed from a trioxygenated laudanosine derivative by a regio- and diastereoselective anodic C–C bond formation.</p> <p class="otherpara">Recently, a patent by Bayer reported the concise synthesis of finerenone (<strong>25</strong>), an API for heart disease treatment, through racemisation of the wrong enantiomer <span class="italic">via</span> an anodic and cathodic sequence for substrate recovery (<a title="Select to navigate to scheme" href="#imgsch13">Scheme 13</a>).<a title="Select to navigate to references" href="#cit83"><sup><span class="sup_ref">83</span></sup></a></p> <br/><div class="image_table"><table><tr><td colspan="3" class="imgHolder" id="imgsch13"><a href="/image/article/2020/SC/d0sc01848a/d0sc01848a-s13_hi-res.gif" title="Select to open image in new window" onclick="open(this.href, &#34;_blank&#34;, &#34;toolbar=1,scrollbars=yes,resizable=1&#34;); return false;"><img alt="image file: d0sc01848a-s13.tif" src="/image/article/2020/SC/d0sc01848a/d0sc01848a-s13.gif"/></a></td></tr><tr><td class="pushTitleRight"> </td><td class="image_title"><b>Scheme 13 </b> <span id="sch13"><span class="graphic_title">Electro-organic racemisation in the synthesis of an API by Bayer.</span></span></td><td class="pushTitleLeft"> </td></tr></table></div> <h3 id="sect525"><span class="b_heading">Stereoselective electro-organic conversions</span></h3> <span>The synthesis of natural products requires the installation of chiral information. In comparison to conventional asymmetric catalysis, only a few electro-organic conversions facilitate asymmetric reactions, commonly with unsatisfactory enantiomeric excess (ee).<a title="Select to navigate to reference" href="#cit84"><sup><span class="sup_ref">84–86</span></sup></a> The early days of asymmetric electrolysis focused on chiral supporting electrolytes, solvents and asymmetric functionalization of electrodes, whereas modern techniques rely on chiral mediators. Electro-catalytic asymmetric synthesis takes advantage of precisely investigated asymmetric organic synthesis with electrons as sustainable reagents. The use of chiral auxiliaries enables pre-functionalization with the desired stereo information using recyclable electro-auxiliaries (<a title="Select to navigate to scheme" href="#imgsch14">Scheme 14</a>).<a title="Select to navigate to reference" href="#cit84"><sup><span class="sup_ref">84,85</span></sup></a></span> <br/><div class="image_table"><table><tr><td colspan="3" class="imgHolder" id="imgsch14"><a href="/image/article/2020/SC/d0sc01848a/d0sc01848a-s14_hi-res.gif" title="Select to open image in new window" onclick="open(this.href, &#34;_blank&#34;, &#34;toolbar=1,scrollbars=yes,resizable=1&#34;); return false;"><img alt="image file: d0sc01848a-s14.tif" src="/image/article/2020/SC/d0sc01848a/d0sc01848a-s14.gif"/></a></td></tr><tr><td class="pushTitleRight"> </td><td class="image_title"><b>Scheme 14 </b> <span id="sch14"><span class="graphic_title">Asymmetric electrolysis modes with significant enantiomeric excess.</span></span></td><td class="pushTitleLeft"> </td></tr></table></div> <p class="otherpara">For the modification of electrode surfaces with chiral molecules, carbon electrodes with polymers, organometallic complexes, or biomolecules are frequently used as chiral frameworks which are recyclable with high turnover numbers (TON).<a title="Select to navigate to references" href="#cit85"><sup><span class="sup_ref">85</span></sup></a> The first successful approach was reported in 1975 by Miller <span class="italic">et al.</span> for coating graphite with (<span class="italic">S</span>)-(−)-phenylalanine methyl ester to reduce 4-acetylpyridine asymmetrically.<a title="Select to navigate to references" href="#cit87"><sup><span class="sup_ref">87</span></sup></a> Modern approaches use poly-<span class="small_caps">L</span>-valine or spiroxyl motifs to obtain higher coating efficiencies and higher enantiomeric excesses (<a title="Select to navigate to scheme" href="#imgsch15">Scheme 15</a>).<a title="Select to navigate to references" href="#cit88"><sup><span class="sup_ref">88</span></sup></a></p> <br/><div class="image_table"><table><tr><td colspan="3" class="imgHolder" id="imgsch15"><a href="/image/article/2020/SC/d0sc01848a/d0sc01848a-s15_hi-res.gif" title="Select to open image in new window" onclick="open(this.href, &#34;_blank&#34;, &#34;toolbar=1,scrollbars=yes,resizable=1&#34;); return false;"><img alt="image file: d0sc01848a-s15.tif" src="/image/article/2020/SC/d0sc01848a/d0sc01848a-s15.gif"/></a></td></tr><tr><td class="pushTitleRight"> </td><td class="image_title"><b>Scheme 15 </b> <span id="sch15"><span class="graphic_title">Spiroxyl-modified graphite felt (GF) anode for asymmetric electrolysis.</span></span></td><td class="pushTitleLeft"> </td></tr></table></div> <p class="otherpara">Novel approaches to chiral electrode surfaces use inexpensive, readily available materials for chiral encoding of the surface to obtain enantiomeric excesses of up to 80% in pulsed electro-organic synthesis. This imprinting is performed by metal (<span class="italic">e.g.</span> Pt, Ni) deposition on a liquid crystal with adsorbed asymmetric molecules as a template for the later product formation during electrolysis. After removal of the template, a mesoporous metal remains which is decorated with stable chiral cavities. During electrolysis, these cavities hinder formation of the non-desired enantiomer by trapping the substrate in the cavity and blocking one side of the molecule to attack by the co-reagent. In contrast, conventional metal electrodes give racemates due to there being no preferred orientation of the substrate at the electrode surface (<a title="Select to navigate to figure" href="#imgfig5">Fig. 5</a>).<a title="Select to navigate to references" href="#cit89"><sup><span class="sup_ref">89</span></sup></a></p> <br/><div class="image_table"><table><tr><td colspan="3" class="imgHolder" id="imgfig5"><a href="/image/article/2020/SC/d0sc01848a/d0sc01848a-f5_hi-res.gif" title="Select to open image in new window" onclick="open(this.href, &#34;_blank&#34;, &#34;toolbar=1,scrollbars=yes,resizable=1&#34;); return false;"><img alt="image file: d0sc01848a-f5.tif" src="/image/article/2020/SC/d0sc01848a/d0sc01848a-f5.gif"/></a></td></tr><tr><td class="pushTitleRight"> </td><td class="image_title"><b>Fig. 5 </b> <span id="fig5"><span class="graphic_title">Schematic illustration of the manufacture of a chiral imprinted Pt or Ni electrode by 3D metal deposition on a liquid crystal with adsorbed chiral molecules, including a demonstration of enantiomer discrimination at the imprinted electrode surface during electrolysis.</span></span></td><td class="pushTitleLeft"> </td></tr></table></div> <p class="otherpara">The rising interest in the application of chiral mediators, especially for organic compounds, correlates with the formation of the desired stereoisomer in higher optical yields. <span class="italic">N</span>-oxyl motifs<a title="Select to navigate to references" href="#cit90"><sup><span class="sup_ref">90</span></sup></a> and iodoarenes<a title="Select to navigate to references" href="#cit91"><sup><span class="sup_ref">91</span></sup></a> are frequently used compounds. In several reports, the application of a chiral amine promoted asymmetric electrolysis (<a title="Select to navigate to scheme" href="#imgsch16">Scheme 16</a>).<a title="Select to navigate to references" href="#cit92"><sup><span class="sup_ref">92</span></sup></a></p> <br/><div class="image_table"><table><tr><td colspan="3" class="imgHolder" id="imgsch16"><a href="/image/article/2020/SC/d0sc01848a/d0sc01848a-s16_hi-res.gif" title="Select to open image in new window" onclick="open(this.href, &#34;_blank&#34;, &#34;toolbar=1,scrollbars=yes,resizable=1&#34;); return false;"><img alt="image file: d0sc01848a-s16.tif" src="/image/article/2020/SC/d0sc01848a/d0sc01848a-s16.gif"/></a></td></tr><tr><td class="pushTitleRight"> </td><td class="image_title"><b>Scheme 16 </b> <span id="sch16"><span class="graphic_title">Enantiomerically pure amine as electro-organocatalyst.</span></span></td><td class="pushTitleLeft"> </td></tr></table></div> <p class="otherpara">Transition metal complexes benefit from fine tuning of ligands and thus are tailored catalysts. However, this leads to undesired metal contamination in the products.<a title="Select to navigate to references" href="#cit93"><sup><span class="sup_ref">93</span></sup></a> A topic of current interest is biocatalysis which can be combined with electro-catalysis to perform stereoselective epoxidation.<a title="Select to navigate to references" href="#cit94"><sup><span class="sup_ref">94</span></sup></a> The combination of enzyme-based reduction with electro-catalysis enabled access to asymmetric amino acids in optical yields up to almost 100%.<a title="Select to navigate to references" href="#cit95"><sup><span class="sup_ref">95</span></sup></a> Besides these approaches which use external stereo information, the use of chiral auxiliaries is a further approach.<a title="Select to navigate to references" href="#cit96"><sup><span class="sup_ref">96</span></sup></a> Several promising results have been reported in this field, with the drawbacks of the application of metals and low enantiomeric excess encouraging the scientific community.</p> <h3 id="sect562"><span class="b_heading">Electro-valorisation of renewable bio-based feedstocks</span></h3> <span>In the past, a huge number of resources for chemical synthesis were of fossil origin. The limitations of fossil resources caused research to focus on the sustainable conversion of chemicals and generation of value-added products derived from biomass like lignin, carbohydrates, proteins, terpenes, and fats as promising feedstocks.<a title="Select to navigate to reference" href="#cit16"><sup><span class="sup_ref">16,55,97</span></sup></a> Electrochemistry has exhibited powerful capabilities and can be combined with renewable feedstocks for the generation of fuels and chemicals.</span> <p class="otherpara">The conversion of the greenhouse gas CO<small><sub>2</sub></small> for application as a C1-building block in synthetic chemistry is a major challenge. Electrochemistry offers possibilities for this conversion due to its tunability in a wide potential window to overcome the high redox potential of CO<small><sub>2</sub></small>. Progress has been made in transformations into valuable building blocks like CO for conversion into syngas, formic acid, or ethylene depending on the cathode material.<a title="Select to navigate to references" href="#cit98"><sup><span class="sup_ref">98</span></sup></a> Copper cathodes yield mainly methane and ethylene, whereas lead and mercury mostly give formic acid, and gold, silver, and zinc generate CO. These developments are covered by several reviews.<a title="Select to navigate to references" href="#cit99"><sup><span class="sup_ref">99</span></sup></a></p> <p class="otherpara">The cross-linked polyphenol lignin is the second most abundant biopolymer and is accumulated in the paper industry as a by-product. As well as its common use in heat and electricity generation, lignin can be used as an inexpensive feedstock for aromatic fine chemicals like the common aroma chemical vanillin (<strong>35</strong>).<a title="Select to navigate to reference" href="#cit100"><sup><span class="sup_ref">100–103</span></sup></a> The conversion of lignin is an immensely growing area of chemical research.<a title="Select to navigate to reference" href="#cit104"><sup><span class="sup_ref">104–107</span></sup></a> Kraft lignin is formed in the pulping process and is challenging to decompose using conventional chemical methods due to the high robustness of the material. Therefore, it is necessary to use hazardous reagents and methods.<a title="Select to navigate to reference" href="#cit107"><sup><span class="sup_ref">107,108</span></sup></a> The superior performance of electro-organic processes in this field can be shown by several processes established to generate value-added products like vanillin on Au, Cu, Ni, PbO<small><sub>2</sub></small>, Pt, or dimensionally stable anodes.<a title="Select to navigate to reference" href="#cit106"><sup><span class="sup_ref">106,109</span></sup></a> Moreover, approaches using Ni/P-foam and Ni/NiOOH electrodes, and a photo-electrochemical method using TiO<small><sub>2</sub></small> nanotubes and Ta<small><sub>2</sub></small>O<small><sub>5</sub></small>–IrO<small><sub>2</sub></small> films have been reported (<a title="Select to navigate to scheme" href="#imgsch17">Scheme 17</a>).<a title="Select to navigate to reference" href="#cit100"><sup><span class="sup_ref">100–102,110</span></sup></a></p> <br/><div class="image_table"><table><tr><td colspan="3" class="imgHolder" id="imgsch17"><a href="/image/article/2020/SC/d0sc01848a/d0sc01848a-s17_hi-res.gif" title="Select to open image in new window" onclick="open(this.href, &#34;_blank&#34;, &#34;toolbar=1,scrollbars=yes,resizable=1&#34;); return false;"><img alt="image file: d0sc01848a-s17.tif" src="/image/article/2020/SC/d0sc01848a/d0sc01848a-s17.gif"/></a></td></tr><tr><td class="pushTitleRight"> </td><td class="image_title"><b>Scheme 17 </b> <span id="sch17"><span class="graphic_title">Electro-organic valorization of lignin as a renewable feedstock.</span></span></td><td class="pushTitleLeft"> </td></tr></table></div> <p class="otherpara">However, many approaches facilitate electrochemical Kraft lignin degradation but generate mixtures of several products which are difficult to separate, and only a few methods enable highly selective transformation.<a title="Select to navigate to references" href="#cit100"><sup><span class="sup_ref">100</span></sup></a> Stahl <span class="italic">et al.</span> used an aminoxyl-mediated anodic process to convert the primary alcohol moieties in lignin into carboxylic acids which can be used as polyelectrolytes.<a title="Select to navigate to references" href="#cit105"><sup><span class="sup_ref">105</span></sup></a> A paired approach for the conversion of less robust organosolv lignin was reported by Zhu <span class="italic">et al.</span>, with direct anodic oxidation at a RuO<small><sub>2</sub></small>/Ti-mesh electrode and generation of H<small><sub>2</sub></small>O<small><sub>2</sub></small> at the graphite felt cathode, which initiated further degradation of the lignin.<a title="Select to navigate to references" href="#cit111"><sup><span class="sup_ref">111</span></sup></a> Stephenson <span class="italic">et al.</span> obtained a broad variety of value-added compounds from native lignin with photo- and electro-redox catalysis under ambient conditions.<a title="Select to navigate to references" href="#cit112"><sup><span class="sup_ref">112</span></sup></a> Moeller <span class="italic">et al.</span> electrochemically accessed valuable aromatic chemical building blocks from sawdust as an ordinary raw material.<a title="Select to navigate to references" href="#cit113"><sup><span class="sup_ref">113</span></sup></a></p> <p class="otherpara">The abundance of saccharides in nature offers opportunities for renewable biofuel or chemical production. Thus, several electro-organic conversions have been established to selectively synthesise the corresponding moieties either by direct anodic oxidation or by using a TEMPO mediator. Glucose was used as a bio-feedstock for sorbitol synthesis at Raney®-Ni cathodes, for use in cosmetics and medical applications, or as a sweetener in the food industry.<a title="Select to navigate to references" href="#cit114"><sup><span class="sup_ref">114</span></sup></a> The electro-conversion of saccharides provides further access to valuable fine chemicals like the pyridoxine vitamin B<small><sub>6</sub></small> (<strong>37</strong>, <a title="Select to navigate to scheme" href="#imgsch18">Scheme 18</a>).<a title="Select to navigate to references" href="#cit115"><sup><span class="sup_ref">115</span></sup></a> The value-added products furfural and 5-hydroxymethylfurfural, obtained from saccharides using conventional chemical transformations, show promising structures for further modification into potential biofuels and chemicals for biopolymer synthesis.<a title="Select to navigate to references" href="#cit116"><sup><span class="sup_ref">116</span></sup></a></p> <br/><div class="image_table"><table><tr><td colspan="3" class="imgHolder" id="imgsch18"><a href="/image/article/2020/SC/d0sc01848a/d0sc01848a-s18_hi-res.gif" title="Select to open image in new window" onclick="open(this.href, &#34;_blank&#34;, &#34;toolbar=1,scrollbars=yes,resizable=1&#34;); return false;"><img alt="image file: d0sc01848a-s18.tif" src="/image/article/2020/SC/d0sc01848a/d0sc01848a-s18.gif"/></a></td></tr><tr><td class="pushTitleRight"> </td><td class="image_title"><b>Scheme 18 </b> <span id="sch18"><span class="graphic_title">Electro-conversion of naturally derived furans into pyridoxines, like vitamin B<small><sub>6</sub></small>.</span></span></td><td class="pushTitleLeft"> </td></tr></table></div> <p class="otherpara">Versatile functionalization is possible in fatty acids as natural energy stores to obtain value-added products. Electro-organic conversion was successfully performed to obtain diesel-like olefin–ether mixtures as potential biofuels.<a title="Select to navigate to references" href="#cit117"><sup><span class="sup_ref">117</span></sup></a> Moreover, the common Kolbe electrolysis is suitable for di-decarboxylation in a cross-coupling reaction to form muscone precursor <strong>40</strong> (<a title="Select to navigate to scheme" href="#imgsch19">Scheme 19</a>).<a title="Select to navigate to references" href="#cit118"><sup><span class="sup_ref">118</span></sup></a> Recent developments include the generation by Kolbe electrolysis of bio-based epoxy resins from viscous tall oil which is a by-product in the pulping industry.<a title="Select to navigate to references" href="#cit119"><sup><span class="sup_ref">119</span></sup></a></p> <br/><div class="image_table"><table><tr><td colspan="3" class="imgHolder" id="imgsch19"><a href="/image/article/2020/SC/d0sc01848a/d0sc01848a-s19_hi-res.gif" title="Select to open image in new window" onclick="open(this.href, &#34;_blank&#34;, &#34;toolbar=1,scrollbars=yes,resizable=1&#34;); return false;"><img alt="image file: d0sc01848a-s19.tif" src="/image/article/2020/SC/d0sc01848a/d0sc01848a-s19.gif"/></a></td></tr><tr><td class="pushTitleRight"> </td><td class="image_title"><b>Scheme 19 </b> <span id="sch19"><span class="graphic_title">Mixed Kolbe electrolysis of fatty acids in the synthesis of <span class="italic">rac</span>-muscone.</span></span></td><td class="pushTitleLeft"> </td></tr></table></div> <p class="otherpara">The abundance of hydrocarbon-based bio-feedstocks is supplemented by amino acids as versatile renewable nitrogen sources to replace the synthesis from petrochemicals with hazardous external nitrogen sources. The profitable one-pot electro-organic conversion of glutamic acid into adiponitrile (<strong>9</strong>), which is a building block for polyamides and polyurethanes, is an alternative approach in contrast to the petro-based industrially applied Baizer process (<a title="Select to navigate to scheme" href="#imgsch20">Scheme 20</a>).<a title="Select to navigate to references" href="#cit120"><sup><span class="sup_ref">120</span></sup></a> Moreover, the cathode dependent conversion of lysine to the corresponding amine, amide, or nitrile was established and adopted for several substrates.<a title="Select to navigate to references" href="#cit121"><sup><span class="sup_ref">121</span></sup></a></p> <br/><div class="image_table"><table><tr><td colspan="3" class="imgHolder" id="imgsch20"><a href="/image/article/2020/SC/d0sc01848a/d0sc01848a-s20_hi-res.gif" title="Select to open image in new window" onclick="open(this.href, &#34;_blank&#34;, &#34;toolbar=1,scrollbars=yes,resizable=1&#34;); return false;"><img alt="image file: d0sc01848a-s20.tif" src="/image/article/2020/SC/d0sc01848a/d0sc01848a-s20.gif"/></a></td></tr><tr><td class="pushTitleRight"> </td><td class="image_title"><b>Scheme 20 </b> <span id="sch20"><span class="graphic_title">Electro-conversion of amino acids in industrial processes to form nylon precursors.</span></span></td><td class="pushTitleLeft"> </td></tr></table></div> <h3 id="sect625"><span class="b_heading">Anodic processes in water splitting for value-added chemicals</span></h3> <span>There is no doubt that a future society will rely on hydrogen or methanol as chemical fuel equivalents for mobility applications. Electro-chemical water splitting is a current topic of research for producing high quality hydrogen and oxygen. However, the over-potential for oxygen evolution within water splitting is still a major issue.<a title="Select to navigate to references" href="#cit122"><sup><span class="sup_ref">122</span></sup></a> Instead of producing molecular oxygen, the generation of high-performance oxidizers in an ex-cell process can overcome this challenge. These high-performance oxidizers could be persulfate or periodate and can catalyse further processes.<a title="Select to navigate to references" href="#cit123"><sup><span class="sup_ref">123</span></sup></a> Here, integrated solutions for the recovery and recycling of the oxidizers are required (<a title="Select to navigate to figure" href="#imgfig6">Fig. 6</a>).</span> <br/><div class="image_table"><table><tr><td colspan="3" class="imgHolder" id="imgfig6"><a href="/image/article/2020/SC/d0sc01848a/d0sc01848a-f6_hi-res.gif" title="Select to open image in new window" onclick="open(this.href, &#34;_blank&#34;, &#34;toolbar=1,scrollbars=yes,resizable=1&#34;); return false;"><img alt="image file: d0sc01848a-f6.tif" src="/image/article/2020/SC/d0sc01848a/d0sc01848a-f6.gif"/></a></td></tr><tr><td class="pushTitleRight"> </td><td class="image_title"><b>Fig. 6 </b> <span id="fig6"><span class="graphic_title">Anodic generation of high-performance oxidizers during water splitting and their versatile use for synthetic applications.</span></span></td><td class="pushTitleLeft"> </td></tr></table></div> <h3 id="sect633"><span class="b_heading">Mechanistic investigations as the key to novel pathways</span></h3> <span>Electro-organic conversions have emerged at a rapid speed, providing numerous techniques. Reports usually provide a mechanistic rationale for the electro-organic transformation observed. However, in most cases the postulated mechanism is supported by cyclic voltammetry (CV) only.<a title="Select to navigate to references" href="#cit13"><sup><span class="sup_ref">13</span></sup></a> Cyclic voltammetry provides access to the redox potentials of the substrates and investigation of setup limitations with respect to electrolyte and electrodes. The analysis of solvent potential windows and calculation of the electrochemical potentials of several molecular motifs has enhanced our understanding of the processes that occur during and after electrolysis.<a title="Select to navigate to reference" href="#cit20"><sup><span class="sup_ref">20,124</span></sup></a> However, cyclic voltammetry only traces the heterogeneous electron transfer at the solid–liquid interface. Thus, often it does not provide access to the following chemical processes which shows a lack of structural sensitivity. This blindness leads to a recommendation to use different techniques and to combine CV measurements with appropriate spectroscopy and suitable control experiments.<a title="Select to navigate to references" href="#cit125"><sup><span class="sup_ref">125</span></sup></a> Understanding these micro processes will enable the optimization of processes on a macromolecular scale and the development of even more elaborate processes.</span> <h2 id="sect639"><span class="a_heading">Conclusions</span></h2> <span>The consideration of different aspects in electro-organic synthesis indicates that it is a promising technique with several discoveries but plenty of hidden treasures which lead to increasing developments. In particular, the use of fluctuating and abundant electricity to make value-added chemicals will be a game-changer in future chemical operations. The use of already established electro-organic methods to replace difficult conventional transformations and the successful conversion of renewable bio-based feedstocks are the first evidence of its potential in research. Mastering these challenges will lead organic chemical synthesis into a new era of sustainable chemistry.</span> <h2 id="sect642"><span class="a_heading">Conflicts of interest</span></h2> <span>The authors declare no conflict of interest.</span> <h2 id="sect646"><span class="a_heading">Acknowledgements</span></h2> <span>Financial support from the Verband der Chemischen Industrie (Kekulé Fellowship to D. Pollok) and the Deutsche Forschungsgemeinschaft in the frame of UNODE (Wa1276/24-1) is gratefully acknowledged.</span> <span id="sect648"><h2 id="sect645"><span class="a_heading">Notes and references</span></h2></span><ol type="1"> <li><span id="cit1">R. Cernansky, <span class="italic">Nature</span>, 2015, <span class="bold">519</span>, 379 <a target="_blank" class="DOILink" href="https://doi.org/10.1038/nj7543-379a" title="DOI Link to resource 10.1038/nj7543-379a">CrossRef</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=25793239%5Buid%5D" title="PubMed Link to resource 25793239">PubMed</a>.</span></li> <li><span id="cit2"> (<i>&#97;</i>) <span id="cit2a">E. J. Horn, B. R. Rosen and P. S. Baran, <span class="italic">ACS Cent. Sci.</span>, 2016, <span class="bold">2</span>, 302 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/acscentsci.6b00091" title="DOI Link to resource 10.1021/acscentsci.6b00091">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC28XntFyrsLg%253D" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=27280164%5Buid%5D" title="PubMed Link to resource 27280164">PubMed</a></span>; (<i>&#98;</i>) <span id="cit2b">M. D. Kärkäs, <span class="italic">Chem. Soc. Rev.</span>, 2018, <span class="bold">47</span>, 5786 <a target="_blank" class="RSCLink" href="http://xlink.rsc.org/?doi=C7CS00619E&amp;newsite=1" title="Link to RSC resource DOI:10.1039/C7CS00619E">RSC</a></span>.</span></li> <li><span id="cit3">S. R. Waldvogel and B. Janza, <span class="italic">Angew. Chem., Int. Ed.</span>, 2014, <span class="bold">53</span>, 7122 <a target="_blank" class="DOILink" href="https://doi.org/10.1002/anie.201405082" title="DOI Link to resource 10.1002/anie.201405082">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC2cXhtVShurnK" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=24939665%5Buid%5D" title="PubMed Link to resource 24939665">PubMed</a>.</span></li> <li><span id="cit4">A. Wiebe, T. Gieshoff, S. Möhle, E. Rodrigo, M. Zirbes and S. R. Waldvogel, <span class="italic">Angew. Chem., Int. Ed.</span>, 2018, <span class="bold">57</span>, 5594 <a target="_blank" class="DOILink" href="https://doi.org/10.1002/anie.201711060" title="DOI Link to resource 10.1002/anie.201711060">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC1cXjvVygsbk%253D" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=29292849%5Buid%5D" title="PubMed Link to resource 29292849">PubMed</a>.</span></li> <li><span id="cit5">J.-i. Yoshida, K. Kataoka, R. Horcajada and A. Nagaki, <span class="italic">Chem. Rev.</span>, 2008, <span class="bold">108</span>, 2265 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/cr0680843" title="DOI Link to resource 10.1021/cr0680843">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BD1cXnsVehs7k%253D" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=18564879%5Buid%5D" title="PubMed Link to resource 18564879">PubMed</a>.</span></li> <li><span id="cit6">M. Yan, Y. Kawamata and P. S. Baran, <span class="italic">Chem. Rev.</span>, 2017, <span class="bold">117</span>, 13230 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/acs.chemrev.7b00397" title="DOI Link to resource 10.1021/acs.chemrev.7b00397">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC2sXhs1WntbzJ" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=28991454%5Buid%5D" title="PubMed Link to resource 28991454">PubMed</a>.</span></li> <li><span id="cit7">S. R. Waldvogel, S. Lips, M. Selt, B. Riehl and C. J. Kampf, <span class="italic">Chem. Rev.</span>, 2018, <span class="bold">118</span>, 6706 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/acs.chemrev.8b00233" title="DOI Link to resource 10.1021/acs.chemrev.8b00233">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC1cXht1aku7vK" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=29963856%5Buid%5D" title="PubMed Link to resource 29963856">PubMed</a>.</span></li> <li><span id="cit8"> D. Pletcher and F. Walsh, <span class="italic">Industrial Electrochemistry</span>, Blackie Academic &amp; Professional, London, New York, 2nd edn, 1993 <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/sites/entrez?orig_db=PubMed&amp;db=pubmed&amp;cmd=Search&amp;term=Industrial%20Electrochemistry%5BJour%5D%20AND%20%5Bvolume%5D%20AND%20%5Bpage%5D%20and%201993%5Bpdat%5D" title="Search PubMed for this citation">Search PubMed</a>.</span></li> <li><span id="cit9">H. Kolbe, <span class="italic">J. Prakt. Chem.</span>, 1847, <span class="bold">41</span>, 137 <a target="_blank" class="DOILink" href="https://doi.org/10.1002/prac.18470410118" title="DOI Link to resource 10.1002/prac.18470410118">CrossRef</a>.</span></li> <li><span id="cit10">A. Sternberg and A. Bardow, <span class="italic">Energy Environ. Sci.</span>, 2015, <span class="bold">8</span>, 389 <a target="_blank" class="RSCLink" href="http://xlink.rsc.org/?doi=C4EE03051F&amp;newsite=1" title="Link to RSC resource DOI:10.1039/C4EE03051F">RSC</a>.</span></li> <li><span id="cit11">B. H. Nguyen, A. Redden and K. D. Moeller, <span class="italic">Green Chem.</span>, 2014, <span class="bold">16</span>, 69 <a target="_blank" class="RSCLink" href="http://xlink.rsc.org/?doi=C3GC41650J&amp;newsite=1" title="Link to RSC resource DOI:10.1039/C3GC41650J">RSC</a>.</span></li> <li><span id="cit12"> F. Marken and M. Atobe, <span class="italic">Modern Electrosynthetic Methods in Organic Chemistry</span>, CRC Press, Taylor &amp; Francis Group, Boca Raton, 2018 <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/sites/entrez?orig_db=PubMed&amp;db=pubmed&amp;cmd=Search&amp;term=Modern%20Electrosynthetic%20Methods%20in%20Organic%20Chemistry%5BJour%5D%20AND%20%5Bvolume%5D%20AND%20%5Bpage%5D%20and%202018%5Bpdat%5D" title="Search PubMed for this citation">Search PubMed</a>.</span></li> <li><span id="cit13">N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart and J. L. Dempsey, <span class="italic">J. Chem. Educ.</span>, 2018, <span class="bold">95</span>, 197 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/acs.jchemed.7b00361" title="DOI Link to resource 10.1021/acs.jchemed.7b00361">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC2sXhslGitb3O" title="Link to resource in CAS">CAS</a>.</span></li> <li><span id="cit14">C. Kingston, M. D. Palkowitz, Y. Takahira, J. C. Vantourout, B. K. Peters, Y. Kawamata and P. S. Baran, <span class="italic">Acc. Chem. Res.</span>, 2020, <span class="bold">53</span>, 72 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/acs.accounts.9b00539" title="DOI Link to resource 10.1021/acs.accounts.9b00539">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC1MXitlCjtLrP" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=31823612%5Buid%5D" title="PubMed Link to resource 31823612">PubMed</a>.</span></li> <li><span id="cit15">S. B. Beil, T. Müller, S. B. Sillart, P. Franzmann, A. Bomm, M. Holtkamp, U. Karst, W. Schade and S. R. Waldvogel, <span class="italic">Angew. Chem., Int. Ed.</span>, 2018, <span class="bold">57</span>, 2450 <a target="_blank" class="DOILink" href="https://doi.org/10.1002/anie.201712718" title="DOI Link to resource 10.1002/anie.201712718">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC1cXit1Wlurg%253D" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=29318724%5Buid%5D" title="PubMed Link to resource 29318724">PubMed</a>.</span></li> <li><span id="cit16">S. Möhle, M. Zirbes, E. Rodrigo, T. Gieshoff, A. Wiebe and S. R. Waldvogel, <span class="italic">Angew. Chem., Int. Ed.</span>, 2018, <span class="bold">57</span>, 6018 <a target="_blank" class="DOILink" href="https://doi.org/10.1002/anie.201712732" title="DOI Link to resource 10.1002/anie.201712732">CrossRef</a>.</span></li> <li><span id="cit17">C. Gütz, B. Klöckner and S. R. Waldvogel, <span class="italic">Org. Process Res. Dev.</span>, 2016, <span class="bold">20</span>, 26 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/acs.oprd.5b00377" title="DOI Link to resource 10.1021/acs.oprd.5b00377">CrossRef</a>.</span></li> <li><span id="cit18">C. Gütz, A. Stenglein and S. R. Waldvogel, <span class="italic">Org. Process Res. Dev.</span>, 2017, <span class="bold">21</span>, 771 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/acs.oprd.7b00123" title="DOI Link to resource 10.1021/acs.oprd.7b00123">CrossRef</a>.</span></li> <li><span id="cit19">B. Gleede, M. Selt, C. Gütz, A. Stenglein and S. R. Waldvogel, <span class="italic">Org. Process Res. Dev.</span>, 2020<small> DOI:<a class="DOILink" href="https://doi.org/10.1021/acs.oprd.9b00451" TARGET="_BLANK" title="DOI Link to 10.1021/acs.oprd.9b00451">10.1021/acs.oprd.9b00451</a></small>.</span></li> <li><span id="cit20"> T. Fuchigami, S. Inagi and M. Atobe, <span class="italic">Fundamentals and Applications of Organic Electrochemistry</span>, John Wiley &amp; Sons, Hoboken, 1st edn, 2014 <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/sites/entrez?orig_db=PubMed&amp;db=pubmed&amp;cmd=Search&amp;term=Fundamentals%20and%20Applications%20of%20Organic%20Electrochemistry%5BJour%5D%20AND%20%5Bvolume%5D%20AND%20%5Bpage%5D%20and%202014%5Bpdat%5D" title="Search PubMed for this citation">Search PubMed</a>.</span></li> <li><span id="cit21"> O. Hammerich and B. Speiser, <span class="italic">Organic Electrochemistry</span>, CRC Press, Taylor &amp; Francis Group, Boca Raton, 2016 <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/sites/entrez?orig_db=PubMed&amp;db=pubmed&amp;cmd=Search&amp;term=Organic%20Electrochemistry%5BJour%5D%20AND%20%5Bvolume%5D%20AND%20%5Bpage%5D%20and%202016%5Bpdat%5D" title="Search PubMed for this citation">Search PubMed</a>.</span></li> <li><span id="cit22">R. Francke and R. D. Little, <span class="italic">Chem. Soc. Rev.</span>, 2014, <span class="bold">43</span>, 2492 <a target="_blank" class="RSCLink" href="http://xlink.rsc.org/?doi=C3CS60464K&amp;newsite=1" title="Link to RSC resource DOI:10.1039/C3CS60464K">RSC</a>.</span></li> <li><span id="cit23">R. Francke and R. D. Little, <span class="italic">ChemElectroChem</span>, 2019, <span class="bold">6</span>, 4373 <a target="_blank" class="DOILink" href="https://doi.org/10.1002/celc.201900432" title="DOI Link to resource 10.1002/celc.201900432">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC1MXhtFWmurbF" title="Link to resource in CAS">CAS</a>.</span></li> <li><span id="cit24">T. H. Meyer, L. H. Finger, P. Gandeepan and L. Ackermann, <span class="italic">Trends Chem.</span>, 2019, <span class="bold">1</span>, 63 <a target="_blank" class="DOILink" href="https://doi.org/10.1016/j.trechm.2019.01.011" title="DOI Link to resource 10.1016/j.trechm.2019.01.011">CrossRef</a>.</span></li> <li><span id="cit25"> (<i>&#97;</i>) <span id="cit25a"> R. D. Little and M. K. Schwaebe, in <span class="italic">Electrochemistry VI Electroorganic Synthesis: Bond Formation at Anode and Cathode</span>, ed. A. Meijere, K. N. Houk, J.-M. Lehn, S. V. Ley, J. Thiem, B. M. Trost, F. Vögtle, H. Yamamoto and E. Steckhan, Springer Berlin Heidelberg, Berlin, Heidelberg, 1997, vol. 185, pp. 1–48 <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/sites/entrez?orig_db=PubMed&amp;db=pubmed&amp;cmd=Search&amp;term=Electrochemistry%20VI%20Electroorganic%20Synthesis:%20Bond%20Formation%20at%20Anode%20and%20Cathode%5BJour%5D%20AND%20vol. 185%5Bvolume%5D%20AND%20%5Bpage%5D%20and%201997%5Bpdat%5D" title="Search PubMed for this citation">Search PubMed</a></span>; (<i>&#98;</i>) <span id="cit25b">A. J. Fry, R. D. Little and J. Leonetti, <span class="italic">J. Org. Chem.</span>, 1994, <span class="bold">59</span>, 5017 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/jo00096a054" title="DOI Link to resource 10.1021/jo00096a054">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADyaK2cXlsFKru78%253D" title="Link to resource in CAS">CAS</a></span>.</span></li> <li><span id="cit26">M. Huhtasaari, H. J. Schäfer and L. Becking, <span class="italic">Angew. Chem., Int. Ed. Engl.</span>, 1984, <span class="bold">23</span>, 980 <a target="_blank" class="DOILink" href="https://doi.org/10.1002/anie.198409801" title="DOI Link to resource 10.1002/anie.198409801">CrossRef</a>.</span></li> <li><span id="cit27">J. Mihelcic and K. D. Moeller, <span class="italic">J. Am. Chem. Soc.</span>, 2004, <span class="bold">126</span>, 9106 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/ja048085h" title="DOI Link to resource 10.1021/ja048085h">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BD2cXltlCls7w%253D" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=15264845%5Buid%5D" title="PubMed Link to resource 15264845">PubMed</a>.</span></li> <li><span id="cit28"> (<i>&#97;</i>) <span id="cit28a">R. Feng, J. A. Smith and K. D. Moeller, <span class="italic">Acc. Chem. Res.</span>, 2017, <span class="bold">50</span>, 2346 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/acs.accounts.7b00287" title="DOI Link to resource 10.1021/acs.accounts.7b00287">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC2sXhsVSlu7%252FF" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=28858480%5Buid%5D" title="PubMed Link to resource 28858480">PubMed</a></span>; (<i>&#98;</i>) <span id="cit28b">D. A. Frey, N. Wu and K. D. Moeller, <span class="italic">Tetrahedron Lett.</span>, 1996, <span class="bold">37</span>, 8317 <a target="_blank" class="DOILink" href="https://doi.org/10.1016/0040-4039(96)01946-6" title="DOI Link to resource 10.1016/0040-4039(96)01946-6">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADyaK28XntFWiu7s%253D" title="Link to resource in CAS">CAS</a></span>; (<i>&#99;</i>) <span id="cit28c">D. A. Frey, J. A. Marx and K. D. Moeller, <span class="italic">Electrochim. Acta</span>, 1997, <span class="bold">42</span>, 1967 <a target="_blank" class="DOILink" href="https://doi.org/10.1016/S0013-4686(97)85468-0" title="DOI Link to resource 10.1016/S0013-4686(97)85468-0">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADyaK2sXjsValtb0%253D" title="Link to resource in CAS">CAS</a></span>.</span></li> <li><span id="cit29"> (<i>&#97;</i>) <span id="cit29a">J.-i. Yoshida, S. Suga, S. Suzuki, N. Kinomura, A. Yamamoto and K. Fujiwara, <span class="italic">J. Am. Chem. Soc.</span>, 1999, <span class="bold">121</span>, 9546 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/ja9920112" title="DOI Link to resource 10.1021/ja9920112">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADyaK1MXmt12nsbc%253D" title="Link to resource in CAS">CAS</a></span>; (<i>&#98;</i>) <span id="cit29b">J.-i. Yoshida, A. Shimizu and R. Hayashi, <span class="italic">Chem. Rev.</span>, 2018, <span class="bold">118</span>, 4702 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/acs.chemrev.7b00475" title="DOI Link to resource 10.1021/acs.chemrev.7b00475">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC2sXhslent7zJ" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=29077393%5Buid%5D" title="PubMed Link to resource 29077393">PubMed</a></span>; (<i>&#99;</i>) <span id="cit29c">J.-i. Yoshida and S. Suga, <span class="italic">Chem.–Eur. J.</span>, 2002, <span class="bold">8</span>, 2650 <a target="_blank" class="DOILink" href="https://doi.org/10.1002/1521-3765(20020617)8:12&lt;2650::AID-CHEM2650&gt;3.0.CO;2-S" title="DOI Link to resource 10.1002/1521-3765(20020617)8:12&lt;2650::AID-CHEM2650&gt;3.0.CO;2-S">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BD38XltVGrsb4%253D" title="Link to resource in CAS">CAS</a></span>.</span></li> <li><span id="cit30"> (<i>&#97;</i>) <span id="cit30a">R. Franke, D. Selent and A. Börner, <span class="italic">Chem. Rev.</span>, 2012, <span class="bold">112</span>, 5675 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/cr3001803" title="DOI Link to resource 10.1021/cr3001803">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC38Xht1yrtr%252FK" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=22937803%5Buid%5D" title="PubMed Link to resource 22937803">PubMed</a></span>; (<i>&#98;</i>) <span id="cit30b">F. von Nussbaum, M. Brands, B. Hinzen, S. Weigand and D. Häbich, <span class="italic">Angew. Chem., Int. Ed.</span>, 2006, <span class="bold">45</span>, 5072 <a target="_blank" class="DOILink" href="https://doi.org/10.1002/anie.200600350" title="DOI Link to resource 10.1002/anie.200600350">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BD28Xot12guro%253D" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=16881035%5Buid%5D" title="PubMed Link to resource 16881035">PubMed</a></span>; (<i>&#99;</i>) <span id="cit30c">K. Okamoto, J. Zhang, J. B. Housekeeper, S. R. Marder and C. K. Luscombe, <span class="italic">Macromolecules</span>, 2013, <span class="bold">46</span>, 8059 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/ma401190r" title="DOI Link to resource 10.1021/ma401190r">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC3sXht12hurrM" title="Link to resource in CAS">CAS</a></span>.</span></li> <li><span id="cit31"> (<i>&#97;</i>) <span id="cit31a">N. Miyaura, K. Yamada and A. Suzuki, <span class="italic">Tetrahedron Lett.</span>, 1979, <span class="bold">20</span>, 3437 <a target="_blank" class="DOILink" href="https://doi.org/10.1016/S0040-4039(01)95429-2" title="DOI Link to resource 10.1016/S0040-4039(01)95429-2">CrossRef</a></span>; (<i>&#98;</i>) <span id="cit31b">M. Grzybowski, K. Skonieczny, H. Butenschön and D. T. Gryko, <span class="italic">Angew. Chem., Int. Ed.</span>, 2013, <span class="bold">52</span>, 9900 <a target="_blank" class="DOILink" href="https://doi.org/10.1002/anie.201210238" title="DOI Link to resource 10.1002/anie.201210238">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC3sXhtFShtbfO" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=23852649%5Buid%5D" title="PubMed Link to resource 23852649">PubMed</a></span>.</span></li> <li><span id="cit32"> (<i>&#97;</i>) <span id="cit32a">J. L. Röckl, D. Pollok, R. Franke and S. R. Waldvogel, <span class="italic">Acc. Chem. Res.</span>, 2020, <span class="bold">53</span>, 45 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/acs.accounts.9b00511" title="DOI Link to resource 10.1021/acs.accounts.9b00511">CrossRef</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=31850730%5Buid%5D" title="PubMed Link to resource 31850730">PubMed</a></span>; (<i>&#98;</i>) <span id="cit32b">A. Kirste, G. Schnakenburg, F. Stecker, A. Fischer and S. R. Waldvogel, <span class="italic">Angew. Chem., Int. Ed.</span>, 2010, <span class="bold">49</span>, 971 <a target="_blank" class="DOILink" href="https://doi.org/10.1002/anie.200904763" title="DOI Link to resource 10.1002/anie.200904763">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC3cXhtVGmtrc%253D" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=20029859%5Buid%5D" title="PubMed Link to resource 20029859">PubMed</a></span>; (<i>&#99;</i>) <span id="cit32c">A. Kirste, B. Elsler, G. Schnakenburg and S. R. Waldvogel, <span class="italic">J. Am. Chem. Soc.</span>, 2012, <span class="bold">134</span>, 3571 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/ja211005g" title="DOI Link to resource 10.1021/ja211005g">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC38XntFGlug%253D%253D" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=22242769%5Buid%5D" title="PubMed Link to resource 22242769">PubMed</a></span>.</span></li> <li><span id="cit33"> (<i>&#97;</i>) <span id="cit33a">L. Schulz and S. Waldvogel, <span class="italic">Synlett</span>, 2019, <span class="bold">30</span>, 275 <a target="_blank" class="DOILink" href="https://doi.org/10.1055/s-0037-1610303" title="DOI Link to resource 10.1055/s-0037-1610303">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC1cXisFWqtr7O" title="Link to resource in CAS">CAS</a></span>; (<i>&#98;</i>) <span id="cit33b">B. Elsler, A. Wiebe, D. Schollmeyer, K. M. Dyballa, R. Franke and S. R. Waldvogel, <span class="italic">Chem.–Eur. J.</span>, 2015, <span class="bold">21</span>, 12321 <a target="_blank" class="DOILink" href="https://doi.org/10.1002/chem.201501604" title="DOI Link to resource 10.1002/chem.201501604">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC2MXhtFyqtb3I" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=26189655%5Buid%5D" title="PubMed Link to resource 26189655">PubMed</a></span>.</span></li> <li><span id="cit34">L. Ackermann, <span class="italic">Acc. Chem. Res.</span>, 2020, <span class="bold">53</span>, 84 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/acs.accounts.9b00510" title="DOI Link to resource 10.1021/acs.accounts.9b00510">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC1MXisVWktb%252FK" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=31854967%5Buid%5D" title="PubMed Link to resource 31854967">PubMed</a>.</span></li> <li><span id="cit35"> (<i>&#97;</i>) <span id="cit35a">N. Sauermann, T. H. Meyer, C. Tian and L. Ackermann, <span class="italic">J. Am. Chem. Soc.</span>, 2017, <span class="bold">139</span>, 18452 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/jacs.7b11025" title="DOI Link to resource 10.1021/jacs.7b11025">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC2sXhvVWqurzP" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=29149561%5Buid%5D" title="PubMed Link to resource 29149561">PubMed</a></span>; (<i>&#98;</i>) <span id="cit35b">W.-J. Kong, L. H. Finger, A. M. Messinis, R. Kuniyil, J. C. A. Oliveira and L. Ackermann, <span class="italic">J. Am. Chem. Soc.</span>, 2019, <span class="bold">141</span>, 17198 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/jacs.9b07763" title="DOI Link to resource 10.1021/jacs.9b07763">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC1MXhvVCnt7vE" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=31549815%5Buid%5D" title="PubMed Link to resource 31549815">PubMed</a></span>; (<i>&#99;</i>) <span id="cit35c">N. Sauermann, T. H. Meyer, Y. Qiu and L. Ackermann, <span class="italic">ACS Catal.</span>, 2018, <span class="bold">8</span>, 7086 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/acscatal.8b01682" title="DOI Link to resource 10.1021/acscatal.8b01682">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC1cXhtFCmsrrN" title="Link to resource in CAS">CAS</a></span>.</span></li> <li><span id="cit36">K.-J. Jiao, Y.-K. Xing, Q.-L. Yang, H. Qiu and T.-S. Mei, <span class="italic">Acc. Chem. Res.</span>, 2020, <span class="bold">53</span>, 300 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/acs.accounts.9b00603" title="DOI Link to resource 10.1021/acs.accounts.9b00603">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BB3cXnvFOgsw%253D%253D" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=31939278%5Buid%5D" title="PubMed Link to resource 31939278">PubMed</a>.</span></li> <li><span id="cit37">J. C. Siu, N. Fu and S. Lin, <span class="italic">Acc. Chem. Res.</span>, 2020, 547 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/acs.accounts.9b00529" title="DOI Link to resource 10.1021/acs.accounts.9b00529">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BB3cXjtlehsrc%253D" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=32077681%5Buid%5D" title="PubMed Link to resource 32077681">PubMed</a>.</span></li> <li><span id="cit38">E. Vitaku, D. T. Smith and J. T. Njardarson, <span class="italic">J. Med. Chem.</span>, 2014, <span class="bold">57</span>, 10257 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/jm501100b" title="DOI Link to resource 10.1021/jm501100b">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC2cXhs1Wlu7%252FP" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=25255204%5Buid%5D" title="PubMed Link to resource 25255204">PubMed</a>.</span></li> <li><span id="cit39">N. Fu, G. S. Sauer, A. Saha, A. Loo and S. Lin, <span class="italic">Science</span>, 2017, <span class="bold">357</span>, 575 <a target="_blank" class="DOILink" href="https://doi.org/10.1126/science.aan6206" title="DOI Link to resource 10.1126/science.aan6206">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC2sXhtlehur%252FO" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=28798126%5Buid%5D" title="PubMed Link to resource 28798126">PubMed</a>.</span></li> <li><span id="cit40">S. Herold, S. Möhle, M. Zirbes, F. Richter, H. Nefzger and S. R. Waldvogel, <span class="italic">Eur. J. Org. Chem.</span>, 2016, 1274 <a target="_blank" class="DOILink" href="https://doi.org/10.1002/ejoc.201600048" title="DOI Link to resource 10.1002/ejoc.201600048">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC28XisVeisrw%253D" title="Link to resource in CAS">CAS</a>.</span></li> <li><span id="cit41">T. Morofuji, A. Shimizu and J.-i. Yoshida, <span class="italic">J. Am. Chem. Soc.</span>, 2013, <span class="bold">135</span>, 5000 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/ja402083e" title="DOI Link to resource 10.1021/ja402083e">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC3sXktlektb0%253D" title="Link to resource in CAS">CAS</a>.</span></li> <li><span id="cit42">L. J. Wesenberg, S. Herold, A. Shimizu, J.-i. Yoshida and S. R. Waldvogel, <span class="italic">Chem.–Eur. J.</span>, 2017, <span class="bold">23</span>, 12096 <a target="_blank" class="DOILink" href="https://doi.org/10.1002/chem.201701979" title="DOI Link to resource 10.1002/chem.201701979">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC2sXhtFCls73M" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=28605084%5Buid%5D" title="PubMed Link to resource 28605084">PubMed</a>.</span></li> <li><span id="cit43">S. R. Waldvogel and S. Möhle, <span class="italic">Angew. Chem., Int. Ed.</span>, 2015, <span class="bold">54</span>, 6398 <a target="_blank" class="DOILink" href="https://doi.org/10.1002/anie.201502638" title="DOI Link to resource 10.1002/anie.201502638">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC2MXotlCqsLY%253D" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=25967883%5Buid%5D" title="PubMed Link to resource 25967883">PubMed</a>.</span></li> <li><span id="cit44">T. Morofuji, A. Shimizu and J.-i. Yoshida, <span class="italic">J. Am. Chem. Soc.</span>, 2015, <span class="bold">137</span>, 9816 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/jacs.5b06526" title="DOI Link to resource 10.1021/jacs.5b06526">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC2MXht1KmsbbM" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=26225441%5Buid%5D" title="PubMed Link to resource 26225441">PubMed</a>.</span></li> <li><span id="cit45">Y. Kawamata, J. C. Vantourout, D. P. Hickey, P. Bai, L. Chen, Q. Hou, W. Qiao, K. Barman, M. A. Edwards, A. F. Garrido-Castro, J. N. deGruyter, H. Nakamura, K. Knouse, C. Qin, K. J. Clay, D. Bao, C. Li, J. T. Starr, C. Garcia-Irizarry, N. Sach, H. S. White, M. Neurock, S. D. Minteer and P. S. Baran, <span class="italic">J. Am. Chem. Soc.</span>, 2019, <span class="bold">141</span>, 6392 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/jacs.9b01886" title="DOI Link to resource 10.1021/jacs.9b01886">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC1MXlvVSkur0%253D" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=30905151%5Buid%5D" title="PubMed Link to resource 30905151">PubMed</a>.</span></li> <li><span id="cit46">P. Xiong and H.-C. Xu, <span class="italic">Acc. Chem. Res.</span>, 2019, <span class="bold">52</span>, 3339 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/acs.accounts.9b00472" title="DOI Link to resource 10.1021/acs.accounts.9b00472">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC1MXit1ertr3J" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=31774646%5Buid%5D" title="PubMed Link to resource 31774646">PubMed</a>.</span></li> <li><span id="cit47"> (<i>&#97;</i>) <span id="cit47a">T. Gieshoff, A. Kehl, D. Schollmeyer, K. D. Moeller and S. R. Waldvogel, <span class="italic">J. Am. Chem. Soc.</span>, 2017, <span class="bold">139</span>, 12317 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/jacs.7b07488" title="DOI Link to resource 10.1021/jacs.7b07488">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC2sXhtlSitLzE" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=28792218%5Buid%5D" title="PubMed Link to resource 28792218">PubMed</a></span>; (<i>&#98;</i>) <span id="cit47b">T. Gieshoff, D. Schollmeyer and S. R. Waldvogel, <span class="italic">Angew. Chem., Int. Ed.</span>, 2016, <span class="bold">55</span>, 9437 <a target="_blank" class="DOILink" href="https://doi.org/10.1002/anie.201603899" title="DOI Link to resource 10.1002/anie.201603899">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC28XhtFCrs7zI" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=27392318%5Buid%5D" title="PubMed Link to resource 27392318">PubMed</a></span>; (<i>&#99;</i>) <span id="cit47c">T. Gieshoff, A. Kehl, D. Schollmeyer, K. D. Moeller and S. R. Waldvogel, <span class="italic">Chem. Commun.</span>, 2017, <span class="bold">53</span>, 2974 <a target="_blank" class="RSCLink" href="http://xlink.rsc.org/?doi=C7CC00927E&amp;newsite=1" title="Link to RSC resource DOI:10.1039/C7CC00927E">RSC</a></span>; (<i>&#100;</i>) <span id="cit47d">A. Kehl, T. Gieshoff, D. Schollmeyer and S. R. Waldvogel, <span class="italic">Chem.–Eur. J.</span>, 2018, <span class="bold">24</span>, 590 <a target="_blank" class="DOILink" href="https://doi.org/10.1002/chem.201705578" title="DOI Link to resource 10.1002/chem.201705578">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC2sXhvFyjsbbF" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=29171701%5Buid%5D" title="PubMed Link to resource 29171701">PubMed</a></span>.</span></li> <li><span id="cit48">S. Purser, P. R. Moore, S. Swallow and V. Gouverneur, <span class="italic">Chem. Soc. Rev.</span>, 2008, <span class="bold">37</span>, 320 <a target="_blank" class="RSCLink" href="http://xlink.rsc.org/?doi=B610213C&amp;newsite=1" title="Link to RSC resource DOI:10.1039/B610213C">RSC</a>.</span></li> <li><span id="cit49"> (<i>&#97;</i>) <span id="cit49a">J. D. Haupt, M. Berger and S. R. Waldvogel, <span class="italic">Org. Lett.</span>, 2019, <span class="bold">21</span>, 242 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/acs.orglett.8b03682" title="DOI Link to resource 10.1021/acs.orglett.8b03682">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC1cXisFaru7jL" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=30557030%5Buid%5D" title="PubMed Link to resource 30557030">PubMed</a></span>; (<i>&#98;</i>) <span id="cit49b">J. D. Herszman, M. Berger and S. R. Waldvogel, <span class="italic">Org. Lett.</span>, 2019, <span class="bold">21</span>, 7893 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/acs.orglett.9b02884" title="DOI Link to resource 10.1021/acs.orglett.9b02884">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC1MXhslKhtbrM" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=31513415%5Buid%5D" title="PubMed Link to resource 31513415">PubMed</a></span>.</span></li> <li><span id="cit50"> (<i>&#97;</i>) <span id="cit50a">T. Fuchigami and S. Inagi, <span class="italic">Acc. Chem. Res.</span>, 2020, <span class="bold">53</span>, 322 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/acs.accounts.9b00520" title="DOI Link to resource 10.1021/acs.accounts.9b00520">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BB3cXitVylt7c%253D" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=32017527%5Buid%5D" title="PubMed Link to resource 32017527">PubMed</a></span>; (<i>&#98;</i>) <span id="cit50b">A. Konno and T. Fuchigami, <span class="italic">J. Org. Chem.</span>, 1997, <span class="bold">62</span>, 8579 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/jo971248i" title="DOI Link to resource 10.1021/jo971248i">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADyaK2sXnt1CjtLc%253D" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=11672010%5Buid%5D" title="PubMed Link to resource 11672010">PubMed</a></span>.</span></li> <li><span id="cit51">T. Fuchigami and S. Inagi, <span class="italic">Chem. Commun.</span>, 2011, <span class="bold">47</span>, 10211 <a target="_blank" class="RSCLink" href="http://xlink.rsc.org/?doi=C1CC12414E&amp;newsite=1" title="Link to RSC resource DOI:10.1039/C1CC12414E">RSC</a>.</span></li> <li><span id="cit52">T. Sawamura, K. Takahashi, S. Inagi and T. Fuchigami, <span class="italic">Angew. Chem., Int. Ed.</span>, 2012, <span class="bold">51</span>, 4413 <a target="_blank" class="DOILink" href="https://doi.org/10.1002/anie.201200438" title="DOI Link to resource 10.1002/anie.201200438">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC38XjvVajtbo%253D" title="Link to resource in CAS">CAS</a>.</span></li> <li><span id="cit53"> (<i>&#97;</i>) <span id="cit53a">G. G. Botte, <span class="italic">Electrochem. Soc. Interface</span>, 2014, <span class="bold">23</span>, 49 <a target="_blank" class="DOILink" href="https://doi.org/10.1149/2.F04143if" title="DOI Link to resource 10.1149/2.F04143if">CrossRef</a></span>; (<i>&#98;</i>) <span id="cit53b">J. H. Simons, <span class="italic">J. Electrochem. Soc.</span>, 1949, <span class="bold">95</span>, 47 <a target="_blank" class="DOILink" href="https://doi.org/10.1149/1.2776733" title="DOI Link to resource 10.1149/1.2776733">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADyaH1MXhsVOisw%253D%253D" title="Link to resource in CAS">CAS</a></span>; (<i>&#99;</i>) <span id="cit53c"> A. J. Fry, in <span class="italic">Kirk-Othmer Encyclopedia of Chemical Technology</span>, John Wiley &amp; Sons, Inc, Hoboken, NJ, USA, 2000, vol. 170, p. 114 <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/sites/entrez?orig_db=PubMed&amp;db=pubmed&amp;cmd=Search&amp;term=Kirk-Othmer%20Encyclopedia%20of%20Chemical%20Technology%5BJour%5D%20AND%20vol. 170%5Bvolume%5D%20AND%20%5Bpage%5D%20and%202000%5Bpdat%5D" title="Search PubMed for this citation">Search PubMed</a></span>; (<i>&#100;</i>) <span id="cit53d">C. A. C. Sequeira and D. M. F. Santos, <span class="italic">J. Braz. Chem. Soc.</span>, 2009, <span class="bold">20</span>, 387 <a target="_blank" class="DOILink" href="https://doi.org/10.1590/S0103-50532009000300002" title="DOI Link to resource 10.1590/S0103-50532009000300002">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BD1MXmt1Cktr8%253D" title="Link to resource in CAS">CAS</a></span>.</span></li> <li><span id="cit54"> O. Hammerich and H. Lund, <span class="italic">Organic Electrochemistry</span>, M. Dekker, New York, 4th edn, 2001 <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/sites/entrez?orig_db=PubMed&amp;db=pubmed&amp;cmd=Search&amp;term=Organic%20Electrochemistry%5BJour%5D%20AND%20%5Bvolume%5D%20AND%20%5Bpage%5D%20and%202001%5Bpdat%5D" title="Search PubMed for this citation">Search PubMed</a>.</span></li> <li><span id="cit55">H. C. Erythropel, J. B. Zimmerman, T. M. de Winter, L. Petitjean, F. Melnikov, C. H. Lam, A. W. Lounsbury, K. E. Mellor, N. Z. Janković, Q. Tu, L. N. Pincus, M. M. Falinski, W. Shi, P. Coish, D. L. Plata and P. T. Anastas, <span class="italic">Green Chem.</span>, 2018, <span class="bold">20</span>, 1929 <a target="_blank" class="RSCLink" href="http://xlink.rsc.org/?doi=C8GC00482J&amp;newsite=1" title="Link to RSC resource DOI:10.1039/C8GC00482J">RSC</a>.</span></li> <li><span id="cit56"> (<i>&#97;</i>) <span id="cit56a">P. Anastas and N. Eghbali, <span class="italic">Chem. Soc. Rev.</span>, 2010, <span class="bold">39</span>, 301 <a target="_blank" class="RSCLink" href="http://xlink.rsc.org/?doi=B918763B&amp;newsite=1" title="Link to RSC resource DOI:10.1039/B918763B">RSC</a></span>; (<i>&#98;</i>) <span id="cit56b">Y. Yuan and A. Lei, <span class="italic">Nat. Commun.</span>, 2020, <span class="bold">11</span>, 802 <a target="_blank" class="DOILink" href="https://doi.org/10.1038/s41467-020-14322-z" title="DOI Link to resource 10.1038/s41467-020-14322-z">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BB3cXjs1OhtLo%253D" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=32029716%5Buid%5D" title="PubMed Link to resource 32029716">PubMed</a></span>.</span></li> <li><span id="cit57">K. J. Frankowski, R. Liu, G. L. Milligan, K. D. Moeller and J. Aubé, <span class="italic">Angew. Chem., Int. Ed.</span>, 2015, <span class="bold">54</span>, 10555 <a target="_blank" class="DOILink" href="https://doi.org/10.1002/anie.201504775" title="DOI Link to resource 10.1002/anie.201504775">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC2MXhsVSjtLvM" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=26371961%5Buid%5D" title="PubMed Link to resource 26371961">PubMed</a>.</span></li> <li><span id="cit58">T. Gieshoff, V. Trieu, J. Heijl and S. R. Waldvogel, <span class="italic">Beilstein J. Org. Chem.</span>, 2018, <span class="bold">14</span>, 1578 <a target="_blank" class="DOILink" href="https://doi.org/10.3762/bjoc.14.135" title="DOI Link to resource 10.3762/bjoc.14.135">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC1cXhvV2ls7bO" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=30013685%5Buid%5D" title="PubMed Link to resource 30013685">PubMed</a>.</span></li> <li><span id="cit59"> (<i>&#97;</i>) <span id="cit59a">S. Lips and S. R. Waldvogel, <span class="italic">ChemElectroChem</span>, 2019, <span class="bold">6</span>, 1649 <a target="_blank" class="DOILink" href="https://doi.org/10.1002/celc.201801620" title="DOI Link to resource 10.1002/celc.201801620">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC1MXhsVyhu7Y%253D" title="Link to resource in CAS">CAS</a></span>; (<i>&#98;</i>) <span id="cit59b">S. R. Waldvogel, S. Mentizi and A. Kirste, <span class="italic">Top. Curr. Chem.</span>, 2012, <span class="bold">320</span>, 1 <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC38XhsVans7rO" title="Link to resource in CAS">CAS</a></span>.</span></li> <li><span id="cit60"> (<i>&#97;</i>) <span id="cit60a">J. Xu, Y. Yokota, R. A. Wong, Y. Kim and Y. Einaga, <span class="italic">J. Am. Chem. Soc.</span>, 2020, <span class="bold">142</span>, 2310 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/jacs.9b11183" title="DOI Link to resource 10.1021/jacs.9b11183">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BB3cXnslyrsg%253D%253D" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=31927922%5Buid%5D" title="PubMed Link to resource 31927922">PubMed</a></span>; (<i>&#98;</i>) <span id="cit60b"> C. A. Martínez-Huitle and S. R. Waldvogel, in <span class="italic">Novel Aspects of Diamond</span>, ed. N. Yang, Springer International Publishing, Cham, 2019, vol. 121, pp. 173–197 <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/sites/entrez?orig_db=PubMed&amp;db=pubmed&amp;cmd=Search&amp;term=Novel%20Aspects%20of%20Diamond%5BJour%5D%20AND%20vol. 121%5Bvolume%5D%20AND%20%5Bpage%5D%20and%202019%5Bpdat%5D" title="Search PubMed for this citation">Search PubMed</a></span>.</span></li> <li><span id="cit61">T. Sumi, T. Saitoh, K. Natsui, T. Yamamoto, M. Atobe, Y. Einaga and S. Nishiyama, <span class="italic">Angew. Chem., Int. Ed.</span>, 2012, <span class="bold">51</span>, 5443 <a target="_blank" class="DOILink" href="https://doi.org/10.1002/anie.201200878" title="DOI Link to resource 10.1002/anie.201200878">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC38Xls1ehtb0%253D" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=22514161%5Buid%5D" title="PubMed Link to resource 22514161">PubMed</a>.</span></li> <li><span id="cit62">C. Gütz, M. Selt, M. Bänziger, C. Bucher, C. Römelt, N. Hecken, F. Gallou, T. R. Galvão and S. R. Waldvogel, <span class="italic">Chem.–Eur. J.</span>, 2015, <span class="bold">21</span>, 13878 <a target="_blank" class="DOILink" href="https://doi.org/10.1002/chem.201502064" title="DOI Link to resource 10.1002/chem.201502064">CrossRef</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=26250701%5Buid%5D" title="PubMed Link to resource 26250701">PubMed</a>.</span></li> <li><span id="cit63"> (<i>&#97;</i>) <span id="cit63a">E. J. Horn, B. R. Rosen, Y. Chen, J. Tang, K. Chen, M. D. Eastgate and P. S. Baran, <span class="italic">Nature</span>, 2016, <span class="bold">533</span>, 77 <a target="_blank" class="DOILink" href="https://doi.org/10.1038/nature17431" title="DOI Link to resource 10.1038/nature17431">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC28XmsVeiu78%253D" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=27096371%5Buid%5D" title="PubMed Link to resource 27096371">PubMed</a></span>; (<i>&#98;</i>) <span id="cit63b">T. Morofuji, A. Shimizu and J.-i. Yoshida, <span class="italic">J. Am. Chem. Soc.</span>, 2014, <span class="bold">136</span>, 4496 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/ja501093m" title="DOI Link to resource 10.1021/ja501093m">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC2cXjs1GrsbY%253D" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=24625055%5Buid%5D" title="PubMed Link to resource 24625055">PubMed</a></span>.</span></li> <li><span id="cit64">D. Schmitt, C. Regenbrecht, M. Schubert, D. Schollmeyer and S. R. Waldvogel, <span class="italic">Holzforschung</span>, 2017, <span class="bold">71</span>, 35 <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC2sXpslSm" title="Link to resource in CAS">CAS</a>.</span></li> <li><span id="cit65"> (<i>&#97;</i>) <span id="cit65a"> A. Bulan, J. Kintrup and R. Weber, <span class="italic">EU Pat.</span>, 2398101 A1, 2011</span>; (<i>&#98;</i>) <span id="cit65b">J. Jörissen, T. Turek and R. Weber, <span class="italic">Chem. Unserer Zeit</span>, 2011, <span class="bold">45</span>, 172 <a target="_blank" class="DOILink" href="https://doi.org/10.1002/ciuz.201100545" title="DOI Link to resource 10.1002/ciuz.201100545">CrossRef</a></span>; (<i>&#99;</i>) <span id="cit65c">I. Moussallem, J. Jörissen, U. Kunz, S. Pinnow and T. Turek, <span class="italic">J. Appl. Electrochem.</span>, 2008, <span class="bold">38</span>, 1177 <a target="_blank" class="DOILink" href="https://doi.org/10.1007/s10800-008-9556-9" title="DOI Link to resource 10.1007/s10800-008-9556-9">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BD1cXptlWjtrs%253D" title="Link to resource in CAS">CAS</a></span>.</span></li> <li><span id="cit66">H. Salehzadeh, D. Nematollahi and H. Hesari, <span class="italic">Green Chem.</span>, 2013, <span class="bold">15</span>, 2441 <a target="_blank" class="RSCLink" href="http://xlink.rsc.org/?doi=C3GC40954F&amp;newsite=1" title="Link to RSC resource DOI:10.1039/C3GC40954F">RSC</a>.</span></li> <li><span id="cit67">A. Wiebe, B. Riehl, S. Lips, R. Franke and S. R. Waldvogel, <span class="italic">Sci. Adv.</span>, 2017, <span class="bold">3</span>, eaao3920 <a target="_blank" class="DOILink" href="https://doi.org/10.1126/sciadv.aao3920" title="DOI Link to resource 10.1126/sciadv.aao3920">CrossRef</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=28989968%5Buid%5D" title="PubMed Link to resource 28989968">PubMed</a>.</span></li> <li><span id="cit68"> (<i>&#97;</i>) <span id="cit68a">J. G. Ibanez, B. A. Frontana-Uribe and R. Vasquez-Medrano, <span class="italic">J. Mex. Chem. Soc.</span>, 2016, <span class="bold">60</span>, 247 <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC1cXhsFCmtLbP" title="Link to resource in CAS">CAS</a></span>; (<i>&#98;</i>) <span id="cit68b">C. A. Paddon, M. Atobe, T. Fuchigami, P. He, P. Watts, S. J. Haswell, G. J. Pritchard, S. D. Bull and F. Marken, <span class="italic">J. Appl. Electrochem.</span>, 2006, <span class="bold">36</span>, 617 <a target="_blank" class="DOILink" href="https://doi.org/10.1007/s10800-006-9122-2" title="DOI Link to resource 10.1007/s10800-006-9122-2">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BD28XkslWgtL4%253D" title="Link to resource in CAS">CAS</a></span>; (<i>&#99;</i>) <span id="cit68c">E. Steckhan, T. Arns, W. R. Heineman, G. Hilt, D. Hoormann, J. Jörissen, L. Kröner, B. Lewall and H. Pütter, <span class="italic">Chemosphere</span>, 2001, <span class="bold">43</span>, 63 <a target="_blank" class="DOILink" href="https://doi.org/10.1016/S0045-6535(00)00325-8" title="DOI Link to resource 10.1016/S0045-6535(00)00325-8">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BD3MXpslOksQ%253D%253D" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=11233827%5Buid%5D" title="PubMed Link to resource 11233827">PubMed</a></span>.</span></li> <li><span id="cit69"> (<i>&#97;</i>) <span id="cit69a"> H. Pütter and H. Hannebaum, <span class="italic">US Pat.</span>, 6063256, 2000</span>; (<i>&#98;</i>) <span id="cit69b"> G. Kreysa, K.-i. Ota and R. F. Savinell, <span class="italic">Encyclopedia of Applied Electrochemistry</span>, Springer, New York, NY, 2014 <a target="_blank" class="DOILink" href="https://doi.org/10.1007/978-1-4419-6996-5" title="DOI Link to resource 10.1007/978-1-4419-6996-5">CrossRef</a></span>; (<i>&#99;</i>) <span id="cit69c">R. Matthessen, J. Fransaer, K. Binnemans and D. E. de Vos, <span class="italic">Beilstein J. Org. Chem.</span>, 2014, <span class="bold">10</span>, 2484 <a target="_blank" class="DOILink" href="https://doi.org/10.3762/bjoc.10.260" title="DOI Link to resource 10.3762/bjoc.10.260">CrossRef</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=25383120%5Buid%5D" title="PubMed Link to resource 25383120">PubMed</a></span>.</span></li> <li><span id="cit70">A. F. Jalbout and S. Zhang, <span class="italic">Acta Chim. Slov.</span>, 2002, <span class="bold">49</span>, 917 <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BD3sXksVWh" title="Link to resource in CAS">CAS</a>.</span></li> <li><span id="cit71">K. Park, P. N. Pintauro, M. M. Baizer and K. Nobe, <span class="italic">J. Electrochem. Soc.</span>, 1985, <span class="bold">132</span>, 1850 <a target="_blank" class="DOILink" href="https://doi.org/10.1149/1.2114229" title="DOI Link to resource 10.1149/1.2114229">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADyaL2MXkslyhsb4%253D" title="Link to resource in CAS">CAS</a>.</span></li> <li><span id="cit72">C.-F. Chou and T.-C. Chou, <span class="italic">J. Appl. Electrochem.</span>, 2003, <span class="bold">33</span>, 741 <a target="_blank" class="DOILink" href="https://doi.org/10.1023/A:1025005832155" title="DOI Link to resource 10.1023/A:1025005832155">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BD3sXmtVWhu7s%253D" title="Link to resource in CAS">CAS</a>.</span></li> <li><span id="cit73">M. F. Hartmer and S. R. Waldvogel, <span class="italic">Chem. Commun.</span>, 2015, <span class="bold">51</span>, 16346 <a target="_blank" class="RSCLink" href="http://xlink.rsc.org/?doi=C5CC06437F&amp;newsite=1" title="Link to RSC resource DOI:10.1039/C5CC06437F">RSC</a>.</span></li> <li><span id="cit74">M. J. Orella, Y. Román-Leshkov and F. R. Brushett, <span class="italic">Curr. Opin. Chem. Eng.</span>, 2018, <span class="bold">20</span>, 159 <a target="_blank" class="DOILink" href="https://doi.org/10.1016/j.coche.2018.05.002" title="DOI Link to resource 10.1016/j.coche.2018.05.002">CrossRef</a>.</span></li> <li><span id="cit75">A. A. Folgueiras-Amador and T. Wirth, <span class="italic">J. Flow Chem.</span>, 2017, <span class="bold">7</span>, 94 <a target="_blank" class="DOILink" href="https://doi.org/10.1556/1846.2017.00020" title="DOI Link to resource 10.1556/1846.2017.00020">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC1MXntFygur4%253D" title="Link to resource in CAS">CAS</a>.</span></li> <li><span id="cit76"> (<i>&#97;</i>) <span id="cit76a">D. Pletcher, R. A. Green and R. C. D. Brown, <span class="italic">Chem. Rev.</span>, 2018, <span class="bold">118</span>, 4573 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/acs.chemrev.7b00360" title="DOI Link to resource 10.1021/acs.chemrev.7b00360">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC2sXhsV2qtrnN" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=28921969%5Buid%5D" title="PubMed Link to resource 28921969">PubMed</a></span>; (<i>&#98;</i>) <span id="cit76b">M. Elsherbini and T. Wirth, <span class="italic">Acc. Chem. Res.</span>, 2019, <span class="bold">52</span>, 3287 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/acs.accounts.9b00497" title="DOI Link to resource 10.1021/acs.accounts.9b00497">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC1MXitV2mtbrN" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=31693339%5Buid%5D" title="PubMed Link to resource 31693339">PubMed</a></span>; (<i>&#99;</i>) <span id="cit76c">G. Laudadio, W. de Smet, L. Struik, Y. Cao and T. Noël, <span class="italic">J. Flow Chem.</span>, 2018, <span class="bold">8</span>, 157 <a target="_blank" class="DOILink" href="https://doi.org/10.1007/s41981-018-0024-3" title="DOI Link to resource 10.1007/s41981-018-0024-3">CrossRef</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=30931153%5Buid%5D" title="PubMed Link to resource 30931153">PubMed</a></span>.</span></li> <li><span id="cit77">T. Noël, Y. Cao and G. Laudadio, <span class="italic">Acc. Chem. Res.</span>, 2019, <span class="bold">52</span>, 2858 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/acs.accounts.9b00412" title="DOI Link to resource 10.1021/acs.accounts.9b00412">CrossRef</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=31573791%5Buid%5D" title="PubMed Link to resource 31573791">PubMed</a>.</span></li> <li><span id="cit78"> (<i>&#97;</i>) <span id="cit78a">B. K. Peters, K. X. Rodriguez, S. H. Reisberg, S. B. Beil, D. P. Hickey, Y. Kawamata, M. Collins, J. Starr, L. Chen, S. Udyavara, K. Klunder, T. J. Gorey, S. L. Anderson, M. Neurock, S. D. Minteer and P. S. Baran, <span class="italic">Science</span>, 2019, <span class="bold">363</span>, 838 <a target="_blank" class="DOILink" href="https://doi.org/10.1126/science.aav5606" title="DOI Link to resource 10.1126/science.aav5606">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC1MXjt1eksL0%253D" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=30792297%5Buid%5D" title="PubMed Link to resource 30792297">PubMed</a></span>; (<i>&#98;</i>) <span id="cit78b">A. Shatskiy, H. Lundberg and M. D. Kärkäs, <span class="italic">ChemElectroChem</span>, 2019, <span class="bold">6</span>, 4067 <a target="_blank" class="DOILink" href="https://doi.org/10.1002/celc.201900435" title="DOI Link to resource 10.1002/celc.201900435">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC1MXht1ynurzE" title="Link to resource in CAS">CAS</a></span>.</span></li> <li><span id="cit79">D. R. Abernethy, A. J. Destefano, T. L. Cecil, K. Zaidi and R. L. Williams, <span class="italic">Pharm. Res.</span>, 2010, <span class="bold">27</span>, 750 <a target="_blank" class="DOILink" href="https://doi.org/10.1007/s11095-010-0080-3" title="DOI Link to resource 10.1007/s11095-010-0080-3">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC3cXivV2rurk%253D" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=20217462%5Buid%5D" title="PubMed Link to resource 20217462">PubMed</a>.</span></li> <li><span id="cit80">D. Pletcher, <span class="italic">Electrochem. Commun.</span>, 2018, <span class="bold">88</span>, 1 <a target="_blank" class="DOILink" href="https://doi.org/10.1016/j.elecom.2018.01.006" title="DOI Link to resource 10.1016/j.elecom.2018.01.006">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC1cXisVahtL4%253D" title="Link to resource in CAS">CAS</a>.</span></li> <li><span id="cit81"> (<i>&#97;</i>) <span id="cit81a">B. R. Rosen, E. W. Werner, A. G. O’Brien and P. S. Baran, <span class="italic">J. Am. Chem. Soc.</span>, 2014, <span class="bold">136</span>, 5571 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/ja5013323" title="DOI Link to resource 10.1021/ja5013323">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC2cXls1CqsL0%253D" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=24697810%5Buid%5D" title="PubMed Link to resource 24697810">PubMed</a></span>; (<i>&#98;</i>) <span id="cit81b">J. Barjau, G. Schnakenburg and S. R. Waldvogel, <span class="italic">Angew. Chem., Int. Ed.</span>, 2011, <span class="bold">50</span>, 1415 <a target="_blank" class="DOILink" href="https://doi.org/10.1002/anie.201006637" title="DOI Link to resource 10.1002/anie.201006637">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC3MXhsFCmtb4%253D" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=21290525%5Buid%5D" title="PubMed Link to resource 21290525">PubMed</a></span>.</span></li> <li><span id="cit82"> (<i>&#97;</i>) <span id="cit82a">T.-S. Kam, T.-M. Lim and G.-H. Tan, <span class="italic">J. Chem. Soc., Perkin Trans. 1</span>, 2001, 1594 <a target="_blank" class="RSCLink" href="http://xlink.rsc.org/?doi=B103962H&amp;newsite=1" title="Link to RSC resource DOI:10.1039/B103962H">RSC</a></span>; (<i>&#98;</i>) <span id="cit82b">A. Lipp, D. Ferenc, C. Gütz, M. Geffe, N. Vierengel, D. Schollmeyer, H. J. Schäfer, S. R. Waldvogel and T. Opatz, <span class="italic">Angew. Chem., Int. Ed.</span>, 2018, <span class="bold">57</span>, 11055 <a target="_blank" class="DOILink" href="https://doi.org/10.1002/anie.201803887" title="DOI Link to resource 10.1002/anie.201803887">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC1cXhtFemur%252FM" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=29786941%5Buid%5D" title="PubMed Link to resource 29786941">PubMed</a></span>; (<i>&#99;</i>) <span id="cit82c">A. Lipp, M. Selt, D. Ferenc, D. Schollmeyer, S. R. Waldvogel and T. Opatz, <span class="italic">Org. Lett.</span>, 2019, <span class="bold">21</span>, 1828 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/acs.orglett.9b00419" title="DOI Link to resource 10.1021/acs.orglett.9b00419">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC1MXjtFKitrs%253D" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=30775928%5Buid%5D" title="PubMed Link to resource 30775928">PubMed</a></span>.</span></li> <li><span id="cit83"> J. Platzek, K. Gottfried, J. Assmann and G. Lolli, <span class="italic">WO Pat.</span>, 2017032678 A1, 2017.</span></li> <li><span id="cit84">Q. Lin, L. Li and S. Luo, <span class="italic">Chem.–Eur. J.</span>, 2019, <span class="bold">25</span>, 10033 <a target="_blank" class="DOILink" href="https://doi.org/10.1002/chem.201901284" title="DOI Link to resource 10.1002/chem.201901284">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC1MXhtVOitrzL" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=31026120%5Buid%5D" title="PubMed Link to resource 31026120">PubMed</a>.</span></li> <li><span id="cit85">M. Ghosh, V. S. Shinde and M. Rueping, <span class="italic">Beilstein J. Org. Chem.</span>, 2019, <span class="bold">15</span>, 2710 <a target="_blank" class="DOILink" href="https://doi.org/10.3762/bjoc.15.264" title="DOI Link to resource 10.3762/bjoc.15.264">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC1MXitl2qurrI" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=31807206%5Buid%5D" title="PubMed Link to resource 31807206">PubMed</a>.</span></li> <li><span id="cit86">X. Chang, Q. Zhang and C. Guo, <span class="italic">Angew. Chem., Int. Ed.</span>, 2020<small> DOI:<a class="DOILink" href="https://doi.org/10.1002/anie.202000016" TARGET="_BLANK" title="DOI Link to 10.1002/anie.202000016">10.1002/anie.202000016</a></small>.</span></li> <li><span id="cit87">B. F. Watkins, J. R. Behling, E. Kariv and L. L. Miller, <span class="italic">J. Am. Chem. Soc.</span>, 1975, <span class="bold">97</span>, 3549 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/ja00845a061" title="DOI Link to resource 10.1021/ja00845a061">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADyaE2MXks1Orsbs%253D" title="Link to resource in CAS">CAS</a>.</span></li> <li><span id="cit88"> (<i>&#97;</i>) <span id="cit88a">S. Abe, T. Nonaka and T. Fuchigami, <span class="italic">J. Am. Chem. Soc.</span>, 1983, <span class="bold">105</span>, 3630 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/ja00349a046" title="DOI Link to resource 10.1021/ja00349a046">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADyaL3sXitVKntr8%253D" title="Link to resource in CAS">CAS</a></span>; (<i>&#98;</i>) <span id="cit88b">T. Osa, Y. Kashiwagi, T. Ono, F. Kurashima and U. AKIBA, <span class="italic">Int. J. Soc. Mater. Eng. Resour.</span>, 2014, <span class="bold">20</span>, 49 <a target="_blank" class="DOILink" href="https://doi.org/10.5188/ijsmer.20.49" title="DOI Link to resource 10.5188/ijsmer.20.49">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC2cXhtFaksr%252FP" title="Link to resource in CAS">CAS</a></span>.</span></li> <li><span id="cit89"> (<i>&#97;</i>) <span id="cit89a">S. Assavapanumat, M. Ketkaew, A. Kuhn and C. Wattanakit, <span class="italic">J. Am. Chem. Soc.</span>, 2019, <span class="bold">141</span>, 18870 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/jacs.9b10507" title="DOI Link to resource 10.1021/jacs.9b10507">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC1MXitFagtL3F" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=31697491%5Buid%5D" title="PubMed Link to resource 31697491">PubMed</a></span>; (<i>&#98;</i>) <span id="cit89b">C. Wattanakit and A. Kuhn, <span class="italic">Chem.–Eur. J.</span>, 2020, <span class="bold">26</span>, 2993 <a target="_blank" class="DOILink" href="https://doi.org/10.1002/chem.201904835" title="DOI Link to resource 10.1002/chem.201904835">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BB3cXhvFykug%253D%253D" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=31724789%5Buid%5D" title="PubMed Link to resource 31724789">PubMed</a></span>; (<i>&#99;</i>) <span id="cit89c">C. Wattanakit, T. Yutthalekha, S. Asssavapanumat, V. Lapeyre and A. Kuhn, <span class="italic">Nat. Commun.</span>, 2017, <span class="bold">8</span>, 2087 <a target="_blank" class="DOILink" href="https://doi.org/10.1038/s41467-017-02190-z" title="DOI Link to resource 10.1038/s41467-017-02190-z">CrossRef</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=29233998%5Buid%5D" title="PubMed Link to resource 29233998">PubMed</a></span>; (<i>&#100;</i>) <span id="cit89d">T. Yutthalekha, C. Wattanakit, V. Lapeyre, S. Nokbin, C. Warakulwit, J. Limtrakul and A. Kuhn, <span class="italic">Nat. Commun.</span>, 2016, <span class="bold">7</span>, 12678 <a target="_blank" class="DOILink" href="https://doi.org/10.1038/ncomms12678" title="DOI Link to resource 10.1038/ncomms12678">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC28XhsVCht7rI" title="Link to resource in CAS">CAS</a></span>.</span></li> <li><span id="cit90"> (<i>&#97;</i>) <span id="cit90a">Y. Kashiwagi, F. Kurashima, C. Kikuchi, J.-i. Anzai, T. Osa and J. M. Bobbitt, <span class="italic">Chem. Commun.</span>, 1999, 1983 <a target="_blank" class="RSCLink" href="http://xlink.rsc.org/?doi=A905894J&amp;newsite=1" title="Link to RSC resource DOI:10.1039/A905894J">RSC</a></span>; (<i>&#98;</i>) <span id="cit90b">Y. Kashiwagi, F. Kurashima, C. Kikuchi, J.-i. Anzai, T. Osa and J. M. Bobbitt, <span class="italic">Tetrahedron Lett.</span>, 1999, <span class="bold">40</span>, 6469 <a target="_blank" class="DOILink" href="https://doi.org/10.1016/S0040-4039(99)01325-8" title="DOI Link to resource 10.1016/S0040-4039(99)01325-8">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADyaK1MXlslSjsL8%253D" title="Link to resource in CAS">CAS</a></span>; (<i>&#99;</i>) <span id="cit90c">M. Kuroboshi, H. Yoshihisa, M. N. Cortona, Y. Kawakami, Z. Gao and H. Tanaka, <span class="italic">Tetrahedron Lett.</span>, 2000, <span class="bold">41</span>, 8131 <a target="_blank" class="DOILink" href="https://doi.org/10.1016/S0040-4039(00)01419-2" title="DOI Link to resource 10.1016/S0040-4039(00)01419-2">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BD3cXotVGru7c%253D" title="Link to resource in CAS">CAS</a></span>.</span></li> <li><span id="cit91">W.-C. Gao, Z.-Y. Xiong, S. Pirhaghani and T. Wirth, <span class="italic">Synthesis</span>, 2019, <span class="bold">51</span>, 276 <a target="_blank" class="DOILink" href="https://doi.org/10.1055/s-0037-1610373" title="DOI Link to resource 10.1055/s-0037-1610373">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC1cXitVaqsrvJ" title="Link to resource in CAS">CAS</a>.</span></li> <li><span id="cit92"> (<i>&#97;</i>) <span id="cit92a">N. Fu, L. Li, Q. Yang and S. Luo, <span class="italic">Org. Lett.</span>, 2017, <span class="bold">19</span>, 2122 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/acs.orglett.7b00746" title="DOI Link to resource 10.1021/acs.orglett.7b00746">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC2sXlslyrsLY%253D" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=28394132%5Buid%5D" title="PubMed Link to resource 28394132">PubMed</a></span>; (<i>&#98;</i>) <span id="cit92b">K. L. Jensen, P. T. Franke, L. T. Nielsen, K. Daasbjerg and K. A. Jørgensen, <span class="italic">Angew. Chem., Int. Ed.</span>, 2010, <span class="bold">49</span>, 129 <a target="_blank" class="DOILink" href="https://doi.org/10.1002/anie.200904754" title="DOI Link to resource 10.1002/anie.200904754">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BD1MXhs1Wlt7fL" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=19946923%5Buid%5D" title="PubMed Link to resource 19946923">PubMed</a></span>.</span></li> <li><span id="cit93"> (<i>&#97;</i>) <span id="cit93a">X. Huang, Q. Zhang, J. Lin, K. Harms and E. Meggers, <span class="italic">Nat. Catal.</span>, 2019, <span class="bold">2</span>, 34 <a target="_blank" class="DOILink" href="https://doi.org/10.1038/s41929-018-0198-y" title="DOI Link to resource 10.1038/s41929-018-0198-y">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC1MXhtFGisb3N" title="Link to resource in CAS">CAS</a></span>; (<i>&#98;</i>) <span id="cit93b">Q. Zhang, X. Chang, L. Peng and C. Guo, <span class="italic">Angew. Chem., Int. Ed.</span>, 2019, <span class="bold">58</span>, 6999 <a target="_blank" class="DOILink" href="https://doi.org/10.1002/anie.201901801" title="DOI Link to resource 10.1002/anie.201901801">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC1MXnt1Wjurk%253D" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=30908778%5Buid%5D" title="PubMed Link to resource 30908778">PubMed</a></span>.</span></li> <li><span id="cit94">F. Hollmann, K. Hofstetter, T. Habicher, B. Hauer and A. Schmid, <span class="italic">J. Am. Chem. Soc.</span>, 2005, <span class="bold">127</span>, 6540 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/ja050997b" title="DOI Link to resource 10.1021/ja050997b">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BD2MXjtFKnurY%253D" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=15869268%5Buid%5D" title="PubMed Link to resource 15869268">PubMed</a>.</span></li> <li><span id="cit95"> (<i>&#97;</i>) <span id="cit95a">S. Kawabata, N. Iwata and H. Yoneyama, <span class="italic">Chem. Lett.</span>, 2000, <span class="bold">29</span>, 110 <a target="_blank" class="DOILink" href="https://doi.org/10.1246/cl.2000.110" title="DOI Link to resource 10.1246/cl.2000.110">CrossRef</a></span>; (<i>&#98;</i>) <span id="cit95b">L. Wan, R. S. Heath, B. Siritanaratkul, C. F. Megarity, A. J. Sills, M. P. Thompson, N. J. Turner and F. A. Armstrong, <span class="italic">Green Chem.</span>, 2019, <span class="bold">21</span>, 4958 <a target="_blank" class="RSCLink" href="http://xlink.rsc.org/?doi=C9GC01534E&amp;newsite=1" title="Link to RSC resource DOI:10.1039/C9GC01534E">RSC</a></span>.</span></li> <li><span id="cit96"> (<i>&#97;</i>) <span id="cit96a">M. Feroci, A. Inesi, M. Orsini and L. Palombi, <span class="italic">Org. Lett.</span>, 2002, <span class="bold">4</span>, 2617 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/ol025939z" title="DOI Link to resource 10.1021/ol025939z">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BD38Xlt1eqtro%253D" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=12153192%5Buid%5D" title="PubMed Link to resource 12153192">PubMed</a></span>; (<i>&#98;</i>) <span id="cit96b">C. Zielinski and H. J. Schäfer, <span class="italic">Tetrahedron Lett.</span>, 1994, <span class="bold">35</span>, 5621 <a target="_blank" class="DOILink" href="https://doi.org/10.1016/S0040-4039(00)77263-7" title="DOI Link to resource 10.1016/S0040-4039(00)77263-7">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADyaK2cXmvVSmtbk%253D" title="Link to resource in CAS">CAS</a></span>.</span></li> <li><span id="cit97"> (<i>&#97;</i>) <span id="cit97a">B. E. Dale, <span class="italic">J. Chem. Technol. Biotechnol.</span>, 2003, <span class="bold">78</span>, 1093 <a target="_blank" class="DOILink" href="https://doi.org/10.1002/jctb.850" title="DOI Link to resource 10.1002/jctb.850">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BD3sXnslKhsrk%253D" title="Link to resource in CAS">CAS</a></span>; (<i>&#98;</i>) <span id="cit97b">N. Chu, Q. Liang, Y. Jiang and R. J. Zeng, <span class="italic">Biosens. Bioelectron.</span>, 2019, 111922 <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/sites/entrez?orig_db=PubMed&amp;db=pubmed&amp;cmd=Search&amp;term=Biosens.%20Bioelectron.%5BJour%5D%20AND%20%5Bvolume%5D%20AND%20111922%5Bpage%5D%20and%202019%5Bpdat%5D" title="Search PubMed for this citation">Search PubMed</a></span>; (<i>&#99;</i>) <span id="cit97c">F. Harnisch and U. Schröder, <span class="italic">ChemElectroChem</span>, 2019, <span class="bold">6</span>, 4126 <a target="_blank" class="DOILink" href="https://doi.org/10.1002/celc.201900456" title="DOI Link to resource 10.1002/celc.201900456">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC1MXptlygurg%253D" title="Link to resource in CAS">CAS</a></span>; (<i>&#100;</i>) <span id="cit97d">F. Harnisch and C. Urban, <span class="italic">Angew. Chem., Int. Ed.</span>, 2018, <span class="bold">57</span>, 10016 <a target="_blank" class="DOILink" href="https://doi.org/10.1002/anie.201711727" title="DOI Link to resource 10.1002/anie.201711727">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC1cXjs1Cms7g%253D" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=29235724%5Buid%5D" title="PubMed Link to resource 29235724">PubMed</a></span>; (<i>&#101;</i>) <span id="cit97e">H. Li, H. Guo, Z. Fang, T. M. Aida and R. L. Smith, <span class="italic">Green Chem.</span>, 2020, <span class="bold">47</span>, 852 <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/sites/entrez?orig_db=PubMed&amp;db=pubmed&amp;cmd=Search&amp;term=Green%20Chem.%5BJour%5D%20AND%2047%5Bvolume%5D%20AND%20852%5Bpage%5D%20and%202020%5Bpdat%5D" title="Search PubMed for this citation">Search PubMed</a></span>.</span></li> <li><span id="cit98">G. A. Olah, G. K. S. Prakash and A. Goeppert, <span class="italic">J. Am. Chem. Soc.</span>, 2011, <span class="bold">133</span>, 12881 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/ja202642y" title="DOI Link to resource 10.1021/ja202642y">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC3MXosFylu7w%253D" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=21612273%5Buid%5D" title="PubMed Link to resource 21612273">PubMed</a>.</span></li> <li><span id="cit99"> (<i>&#97;</i>) <span id="cit99a">S. Nitopi, E. Bertheussen, S. B. Scott, X. Liu, A. K. Engstfeld, S. Horch, B. Seger, I. E. L. Stephens, K. Chan, C. Hahn, J. K. Nørskov, T. F. Jaramillo and I. Chorkendorff, <span class="italic">Chem. Rev.</span>, 2019, <span class="bold">119</span>, 7610 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/acs.chemrev.8b00705" title="DOI Link to resource 10.1021/acs.chemrev.8b00705">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC1MXpvFyls7w%253D" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=31117420%5Buid%5D" title="PubMed Link to resource 31117420">PubMed</a></span>; (<i>&#98;</i>) <span id="cit99b">R. Francke, B. Schille and M. Roemelt, <span class="italic">Chem. Rev.</span>, 2018, <span class="bold">118</span>, 4631 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/acs.chemrev.7b00459" title="DOI Link to resource 10.1021/acs.chemrev.7b00459">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC1cXlsVWqsw%253D%253D" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=29319300%5Buid%5D" title="PubMed Link to resource 29319300">PubMed</a></span>; (<i>&#99;</i>) <span id="cit99c">F. P. García de Arquer, C.-T. Dinh, A. Ozden, J. Wicks, C. McCallum, A. R. Kirmani, D.-H. Nam, C. Gabardo, A. Seifitokaldani, X. Wang, Y. C. Li, F. Li, J. Edwards, L. J. Richter, S. J. Thorpe, D. Sinton and E. H. Sargent, <span class="italic">Science</span>, 2020, <span class="bold">367</span>, 661 <a target="_blank" class="DOILink" href="https://doi.org/10.1126/science.aay4217" title="DOI Link to resource 10.1126/science.aay4217">CrossRef</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=32029623%5Buid%5D" title="PubMed Link to resource 32029623">PubMed</a></span>; (<i>&#100;</i>) <span id="cit99d">M. Wang, K. Torbensen, D. Salvatore, S. Ren, D. Joulié, F. Dumoulin, D. Mendoza, B. Lassalle-Kaiser, U. Işci, C. P. Berlinguette and M. Robert, <span class="italic">Nat. Commun.</span>, 2019, <span class="bold">10</span>, 3602 <a target="_blank" class="DOILink" href="https://doi.org/10.1038/s41467-019-11542-w" title="DOI Link to resource 10.1038/s41467-019-11542-w">CrossRef</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=31399585%5Buid%5D" title="PubMed Link to resource 31399585">PubMed</a></span>; (<i>&#101;</i>) <span id="cit99e">S. Zhang, Q. Fan, R. Xia and T. J. Meyer, <span class="italic">Acc. Chem. Res.</span>, 2020, <span class="bold">53</span>, 255 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/acs.accounts.9b00496" title="DOI Link to resource 10.1021/acs.accounts.9b00496">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BB3cXjvVeisA%253D%253D" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=31913013%5Buid%5D" title="PubMed Link to resource 31913013">PubMed</a></span>; (<i>&#102;</i>) <span id="cit99f">A. Tortajada, F. Juliá-Hernández, M. Börjesson, T. Moragas and R. Martin, <span class="italic">Angew. Chem., Int. Ed.</span>, 2018, <span class="bold">57</span>, 15948 <a target="_blank" class="DOILink" href="https://doi.org/10.1002/anie.201803186" title="DOI Link to resource 10.1002/anie.201803186">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC1cXhvVejtrzJ" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=29722461%5Buid%5D" title="PubMed Link to resource 29722461">PubMed</a></span>.</span></li> <li><span id="cit100">M. Zirbes, D. Schmitt, N. Beiser, D. Pitton, T. Hoffmann and S. R. Waldvogel, <span class="italic">ChemElectroChem</span>, 2019, <span class="bold">6</span>, 155 <a target="_blank" class="DOILink" href="https://doi.org/10.1002/celc.201801218" title="DOI Link to resource 10.1002/celc.201801218">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC1cXhslOqurrK" title="Link to resource in CAS">CAS</a>.</span></li> <li><span id="cit101">M. Zirbes and S. R. Waldvogel, <span class="italic">Curr. Opin. Green Sustain. Chem.</span>, 2018, <span class="bold">14</span>, 19 <a target="_blank" class="DOILink" href="https://doi.org/10.1016/j.cogsc.2018.05.001" title="DOI Link to resource 10.1016/j.cogsc.2018.05.001">CrossRef</a>.</span></li> <li><span id="cit102">D. Schmitt, C. Regenbrecht, M. Hartmer, F. Stecker and S. R. Waldvogel, <span class="italic">Beilstein J. Org. Chem.</span>, 2015, <span class="bold">11</span>, 473 <a target="_blank" class="DOILink" href="https://doi.org/10.3762/bjoc.11.53" title="DOI Link to resource 10.3762/bjoc.11.53">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC2MXns1Cks70%253D" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=25977721%5Buid%5D" title="PubMed Link to resource 25977721">PubMed</a>.</span></li> <li><span id="cit103">R. Rinaldi, R. Jastrzebski, M. T. Clough, J. Ralph, M. Kennema, P. C. A. Bruijnincx and B. M. Weckhuysen, <span class="italic">Angew. Chem., Int. Ed.</span>, 2016, <span class="bold">55</span>, 8164 <a target="_blank" class="DOILink" href="https://doi.org/10.1002/anie.201510351" title="DOI Link to resource 10.1002/anie.201510351">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC28XhtVSjsb%252FJ" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=27311348%5Buid%5D" title="PubMed Link to resource 27311348">PubMed</a>.</span></li> <li><span id="cit104"> (<i>&#97;</i>) <span id="cit104a">A. Rahimi, A. Ulbrich, J. J. Coon and S. S. Stahl, <span class="italic">Nature</span>, 2014, <span class="bold">515</span>, 249 <a target="_blank" class="DOILink" href="https://doi.org/10.1038/nature13867" title="DOI Link to resource 10.1038/nature13867">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC2cXhvFGlt7bO" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=25363781%5Buid%5D" title="PubMed Link to resource 25363781">PubMed</a></span>; (<i>&#98;</i>) <span id="cit104b">M. Davaritouchaee, W. C. Hiscox, E. Terrell, R. J. Mancini and S. Chen, <span class="italic">Green Chem.</span>, 2020, <span class="bold">60</span>, 4923 <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/sites/entrez?orig_db=PubMed&amp;db=pubmed&amp;cmd=Search&amp;term=Green%20Chem.%5BJour%5D%20AND%2060%5Bvolume%5D%20AND%204923%5Bpage%5D%20and%202020%5Bpdat%5D" title="Search PubMed for this citation">Search PubMed</a></span>; (<i>&#99;</i>) <span id="cit104c">J. S. Luterbacher, D. Martin Alonso and J. A. Dumesic, <span class="italic">Green Chem.</span>, 2014, <span class="bold">16</span>, 4816 <a target="_blank" class="RSCLink" href="http://xlink.rsc.org/?doi=C4GC01160K&amp;newsite=1" title="Link to RSC resource DOI:10.1039/C4GC01160K">RSC</a></span>.</span></li> <li><span id="cit105">M. Rafiee, M. Alherech, S. D. Karlen and S. S. Stahl, <span class="italic">J. Am. Chem. Soc.</span>, 2019, <span class="bold">141</span>, 15266 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/jacs.9b07243" title="DOI Link to resource 10.1021/jacs.9b07243">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC1MXhslSqsbvN" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=31483640%5Buid%5D" title="PubMed Link to resource 31483640">PubMed</a>.</span></li> <li><span id="cit106">C. Zhang and F. Wang, <span class="italic">Acc. Chem. Res.</span>, 2020, <span class="bold">53</span>, 470 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/acs.accounts.9b00573" title="DOI Link to resource 10.1021/acs.accounts.9b00573">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BB3cXhvVertb8%253D" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=31999099%5Buid%5D" title="PubMed Link to resource 31999099">PubMed</a>.</span></li> <li><span id="cit107">J. Zakzeski, P. C. A. Bruijnincx, A. L. Jongerius and B. M. Weckhuysen, <span class="italic">Chem. Rev.</span>, 2010, <span class="bold">110</span>, 3552 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/cr900354u" title="DOI Link to resource 10.1021/cr900354u">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC3cXjtVyjsrw%253D" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=20218547%5Buid%5D" title="PubMed Link to resource 20218547">PubMed</a>.</span></li> <li><span id="cit108">K. Freudenberg, W. Lautsch and K. Engler, <span class="italic">Ber. Dtsch. Chem. Ges. A/B</span>, 1940, <span class="bold">73</span>, 167 <a target="_blank" class="DOILink" href="https://doi.org/10.1002/cber.19400730302" title="DOI Link to resource 10.1002/cber.19400730302">CrossRef</a>.</span></li> <li><span id="cit109"> (<i>&#97;</i>) <span id="cit109a">P. Parpot, A. P. Bettencourt, A. M. Carvalho and E. M. Belgsir, <span class="italic">J. Appl. Electrochem.</span>, 2000, <span class="bold">30</span>, 727 <a target="_blank" class="DOILink" href="https://doi.org/10.1023/A:1004003613883" title="DOI Link to resource 10.1023/A:1004003613883">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BD3cXlsFagtLw%253D" title="Link to resource in CAS">CAS</a></span>; (<i>&#98;</i>) <span id="cit109b">A. Caravaca, W. E. Garcia-Lorefice, S. Gil, A. de Lucas-Consuegra and P. Vernoux, <span class="italic">Electrochem. Commun.</span>, 2019, <span class="bold">100</span>, 43 <a target="_blank" class="DOILink" href="https://doi.org/10.1016/j.elecom.2019.01.016" title="DOI Link to resource 10.1016/j.elecom.2019.01.016">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC1MXhvF2rsbw%253D" title="Link to resource in CAS">CAS</a></span>.</span></li> <li><span id="cit110"> (<i>&#97;</i>) <span id="cit110a">M. Tian, J. Wen, D. MacDonald, R. M. Asmussen and A. Chen, <span class="italic">Electrochem. Commun.</span>, 2010, <span class="bold">12</span>, 527 <a target="_blank" class="DOILink" href="https://doi.org/10.1016/j.elecom.2010.01.035" title="DOI Link to resource 10.1016/j.elecom.2010.01.035">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC3cXjs1aqsL8%253D" title="Link to resource in CAS">CAS</a></span>; (<i>&#98;</i>) <span id="cit110b">M. Zirbes, L. L. Quadri, M. Breiner, A. Stenglein, A. Bomm, W. Schade and S. R. Waldvogel, <span class="italic">ACS Sustainable Chem. Eng.</span>, 2020, <span class="bold">8</span>, 7300 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/acssuschemeng.0c00162" title="DOI Link to resource 10.1021/acssuschemeng.0c00162">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BB3cXns1Wgsr0%253D" title="Link to resource in CAS">CAS</a></span>.</span></li> <li><span id="cit111">H. Zhu, Y. Chen, T. Qin, L. Wang, Y. Tang, Y. Sun and P. Wan, <span class="italic">RSC Adv.</span>, 2014, <span class="bold">4</span>, 6232 <a target="_blank" class="RSCLink" href="http://xlink.rsc.org/?doi=C3RA47516F&amp;newsite=1" title="Link to RSC resource DOI:10.1039/C3RA47516F">RSC</a>.</span></li> <li><span id="cit112">I. Bosque, G. Magallanes, M. Rigoulet, M. D. Kärkäs and C. R. J. Stephenson, <span class="italic">ACS Cent. Sci.</span>, 2017, <span class="bold">3</span>, 621 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/acscentsci.7b00140" title="DOI Link to resource 10.1021/acscentsci.7b00140">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC2sXpt1ynu78%253D" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=28691074%5Buid%5D" title="PubMed Link to resource 28691074">PubMed</a>.</span></li> <li><span id="cit113">B. H. Nguyen, R. J. Perkins, J. A. Smith and K. D. Moeller, <span class="italic">J. Org. Chem.</span>, 2015, <span class="bold">80</span>, 11953 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/acs.joc.5b01776" title="DOI Link to resource 10.1021/acs.joc.5b01776">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC2MXhslyitrrO" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=26544912%5Buid%5D" title="PubMed Link to resource 26544912">PubMed</a>.</span></li> <li><span id="cit114">A. Bin Kassim, C. L. Rice and A. T. Kuhn, <span class="italic">J. Appl. Electrochem.</span>, 1981, <span class="bold">11</span>, 261 <a target="_blank" class="DOILink" href="https://doi.org/10.1007/BF00610988" title="DOI Link to resource 10.1007/BF00610988">CrossRef</a>.</span></li> <li><span id="cit115">T. Shono, Y. Matsumura, K. Tsubata and J. Takata, <span class="italic">Chem. Lett.</span>, 1981, <span class="bold">10</span>, 1121 <a target="_blank" class="DOILink" href="https://doi.org/10.1246/cl.1981.1121" title="DOI Link to resource 10.1246/cl.1981.1121">CrossRef</a>.</span></li> <li><span id="cit116"> (<i>&#97;</i>) <span id="cit116a">Y. Cao and T. Noël, <span class="italic">Org. Process Res. Dev.</span>, 2019, <span class="bold">23</span>, 403 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/acs.oprd.8b00428" title="DOI Link to resource 10.1021/acs.oprd.8b00428">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC1MXisleqsL8%253D" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=30906184%5Buid%5D" title="PubMed Link to resource 30906184">PubMed</a></span>; (<i>&#98;</i>) <span id="cit116b">J. Carneiro and E. Nikolla, <span class="italic">Annu. Rev. Chem. Biomol. Eng.</span>, 2019, <span class="bold">10</span>, 85 <a target="_blank" class="DOILink" href="https://doi.org/10.1146/annurev-chembioeng-060718-030148" title="DOI Link to resource 10.1146/annurev-chembioeng-060718-030148">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC1MXhtFalu7%252FK" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=31173521%5Buid%5D" title="PubMed Link to resource 31173521">PubMed</a></span>; (<i>&#99;</i>) <span id="cit116c">Y. Kwon, K. J. P. Schouten, J. C. van der Waal, E. de Jong and M. T. M. Koper, <span class="italic">ACS Catal.</span>, 2016, <span class="bold">6</span>, 6704 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/acscatal.6b01861" title="DOI Link to resource 10.1021/acscatal.6b01861">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC28XhtlOgtrfN" title="Link to resource in CAS">CAS</a></span>; (<i>&#100;</i>) <span id="cit116d">A. M. Román, J. C. Hasse, J. W. Medlin and A. Holewinski, <span class="italic">ACS Catal.</span>, 2019, <span class="bold">9</span>, 10305 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/acscatal.9b02656" title="DOI Link to resource 10.1021/acscatal.9b02656">CrossRef</a></span>; (<i>&#101;</i>) <span id="cit116e">Y.-R. Zhang, B.-X. Wang, L. Qin, Q. Li and Y.-M. Fan, <span class="italic">Green Chem.</span>, 2019, <span class="bold">21</span>, 1108 <a target="_blank" class="RSCLink" href="http://xlink.rsc.org/?doi=C8GC03689F&amp;newsite=1" title="Link to RSC resource DOI:10.1039/C8GC03689F">RSC</a></span>.</span></li> <li><span id="cit117"> (<i>&#97;</i>) <span id="cit117a">S. Lestari, P. Mäki-Arvela, J. Beltramini, G. Q. M. Lu and D. Y. Murzin, <span class="italic">ChemSusChem</span>, 2009, <span class="bold">2</span>, 1109 <a target="_blank" class="DOILink" href="https://doi.org/10.1002/cssc.200900107" title="DOI Link to resource 10.1002/cssc.200900107">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BD1MXhsF2jtr7I" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=19862784%5Buid%5D" title="PubMed Link to resource 19862784">PubMed</a></span>; (<i>&#98;</i>) <span id="cit117b">T. R. dos Santos, P. Nilges, W. Sauter, F. Harnisch and U. Schröder, <span class="italic">RSC Adv.</span>, 2015, <span class="bold">5</span>, 26634 <a target="_blank" class="RSCLink" href="http://xlink.rsc.org/?doi=C4RA16303F&amp;newsite=1" title="Link to RSC resource DOI:10.1039/C4RA16303F">RSC</a></span>; (<i>&#99;</i>) <span id="cit117c">F. J. Holzhäuser, G. Creusen, G. Moos, M. Dahmen, A. König, J. Artz, S. Palkovits and R. Palkovits, <span class="italic">Green Chem.</span>, 2019, <span class="bold">21</span>, 2334 <a target="_blank" class="RSCLink" href="http://xlink.rsc.org/?doi=C8GC03745K&amp;newsite=1" title="Link to RSC resource DOI:10.1039/C8GC03745K">RSC</a></span>; (<i>&#100;</i>) <span id="cit117d">F. J. Holzhäuser, J. B. Mensah and R. Palkovits, <span class="italic">Green Chem.</span>, 2020, <span class="bold">22</span>, 286 <a target="_blank" class="RSCLink" href="http://xlink.rsc.org/?doi=C9GC03264A&amp;newsite=1" title="Link to RSC resource DOI:10.1039/C9GC03264A">RSC</a></span>.</span></li> <li><span id="cit118"> (<i>&#97;</i>) <span id="cit118a">H. J. Schäfer, <span class="italic">Eur. J. Lipid Sci. Technol.</span>, 2012, <span class="bold">114</span>, 2 <a target="_blank" class="DOILink" href="https://doi.org/10.1002/ejlt.201100045" title="DOI Link to resource 10.1002/ejlt.201100045">CrossRef</a></span>; (<i>&#98;</i>) <span id="cit118b">G. Creusen, F. J. Holzhäuser, J. Artz, S. Palkovits and R. Palkovits, <span class="italic">ACS Sustainable Chem. Eng.</span>, 2018, <span class="bold">6</span>, 17108 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/acssuschemeng.8b04488" title="DOI Link to resource 10.1021/acssuschemeng.8b04488">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC1cXitFOitb%252FF" title="Link to resource in CAS">CAS</a></span>; (<i>&#99;</i>) <span id="cit118c">H. J. Schäfer, M. Harenbrock, E. Klocke, M. Plate and A. Weiper-Idelmann, <span class="italic">Pure Appl. Chem.</span>, 2007, <span class="bold">79</span>, 2047 <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/sites/entrez?orig_db=PubMed&amp;db=pubmed&amp;cmd=Search&amp;term=Pure%20Appl.%20Chem.%5BJour%5D%20AND%2079%5Bvolume%5D%20AND%202047%5Bpage%5D%20and%202007%5Bpdat%5D" title="Search PubMed for this citation">Search PubMed</a></span>.</span></li> <li><span id="cit119">G. H. M. de Kruijff, T. Goschler, L. Derwich, N. Beiser, O. M. Türk and S. R. Waldvogel, <span class="italic">ACS Sustainable Chem. Eng.</span>, 2019, <span class="bold">7</span>, 10855 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/acssuschemeng.9b01714" title="DOI Link to resource 10.1021/acssuschemeng.9b01714">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC1MXhtVejtrbP" title="Link to resource in CAS">CAS</a>.</span></li> <li><span id="cit120">J.-J. Dai, Y.-B. Huang, C. Fang, Q.-X. Guo and Y. Fu, <span class="italic">ChemSusChem</span>, 2012, <span class="bold">5</span>, 617 <a target="_blank" class="DOILink" href="https://doi.org/10.1002/cssc.201100776" title="DOI Link to resource 10.1002/cssc.201100776">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC38Xkt1ymt7Y%253D" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=22441826%5Buid%5D" title="PubMed Link to resource 22441826">PubMed</a>.</span></li> <li><span id="cit121">R. Matthessen, L. Claes, J. Fransaer, K. Binnemans and D. E. de Vos, <span class="italic">Eur. J. Org. Chem.</span>, 2014, 6649 <a target="_blank" class="DOILink" href="https://doi.org/10.1002/ejoc.201403112" title="DOI Link to resource 10.1002/ejoc.201403112">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC2cXhsFCit7bJ" title="Link to resource in CAS">CAS</a>.</span></li> <li><span id="cit122"> (<i>&#97;</i>) <span id="cit122a">B. H. R. Suryanto, Y. Wang, R. K. Hocking, W. Adamson and C. Zhao, <span class="italic">Nat. Commun.</span>, 2019, <span class="bold">10</span>, 5599 <a target="_blank" class="DOILink" href="https://doi.org/10.1038/s41467-019-13415-8" title="DOI Link to resource 10.1038/s41467-019-13415-8">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC1MXitlyntrfM" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=31811129%5Buid%5D" title="PubMed Link to resource 31811129">PubMed</a></span>; (<i>&#98;</i>) <span id="cit122b">I. Roger, M. A. Shipman and M. D. Symes, <span class="italic">Nat. Rev. Chem.</span>, 2017, <span class="bold">1</span>, 928 <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/sites/entrez?orig_db=PubMed&amp;db=pubmed&amp;cmd=Search&amp;term=Nat.%20Rev.%20Chem.%5BJour%5D%20AND%201%5Bvolume%5D%20AND%20928%5Bpage%5D%20and%202017%5Bpdat%5D" title="Search PubMed for this citation">Search PubMed</a></span>; (<i>&#99;</i>) <span id="cit122c">W. Xu, Z. Lu, X. Sun, L. Jiang and X. Duan, <span class="italic">Acc. Chem. Res.</span>, 2018, <span class="bold">51</span>, 1590 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/acs.accounts.8b00070" title="DOI Link to resource 10.1021/acs.accounts.8b00070">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC1cXhtV2isb7J" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=29883085%5Buid%5D" title="PubMed Link to resource 29883085">PubMed</a></span>; (<i>&#100;</i>) <span id="cit122d">B. You and Y. Sun, <span class="italic">Acc. Chem. Res.</span>, 2018, <span class="bold">51</span>, 1571 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/acs.accounts.8b00002" title="DOI Link to resource 10.1021/acs.accounts.8b00002">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC1cXktlyrsrk%253D" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=29537825%5Buid%5D" title="PubMed Link to resource 29537825">PubMed</a></span>.</span></li> <li><span id="cit123">S. R. Waldvogel, S. Arndt, D. Weis and K. Donsbach, <span class="italic">Angew. Chem., Int. Ed.</span>, 2020, <span class="bold">59</span>, 8036 <a target="_blank" class="DOILink" href="https://doi.org/10.1002/anie.202002717" title="DOI Link to resource 10.1002/anie.202002717">CrossRef</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=32181555%5Buid%5D" title="PubMed Link to resource 32181555">PubMed</a>.</span></li> <li><span id="cit124">H. Roth, N. Romero and D. Nicewicz, <span class="italic">Synlett</span>, 2016, <span class="bold">27</span>, 714 <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC2MXitV2isb3M" title="Link to resource in CAS">CAS</a>.</span></li> <li><span id="cit125"> (<i>&#97;</i>) <span id="cit125a">C. Sandford, M. A. Edwards, K. J. Klunder, D. P. Hickey, M. Li, K. Barman, M. S. Sigman, H. S. White and S. D. Minteer, <span class="italic">Chem. Sci.</span>, 2019, <span class="bold">10</span>, 6404 <a target="_blank" class="RSCLink" href="http://xlink.rsc.org/?doi=C9SC01545K&amp;newsite=1" title="Link to RSC resource DOI:10.1039/C9SC01545K">RSC</a></span>; (<i>&#98;</i>) <span id="cit125b"> F. Scholz, <span class="italic">Electroanalytical Methods</span>, Springer Berlin Heidelberg, Berlin, Heidelberg, 2005 <a target="_blank" class="DOILink" href="https://doi.org/10.1007/978-3-662-04757-6" title="DOI Link to resource 10.1007/978-3-662-04757-6">CrossRef</a></span>; (<i>&#99;</i>) <span id="cit125c"> B. Speiser, in <span class="italic">Encyclopedia of Electrochemistry</span>, ed. A. J. Bard, Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim, Germany, 2007, vol. 69, p. 269 <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/sites/entrez?orig_db=PubMed&amp;db=pubmed&amp;cmd=Search&amp;term=Encyclopedia%20of%20Electrochemistry%5BJour%5D%20AND%20vol. 69%5Bvolume%5D%20AND%20%5Bpage%5D%20and%202007%5Bpdat%5D" title="Search PubMed for this citation">Search PubMed</a></span>; (<i>&#100;</i>) <span id="cit125d"> W. Vielstich and C. H. Hamann, <span class="italic">Elektrochemie</span>, Wiley-VCH, Weinheim, 4th edn, 2005 <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/sites/entrez?orig_db=PubMed&amp;db=pubmed&amp;cmd=Search&amp;term=Elektrochemie%5BJour%5D%20AND%20%5Bvolume%5D%20AND%20%5Bpage%5D%20and%202005%5Bpdat%5D" title="Search PubMed for this citation">Search PubMed</a></span>.</span></li> </ol> <table><tr><td><hr/></td></tr><tr><td><b>This journal is © The Royal Society of Chemistry 2020</b></td></tr></table><div><strong>Click <a title="Link to cookies page" aria-label="Link to cookies page" href="/en/content/cookies" target="_blank">here</a> to see how this site uses Cookies. View our privacy policy <a title="Link to privacy policy page" aria-label="Link to privacy policy page" href="https://www.rsc.org/help-legal/legal/privacy/" target="_blank">here</a>.</strong></div></div></div></div></body><script src="/content/scripts/CrossMarkIE.js"> </script><SaxonLicenceTest result="pass" message="Licenced Enterprise Edition [ EE 9.3.0.4 ]"/></html>

Pages: 1 2 3 4 5 6 7 8 9 10