CINXE.COM
{"title":"Parameters Influencing the Output Precision of a Lens-Lens Beam Generator Solar Concentrator ","authors":"M. Tawfik, X. Tonnellier, C. Sansom","volume":124,"journal":"International Journal of Energy and Power Engineering","pagesStart":428,"pagesEnd":437,"ISSN":"1307-6892","URL":"https:\/\/publications.waset.org\/pdf\/10007114","abstract":"<p>The Lens-Lens Beam Generator (LLBG) is a Fresnel-based optical concentrating technique which provides flexibility in selecting the solar receiver location compared to conventional techniques through generating a powerful concentrated collimated solar beam. In order to achieve that, two successive lenses are used and followed by a flat mirror. Hence the generated beam emerging from the LLBG has a high power flux which impinges on the target receiver, it is important to determine the precision of the system output. In this present work, mathematical investigation of different parameters affecting the precision of the output beam is carried out. These parameters include: Deflection in sun-facing lens and its holding arm, delay in updating the solar tracking system, and the flat mirror surface flatness. Moreover, relationships that describe the power lost due to the effect of each parameter are derived in this study.<\/p>\r\n","references":"[1]\tA. Kumar, \u201cImprovements in efficiency of solar parabolic trough,\u201d IOSR J. Mech. Civ. Eng., vol. 7, no. 6, pp. 63\u201375, 2013.\r\n[2]\tJ. Houghton, Global Warming: The Complete Briefing, 3rd Ed. Cambridge University Press, 2004.\r\n[3]\tL. R. Wilson, \u201cLuminescent Solar Concentrators\u202f: A Study of Optical Properties, and Device Optimisation,\u201d Heriot-Watt University, 2010.\r\n[4]\tR. \u00d6sterholm and J. P\u00e5lsson, \u201cDynamic modelling of a parabolic trough solar power plant,\u201d in Proceedings of the 10th International Modelica Conference, 2014, p. 1057.\r\n[5]\tREN21, \u201cRenewables 2016 Global Status Report,\u201d Paris, 2016.\r\n[6]\tR. Pitchumani, \u201cSunShot Initiative,\u201d Washington D.C., USA, 2014.\r\n[7]\tC. C. Newton, \u201cA Concentrated Solar Thermal Energy System,\u201d Florida State University, 2007.\r\n[8]\tM. Mancini, T., Kolb, G., and Prairie, \u201cSolar Thermal Power,\u201d in Advances in Solar Energy: An Annual Review of Research and Development, Volume 11, K. W. B\u00f6er, Ed. Boulder, CO: American Solar Energy Society, 1997, pp. 1\u201342.\r\n[9]\tS. A. Kalogirou, Solar Energy Engineering. Elsevier, 2009.\r\n[10]\tM. G\u00fcnther, M. Joemann, and S. Csambor, \u201cParabolic Trough Technology,\u201d in Advanced CSP Teaching Materials, Kassel, Germany: Enermena; German Aerospace Center (DLR), 2011.\r\n[11]\tD. R. Mills, \u201cLinear Fresnel reflector (LFR) technology,\u201d in Concentrating Solar Power Technology: Principles, Developments and Applications, K. Lovegrove and W. Stein, Eds. Cambridge, UK: Woodhead Publishing Limited, 2012, pp. 153\u2013196.\r\n[12]\tC. Chang, \u201cTracking solar collection technologies for solar heating and cooling systems,\u201d in Advances in Solar Heating and Cooling, R. Wang and T. Ge, Eds. Woodhead Publishing Limited, 2016, pp. 81\u201393.\r\n[13]\tS. Gianella, \u201cPorous Materials for High-Temperature Solar Absorbers,\u201d in International Symposium on High Temperature Solar Materials, 2012.\r\n[14]\tS. A. Kalogirou, \u201cSolar Thermal Power Systems,\u201d in Solar Energy Engineering - Processes and Systems, 2nd Ed., Elsevier, 2014, pp. 541\u2013581.\r\n[15]\tG. Cau and D. Cocco, \u201cComparison of Medium-size Concentrating Solar Power Plants based on Parabolic Trough and Linear Fresnel Collectors,\u201d Energy Procedia, vol. 45, pp. 101\u2013110, 2014.\r\n[16]\tM. Eck and E. Zarza, \u201cSaturated steam process with direct steam generating parabolic troughs,\u201d Sol. Energy, vol. 80, no. 11, pp. 1424\u20131433, Nov. 2006.\r\n[17]\tN. El Gharbi, H. Derbal, S. Bouaichaoui, and N. Said, \u201cA comparative study between parabolic trough collector and linear Fresnel reflector technologies,\u201d Energy Procedia, vol. 6, pp. 565\u2013572, 2011.\r\n[18]\tA. Rovira, R. Barbero, M. J. Montes, R. Abbas, and F. Varela, \u201cAnalysis and comparison of Integrated Solar Combined Cycles using parabolic troughs and linear Fresnel reflectors as concentrating systems,\u201d Appl. Energy, vol. 162, pp. 990\u20131000, 2016.\r\n[19]\tG. Morin, J. Dersch, W. Platzer, M. Eck, and A. H\u00e4berle, \u201cComparison of Linear Fresnel and Parabolic Trough Collector power plants,\u201d Sol. Energy, vol. 86, no. 1, pp. 1\u201312, Jan. 2012.\r\n[20]\tIRENA, \u201cRenewable Power Generation Costs in 2012\u202f: An Overview,\u201d 2013.\r\n[21]\tC. L. Martin and D. Y. Goswami, Solar Energy Pocket Reference. Routledge, 2005.\r\n[22]\tB. S\u00f8rensen, P. Breeze, T. Storvick, S.-T. Yang, A. V. da Rosa, H. K. Gupta, R. Sukanta, M. Doble, P. Maegaard, G. Pistoia, and S. Kalogirou, Renewable Energy Focus Handbook, 1st Ed. Academic Press, 2009.\r\n[23]\tJ. P. Kesari, M. Gupta, A. Jain, and A. K. Ojha, \u201cReview of the Concentrated Solar Thermal Technologies\u202f: Challenges and Opportunities in India,\u201d Int. J. Res. Sci. Innov., vol. II, no. I, pp. 105\u2013111, 2015.\r\n[24]\tDhanabal R, B. V, Ranjitha R, Ponni A, D. S, and Mageshkannan P, \u201cComparison of Efficiencies of Solar Tracker systems with static panel Single- Axis Tracking System and Dual-Axis Tracking System with Fixed Mount,\u201d Int. J. Eng. Technol., vol. 5, no. 2, pp. 1925\u20131933, 2013.\r\n[25]\tG. Franchini, A. Perdichizzi, S. Ravelli, and G. Barigozzi, \u201cA comparative study between parabolic trough and solar tower technologies in Solar Rankine Cycle and Integrated Solar Combined Cycle plants,\u201d Sol. Energy, vol. 98, pp. 302\u2013314, Dec. 2013.\r\n[26]\tJ. E. Pacheco, H. E. Reilly, G. J. Kolb, and C. E. Tyner, \u201cSummary of the Solar Two: Test and Evaluation Program,\u201d 2000.\r\n[27]\tF. J. Collado, \u201cQuick evaluation of the annual heliostat field efficiency,\u201d Sol. Energy, vol. 82, no. 4, pp. 379\u2013384, Apr. 2008.\r\n[28]\tJ.-L. Bouvier, G. Michaux, P. Salagnac, T. Kientz, and D. Rochier, \u201cExperimental study of a micro combined heat and power system with a solar parabolic trough collector coupled to a steam Rankine cycle expander,\u201d Sol. Energy, vol. 134, pp. 180\u2013192, Sep. 2016.\r\n[29]\tY. Rafeeu and M. Z. A. Ab Kadir, \u201cThermal performance of parabolic concentrators under Malaysian environment: A case study,\u201d Renew. Sustain. Energy Rev., vol. 16, no. 6, pp. 3826\u20133835, Aug. 2012.\r\n[30]\tN. Kaushika and K. Reddy, \u201cPerformance of a low cost solar paraboloidal dish steam generating system,\u201d Energy Convers. Manag., vol. 41, no. 7, pp. 713\u2013726, 2000.\r\n[31]\tD. T. Nelson, D. L. Evans, and R. K. Bansal, \u201cLinear Fresnel lens concentrators,\u201d Sol. Energy, vol. 17, no. 5, pp. 285\u2013289, Nov. 1975.\r\n[32]\tG. Wang, Z. Chen, P. Hu, and X. Cheng, \u201cDesign and optical analysis of the band-focus Fresnel lens solar concentrator,\u201d Appl. Therm. Eng., vol. 102, pp. 695\u2013700, Jun. 2016.\r\n[33]\tS. R. Kurtz, \u201cOpportunities and challenges for development of a mature concentrating photovoltaic power industry,\u201d 2012.\r\n[34]\tM. Lin, K. Sumathy, Y. J. Dai, and X. K. Zhao, \u201cPerformance investigation on a linear Fresnel lens solar collector using cavity receiver,\u201d Sol. Energy, vol. 107, pp. 50\u201362, Sep. 2014.\r\n[35]\tH. Zhai, Y. J. Dai, J. Y. Wu, R. Z. Wang, and L. Y. Zhang, \u201cExperimental investigation and analysis on a concentrating solar collector using linear Fresnel lens,\u201d Energy Convers. Manag., vol. 51, no. 1, pp. 48\u201355, Jan. 2010.\r\n[36]\tI. Soriga and C. Neaga, \u201cThermal analysis of a linear Fresnel lens solar collector with black body cavity receiver,\u201d UPB Sci. Bull. Ser. D Mech. Eng., vol. 74, no. 4, pp. 105\u2013116, 2012.\r\n[37]\tK. E. J. Al-Jumaily and M. K. A. Al-Kaysi, \u201cThe study of the performance and efficiency of flat linear Fresnel lens collector with sun tracking system in Iraq,\u201d Renew. Energy, vol. 14, no. 1\u20134, pp. 41\u201348, May 1998.\r\n[38]\tF. Franc, V. Jirka, M. Mal\u00fd, and B. N\u00e1b\u011blek, \u201cConcentrating collectors with flat linear fresnel lenses,\u201d Sol. Wind Technol., vol. 3, no. 2, pp. 77\u201384, Jan. 1986.\r\n[39]\tR. Leutz, A. Suzuki, A. Akisawa, and T. Kashiwagi, \u201cDesign of a nonimaging Fresnel lens for solar concentrators,\u201d Sol. Energy, vol. 65, no. 6, pp. 379\u2013387, Apr. 1999.\r\n[40]\tR. Leutz, A. Suzuki, A. Akisawa, and T. Kashiwagi, \u201cShaped nonimaging Fresnel lenses,\u201d J. Opt. A Pure Appl. Opt., vol. 2, no. 2, pp. 112\u2013116, Mar. 2000.\r\n[41]\tR. Leutz, A. Suzuki, A. Akisawa, and T. Kashiwagi, \u201cNonimaging Fresnel Lenses of Low and Medium Concentration for Cost-Effective Photovoltaic Systems,\u201d in World Renewable Energy Congress VI, Elsevier, 2000, pp. 832\u2013835.\r\n[42]\tV. M. Andreev, A. S. Vlasov, V. P. Khvostikov, O. A. Khvostikova, P. Y. Gazaryan, S. V. Sorokina, and N. A. Sadchikov, \u201cSolar Thermophotovoltaic Converters Based on Tungsten Emitters,\u201d J. Sol. Energy Eng., vol. 129, no. 3, pp. 298\u2013303, 2007.\r\n[43]\tV. M. Andreev, A. S. Vlasov, V. P. Khvostikov, O. A. Khvostikova, P. Y. Gazaryan, N. A. Sadchikov, and V. D. Rumyantsev, \u201cSolar Thermophotovoltaic Converter with Fresnel Lens and GaSb Cells,\u201d in 2006 IEEE 4th World Conference on Photovoltaic Energy Conference, 2006, vol. 1, pp. 644\u2013647.\r\n[44]\tW. Xie, Y. Dai, and R. Wang, \u201cNumerical and experimental analysis of a point focus solar collector using high concentration imaging PMMA Fresnel lens,\u201d Energy Convers. Manag., vol. 52, no. 6, pp. 2417\u20132426, Jun. 2011.\r\n[45]\tW. Xie, Y. Dai, and R. Wang, \u201cTheoretical and experimental analysis on efficiency factors and heat removal factors of Fresnel lens solar collector using different cavity receivers,\u201d Sol. Energy, vol. 86, no. 9, pp. 2458\u20132471, Sep. 2012.\r\n[46]\tM. S. Salem, M. Tawfik, and A. Hamed, \u201cAnalysis and Performance of Solar Concentrating-Tracking System,\u201d in 7th General International Engineering Conference, 2010.\r\n[47]\tM. M. Tawfik and M. S. Salem, \u201cKey parameters affecting concentration ratio of a solar concentrator based on lens-lens beam generator configuration,\u201d in 43rd ASES National Solar Conference 2014, SOLAR 2014, 2014, vol. 1.\r\n[48]\tM. Watanabe and S. K. Nayar, \u201cTelecentric Optics for Focus Analysis,\u201d IEEE Trans. Pattern Anal. Mach. Intell., vol. 19, no. 12, pp. 1360\u20131365, 1997.\r\n[49]\tN. Enteria and A. Akbarzadeh, Solar Energy Sciences and Engineering Applications. Leiden, The Netherlands: CRC Press, 2013.\r\n[50]\tS. B\u00e4umer, Handbook of Plastic Optics, 2nd Ed. Wiley VCH, 2010.\r\n[51]\tD. C. Miller and S. R. Kurtz, \u201cDurability of Fresnel lenses: A review specific to the concentrating photovoltaic application,\u201d Sol. Energy Mater. Sol. Cells, vol. 95, no. 8, pp. 2037\u20132068, Aug. 2011.\r\n[52]\tP. Rai-Choudhury, Handbook of Microlithography, Micromachining, and Microfabrication, Volume 2: Micromachining and Microfabrication. Washington D.C., USA: SPIE, 1997.\r\n[53]\tH. Goto, S. Wakabayashi, M. Ikeda, M. Sakata, and K. Imanaka, \u201cMicro focusing optical device using piezoelectric thin film actuator,\u201d in Proceedings of SPIE - Micro-Optics\/Micromechanics and Laser Scanning and Shaping, 1995, vol. 2383, no. 8, pp. 136\u2013143.\r\n[54]\tS. Valette, \u201cMicro-optics, a key technology in the race to microsystems,\u201d J. Micromechanics Microengineering, vol. 5, no. 2, pp. 74\u201376, 1995.\r\n[55]\tV. N. Mahajan, \u201cRay Spot Diagrams,\u201d in Aberration Theory Made Simple, Bellingham, WA, USA: SPIE, 1991, pp. 56\u201365.\r\n[56]\tW. J. Smith, \u201cAberrations,\u201d in Modern optical engineering\u202f: the design of optical systems, 3rd Ed., New York, USA: McGraw Hill, 2000, pp. 61\u201390.\r\n[57]\tF. L. Pedrotti, L. M. Pedrotti, and L. S. Pedrotti, \u201cAberration Theory,\u201d in Introduction to Optics, 3rd Ed., Pearson Prentice Hall, 2013.\r\n[58]\tM. Katz, Introduction to Geometrical Optics, 1st Ed. New Jersey, USA: World Scientific Publishing Company, 2002.\r\n[59]\tT.-M. Wu, \u201cComputer-aided Deflection and Slope Analyses of Beams,\u201d J. Appl. Sci., vol. 6, no. 2, pp. 333\u2013339, 2006.\r\n[60]\tE. H. Thall, \u201cGeometrical Optics,\u201d in Duane\u2019s Ophthalmology, 2006 Ed., Lippincott Williams and Wilkins, 2005.\r\n[61]\tK. R. Spring and M. W. Davidson, \u201cMicroscope Optical Components Introduction,\u201d 2012. (Online). Available: http:\/\/www.olympusmicro.com\/primer\/anatomy\/components.html. (Accessed: 01-Nov-2016).\r\n[62]\tA. F. Ergenc, A Novel Method for ICSI: Rotationally Oscillating Drill: Design, Control and Monitoring. VDM Verlag, 2009.\r\n[63]\tY. Yao, Y. Hu, S. Gao, G. Yang, and J. Du, \u201cA multipurpose dual-axis solar tracker with two tracking strategies,\u201d Renew. Energy, vol. 72, pp. 88\u201398, Dec. 2014.\r\n[64]\tS. J. Oh, Y. J. Lee, K. Chen, Y. M. Kim, S. H. Lim, and W. Chun, \u201cDevelopment of an embedded solar tracker for the enhancement of solar energy utilization,\u201d Int. J. Energy Res., vol. 36, no. 2, pp. 249\u2013258, 2012.\r\n[65]\tF. Duarte, P. D. Gaspar, and L. C. Gon\u00e7alves, \u201cTwo axis solar tracker based on solar maps , controlled by a low-power microcontroller,\u201d Energy Power Eng., vol. 5, no. 7, pp. 671\u2013676, 2011.\r\n[66]\tC.-Y. Lee, P.-C. Chou, C.-M. Chiang, and C.-F. Lin, \u201cSun tracking systems: a review,\u201d Sensors (Basel), vol. 9, no. 5, pp. 3875\u201390, 2009.\r\n[67]\tJ. M. Moreno, P. H. Magalh\u00e3es, and R. Cervantes, \u201cInspira\u2019s CPV Sun Tracking,\u201d in Concentrator Photovoltaics, Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 221\u2013251.\r\n[68]\tH. Mousazadeh, A. Keyhani, A. Javadi, H. Mobli, K. Abrinia, and A. Sharifi, \u201cA review of principle and sun-tracking methods for maximizing solar systems output,\u201d Renew. Sustain. Energy Rev., vol. 13, no. 8, pp. 1800\u20131818, Oct. 2009.\r\n[69]\tF. Sallaberry, R. Pujol-Nadal, M. Larcher, and M. H. Rittmann-Frank, \u201cDirect tracking error characterization on a single-axis solar tracker,\u201d Energy Convers. Manag., vol. 105, pp. 1281\u20131290, 2015.\r\n[70]\tM. C. Bhatnagar, J. C. Joshi, and A. K. Mukerjee, \u201cDetermination of tracking error in an automatic sun tracking system,\u201d Sol. Wind Technol., vol. 4, no. 3, pp. 399\u2013403, 1987.\r\n[71]\tH. Fathabadi, \u201cNovel high efficient offline sensorless dual-axis solar tracker for using in photovoltaic systems and solar concentrators,\u201d Renew. Energy, vol. 95, pp. 485\u2013494, Sep. 2016.\r\n[72]\tR. Conant, Micromachined Mirrors, 1st Ed. New York, USA: Springer Science+Business Media, 2003.\r\n[73]\tJ. A. Ogilvy, Theory of Wave Scattering From Random Rough Surfaces. Taylor & Francis Ltd, 1991.\r\n[74]\tU. Persson, \u201cIn-process measurement of surface roughness using light scattering,\u201d Wear, vol. 215, no. 1\u20132, pp. 54\u201358, Mar. 1998.\r\n[75]\tLayertec, \u201cHow to specify substrates,\u201d 2011. (Online). Available: https:\/\/www.layertec.de\/en\/capabilities\/substrates. (Accessed: 06-Nov-2016).\r\n[76]\tSemrock, IDEX Health & Science, and Intelligent Solutions for Life, \u201cPractical Flatness: Tech Note,\u201d New York, USA, 2016.\r\n[77]\tJ. E. Harvey, S. Schr\u00f6der, N. Choi, and A. Duparr\u00e9, \u201cTotal integrated scatter from surfaces with arbitrary roughness, correlation widths, and incident angles,\u201d Opt. Eng., vol. 51, no. 1, p. 13402, Feb. 2012.\r\n[78]\tK. H. Guenther, P. G. Wierer, and J. M. Bennett, \u201cSurface roughness measurements of low-scatter mirrors and roughness standards,\u201d Appl. Opt., vol. 23, no. 21, p. 3820, 1984.\r\n[79]\tH. E. Bennett and J. O. Porteus, \u201cRelation Between Surface Roughness and Specular Reflectance at Normal Incidence,\u201d J. Opt. Soc. Am., vol. 51, no. 2, p. 123, Feb. 1961.\r\n[80]\tH. Davies, \u201cThe reflection of electromagnetic waves from a rough surface,\u201d Proc. IEE - Part IV Inst. Monogr., vol. 101, no. 7, pp. 209\u2013214, Aug. 1954.\r\n[81]\tEngineer\u2019s Edge, \u201cSurface Roughness Conversion Chart Tables,\u201d 2017. (Online). Available: http:\/\/www.engineersedge.com\/manufacturing\/surface-roughness-conversion.htm. (Accessed: 02-Mar-2017).","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 124, 2017"}