CINXE.COM
Search results for: multiscale
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: multiscale</title> <meta name="description" content="Search results for: multiscale"> <meta name="keywords" content="multiscale"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="multiscale" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="multiscale"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 79</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: multiscale</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">79</span> Fatigue of Multiscale Nanoreinforced Composites: 3D Modelling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leon%20Mishnaevsky%20Jr.">Leon Mishnaevsky Jr.</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaoming%20Dai"> Gaoming Dai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 3D numerical simulations of fatigue damage of multiscale fiber reinforced polymer composites with secondary nanoclay reinforcement are carried out. Macro-micro FE models of the multiscale composites are generated automatically using Python based software. The effect of the nanoclay reinforcement (localized in the fiber/matrix interface (fiber sizing) and distributed throughout the matrix) on the crack path, damage mechanisms and fatigue behavior is investigated in numerical experiments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20mechanics" title="computational mechanics">computational mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue" title=" fatigue"> fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=composites" title=" composites"> composites</a> </p> <a href="https://publications.waset.org/abstracts/16741/fatigue-of-multiscale-nanoreinforced-composites-3d-modelling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16741.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">607</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">78</span> Multiscale Edge Detection Based on Nonsubsampled Contourlet Transform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Enqing%20Chen">Enqing Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianbo%20Wang"> Jianbo Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is well known that the wavelet transform provides a very effective framework for multiscale edges analysis. However, wavelets are not very effective in representing images containing distributed discontinuities such as edges. In this paper, we propose a novel multiscale edge detection method in nonsubsampled contourlet transform (NSCT) domain, which is based on the dominant multiscale, multidirection edge expression and outstanding edge location of NSCT. Through real images experiments, simulation results demonstrate that the proposed method is better than other edge detection methods based on Canny operator, wavelet and contourlet. Additionally, the proposed method also works well for noisy images. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=edge%20detection" title="edge detection">edge detection</a>, <a href="https://publications.waset.org/abstracts/search?q=NSCT" title=" NSCT"> NSCT</a>, <a href="https://publications.waset.org/abstracts/search?q=shift%20invariant" title=" shift invariant"> shift invariant</a>, <a href="https://publications.waset.org/abstracts/search?q=modulus%20maxima" title=" modulus maxima"> modulus maxima</a> </p> <a href="https://publications.waset.org/abstracts/9528/multiscale-edge-detection-based-on-nonsubsampled-contourlet-transform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9528.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">488</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">77</span> Color Image Enhancement Using Multiscale Retinex and Image Fusion Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chang-Hsing%20Lee">Chang-Hsing Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng-Chang%20Lien"> Cheng-Chang Lien</a>, <a href="https://publications.waset.org/abstracts/search?q=Chin-Chuan%20Han"> Chin-Chuan Han</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, an edge-strength guided multiscale retinex (EGMSR) approach will be proposed for color image contrast enhancement. In EGMSR, the pixel-dependent weight associated with each pixel in the single scale retinex output image is computed according to the edge strength around this pixel in order to prevent from over-enhancing the noises contained in the smooth dark/bright regions. Further, by fusing together the enhanced results of EGMSR and adaptive multiscale retinex (AMSR), we can get a natural fused image having high contrast and proper tonal rendition. Experimental results on several low-contrast images have shown that our proposed approach can produce natural and appealing enhanced images. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=image%20enhancement" title="image enhancement">image enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=multiscale%20retinex" title=" multiscale retinex"> multiscale retinex</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20fusion" title=" image fusion"> image fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=EGMSR" title=" EGMSR"> EGMSR</a> </p> <a href="https://publications.waset.org/abstracts/15139/color-image-enhancement-using-multiscale-retinex-and-image-fusion-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15139.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">76</span> Multiscale Cohesive Zone Modeling of Composite Microstructure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vincent%20Iacobellis">Vincent Iacobellis</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamran%20Behdinan"> Kamran Behdinan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A finite element cohesive zone model is used to predict the temperature dependent material properties of a polyimide matrix composite with unidirectional carbon fiber arrangement. The cohesive zone parameters have been obtained from previous research involving an atomistic-to-continuum multiscale simulation of the fiber-matrix interface using the bridging cell multiscale method. The goal of the research was to both investigate the effect of temperature change on the composite behavior with respect to transverse loading as well as the validate the use of cohesive parameters obtained from atomistic-to-continuum multiscale modeling to predict fiber-matrix interfacial cracking. From the multiscale model cohesive zone parameters (i.e. maximum traction and energy of separation) were obtained by modeling the interface between the coarse-grained polyimide matrix and graphite based carbon fiber. The cohesive parameters from this simulation were used in a cohesive zone model of the composite microstructure in order to predict the properties of the macroscale composite with respect to changes in temperature ranging from 21 ˚C to 316 ˚C. Good agreement was found between the microscale RUC model and experimental results for stress-strain response, stiffness, and material strength at low and high temperatures. Examination of the deformation of the composite through localized crack initiation at the fiber-matrix interface also agreed with experimental observations of similar phenomena. Overall, the cohesive zone model was shown to be both effective at modeling the composite properties with respect to transverse loading as well as validated the use of cohesive zone parameters obtained from the multiscale simulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cohesive%20zone%20model" title="cohesive zone model">cohesive zone model</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber-matrix%20interface" title=" fiber-matrix interface"> fiber-matrix interface</a>, <a href="https://publications.waset.org/abstracts/search?q=microscale%20damage" title=" microscale damage"> microscale damage</a>, <a href="https://publications.waset.org/abstracts/search?q=multiscale%20modeling" title=" multiscale modeling"> multiscale modeling</a> </p> <a href="https://publications.waset.org/abstracts/36952/multiscale-cohesive-zone-modeling-of-composite-microstructure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36952.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">487</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">75</span> Building and Tree Detection Using Multiscale Matched Filtering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20H.%20%C3%96zcan">Abdullah H. Özcan</a>, <a href="https://publications.waset.org/abstracts/search?q=Dilara%20Hisar"> Dilara Hisar</a>, <a href="https://publications.waset.org/abstracts/search?q=Yetkin%20Sayar"> Yetkin Sayar</a>, <a href="https://publications.waset.org/abstracts/search?q=Cem%20%C3%9Cnsalan"> Cem Ünsalan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, an automated building and tree detection method is proposed using DSM data and true orthophoto image. A multiscale matched filtering is used on DSM data. Therefore, first watershed transform is applied. Then, Otsu’s thresholding method is used as an adaptive threshold to segment each watershed region. Detected objects are masked with NDVI to separate buildings and trees. The proposed method is able to detect buildings and trees without entering any elevation threshold. We tested our method on ISPRS semantic labeling dataset and obtained promising results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20detection" title="building detection">building detection</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20maximum%20filtering" title=" local maximum filtering"> local maximum filtering</a>, <a href="https://publications.waset.org/abstracts/search?q=matched%20filtering" title=" matched filtering"> matched filtering</a>, <a href="https://publications.waset.org/abstracts/search?q=multiscale" title=" multiscale"> multiscale</a> </p> <a href="https://publications.waset.org/abstracts/59277/building-and-tree-detection-using-multiscale-matched-filtering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59277.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">74</span> Optimal ECG Sampling Frequency for Multiscale Entropy-Based HRV</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manjit%20Singh">Manjit Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multiscale entropy (MSE) is an extensively used index to provide a general understanding of multiple complexity of physiologic mechanism of heart rate variability (HRV) that operates on a wide range of time scales. Accurate selection of electrocardiogram (ECG) sampling frequency is an essential concern for clinically significant HRV quantification; high ECG sampling rate increase memory requirements and processing time, whereas low sampling rate degrade signal quality and results in clinically misinterpreted HRV. In this work, the impact of ECG sampling frequency on MSE based HRV have been quantified. MSE measures are found to be sensitive to ECG sampling frequency and effect of sampling frequency will be a function of time scale. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ECG%20%28electrocardiogram%29" title="ECG (electrocardiogram)">ECG (electrocardiogram)</a>, <a href="https://publications.waset.org/abstracts/search?q=heart%20rate%20variability%20%28HRV%29" title=" heart rate variability (HRV)"> heart rate variability (HRV)</a>, <a href="https://publications.waset.org/abstracts/search?q=multiscale%20entropy" title=" multiscale entropy"> multiscale entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=sampling%20frequency" title=" sampling frequency"> sampling frequency</a> </p> <a href="https://publications.waset.org/abstracts/78603/optimal-ecg-sampling-frequency-for-multiscale-entropy-based-hrv" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78603.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">73</span> Multiscale Hub: An Open-Source Framework for Practical Atomistic-To-Continuum Coupling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masoud%20Safdari">Masoud Safdari</a>, <a href="https://publications.waset.org/abstracts/search?q=Jacob%20Fish"> Jacob Fish</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Despite vast amount of existing theoretical knowledge, the implementation of a universal multiscale modeling, analysis, and simulation software framework remains challenging. Existing multiscale software and solutions are often domain-specific, closed-source and mandate a high-level of experience and skills in both multiscale analysis and programming. Furthermore, tools currently existing for Atomistic-to-Continuum (AtC) multiscaling are developed with the assumptions such as accessibility of high-performance computing facilities to the users. These issues mentioned plus many other challenges have reduced the adoption of multiscale in academia and especially industry. In the current work, we introduce Multiscale Hub (MsHub), an effort towards making AtC more accessible through cloud services. As a joint effort between academia and industry, MsHub provides a universal web-enabled framework for practical multiscaling. Developed on top of universally acclaimed scientific programming language Python, the package currently provides an open-source, comprehensive, easy-to-use framework for AtC coupling. MsHub offers an easy to use interface to prominent molecular dynamics and multiphysics continuum mechanics packages such as LAMMPS and MFEM (a free, lightweight, scalable C++ library for finite element methods). In this work, we first report on the design philosophy of MsHub, challenges identified and issues faced regarding its implementation. MsHub takes the advantage of a comprehensive set of tools and algorithms developed for AtC that can be used for a variety of governing physics. We then briefly report key AtC algorithms implemented in MsHub. Finally, we conclude with a few examples illustrating the capabilities of the package and its future directions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atomistic" title="atomistic">atomistic</a>, <a href="https://publications.waset.org/abstracts/search?q=continuum" title=" continuum"> continuum</a>, <a href="https://publications.waset.org/abstracts/search?q=coupling" title=" coupling"> coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=multiscale" title=" multiscale"> multiscale</a> </p> <a href="https://publications.waset.org/abstracts/75008/multiscale-hub-an-open-source-framework-for-practical-atomistic-to-continuum-coupling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75008.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">72</span> The Effect of Pre-Cracks on Structural Strength of the Nextel Fibers: A Multiscale Modeling Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Mohammad%20Mahdi%20Zamani">Seyed Mohammad Mahdi Zamani</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamran%20Behdinan"> Kamran Behdinan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a multiscale framework is performed to model the strength of Nextel fibers in presence of an atomistic scale pre-crack at finite temperatures. The bridging cell method (BCM) is the multiscale technique applied in this study, which decomposes the system into the atomistic, bridging and continuum domains; solves the whole system in a finite element framework; and incorporates temperature dependent calculations. Since Nextel is known to be structurally stable and retain 70% of its initial strength up to 1100°C; simulations are conducted at both of the room temperatures, 25°C, and fire temperatures, 1200°C. Two cases are modeled for a pre-crack present in either phases of alumina or mullite of the Nextel structure. The materials’ response is studied with respect to deformation behavior and ultimate tensile strength. Results show different crack growth trends for the two cases, and as the temperature increases, the crack growth resistance and material’s strength decrease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nextel%20fibers" title="Nextel fibers">Nextel fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=multiscale%20modeling" title=" multiscale modeling"> multiscale modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-crack" title=" pre-crack"> pre-crack</a>, <a href="https://publications.waset.org/abstracts/search?q=ultimate%20tensile%20strength" title=" ultimate tensile strength "> ultimate tensile strength </a> </p> <a href="https://publications.waset.org/abstracts/36957/the-effect-of-pre-cracks-on-structural-strength-of-the-nextel-fibers-a-multiscale-modeling-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36957.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">71</span> Specific Emitter Identification Based on Refined Composite Multiscale Dispersion Entropy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shaoying%20Guo">Shaoying Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Yanyun%20Xu"> Yanyun Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Meng%20Zhang"> Meng Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Weiqing%20Huang"> Weiqing Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The wireless communication network is developing rapidly, thus the wireless security becomes more and more important. Specific emitter identification (SEI) is an vital part of wireless communication security as a technique to identify the unique transmitters. In this paper, a SEI method based on multiscale dispersion entropy (MDE) and refined composite multiscale dispersion entropy (RCMDE) is proposed. The algorithms of MDE and RCMDE are used to extract features for identification of five wireless devices and cross-validation support vector machine (CV-SVM) is used as the classifier. The experimental results show that the total identification accuracy is 99.3%, even at low signal-to-noise ratio(SNR) of 5dB, which proves that MDE and RCMDE can describe the communication signal series well. In addition, compared with other methods, the proposed method is effective and provides better accuracy and stability for SEI. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cross-validation%20support%20vector%20machine" title="cross-validation support vector machine">cross-validation support vector machine</a>, <a href="https://publications.waset.org/abstracts/search?q=refined%20com-%20posite%20multiscale%20dispersion%20entropy" title=" refined com- posite multiscale dispersion entropy"> refined com- posite multiscale dispersion entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20emitter%20identification" title=" specific emitter identification"> specific emitter identification</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20signal" title=" transient signal"> transient signal</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20communication%20device" title=" wireless communication device"> wireless communication device</a> </p> <a href="https://publications.waset.org/abstracts/105514/specific-emitter-identification-based-on-refined-composite-multiscale-dispersion-entropy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105514.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">70</span> A Geometrical Multiscale Approach to Blood Flow Simulation: Coupling 2-D Navier-Stokes and 0-D Lumped Parameter Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azadeh%20Jafari">Azadeh Jafari</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20G.%20Owens"> Robert G. Owens</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a geometrical multiscale approach which means coupling together the 2-D Navier-Stokes equations, constitutive equations and 0-D lumped parameter models is investigated. A multiscale approach, suggest a natural way of coupling detailed local models (in the flow domain) with coarser models able to describe the dynamics over a large part or even the whole cardiovascular system at acceptable computational cost. In this study we introduce a new velocity correction scheme to decouple the velocity computation from the pressure one. To evaluate the capability of our new scheme, a comparison between the results obtained with Neumann outflow boundary conditions on the velocity and Dirichlet outflow boundary conditions on the pressure and those obtained using coupling with the lumped parameter model has been performed. Comprehensive studies have been done based on the sensitivity of numerical scheme to the initial conditions, elasticity and number of spectral modes. Improvement of the computational algorithm with stable convergence has been demonstrated for at least moderate Weissenberg number. We comment on mathematical properties of the reduced model, its limitations in yielding realistic and accurate numerical simulations, and its contribution to a better understanding of microvascular blood flow. We discuss the sophistication and reliability of multiscale models for computing correct boundary conditions at the outflow boundaries of a section of the cardiovascular system of interest. In this respect the geometrical multiscale approach can be regarded as a new method for solving a class of biofluids problems, whose application goes significantly beyond the one addressed in this work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geometrical%20multiscale%20models" title="geometrical multiscale models">geometrical multiscale models</a>, <a href="https://publications.waset.org/abstracts/search?q=haemorheology%20model" title=" haemorheology model"> haemorheology model</a>, <a href="https://publications.waset.org/abstracts/search?q=coupled%202-D%20navier-stokes%200-D%20lumped%20parameter%20modeling" title=" coupled 2-D navier-stokes 0-D lumped parameter modeling"> coupled 2-D navier-stokes 0-D lumped parameter modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a> </p> <a href="https://publications.waset.org/abstracts/2806/a-geometrical-multiscale-approach-to-blood-flow-simulation-coupling-2-d-navier-stokes-and-0-d-lumped-parameter-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2806.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">69</span> Prediction of Mechanical Strength of Multiscale Hybrid Reinforced Cementitious Composite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salam%20Alrekabi">Salam Alrekabi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20B.%20Cundy"> A. B. Cundy</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Haloob%20Al-Majidi"> Mohammed Haloob Al-Majidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Novel multiscale hybrid reinforced cementitious composites based on carbon nanotubes (MHRCC-CNT), and carbon nanofibers (MHRCC-CNF) are new types of cement-based material fabricated with micro steel fibers and nanofilaments, featuring superior strain hardening, ductility, and energy absorption. This study focused on established models to predict the compressive strength, and direct and splitting tensile strengths of the produced cementitious composites. The analysis was carried out based on the experimental data presented by the previous author’s study, regression analysis, and the established models that available in the literature. The obtained models showed small differences in the predictions and target values with experimental verification indicated that the estimation of the mechanical properties could be achieved with good accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multiscale%20hybrid%20reinforced%20cementitious%20composites" title="multiscale hybrid reinforced cementitious composites">multiscale hybrid reinforced cementitious composites</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotubes" title=" carbon nanotubes"> carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanofibers" title=" carbon nanofibers"> carbon nanofibers</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20strength%20prediction" title=" mechanical strength prediction"> mechanical strength prediction</a> </p> <a href="https://publications.waset.org/abstracts/84842/prediction-of-mechanical-strength-of-multiscale-hybrid-reinforced-cementitious-composite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84842.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">68</span> Electroencephalography (EEG) Analysis of Alcoholic and Control Subjects Using Multiscale Permutation Entropy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lal%20Hussain">Lal Hussain</a>, <a href="https://publications.waset.org/abstracts/search?q=Wajid%20Aziz"> Wajid Aziz</a>, <a href="https://publications.waset.org/abstracts/search?q=Sajjad%20Ahmed%20Nadeem"> Sajjad Ahmed Nadeem</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Arif%20Shah"> Saeed Arif Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Majid"> Abdul Majid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Brain electrical activity as reflected in Electroencephalography (EEG) have been analyzed and diagnosed using various techniques. Among them, complexity measure, nonlinearity, disorder, and unpredictability play vital role due to the nonlinear interconnection between functional and anatomical subsystem emerged in brain in healthy state and during various diseases. There are many social and economical issues of alcoholic abuse as memory weakness, decision making, impairments, and concentrations etc. Alcoholism not only defect the brains but also associated with emotional, behavior, and cognitive impairments damaging the white and gray brain matters. A recently developed signal analysis method i.e. Multiscale Permutation Entropy (MPE) is proposed to estimate the complexity of long-range temporal correlation time series EEG of Alcoholic and Control subjects acquired from University of California Machine Learning repository and results are compared with MSE. Using MPE, coarsed grained series is first generated and the PE is computed for each coarsed grained time series against the electrodes O1, O2, C3, C4, F2, F3, F4, F7, F8, Fp1, Fp2, P3, P4, T7, and T8. The results computed against each electrode using MPE gives higher significant values as compared to MSE as well as mean rank differences accordingly. Likewise, ROC and Area under the ROC also gives higher separation against each electrode using MPE in comparison to MSE. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electroencephalogram%20%28EEG%29" title="electroencephalogram (EEG)">electroencephalogram (EEG)</a>, <a href="https://publications.waset.org/abstracts/search?q=multiscale%20permutation%20entropy%20%28MPE%29" title=" multiscale permutation entropy (MPE)"> multiscale permutation entropy (MPE)</a>, <a href="https://publications.waset.org/abstracts/search?q=multiscale%20sample%20entropy%20%28MSE%29" title=" multiscale sample entropy (MSE)"> multiscale sample entropy (MSE)</a>, <a href="https://publications.waset.org/abstracts/search?q=permutation%20entropy%20%28PE%29" title=" permutation entropy (PE)"> permutation entropy (PE)</a>, <a href="https://publications.waset.org/abstracts/search?q=mann%20whitney%20test%20%28MMT%29" title=" mann whitney test (MMT)"> mann whitney test (MMT)</a>, <a href="https://publications.waset.org/abstracts/search?q=receiver%20operator%20curve%20%28ROC%29" title=" receiver operator curve (ROC)"> receiver operator curve (ROC)</a>, <a href="https://publications.waset.org/abstracts/search?q=complexity%20measure" title=" complexity measure"> complexity measure</a> </p> <a href="https://publications.waset.org/abstracts/21664/electroencephalography-eeg-analysis-of-alcoholic-and-control-subjects-using-multiscale-permutation-entropy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21664.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">495</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">67</span> Information System for Early Diabetic Retinopathy Diagnostics Based on Multiscale Texture Gradient Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20S.%20Godlevsky">L. S. Godlevsky</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20V.%20Kresyun"> N. V. Kresyun</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20P.%20Martsenyuk"> V. P. Martsenyuk</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20S.%20Shakun"> K. S. Shakun</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20V.%20Tatarchuk"> T. V. Tatarchuk</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20O.%20Prybolovets"> K. O. Prybolovets</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20F.%20Kalinichenko"> L. F. Kalinichenko</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Karpinski"> M. Karpinski</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Gancarczyk"> T. Gancarczyk </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Structures of eye bottom were extracted using multiscale texture gradient method and color characteristics of macular zone and vessels were verified in CIELAB scale. The difference of average values of L*, a* and b* coordinates of CIE (International Commision of Illumination) scale in patients with diabetes and healthy volunteers was compared. The average value of L* in diabetic patients exceeded such one in the group of practically healthy persons by 2.71 times (<em>P</em> < 0.05), while the value of a* index was reduced by 3.8 times when compared with control one (<em>P</em> < 0.05). b* index exceeded such one in the control group by 12.4 times (<em>P</em> < 0.05). The integrated index on color difference (Δ<em>E</em>) exceeded control value by 2.87 times (<em>P</em> < 0.05). More pronounced differences with Δ<em>E</em> were followed by a shorter period of MA appearance with a correlation level at -0.56 (<em>P</em> < 0.05). The specificity of diagnostics raised by 2.17 times (<em>P</em> < 0.05) and negative prognostic index exceeded such one determined with the expert method by 2.26 times (<em>P</em> < 0.05). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diabetic%20retinopathy" title="diabetic retinopathy">diabetic retinopathy</a>, <a href="https://publications.waset.org/abstracts/search?q=multiscale%20texture%20gradient" title=" multiscale texture gradient"> multiscale texture gradient</a>, <a href="https://publications.waset.org/abstracts/search?q=color%20spectrum%20analysis" title=" color spectrum analysis"> color spectrum analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20diagnostics" title=" medical diagnostics"> medical diagnostics</a> </p> <a href="https://publications.waset.org/abstracts/116592/information-system-for-early-diabetic-retinopathy-diagnostics-based-on-multiscale-texture-gradient-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116592.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">66</span> Multiscale Syntheses of Knee Collateral Ligament Stresses: Aggregate Mechanics as a Function of Molecular Properties </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raouf%20Mbarki">Raouf Mbarki</a>, <a href="https://publications.waset.org/abstracts/search?q=Fadi%20Al%20Khatib"> Fadi Al Khatib</a>, <a href="https://publications.waset.org/abstracts/search?q=Malek%20Adouni"> Malek Adouni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Knee collateral ligaments play a significant role in restraining excessive frontal motion (varus/valgus rotations). In this investigation, a multiscale frame was developed based on structural hierarchies of the collateral ligaments starting from the bottom (tropocollagen molecule) to up where the fibred reinforced structure established. Experimental data of failure tensile test were considered as the principal driver of the developed model. This model was calibrated statistically using Bayesian calibration due to the high number of unknown parameters. Then the model is scaled up to fit the real structure of the collateral ligaments and simulated under realistic boundary conditions. Predications have been successful in describing the observed transient response of the collateral ligaments during tensile test under pre- and post-damage loading conditions. Collateral ligaments maximum stresses and strengths were observed near to the femoral insertions, a results that is in good agreement with experimental investigations. Also for the first time, damage initiation and propagation were documented with this model as a function of the cross-link density between tropocollagen molecules. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multiscale%20model" title="multiscale model">multiscale model</a>, <a href="https://publications.waset.org/abstracts/search?q=tropocollagen" title=" tropocollagen"> tropocollagen</a>, <a href="https://publications.waset.org/abstracts/search?q=fibrils" title=" fibrils"> fibrils</a>, <a href="https://publications.waset.org/abstracts/search?q=ligaments%20commas" title=" ligaments commas"> ligaments commas</a> </p> <a href="https://publications.waset.org/abstracts/98809/multiscale-syntheses-of-knee-collateral-ligament-stresses-aggregate-mechanics-as-a-function-of-molecular-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98809.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">65</span> Heating of the Ions by Electromagnetic Ion Cyclotron (EMIC) Waves Using Magnetospheric Multiscale (MMS) Satellite Observation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Abid">A. A. Abid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The magnetospheric multiscale (MMS) satellite observations in the inner magnetosphere were used to detect the proton band of the electromagnetic ion cyclotron (EMIC) waves on December 14, 2015, which have been significantly contributing to the dynamics of the magnetosphere. It has been examined that the intensity of EMIC waves gradually increases by decreasing the L shell. The waves are triggered by hot proton thermal anisotropy. The low-energy cold protons (ions) can be activated by the EMIC waves when the EMIC wave intensity is high. As a result, these previously invisible protons are now visible. As a result, the EMC waves also excite the helium ions. The EMIC waves, whose frequency in the magnetosphere of the Earth ranges from 0.001 Hz to 5 Hz, have drawn a lot of attention for their ability to carry energy. Since these waves act as a mechanism for the loss of energetic electrons from the Van Allen radiation belt to the atmosphere, therefore, it is necessary to understand how and where they can be produced, as well as the direction of waves along the magnetic field lines. This work examines how the excitation of EMIC waves is affected by the energy of hot proton temperature anisotropy, and It has a minimum resonance energy of 6.9 keV and a range of 7 to 26 keV. On the hot protons, however, the reverse effect can be seen for energies below the minimum resonance energy. It is demonstrated that throughout the energy range of 1 eV to 100 eV, the number density and temperature anisotropy of the protons likewise rise as the intensity of the EMIC waves increases. Key Points: 1. The analysis of EMIC waves produced by hot proton temperature anisotropy using MMS data. 2. The number density and temperature anisotropy of the cold protons increases owing to high-intensity EMIC waves. 3. The cold protons with an energy range of 1-100eV are energized by EMIC waves using the Magnetospheric Multiscale (MMS) satellite not been discussed before <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EMIC%20waves" title="EMIC waves">EMIC waves</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20anisotropy%20of%20hot%20protons" title=" temperature anisotropy of hot protons"> temperature anisotropy of hot protons</a>, <a href="https://publications.waset.org/abstracts/search?q=energization%20of%20the%20cold%20proton" title=" energization of the cold proton"> energization of the cold proton</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetospheric%20multiscale%20%28MMS%29%20satellite%20observations" title=" magnetospheric multiscale (MMS) satellite observations"> magnetospheric multiscale (MMS) satellite observations</a> </p> <a href="https://publications.waset.org/abstracts/161623/heating-of-the-ions-by-electromagnetic-ion-cyclotron-emic-waves-using-magnetospheric-multiscale-mms-satellite-observation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161623.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">64</span> Multiscale Modelization of Multilayered Bi-Dimensional Soils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Hosni">I. Hosni</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Bennaceur%20Farah"> L. Bennaceur Farah</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Saber"> N. Saber</a>, <a href="https://publications.waset.org/abstracts/search?q=R%20Bennaceur"> R Bennaceur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil moisture content is a key variable in many environmental sciences. Even though it represents a small proportion of the liquid freshwater on Earth, it modulates interactions between the land surface and the atmosphere, thereby influencing climate and weather. Accurate modeling of the above processes depends on the ability to provide a proper spatial characterization of soil moisture. The measurement of soil moisture content allows assessment of soil water resources in the field of hydrology and agronomy. The second parameter in interaction with the radar signal is the geometric structure of the soil. Most traditional electromagnetic models consider natural surfaces as single scale zero mean stationary Gaussian random processes. Roughness behavior is characterized by statistical parameters like the Root Mean Square (RMS) height and the correlation length. Then, the main problem is that the agreement between experimental measurements and theoretical values is usually poor due to the large variability of the correlation function, and as a consequence, backscattering models have often failed to predict correctly backscattering. In this study, surfaces are considered as band-limited fractal random processes corresponding to a superposition of a finite number of one-dimensional Gaussian process each one having a spatial scale. Multiscale roughness is characterized by two parameters, the first one is proportional to the RMS height, and the other one is related to the fractal dimension. Soil moisture is related to the complex dielectric constant. This multiscale description has been adapted to two-dimensional profiles using the bi-dimensional wavelet transform and the Mallat algorithm to describe more correctly natural surfaces. We characterize the soil surfaces and sub-surfaces by a three layers geo-electrical model. The upper layer is described by its dielectric constant, thickness, a multiscale bi-dimensional surface roughness model by using the wavelet transform and the Mallat algorithm, and volume scattering parameters. The lower layer is divided into three fictive layers separated by an assumed plane interface. These three layers were modeled by an effective medium characterized by an apparent effective dielectric constant taking into account the presence of air pockets in the soil. We have adopted the 2D multiscale three layers small perturbations model including, firstly air pockets in the soil sub-structure, and then a vegetable canopy in the soil surface structure, that is to simulate the radar backscattering. A sensitivity analysis of backscattering coefficient dependence on multiscale roughness and new soil moisture has been performed. Later, we proposed to change the dielectric constant of the multilayer medium because it takes into account the different moisture values of each layer in the soil. A sensitivity analysis of the backscattering coefficient, including the air pockets in the volume structure with respect to the multiscale roughness parameters and the apparent dielectric constant, was carried out. Finally, we proposed to study the behavior of the backscattering coefficient of the radar on a soil having a vegetable layer in its surface structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multiscale" title="multiscale">multiscale</a>, <a href="https://publications.waset.org/abstracts/search?q=bidimensional" title=" bidimensional"> bidimensional</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelets" title=" wavelets"> wavelets</a>, <a href="https://publications.waset.org/abstracts/search?q=backscattering" title=" backscattering"> backscattering</a>, <a href="https://publications.waset.org/abstracts/search?q=multilayer" title=" multilayer"> multilayer</a>, <a href="https://publications.waset.org/abstracts/search?q=SPM" title=" SPM"> SPM</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20pockets" title=" air pockets"> air pockets</a> </p> <a href="https://publications.waset.org/abstracts/97437/multiscale-modelization-of-multilayered-bi-dimensional-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97437.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">63</span> Contrast Enhancement of Masses in Mammograms Using Multiscale Morphology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amit%20Kamra">Amit Kamra</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20K.%20Jain"> V. K. Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Pragya"> Pragya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mammography is widely used technique for breast cancer screening. There are various other techniques for breast cancer screening but mammography is the most reliable and effective technique. The images obtained through mammography are of low contrast which causes problem for the radiologists to interpret. Hence, a high quality image is mandatory for the processing of the image for extracting any kind of information from it. Many contrast enhancement algorithms have been developed over the years. In the present work, an efficient morphology based technique is proposed for contrast enhancement of masses in mammographic images. The proposed method is based on Multiscale Morphology and it takes into consideration the scale of the structuring element. The proposed method is compared with other state-of-the-art techniques. The experimental results show that the proposed method is better both qualitatively and quantitatively than the other standard contrast enhancement techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=enhancement" title="enhancement">enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=mammography" title=" mammography"> mammography</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-scale" title=" multi-scale"> multi-scale</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20morphology" title=" mathematical morphology"> mathematical morphology</a> </p> <a href="https://publications.waset.org/abstracts/29677/contrast-enhancement-of-masses-in-mammograms-using-multiscale-morphology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">423</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">62</span> Face Sketch Recognition in Forensic Application Using Scale Invariant Feature Transform and Multiscale Local Binary Patterns Fusion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gargi%20Phadke">Gargi Phadke</a>, <a href="https://publications.waset.org/abstracts/search?q=Mugdha%20Joshi"> Mugdha Joshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shamal%20Salunkhe"> Shamal Salunkhe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Facial sketches are used as a crucial clue by criminal investigators for identification of suspects when the description of eyewitness or victims are only available as evidence. A forensic artist develops a sketch as per the verbal description is given by an eyewitness that shows the facial look of the culprit. In this paper, the fusion of Scale Invariant Feature Transform (SIFT) and multiscale local binary patterns (MLBP) are proposed as a feature to recognize a forensic face sketch images from a gallery of mugshot photos. This work focuses on comparative analysis of proposed scheme with existing algorithms in different challenges like illumination change and rotation condition. Experimental results show that proposed scheme can lead to better performance for the defined problem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SIFT%20feature" title="SIFT feature">SIFT feature</a>, <a href="https://publications.waset.org/abstracts/search?q=MLBP" title=" MLBP"> MLBP</a>, <a href="https://publications.waset.org/abstracts/search?q=PCA" title=" PCA"> PCA</a>, <a href="https://publications.waset.org/abstracts/search?q=face%20sketch" title=" face sketch"> face sketch</a> </p> <a href="https://publications.waset.org/abstracts/85747/face-sketch-recognition-in-forensic-application-using-scale-invariant-feature-transform-and-multiscale-local-binary-patterns-fusion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85747.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">61</span> Multiscale Entropy Analysis of Electroencephalogram (EEG) of Alcoholic and Control Subjects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lal%20Hussain">Lal Hussain</a>, <a href="https://publications.waset.org/abstracts/search?q=Wajid%20Aziz"> Wajid Aziz</a>, <a href="https://publications.waset.org/abstracts/search?q=Imtiaz%20Ahmed%20Awan"> Imtiaz Ahmed Awan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sharjeel%20Saeed"> Sharjeel Saeed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multiscale entropy analysis (MSE) is a useful technique recently developed to quantify the dynamics of physiological signals at different time scales. This study is aimed at investigating the electroencephalogram (EEG) signals to analyze the background activity of alcoholic and control subjects by inspecting various coarse-grained sequences formed at different time scales. EEG recordings of alcoholic and control subjects were taken from the publically available machine learning repository of University of California (UCI) acquired using 64 electrodes. The MSE analysis was performed on the EEG data acquired from all the electrodes of alcoholic and control subjects. Mann-Whitney rank test was used to find significant differences between the groups and result were considered statistically significant for p-values<0.05. The area under receiver operator curve was computed to find the degree separation between the groups. The mean ranks of MSE values at all the times scales for all electrodes were higher control subject as compared to alcoholic subjects. Higher mean ranks represent higher complexity and vice versa. The finding indicated that EEG signals acquired through electrodes C3, C4, F3, F7, F8, O1, O2, P3, T7 showed significant differences between alcoholic and control subjects at time scales 1 to 5. Moreover, all electrodes exhibit significance level at different time scales. Likewise, the highest accuracy and separation was obtained at the central region (C3 and C4), front polar regions (P3, O1, F3, F7, F8 and T8) while other electrodes such asFp1, Fp2, P4 and F4 shows no significant results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electroencephalogram%20%28EEG%29" title="electroencephalogram (EEG)">electroencephalogram (EEG)</a>, <a href="https://publications.waset.org/abstracts/search?q=multiscale%20sample%20entropy%20%28MSE%29" title=" multiscale sample entropy (MSE)"> multiscale sample entropy (MSE)</a>, <a href="https://publications.waset.org/abstracts/search?q=Mann-Whitney%20test%20%28MMT%29" title=" Mann-Whitney test (MMT)"> Mann-Whitney test (MMT)</a>, <a href="https://publications.waset.org/abstracts/search?q=Receiver%20Operator%20Curve%20%28ROC%29" title=" Receiver Operator Curve (ROC)"> Receiver Operator Curve (ROC)</a>, <a href="https://publications.waset.org/abstracts/search?q=complexity%20analysis" title=" complexity analysis"> complexity analysis</a> </p> <a href="https://publications.waset.org/abstracts/11282/multiscale-entropy-analysis-of-electroencephalogram-eeg-of-alcoholic-and-control-subjects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11282.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">60</span> Energization of the Ions by EMIC Waves using MMS Observation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abid%20Ali%20Abid">Abid Ali Abid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electromagnetic ion cyclotron waves have been playing a significant role in inner magnetosphere, and their proton band has been detected using the Magnetospheric-Multiscale (MMS) satellite observations in the inner magnetosphere. It has been examined that the intensity of EMIC waves gradually increases by decreasing the L shell. Thermal anisotropy of hot protons initiates the waves. The low-energy cold protons (ions) can be activated by the EMIC waves when the EMIC wave intensity is high. As a result, these formerly invisible protons are now visible. The EMIC waves, whose frequency ranges from 0.001 Hz to 5 Hz in the inner magnetosphere and received considerable attention for energy transport across the magnetosphere. Since these waves act as a mechanism for the loss of energetic electrons from the Van Allen radiation belt to the atmosphere, therefore, it is necessary to understand how and where they can be produced, as well as the direction of waves along the magnetic field lines. It is demonstrated that throughout the energy range of 1 eV to 100 eV, the number density and temperature anisotropy of the protons likewise rise as the intensity of the EMIC waves increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20ion%20cyclotron%20waves" title="electromagnetic ion cyclotron waves">electromagnetic ion cyclotron waves</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetospheric-multiscale%20%28MMS%29%20satellite" title=" magnetospheric-multiscale (MMS) satellite"> magnetospheric-multiscale (MMS) satellite</a>, <a href="https://publications.waset.org/abstracts/search?q=cold%20protons" title=" cold protons"> cold protons</a>, <a href="https://publications.waset.org/abstracts/search?q=inner%20magnetosphere" title=" inner magnetosphere"> inner magnetosphere</a> </p> <a href="https://publications.waset.org/abstracts/162109/energization-of-the-ions-by-emic-waves-using-mms-observation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162109.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">59</span> Theoretical Investigations and Simulation of Electromagnetic Ion Cyclotron Waves in the Earth’s Magnetosphere Through Magnetospheric Multiscale Mission</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Abid">A. A. Abid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wave-particle interactions are considered to be the paramount in the transmission of energy in collisionless space plasmas, where electromagnetic fields confined the charged particles movement. One of the distinct features of energy transfer in collisionless plasma is wave-particle interaction which is ubiquitous in space plasmas. The three essential populations of the inner magnetosphere are cold plasmaspheric plasmas, ring-currents, and radiation belts high energy particles. The transition region amid such populations initiates wave-particle interactions among distinct plasmas and the wave mode perceived in the magnetosphere is the electromagnetic ion cyclotron (EMIC) wave. These waves can interact with numerous particle species resonantly, accompanied by plasma particle heating is still in debate. In this work we paid particular attention to how EMIC waves impact plasma species, specifically how they affect the heating of electrons and ions during storm and substorm in the Magnetosphere. Using Magnetospheric Multiscale (MMS) mission and electromagnetic hybrid simulation, this project will investigate the energy transfer mechanism (e.g., Landau interactions, bounce resonance interaction, cyclotron resonance interaction, etc.) between EMIC waves and cold-warm plasma populations. Other features such as the production of EMIC waves and the importance of cold plasma particles in EMIC wave-particle interactions will also be worth exploring. Wave particle interactions, electromagnetic hybrid simulation, electromagnetic ion cyclotron (EMIC) waves, Magnetospheric Multiscale (MMS) mission, space plasmas, inner magnetosphere <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MMS" title="MMS">MMS</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetosphere" title=" magnetosphere"> magnetosphere</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20particle%20interraction" title=" wave particle interraction"> wave particle interraction</a>, <a href="https://publications.waset.org/abstracts/search?q=non-maxwellian%20distribution" title=" non-maxwellian distribution"> non-maxwellian distribution</a> </p> <a href="https://publications.waset.org/abstracts/183636/theoretical-investigations-and-simulation-of-electromagnetic-ion-cyclotron-waves-in-the-earths-magnetosphere-through-magnetospheric-multiscale-mission" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183636.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">62</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">58</span> Compressive Response of Unidirectional Basalt Fiber/Epoxy/MWCNTs Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Eslami-Farsani">Reza Eslami-Farsani</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Khosravi"> Hamed Khosravi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this work is to study the influence of multi-walled carbon nanotubes (MWCNTs) addition at various contents with respect to the matrix (0-0.5 wt.% at a step of 0.1 wt.%) on the compressive response of unidirectional basalt fiber (UD-BF)/epoxy composites. Toward this end, MWCNTs were firstly functionalized with 3-glycidoxypropyltrimethoxysilane (3-GPTMS) to improve their dispersion state and interfacial compatibility with the epoxy. Subsequently, UD-BF/epoxy and multiscale 3-GPTMS-MWCNTs/UD-BF/epoxy composites were prepared. The mechanical properties of the composites were determined by quasi-static compression test. The compressive strength of the composites was obtained through performing the compression test on the off-axis specimens and extracting their longitudinal compressive strength. Results demonstrated that the highest value in compressive strength was attained at 0.4 wt.% MWCNTs with 41% increase, compared to the BF/epoxy composite. Potential mechanisms behind these were implied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multiscale%20polymeric%20composites" title="multiscale polymeric composites">multiscale polymeric composites</a>, <a href="https://publications.waset.org/abstracts/search?q=unidirectional%20basalt%20fibers" title=" unidirectional basalt fibers"> unidirectional basalt fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-walled%20carbon%20nanotubes" title=" multi-walled carbon nanotubes"> multi-walled carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20modification" title=" surface modification"> surface modification</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20properties" title=" compressive properties"> compressive properties</a> </p> <a href="https://publications.waset.org/abstracts/53542/compressive-response-of-unidirectional-basalt-fiberepoxymwcnts-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53542.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">57</span> Computational Homogenization of Thin Walled Structures: On the Influence of the Global vs Local Applied Plane Stress Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Beusink">M. Beusink</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20W.%20C.%20Coenen"> E. W. C. Coenen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increased application of novel structural materials, such as high grade asphalt, concrete and laminated composites, has sparked the need for a better understanding of the often complex, non-linear mechanical behavior of such materials. The effective macroscopic mechanical response is generally dependent on the applied load path. Moreover, it is also significantly influenced by the microstructure of the material, e.g. embedded fibers, voids and/or grain morphology. At present, multiscale techniques are widely adopted to assess micro-macro interactions in a numerically efficient way. Computational homogenization techniques have been successfully applied over a wide range of engineering cases, e.g. cases involving first order and second order continua, thin shells and cohesive zone models. Most of these homogenization methods rely on Representative Volume Elements (RVE), which model the relevant microstructural details in a confined volume. Imposed through kinematical constraints or boundary conditions, a RVE can be subjected to a microscopic load sequence. This provides the RVE's effective stress-strain response, which can serve as constitutive input for macroscale analyses. Simultaneously, such a study of a RVE gives insight into fine scale phenomena such as microstructural damage and its evolution. It has been reported by several authors that the type of boundary conditions applied to the RVE affect the resulting homogenized stress-strain response. As a consequence, dedicated boundary conditions have been proposed to appropriately deal with this concern. For the specific case of a planar assumption for the analyzed structure, e.g. plane strain, axisymmetric or plane stress, this assumption needs to be addressed consistently in all considered scales. Although in many multiscale studies a planar condition has been employed, the related impact on the multiscale solution has not been explicitly investigated. This work therefore focuses on the influence of the planar assumption for multiscale modeling. In particular the plane stress case is highlighted, by proposing three different implementation strategies which are compatible with a first-order computational homogenization framework. The first method consists of applying classical plane stress theory at the microscale, whereas with the second method a generalized plane stress condition is assumed at the RVE level. For the third method, the plane stress condition is applied at the macroscale by requiring that the resulting macroscopic out-of-plane forces are equal to zero. These strategies are assessed through a numerical study of a thin walled structure and the resulting effective macroscale stress-strain response is compared. It is shown that there is a clear influence of the length scale at which the planar condition is applied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=first-order%20computational%20homogenization" title="first-order computational homogenization">first-order computational homogenization</a>, <a href="https://publications.waset.org/abstracts/search?q=planar%20analysis" title=" planar analysis"> planar analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=multiscale" title=" multiscale"> multiscale</a>, <a href="https://publications.waset.org/abstracts/search?q=microstrucutures" title=" microstrucutures"> microstrucutures</a> </p> <a href="https://publications.waset.org/abstracts/11554/computational-homogenization-of-thin-walled-structures-on-the-influence-of-the-global-vs-local-applied-plane-stress-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11554.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">56</span> Multiscale Modelling of Textile Reinforced Concrete: A Literature Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anicet%20Dansou">Anicet Dansou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Textile reinforced concrete (TRC)is increasingly used nowadays in various fields, in particular civil engineering, where it is mainly used for the reinforcement of damaged reinforced concrete structures. TRC is a composite material composed of multi- or uni-axial textile reinforcements coupled with a fine-grained cementitious matrix. The TRC composite is an alternative solution to the traditional Fiber Reinforcement Polymer (FRP) composite. It has good mechanical performance and better temperature stability but also, it makes it possible to meet the criteria of sustainable development better.TRCs are highly anisotropic composite materials with nonlinear hardening behavior; their macroscopic behavior depends on multi-scale mechanisms. The characterization of these materials through numerical simulation has been the subject of many studies. Since TRCs are multiscale material by definition, numerical multi-scale approaches have emerged as one of the most suitable methods for the simulation of TRCs. They aim to incorporate information pertaining to microscale constitute behavior, mesoscale behavior, and macro-scale structure response within a unified model that enables rapid simulation of structures. The computational costs are hence significantly reduced compared to standard simulation at a fine scale. The fine scale information can be implicitly introduced in the macro scale model: approaches of this type are called non-classical. A representative volume element is defined, and the fine scale information are homogenized over it. Analytical and computational homogenization and nested mesh methods belong to these approaches. On the other hand, in classical approaches, the fine scale information are explicitly introduced in the macro scale model. Such approaches pertain to adaptive mesh refinement strategies, sub-modelling, domain decomposition, and multigrid methods This research presents the main principles of numerical multiscale approaches. Advantages and limitations are identified according to several criteria: the assumptions made (fidelity), the number of input parameters required, the calculation costs (efficiency), etc. A bibliographic study of recent results and advances and of the scientific obstacles to be overcome in order to achieve an effective simulation of textile reinforced concrete in civil engineering is presented. A comparative study is further carried out between several methods for the simulation of TRCs used for the structural reinforcement of reinforced concrete structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composites%20structures" title="composites structures">composites structures</a>, <a href="https://publications.waset.org/abstracts/search?q=multiscale%20methods" title=" multiscale methods"> multiscale methods</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20modeling" title=" numerical modeling"> numerical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=textile%20reinforced%20concrete" title=" textile reinforced concrete"> textile reinforced concrete</a> </p> <a href="https://publications.waset.org/abstracts/152276/multiscale-modelling-of-textile-reinforced-concrete-a-literature-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152276.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">55</span> Multiscale Process Modeling Analysis for the Prediction of Composite Strength Allowables</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marianna%20Maiaru">Marianna Maiaru</a>, <a href="https://publications.waset.org/abstracts/search?q=Gregory%20M.%20Odegard"> Gregory M. Odegard</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During the processing of high-performance thermoset polymer matrix composites, chemical reactions occur during elevated pressure and temperature cycles, causing the constituent monomers to crosslink and form a molecular network that gradually can sustain stress. As the crosslinking process progresses, the material naturally experiences a gradual shrinkage due to the increase in covalent bonds in the network. Once the cured composite completes the cure cycle and is brought to room temperature, the thermal expansion mismatch of the fibers and matrix cause additional residual stresses to form. These compounded residual stresses can compromise the reliability of the composite material and affect the composite strength. Composite process modeling is greatly complicated by the multiscale nature of the composite architecture. At the molecular level, the degree of cure controls the local shrinkage and thermal-mechanical properties of the thermoset. At the microscopic level, the local fiber architecture and packing affect the magnitudes and locations of residual stress concentrations. At the macroscopic level, the layup sequence controls the nature of crack initiation and propagation due to residual stresses. The goal of this research is use molecular dynamics (MD) and finite element analysis (FEA) to predict the residual stresses in composite laminates and the corresponding effect on composite failure. MD is used to predict the polymer shrinkage and thermomechanical properties as a function of degree of cure. This information is used as input into FEA to predict the residual stresses on the microscopic level resulting from the complete cure process. Virtual testing is subsequently conducted to predict strength allowables. Experimental characterization is used to validate the modeling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics" title="molecular dynamics">molecular dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=processing%20modeling" title=" processing modeling"> processing modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=multiscale%20modeling" title=" multiscale modeling"> multiscale modeling</a> </p> <a href="https://publications.waset.org/abstracts/152288/multiscale-process-modeling-analysis-for-the-prediction-of-composite-strength-allowables" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152288.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">54</span> Tape-Shaped Multiscale Fiducial Marker: A Design Prototype for Indoor Localization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marcell%20Serra%20de%20Almeida%20Martins">Marcell Serra de Almeida Martins</a>, <a href="https://publications.waset.org/abstracts/search?q=Benedito%20de%20Souza%20Ribeiro%20Neto"> Benedito de Souza Ribeiro Neto</a>, <a href="https://publications.waset.org/abstracts/search?q=Gerson%20Lima%20Serejo"> Gerson Lima Serejo</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Gustavo%20Resque%20Dos%20Santos"> Carlos Gustavo Resque Dos Santos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Indoor positioning systems use sensors such as Bluetooth, ZigBee, and Wi-Fi, as well as cameras for image capture, which can be fixed or mobile. These computer vision-based positioning approaches are low-cost to implement, mainly when it uses a mobile camera. The present study aims to create a design of a fiducial marker for a low-cost indoor localization system. The marker is tape-shaped to perform a continuous reading employing two detection algorithms, one for greater distances and another for smaller distances. Therefore, the location service is always operational, even with variations in capture distance. A minimal localization and reading algorithm were implemented for the proposed marker design, aiming to validate it. The accuracy tests consider readings varying the capture distance between [0.5, 10] meters, comparing the proposed marker with others. The tests showed that the proposed marker has a broader capture range than the ArUco and QRCode, maintaining the same size. Therefore, reducing the visual pollution and maximizing the tracking since the ambient can be covered entirely. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multiscale%20recognition" title="multiscale recognition">multiscale recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20localization" title=" indoor localization"> indoor localization</a>, <a href="https://publications.waset.org/abstracts/search?q=tape-shaped%20marker" title=" tape-shaped marker"> tape-shaped marker</a>, <a href="https://publications.waset.org/abstracts/search?q=fiducial%20marker" title=" fiducial marker"> fiducial marker</a> </p> <a href="https://publications.waset.org/abstracts/163542/tape-shaped-multiscale-fiducial-marker-a-design-prototype-for-indoor-localization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163542.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">53</span> Analyzing and Predicting the CL-20 Detonation Reaction Mechanism Based on Artificial Intelligence Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kaining%20Zhang">Kaining Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Lang%20Chen"> Lang Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Danyang%20Liu"> Danyang Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianying%20Lu"> Jianying Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Kun%20Yang"> Kun Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Junying%20Wu"> Junying Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to solve the problem of a large amount of simulation and limited simulation scale in the first-principle molecular dynamics simulation of energetic material detonation reaction, we established an artificial intelligence model for analyzing and predicting the detonation reaction mechanism of CL-20 based on the first-principle molecular dynamics simulation of the multiscale shock technique (MSST). We employed principal component analysis to identify the dominant charge features governing molecular reactions. We adopted the K-means clustering algorithm to cluster the reaction paths and screen out the key reactions. We introduced the neural network algorithm to construct the mapping relationship between the charge characteristics of the molecular structure and the key reaction characteristics so as to establish a calculation method for predicting detonation reactions based on the charge characteristics of CL-20 and realize the rapid analysis of the reaction mechanism of energetic materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energetic%20material%20detonation%20reaction" title="energetic material detonation reaction">energetic material detonation reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=first-principle%20molecular%20dynamics%20simulation%20of%20multiscale%20shock%20technique" title=" first-principle molecular dynamics simulation of multiscale shock technique"> first-principle molecular dynamics simulation of multiscale shock technique</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=CL-20" title=" CL-20"> CL-20</a> </p> <a href="https://publications.waset.org/abstracts/168381/analyzing-and-predicting-the-cl-20-detonation-reaction-mechanism-based-on-artificial-intelligence-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168381.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">52</span> Multiscale Computational Approach to Enhance the Understanding, Design and Development of CO₂ Catalytic Conversion Technologies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Agnieszka%20S.%20Dzielendziak">Agnieszka S. Dzielendziak</a>, <a href="https://publications.waset.org/abstracts/search?q=Lindsay-Marie%20Armstrong"> Lindsay-Marie Armstrong</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthew%20E.%20Potter"> Matthew E. Potter</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Raja"> Robert Raja</a>, <a href="https://publications.waset.org/abstracts/search?q=Pier%20J.%20A.%20Sazio"> Pier J. A. Sazio</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reducing carbon dioxide, CO₂, is one of the greatest global challenges. Conversion of CO₂ for utilisation across synthetic fuel, pharmaceutical, and agrochemical industries offers a promising option, yet requires significant research to understanding the complex multiscale processes involved. To experimentally understand and optimize such processes at that catalytic sites and exploring the impact of the process at reactor scale, is too expensive. Computational methods offer significant insight and flexibility but require a more detailed multi-scale approach which is a significant challenge in itself. This work introduces a computational approach which incorporates detailed catalytic models, taken from experimental investigations, into a larger-scale computational flow dynamics framework. The reactor-scale species transport approach is modified near the catalytic walls to determine the influence of catalytic clustering regions. This coupling approach enables more accurate modelling of velocity, pressures, temperatures, species concentrations and near-wall surface characteristics which will ultimately enable the impact of overall reactor design on chemical conversion performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catalysis" title="catalysis">catalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=CCU" title=" CCU"> CCU</a>, <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82" title=" CO₂"> CO₂</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-scale%20model" title=" multi-scale model"> multi-scale model</a> </p> <a href="https://publications.waset.org/abstracts/75812/multiscale-computational-approach-to-enhance-the-understanding-design-and-development-of-co2-catalytic-conversion-technologies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75812.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">253</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">51</span> Wetting Features of Butterflies Morpho Peleides and Anti-icing Behavior</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Burdin%20Louise">Burdin Louise</a>, <a href="https://publications.waset.org/abstracts/search?q=Brulez%20Anne-Catherine"> Brulez Anne-Catherine</a>, <a href="https://publications.waset.org/abstracts/search?q=Mazurcyk%20Radoslaw"> Mazurcyk Radoslaw</a>, <a href="https://publications.waset.org/abstracts/search?q=Leclercq%20Jean-louis"> Leclercq Jean-louis</a>, <a href="https://publications.waset.org/abstracts/search?q=Benayoun%20St%C3%A9phane"> Benayoun Stéphane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> By using a biomimetic approach, an investigation was conducted to determine the connections between morphology and wetting. The interest is focused on the Morpho peleides butterfly. This butterfly is already well-known among researchers for its brilliant iridescent color and has inspired numerous innovations. The intricate structure of its wings is responsible for such color. However, this multiscale structure exhibits a multitude of other features, such as hydrophobicity. Given the limited research on the wetting properties of Morpho butterfly, a detailed analysis of its wetting behavior is proposed. Multiscale surface topographies of the Morpho peleides butterfly were analyzed using scanning electron microscope and atomic force microscopy. To understand the relationship between morphology and wettability, a goniometer was employed to measured static and dynamic contact angle. Since several studies have consistently demonstrated that superhydrophobic surfaces can effectively delay freezing, icing delay time the Morpho’s wings was also measured. The results revealed contact angles close to 136°, indicating a high degree of hydrophobicity. Moreover, sliding angles (SA) were measured in different directions, including along and against the rolling-outward direction. The findings suggest anisotropic wetting. Specifically, when the wing was tilted along the rolling outward direction (i.e., away from the insect’s body) SA was about 7°. While, when the wing was tilted against the rolling outward direction, SA was about 29°. This phenomenon is directly linked to the butterfly’s survival strategy. To investigate the exclusive morphological impact on anti-icing properties, PDMS replicas of the Morpho butterfly were obtained. When compared to flat PDMS and microscale textured PDMS, Morpho replications exhibited a longer freezing time. Therefore, this could be a source of inspiration for designing superhydrophobic surfaces with anti-icing applications or functional surfaces with controlled wettability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomimetic" title="biomimetic">biomimetic</a>, <a href="https://publications.waset.org/abstracts/search?q=anisotropic%20wetting" title=" anisotropic wetting"> anisotropic wetting</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-icing" title=" anti-icing"> anti-icing</a>, <a href="https://publications.waset.org/abstracts/search?q=multiscale%20roughness" title=" multiscale roughness"> multiscale roughness</a> </p> <a href="https://publications.waset.org/abstracts/178297/wetting-features-of-butterflies-morpho-peleides-and-anti-icing-behavior" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178297.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">58</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50</span> An Effective Modification to Multiscale Elastic Network Model and Its Evaluation Based on Analyses of Protein Dynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Weikang%20Gong">Weikang Gong</a>, <a href="https://publications.waset.org/abstracts/search?q=Chunhua%20Li"> Chunhua Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dynamics plays an essential role in function exertion of proteins. Elastic network model (ENM), a harmonic potential-based and cost-effective computational method, is a valuable and efficient tool for characterizing the intrinsic dynamical properties encoded in biomacromolecule structures and has been widely used to detect the large-amplitude collective motions of proteins. Gaussian network model (GNM) and anisotropic network model (ANM) are the two often-used ENM models. In recent years, many ENM variants have been proposed. Here, we propose a small but effective modification (denoted as modified mENM) to the multiscale ENM (mENM) where fitting weights of Kirchhoff/Hessian matrixes with the least square method (LSM) is modified since it neglects the details of pairwise interactions. Then we perform its comparisons with the original mENM, traditional ENM, and parameter-free ENM (pfENM) on reproducing dynamical properties for the six representative proteins whose molecular dynamics (MD) trajectories are available in http://mmb.pcb.ub.es/MoDEL/. In the results, for B-factor prediction, mENM achieves the best performance among the four ENM models. Additionally, it is noted that with the weights of the multiscale Kirchhoff/Hessian matrixes modified, interestingly, the modified mGNM/mANM still has a much better performance than the corresponding traditional ENM and pfENM models. As to dynamical cross-correlation map (DCCM) calculation, taking the data obtained from MD trajectories as the standard, mENM performs the worst while the results produced by the modified mENM and pfENM models are close to those from MD trajectories with the latter a little better than the former. Generally, ANMs perform better than the corresponding GNMs except for the mENM. Thus, pfANM and the modified mANM, especially the former, have an excellent performance in dynamical cross-correlation calculation. Compared with GNMs (except for mGNM), the corresponding ANMs can capture quite a number of positive correlations for the residue pairs nearly largest distances apart, which is maybe due to the anisotropy consideration in ANMs. Furtherly, encouragingly the modified mANM displays the best performance in capturing the functional motional modes, followed by pfANM and traditional ANM models, while mANM fails in all the cases. This suggests that the consideration of long-range interactions is critical for ANM models to produce protein functional motions. Based on the analyses, the modified mENM is a promising method in capturing multiple dynamical characteristics encoded in protein structures. This work is helpful for strengthening the understanding of the elastic network model and provides a valuable guide for researchers to utilize the model to explore protein dynamics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elastic%20network%20model" title="elastic network model">elastic network model</a>, <a href="https://publications.waset.org/abstracts/search?q=ENM" title=" ENM"> ENM</a>, <a href="https://publications.waset.org/abstracts/search?q=multiscale%20ENM" title=" multiscale ENM"> multiscale ENM</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics" title=" molecular dynamics"> molecular dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=parameter-free%20ENM" title=" parameter-free ENM"> parameter-free ENM</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20structure" title=" protein structure"> protein structure</a> </p> <a href="https://publications.waset.org/abstracts/127143/an-effective-modification-to-multiscale-elastic-network-model-and-its-evaluation-based-on-analyses-of-protein-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127143.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=multiscale&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=multiscale&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=multiscale&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>