CINXE.COM
noncommutative Hodge structure in nLab
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> noncommutative Hodge structure in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="noindex,nofollow" /> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } </style> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- function updateSize(elt, w, h) { // adjust to the size of the user's browser area. // w and h are the original, unadjusted, width and height per row/column var parentheight = document.viewport.getHeight(); var parentwidth = $('Container').getWidth(); elt.writeAttribute({'cols': Math.floor(parentwidth/w) - 1, 'rows': Math.floor(parentheight/h) - 2 }); elt.setStyle({Width: parentwidth, Height: parentheight}); } function resizeableTextarea() { //make the textarea resize to fit available space $$('textarea#content').each( function(textarea) { var w = textarea.getWidth()/textarea.getAttribute('cols'); var h = textarea.getStyle('lineHeight').replace(/(\d*)px/, "$1"); Event.observe(window, 'resize', function(){ updateSize(textarea, w, h) }); updateSize(textarea, w, h); Form.Element.focus(textarea); }); } window.onload = function (){ resizeableTextarea(); } //--><!]]> </script> </head> <body> <div id="Container"> <textarea id='content' readonly=' readonly' rows='24' cols='60' > #Contents# * table of contents {:toc} ## Idea Noncommutative Hodge theory is an extension of the classical [[Hodge theory]]. The basic notion is a **noncommutative Hodge structure**, the generalization of _[[Hodge structure]]_, which is formulated in the language of meromorphic connections. Unlike classical Hodge theory for complex varieties, noncommutative Hodge structures can be attached to a wider class of [[noncommutative algebraic geometry|noncommutative spaces]]. In the framework of Katzarkov-Kontsevich-Pantev, noncommutative spaces are represented by [[dg-categories]], or more generally, A-infinity categories. In particular, they are interested in the dg-categories which arise in [[homological mirror symmetry]]: for example, [[Fukaya category|Fukaya categories]], (dg enhanced) [[derived categories]] of (quasi-)coherent sheaves, [[matrix factorization]] categories, [[Fukaya-Seidel categories]]. The noncommutative analogue of [[Dolbeault cohomology]] is the [[Hochschild homology]] of the category. The analogue of [[de Rham cohomology]] is the periodic [[cyclic cohomology|cyclic homology]] of the category. The analogue of the Hodge-de Rham spectral sequence is the Hochschild-cyclic spectral sequence. There is work of Weibel which makes this analogy precise. There is a conjecture of Kontsevich that the Hochschild-cyclic spectral sequence degenerates for smooth and proper noncommutative spaces. (This is the analogue of the Hodge-de Rham degeneration for smooth and proper varieties.) Kontsevich's conjecture has been proven in some cases by [[Dmitri Kaledin]], who adapts Deligne-Illusie's proof of Hodge-de Rham degeneration (using reduction mod p) to the noncommutative setting. Kontsevich's conjecture is known as the "degeneration conjecture". ## References Noncommutative Hodge theory is being developed in * [[Ludmil Katzarkov]], [[Maxim Kontsevich]], [[Tony Pantev]], _Hodge theoretic aspects of mirror symmetry_, [arxiv/0806.0107](http://arxiv.org/abs/0806.0107) * [[D. Kaledin]], _Cartier isomorphism and Hodge theory in the non-commutative case_, Arithmetic geometry, 537--562, Clay Math. Proc. __8__, Amer. Math. Soc. 2009, [arxiv/0708.1574](http://arxiv.org/abs/0708.1574) * D. Kaledin, _Tokyo lectures "Homological methods in non-commutative geometry"_, [pdf](http://imperium.lenin.ru/~kaledin/tokyo/final.pdf), [TeX](http://imperium.lenin.ru/~kaledin/tokyo/final.tex) * Claus Hertling, Christian Sevenheck, _Twistor structures, $tt^*$-geometry and singularity theory_, [arxiv/0807.2199](http://arxiv.org/abs/0807.2199) * C. Hertling, C. Sabbah, _Examples of non-commutative Hodge structure_ (v1 title: Fourier-Laplace transform of flat unitary connections and TERP structures), J. Inst. Math. Jussieu __10__, Spec. Issue 3: in honour of L. Boutet de Monvel & P. Schapira (2011) 635 - 674 [arxiv/0912.2754](http://arxiv.org/abs/0912.2754) [doi](https://doi.org/10.1017/S147474801100003X) * C. Sabbah, _Non-commutative Hodge structures_, [pdf](http://www.math.polytechnique.fr/~sabbah/sabbah_grenoble10.pdf) * [[Dmytro Shklyarov]], _Non-commutative Hodge structures: Towards matching categorical and geometric examples_, Trans. Amer. Math. Soc. 366 (2014), 2923-2974 [arxiv/1107.3156](http://arxiv.org/abs/1107.3156) [doi](https://doi.org/10.1090/S0002-9947-2014-05913-8) [[!redirects noncommutative Hodge theory]] [[!redirects Noncommutative Hodge theory]] </textarea> </div> <!-- Container --> </body> </html>