CINXE.COM
JCI - Welcome
<!DOCTYPE html> <!--[if lt IE 7]> <html lang='en' class='no-js lt-ie10 lt-ie9 lt-ie8 lt-ie7'> <![endif]--> <!--[if IE 7]> <html lang='en' class='no-js lt-ie10 lt-ie9 lt-ie8'> <![endif]--> <!--[if IE 8]> <html lang='en' class='no-js lt-ie10 lt-ie9'> <![endif]--> <!--[if IE 9]> <html lang='en' class='no-js lt-ie10'> <![endif]--> <!--[if (gt IE 9)|!(IE)]><!--> <html lang='en' class='no-js'> <!--<![endif]--> <head> <meta charset='utf-8'> <meta content='text/html; charset=UTF-8' http-equiv='Content-Type'> <meta content='The Journal of Clinical Investigation' name='AUTHOR'> <!-- Set the viewport width to device width for mobile --> <meta content='width=device-width, initial-scale=1.0' name='viewport'> <link href='/rss' rel='alternate' title='JCI New Article RSS' type='application/rss+xml'> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="RAKuckAgx3jShU7koMSs4ghbAvhMvlYCeKPgxtAOeB4k2bYJFHA26Mdh8BQJId2nFh1+zXqgUZNyB6dY15t3LQ==" /> <link rel="shortcut icon" type="image/x-icon" href="/assets/jci-favicon-378ea4dd43f03bc78136c6a261d9b28f6811fe59d12db426eae78cf0691b0008.ico" /> <title> JCI - Welcome </title> <!--[if gt IE 8]><!--><link rel="stylesheet" media="all" href="/assets/application-4e3473ed7442aa1dc35d11f58ed4edfbd690fa57a3eb3a1daca0cd68dc7fb1e0.css" /><!--<![endif]--> <!--[if (lt IE 9)]> <link rel="stylesheet" media="all" href="/assets/ie8/application-c9c1df9dc6f969fb6db3e6e1316b9ac163cdd7a9a2bd67746820c5d31a80258f.css" /> <script src="/assets/ie8/ie8-head-e4cc6664a4e806f330a789c9756cfe50f1bb936ea97fe6e2dde7db04b3daa038.js"></script> <![endif]--> <style> @font-face { font-family: "klavika-bold"; src: url("///var/www/jci/jci/releases/20250404161853/vendor/common/fonts/klavika/eot/KlavikaWebBasicBold.eot") format('eot'), src: url("///var/www/jci/jci/releases/20250404161853/vendor/common/fonts/klavika/eot/KlavikaWebBasicBold.eot?#iefix") format("embedded-opentype"), url("///var/www/jci/jci/releases/20250404161853/vendor/common/fonts/klavika/woff/KlavikaWebBasicBold.woff") format("woff") } </style> <script> //Google Tag Manager Data Layer //Values must be set before GTM tags are triggered window.dataLayer = window.dataLayer || []; window.dataLayer.push({ 'siteName': 'content-jci', 'ipAddress': '8.222.208.146', 'environment': 'production', }); </script> <script src="/assets/vendor/modernizr-2f68aa04c7424c280c5bc9db8b68f7f6ff70bcd38254c5b89383eac8e89b1781.js"></script> <script type='text/javascript'> var googletag = googletag || {}; googletag.cmd = googletag.cmd || []; (function () { var gads = document.createElement('script'); gads.async = true; gads.type = 'text/javascript'; var useSSL = 'https:' == document.location.protocol; gads.src = (useSSL ? 'https:' : 'http:') + '//www.googletagservices.com/tag/js/gpt.js'; var node = document.getElementsByTagName('script')[0]; node.parentNode.insertBefore(gads, node); })(); googletag.cmd.push(function () { // NOTE: This script manages google ads, more info at doc/GoogleAds.md var mapping = googletag.sizeMapping().addSize([800, 600], [300, 250]).addSize([640, 480], [260, 217]).build(); var mapping2 = googletag.sizeMapping() .addSize([1920, 1080], [728, 90])//All desktop like resolutions are set to 728x90 .addSize([800, 600], [728, 90]) .addSize([640, 480], [728, 90]) .addSize([0, 0], [320, 50]) //Smaller than 640x480 screens .build(); googletag.defineSlot('/82117132/jci-homepage-med-rectangle-left-col-top', [[300, 250],[260, 217]], 'jci-homepage-med-rectangle-left-col-top').defineSizeMapping(mapping).addService(googletag.pubads()); googletag.defineSlot('/82117132/jci-article-interior-leaderboard-top', [[728, 90],[320, 50]], 'jci-article-interior-leaderboard-top').defineSizeMapping(mapping2).addService(googletag.pubads()); googletag.defineSlot('/82117132/jci-article-interior-leaderboard-bottom', [728, 90], 'jci-article-interior-leaderboard-bottom').addService(googletag.pubads()); googletag.defineSlot('/82117132/jci-article-interior-skyscraper-right-col', [160, 600], 'jci-article-interior-skyscraper-right-col').addService(googletag.pubads()); googletag.defineSlot('/82117132/jci-interior-skyscraper-right-col', [160, 600], 'jci-interior-skyscraper-right-col').addService(googletag.pubads()); // collapseEmptyDivs requires all slots be defined above. googletag.pubads().collapseEmptyDivs(true); googletag.enableServices(); }); </script> </head> <body class='' id='tags_controller'> <div class='off-canvas-wrap' data-offcanvas=''> <div class='inner-wrap'> <div class='fixed show-for-large-up'> <div class='row menu-align' id='logo-bar'> <div class='small-12 columns'> <div class='cross-journal-container'> Go to <a href='http://insight.jci.org'>JCI Insight</a> </div> <a href="/"><img src="/assets/common/jci-spelled-out-white-on-transparent.20160208-958617d51a205b239bcef41eae5703962aee0ae2fcc9fbda0237e635a09ac7f3.png" /></a> </div> </div> <div class='row menu-align' id='journal-bar'> <div class='small-12 columns'> <ul class='inline-list'> <li><a href="/kiosks/about">About</a></li> <li><a href="/kiosks/editorial-board">Editors</a></li> <li><a href="/kiosks/about/consulting-editors">Consulting Editors</a></li> <li><a href="/kiosks/authors">For authors</a></li> <li><a href="/kiosks/ethics">Publication ethics</a></li> <li><a href="/kiosks/connect">Publication alerts by email</a></li> <li><a href="/kiosks/advertise">Advertising</a></li> <li><a href="https://the-asci.org/controllers/asci/JobBoard.php">Job board</a></li> <li><a href="/kiosks/contact">Contact</a></li> </ul> </div> </div> <div id='content-bar'> <nav class='top-bar' data-topbar=''> <section class='top-bar-section'> <ul class='left'> <li class='not-click'> <a href="/tags/141">Clinical Research and Public Health</a> </li> <li class='not-click'> <a id="topmenu_current_issue" href="/current">Current issue</a> </li> <li class='not-click'> <a href="/archive">Past issues</a> </li> <li class='has-dropdown not-click'> <a>By specialty</a> <ul class='dropdown'> <li><a href="/tags/118">COVID-19</a></li> <li><a href="/tags/15">Cardiology</a></li> <li><a href="/tags/21">Gastroenterology</a></li> <li><a href="/tags/25">Immunology</a></li> <li><a href="/tags/28">Metabolism</a></li> <li><a href="/tags/31">Nephrology</a></li> <li><a href="/tags/32">Neuroscience</a></li> <li><a href="/tags/33">Oncology</a></li> <li><a href="/tags/36">Pulmonology</a></li> <li><a href="/tags/42">Vascular biology</a></li> <li><a href="/specialties">All ...</a></li> </ul> </li> <li class='has-dropdown not-click'> <a href="/videos">Videos</a> <ul class='dropdown'> <li><a href="/videos/cgms">Conversations with Giants in Medicine</a></li> <li><a href="/videos/video_abstracts">Video Abstracts</a></li> </ul> </li> <li class='has-dropdown not-click'> <a href="/tags/reviews">Reviews</a> <ul class='dropdown'> <li> <label>Reviews</label> </li> <li><a href="/tags/reviews">View all reviews ...</a></li> <li class='divider'></li> <li> <label>Review Series</label> </li> <li><a href="/review_series/131">Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)</a></li> <li><a href="/review_series/130">Microbiome in Health and Disease (Feb 2025)</a></li> <li><a href="/review_series/127">Substance Use Disorders (Oct 2024)</a></li> <li><a href="/review_series/128">Clonal Hematopoiesis (Oct 2024)</a></li> <li><a href="/review_series/129">Sex Differences in Medicine (Sep 2024)</a></li> <li><a href="/review_series/126">Vascular Malformations (Apr 2024)</a></li> <li><a href="/review_series/125">Lung inflammatory injury and tissue repair (Jul 2023)</a></li> <li> <a href="/review_series">View all review series ...</a> </li> </ul> </li> <li class='not-click'> <a href="/tags/111">Viewpoint</a> </li> <li class='has-dropdown not-click'> <a>Collections</a> <ul class='dropdown'> <li><a href="/in-press-preview">In-Press Preview</a></li> <li><a href="/tags/141">Clinical Research and Public Health</a></li> <li><a href="/tags/127">Research Letters</a></li> <li><a href="/tags/75">Letters to the Editor</a></li> <li><a href="/tags/56">Editorials</a></li> <li><a href="/tags/44">Commentaries</a></li> <li><a href="/tags/123">Editor's notes</a></li> <li><a href="/tags/2">Reviews</a></li> <li><a href="/tags/111">Viewpoints</a></li> <li><a href="/collections/topic/jci-100th-anniversary">100th anniversary</a></li> <li><a href="/top_articles">Top read articles</a></li> </ul> </li> </ul> <ul class='right'> <li class='has-form'> <div id='search-area'> <form action="/search/results" accept-charset="UTF-8" method="get"> <input type="text" name="q" id="q" value="" placeholder="Search the JCI" /> <input type="image" src="/assets/search-black-ba9b554d6f74b1c93d6e6ab71d1c9830c18a20fc6b7e72393f136f5d875141ac.png" value="" /> </form> </div> </li> </ul> </section> </nav> </div> </div> <!--[if gt IE 8]><!--><nav class='tab-bar hide-for-large-up fixed' id='small-navbar'> <section class='left-small'> <a class='left-off-canvas-toggle menu-icon'> <span></span> </a> </section> <section class='middle tab-bar-section'> <h1 class='title'><a href="/"><img width="40" src="/assets/common/jci-only-white-6c989e8f9744a714482158b82319d50aa8437aa4c8524c4f3dcf8450299cd4b7.png" /></a></h1> </section> </nav> <aside class='left-off-canvas-menu'> <ul class='off-canvas-list'> <li> <label>The Journal of Clinical Investigation</label> </li> <li><form action="/search/results" accept-charset="UTF-8" method="get"> <div class='row collapse' id='search-div-offcanvas'> <div class='small-8 columns'> <input name='q' placeholder='Search the JCI' type='text'> </div> <div class='small-4 columns'> <input type="image" src="/assets/common/search-white-530f3f95b9080d73eba51eaeffdf1a3922af42ccc277a2d1d987b8aa24423c96.png" id="search-icon-offcanvas" /> </div> </div> </form> </li> <li><a id="offcanvas_current_issue" href="/current">Current issue</a></li> <li><a href="/archive">Past issues</a></li> <li><a href="/specialties">Specialties</a></li> <li><a href="/tags/reviews">Reviews</a></li> <li><a href="/review_series">Review series</a></li> <li> <label>Videos</label> </li> <li><a href="/videos/cgms">Conversations with Giants in Medicine</a></li> <li><a href="/videos/video_abstracts">Video Abstracts</a></li> <li> <label>Collections</label> </li> <li><a href="/in-press-preview">In-Press Preview</a></li> <li><a href="/tags/141">Clinical Research and Public Health</a></li> <li><a href="/tags/127">Research Letters</a></li> <li><a href="/tags/75">Letters to the Editor</a></li> <li><a href="/tags/56">Editorials</a></li> <li><a href="/tags/44">Commentaries</a></li> <li><a href="/tags/123">Editor's notes</a></li> <li><a href="/tags/2">Reviews</a></li> <li><a href="/tags/111">Viewpoints</a></li> <li><a href="/collections/topic/jci-100th-anniversary">100th anniversary</a></li> <li><a href="/top_articles">Top read articles</a></li> <li> <label>Journal Details</label> </li> <li><a href="/kiosks/about">About</a></li> <li><a href="/kiosks/editorial-board">Editors</a></li> <li><a href="/kiosks/about/consulting-editors">Consulting Editors</a></li> <li><a href="/kiosks/authors">For authors</a></li> <li><a href="/kiosks/ethics">Publication ethics</a></li> <li><a href="/kiosks/connect">Publication alerts by email</a></li> <li><a href="/kiosks/advertise">Advertising</a></li> <li><a href="https://the-asci.org/controllers/asci/JobBoard.php">Job board</a></li> <li><a href="/kiosks/contact">Contact</a></li> </ul> </aside> <a class='exit-off-canvas'></a><!--<![endif]--> <!--[if (lt IE 9)]> <div class='alert-box info' data-alert=''> Please note that the JCI no longer supports your version of Internet Explorer. We recommend upgrading to the latest version of <a href="http://windows.microsoft.com/en-us/internet-explorer/download-ie">Internet Explorer</a>, <a href="https://www.google.com/chrome/browser/desktop/index.html">Google Chrome</a>, or <a href="https://www.mozilla.org/en-US/firefox/new/">Firefox</a> <a class='close' href='#'>×</a> </div> <![endif]--> <div class='row content-wrapper'> <div class='small-12 columns'> <div class='menu-align'> <div class='row'> <div class='large-10 medium-9 small-12 columns'> <h3>Hematology</h3> <div class='row'> <div class='small-10 medium-7 large-5 small-centered columns'> <ul class='tabs row' data-tab> <li class='tab-title small-6 centered active'> <a href='#articles'>367 Articles</a> </li> <li class='tab-title small-6 centered '> <a href='#posts'>4 Posts</a> </li> </ul> </div> </div> <div class='tabs-content'> <div class='content active' id='articles'> <div class='row'> <div class='small-12 columns'> <div role="navigation" aria-label="Pagination" class="pagination-centered" previous_label="<--" next_label="-->"><ul class="pagination"><li class="arrow unavailable"><a class="arrow unavailable">← Previous</a></li> <li class="current"><a class="current">1</a></li> <li><a rel="next" href="/tags/23?content=articles&page=2">2</a></li> <li><a href="/tags/23?content=articles&page=3">3</a></li> <li class="unavailable"><a>…</a></li> <li><a href="/tags/23?content=articles&page=36">36</a></li> <li><a href="/tags/23?content=articles&page=37">37</a></li> <li class="arrow"><a class="arrow" rel="next" href="/tags/23?content=articles&page=2">Next →</a></li></ul></div> </div> </div> <div class='row'> <div class='small-12 columns'> <div class='row'> <div class='small-12 columns'> <div class='row'> <div class='small-12 columns'> <h5 class='article-title' style='display: inline-block;'><a href="/articles/view/176818">Identification of CD84 as a potent survival factor in acute myeloid leukemia</a></h5> </div> </div> <div class='row'> <div class='small-12 columns article-metadata'> <a class="show-for-small" href="/articles/view/176818">Yinghui Zhu, … , John C. Williams, Flavia Pichiorri</a> <a class='hide-for-small show-more' data-reveal-id='article45957-more' href='#'> <div class='article-authors'> Yinghui Zhu, … , John C. Williams, Flavia Pichiorri </div> </a> <span class='article-published-at'> Published April 8, 2025 </span> <br/>Citation Information: <i>J Clin Invest.</i> 2025. <a href="https://doi.org/10.1172/JCI176818">https://doi.org/10.1172/JCI176818</a>. <div class='row'> <div class='small-12 columns article-links'> View: <a href="/articles/view/176818">Text</a> | <a href="/articles/view/176818/pdf">PDF</a> </div> </div> <div class='row'> <div class='small-12 columns'> <span class='altmetric-embed' data-badge-popover='bottom' data-badge-type='2' data-doi='10.1172/JCI176818' data-hide-no-mentions='true'></span> </div> </div> </div> </div> </div> </div> <div class='reveal-modal xlarge' data-reveal='' id='article45957-more'> <div class='row'> <div class='small-12 columns'> <h4><a href="/articles/view/176818">Identification of CD84 as a potent survival factor in acute myeloid leukemia</a></h4> </div> <div class='small-12 columns'> <ul class='button-group'> <li><a class="button tiny" href="/articles/view/176818">Text</a></li> <li><a class="button tiny" href="/articles/view/176818/pdf">PDF</a></li> </ul> </div> <div class='small-12 columns'> <h5>Abstract</h5> </div> <div class='small-12 columns'> <p>Acute myeloid leukemia (AML) is an aggressive and often deadly malignancy associated with proliferative immature myeloid blasts. Here, we identified CD84 as a critical survival regulator in AML. High levels of CD84 expression provided a survival advantage to leukemia cells, whereas CD84 downregulation disrupted their proliferation, clonogenicity and engraftment capabilities in both human cell lines and patient derived xenograft cells. Critically, loss of CD84 also markedly blocked leukemia engraftment and clonogenicity in MLL-AF9 and inv(16) AML mouse models, highlighting its pivotal role as survival factor across species. Mechanistically, CD84 regulated leukemia cells’ energy metabolism and mitochondrial dynamics. Depletion of CD84 altered mitochondrial ultra-structure and function of leukemia cells, and it caused down-modulation of both oxidative phosphorylation and fatty acid oxidation pathways. CD84 knockdown induced a block of Akt phosphorylation and down-modulation of nuclear factor erythroid 2-related factor 2 (NRF2), impairing AML antioxidant defense. Conversely, CD84 over-expression stabilized NRF2 and promoted its transcriptional activation, thereby supporting redox homeostasis and mitochondrial function in AML. Collectively, our findings indicated that AML cells depend on CD84 to support antioxidant pro-survival pathways, highlighting a therapeutic vulnerability of leukemia cells.</p> </div> <div class='small-12 columns'> <h5>Authors</h5> </div> <div class='small-12 columns'> <p>Yinghui Zhu, Mariam Murtadha, Miaomiao Liu, Enrico Caserta, Ottavio Napolitano, Le Xuan Truong Nguyen, Huafeng Wang, Milad Moloudizargari, Lokesh Nigam, Theophilus Tandoh, Xuemei Wang, Alex Pozhitkov, Rui Su, Xiangjie Lin, Marc Denisse Estepa, Raju Pillai, Joo Song, James F. Sanchez, Yu-Hsuan Fu, Lianjun Zhang, Man Li, Bin Zhang, Ling Li, Ya-Huei Kuo, Steven Rosen, Guido Marcucci, John C. Williams, Flavia Pichiorri</p> </div> </div> <a class='close-reveal-modal'>×</a> </div> <hr> <div class='row'> <div class='small-12 medium-9 columns'> <div class='row'> <div class='small-12 columns'> <h5 class='article-title' style='display: inline-block;'><a href="/articles/view/181659">ATM-dependent DNA damage response constrains cell growth and drives clonal hematopoiesis in telomere biology disorders</a></h5> </div> </div> <div class='row'> <div class='small-12 columns article-metadata'> <a class="show-for-small" href="/articles/view/181659">Christopher M. Sande, … , Timothy S. Olson, Daria V. Babushok</a> <a class='hide-for-small show-more' data-reveal-id='article45940-more' href='#'> <div class='article-authors'> Christopher M. Sande, … , Timothy S. Olson, Daria V. Babushok </div> </a> <span class='article-published-at'> Published April 3, 2025 </span> <br/>Citation Information: <i>J Clin Invest.</i> 2025. <a href="https://doi.org/10.1172/JCI181659">https://doi.org/10.1172/JCI181659</a>. <div class='row'> <div class='small-12 columns article-links'> View: <a href="/articles/view/181659">Text</a> | <a href="/articles/view/181659/pdf">PDF</a> </div> </div> <div class='row'> <div class='small-12 columns'> <span class='altmetric-embed' data-badge-popover='bottom' data-badge-type='2' data-doi='10.1172/JCI181659' data-hide-no-mentions='true'></span> </div> </div> </div> </div> </div> </div> <div class='reveal-modal xlarge' data-reveal='' id='article45940-more'> <div class='row'> <div class='small-12 columns'> <h4><a href="/articles/view/181659">ATM-dependent DNA damage response constrains cell growth and drives clonal hematopoiesis in telomere biology disorders</a></h4> </div> <div class='small-12 columns'> <ul class='button-group'> <li><a class="button tiny" href="/articles/view/181659">Text</a></li> <li><a class="button tiny" href="/articles/view/181659/pdf">PDF</a></li> </ul> </div> <div class='small-12 columns'> <h5>Abstract</h5> </div> <div class='small-12 columns'> <p>Telomere biology disorders (TBD) are genetic diseases caused by defective telomere maintenance. TBD patients often develop bone marrow failure and have an increased risk of myeloid neoplasms. To better understand the factors underlying hematopoietic outcomes in TBD, we comprehensively evaluated acquired genetic alterations in hematopoietic cells from 166 pediatric and adult TBD patients. 47.6% of patients (28.8% of children, 56.1% of adults) had clonal hematopoiesis. Recurrent somatic alterations involved telomere maintenance genes (7.6%), spliceosome genes (10.4%, mainly U2AF1 p.S34), and chromosomal alterations (20.2%), including 1q gain (5.9%). Somatic variants affecting the DNA damage response (DDR) were identified in 21.5% of patients, including 20 presumed loss-of-function variants in ATM. Using multimodal approaches, including single-cell sequencing, assays of ATM activation, telomere dysfunction-induced foci analysis, and cell growth assays, we demonstrate telomere dysfunction-induced activation of ATM-dependent DDR pathway with increased senescence and apoptosis in TBD patient cells. Pharmacologic ATM inhibition, modeling the effects of somatic ATM variants, selectively improved TBD cell fitness by allowing cells to bypass DDR-mediated senescence without detectably inducing chromosomal instability. Our results indicate that ATM-dependent DDR induced by telomere dysfunction is a key contributor to TBD pathogenesis and suggest dampening hyperactive ATM-dependent DDR as a potential therapeutic intervention.</p> </div> <div class='small-12 columns'> <h5>Authors</h5> </div> <div class='small-12 columns'> <p>Christopher M. Sande, Stone Chen, Dana V. Mitchell, Ping Lin, Diana M. Abraham, Jessie M. Cheng, Talia Gebhard, Rujul J. Deolikar, Colby Freeman, Mary Zhou, Sushant Kumar, Michael Bowman, Robert L. Bowman, Shannon Zheng, Bolormaa Munkhbileg, Qijun Chen, Natasha L. Stanley, Kathy Guo, Ajibike Lapite, Ryan Hausler, Deanne M. Taylor, James Corines, Jennifer J.D. Morrissette, David B. Lieberman, Guang Yang, Olga Shestova, Saar Gill, Jiayin Zheng, Kelcy Smith-Simmer, Lauren G. Banaszak, Kyle N. Shoger, Erica F. Reinig, Madilynn Peterson, Peter Nicholas, Amanda J. Walne, Inderjeet Dokal, Justin P. Rosenheck, Karolyn A. Oetjen, Daniel C. Link, Andrew E. Gelman, Christopher R. Reilly, Ritika Dutta, R. Coleman Lindsley, Karyn J. Brundige, Suneet Agarwal, Alison A. Bertuch, Jane E. Churpek, Laneshia K. Tague, F. Brad Johnson, Timothy S. Olson, Daria V. Babushok</p> </div> </div> <a class='close-reveal-modal'>×</a> </div> <hr> <div class='row'> <div class='small-12 medium-9 columns'> <div class='row'> <div class='small-12 columns'> <h5 class='article-title' style='display: inline-block;'><a href="/articles/view/184021"><i>TP53</i> mutations and <i>TET2</i> deficiency cooperate to drive leukemogenesis and establish an immunosuppressive environment</a></h5> </div> </div> <div class='row'> <div class='small-12 columns article-metadata'> <a class="show-for-small" href="/articles/view/184021">Pu Zhang, … , Omar Abdel-Wahab, Rosa Lapalombella</a> <a class='hide-for-small show-more' data-reveal-id='article45886-more' href='#'> <div class='article-authors'> Pu Zhang, … , Omar Abdel-Wahab, Rosa Lapalombella </div> </a> <span class='article-published-at'> Published March 20, 2025 </span> <br/>Citation Information: <i>J Clin Invest.</i> 2025. <a href="https://doi.org/10.1172/JCI184021">https://doi.org/10.1172/JCI184021</a>. <div class='row'> <div class='small-12 columns article-links'> View: <a href="/articles/view/184021">Text</a> | <a href="/articles/view/184021/pdf">PDF</a> </div> </div> <div class='row'> <div class='small-12 columns'> <span class='altmetric-embed' data-badge-popover='bottom' data-badge-type='2' data-doi='10.1172/JCI184021' data-hide-no-mentions='true'></span> </div> </div> </div> </div> </div> </div> <div class='reveal-modal xlarge' data-reveal='' id='article45886-more'> <div class='row'> <div class='small-12 columns'> <h4><a href="/articles/view/184021"><i>TP53</i> mutations and <i>TET2</i> deficiency cooperate to drive leukemogenesis and establish an immunosuppressive environment</a></h4> </div> <div class='small-12 columns'> <ul class='button-group'> <li><a class="button tiny" href="/articles/view/184021">Text</a></li> <li><a class="button tiny" href="/articles/view/184021/pdf">PDF</a></li> </ul> </div> <div class='small-12 columns'> <h5>Abstract</h5> </div> <div class='small-12 columns'> <p>Mutations and deletions in TP53 are associated with adverse outcomes in patients with myeloid malignancies and developing improved therapies for TP53-mutant leukemias is of urgent need. Here we identify mutations in TET2 as the most common co-occurring mutation in TP53 mutant acute myeloid leukemia (AML) patients. In mice, combined hematopoietic-specific deletion of TET2 and TP53 resulted in enhanced self-renewal compared to deletion of either gene alone. Tp53/Tet2 double knockout mice developed serially transplantable AML. Both mice and AML patients with combined TET2/TP53 alterations upregulated innate immune signaling in malignant granulocyte-monocyte progenitors (GMPs), which had leukemia-initiating capacity. A20 governs the leukemic maintenance by triggering aberrant non-canonical NF-κB signaling. Mice with Tp53/Tet2 loss had expansion of monocytic myeloid-derived suppressor cells (MDSCs), which impaired T cell proliferation and activation. Moreover, mice and AML patients with combined TP53/TET2 alterations displayed increased expression of the TIGIT ligand, CD155, on malignant cells. TIGIT blocking antibodies augmented NK cell-mediated killing of Tp53/Tet2 double-mutant AML cells, reduced leukemic burden, and prolonged survival in Tp53/Tet2 double knockout mice. These findings uncover a leukemia-promoting link between TET2 and TP53 mutations and highlight therapeutic strategies to overcome the immunosuppressive bone marrow environment in this adverse subtype of AML.</p> </div> <div class='small-12 columns'> <h5>Authors</h5> </div> <div class='small-12 columns'> <p>Pu Zhang, Ethan C. Whipp, Sarah J. Skuli, Mehdi Gharghabi, Caner Saygin, Steven A. Sher, Martin Carroll, Xiangyu Pan, Eric D. Eisenmann, Tzung-Huei Lai, Bonnie K. Harrington, Wing Keung Chan, Youssef Youssef, Bingyi Chen, Alex Penson, Alexander M. Lewis, Cynthia R. Castro, Nina Fox, Ali Cihan, Jean-Benoit Le Luduec, Susan DeWolf, Tierney Kauffman, Alice S. Mims, Daniel Canfield, Hannah Phillips, Katie E. Williams, Jami Shaffer, Arletta Lozanski, Tzyy-Jye Doong, Gerard Lozanski, Charlene Mao, Christopher J. Walker, James S. Blachly, Anthony F. Daniyan, Lapo Alinari, Robert A. Baiocchi, Yiping Yang, Nicole R. Grieselhuber, Moray J. Campbell, Sharyn D. Baker, Bradley W. Blaser, Omar Abdel-Wahab, Rosa Lapalombella</p> </div> </div> <a class='close-reveal-modal'>×</a> </div> <hr> <div class='row'> <div class='small-12 medium-9 columns'> <div class='row'> <div class='small-12 columns'> <h5 class='article-title' style='display: inline-block;'><a href="/articles/view/183099">Proteostasis and metabolic dysfunction characterize a subset of storage-induced senescent erythrocytes targeted for post-transfusion clearance</a></h5> </div> </div> <div class='row'> <div class='small-12 columns article-metadata'> <a class="show-for-small" href="/articles/view/183099">Sandy Peltier, … , Angelo D’Alessandro, Pascal Amireault</a> <a class='hide-for-small show-more' data-reveal-id='article45840-more' href='#'> <div class='article-authors'> Sandy Peltier, … , Angelo D’Alessandro, Pascal Amireault </div> </a> <span class='article-published-at'> Published March 11, 2025 </span> <br/>Citation Information: <i>J Clin Invest.</i> 2025. <a href="https://doi.org/10.1172/JCI183099">https://doi.org/10.1172/JCI183099</a>. <div class='row'> <div class='small-12 columns article-links'> View: <a href="/articles/view/183099">Text</a> | <a href="/articles/view/183099/pdf">PDF</a> </div> </div> <div class='row'> <div class='small-12 columns'> <span class='altmetric-embed' data-badge-popover='bottom' data-badge-type='2' data-doi='10.1172/JCI183099' data-hide-no-mentions='true'></span> </div> </div> </div> </div> </div> </div> <div class='reveal-modal xlarge' data-reveal='' id='article45840-more'> <div class='row'> <div class='small-12 columns'> <h4><a href="/articles/view/183099">Proteostasis and metabolic dysfunction characterize a subset of storage-induced senescent erythrocytes targeted for post-transfusion clearance</a></h4> </div> <div class='small-12 columns'> <ul class='button-group'> <li><a class="button tiny" href="/articles/view/183099">Text</a></li> <li><a class="button tiny" href="/articles/view/183099/pdf">PDF</a></li> </ul> </div> <div class='small-12 columns'> <h5>Abstract</h5> </div> <div class='small-12 columns'> <p>Although refrigerated storage slows the metabolism of volunteer donor RBCs, which is essential in transfusion medicine, cellular aging still occurs throughout this in vitro process. Storage-induced microerythrocytes (SMEs) are morphologically-altered senescent RBCs that accumulate during storage and are cleared from circulation following transfusion. However, the molecular and cellular alterations that trigger clearance of this RBC subset remain to be identified. Using a staining protocol that sorts long-stored SMEs (i.e., CFSEhigh) and morphologically-normal RBCs (CFSElow), these in vitro aged cells were characterized. Metabolomics analysis identified depletion of energy, lipid-repair, and antioxidant metabolites in CFSEhigh RBCs. By redox proteomics, irreversible protein oxidation primarily affected CFSEhigh RBCs. By proteomics, 96 proteins, mostly in the proteostasis family, had relocated to CFSEhigh RBC membranes. CFSEhigh RBCs exhibited decreased proteasome activity and deformability; increased phosphatidylserine exposure, osmotic fragility, and endothelial cell adherence; and were cleared from the circulation during human spleen perfusion ex vivo. Conversely, molecular, cellular, and circulatory properties of long-stored CFSElow RBCs resembled those of short-stored RBCs. CFSEhigh RBCs are morphologically and metabolically altered, have irreversibly oxidized and membrane-relocated proteins, and exhibit decreased proteasome activity. In vitro aging during storage selectively alters metabolism and proteostasis in these storage-induced senescent RBCs targeted for clearance.</p> </div> <div class='small-12 columns'> <h5>Authors</h5> </div> <div class='small-12 columns'> <p>Sandy Peltier, Mickaël Marin, Monika Dzieciatkowska, Michaël Dussiot, Micaela Kalani Roy, Johanna Bruce, Louise Leblanc, Youcef Hadjou, Sonia Georgeault, Aurélie Fricot, Camille Roussel, Daniel Stephenson, Madeleine Casimir, Abdoulaye Sissoko, François Paye, Safi Dokmak, Papa Alioune Ndour, Philippe Roingeard, Emilie-Fleur Gautier, Steven L. Spitalnik, Olivier Hermine, Pierre A. Buffet, Angelo D’Alessandro, Pascal Amireault</p> </div> </div> <a class='close-reveal-modal'>×</a> </div> <hr> <div class='row'> <div class='small-12 medium-9 columns'> <div class='row'> <div class='small-12 columns'> <h5 class='article-title' style='display: inline-block;'><a href="/articles/view/183607">Restoring mitochondrial function promotes hematopoietic reconstitution from cord blood following cryopreservation-related functional decline</a></h5> </div> </div> <div class='row'> <div class='small-12 columns article-metadata'> <a class="show-for-small" href="/articles/view/183607">Yaojin Huang, … , Yingchi Zhang, Tao Cheng</a> <a class='hide-for-small show-more' data-reveal-id='article45831-more' href='#'> <div class='article-authors'> Yaojin Huang, … , Yingchi Zhang, Tao Cheng </div> </a> <span class='article-published-at'> Published March 4, 2025 </span> <br/>Citation Information: <i>J Clin Invest.</i> 2025. <a href="https://doi.org/10.1172/JCI183607">https://doi.org/10.1172/JCI183607</a>. <div class='row'> <div class='small-12 columns article-links'> View: <a href="/articles/view/183607">Text</a> | <a href="/articles/view/183607/pdf">PDF</a> </div> </div> <div class='row'> <div class='small-12 columns'> <span class='altmetric-embed' data-badge-popover='bottom' data-badge-type='2' data-doi='10.1172/JCI183607' data-hide-no-mentions='true'></span> </div> </div> </div> </div> </div> </div> <div class='reveal-modal xlarge' data-reveal='' id='article45831-more'> <div class='row'> <div class='small-12 columns'> <h4><a href="/articles/view/183607">Restoring mitochondrial function promotes hematopoietic reconstitution from cord blood following cryopreservation-related functional decline</a></h4> </div> <div class='small-12 columns'> <ul class='button-group'> <li><a class="button tiny" href="/articles/view/183607">Text</a></li> <li><a class="button tiny" href="/articles/view/183607/pdf">PDF</a></li> </ul> </div> <div class='small-12 columns'> <h5>Abstract</h5> </div> <div class='small-12 columns'> <p>Umbilical cord blood (UCB) showcases substantial roles in hematopoietic stem cells (HSCs) transplantation and regenerative medicine. UCB is usually cryopreserved for years before use. Whether and how cryopreservation affects its function remain unclear. We constructed single-cell transcriptomic profile of CD34+ hematopoietic stem and progenitor cells (HSPCs) and mononuclear cells (MNCs) from fresh and cryopreserved UCB stored for 1-, 5-, 10-, and 19- years. Compared to fresh UCB, cryopreserved HSCs and multipotent progenitors (MPPs) exhibited more active cell cycle and lower HSC/MPP signature gene expressions. Hematopoietic reconstitution of cryopreserved HSPCs gradually decreased during the first 5 years but stabilized thereafter, aligning with the negative correlation between clinical neutrophil engraftment and cryopreservation duration of UCB. Cryopreserved HSPCs also showed reduced megakaryocyte generation. In contrast, cryopreserved natural killer (NK) cells and T cells maintained cytokine production and cytotoxic ability comparable to fresh cells. Mechanistically, cryopreserved HSPCs exhibited elevated reactive oxygen species, reduced ATP synthesis, and abnormal mitochondrial distribution, which collectively led to attenuated hematopoietic reconstitution. These effects could be ameliorated by sulforaphane. Together, we elucidated the negative impact of cryopreservation on UCB HSPCs and provided sulforaphane as a mitigation strategy, broadening the temporal window and scope for clinical applications of cryopreserved UCB. </p> </div> <div class='small-12 columns'> <h5>Authors</h5> </div> <div class='small-12 columns'> <p>Yaojin Huang, Xiaowei Xie, Mengyao Liu, Yawen Zhang, Junye Yang, Wenling Yang, Yu Hu, Saibing Qi, Yahui Feng, Guojun Liu, Shihong Lu, Xuemei Peng, Jinhui Ye, Shihui Ma, Jiali Sun, Lu Wang, Linping Hu, Lin Wang, Xiaofan Zhu, Hui Cheng, Zimin Sun, Junren Chen, Fang Dong, Yingchi Zhang, Tao Cheng</p> </div> </div> <a class='close-reveal-modal'>×</a> </div> <hr> <div class='row'> <div class='small-12 medium-9 columns'> <div class='row'> <div class='small-12 columns'> <h5 class='article-title' style='display: inline-block;'><a href="/articles/view/189801">Megakaryocytes transfer mitochondria to bone marrow mesenchymal stromal cells to lower platelet activation</a></h5> </div> </div> <div class='row'> <div class='small-12 columns article-metadata'> <a class="show-for-small" href="/articles/view/189801">Chengjie Gao, … , Karina Yazdanbakhsh, Avital Mendelson</a> <a class='hide-for-small show-more' data-reveal-id='article45819-more' href='#'> <div class='article-authors'> Chengjie Gao, … , Karina Yazdanbakhsh, Avital Mendelson </div> </a> <span class='article-published-at'> Published February 27, 2025 </span> <br/>Citation Information: <i>J Clin Invest.</i> 2025. <a href="https://doi.org/10.1172/JCI189801">https://doi.org/10.1172/JCI189801</a>. <div class='row'> <div class='small-12 columns article-links'> View: <a href="/articles/view/189801">Text</a> | <a href="/articles/view/189801/pdf">PDF</a> </div> </div> <div class='row'> <div class='small-12 columns'> <span class='altmetric-embed' data-badge-popover='bottom' data-badge-type='2' data-doi='10.1172/JCI189801' data-hide-no-mentions='true'></span> </div> </div> </div> </div> </div> </div> <div class='reveal-modal xlarge' data-reveal='' id='article45819-more'> <div class='row'> <div class='small-12 columns'> <h4><a href="/articles/view/189801">Megakaryocytes transfer mitochondria to bone marrow mesenchymal stromal cells to lower platelet activation</a></h4> </div> <div class='small-12 columns'> <ul class='button-group'> <li><a class="button tiny" href="/articles/view/189801">Text</a></li> <li><a class="button tiny" href="/articles/view/189801/pdf">PDF</a></li> </ul> </div> <div class='small-12 columns'> <h5>Abstract</h5> </div> <div class='small-12 columns'> <p>Newly produced platelets acquire a low activation state but whether the megakaryocyte plays a role in this outcome has not been fully uncovered. Mesenchymal stem cells (MSCs) were previously shown to promote platelet production and lower platelet activation. We found healthy megakaryocytes transfer mitochondria to MSCs mediated by Connexin 43 (Cx43) gap junctions on MSCs, which leads to platelets at a low energetic state with increased LYN activation, characteristic of resting platelets. On the contrary, MSCs have a limited ability to transfer mitochondria to megakaryocytes. Sickle cell disease (SCD) is characterized by hemolytic anemia and results in heightened platelet activation, contributing to numerous disease complications. Platelets in SCD mice and human patient samples had a heightened energetic state with increased glycolysis. MSC exposure to heme in SCD led to decreased Cx43 expression and a reduced ability to uptake mitochondria from megakaryocytes. This prevented LYN activation in platelets and contributed to increased platelet activation at steady state. Altogether, our findings demonstrate an effect of hemolysis in the microenvironment leading to increased platelet activation in SCD. These findings have the potential to inspire new therapeutic targets to relieve thrombosis-related complications of SCD and other hemolytic conditions.</p> </div> <div class='small-12 columns'> <h5>Authors</h5> </div> <div class='small-12 columns'> <p>Chengjie Gao, Yitian Dai, Paul A. Spezza, Paul Boasiako, Alice Tang, Giselle Rasquinha, Hui zhong, Bojing Shao, Yunfeng Liu, Patricia A. Shi, Cheryl A. Lobo, Xiuli An, Anqi Guo, William B. Mitchell, Deepa Manwani, Karina Yazdanbakhsh, Avital Mendelson</p> </div> </div> <a class='close-reveal-modal'>×</a> </div> <hr> <div class='row'> <div class='small-12 columns'> <div class='row'> <div class='small-12 columns'> <h5 class='article-title' style='display: inline-block;'><a href="/articles/view/187778">Reduced EIF6 dosage attenuates TP53 activation in models of Shwachman-Diamond syndrome</a></h5> </div> </div> <div class='row'> <div class='small-12 columns article-metadata'> <a class="show-for-small" href="/articles/view/187778">Usua Oyarbide, … , Eliezer Calo, Seth J. Corey</a> <a class='hide-for-small show-more' data-reveal-id='article45796-more' href='#'> <div class='article-authors'> Usua Oyarbide, … , Eliezer Calo, Seth J. Corey </div> </a> <span class='article-published-at'> Published February 18, 2025 </span> <br/>Citation Information: <i>J Clin Invest.</i> 2025. <a href="https://doi.org/10.1172/JCI187778">https://doi.org/10.1172/JCI187778</a>. <div class='row'> <div class='small-12 columns article-links'> View: <a href="/articles/view/187778">Text</a> | <a href="/articles/view/187778/pdf">PDF</a> </div> </div> <div class='row'> <div class='small-12 columns'> <span class='altmetric-embed' data-badge-popover='bottom' data-badge-type='2' data-doi='10.1172/JCI187778' data-hide-no-mentions='true'></span> </div> </div> </div> </div> </div> </div> <div class='reveal-modal xlarge' data-reveal='' id='article45796-more'> <div class='row'> <div class='small-12 columns'> <h4><a href="/articles/view/187778">Reduced EIF6 dosage attenuates TP53 activation in models of Shwachman-Diamond syndrome</a></h4> </div> <div class='small-12 columns'> <ul class='button-group'> <li><a class="button tiny" href="/articles/view/187778">Text</a></li> <li><a class="button tiny" href="/articles/view/187778/pdf">PDF</a></li> </ul> </div> <div class='small-12 columns'> <h5>Abstract</h5> </div> <div class='small-12 columns'> <p>Shwachman-Diamond syndrome (SDS) is characterized by neutropenia, exocrine pancreatic insufficiency, and bony abnormalities with an increased risk of myeloid neoplasia. Almost all cases of SDS result from biallelic mutations in SBDS. SBDS interacts with EFL1 to displace EIF6 from the 60S ribosomal subunit. Released EIF6 permits the assembly of ribosomal large and small subunits in the cytoplasm. Decreased EIF6 levels due to haploinsufficiency or missense mutations which lead to decreased protein expression may provide a somatic genetic rescue and anti-leukemic effects. We observed accumulation of EIF6 protein in sbds knockout (KO) zebrafish models, confirmed in patient-derived tissues, and correlated with changes in ribosome proteins and TP53 pathways. The mechanism of action for this adaptive response is unknown. To address this, we generated an eif6 zebrafish KO line which do not survive past 10 days post fertilization. We also created two mutants with low Eif6 expression, 5-25% of the wildtype levels, that can survive until adulthood. We bred them with sbds-null strains and analyzed their phenotype and biochemical properties. Low Eif6 levels reduced Tp53 pathway activation but did not rescue neutropenia in Sbds-deficient zebrafish. Further studies elucidating the interplay between SBDS, EIF6, TP53, and cellular stress responses offer promising insights into SDS pathogenesis, somatic genetic rescue, and therapeutic strategies.</p> </div> <div class='small-12 columns'> <h5>Authors</h5> </div> <div class='small-12 columns'> <p>Usua Oyarbide, Valentino Bezzerri, Morgan Staton, Christian Boni, Arish Shah, Marco Cipolli, Eliezer Calo, Seth J. Corey</p> </div> </div> <a class='close-reveal-modal'>×</a> </div> <hr> <div class='row'> <div class='small-12 medium-9 columns'> <div class='row'> <div class='small-12 columns'> <h5 class='article-title' style='display: inline-block;'><a href="/articles/view/184743"><i>HoxBlinc</i> lncRNA reprograms CTCF-independent TADs to drive leukemic transcription and HSC dysregulation in NUP98-rearranged leukemia</a></h5> </div> </div> <div class='row'> <div class='small-12 columns article-metadata'> <a class="show-for-small" href="/articles/view/184743">Karina Hamamoto, … , Mingjiang Xu, Suming Huang</a> <a class='hide-for-small show-more' data-reveal-id='article45731-more' href='#'> <div class='article-authors'> Karina Hamamoto, … , Mingjiang Xu, Suming Huang </div> </a> <span class='article-published-at'> Published January 30, 2025 </span> <br/>Citation Information: <i>J Clin Invest.</i> 2025. <a href="https://doi.org/10.1172/JCI184743">https://doi.org/10.1172/JCI184743</a>. <div class='row'> <div class='small-12 columns article-links'> View: <a href="/articles/view/184743">Text</a> | <a href="/articles/view/184743/pdf">PDF</a> </div> </div> <div class='row'> <div class='small-12 columns'> <span class='altmetric-embed' data-badge-popover='bottom' data-badge-type='2' data-doi='10.1172/JCI184743' data-hide-no-mentions='true'></span> </div> </div> </div> </div> </div> </div> <div class='reveal-modal xlarge' data-reveal='' id='article45731-more'> <div class='row'> <div class='small-12 columns'> <h4><a href="/articles/view/184743"><i>HoxBlinc</i> lncRNA reprograms CTCF-independent TADs to drive leukemic transcription and HSC dysregulation in NUP98-rearranged leukemia</a></h4> </div> <div class='small-12 columns'> <ul class='button-group'> <li><a class="button tiny" href="/articles/view/184743">Text</a></li> <li><a class="button tiny" href="/articles/view/184743/pdf">PDF</a></li> </ul> </div> <div class='small-12 columns'> <h5>Abstract</h5> </div> <div class='small-12 columns'> <p>Although nucleoporin 98 (NUP98) fusion oncogenes often drive aggressive pediatric leukemia by altering chromatin structure and expression of HOX genes, underlying mechanisms remain elusive. Here, we report that a Hoxb-associated lncRNA HoxBlinc was aberrantly activated in NUP98-PHF23 fusion-driven leukemias. HoxBlinc chromatin occupancies led to elevated MLL1 recruitment and aberrant homeotic topologically associated domains (TADs) that enhanced chromatin accessibilities and activated homeotic/hematopoietic oncogenes. HoxBlinc-depletion in NUP98 fusion-driven leukemia impaired HoxBlinc binding, TAD integrity, MLL1 recruitment, and MLL1-driven chromatin signature within HoxBlinc-defined TADs in a CTCF-independent manner, leading to inhibited homeotic/leukemic oncogenes that mitigated NUP98 fusion-driven leukemogenesis in xenografted mouse models. Mechanistically, HoxBlinc overexpression in mouse hematopoietic compartment induced leukemias resembling those in NUP98-PHF23 knock-in mice via enhancing HoxBlinc chromatin binding, TAD formation, and Hox gene aberration leading to expansion of hematopoietic stem and progenitor cell (HSPC) and myeloid/lymphoid subpopulations. Thus, our studies reveal a CTCF-independent role of HoxBlinc in leukemic TAD organization and oncogene regulatory networks.</p> </div> <div class='small-12 columns'> <h5>Authors</h5> </div> <div class='small-12 columns'> <p>Karina Hamamoto, Ganqian Zhu, Qian Lai, Julia Lesperance, Huacheng Luo, Ying Li, Nupur Nigam, Arati Sharma, Feng-Chun Yang, David Claxton, Yi Qiu, Peter D. Aplan, Mingjiang Xu, Suming Huang</p> </div> </div> <a class='close-reveal-modal'>×</a> </div> <hr> <div class='row'> <div class='small-12 medium-9 columns'> <div class='row'> <div class='small-12 columns'> <h5 class='article-title' style='display: inline-block;'><a href="/articles/view/180981">Human Oncostatin M deficiency underlies an inherited severe bone marrow failure syndrome</a></h5> </div> </div> <div class='row'> <div class='small-12 columns article-metadata'> <a class="show-for-small" href="/articles/view/180981">Alexandrine Garrigue, … , Chantal Lagresle-Peyrou, Patrick Revy</a> <a class='hide-for-small show-more' data-reveal-id='article45712-more' href='#'> <div class='article-authors'> Alexandrine Garrigue, … , Chantal Lagresle-Peyrou, Patrick Revy </div> </a> <span class='article-published-at'> Published January 23, 2025 </span> <br/>Citation Information: <i>J Clin Invest.</i> 2025. <a href="https://doi.org/10.1172/JCI180981">https://doi.org/10.1172/JCI180981</a>. <div class='row'> <div class='small-12 columns article-links'> View: <a href="/articles/view/180981">Text</a> | <a href="/articles/view/180981/pdf">PDF</a> </div> </div> <div class='row'> <div class='small-12 columns'> <span class='altmetric-embed' data-badge-popover='bottom' data-badge-type='2' data-doi='10.1172/JCI180981' data-hide-no-mentions='true'></span> </div> </div> </div> </div> </div> </div> <div class='reveal-modal xlarge' data-reveal='' id='article45712-more'> <div class='row'> <div class='small-12 columns'> <h4><a href="/articles/view/180981">Human Oncostatin M deficiency underlies an inherited severe bone marrow failure syndrome</a></h4> </div> <div class='small-12 columns'> <ul class='button-group'> <li><a class="button tiny" href="/articles/view/180981">Text</a></li> <li><a class="button tiny" href="/articles/view/180981/pdf">PDF</a></li> </ul> </div> <div class='small-12 columns'> <h5>Abstract</h5> </div> <div class='small-12 columns'> <p>Oncostatin M (OSM) is a cytokine with the unique ability to interact with both the OSM receptor (OSMR) and the leukemia inhibitory factor receptor (LIFR). On the other hand, OSMR interacts with IL31RA to form the interleukin-31 receptor. This intricate network of cytokines and receptors makes it difficult to understand the specific function of OSM. While monoallelic loss-of-function (LoF) mutations in OSMR underlie autosomal dominant familial primary localized cutaneous amyloidosis, the in vivo consequences of human OSM deficiency have never been reported so far. Here, we identified three young individuals from a consanguineous family presenting with inherited severe bone marrow failure syndromes (IBMFS) characterized by profound anemia, thrombocytopenia, and neutropenia. Genetic analysis revealed a homozygous one base-pair insertion in the sequence of OSM associated with the disease. Structural and functional analyses showed that this variant causes a frameshift that replaces the C-terminal portion of OSM, which contains the FxxK motif that interacts with both OSMR and LIFR, with a neopeptide. The lack of detection and signaling of the mutant OSM suggests a LoF mutation. Analysis of zebrafish models further supported the role of the OSM/OSMR signaling in erythroid progenitor proliferation and neutrophil differentiation. Our study provides the previously uncharacterized and unexpectedly limited in vivo consequence of OSM deficiency in humans.</p> </div> <div class='small-12 columns'> <h5>Authors</h5> </div> <div class='small-12 columns'> <p>Alexandrine Garrigue, Laëtitia Kermasson, Sandrine Susini, Ingrid Fert, Christopher B. Mahony, Hanem Sadek, Sonia Luce, Myriam Chouteau, Marina Cavazzana, Emmanuelle Six, Marie-Caroline Le Bousse-Kerdilès, Adrienne Anginot, Jean-Baptiste Souraud, Valérie Cormier-Daire, Marjolaine Willems, Anne Sirvent, Jennifer Russello, Isabelle Callebaut, Isabelle André, Julien Y. Bertrand, Chantal Lagresle-Peyrou, Patrick Revy</p> </div> </div> <a class='close-reveal-modal'>×</a> </div> <hr> <div class='row'> <div class='small-12 medium-9 columns'> <div class='row'> <div class='small-12 columns'> <h5 class='article-title' style='display: inline-block;'><a href="/articles/view/184069">Loss of <i>Cpt1a</i> results in elevated glucose-fueled mitochondrial oxidative phosphorylation and defective hematopoietic stem cells</a></h5> </div> </div> <div class='row'> <div class='small-12 columns article-metadata'> <a class="show-for-small" href="/articles/view/184069">Jue Li, … , Paul R. Andreassen, Gang Huang</a> <a class='hide-for-small show-more' data-reveal-id='article45674-more' href='#'> <div class='article-authors'> Jue Li, … , Paul R. Andreassen, Gang Huang </div> </a> <span class='article-published-at'> Published January 9, 2025 </span> <br/>Citation Information: <i>J Clin Invest.</i> 2025. <a href="https://doi.org/10.1172/JCI184069">https://doi.org/10.1172/JCI184069</a>. <div class='row'> <div class='small-12 columns article-links'> View: <a href="/articles/view/184069">Text</a> | <a href="/articles/view/184069/pdf">PDF</a> </div> </div> <div class='row'> <div class='small-12 columns'> <span class='altmetric-embed' data-badge-popover='bottom' data-badge-type='2' data-doi='10.1172/JCI184069' data-hide-no-mentions='true'></span> </div> </div> </div> </div> </div> </div> <div class='reveal-modal xlarge' data-reveal='' id='article45674-more'> <div class='row'> <div class='small-12 columns'> <h4><a href="/articles/view/184069">Loss of <i>Cpt1a</i> results in elevated glucose-fueled mitochondrial oxidative phosphorylation and defective hematopoietic stem cells</a></h4> </div> <div class='small-12 columns'> <ul class='button-group'> <li><a class="button tiny" href="/articles/view/184069">Text</a></li> <li><a class="button tiny" href="/articles/view/184069/pdf">PDF</a></li> </ul> </div> <div class='small-12 columns'> <h5>Abstract</h5> </div> <div class='small-12 columns'> <p>Hematopoietic stem cells (HSCs) rely on self-renewal to sustain stem cell potential and undergo differentiation to generate mature blood cells. Mitochondrial fatty acid β-oxidation (FAO) is essential for HSC maintenance. However, the role of Carnitine palmitoyl transferase 1a (CPT1A), a key enzyme in FAO, remains unclear in HSCs. Using a Cpt1a hematopoietic specific conditional knock-out (Cpt1aΔ/Δ) mouse model, we found that loss of Cpt1a leads to HSC defects, including loss of HSC quiescence and self-renewal, and increased differentiation. Mechanistically, we find that loss of Cpt1a results in elevated levels of mitochondrial respiratory chain complex components and their activities, as well as increased ATP production, and accumulation of mitochondrial reactive oxygen species (mitoROS) in HSCs. Taken together, this suggests hyperactivation of mitochondria and metabolic rewiring via upregulated glucose-fueled oxidative phosphorylation (OXPHOS). In summary, our findings demonstrate a novel role for Cpt1a in HSC maintenance and provide insight into the regulation of mitochondrial metabolism via control of the balance between FAO and glucose-fueled OXPHOS.</p> </div> <div class='small-12 columns'> <h5>Authors</h5> </div> <div class='small-12 columns'> <p>Jue Li, Jie Bai, Vincent T. Pham, Michihiro Hashimoto, Maiko Sezaki, Qili Shi, Qiushi Jin, Chenhui He, Amy Armstrong, Tian Li, Mingzhe Pan, Shujun Liu, Yu Luan, Hui Zeng, Paul R. Andreassen, Gang Huang</p> </div> </div> <a class='close-reveal-modal'>×</a> </div> </div> </div> <div class='row'> <div class='small-12 columns'> <div role="navigation" aria-label="Pagination" class="pagination-centered" previous_label="<--" next_label="-->"><ul class="pagination"><li class="arrow unavailable"><a class="arrow unavailable">← Previous</a></li> <li class="current"><a class="current">1</a></li> <li><a rel="next" href="/tags/23?content=articles&page=2">2</a></li> <li><a href="/tags/23?content=articles&page=3">3</a></li> <li class="unavailable"><a>…</a></li> <li><a href="/tags/23?content=articles&page=36">36</a></li> <li><a href="/tags/23?content=articles&page=37">37</a></li> <li class="arrow"><a class="arrow" rel="next" href="/tags/23?content=articles&page=2">Next →</a></li></ul></div> </div> </div> </div> <div class='content ' id='posts'> <div class='row'> <div class='small-12 columns'> </div> </div> <div class='row'> <div class='small-12 columns'> <div class='row'> <div class='small-12 columns'> <h5><a href="/posts/343">Teasing apart active site contributions</a></h5> </div> </div> <div class='row'> <div class='large-8 columns'> <div class='row'> <div class='small-12 columns'> <a href="/posts/343"><div class='article-metadata'> Junsong Zhou, Yi Wu, and colleagues reveal that the C-terminal redox-active site of protein disulfide isomerase is essential for coagulation… <br> <span class='published-at smaller'> Published November 3, 2015 </span> </div> </a></div> <div class='small-12 columns'> <a href="/tags/5"><span style='margin-right: 6px' class="label-article-type">Scientific Show Stopper</span></a><a href="/tags/23"><span style='margin-right: 6px' class="label-specialty">Hematology</span></a> </div> </div> </div> <div class='large-4 columns'> <a href="/posts/343"><img width="100" src="//dm5migu4zj3pb.cloudfront.net/posts/file/405/thumb_Untitled.jpg" /></a> </div> </div> <hr> <div class='row'> <div class='small-12 columns'> <h5><a href="/posts/322">PRMT5 keeps hematopoietic cells renewing </a></h5> </div> </div> <div class='row'> <div class='large-8 columns'> <div class='row'> <div class='small-12 columns'> <a href="/posts/322"><div class='article-metadata'> Fan Liu and colleagues demonstrate that the type II arginine methyltransferase PRMT5 is an important regulator of hematopoietic cell maintenance… <br> <span class='published-at smaller'> Published August 10, 2015 </span> </div> </a></div> <div class='small-12 columns'> <a href="/tags/5"><span style='margin-right: 6px' class="label-article-type">Scientific Show Stopper</span></a><a href="/tags/23"><span style='margin-right: 6px' class="label-specialty">Hematology</span></a> </div> </div> </div> <div class='large-4 columns'> <a href="/posts/322"><img width="100" src="//dm5migu4zj3pb.cloudfront.net/posts/file/388/thumb_SSS1749.jpg" /></a> </div> </div> <hr> <div class='row'> <div class='small-12 columns'> <h5><a href="/posts/289">Moving toward donor-independent platelets </a></h5> </div> </div> <div class='row'> <div class='large-8 columns'> <div class='row'> <div class='small-12 columns'> <a href="/posts/289"><div class='article-metadata'> Ji-Yoon Noh and colleagues use a fine-tuned approach to generate platelet-producing megakaryocyte-erythroid progenitors from murine embryonic stem cells… <br> <span class='published-at smaller'> Published May 11, 2015 </span> </div> </a></div> <div class='small-12 columns'> <a href="/tags/5"><span style='margin-right: 6px' class="label-article-type">Scientific Show Stopper</span></a><a href="/tags/23"><span style='margin-right: 6px' class="label-specialty">Hematology</span></a> </div> </div> </div> <div class='large-4 columns'> <a href="/posts/289"><img width="100" src="//dm5migu4zj3pb.cloudfront.net/posts/file/366/thumb_77670SSS.jpg" /></a> </div> </div> <hr> <div class='row'> <div class='small-12 columns'> <h5><a href="/posts/265">A family affair</a></h5> </div> </div> <div class='row'> <div class='large-8 columns'> <div class='row'> <div class='small-12 columns'> <a href="/posts/265"><div class='article-metadata'> Vijay Sankaran and colleagues demonstrate that a mutation in the X-chromosomal gene encoding aminolevulinic acid synthase underlies disease in a family with macrocytic anemia… <br> <span class='published-at smaller'> Published February 23, 2015 </span> </div> </a></div> <div class='small-12 columns'> <a href="/tags/5"><span style='margin-right: 6px' class="label-article-type">Scientific Show Stopper</span></a><a href="/tags/23"><span style='margin-right: 6px' class="label-specialty">Hematology</span></a> </div> </div> </div> <div class='large-4 columns'> <a href="/posts/265"><img width="100" src="//dm5migu4zj3pb.cloudfront.net/posts/file/349/thumb_78619_April_A_.jpg" /></a> </div> </div> </div> </div> <div class='row'> <div class='small-12 columns'> </div> </div> </div> </div> </div> <div class='large-2 medium-3 hide-for-small columns' style='padding: 12px 9px 12px 9px;'> <div style='width:100%; text-align: center;'> <div id='jci-interior-skyscraper-right-col'> <span class='secondary label'>Advertisement</span> <script> try { googletag.cmd.push(function () { googletag.display('jci-interior-skyscraper-right-col'); }); } catch(e){} </script> </div> </div> </div> </div> </div> </div> </div> </div> <div id='footer'> <div class='row panel-padding'> <div class='small-6 columns'> <div id='social-links'> <a onclick="trackOutboundLink('/twitter?ref=footer');" href="/twitter"><img title="Twitter" src="/assets/social/twitter-round-blue-78025a92064e3594e44e4ccf5446aefeafba696cd3c8e4a7be1850c7c9f62aba.png" /></a> <a onclick="trackOutboundLink('/facebook?ref=footer');" href="/facebook"><img title="Facebook" src="/assets/social/facebook-round-blue-2787910d46dcbdbee4bd34030fee044e5a77cfda2221af9191d437b2f5fadeb1.png" /></a> <a href="/rss"><img title="RSS" src="/assets/social/rss-round-color-6f5fa8e93dc066ee4923a36ba6a7cb97d53c5b77de78a2c7b2a721adc603f342.png" /></a> </div> <br> Copyright © 2025 <a href="http://www.the-asci.org">American Society for Clinical Investigation</a> <br> ISSN: 0021-9738 (print), 1558-8238 (online) </div> <div class='small-6 columns'> <div class='row'> <div class='small-12 columns'> <h4 class='notices-signup'>Sign up for email alerts</h4> <form action='https://notices.jci.org/subscribers/new' method='get'> <input name='utm_source' type='hidden' value='jci'> <input name='utm_medium' type='hidden' value='web'> <input name='utm_campaign' type='hidden' value='email_signup'> <input name='utm_content' type='hidden' value='footer'> <div class='row'> <div class='small-12 medium-9 columns'> <input name='email_address' placeholder='Your email address' required type='text'> </div> <div class='small-12 medium-3 columns'> <input class='button tiny orange' type='submit' value='Sign up'> </div> </div> </form> </div> </div> </div> </div> </div> </div> <!--[if gt IE 8]><!--><script src="/assets/application-27f18b5fe3b7302e5b3e3c6d7cf9bb3f54759fad32679209f5aef429b89f3aef.js"></script><!--<![endif]--> <!--[if (lt IE 9)]> <script src="/assets/ie8/application-8c033a599105d459c98ea08bf9ef15e25d3fed26e913e4a8de4a5101d04025fd.js"></script> <![endif]--> <script src="//s7.addthis.com/js/300/addthis_widget.js#pubid=ra-4d8389db4b0bb592" async="async"></script> <script src="//d1bxh8uas1mnw7.cloudfront.net/assets/embed.js" async="async"></script> <!--[if lt IE 9]> <script src="/assets/ie8/ie8-1af1fadfa0df4a7f5fcf8fc444742398e0579e1d8aede97903d74bad8167eb5f.js"></script> <![endif]--> </body> </html>