CINXE.COM

Search results for: phase separation

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: phase separation</title> <meta name="description" content="Search results for: phase separation"> <meta name="keywords" content="phase separation"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="phase separation" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="phase separation"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 5478</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: phase separation</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5478</span> Study of Cahn-Hilliard Equation to Simulate Phase Separation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nara%20Guimar%C3%A3es">Nara Guimarães</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcelo%20Aquino%20Martorano"> Marcelo Aquino Martorano</a>, <a href="https://publications.waset.org/abstracts/search?q=Douglas%20Gouv%C3%AAa"> Douglas Gouvêa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An investigation into Cahn-Hilliard equation was carried out through numerical simulation to identify a possible phase separation for one and two dimensional domains. It was observed that this equation can reproduce important mass fluxes necessary for phase separation within the miscibility gap and for coalescence of particles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cahn-Hilliard%20equation" title="Cahn-Hilliard equation">Cahn-Hilliard equation</a>, <a href="https://publications.waset.org/abstracts/search?q=miscibility%20gap" title=" miscibility gap"> miscibility gap</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20separation" title=" phase separation"> phase separation</a>, <a href="https://publications.waset.org/abstracts/search?q=dimensional%20domains" title=" dimensional domains"> dimensional domains</a> </p> <a href="https://publications.waset.org/abstracts/17579/study-of-cahn-hilliard-equation-to-simulate-phase-separation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17579.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">517</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5477</span> Separation of Fexofenadine Enantiomers Using Beta Cyclodextrin as Chiral Counter Ion in Mobile Phase</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Fegas">R. Fegas</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Zerkout"> S. Zerkout</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Taberkokt"> S. Taberkokt</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Righezza"> M. Righezza </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work demonstrate the potential of Betacyclodextrine (BCD) for the chiral analysis of a drug .Various separation mechanisms were applied and several parameters affecting the separation were studied, including the type and concentration of chiral selector, and pH of buffer. A simple and sensitive high-performance liquid chromatography (HPLC) method was developed as an assay for fexofenadine enantiomers in pharmaceutical preparation. Fexofenadine enantiomers were separated using a mobile phase of 0.25mM NaH2PO4–acetonitrile (65:35, v/v) – Betacyclodextrine on achiral phenyl-urea column at a flow rate of 1ml/min and measurement at 220nm. The chiral mechanism of separation was mainly based on specific interaction between the solute and the stationary phase. The retention was directly controlled by mobile phase composition but not the selectivity which results of the two mechanisms, electrostatic interactions and partition mechanism. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fexofenadine%20enantiomer" title="fexofenadine enantiomer">fexofenadine enantiomer</a>, <a href="https://publications.waset.org/abstracts/search?q=HPLC" title=" HPLC"> HPLC</a>, <a href="https://publications.waset.org/abstracts/search?q=achiral%20phenyl-urea%20column" title=" achiral phenyl-urea column"> achiral phenyl-urea column</a> </p> <a href="https://publications.waset.org/abstracts/12321/separation-of-fexofenadine-enantiomers-using-beta-cyclodextrin-as-chiral-counter-ion-in-mobile-phase" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12321.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5476</span> Sustainable Separation of Nicotine from Its Aqueous Solutions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zoran%20Visak">Zoran Visak</a>, <a href="https://publications.waset.org/abstracts/search?q=Joana%20Lopes"> Joana Lopes</a>, <a href="https://publications.waset.org/abstracts/search?q=Vesna%20Najdanovic-Visak"> Vesna Najdanovic-Visak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Within this study, the separation of nicotine from its aqueous solutions, using inorganic salt sodium chloride or ionic liquid (molten salt) ECOENG212® as salting-out media, was carried out. Thus, liquid-liquid equilibria of the ternary solutions (nicotine+water+NaCl) and (nicotine+water+ECOENG212®) were determined at ambient pressure, 0.1 MPa, at three temperatures. The related phase diagrams were constructed in two manners: by adding the determined cloud-points and by the chemical analysis of phases in equilibrium (tie-line data). The latter were used to calculate two important separation parameters - partition coefficients of nicotine and separation factors. The impacts of the initial compositions of the mother solutions and of temperature on the liquid-liquid phase separation and partition coefficients were analyzed and discussed. The results obtained clearly showed that both investigated salts are good salting-out media for the efficient and sustainable separation of nicotine from its solutions with water. However, when compared, sodium chloride exhibited much better separation performance than the ionic liquid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nicotine" title="nicotine">nicotine</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid-liquid%20separation" title=" liquid-liquid separation"> liquid-liquid separation</a>, <a href="https://publications.waset.org/abstracts/search?q=inorganic%20salt" title=" inorganic salt"> inorganic salt</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20liquid" title=" ionic liquid"> ionic liquid</a> </p> <a href="https://publications.waset.org/abstracts/58412/sustainable-separation-of-nicotine-from-its-aqueous-solutions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58412.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5475</span> Implementation of Real-Time Multiple Sound Source Localization and Separation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeng-Shin%20Sheu">Jeng-Shin Sheu</a>, <a href="https://publications.waset.org/abstracts/search?q=Qi-Xun%20Zheng"> Qi-Xun Zheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper mainly discusses a method of separating speech when using a microphone array without knowing the number and direction of sound sources. In recent years, there have been many studies on the method of separating signals by using masking, but most of the separation methods must be operated under the condition of a known number of sound sources. Such methods cannot be used for real-time applications. In our method, this paper uses Circular-Integrated-Cross-Spectrum to estimate the statistical histogram distribution of the direction of arrival (DOA) to obtain the number of sound sources and sound in the mixed-signal Source direction. In calculating the relevant parameters of the ring integrated cross-spectrum, the phase (Phase of the Cross-Power Spectrum) and phase rotation factors (Phase Rotation Factors) calculated by the cross power spectrum of each microphone pair are used. In the part of separating speech, it uses the DOA weighting and shielding separation method to calculate the sound source direction (DOA) according to each T-F unit (time-frequency point). The weight corresponding to each T-F unit can be used to strengthen the intensity of each sound source from the T-F unit and reduce the influence of the remaining sound sources, thereby achieving voice separation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=real-time" title="real-time">real-time</a>, <a href="https://publications.waset.org/abstracts/search?q=spectrum%20analysis" title=" spectrum analysis"> spectrum analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=sound%20source%20localization" title=" sound source localization"> sound source localization</a>, <a href="https://publications.waset.org/abstracts/search?q=sound%20source%20separation" title=" sound source separation"> sound source separation</a> </p> <a href="https://publications.waset.org/abstracts/128672/implementation-of-real-time-multiple-sound-source-localization-and-separation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128672.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5474</span> Nanofluid-Based Emulsion Liquid Membrane for Selective Extraction and Separation of Dysprosium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maliheh%20Raji">Maliheh Raji</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Abolghasemi"> Hossein Abolghasemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaber%20Safdari"> Jaber Safdari</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Kargari"> Ali Kargari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dysprosium is a rare earth element which is essential for many growing high-technology applications. Dysprosium along with neodymium plays a significant role in different applications such as metal halide lamps, permanent magnets, and nuclear reactor control rods preparation. The purification and separation of rare earth elements are challenging because of their similar chemical and physical properties. Among the various methods, membrane processes provide many advantages over the conventional separation processes such as ion exchange and solvent extraction. In this work, selective extraction and separation of dysprosium from aqueous solutions containing an equimolar mixture of dysprosium and neodymium by emulsion liquid membrane (ELM) was investigated. The organic membrane phase of the ELM was a nanofluid consisting of multiwalled carbon nanotubes (MWCNT), Span80 as surfactant, Cyanex 272 as carrier, kerosene as base fluid, and nitric acid solution as internal aqueous phase. Factors affecting separation of dysprosium such as carrier concentration, MWCNT concentration, feed phase pH and stripping phase concentration were analyzed using Taguchi method. Optimal experimental condition was obtained using analysis of variance (ANOVA) after 10 min extraction. Based on the results, using MWCNT nanofluid in ELM process leads to increase the extraction due to higher stability of membrane and mass transfer enhancement and separation factor of 6 for dysprosium over neodymium can be achieved under the optimum conditions. Additionally, demulsification process was successfully performed and the membrane phase reused effectively in the optimum condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=emulsion%20liquid%20membrane" title="emulsion liquid membrane">emulsion liquid membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=MWCNT%20nanofluid" title=" MWCNT nanofluid"> MWCNT nanofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=separation" title=" separation"> separation</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20method" title=" Taguchi method"> Taguchi method</a> </p> <a href="https://publications.waset.org/abstracts/80725/nanofluid-based-emulsion-liquid-membrane-for-selective-extraction-and-separation-of-dysprosium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80725.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5473</span> Numerical Simulation and Experimental Validation of the Tire-Road Separation in Quarter-car Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Quy%20Dang%20Nguyen">Quy Dang Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Nakhaie%20Jazar"> Reza Nakhaie Jazar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper investigates vibration dynamics of tire-road separation for a quarter-car model; this separation model is developed to be close to the real situation considering the tire is able to separate from the ground plane. A set of piecewise linear mathematical models is developed and matches the in-contact and no-contact states to be considered as mother models for further investigations. The bound dynamics are numerically simulated in the time response and phase portraits. The separation analysis may determine which values of suspension parameters can delay and avoid the no-contact phenomenon, which results in improving ride comfort and eliminating the potentially dangerous oscillation. Finally, model verification is carried out in the MSC-ADAMS environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quarter-car%20vibrations" title="quarter-car vibrations">quarter-car vibrations</a>, <a href="https://publications.waset.org/abstracts/search?q=tire-road%20separation" title=" tire-road separation"> tire-road separation</a>, <a href="https://publications.waset.org/abstracts/search?q=separation%20analysis" title=" separation analysis"> separation analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=separation%20dynamics" title=" separation dynamics"> separation dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=ride%20comfort" title=" ride comfort"> ride comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=ADAMS%20validation" title=" ADAMS validation"> ADAMS validation</a> </p> <a href="https://publications.waset.org/abstracts/158498/numerical-simulation-and-experimental-validation-of-the-tire-road-separation-in-quarter-car-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158498.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5472</span> Rapid Separation of Biomolecules and Neutral Analytes with a Cationic Stationary Phase by Capillary Electrochromatography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Aslihan%20Gokaltun">A. Aslihan Gokaltun</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Tuncel"> Ali Tuncel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The unique properties of capillary electrochromatography (CEC) such as high performance, high selectivity, low consumption of both reagents and analytes ensure this technique an attractive one for the separation of biomolecules including nucleosides and nucleotides, peptides, proteins, carbohydrates. Monoliths have become a well-established separation media for CEC in the format that can be compared to a single large 'particle' that does not include interparticular voids. Convective flow through the pores of monolith significantly accelerates the rate of mass transfer and enables a substantial increase in the speed of the separation. In this work, we propose a new approach for the preparation of cationic monolithic stationary phase for capillary electrochromatography. Instead of utilizing a charge bearing monomer during polymerization, the desired charge-bearing group is generated on the capillary monolith after polymerization by using the reactive moiety of the monolithic support via one-pot, simple reaction. Optimized monolithic column compensates the disadvantages of frequently used reversed phases, which are difficult for separation of polar solutes. Rapid separation and high column efficiencies are achieved for the separation of neutral analytes, nucleic acid bases and nucleosides in reversed phase mode. Capillary monolith showed satisfactory hydrodynamic permeability and mechanical stability with relative standard deviation (RSD) values below 2 %. A new promising, reactive support that has a 'ligand selection flexibility' due to its reactive functionality represent a new family of separation media for CEC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomolecules" title="biomolecules">biomolecules</a>, <a href="https://publications.waset.org/abstracts/search?q=capillary%20electrochromatography" title=" capillary electrochromatography"> capillary electrochromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=cationic%20monolith" title=" cationic monolith"> cationic monolith</a>, <a href="https://publications.waset.org/abstracts/search?q=neutral%20analytes" title=" neutral analytes"> neutral analytes</a> </p> <a href="https://publications.waset.org/abstracts/70026/rapid-separation-of-biomolecules-and-neutral-analytes-with-a-cationic-stationary-phase-by-capillary-electrochromatography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70026.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">212</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5471</span> Investigation of Droplet Size Produced in Two-Phase Gravity Separators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kul%20Pun">Kul Pun</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20A.%20Hamad"> F. A. Hamad</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Ahmed"> T. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20O.%20Ugwu"> J. O. Ugwu</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Eyers"> J. Eyers</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Lawson"> G. Lawson</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20A.%20Russell"> P. A. Russell</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Determining droplet size and distribution is essential when determining the separation efficiency of a two/three-phase separator. This paper investigates the effect of liquid flow and oil pad thickness on the droplet size at the lab scale. The findings show that increasing the inlet flow rates of the oil and water results in size reduction of the droplets and increasing the thickness of the oil pad increases the size of the droplets. The data were fitted with a simple Gaussian model, and the parameters of mean, standard deviation, and amplitude were determined. Trends have been obtained for the fitted parameters as a function of the Reynolds number, which suggest a way forward to better predict the starting parameters for population models when simulating separation using CFD packages. The key parameter to predict to fix the position of the Gaussian distribution was found to be the mean droplet size. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=two-phase%20separator" title="two-phase separator">two-phase separator</a>, <a href="https://publications.waset.org/abstracts/search?q=average%20bubble%20droplet" title=" average bubble droplet"> average bubble droplet</a>, <a href="https://publications.waset.org/abstracts/search?q=bubble%20size%20distribution" title=" bubble size distribution"> bubble size distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid-liquid%20phase" title=" liquid-liquid phase"> liquid-liquid phase</a> </p> <a href="https://publications.waset.org/abstracts/152230/investigation-of-droplet-size-produced-in-two-phase-gravity-separators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152230.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">200</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5470</span> The Effects of Water Fraction and Salinity on Crude Oil-Water Dispersions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ramin%20Dabirian">Ramin Dabirian</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi%20Zhang"> Yi Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ilias%20Gavrielatos"> Ilias Gavrielatos</a>, <a href="https://publications.waset.org/abstracts/search?q=Ram%20Mohan"> Ram Mohan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ovadia%20Shoham"> Ovadia Shoham</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oil-water emulsions can be found in almost every part of the petroleum industry, namely in reservoir rocks, drilling cuttings circulation, production in wells, transportation pipelines, surface facilities and refining process. However, it is necessary for oil production and refinery engineers to resolve the petroleum emulsion problems as well as to eliminate the contaminants in order to meet environmental standards, achieve the desired product quality and to improve equipment reliability and efficiency. A state-of-art Dispersion Characterization Rig (DCR) has been utilized to investigate crude oil-distilled water dispersion separation. Over 80 experimental tests were ran to investigate the flow behavior and stability of the dispersions. The experimental conditions include the effects of water cuts (25%, 50% and 75%), NaCl concentrations (0, 3.5% and 18%), mixture flow velocities (0.89 and 1.71 ft/s), and also orifice place types on the separation rate. The experimental data demonstrate that the water cut can significantly affects the separation time and efficiency. The dispersion with lower water cut takes longer time to separate and have low separation efficiency. The medium and lower water cuts will result in the formation of Mousse emulsion and the phase inversion happens around the medium water cut. The data also confirm that increasing the NaCl concentration in aqueous phase can increase the crude oil water dispersion separation efficiency especially at higher salinities. The separation profile for dispersions with lower salt concentrations has a lower sedimentation rate slope before the inflection point. Dispersions in all tests with higher salt concentrations have a larger sedimenting rate. The presence of NaCl can influence the interfacial tension gradients along the interface and it plays a role in avoiding the Mousse emulsion formation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oil-water%20dispersion" title="oil-water dispersion">oil-water dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=separation%20mechanism" title=" separation mechanism"> separation mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20inversion" title=" phase inversion"> phase inversion</a>, <a href="https://publications.waset.org/abstracts/search?q=emulsion%20formation" title=" emulsion formation"> emulsion formation</a> </p> <a href="https://publications.waset.org/abstracts/93258/the-effects-of-water-fraction-and-salinity-on-crude-oil-water-dispersions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93258.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5469</span> From Homogeneous to Phase Separated UV-Cured Interpenetrating Polymer Networks: Influence of the System Composition on Properties and Microstructure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Caroline%20Rocco">Caroline Rocco</a>, <a href="https://publications.waset.org/abstracts/search?q=Feyza%20Karasu"> Feyza Karasu</a>, <a href="https://publications.waset.org/abstracts/search?q=C%C3%A9line%20Croutx%C3%A9-Barghorn"> Céline Croutxé-Barghorn</a>, <a href="https://publications.waset.org/abstracts/search?q=Xavier%20Allonas"> Xavier Allonas</a>, <a href="https://publications.waset.org/abstracts/search?q=Maxime%20Lecomp%C3%A8re"> Maxime Lecompère</a>, <a href="https://publications.waset.org/abstracts/search?q=G%C3%A9rard%20Riess"> Gérard Riess</a>, <a href="https://publications.waset.org/abstracts/search?q=Yujing%20Zhang"> Yujing Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Catarina%20Esteves"> Catarina Esteves</a>, <a href="https://publications.waset.org/abstracts/search?q=Leendert%20van%20der%20Ven"> Leendert van der Ven</a>, <a href="https://publications.waset.org/abstracts/search?q=Rolf%20van%20Benthem%20Gijsbertus%20de%20With"> Rolf van Benthem Gijsbertus de With</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Acrylates are widely used in UV-curing technology. Their high reactivity can, however, limit their conversion due to early vitrification. In addition, the free radical photopolymerization is known to be sensitive to oxygen inhibition leading to tacky surfaces. Although epoxides can lead to full polymerization, they are sensitive to humidity and exhibit low polymerization rate. To overcome the intrinsic limitations of both classes of monomers, Interpenetrating Polymer Networks (IPNs) can be synthesized. They consist of at least two cross linked polymers which are permanently entangled. They can be achieved under thermal and/or light induced polymerization in one or two steps approach. IPNs can display homogeneous to heterogeneous morphologies with various degrees of phase separation strongly linked to the monomer miscibility and also synthesis parameters. In this presentation, we synthesize UV-cured methacrylate - epoxide based IPNs with different chemical compositions in order to get a better understanding of their formation and phase separation. Miscibility before and during the photopolymerization, reaction kinetics, as well as mechanical properties and morphology have been investigated. The key parameters controlling the morphology and the phase separation, namely monomer miscibility and synthesis parameters have been identified. By monitoring the stiffness changes on the film surface, atomic force acoustic microscopy (AFAM) gave, in conjunction with polymerization kinetic profiles and thermomechanical properties, explanations and corroborated the miscibility predictions. When varying the methacrylate / epoxide ratio, it was possible to move from a miscible and highly-interpenetrated IPN to a totally immiscible and phase-separated one. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=investigation%20of%20properties%20and%20morphology" title="investigation of properties and morphology">investigation of properties and morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20separation" title=" phase separation"> phase separation</a>, <a href="https://publications.waset.org/abstracts/search?q=UV-cured%20IPNs" title=" UV-cured IPNs"> UV-cured IPNs</a> </p> <a href="https://publications.waset.org/abstracts/27489/from-homogeneous-to-phase-separated-uv-cured-interpenetrating-polymer-networks-influence-of-the-system-composition-on-properties-and-microstructure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27489.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5468</span> Evolution of Microstructure through Phase Separation via Spinodal Decomposition in Spinel Ferrite Thin Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nipa%20Debnath">Nipa Debnath</a>, <a href="https://publications.waset.org/abstracts/search?q=Harinarayan%20Das"> Harinarayan Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Takahiko%20Kawaguchi"> Takahiko Kawaguchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Naonori%20Sakamoto"> Naonori Sakamoto</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazuo%20Shinozaki"> Kazuo Shinozaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Hisao%20Suzuki"> Hisao Suzuki</a>, <a href="https://publications.waset.org/abstracts/search?q=Naoki%20Wakiya"> Naoki Wakiya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays spinel ferrite magnetic thin films have drawn considerable attention due to their interesting magnetic and electrical properties with enhanced chemical and thermal stability. Spinel ferrite magnetic films can be implemented in magnetic data storage, sensors, and spin filters or microwave devices. It is well established that the structural, magnetic and transport properties of the magnetic thin films are dependent on microstructure. Spinodal decomposition (SD) is a phase separation process, whereby a material system is spontaneously separated into two phases with distinct compositions. The periodic microstructure is the characteristic feature of SD. Thus, SD can be exploited to control the microstructure at the nanoscale level. In bulk spinel ferrites having general formula, MₓFe₃₋ₓ O₄ (M= Co, Mn, Ni, Zn), phase separation via SD has been reported only for cobalt ferrite (CFO); however, long time post-annealing is required to occur the spinodal decomposition. We have found that SD occurs in CoF thin film without using any post-deposition annealing process if we apply magnetic field during thin film growth. Dynamic Aurora pulsed laser deposition (PLD) is a specially designed PLD system through which in-situ magnetic field (up to 2000 G) can be applied during thin film growth. The in-situ magnetic field suppresses the recombination of ions in the plume. In addition, the peak’s intensity of the ions in the spectra of the plume also increases when magnetic field is applied to the plume. As a result, ions with high kinetic energy strike into the substrate. Thus, ion-impingement occurred under magnetic field during thin film growth. The driving force of SD is the ion-impingement towards the substrates that is induced by in-situ magnetic field. In this study, we report about the occurrence of phase separation through SD and evolution of microstructure after phase separation in spinel ferrite thin films. The surface morphology of the phase separated films show checkerboard like domain structure. The cross-sectional microstructure of the phase separated films reveal columnar type phase separation. Herein, the decomposition wave propagates in lateral direction which has been confirmed from the lateral composition modulations in spinodally decomposed films. Large magnetic anisotropy has been found in spinodally decomposed nickel ferrite (NFO) thin films. This approach approves that magnetic field is also an important thermodynamic parameter to induce phase separation by the enhancement of up-hill diffusion in thin films. This thin film deposition technique could be a more efficient alternative for the fabrication of self-organized phase separated thin films and employed in controlling of the microstructure at nanoscale level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dynamic%20Aurora%20PLD" title="Dynamic Aurora PLD">Dynamic Aurora PLD</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20anisotropy" title=" magnetic anisotropy"> magnetic anisotropy</a>, <a href="https://publications.waset.org/abstracts/search?q=spinodal%20decomposition" title=" spinodal decomposition"> spinodal decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=spinel%20ferrite%20thin%20film" title=" spinel ferrite thin film"> spinel ferrite thin film</a> </p> <a href="https://publications.waset.org/abstracts/86528/evolution-of-microstructure-through-phase-separation-via-spinodal-decomposition-in-spinel-ferrite-thin-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86528.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5467</span> Selective Extraction Separation of Vanadium and Chromium in the Leaching/Aqueous Solution with Trioctylamine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiaohua%20Jing">Xiaohua Jing</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Efficient extraction for separation of V and Cr in the leaching/aqueous solution is essential to the reuse of V and Cr in the V-Cr slag. Trioctylamine, a common tertiary amine extractant, with some good characters (e.g., weak base, insoluble in water and good stability) different from N1923, was investigated in this paper. The separation factor of Cr and V can be reached to 230.71 when initial pH of the aqueous solution is 0.5, so trioctylamine can be used for extracting Cr from the leaching/aqueous solution contained V and Cr. The highest extraction percentages of Cr and V were 98.73% and 90.22% when the initial pH values were 0.5 and 1.5, respectively. Via FT-IR spectra of loaded organic phase and trioctylamine, the hydrogen bond association mechanism of extracting V and Cr was investigated, which was the same with the way of extracting the two metals with primary amine N1923. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=selective%20extraction" title="selective extraction">selective extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=trioctylamine" title=" trioctylamine"> trioctylamine</a>, <a href="https://publications.waset.org/abstracts/search?q=V%20and%20Cr" title=" V and Cr"> V and Cr</a>, <a href="https://publications.waset.org/abstracts/search?q=separation%20factor" title=" separation factor"> separation factor</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20bond%20association" title=" hydrogen bond association"> hydrogen bond association</a> </p> <a href="https://publications.waset.org/abstracts/63024/selective-extraction-separation-of-vanadium-and-chromium-in-the-leachingaqueous-solution-with-trioctylamine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63024.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5466</span> Blind Speech Separation Using SRP-PHAT Localization and Optimal Beamformer in Two-Speaker Environments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hai%20Quang%20Hong%20Dam">Hai Quang Hong Dam</a>, <a href="https://publications.waset.org/abstracts/search?q=Hai%20Ho"> Hai Ho</a>, <a href="https://publications.waset.org/abstracts/search?q=Minh%20Hoang%20Le%20Ngo"> Minh Hoang Le Ngo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the problem of blind speech separation from the speech mixture of two speakers. A voice activity detector employing the Steered Response Power - Phase Transform (SRP-PHAT) is presented for detecting the activity information of speech sources and then the desired speech signals are extracted from the speech mixture by using an optimal beamformer. For evaluation, the algorithm effectiveness, a simulation using real speech recordings had been performed in a double-talk situation where two speakers are active all the time. Evaluations show that the proposed blind speech separation algorithm offers a good interference suppression level whilst maintaining a low distortion level of the desired signal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blind%20speech%20separation" title="blind speech separation">blind speech separation</a>, <a href="https://publications.waset.org/abstracts/search?q=voice%20activity%20detector" title=" voice activity detector"> voice activity detector</a>, <a href="https://publications.waset.org/abstracts/search?q=SRP-PHAT" title=" SRP-PHAT"> SRP-PHAT</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20beamformer" title=" optimal beamformer"> optimal beamformer</a> </p> <a href="https://publications.waset.org/abstracts/53263/blind-speech-separation-using-srp-phat-localization-and-optimal-beamformer-in-two-speaker-environments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53263.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5465</span> Simulation of Immiscibility Regions in Sodium Borosilicate Glasses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Djamila%20Aboutaleb">Djamila Aboutaleb</a>, <a href="https://publications.waset.org/abstracts/search?q=Brahim%20Safi"> Brahim Safi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, sodium borosilicates glasses were prepared by melting in air. These heat-resistant transparent glasses have subjected subsequently isothermal treatments at different times, which have transformed them at opaque glass (milky white color). Such changes indicate that these glasses showed clearly phase separation (immiscibility). The immiscibility region in a sodium borosilicate ternary system was investigated in this work, i.e. to determine the regions from which some compositions can show phase separation. For this we went through the conditions of thermodynamic equilibrium, which were translated later by mathematical equations to find an approximate solution. The latter has been translated in a simulation which was established thereafter to find the immiscibility regions in this type of special glasses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sodium%20borosilicate" title="sodium borosilicate">sodium borosilicate</a>, <a href="https://publications.waset.org/abstracts/search?q=heat-resistant" title=" heat-resistant"> heat-resistant</a>, <a href="https://publications.waset.org/abstracts/search?q=isothermal%20treatments" title=" isothermal treatments"> isothermal treatments</a>, <a href="https://publications.waset.org/abstracts/search?q=immiscibility" title=" immiscibility"> immiscibility</a>, <a href="https://publications.waset.org/abstracts/search?q=thermodynamics" title=" thermodynamics"> thermodynamics</a> </p> <a href="https://publications.waset.org/abstracts/6617/simulation-of-immiscibility-regions-in-sodium-borosilicate-glasses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6617.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5464</span> Exploiting Fast Independent Component Analysis Based Algorithm for Equalization of Impaired Baseband Received Signal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Umair">Muhammad Umair</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Qasim%20Gilani"> Syed Qasim Gilani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A technique using Independent Component Analysis (ICA) for blind receiver signal processing is investigated. The problem of the receiver signal processing is viewed as of signal equalization and implementation imperfections compensation. Based on this, a model similar to a general ICA problem is developed for the received signal. Then, the use of ICA technique for blind signal equalization in the time domain is presented. The equalization is regarded as a signal separation problem, since the desired signal is separated from interference terms. This problem is addressed in the paper by over-sampling of the received signal. By using ICA for equalization, besides channel equalization, other transmission imperfections such as Direct current (DC) bias offset, carrier phase and In phase Quadrature phase imbalance will also be corrected. Simulation results for a system using 16-Quadraure Amplitude Modulation(QAM) are presented to show the performance of the proposed scheme. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blind%20equalization" title="blind equalization">blind equalization</a>, <a href="https://publications.waset.org/abstracts/search?q=blind%20signal%20separation" title=" blind signal separation"> blind signal separation</a>, <a href="https://publications.waset.org/abstracts/search?q=equalization" title=" equalization"> equalization</a>, <a href="https://publications.waset.org/abstracts/search?q=independent%20component%20analysis" title=" independent component analysis"> independent component analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=transmission%20impairments" title=" transmission impairments"> transmission impairments</a>, <a href="https://publications.waset.org/abstracts/search?q=QAM%20receiver" title=" QAM receiver"> QAM receiver</a> </p> <a href="https://publications.waset.org/abstracts/94433/exploiting-fast-independent-component-analysis-based-algorithm-for-equalization-of-impaired-baseband-received-signal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94433.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5463</span> A New Criterion for Removal of Fouling Deposit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20B%C3%A4cker">D. Bäcker</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Chaves"> H. Chaves</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The key to improve surface cleaning of the fouling is understanding of the mechanism of separation process of the deposit from the surface. The authors give basic principles of characterization of separation process and introduce a corresponding criterion. The developed criterion is a measure for the moment of separation of the deposit from the surface. For this purpose a new measurement technique is described. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cleaning" title="cleaning">cleaning</a>, <a href="https://publications.waset.org/abstracts/search?q=fouling" title=" fouling"> fouling</a>, <a href="https://publications.waset.org/abstracts/search?q=separation" title=" separation"> separation</a>, <a href="https://publications.waset.org/abstracts/search?q=criterion" title=" criterion"> criterion</a> </p> <a href="https://publications.waset.org/abstracts/33125/a-new-criterion-for-removal-of-fouling-deposit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33125.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">455</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5462</span> Multiple Relaxation Times in the Gibbs Ensemble Monte Carlo Simulation of Phase Separation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bina%20Kumari">Bina Kumari</a>, <a href="https://publications.waset.org/abstracts/search?q=Subir%20K.%20Sarkar"> Subir K. Sarkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Pradipta%20Bandyopadhyay"> Pradipta Bandyopadhyay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The autocorrelation function of the density fluctuation is studied in each of the two phases in a Gibbs Ensemble Monte Carlo (GEMC) simulation of the problem of phase separation for a square well potential with various values of its range. We find that the normalized autocorrelation function is described very well as a linear combination of an exponential function with a time scale τ₂ and a stretched exponential function with a time scale τ₁ and an exponent α. Dependence of (α, τ₁, τ₂) on the parameters of the GEMC algorithm and the range of the square well potential is investigated and interpreted. We also analyse the issue of how to choose the parameters of the GEMC simulation optimally. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autocorrelation%20function" title="autocorrelation function">autocorrelation function</a>, <a href="https://publications.waset.org/abstracts/search?q=density%20fluctuation" title=" density fluctuation"> density fluctuation</a>, <a href="https://publications.waset.org/abstracts/search?q=GEMC" title=" GEMC"> GEMC</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/131552/multiple-relaxation-times-in-the-gibbs-ensemble-monte-carlo-simulation-of-phase-separation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131552.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5461</span> Study of Phase Separation Behavior in Flexible Polyurethane Foam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=El%20Hatka%20Hicham">El Hatka Hicham</a>, <a href="https://publications.waset.org/abstracts/search?q=Hafidi%20Youssef"> Hafidi Youssef</a>, <a href="https://publications.waset.org/abstracts/search?q=Saghiri%20Khalid"> Saghiri Khalid</a>, <a href="https://publications.waset.org/abstracts/search?q=Ittobane%20Najim"> Ittobane Najim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flexible polyurethane foam (FPUF) is a low-density cellular material generally used as a cushioning material in many applications such as furniture, bedding, packaging, etc. It is commercially produced during a continuous process, where a reactive mixture of foam chemicals is poured onto a moving conveyor. FPUFs are produced by the catalytic balancing of two reactions involved, the blowing reaction (isocyanate-water) and the gelation reaction (isocyanate-polyol). The microstructure of FPUF is generally composed of soft phases (polyol phases) and rigid domains that separate into two domains of different sizes: the rigid polyurea microdomains and the macrodomains (larger aggregates). The morphological features of FPUF are strongly influenced by the phase separation morphology that plays a key role in determining the global FPUF properties. This phase-separated morphology results from a thermodynamic incompatibility between soft segments derived from aliphatic polyether and hard segments derived from the commonly used aromatic isocyanate. In order to improve the properties of FPUF against the different stresses faced by this material during its use, we report in this work a study of the phase separation phenomenon in FPUF that has been examined using SAXS WAXS and FTIR. Indeed, we have studied with these techniques the effect of water, isocyanates, and alkaline chlorides on the phase separation behavior. SAXS was used to study the morphology of the microphase separated, WAXS to examine the nature of the hard segment packing, and FTIR to investigate the hydrogen bonding characteristics of the materials studied. The prepared foams were shown to have different levels of urea phase connectivity; the increase in water content in the FPUF formulation leads to an increase in the amount of urea formed and consequently the increase of the size of urea aggregates formed. Alkali chlorides (NaCl, KCl, and LiCl) incorporated into FPUF formulations show that is the ability to prevent hydrogen bond formation and subsequently alter the rigid domains. FPUFs prepared by different isocyanate structures showed that urea aggregates are difficult to be formed in foams prepared by asymmetric diisocyanate, while are more easily formed in foams prepared by symmetric and aliphatic diisocyanate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flexible%20polyurethane%20foam" title="flexible polyurethane foam">flexible polyurethane foam</a>, <a href="https://publications.waset.org/abstracts/search?q=hard%20segments" title=" hard segments"> hard segments</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20separation" title=" phase separation"> phase separation</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20segments" title=" soft segments"> soft segments</a> </p> <a href="https://publications.waset.org/abstracts/148288/study-of-phase-separation-behavior-in-flexible-polyurethane-foam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148288.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5460</span> Hydrothermal Synthesis of ZIF-7 Crystals and Their Composite ZIF-7/CS Membranes for Water/Ethanol Separation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kai-Sheng%20Ji">Kai-Sheng Ji</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Feng%20Lin"> Yi-Feng Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The pervaporation process for solvent and water separation has attracted research attention due to its lower energy consumption compared with conventional distillation processes. The membranes used for the pervaporation approach should exhibit high flux and separation factors. In this study, the ZIF-7 crystal particles were successfully incorporated into chitosan (CS) membranes to form ZIF-7/CS mixed-matrix membranes. The as-prepared ZIF-7/CS mixed-matrix membranes were used to separate mixtures of water/ethanol at 25℃ in the pervaporation process. The mixed-matrix membranes with different ZIF-7 wt% incorporation showed better separation efficiency than the pristine CS membranes because of the smaller pore size of the mixed-matrix membranes. The separation factor and the flux of the ZIF-7/CS membranes clearly exceed the upper limit of the previously reported CS-based and mixed-matrix membranes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pervaporation" title="pervaporation">pervaporation</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan" title=" chitosan"> chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=ZIF-7" title=" ZIF-7"> ZIF-7</a>, <a href="https://publications.waset.org/abstracts/search?q=memberane%20separation" title=" memberane separation"> memberane separation</a> </p> <a href="https://publications.waset.org/abstracts/21520/hydrothermal-synthesis-of-zif-7-crystals-and-their-composite-zif-7cs-membranes-for-waterethanol-separation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21520.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5459</span> High-Performance Liquid Chromatographic Method with Diode Array Detection (HPLC-DAD) Analysis of Naproxen and Omeprazole Active Isomers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marwa%20Ragab">Marwa Ragab</a>, <a href="https://publications.waset.org/abstracts/search?q=Eman%20El-Kimary"> Eman El-Kimary</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chiral separation and analysis of omeprazole and naproxen enantiomers in tablets were achieved using high-performance liquid chromatographic method with diode array detection (HPLC-DAD). Kromasil Cellucoat chiral column was used as a stationary phase for separation and the eluting solvent consisted of hexane, isopropanol and trifluoroacetic acid in a ratio of: 90, 9.9 and 0.1, respectively. The chromatographic system was suitable for the enantiomeric separation and analysis of active isomers of the drugs. Resolution values of 2.17 and 3.84 were obtained after optimization of the chromatographic conditions for omeprazole and naproxen isomers, respectively. The determination of S-isomers of each drug in their dosage form was fully validated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chiral%20analysis" title="chiral analysis">chiral analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=esomeprazole" title=" esomeprazole"> esomeprazole</a>, <a href="https://publications.waset.org/abstracts/search?q=S-Naproxen" title=" S-Naproxen"> S-Naproxen</a>, <a href="https://publications.waset.org/abstracts/search?q=HPLC-DAD" title=" HPLC-DAD"> HPLC-DAD</a> </p> <a href="https://publications.waset.org/abstracts/61903/high-performance-liquid-chromatographic-method-with-diode-array-detection-hplc-dad-analysis-of-naproxen-and-omeprazole-active-isomers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61903.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5458</span> A Method for Solid-Liquid Separation of Cs+ from Radioactive Waste by Using Ionic Liquids and Extractants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20W.%20Choi">J. W. Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Y.%20Cho"> S. Y. Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20J.%20Lee"> H. J. Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Z.%20Oh"> W. Z. Oh</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20J.%20Choi"> S. J. Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ionic liquids (ILs), which is alternative to conventional organic solvent, were used for extraction of Cs ions. ILs, as useful environment friendly green solvents, have been recently applied as replacement for traditional volatile organic compounds (VOCs) in liquid/liquid extraction of heavy metal ions as well as organic and inorganic species and pollutants. Thus, Ionic liquids were used for extraction of Cs ions from the liquid radioactive waste. In most cases, Cs ions present in radioactive wastes in very low concentration, approximately less than 1ppm. Therefore, unlike established extraction system the required amount of ILs as extractant is comparatively very small. This extraction method involves cation exchange mechanism in which Cs ion transfers to the organic phase and binds to one crown ether by chelation in exchange of single ILs cation, IL_cation+, transfer to the aqueous phase. In this extraction system showed solid-liquid separation in which the Ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonly)imide (C2mimTf2N) and the crown ether Dicyclohexano-18-crown-6 (DCH18C6) both were used here in very little amount as solvent and as extractant, respectively. 30 mM of CsNO3 was used as simulated waste solution cesium ions. Generally, in liquid-liquid extraction, the molar ratio of CE:Cs+:ILs was 1:5~10:>100, while our applied molar ratio of CE:Cs+:ILs was 1:2:1~10. The quantity of CE and Cs ions were fixed to 0.6 and 1.2 mmol, respectively. The phenomenon of precipitation showed two kinds of separation: solid-liquid separation in the ratio of 1:2:1 and 1:2:2; solid-liquid-liquid separation (3 phase) in the ratio of 1:2:5 and 1:2:10. In the last system, 3 phases were precipitate-ionic liquids-aqueous. The precipitate was verified to consist of Cs+, DCH18C6, Tf2N- based on the cation exchange mechanism. We analyzed precipitate using scanning electron microscopy with X-ray microanalysis (SEM-EDS), an elemental analyser, Fourier transform infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC). The experimental results showed an easy extraction method and confirmed the composition of solid precipitate. We also obtained information that complex formation ratio of Cs+ to DCH18C6 is 0.88:1 regardless of C2mimTf2N quantities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extraction" title="extraction">extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=precipitation" title=" precipitation"> precipitation</a>, <a href="https://publications.waset.org/abstracts/search?q=solid-liquid%20seperation" title=" solid-liquid seperation"> solid-liquid seperation</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20liquid" title=" ionic liquid"> ionic liquid</a>, <a href="https://publications.waset.org/abstracts/search?q=precipitate" title=" precipitate"> precipitate</a> </p> <a href="https://publications.waset.org/abstracts/50080/a-method-for-solid-liquid-separation-of-cs-from-radioactive-waste-by-using-ionic-liquids-and-extractants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50080.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5457</span> Recovery of Value-Added Whey Proteins from Dairy Effluent Using Aqueous Two-Phase System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Perumalsamy%20Muthiah">Perumalsamy Muthiah</a>, <a href="https://publications.waset.org/abstracts/search?q=Murugesan%20Thanapalan"> Murugesan Thanapalan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The remains of cheese production contain nutritional value added proteins viz., α-Lactalbumin, β-Lactoglobulin representing 80- 90% of the total volume of milk entering the process. Although several possibilities for cheese-whey exploitation have been assayed, approximately half of world cheese-whey production is not treated but is discarded as effluent. It is necessary to develop an effective and environmentally benign extraction process for the recovery of value added cheese whey proteins. Recently aqueous two phase system (ATPS) have emerged as potential separation process, particularly in the field of biotechnology due to the mild conditions of the process, short processing time, and ease of scale-up. In order to design an ATPS process for the recovery of cheese whey proteins, development of phase diagram and the effect of system parameters such as pH, types and the concentrations of the phase forming components, temperature, etc., on the partitioning of proteins were addressed in order to maximize the recovery of proteins. Some of the practical problems encountered in the application of aqueous two-phase systems for the recovery of Cheese whey proteins were also discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aqueous%20two-phase%20system" title="aqueous two-phase system">aqueous two-phase system</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20diagram" title=" phase diagram"> phase diagram</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=cheese%20whey" title=" cheese whey"> cheese whey</a> </p> <a href="https://publications.waset.org/abstracts/71016/recovery-of-value-added-whey-proteins-from-dairy-effluent-using-aqueous-two-phase-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71016.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5456</span> Preparation and CO2 Permeation Properties of Carbonate-Ceramic Dual-Phase Membranes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Ishii">H. Ishii</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Araki"> S. Araki</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Yamamoto"> H. Yamamoto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, the carbon dioxide (CO2) separation technology is required in terms of the reduction of emission of global warming gases and the efficient use of fossil fuels. Since the emission amount of CO2 gas occupies the large part of greenhouse effect gases, it is considered that CO2 have the most influence on global warming. Therefore, we need to establish the CO2 separation technologies with high efficiency at low cost. In this study, we focused on the membrane separation compared with conventional separation technique such as distillation or cryogenic separation. In this study, we prepared carbonate-ceramic dual-phase membranes to separate CO2 at high temperature. As porous ceramic substrate, the (Pr0.9La0.1)2(Ni0.74Cu0.21Ga0.05)O4+σ, La0.6Sr0.4Ti0.3 Fe0.7O3 and Ca0.8Sr0.2Ti0.7Fe0.3O3-α (PLNCG, LSTF and CSTF) were examined. PLNCG, LSTF and CSTF have the perovskite structure. The perovskite structure has high stability and shows ion-conducting doped by another metal ion. PLNCG, LSTF and CSTF have perovskite structure and has high stability and high oxygen ion diffusivity. PLNCG, LSTF and CSTF powders were prepared by a solid-phase process using the appropriate carbonates or oxides. To prepare porous substrates, these powders mixed with carbon black (20 wt%) and a few drops of polyvinyl alcohol (5 wt%) aqueous solution. The powder mixture were packed into stainless steel mold (13 mm) and uniaxially pressed into disk shape under a pressure of 20 MPa for 1 minute. PLNCG, LSTF and CSTF disks were calcined in air for 6 h at 1473, 1573 and 1473 K, respectively. The carbonate mixture (Li2CO3/Na2CO3/K2CO3: 42.5/32.5/25 in mole percent ratio) was placed inside a crucible and heated to 793 K. Porous substrates were infiltrated with the molten carbonate mixture at 793 K. Crystalline structures of the fresh membranes and after the infiltration with the molten carbonate mixtures were determined by X-ray diffraction (XRD) measurement. We confirmed the crystal structure of PLNCG and CSTF slightly changed after infiltration with the molten carbonate mixture. CO2 permeation experiments with PLNCG-carbonate, LSTF-carbonate and CSTF-carbonate membranes were carried out at 773-1173 K. The gas mixture of CO2 (20 mol%) and He was introduced at the flow rate of 50 ml/min to one side of membrane. The permeated CO2 was swept by N2 (50 ml/min). We confirmed the effect of ceramic materials and temperature on the CO2 permeation at high temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=membrane" title="membrane">membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=perovskite%20structure" title=" perovskite structure"> perovskite structure</a>, <a href="https://publications.waset.org/abstracts/search?q=dual-phase" title=" dual-phase"> dual-phase</a>, <a href="https://publications.waset.org/abstracts/search?q=carbonate" title=" carbonate"> carbonate</a> </p> <a href="https://publications.waset.org/abstracts/35528/preparation-and-co2-permeation-properties-of-carbonate-ceramic-dual-phase-membranes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35528.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5455</span> Phase Segregating and Complex Forming Pb Based (=X-Pb) Liquid Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Indra%20Bahadur%20Bhandari">Indra Bahadur Bhandari</a>, <a href="https://publications.waset.org/abstracts/search?q=Narayan%20Panthi"> Narayan Panthi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ishwar%20Koirala"> Ishwar Koirala</a>, <a href="https://publications.waset.org/abstracts/search?q=Devendra%20Adhikari"> Devendra Adhikari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have used a theoretical model based on the assumption of compound formation in binary alloys to study the thermodynamic, microscopic, and surface properties of Bi-Pb and In-Pb liquid alloys. A review of the phase diagrams for these alloys shows that one of the stable complexes for Bi-Pb liquid alloy is BiPb3; also, that InPb is a stable phase in liquid In-Pb alloys. Using the same interaction parameters that are fitted for the free energy of mixing, we have been able to compute the bulk and thermodynamic properties of the alloys. From our observations, we are able to show that the Bi-Pb liquid alloy exhibits compound formation over the whole concentration range and the In-Pb alloys undergo phase separation. With regards to surface properties, Pb segregates more to the surface in In-Pb alloys than in Bi-Pb alloys. The viscosity isotherms have a positive deviation from ideality for both Bi-Pb and In-Pb alloys. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asymmetry" title="asymmetry">asymmetry</a>, <a href="https://publications.waset.org/abstracts/search?q=Bi-Pb" title=" Bi-Pb"> Bi-Pb</a>, <a href="https://publications.waset.org/abstracts/search?q=deviation" title=" deviation"> deviation</a>, <a href="https://publications.waset.org/abstracts/search?q=In-Pb" title=" In-Pb"> In-Pb</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction%20parameters" title=" interaction parameters"> interaction parameters</a> </p> <a href="https://publications.waset.org/abstracts/136406/phase-segregating-and-complex-forming-pb-based-x-pb-liquid-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136406.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5454</span> The Effects of Early Maternal Separation on Risky Choice in Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Osvaldo%20Collazo">Osvaldo Collazo</a>, <a href="https://publications.waset.org/abstracts/search?q=Cristiano%20Valerio%20Dos%20Santos"> Cristiano Valerio Dos Santos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Early maternal separation has been shown to bring about many negative effects on behavior in rats. In the present study, we evaluated the effects of early maternal separation on risky choice in rats. One group of male and female Wistar rats was exposed to an early maternal separation protocol while a control group was left undisturbed. Then both groups were exposed to a series of behavioral tests, including a test of risky choice, where one alternative offered a constant reward while the other offered a variable reward. There was a difference between groups when they chose between a variable and a constant reward delay, but no other difference was significant. These results suggest that early maternal separation may be related to a greater preference for shorter delays, which is characteristic of more impulsive choices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=early%20maternal%20separation" title="early maternal separation">early maternal separation</a>, <a href="https://publications.waset.org/abstracts/search?q=impulsivity" title=" impulsivity"> impulsivity</a>, <a href="https://publications.waset.org/abstracts/search?q=risky%20choice" title=" risky choice"> risky choice</a>, <a href="https://publications.waset.org/abstracts/search?q=variability" title=" variability"> variability</a> </p> <a href="https://publications.waset.org/abstracts/104561/the-effects-of-early-maternal-separation-on-risky-choice-in-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104561.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5453</span> From a Distance: A Grounded Theory Study of Incarcerated Filipino Elderly&#039;s Separation Anxiety</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Allan%20B.%20de%20Guzman">Allan B. de Guzman</a>, <a href="https://publications.waset.org/abstracts/search?q=Rochelle%20Gabrielle%20R.%20Gatan"> Rochelle Gabrielle R. Gatan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ira%20Bianca%20Mae%20G.%20Gesmundo"> Ira Bianca Mae G. Gesmundo</a>, <a href="https://publications.waset.org/abstracts/search?q=Astley%20Justine%20H.%20Golosinda"> Astley Justine H. Golosinda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: While in prison, the elderly, like the younger prisoners, face specific problems and deprivations arising directly from their imprisonment, one of which is forced separation from family and loved ones. Despite the numerous studies that examined the impact of separation and separation anxiety on the emotions and behavior of young individuals, little is known about separation anxiety in the elderly population. Objective: This grounded theory study purports to describe the process of separation anxiety among incarcerated Filipino elderly men. Method: Individual interviews and participant observations were conducted with 25 incarcerated elderly Filipino men who are first-time prisoners, sentenced to lifetime imprisonment and were analyzed using constant comparative method. Results: Following Strauss and Corbin’s protocol, a four-part process emerged to describe the studied layer of human experience. The Tectonic Model of Separation Anxiety among incarcerated Filipino elderly men comprises of four phases: Winkling, Wilting, Weeding, and Weaving. Conclusion: This study has inductively and creatively explored the process of separation anxiety among the Filipino incarcerated elderly men. Findings of this study invite nurses and other clinicians to identify developmentally appropriate strategies and interventions for this vulnerable and neglected sector of society. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elderly" title="elderly">elderly</a>, <a href="https://publications.waset.org/abstracts/search?q=grounded%20theory" title=" grounded theory"> grounded theory</a>, <a href="https://publications.waset.org/abstracts/search?q=separation%20anxiety" title=" separation anxiety"> separation anxiety</a>, <a href="https://publications.waset.org/abstracts/search?q=Filipino" title=" Filipino"> Filipino</a>, <a href="https://publications.waset.org/abstracts/search?q=incarcerated" title=" incarcerated"> incarcerated</a> </p> <a href="https://publications.waset.org/abstracts/21312/from-a-distance-a-grounded-theory-study-of-incarcerated-filipino-elderlys-separation-anxiety" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21312.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5452</span> Deep Eutectic Solvent/ Polyimide Blended Membranes for Anaerobic Digestion Gas Separation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Glemarie%20C.%20Hermosa">Glemarie C. Hermosa</a>, <a href="https://publications.waset.org/abstracts/search?q=Sheng-Jie%20You"> Sheng-Jie You</a>, <a href="https://publications.waset.org/abstracts/search?q=Chien%20Chih%20Hu"> Chien Chih Hu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Efficient separation technologies are required for the removal of carbon dioxide from natural gas streams. Membrane-based natural gas separation has emerged as one of the fastest growing technologies, due to the compactness, higher energy efficiency and economic advantages which can be reaped. The removal of Carbon dioxide from gas streams using membrane technology will also give the advantage like environmental friendly process compared to the other technologies used in gas separation. In this study, Polyimide membranes, which are mostly used in the separation of gases, are blended with a new kind of solvent: Deep Eutectic Solvents or simply DES. The three types of DES are used are choline chloride based mixed with three different hydrogen bond donors: Lactic acid, N-methylurea and Urea. The blending of the DESs to Polyimide gave out high permeability performance. The Gas Separation performance for all the membranes involving CO2/CH4 showed low performance while for CO2/N2 surpassed the performance of some studies. Among the three types of DES used the solvent Choline Chloride/Lactic acid exhibited the highest performance for both Gas Separation applications. The values are 10.5 for CO2/CH4 selectivity and 60.5 for CO2/N2. The separation results for CO2/CH4 may be due to the viscosity of the DESs affecting the morphology of the fabricated membrane thus also impacts the performance. DES/blended Polyimide membranes fabricated are novel and have the potential of a low-cost and environmental friendly application for gas separation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20eutectic%20solvents" title="deep eutectic solvents">deep eutectic solvents</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20separation" title=" gas separation"> gas separation</a>, <a href="https://publications.waset.org/abstracts/search?q=polyimide%20blends" title=" polyimide blends"> polyimide blends</a>, <a href="https://publications.waset.org/abstracts/search?q=polyimide%20membranes" title=" polyimide membranes"> polyimide membranes</a> </p> <a href="https://publications.waset.org/abstracts/37540/deep-eutectic-solvent-polyimide-blended-membranes-for-anaerobic-digestion-gas-separation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37540.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5451</span> Shear Layer Investigation through a High-Load Cascade in Low-Pressure Gas Turbine Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Habibnia%20Rami">Mehdi Habibnia Rami</a>, <a href="https://publications.waset.org/abstracts/search?q=Shidvash%20Vakilipour"> Shidvash Vakilipour</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20H.%20Sabour"> Mohammad H. Sabour</a>, <a href="https://publications.waset.org/abstracts/search?q=Rouzbeh%20Riazi"> Rouzbeh Riazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Hassannia"> Hossein Hassannia </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with the steady and unsteady flow behavior on the separation bubble occurring on the rear portion of the suction side of T106A blade. The first phase was to implement the steady condition capturing the separation bubble. To accurately predict the separated region, the effects of three different turbulence models and computational grids were separately investigated. The results of Large Eddy Simulation (LES) model on the finest grid structure are acceptably in a good agreement with its relevant experimental results. The second phase is mainly to address the effects of wake entrance on bubble disappearance in unsteady situation. In the current simulations, from what was suggested in an experiment, simulating the flow unsteadiness, with concentrations on small scale disturbances instead of simulating a complete oncoming wake, is the key issue. Subsequently, the results from the current strategy to apply the effects of the wake and two other experimental work were compared to be in a good agreement. Between the two experiments, one of them deals with wake passing unsteady flow, and the other one implements experimentally the same approach as the current Computational Fluid Dynamics (CFD) simulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low-pressure%20turbine%20cascade" title="low-pressure turbine cascade">low-pressure turbine cascade</a>, <a href="https://publications.waset.org/abstracts/search?q=large-Eddy%20simulation%20%28LES%29" title=" large-Eddy simulation (LES)"> large-Eddy simulation (LES)</a>, <a href="https://publications.waset.org/abstracts/search?q=RANS%20turbulence%20models" title=" RANS turbulence models"> RANS turbulence models</a>, <a href="https://publications.waset.org/abstracts/search?q=unsteady%20flow%20measurements" title=" unsteady flow measurements"> unsteady flow measurements</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20separation" title=" flow separation"> flow separation</a> </p> <a href="https://publications.waset.org/abstracts/62574/shear-layer-investigation-through-a-high-load-cascade-in-low-pressure-gas-turbine-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62574.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5450</span> Industrial Prototype for Hydrogen Separation and Purification: Graphene Based-Materials Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juan%20Alfredo%20Guevara%20Carrio">Juan Alfredo Guevara Carrio</a>, <a href="https://publications.waset.org/abstracts/search?q=Swamy%20Toolahalli%20Thipperudra"> Swamy Toolahalli Thipperudra</a>, <a href="https://publications.waset.org/abstracts/search?q=Riddhi%20Naik%20Dharmeshbhai"> Riddhi Naik Dharmeshbhai</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergio%20Graniero%20Echeverrigaray"> Sergio Graniero Echeverrigaray</a>, <a href="https://publications.waset.org/abstracts/search?q=Jose%20Vitorio%20Emiliano"> Jose Vitorio Emiliano</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20Helio%20Castro"> Antonio Helio Castro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to advance the hydrogen economy, several industrial sectors can potentially benefit from the trillions of stimulus spending for post-coronavirus. Blending hydrogen into natural gas pipeline networks has been proposed as a means of delivering it during the early market development phase, using separation and purification technologies downstream to extract the pure H₂ close to the point of end-use. This first step has been mentioned around the world as an opportunity to use existing infrastructures for immediate decarbonisation pathways. Among current technologies used to extract hydrogen from mixtures in pipelines or liquid carriers, membrane separation can achieve the highest selectivity. The most efficient approach for the separation of H₂ from other substances by membranes is offered from the research of 2D layered materials due to their exceptional physical and chemical properties. Graphene-based membranes, with their distribution of pore sizes in nanometers and angstrom range, have shown fundamental and economic advantages over other materials. Their combination with the structure of ceramic and geopolymeric materials enabled the synthesis of nanocomposites and the fabrication of membranes with long-term stability and robustness in a relevant range of physical and chemical conditions. Versatile separation modules have been developed for hydrogen separation, which adaptability allows their integration in industrial prototypes for applications in heavy transport, steel, and cement production, as well as small installations at end-user stations of pipeline networks. The developed membranes and prototypes are a practical contribution to the technological challenge of supply pure H₂ for the mentioned industries as well as hydrogen energy-based fuel cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene%20nano-composite%20membranes" title="graphene nano-composite membranes">graphene nano-composite membranes</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20separation%20and%20purification" title=" hydrogen separation and purification"> hydrogen separation and purification</a>, <a href="https://publications.waset.org/abstracts/search?q=separation%20modules" title=" separation modules"> separation modules</a>, <a href="https://publications.waset.org/abstracts/search?q=indsutrial%20prototype" title=" indsutrial prototype"> indsutrial prototype</a> </p> <a href="https://publications.waset.org/abstracts/127504/industrial-prototype-for-hydrogen-separation-and-purification-graphene-based-materials-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127504.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5449</span> Development of Stability Indicating Method and Characterization of Degradation Impurity of Nirmaltrelvir in Its Self-Emulsifying Drug Delivery System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ravi%20Patel">Ravi Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Ravisinh%20Solanki"> Ravisinh Solanki</a>, <a href="https://publications.waset.org/abstracts/search?q=Dignesh%20Khunt"> Dignesh Khunt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A stability-indicating reverse phase high performance liquid chromatography (RP-HPLC) method was developed and validated for estimating Nirmatrelvir in its self-emulsifying drug delivery system (SEDDS). The separation of Nirmatrelvir and its degradation products was accomplished by employing an Agilent Zorbax Eclipse plus C18 (250 mm x 4.6 mm, 5 µm) column, through which the mobile phase 5 mM phosphate buffer (pH 4.0) as mobile phase A and Acetonitrile as mobile phase B in a ratio of (40:60 % v/v) was pumped at a flow rate of 1.0 mL/min, through the HPLC system. Chromatographic separation and elution were monitored by a photo-diode array detector at 210 nm. Stress studies have been employed to evaluate this method's ability to indicate stability. Nirmatrelvir was exposed to several stress conditions, such as acid, alkali, oxidative, photolytic, and thermal degradations. Significant degradation was observed during acid and alkali hydrolysis, and the resulting degradation product was successfully separated from the Nirmatrelvir peak, preventing any interference. Furthermore, the primary degradant produced under alkali degradation conditions was identified using UPLC-ESI-TQ-MS/MS. The method was validated in accordance with the International Council on Harmonization (ICH) and found to be selective, precise, accurate, linear, and robust. The apparent permeability of Nirmatrelvir SEDDS was 4.20 ± 0.21×10-6 cm/sec, and the average proportion of free drug recovered was 0.5%. The method developed in this study was feasible and accurate for routine quality control evaluation of Nirmatrelvir SEDDS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nirmatrelvir" title="Nirmatrelvir">Nirmatrelvir</a>, <a href="https://publications.waset.org/abstracts/search?q=SEDDS" title=" SEDDS"> SEDDS</a>, <a href="https://publications.waset.org/abstracts/search?q=degradation%20study" title=" degradation study"> degradation study</a>, <a href="https://publications.waset.org/abstracts/search?q=HPLC" title=" HPLC"> HPLC</a>, <a href="https://publications.waset.org/abstracts/search?q=LC-MS%2FMS" title=" LC-MS/MS"> LC-MS/MS</a> </p> <a href="https://publications.waset.org/abstracts/191370/development-of-stability-indicating-method-and-characterization-of-degradation-impurity-of-nirmaltrelvir-in-its-self-emulsifying-drug-delivery-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191370.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">18</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=phase%20separation&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=phase%20separation&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=phase%20separation&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=phase%20separation&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=phase%20separation&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=phase%20separation&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=phase%20separation&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=phase%20separation&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=phase%20separation&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=phase%20separation&amp;page=182">182</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=phase%20separation&amp;page=183">183</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=phase%20separation&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10