CINXE.COM

Search results for: polychlorinated biphenyl

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: polychlorinated biphenyl</title> <meta name="description" content="Search results for: polychlorinated biphenyl"> <meta name="keywords" content="polychlorinated biphenyl"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="polychlorinated biphenyl" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="polychlorinated biphenyl"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 33</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: polychlorinated biphenyl</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> Spatial and Seasonal Distribution of Persistent Organic Pollutant (Polychlorinated Biphenyl) Along the Course of Buffalo River, Eastern Cape Province, South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulrazaq%20Yahaya">Abdulrazaq Yahaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Omobola%20Okoh"> Omobola Okoh</a>, <a href="https://publications.waset.org/abstracts/search?q=Anthony%20Okoh"> Anthony Okoh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polychlorinated biphenyls (PCBs) are generated from short emission or leakage from capacitors and electrical transformers, industrial chemicals wastewater discharge and careless disposal of wastes. They are toxic, semi-volatile compounds which can persist in the environment, hence classified as persistent organic pollutants. Their presence in the environmental matrices has become a global concern. In this study, we assessed the concentrations and distribution patterns of 19 polychlorinated biphenyls congeners (PCB 1, 5, 18, 31, 44, 52, 66, 87, 101, 110, 138, 141, 151, 153, 170, 180, 183, 187, and 206) at six sampling points in water along the course of Buffalo River, Eastern Cape, South Africa. Solvent extraction followed by sulphuric acid, potassium permanganate and silica gel cleanup were used in this study. The analysis was done with gas chromatography electron capture detector (GC-ECD). The results of the analysis of all the 19 PCBs congeners ranged from not detectable to 0.52 ppb and 2.5 ppb during summer and autumn periods respectively. These values are generally higher than the World Health Organization (WHO) maximum permissible limit. Their presence in the waterbody suggests an increase in anthropogenic activities over the seasons. In view of their volatility, the compounds are transportable over long distances by air currents away from their point of origin putting the health of the communities at risk, thus suggesting the need for strict regulations on the use as well as save disposal of this group of compounds in the communities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organic%20pollutants" title="organic pollutants">organic pollutants</a>, <a href="https://publications.waset.org/abstracts/search?q=polychlorinated%20biphenyls" title=" polychlorinated biphenyls"> polychlorinated biphenyls</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=solvent%20extraction" title=" solvent extraction"> solvent extraction</a> </p> <a href="https://publications.waset.org/abstracts/56910/spatial-and-seasonal-distribution-of-persistent-organic-pollutant-polychlorinated-biphenyl-along-the-course-of-buffalo-river-eastern-cape-province-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56910.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> Degradation of Commercial Polychlorinated Biphenyl Mixture by Naturally Occurring Facultative Microorganisms via Anaerobic Dechlorination and Aerobic Oxidation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20M.%20G.%20Pathiraja">P. M. G. Pathiraja</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Egodawatta"> P. Egodawatta</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Goonetilleke"> A. Goonetilleke</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20S.%20J.%20Te%27o"> V. S. J. Te&#039;o</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The production and use of Polychlorinated biphenyls (PCBs), a group of synthetic halogenated hydrocarbons have been restricted worldwide due to its toxicity and categorized as one of the twelve priority persistent organic pollutants (POP) by the Stockholm Convention. Low reactivity and high chemical stability of PCBs have made them highly persistent in the environment and bio-concentration and bio-magnification along the food chain contribute to multiple health impacts in humans and animals. Remediating environments contaminated with PCBs is a challenging task for decades. Use of microorganisms for remediation of PCB contaminated soils and sediments have been widely investigated due to the potential of breakdown these complex contaminants with minimum environmental impacts. To achieve an effective bioremediation of polychlorinated biphenyls (PCBs) contaminated environments, microbes were sourced from environmental samples and tested for their ability to hydrolyze PCBs under different conditions. Comparison of PCB degradation efficiencies of four naturally occurring facultative bacterial cultures isolated through selective enrichment under aerobic and anaerobic conditions were simultaneously investigated in minimal salt medium using 50 mg/L Aroclor 1260, a commonly used commercial PCB mixture as the sole source of carbon. The results of a six-week study demonstrated that all the tested facultative Achromobacter, Ochrobactrum, Lysinibacillus and Pseudomonas strains are capable of degrading PCBs under both anaerobic and aerobic conditions while assisting hydrophobic PCBs to make solubilize in the aqueous minimal medium. Overall, the results suggest that some facultative bacteria are capable of effective in degrading PCBs under anaerobic conditions through reductive dechlorination and under aerobic conditions through oxidation. Therefore, use of suitable facultative microorganisms under combined anaerobic-aerobic conditions and combination of such strains capable of solubilization and breakdown of PCBs has high potential in achieving higher PCB removal rates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title="bioremediation">bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=combined%20anaerobic-aerobic%20degradation" title=" combined anaerobic-aerobic degradation"> combined anaerobic-aerobic degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=facultative%20microorganisms" title=" facultative microorganisms"> facultative microorganisms</a>, <a href="https://publications.waset.org/abstracts/search?q=polychlorinated%20biphenyls" title=" polychlorinated biphenyls"> polychlorinated biphenyls</a> </p> <a href="https://publications.waset.org/abstracts/78082/degradation-of-commercial-polychlorinated-biphenyl-mixture-by-naturally-occurring-facultative-microorganisms-via-anaerobic-dechlorination-and-aerobic-oxidation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78082.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> Bioremediation of Polychlorinated Biphenyl (PCBS) Contaminated Soils: A Case Study from Rietvlei Farm at Borehole No. 11, Limpopo Province, South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Sengani">D. Sengani</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Potgieter"> N. Potgieter</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20E.%20L.%20Mojapelo"> P. E. L. Mojapelo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Three bacteria species which comprise of Gram negative and Gram positive microorganisms were isolated and identified on the basis of morpho-cultural study, catalase tests, oxidase tests and biochemical characteristics were found belonging to different genera including Burkholderia cepacia, Pasteurella pneumotropica and Enterococcus faecalis. The main objective of this study was to isolate and identify PCB degrading bacteria from PCB contaminated soils and test them for their degradation ability of PCBs in natural habitat conditions. The results indicated an overall decrease of PCB concentration level with the gradient average ranging from 1.5 to 1.8 respectively. Enterococcus faecalis removed as much as 32% of PCBs in the contaminated soil samples. Whereas Pasteurella pneumotropica could remove 24% of PCBs, Burkholderia cepacia 21% of PCBs and the mixed culture removed 23%. Data showed that the three bacterial strains could tolerate high concentration of PCBs. The results provided the evidence that naturally occurring bacteria in soil contaminated with PCBs have the potential to degrade PCBs. Statistical analysis showed that there was a significant positive correlation between bacteria growth and treatment with a coefficient of (r) =0.1459 and p value < 0.001. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacteria" title="bacteria">bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=bioaccumulation" title=" bioaccumulation"> bioaccumulation</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradation" title=" biodegradation"> biodegradation</a>, <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title=" bioremediation"> bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=polychlorinated%20biphenyls" title=" polychlorinated biphenyls"> polychlorinated biphenyls</a> </p> <a href="https://publications.waset.org/abstracts/38598/bioremediation-of-polychlorinated-biphenyl-pcbs-contaminated-soils-a-case-study-from-rietvlei-farm-at-borehole-no-11-limpopo-province-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38598.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Hydro-Mechanical Characterization of PolyChlorinated Biphenyls Polluted Sediments in Interaction with Geomaterials for Landfilling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hadi%20Chahal">Hadi Chahal</a>, <a href="https://publications.waset.org/abstracts/search?q=Irini%20Djeran-Maigre"> Irini Djeran-Maigre</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper focuses on the hydro-mechanical behavior of polychlorinated biphenyl (PCB) polluted sediments when stored in landfills and the interaction between PCBs and geosynthetic clay liners (GCL) with respect to hydraulic performance of the liner and the overall performance and stability of landfills. A European decree, adopted in the French regulation forbids the reintroducing of contaminated dredged sediments containing more than 0,64mg/kg Σ 7 PCBs to rivers. At these concentrations, sediments are considered hazardous and a remediation process must be adopted to prevent the release of PCBs into the environment. Dredging and landfilling polluted sediments is considered an eco-environmental remediation solution. French regulations authorize the storage of PCBs contaminated components with less than 50mg/kg in municipal solid waste facilities. Contaminant migration via leachate may be possible. The interactions between PCBs contaminated sediments and the GCL barrier present in the bottom of a landfill for security confinement are not known. Moreover, the hydro-mechanical behavior of stored sediments may affect the performance and the stability of the landfill. In this article, hydro-mechanical characterization of the polluted sediment is presented. This characterization led to predict the behavior of the sediment at the storage site. Chemical testing showed that the concentration of PCBs in sediment samples is between 1.7 and 2,0 mg/kg. Physical characterization showed that the sediment is organic silty sand soil (%Silt=65, %Sand=27, %OM=8) characterized by a high plasticity index (Ip=37%). Permeability tests using permeameter and filter press showed that sediment permeability is in the order of 10-9 m/s. Compressibility tests showed that the sediment is a very compressible soil with Cc=0,53 and Cα =0,0086. In addition, effects of PCB on the swelling behavior of bentonite were studied and the hydraulic performance of the GCL in interaction with PCBs was examined. Swelling tests showed that PCBs don’t affect the swelling behavior of bentonite. Permeability tests were conducted on a 1.0 m pilot scale experiment, simulating a storage facility. PCBs contaminated sediments were directly placed over a passive barrier containing GCL to study the influence of the direct contact of polluted sediment leachate with the GCL. An automatic water system has been designed to simulate precipitation. Effluent quantity and quality have been examined. The sediment settlements and the water level in the sediment have been monitored. The results showed that desiccation affected the behavior of the sediment in the pilot test and that laboratory tests alone are not sufficient to predict the behavior of the sediment in landfill facility. Furthermore, the concentration of PCB in the sediment leachate was very low ( < 0,013 µg/l) and that the permeability of the GCL was affected by other components present in the sediment leachate. Desiccation and cracks were the main parameters that affected the hydro-mechanical behavior of the sediment in the pilot test. In order to reduce these infects, the polluted sediment should be stored at a water content inferior to its shrinkage limit (w=39%). We also propose to conduct other pilot tests with the maximum concentration of PCBs allowed in municipal solid waste facility of 50 mg/kg. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geosynthetic%20clay%20liners" title="geosynthetic clay liners">geosynthetic clay liners</a>, <a href="https://publications.waset.org/abstracts/search?q=landfill" title=" landfill"> landfill</a>, <a href="https://publications.waset.org/abstracts/search?q=polychlorinated%20biphenyl" title=" polychlorinated biphenyl"> polychlorinated biphenyl</a>, <a href="https://publications.waset.org/abstracts/search?q=polluted%20dredged%20materials" title=" polluted dredged materials"> polluted dredged materials</a> </p> <a href="https://publications.waset.org/abstracts/80505/hydro-mechanical-characterization-of-polychlorinated-biphenyls-polluted-sediments-in-interaction-with-geomaterials-for-landfilling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80505.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> Toxic Chemicals from Industries into Pacific Biota. Investigation of Polychlorinated Biphenyls (PCBs), Dioxins (PCDD), Furans (PCDF) and Polybrominated Diphenyls (PBDE No. 47) in Tuna and Shellfish in Kiribati, Solomon Islands and the Fiji Islands</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Waisea%20Votadroka">Waisea Votadroka</a>, <a href="https://publications.waset.org/abstracts/search?q=Bert%20Van%20Bavel"> Bert Van Bavel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The most commonly consumed shellfish species produced in the Pacific, shellfish and tuna fish, were investigated for the occurrence of a range of brominated and chlorinated contaminants in order to establish current levels. Polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were analysed in the muscle of tuna species Katsuwonis pelamis, yellow fin tuna, and shellfish species from the Fiji Islands. The investigation of polychlorinated biphenyls (PCBs), furans (PCDFs) and polybrominated diphenylethers (PBDE No.47) in tuna and shellfish in Kiribati, Solomon Islands and Fiji is necessary due to the lack of research data in the Pacific region. The health risks involved in the consumption of marine foods laced with toxic organo-chlorinated and brominated compounds makes in the analyses of these compounds in marine foods important particularly when Pacific communities rely on these resources as their main diet. The samples were homogenized in a motor with anhydrous sodium sulphate in the ratio of 1:3 (muscle) and 1:4-1:5 (roe and butter). The tuna and shellfish samples were homogenized and freeze dried at the sampling location at the Institute of Applied Science, Fiji. All samples were stored in amber glss jars at -18 ° C until extraction at Orebro University. PCDD/Fs, PCBs and pesticides were all analysed using an Autospec Ultina HRGC/HRMS operating at 10,000 resolutions with EI ionization at 35 eV. All the measurements were performed in the selective ion recording mode (SIR), monitoring the two most abundant ions of the molecular cluster (PCDD/Fs and PCBs). Results indicated that the Fiji Composite sample for Batissa violacea range 0.7-238.6 pg/g lipid; Fiji sample composite Anadara antiquate range 1.6 – 808.6 pg/g lipid; Solomon Islands Katsuwonis Pelamis 7.5-3770.7 pg/g lipid; Solomon Islands Yellow Fin tuna 2.1 -778.4 pg/g lipid; Kiribati Katsuwonis Pelamis 4.8-1410 pg/g lipids. The study has demonstrated that these species are good bio-indicators of the presence of these toxic organic pollutants in edible marine foods. Our results suggest that for pesticides levels, p,p-DDE is the most dominant for all the groups and seems to be highest at 565.48 pg/g lipid in composite Batissa violacea from Fiji. For PBDE no.47 in comparing all samples, the composite Batissa violacea from Fiji had the highest level of 118.20 pg/g lipid. Based upon this study, the contamination levels found in the study species were quite lower compared with levels reported in impacted ecosystems around the world <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polychlorinated%20biphenyl" title="polychlorinated biphenyl">polychlorinated biphenyl</a>, <a href="https://publications.waset.org/abstracts/search?q=polybrominated%20diphenylethers" title=" polybrominated diphenylethers"> polybrominated diphenylethers</a>, <a href="https://publications.waset.org/abstracts/search?q=pesticides" title=" pesticides"> pesticides</a>, <a href="https://publications.waset.org/abstracts/search?q=organoclorinated%20pesticides" title=" organoclorinated pesticides"> organoclorinated pesticides</a>, <a href="https://publications.waset.org/abstracts/search?q=PBDEs" title=" PBDEs"> PBDEs</a> </p> <a href="https://publications.waset.org/abstracts/37832/toxic-chemicals-from-industries-into-pacific-biota-investigation-of-polychlorinated-biphenyls-pcbs-dioxins-pcdd-furans-pcdf-and-polybrominated-diphenyls-pbde-no-47-in-tuna-and-shellfish-in-kiribati-solomon-islands-and-the-fiji-islands" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37832.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> Thermal Decontamination of Soils Polluted by Polychlorinated Biphenyls and Microplastics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roya%20Biabani">Roya Biabani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mentore%20Vaccari"> Mentore Vaccari</a>, <a href="https://publications.waset.org/abstracts/search?q=Piero%20Ferrari"> Piero Ferrari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Accumulated microplastic (MPLs) in soil pose the risk of adsorbing and transporting polychlorinated biphenyls (PCBs) into the food chain or bodies. PCBs belong to a class of man-made hydrophobic organic chemicals (HOCs) that are classified as probable human carcinogens and a hazard to biota. Therefore, to take effective action and not aggravate the already recognized problems, the knowledge of PCB remediation in the presence of MPLs needs to be complete. Due to the high efficiency and little secondary pollution production, thermal desorption (TD) has been widely used for processing a variety of pollutants, especially for removing volatile and semi-volatile organic matter from contaminated solids and sediment. This study investigates the fate of PCB compounds during the thermal remediation method. For this, the PCB-contaminated soil was collected from the earth-canal downstream Caffaro S.p.A. chemical factory, which produced PCBs and PCB mixtures between 1930 and 1984. For MPL analysis, MPLs were separated by density separation and oxidation of organic matter. An operational range for the key parameters of thermal desorption processes was experimentally evaluated. Moreover, the temperature treatment characteristics of the PCBs-contaminated soil under anaerobic and aerobic conditions were studied using the Thermogravimetric Analysis (TGA). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contaminated%20soils" title="contaminated soils">contaminated soils</a>, <a href="https://publications.waset.org/abstracts/search?q=microplastics" title=" microplastics"> microplastics</a>, <a href="https://publications.waset.org/abstracts/search?q=polychlorinated%20biphenyls" title=" polychlorinated biphenyls"> polychlorinated biphenyls</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20desorption" title=" thermal desorption"> thermal desorption</a> </p> <a href="https://publications.waset.org/abstracts/166421/thermal-decontamination-of-soils-polluted-by-polychlorinated-biphenyls-and-microplastics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166421.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Phase Transition and Molecular Polarizability Studies in Liquid Crystalline Mixtures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Shahina">M. Shahina</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Fakruddin"> K. Fakruddin</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20M.%20Subhan"> C. M. Subhan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Rangappa"> S. Rangappa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, two mixtures with equal concentrations of 1) 4ꞌ-(6-(4-(pentylamino) methyl)-3-hydroxyphenoxy) hexyloxy) biphenyl-4-carbonitrile+-4-((4-(hexyloxy) benzylidene) amino) phenyl 4-butoxy benzoate and 2) 4ꞌ - (6-(4-(hexylamino) methyl)-3-hydroxyphenoxy) hexyloxy) biphenyl-4-carbonitrile+-4-((4-(octyloxy) benzylidene) amino) phenyl 4-butoxy benzoate, have been prepared. The transition temperature and optical texture are observed by using thermal microscopy. Density and birefringence studies are carried out on the above liquid crystalline mixtures. Using density and refractive indices data, the molecular polarizabilities are evaluated by using well-known Vuks and Neugebauer models. The molecular polarizability is also evaluated theoretically by Lippincott &delta; function model. The results reveal that the polarizability values are same in both experimental and theoretical methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liquid%20crystals" title="liquid crystals">liquid crystals</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20textures" title=" optical textures"> optical textures</a>, <a href="https://publications.waset.org/abstracts/search?q=transition%20temperature" title=" transition temperature"> transition temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=birefringence" title=" birefringence"> birefringence</a>, <a href="https://publications.waset.org/abstracts/search?q=polarizability" title=" polarizability"> polarizability</a> </p> <a href="https://publications.waset.org/abstracts/46257/phase-transition-and-molecular-polarizability-studies-in-liquid-crystalline-mixtures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46257.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Quantification of Polychlorinated Biphenyls (PCBs) in Soil Samples of Electrical Power Substations from Different Cities in Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omasan%20Urhie%20Urhie">Omasan Urhie Urhie</a>, <a href="https://publications.waset.org/abstracts/search?q=Adenipekun%20C.%20O"> Adenipekun C. O</a>, <a href="https://publications.waset.org/abstracts/search?q=Eke%20W."> Eke W.</a>, <a href="https://publications.waset.org/abstracts/search?q=Ogwu%20K."> Ogwu K.</a>, <a href="https://publications.waset.org/abstracts/search?q=Erinle%20K.%20O">Erinle K. O</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polychlorinated Biphenyls (PCBs) are Persistent organic pollutants (POPs) that are very toxic; they possess ability to accumulate in soil and in human tissues hence resulting in health issues like birth defect, reproductive disorder and cancer. The air is polluted by PCBs through volatilization and dispersion; they also contaminate soil and sediments and are not easily degraded. Soil samples were collected from a depth of 0-15 cm from three substations (Warri, Ughelli and Ibadan) of Power Holding Company of Nigeria (PHCN) where old transformers were dumped in Nigeria. Extraction and cleanup of soil samples were conducted using Accelerated Solvent Extraction (ASE) with Pressurized Liquid extraction (PLE). The concentration of PCBs was determined using gsas chromatography/mass spectrometry (GC/MS). Mean total PCB concentrations in the soil samples increased in the order Ughelli ˂ Ibadan˂ Warri, 2.457757ppm Ughelli substation 4.198926ppm, for Ibadan substation and 14.05065ppm at Warri substation. In the Warri samples, PCB-167 was the most abundant at about 30% (4.28086ppm) followed by PCB-157 at about 20% (2.77871), of the total PCB concentrations (14.05065ppm). Of the total PCBs in the Ughelli and Ibadan samples, PCB-156 was the most abundant at about 44% and 40%, respectively. This study provides a baseline report on the presence of PCBs in the vicinity of abandoned electrical power facilities in different cities in Nigeria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polychlorintated%20biphenyls" title="polychlorintated biphenyls">polychlorintated biphenyls</a>, <a href="https://publications.waset.org/abstracts/search?q=persistent%20organic%20pollutants" title=" persistent organic pollutants"> persistent organic pollutants</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a>, <a href="https://publications.waset.org/abstracts/search?q=transformer" title=" transformer"> transformer</a> </p> <a href="https://publications.waset.org/abstracts/136256/quantification-of-polychlorinated-biphenyls-pcbs-in-soil-samples-of-electrical-power-substations-from-different-cities-in-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136256.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Phytotreatment of Polychlorinated Biphenyls Contaminated Soil by Chromolaena odorata L. King and Robinson</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20O.%20Anyasi">R. O. Anyasi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20I.%20Atagana"> H. I. Atagana </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, phytoextraction ability of a weed on Aroclor 1254 was studied under greenhouse conditions. Chromolaena odorata plants were transplanted into soil containing 100, 200, and 500 ppm of Aroclor in 1L pots. The experiments were watered daily at 70 % moisture field capacity. Parameters such as fully expanded leaves per plant, shoot length, leaf chlorophyll content as well as root length at harvest were measured. PCB was not phytotoxic to C. odorata growth but plants in the 500 ppm treatment only showed diminished growth at the sixth week. Percentage increases in height of plant were 45.9, 39.4 and 40.0 for 100, 200 and 500 ppm treatments respectively. Such decreases were observed in the leaf numbers, root length and leaf chlorophyll concentration. The control sample showed 48.3 % increase in plant height which was not significant from the treated samples, an indication that C. odorata could survive such PCB concentration and could be used to remediate contaminated soil. Mean total PCB absorbed by C. odorata plant was between 6.40 and 64.60 ppm per kilogram of soil, leading to percentage PCB absorption of 0.03 and 17.03 % per kilogram of contaminated soil. PCBs were found mostly in the root tissues of the plants, and the Bioaccumulation factor were between 0.006-0.38. Total PCB absorbed by the plant increases as the concentration of the compound is increased. With these high BAF ensured, C. odorata could serve as a promising candidate plant in phytoextraction of PCB from a PCB-contaminated soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phytoremediation" title="phytoremediation">phytoremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title=" bioremediation"> bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20restoration" title=" soil restoration"> soil restoration</a>, <a href="https://publications.waset.org/abstracts/search?q=polychlorinated%20biphenyls%20%28PCB%29" title=" polychlorinated biphenyls (PCB)"> polychlorinated biphenyls (PCB)</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20treatment" title=" biological treatment"> biological treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=aroclor" title=" aroclor"> aroclor</a> </p> <a href="https://publications.waset.org/abstracts/22505/phytotreatment-of-polychlorinated-biphenyls-contaminated-soil-by-chromolaena-odorata-l-king-and-robinson" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22505.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Removal of Polycyclic Aromatic Hydrocarbons Present in Tyre Pyrolytic Oil Using Low Cost Natural Adsorbents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neha%20Budhwani">Neha Budhwani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polycyclic aromatic hydrocarbons (PAHs) are formed during the pyrolysis of scrap tyres to produce tyre pyrolytic oil (TPO). Due to carcinogenic, mutagenic, and toxic properties PAHs are priority pollutants. Hence it is essential to remove PAHs from TPO before utilising TPO as a petroleum fuel alternative (to run the engine). Agricultural wastes have promising future to be utilized as biosorbent due to their cost effectiveness, abundant availability, high biosorption capacity and renewability. Various low cost adsorbents were prepared from natural sources. Uptake of PAHs present in tyre pyrolytic oil was investigated using various low-cost adsor¬bents of natural origin including sawdust (shiham), coconut fiber, neem bark, chitin, activated charcol. Adsorption experiments of different PAHs viz. naphthalene, acenaphthalene, biphenyl and anthracene have been carried out at ambient temperature (25°C) and at pH 7. It was observed that for any given PAH, the adsorption capacity increases with the lignin content. Freundlich constant kf and 1/n have been evaluated and it was found that the adsorption isotherms of PAHs were in agreement with a Freundlich model, while the uptake capacity of PAHs followed the order: activated charcoal> saw dust (shisham) > coconut fiber > chitin. The partition coefficients in acetone-water, and the adsorption constants at equilibrium, could be linearly correlated with octanol–water partition coefficients. It is observed that natural adsorbents are good alternative for PAHs removal. Sawdust of Dalbergia sissoo, a by-product of sawmills was found to be a promising adsorbent for the removal of PAHs present in TPO. It is observed that adsorbents studied were comparable to those of some conventional adsorbents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20adsorbent" title="natural adsorbent">natural adsorbent</a>, <a href="https://publications.waset.org/abstracts/search?q=PAHs" title=" PAHs"> PAHs</a>, <a href="https://publications.waset.org/abstracts/search?q=TPO" title=" TPO"> TPO</a>, <a href="https://publications.waset.org/abstracts/search?q=coconut%20fiber" title=" coconut fiber"> coconut fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20powder%20%28shisham%29" title=" wood powder (shisham)"> wood powder (shisham)</a>, <a href="https://publications.waset.org/abstracts/search?q=naphthalene" title=" naphthalene"> naphthalene</a>, <a href="https://publications.waset.org/abstracts/search?q=acenaphthene" title=" acenaphthene"> acenaphthene</a>, <a href="https://publications.waset.org/abstracts/search?q=biphenyl%20and%20anthracene" title=" biphenyl and anthracene"> biphenyl and anthracene</a> </p> <a href="https://publications.waset.org/abstracts/21729/removal-of-polycyclic-aromatic-hydrocarbons-present-in-tyre-pyrolytic-oil-using-low-cost-natural-adsorbents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21729.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">231</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Railway Transport as a Potential Source of Polychlorinated Biphenyls in Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nata%C5%A1a%20Stoji%C4%87">Nataša Stojić</a>, <a href="https://publications.waset.org/abstracts/search?q=Mira%20Pucarevi%C4%87"> Mira Pucarević</a>, <a href="https://publications.waset.org/abstracts/search?q=Neboj%C5%A1a%20Ralevi%C4%87"> Nebojša Ralević</a>, <a href="https://publications.waset.org/abstracts/search?q=Vojislava%20Bursi%C4%87"> Vojislava Bursić</a>, <a href="https://publications.waset.org/abstracts/search?q=Gordan%20Stoji%C4%87"> Gordan Stojić</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Surface soil (0 – 10 cm) samples from 52 sampling sites along the length of railway tracks on the territory of Srem (the western part of the Autonomous Province of Vojvodina, itself part of Serbia) were collected and analyzed for 7 polychlorinated biphenyls (PCBs) in order to see how the distance from the railroad on the one hand and dump on the other hand, affect the concentration of PCBs (CPCBs) in the soil. Samples were taken at a distance of 0.03 to 4.19 km from the railway and 0.43 to 3.35 km from the landfills. For the soil extraction the Soxhlet extraction (USEPA 3540S) was used. The extracts were purified on a silica-gel column (USEPA 3630C). The analysis of the extracts was performed by gas chromatography with tandem mass spectrometry. PCBs were not detected only at two locations. Mean total concentration of PCBs for all other sampling locations was 0,0043 ppm dry weight (dw) with a range of 0,0005 to 0,0227 ppm dw. On the part of the data that were interesting for this research with statistical methods (PCA) were isolated factors that affect the concentration of PCBs. Data were also analyzed using the Pearson's chi-squared test which showed that the hypothesis of independence of CPCBs and distance from the railway can be rejected. Hypothesis of independence between CPCB and the percentage of humus in the soil can also be rejected, in contrast to dependence of CPCB and the distance from the landfill where the hypothesis of independence cannot be rejected. Based on these results can be said that railway transport is a potential source of PCBs. The next step in this research is to establish the position of transformers which are located near sampling sites as another important factor that affects the concentration of PCBs in the soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GC%2FMS" title="GC/MS">GC/MS</a>, <a href="https://publications.waset.org/abstracts/search?q=landfill" title=" landfill"> landfill</a>, <a href="https://publications.waset.org/abstracts/search?q=PCB" title=" PCB"> PCB</a>, <a href="https://publications.waset.org/abstracts/search?q=railway" title=" railway"> railway</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a> </p> <a href="https://publications.waset.org/abstracts/35899/railway-transport-as-a-potential-source-of-polychlorinated-biphenyls-in-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35899.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Study of Polychlorinated Dibenzo-P-Dioxins and Dibenzofurans Dispersion in the Environment of a Municipal Solid Waste Incinerator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G%C3%B3mez%20R.%20Marta">Gómez R. Marta</a>, <a href="https://publications.waset.org/abstracts/search?q=Mart%C3%ADn%20M.%20Jes%C3%BAs%20Mar%C3%ADa"> Martín M. Jesús María</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The general aim of this paper identifies the areas of highest concentration of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) around the incinerator through the use of dispersion models. Atmospheric dispersion models are useful tools for estimating and prevent the impact of emissions from a particular source in air quality. These models allow considering different factors that influence in air pollution: source characteristics, the topography of the receiving environment and weather conditions to predict the pollutants concentration. The PCDD/Fs, after its emission into the atmosphere, are deposited on water or land, near or far from emission source depending on the size of the associated particles and climatology. In this way, they are transferred and mobilized through environmental compartments. The modelling of PCDD/Fs was carried out with following tools: Atmospheric Dispersion Model Software (ADMS) and Surfer. ADMS is a dispersion model Gaussian plume, used to model the impact of air quality industrial facilities. And Surfer is a program of surfaces which is used to represent the dispersion of pollutants on a map. For the modelling of emissions, ADMS software requires the following input parameters: characterization of emission sources (source type, height, diameter, the temperature of the release, flow rate, etc.) meteorological and topographical data (coordinate system), mainly. The study area was set at 5 Km around the incinerator and the first population center nearest to focus PCDD/Fs emission is about 2.5 Km, approximately. Data were collected during one year (2013) both PCDD/Fs emissions of the incinerator as meteorology in the study area. The study has been carried out during period's average that legislation establishes, that is to say, the output parameters are taking into account the current legislation. Once all data required by software ADMS, described previously, are entered, and in order to make the representation of the spatial distribution of PCDD/Fs concentration and the areas affecting them, the modelling was proceeded. In general, the dispersion plume is in the direction of the predominant winds (Southwest and Northeast). Total levels of PCDD/Fs usually found in air samples, are from <2 pg/m3 for remote rural areas, from 2-15 pg/m3 in urban areas and from 15-200 pg/m3 for areas near to important sources, as can be an incinerator. The results of dispersion maps show that maximum concentrations are the order of 10-8 ng/m3, well below the values considered for areas close to an incinerator, as in this case. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20dispersion" title="atmospheric dispersion">atmospheric dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=dioxin" title=" dioxin"> dioxin</a>, <a href="https://publications.waset.org/abstracts/search?q=furan" title=" furan"> furan</a>, <a href="https://publications.waset.org/abstracts/search?q=incinerator" title=" incinerator"> incinerator</a> </p> <a href="https://publications.waset.org/abstracts/56836/study-of-polychlorinated-dibenzo-p-dioxins-and-dibenzofurans-dispersion-in-the-environment-of-a-municipal-solid-waste-incinerator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56836.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Rapid Atmospheric Pressure Photoionization-Mass Spectrometry (APPI-MS) Method for the Detection of Polychlorinated Dibenzo-P-Dioxins and Dibenzofurans in Real Environmental Samples Collected within the Vicinity of Industrial Incinerators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Amo">M. Amo</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Alvaro"> A. Alvaro</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Astudillo"> A. Astudillo</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Mc%20Culloch"> R. Mc Culloch</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20C.%20del%20Castillo"> J. C. del Castillo</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20G%C3%B3mez"> M. Gómez</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Mart%C3%ADn"> J. M. Martín</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) of course comprise a range of highly toxic compounds that may exist as particulates within the air or accumulate within water supplies, soil, or vegetation. They may be created either ubiquitously or naturally within the environment as a product of forest fires or volcanic eruptions. It is only since the industrial revolution, however, that it has become necessary to closely monitor their generation as a byproduct of manufacturing/combustion processes, in an effort to mitigate widespread contamination events. Of course, the environmental concentrations of these toxins are expected to be extremely low, therefore highly sensitive and accurate methods are required for their determination. Since ionization of non-polar compounds through electrospray and APCI is difficult and inefficient, we evaluate the performance of a novel low-flow Atmospheric Pressure Photoionization (APPI) source for the trace detection of various dioxins and furans using rapid Mass Spectrometry workflows. Air, soil and biota (vegetable matter) samples were collected monthly during one year from various locations within the vicinity of an industrial incinerator in Spain. Analytes were extracted and concentrated using soxhlet extraction in toluene and concentrated by rotavapor and nitrogen flow. Various ionization methods as electrospray (ES) and atmospheric pressure chemical ionization (APCI) were evaluated, however, only the low-flow APPI source was capable of providing the necessary performance, in terms of sensitivity, required for detecting all targeted analytes. In total, 10 analytes including 2,3,7,8-tetrachlorodibenzodioxin (TCDD) were detected and characterized using the APPI-MS method. Both PCDDs and PCFDs were detected most efficiently in negative ionization mode. The most abundant ion always corresponded to the loss of a chlorine and addition of an oxygen, yielding [M-Cl+O]- ions. MRM methods were created in order to provide selectivity for each analyte. No chromatographic separation was employed; however, matrix effects were determined to have a negligible impact on analyte signals. Triple Quadrupole Mass Spectrometry was chosen because of its unique potential for high sensitivity and selectivity. The mass spectrometer used was a Sciex´s Qtrap3200 working in negative Multi Reacting Monitoring Mode (MRM). Typically mass detection limits were determined to be near the 1-pg level. The APPI-MS2 technology applied to the detection of PCDD/Fs allows fast and reliable atmospheric analysis, minimizing considerably operational times and costs, with respect other technologies available. In addition, the limit of detection can be easily improved using a more sensitive mass spectrometer since the background in the analysis channel is very low. The APPI developed by SEADM allows polar and non-polar compounds ionization with high efficiency and repeatability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20pressure%20photoionization-mass%20spectrometry%20%28APPI-MS%29" title="atmospheric pressure photoionization-mass spectrometry (APPI-MS)">atmospheric pressure photoionization-mass spectrometry (APPI-MS)</a>, <a href="https://publications.waset.org/abstracts/search?q=dioxin" title=" dioxin"> dioxin</a>, <a href="https://publications.waset.org/abstracts/search?q=furan" title=" furan"> furan</a>, <a href="https://publications.waset.org/abstracts/search?q=incinerator" title=" incinerator"> incinerator</a> </p> <a href="https://publications.waset.org/abstracts/57008/rapid-atmospheric-pressure-photoionization-mass-spectrometry-appi-ms-method-for-the-detection-of-polychlorinated-dibenzo-p-dioxins-and-dibenzofurans-in-real-environmental-samples-collected-within-the-vicinity-of-industrial-incinerators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57008.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Alterations of Gut Microbiota and Its Metabolomics in Child with 6PPDQ, PBDE, PCB, and Metal (Loid) Exposure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xia%20Huo">Xia Huo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The composition and metabolites of the gut microbiota can be altered by environmental pollutants. However, the effect of co-exposure to multiple pollutants on the human gut microbiota has not been sufficiently studied. In this study, gut microorganisms and their metabolites were compared between 33 children from Guiyu and 34 children from Haojiang. The exposure level was assessed by estimating the daily intake (EDI) of polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), 6PPD-quinone (6PPDQ), and metal(loid)s in dust. Significant correlations were found between the EDIs of 6PPDQ, BDE28, PCB52, Ni, Cu, and both the alpha diversity index and specific metabolites in single-element models. The study found that the Bayesian kernel machine regression (BKMR) model showed a negative correlation between the EDIs of five pollutants (6PPDQ, BDE28, PCB52, Ni, and Cu) and the Chao 1 index, particularly beyond the 55th percentile. Furthermore, the EDIs of these five pollutants were positively correlated with the levels of the metabolite 2,4-diaminobutyric acid while negatively correlated with the levels of d-erythro-sphingosine and d-threitol. Our research suggests that exposure to 6PPDQ, BDE28, PCB52, Ni, and Cu in kindergarten dust is associated with alterations in the gut microbiota and its metabolites. These alterations may be associated with neurodevelopmental abnormalities in children. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gut%20microbiota" title="gut microbiota">gut microbiota</a>, <a href="https://publications.waset.org/abstracts/search?q=6PPDQ" title=" 6PPDQ"> 6PPDQ</a>, <a href="https://publications.waset.org/abstracts/search?q=PBDEs" title=" PBDEs"> PBDEs</a>, <a href="https://publications.waset.org/abstracts/search?q=PCBs" title=" PCBs"> PCBs</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%28loid%29s" title=" metal(loid)s"> metal(loid)s</a>, <a href="https://publications.waset.org/abstracts/search?q=BKMR" title=" BKMR"> BKMR</a> </p> <a href="https://publications.waset.org/abstracts/184571/alterations-of-gut-microbiota-and-its-metabolomics-in-child-with-6ppdq-pbde-pcb-and-metal-loid-exposure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184571.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">56</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> A Kinetic Study of Radical Polymerization of Acrylic Monomers in the Presence of the Liquid Crystal and the Electro-Optical Properties of These Mixtures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Bouriche">A. Bouriche</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Merah"> D. Merah</a>, <a href="https://publications.waset.org/abstracts/search?q=L.Alachaher-Bedjaoui"> L.Alachaher-Bedjaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20Maschke"> U. Maschke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Intensive research continues in the field of liquid crystals (LCs) for their potential use in modern display applications. Nematic LCs has been most commonly used due to the large birefringence and their sensitivity to even weak perturbation forces induced by electric, magnetic and optical fields. Polymer dispersed liquid crystals (PDLCs), composed of micron-sized nematic LC droplets dispersed in a polymer matrix is an important class of materials for applications in different domains of technology involving large area display devices, optical switches, phase modulators, variable attenuators, polarisers, flexible displays and smart windows. In this study the composites are prepared from mixtures of monofunctional acrylic monomers, (Butylacrylate (ABu), 2-Ethylhexylacrylate (2-EHA), 2-Hydroxyethyl methacrylate (HEMA) and hydroxybutylmethacrylate (HBMA)) and two liquid crystals: (4-cyano-4'-n-pentyl-biphenyl) (5CB) and E7 which is an eutectic mixtures of four cyanoparaphenylenes. These mixtures are prepared adding the Darocur 1173 as photoinitiateor, the 1.6-hexanediol diacrylate (HDDA) as cross-linker agent, and finally they are exposed to UV irradiation. The kinetic polymerization of monomer/LC mixture were investigated with the Fourier Transform Infra Red spectroscopy (FTIR). The electro-optical properties of the PDLC films were determined by measuring the voltage dependence on the transmitted light. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acrylic%20monomers" title="acrylic monomers">acrylic monomers</a>, <a href="https://publications.waset.org/abstracts/search?q=films%20PDLC" title=" films PDLC"> films PDLC</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20crystal" title=" liquid crystal"> liquid crystal</a>, <a href="https://publications.waset.org/abstracts/search?q=polymerisation" title=" polymerisation"> polymerisation</a> </p> <a href="https://publications.waset.org/abstracts/29753/a-kinetic-study-of-radical-polymerization-of-acrylic-monomers-in-the-presence-of-the-liquid-crystal-and-the-electro-optical-properties-of-these-mixtures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29753.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> A Kinetic Study of Radical Polymerisation of Acrylic Monomers in the Presence of the Liquid Crystal and the Electro-Optical Properties of These Mixtures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Bouriche">A. Bouriche</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Merah"> D. Merah</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Bouchaour"> T. Bouchaour</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Alachaher-Bedjaoui"> L. Alachaher-Bedjaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20Maschke"> U. Maschke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Intensive research continues in the field of liquid crystals (LCs) for their potential use in modern display applications. Nematic LCs has been most commonly used due to the large birefringence and their sensitivity to even weak perturbation forces induced by electric, magnetic and optical fields. Polymer dispersed liquid crystals (PDLCs), composed of micron-sized nematic LC droplets dispersed in a polymer matrix is an important class of materials for applications in different domains of technology involving large area display devices, optical switches, phase modulators, variable attenuators, polarisers, flexible displays and smart windows. In this study the composites are prepared from mixtures of mono functional acrylic monomers, (Butylacrylate (ABu), 2-Ethylhexylacrylate (2-EHA), 2-Hydroxyethyl methacrylate (HEMA) and hydroxybutylmethacrylate (HBMA)) and two liquid crystals: (4-cyano-4'-n-pentyl-biphenyl) (5CB) and E7 which is an eutectic mixtures of four cyanoparaphenylenes. These mixtures are prepared adding the Darocur 1173 as photoinitiator, the 1.6-hexanediol diacrylate (HDDA) as cross-linker agent, and finally they are exposed to UV irradiation. The kinetic polymerization of monomer/LC mixture were investigated with the Fourier Transform Infra Red spectroscopy (FTIR). The electro-optical properties of the PDLC films were determined by measuring the voltage dependence on the transmitted light. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acrylic%20monomers" title="acrylic monomers">acrylic monomers</a>, <a href="https://publications.waset.org/abstracts/search?q=films%20PDLC" title=" films PDLC"> films PDLC</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20crystal" title=" liquid crystal"> liquid crystal</a>, <a href="https://publications.waset.org/abstracts/search?q=polymerisation" title=" polymerisation"> polymerisation</a> </p> <a href="https://publications.waset.org/abstracts/33349/a-kinetic-study-of-radical-polymerisation-of-acrylic-monomers-in-the-presence-of-the-liquid-crystal-and-the-electro-optical-properties-of-these-mixtures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33349.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Effect of Different Parameters on the Swelling Behaviour of Thermo-Responsive Elastomers in a Nematogenic Solvent</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nouria%20Bouchikhi">Nouria Bouchikhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Soufiane%20Bedjaoui"> Soufiane Bedjaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Tewfik%20Bouchaour"> C. Tewfik Bouchaour</a>, <a href="https://publications.waset.org/abstracts/search?q=Lamia%20Alachaher%20Bedjaoui"> Lamia Alachaher Bedjaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Ulrich%20Maschke"> Ulrich Maschke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Swelling properties and phase diagrams of binary systems composed of liquid crystalline networks and a low molecular mass liquid crystal (LMWLC) have been investigated. The networks were prepared by ultraviolet (UV) irradiation of reactive mixtures including a monomer, a cross-linking agent and a photo-initiator. These networks were prepared using two cross-linking agents: 1,6 hexanedioldiacrylate (HDDA) and a mesogenic acrylic acid 6-(4’-(6-acryloyloxy-hexyloxy) biphenyl-4-yl oxy) hexyl ester (AHBH). The obtained dry networks were characterized by differential scanning calorimetry, and immersed in an excess of a LMWLC solvent 4-cyano-4’-pentylbiphenyl (5CB), forming polymer gels. A detailed study by polarized optical microscopy allowed to determine the swelling degree of the gels and to follow the phase behavior of the solvent inside the polymer matrix in a wide range of temperature. It has been found that the gels undergo a sharp decrease of their swelling degree in response to an infinitesimal change of temperature. This finding adds new and interesting aspects on the actuators applications. We have subsequently explored the effect of different parameters on volume phase transition of these liquid crystalline materials. Such as the cross-linking density (CD), a nature of cross-linking agent and the photo initiator concentration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cross-linking%20density" title="cross-linking density">cross-linking density</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20crystalline%20elastomers" title=" liquid crystalline elastomers"> liquid crystalline elastomers</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20diagrams" title=" phase diagrams"> phase diagrams</a>, <a href="https://publications.waset.org/abstracts/search?q=swelling" title=" swelling"> swelling</a> </p> <a href="https://publications.waset.org/abstracts/29741/effect-of-different-parameters-on-the-swelling-behaviour-of-thermo-responsive-elastomers-in-a-nematogenic-solvent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29741.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Reduction of Toxic Matter from Marginal Water Using Sludge Recycling from Combination of Stepped Cascade Weir with Limestone Trickling Filter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dheyaa%20Wajid%20Abbood">Dheyaa Wajid Abbood</a>, <a href="https://publications.waset.org/abstracts/search?q=Eitizaz%20Awad%20Jasim"> Eitizaz Awad Jasim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this investigation is to confirm the activity of a sludge recycling process in trickling filter filled with limestone as an alternative biological process over conventional high-cost treatment process with regard to toxic matter reduction from marginal water. The combination system of stepped cascade weir with limestone trickling filter has been designed and constructed in the environmental hydraulic laboratory, Al-Mustansiriya University, College of Engineering. A set of experiments has been conducted during the period from August 2013 to July 2014. Seven days of continuous operation with different continuous flow rates (0.4m3/hr, 0.5 m3/hr, 0.6 m3/hr, 0.7m3/hr,0.8 m3/hr, 0.9 m3/hr, and 1m3/hr) after ten days of acclimatization experiments were carried out. Results indicate that the concentrations of toxic matter were decreasing with increasing of operation time, sludge recirculation ratio, and flow rate. The toxic matter measured includes (Mineral oils, Petroleum products, Phenols, Biocides, Polychlorinated biphenyls (PCBs), and Surfactants) which are used in these experiments were ranged between (0.074 nm-0.156 nm). Results indicated that the overall reduction efficiency after 4, 28, 52, 76, 100, 124, and 148 hours of operation were (55%, 48%, 42%, 50%, 59%, 61%, and 64%) when the combination of stepped cascade weir with limestone trickling filter is used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=toxic%20matter" title="toxic matter">toxic matter</a>, <a href="https://publications.waset.org/abstracts/search?q=marginal%20water" title=" marginal water"> marginal water</a>, <a href="https://publications.waset.org/abstracts/search?q=trickling%20filter" title=" trickling filter"> trickling filter</a>, <a href="https://publications.waset.org/abstracts/search?q=stepped%20cascade%20weir" title=" stepped cascade weir"> stepped cascade weir</a>, <a href="https://publications.waset.org/abstracts/search?q=removal%20efficiency" title=" removal efficiency"> removal efficiency</a> </p> <a href="https://publications.waset.org/abstracts/32593/reduction-of-toxic-matter-from-marginal-water-using-sludge-recycling-from-combination-of-stepped-cascade-weir-with-limestone-trickling-filter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32593.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Reduction of Toxic Matter from Marginal Water Treatment Using Sludge Recycling from Combination of Stepped Cascade Weir with Limestone Trickling Filter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dheyaa%20Wajid%20Abbood">Dheyaa Wajid Abbood</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Mohammed%20Tawfeeq%20Baqer"> Ali Mohammed Tawfeeq Baqer</a>, <a href="https://publications.waset.org/abstracts/search?q=Eitizaz%20Awad%20Jasim"> Eitizaz Awad Jasim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this investigation is to confirm the activity of a sludge recycling process in trickling filter filled with limestone as an alternative biological process over conventional high-cost treatment process with regard to toxic matter reduction from marginal water. The combination system of stepped cascade weir with limestone trickling filter has been designed and constructed in the Environmental Hydraulic Laboratory, Al-Mustansiriya University, College of Engineering. A set of experiments has been conducted during the period from August 2013 to July 2014. Seven days of continuous operation with different continuous flow rates (0.4m3/hr, 0.5 m3/hr, 0.6 m3/hr, 0.7m3/hr,0.8 m3/hr, 0.9 m3/hr, and 1m3/hr) after ten days of acclimatization experiments were carried out. Results indicate that the concentrations of toxic matter were decreasing with increasing of operation time, sludge recirculation ratio, and flow rate. The toxic matter measured includes (Mineral oils, Petroleum products, Phenols, Biocides, Polychlorinated biphenyls (PCBs), and Surfactants) which are used in these experiments were ranged between (0.074 nm-0.156 nm). Results indicated that the overall reduction efficiency after 4, 28, 52, 76, 100, 124, and 148 hours of operation were (55%, 48%, 42%, 50%, 59%, 61%, and 64%) when the combination of stepped cascade weir with limestone trickling filter is used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marginal%20water" title="Marginal water ">Marginal water </a>, <a href="https://publications.waset.org/abstracts/search?q=Toxic%20matter" title="Toxic matter">Toxic matter</a>, <a href="https://publications.waset.org/abstracts/search?q=Stepped%20Cascade%20weir" title=" Stepped Cascade weir"> Stepped Cascade weir</a>, <a href="https://publications.waset.org/abstracts/search?q=limestone%20trickling%20filter" title=" limestone trickling filter"> limestone trickling filter</a> </p> <a href="https://publications.waset.org/abstracts/33447/reduction-of-toxic-matter-from-marginal-water-treatment-using-sludge-recycling-from-combination-of-stepped-cascade-weir-with-limestone-trickling-filter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33447.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Functional Role of Tyr12 in the Catalytic Activity of Zeta-Like Glutathione S-Transferase from Acidovorax sp. KKS102</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Shehu">D. Shehu</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Alias"> Z. Alias </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Glutathione S-transferases (GSTs) are family of enzymes that function in the detoxification of variety of electrophilic substrates. In the present work, we report a novel zeta-like GST (designated as KKSG9) from the biphenyl/polychlorobiphenyl degrading organism Acidovorax sp. KKS102. KKSG9 possessed low sequence similarity but similar biochemical properties to zeta class GSTs. The gene for KKSG9 was cloned, purified and biochemically characterized. Functional analysis showed that the enzyme exhibits wider substrate specificity compared to most zeta class GSTs by reacting with 1-chloro-2,4-dinitrobenzene (CDNB), p-nitrobenzyl chloride (NBC), ethacrynic acid (EA), hydrogen peroxide, and cumene hydroperoxide (CuOOH). The enzyme also displayed dehalogenation function against dichloroacetate (a common substrate for zeta class GSTs) in addition to permethrin, and dieldrin. The functional role of Tyr12 was also investigated by site-directed mutagenesis. The mutant (Y12C) displayed low catalytic activity and dehalogenation function against all the substrates when compared with the wild type. Kinetic analysis using NBC and GSH as substrates showed that the mutant (Y12C) displayed a higher affinity for NBC when compared with the wild type, however, no significant change in GSH affinity was observed. These findings suggest that the presence of tyrosine residue in the motif might represent an evolutionary trend toward improving the catalytic activity of the enzyme. The enzyme as well could be useful in the bioremediation of various types of organochlorine pollutants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Acidovorax%20sp.%20KKS102" title="Acidovorax sp. KKS102">Acidovorax sp. KKS102</a>, <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title=" bioremediation"> bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=glutathione%20s-transferase" title=" glutathione s-transferase"> glutathione s-transferase</a>, <a href="https://publications.waset.org/abstracts/search?q=site-directed%20mutagenesis" title=" site-directed mutagenesis"> site-directed mutagenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=zeta" title=" zeta"> zeta</a> </p> <a href="https://publications.waset.org/abstracts/95033/functional-role-of-tyr12-in-the-catalytic-activity-of-zeta-like-glutathione-s-transferase-from-acidovorax-sp-kks102" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95033.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Deciphering the Gut Microbiome&#039;s Role in Early-Life Immune Development</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xia%20Huo">Xia Huo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Children are more vulnerable to environmental toxicants compared to adults, and their developing immune system is among the most sensitive targets regarding toxicity of environmental toxicants. Studies have found that exposure to environmental toxicants is associated with impaired immune function in children, but only a few studies have focused on the relationship between environmental toxicant exposure and vaccine antibody potency and immunoglobulin (Ig) levels in children. These studies investigated the associations of exposure to polychlorinated biphenyls (PCBs), perfluorinated compounds (PFCs), heavy metals (Pb, Cd, As, Hg) and PM2.5 with the serum-specific antibody concentrations and Ig levels against different vaccines, such as anti-Hib, tetanus, diphtheria toxoid, and analyze the possible mechanisms underlying exposure-related alterations of antibody titers and Ig levels against different vaccines. Results suggest that exposure to these toxicants is generally associated with decreased potency of antibodies produced from childhood immunizations and an overall deficiency in the protection the vaccines provide. Toxicant exposure is associated with vaccination failure and decreased antibody titers, and increased risk of immune-related diseases in children by altering specific immunoglobulin levels. Age, sex, nutritional status, and co-exposure may influence the effects of toxicants on the immune function in children. Epidemiological evidence suggests that exposure-induced changes to humoral immunerelated tissue/cells/molecules response to vaccines may have predominant roles in the inverse associations between antibody responsiveness to vaccines and environmental toxicants. These results help us to conduct better immunization policies for children under environmental toxicant burden. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environmental%20toxicants" title="environmental toxicants">environmental toxicants</a>, <a href="https://publications.waset.org/abstracts/search?q=immunotoxicity" title=" immunotoxicity"> immunotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=vaccination" title=" vaccination"> vaccination</a>, <a href="https://publications.waset.org/abstracts/search?q=antibodies" title=" antibodies"> antibodies</a>, <a href="https://publications.waset.org/abstracts/search?q=children%27s%20health" title=" children&#039;s health"> children&#039;s health</a> </p> <a href="https://publications.waset.org/abstracts/184614/deciphering-the-gut-microbiomes-role-in-early-life-immune-development" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184614.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">59</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Redox-Mediated Supramolecular Radical Gel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sonam%20Chorol">Sonam Chorol</a>, <a href="https://publications.waset.org/abstracts/search?q=Sharvan%20Kumar"> Sharvan Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Pritam%20Mukhopadhyay"> Pritam Mukhopadhyay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In biology, supramolecular systems require the use of chemical fuels to stay in sustained nonequilibrium steady states termed dissipative self-assembly in contrast to synthetic self-assembly. Biomimicking these natural dynamic systems, some studies have demonstrated artificial self-assembly under nonequilibrium utilizing various forms of energies (fuel) such as chemical, redox, and pH. Naphthalene diimides (NDIs) are well-known organic molecules in supramolecular architectures with high electron affinity and have applications in controlled electron transfer (ET) reactions, etc. Herein, we report the endergonic ET from tetraphenylborate to highly electron-deficient phosphonium NDI²+ dication to generate NDI•+ radical. The formation of radicals was confirmed by UV-Vis-NIR absorption spectroscopy. Electron-donor and electron-acceptor energy levels were calculated from experimental electrochemistry and theoretical DFT analysis. The HOMO of the electron donor locates below the LUMO of the electro-acceptor. This indicates that electron transfer is endergonic (ΔE°ET = negative). The endergonic ET from NaBPh₄ to NDI²+ dication was achieved thermodynamically by the formation of coupled biphenyl product confirmed by GC-MS analysis. NDI molecule bearing octyl phosphonium at the core and H-bond forming imide moieties at the axial position forms a gel. The rheological properties of purified radical ion NDI⦁+ gels were evaluated. The atomic force microscopy studies reveal the formation of large branching-type networks with a maximum height of 70-80 nm. The endergonic ET from NaBPh₄ to NDI²+ dication was used to design the assembly and disassembly redox reaction cycle using reducing (NaBPh₄) and oxidizing agents (Br₂) as chemical fuels. A part of NaBPh₄ is used to drive assembly, while a fraction of the NaBPh₄ is dissipated by forming a useful product. The system goes back to the disassembled NDI²+ dication state with the addition of Br₂. We think bioinspired dissipative self-assembly is the best approach to developing future lifelike materials with autonomous behavior. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ionic-gel" title="Ionic-gel">Ionic-gel</a>, <a href="https://publications.waset.org/abstracts/search?q=redox-cycle" title=" redox-cycle"> redox-cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=self-assembly" title=" self-assembly"> self-assembly</a>, <a href="https://publications.waset.org/abstracts/search?q=useful%20product" title=" useful product"> useful product</a> </p> <a href="https://publications.waset.org/abstracts/165942/redox-mediated-supramolecular-radical-gel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165942.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Nanomaterial Based Electrochemical Sensors for Endocrine Disrupting Compounds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gaurav%20Bhanjana">Gaurav Bhanjana</a>, <a href="https://publications.waset.org/abstracts/search?q=Ganga%20Ram%20Chaudhary"> Ganga Ram Chaudhary</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandeep%20Kumar"> Sandeep Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Neeraj%20Dilbaghi"> Neeraj Dilbaghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Main sources of endocrine disrupting compounds in the ecosystem are hormones, pesticides, phthalates, flame retardants, dioxins, personal-care products, coplanar polychlorinated biphenyls (PCBs), bisphenol A, and parabens. These endocrine disrupting compounds are responsible for learning disabilities, brain development problems, deformations of the body, cancer, reproductive abnormalities in females and decreased sperm count in human males. Although discharge of these chemical compounds into the environment cannot be stopped, yet their amount can be retarded through proper evaluation and detection techniques. The available techniques for determination of these endocrine disrupting compounds mainly include high performance liquid chromatography (HPLC), mass spectroscopy (MS) and gas chromatography-mass spectrometry (GC&ndash;MS). These techniques are accurate and reliable but have certain limitations like need of skilled personnel, time consuming, interference and requirement of pretreatment steps. Moreover, these techniques are laboratory bound and sample is required in large amount for analysis. In view of above facts, new methods for detection of endocrine disrupting compounds should be devised that promise high specificity, ultra sensitivity, cost effective, efficient and easy-to-operate procedure. Nowadays, electrochemical sensors/biosensors modified with nanomaterials are gaining high attention among researchers. Bioelement present in this system makes the developed sensors selective towards analyte of interest. Nanomaterials provide large surface area, high electron communication feature, enhanced catalytic activity and possibilities of chemical modifications. In most of the cases, nanomaterials also serve as an electron mediator or electrocatalyst for some analytes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrochemical" title="electrochemical">electrochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=endocrine%20disruptors" title=" endocrine disruptors"> endocrine disruptors</a>, <a href="https://publications.waset.org/abstracts/search?q=microscopy" title=" microscopy"> microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=sensors" title=" sensors"> sensors</a> </p> <a href="https://publications.waset.org/abstracts/76775/nanomaterial-based-electrochemical-sensors-for-endocrine-disrupting-compounds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76775.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Natural and Construction/Demolition Waste Aggregates: A Comparative Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Debora%20C.%20Mendes">Debora C. Mendes</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthias%20Eckert"> Matthias Eckert</a>, <a href="https://publications.waset.org/abstracts/search?q=Claudia%20S.%20Mo%C3%A7o"> Claudia S. Moço</a>, <a href="https://publications.waset.org/abstracts/search?q=Helio%20Martins"> Helio Martins</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Pierre%20Gon%C3%A7alves"> Jean-Pierre Gonçalves</a>, <a href="https://publications.waset.org/abstracts/search?q=Miguel%20Oliveira"> Miguel Oliveira</a>, <a href="https://publications.waset.org/abstracts/search?q=Jose%20P.%20Da%20Silva"> Jose P. Da Silva </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Disposal of construction and demolition waste (C&DW) in embankments in the periphery of cities causes both environmental and social problems. To achieve the management of C&DW, a detailed analysis of the properties of these materials should be done. In this work we report a comparative study of the physical, chemical and environmental properties of natural and C&DW aggregates from 25 different origins. Assays were performed according to European Standards. Analysis of heavy metals and organic compounds, namely polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), were performed. Finally, properties of concrete prepared with C&DW aggregates are reported. Physical analyses of C&DW aggregates indicated lower quality properties than natural aggregates, particularly for concrete preparation and unbound layers of road pavements. Chemical properties showed that most samples (80%) meet the values required by European regulations for concrete and unbound layers of road pavements. Analyses of heavy metals Cd, Cr, Cu, Pb, Ni, Mo and Zn in the C&DW leachates showed levels below the limits established by the Council Decision of 19 December 2002. Identification and quantification of PCBs and PAHs indicated that few samples shows the presence of these compounds. The measured levels of PCBs and PAHs are also below the limits. Other compounds identified in the C&DW leachates include phthalates and diphenylmethanol. The characterized C&DW aggregates show lower quality properties than natural aggregates but most samples showed to be environmentally safe. A continuous monitoring of the presence of heavy metals and organic compounds should be made to trial safe C&DW aggregates. C&DW aggregates provide a good economic and environmental alternative to natural aggregates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete%20preparation" title="concrete preparation">concrete preparation</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20and%20demolition%20waste" title=" construction and demolition waste"> construction and demolition waste</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20pollutants" title=" organic pollutants"> organic pollutants</a> </p> <a href="https://publications.waset.org/abstracts/23650/natural-and-constructiondemolition-waste-aggregates-a-comparative-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23650.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Screening Ecological Risk Assessment at an Old Abandoned Mine in Northern Taiwan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hui-Chen%20Tsai">Hui-Chen Tsai</a>, <a href="https://publications.waset.org/abstracts/search?q=Chien-Jen%20Ho"> Chien-Jen Ho</a>, <a href="https://publications.waset.org/abstracts/search?q=Bo-Wei%20Power%20Liang"> Bo-Wei Power Liang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ying%20Shen"> Ying Shen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Hsin%20Lai"> Yi-Hsin Lai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Former Taiwan Metal Mining Corporation and its associated 3 wasted flue gas tunnels, hereinafter referred to as 'TMMC', was contaminated with heavy metals, Polychlorinated biphenyls (PCBs) and Total Petroleum Hydrocarbons (TPHs) in soil. Since the contamination had been exposed and unmanaged in the environment for more than 40 years, the extent of the contamination area is estimated to be more than 25 acres. Additionally, TMMC is located in a remote, mountainous area where almost no residents are residing in the 1-km radius area. Thus, it was deemed necessary to conduct an ecological risk assessment in order to evaluate the details of future contaminated site management plan. According to the winter and summer, ecological investigation results, one type of endangered, multiple vulnerable and near threaten plant was discovered, as well as numerous other protected species, such as Crested Serpent Eagle, Crested Goshawk, Black Kite, Brown Shrike, Taiwan Blue Magpie were observed. Ecological soil screening level (Eco-SSLs) developed by USEPA was adopted as a reference to conduct screening assessment. Since all the protected species observed surrounding TMMC site were birds, screening ecological risk assessment was conducted on birds only. The assessment was assessed mainly based on the chemical evaluation, which the contamination in different environmental media was compared directly with the ecological impact levels (EIL) of each evaluation endpoints and the respective hazard quotient (HQ) and hazard index (HI) could be obtained. The preliminary ecological risk assessment results indicated HI is greater than 1. In other words, the biological stressors (birds) were exposed to the contamination, which was already exceeded the dosage that could cause unacceptable impacts to the ecological system. This result was mainly due to the high concentration of arsenic, metal and lead; thus it was suggested the above mention contaminants should be remediated as soon as possible or proper risk management measures should be taken. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=screening" title="screening">screening</a>, <a href="https://publications.waset.org/abstracts/search?q=ecological%20risk%20assessment" title=" ecological risk assessment"> ecological risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=ecological%20impact%20levels" title=" ecological impact levels"> ecological impact levels</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20management" title=" risk management"> risk management</a> </p> <a href="https://publications.waset.org/abstracts/109595/screening-ecological-risk-assessment-at-an-old-abandoned-mine-in-northern-taiwan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109595.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Physical, Chemical and Environmental Properties of Natural and Construction/Demolition Recycled Aggregates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D%C3%A9bora%20C.%20Mendes">Débora C. Mendes</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthias%20Eckert"> Matthias Eckert</a>, <a href="https://publications.waset.org/abstracts/search?q=Cl%C3%A1udia%20S.%20Mo%C3%A7o"> Cláudia S. Moço</a>, <a href="https://publications.waset.org/abstracts/search?q=H%C3%A9lio%20Martins"> Hélio Martins</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Pierre%20P.%20Gon%C3%A7alves"> Jean-Pierre P. Gonçalves</a>, <a href="https://publications.waset.org/abstracts/search?q=Miguel%20Oliveira"> Miguel Oliveira</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20P.%20Da%20Silva"> José P. Da Silva </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Uncontrolled disposal of construction and demolition waste (C & DW) in embankments in the periphery of cities causes both environmental and social problems, namely erosion, deforestation, water contamination and human conflicts. One of the milestones of EU Horizon 2020 Programme is the management of waste as a resource. To achieve this purpose for C & DW, a detailed analysis of the properties of these materials should be done. In this work we report the physical, chemical and environmental properties of C & DW aggregates from 25 different origins. The results are compared with those of common natural aggregates used in construction. Assays were performed according to European Standards. Additional analysis of heavy metals and organic compounds such as polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), were performed to evaluate their environmental impact. Finally, properties of concrete prepared with C & DW aggregates are also reported. Physical analyses of C & DW aggregates indicated lower quality properties than natural aggregates, particularly for concrete preparation and unbound layers of road pavements. Chemical properties showed that most samples (80%) meet the values required by European regulations for concrete and unbound layers of road pavements. Analyses of heavy metals Cd, Cr, Cu, Pb, Ni, Mo and Zn in the C&DW leachates showed levels below the limits established by the Council Decision of 19 December 2002. Identification and quantification of PCBs and PAHs indicated that few samples shows the presence of these compounds. The measured levels of PCBs and PAHs are also below the limits. Other compounds identified in the C&DW leachates include phthalates and diphenylmethanol. In conclusion, the characterized C&DW aggregates show lower quality properties than natural aggregates but most samples showed to be environmentally safe. A continuous monitoring of the presence of heavy metals and organic compounds should be made to trial safe C&DW aggregates. C&DW aggregates provide a good economic and environmental alternative to natural aggregates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete%20preparation" title="concrete preparation">concrete preparation</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20and%20demolition%20waste" title=" construction and demolition waste"> construction and demolition waste</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20pollutants" title=" organic pollutants"> organic pollutants</a> </p> <a href="https://publications.waset.org/abstracts/28314/physical-chemical-and-environmental-properties-of-natural-and-constructiondemolition-recycled-aggregates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28314.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Sensing Endocrine Disrupting Chemicals by Virus-Based Structural Colour Nanostructure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lee%20Yujin">Lee Yujin</a>, <a href="https://publications.waset.org/abstracts/search?q=Han%20Jiye"> Han Jiye</a>, <a href="https://publications.waset.org/abstracts/search?q=Oh%20Jin-Woo"> Oh Jin-Woo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The adverse effects of endocrine disrupting chemicals (EDCs) has attracted considerable public interests. The benzene-like EDCs structure mimics the mechanisms of hormones naturally occurring in vivo, and alters physiological function of the endocrine system. Although, some of the most representative EDCs such as polychlorinated biphenyls (PCBs) and phthalates compounds already have been prohibited to produce and use in many countries, however, PCBs and phthalates in plastic products as flame retardant and plasticizer are still circulated nowadays. EDCs can be released from products while using and discarding, and it causes serious environmental and health issues. Here, we developed virus-based structurally coloured nanostructure that can detect minute EDCs concentration sensitively and selectively. These structurally coloured nanostructure exhibits characteristic angel-independent colors due to the regular virus bundle structure formation through simple pulling technique. The designed number of different colour bands can be formed through controlling concentration of virus solution and pulling speed. The virus, M-13 bacteriophage, was genetically engineered to react with specific ECDs, typically PCBs and phthalates. M-13 bacteriophage surface (pVIII major coat protein) was decorated with benzene derivative binding peptides (WHW) through phage library method. In the initial assessment, virus-based color sensor was exposed to several organic chemicals including benzene, toluene, phenol, chlorobenzene, and phthalic anhydride. Along with the selectivity evaluation of virus-based colour sensor, it also been tested for sensitivity. 10 to 300 ppm of phthalic anhydride and chlorobenzene were detected by colour sensor, and showed the significant sensitivity with about 90 of dissociation constant. Noteworthy, all measurements were analyzed through principal component analysis (PCA) and linear discrimination analysis (LDA), and exhibited clear discrimination ability upon exposure to 2 categories of EDCs (PCBs and phthalates). Because of its easy fabrication, high sensitivity, and the superior selectivity, M-13 bacteriophage-based color sensor could be a simple and reliable portable sensing system for environmental monitoring, healthcare, social security, and so on. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=M-13%20bacteriophage" title="M-13 bacteriophage">M-13 bacteriophage</a>, <a href="https://publications.waset.org/abstracts/search?q=colour%20sensor" title=" colour sensor"> colour sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20engineering" title=" genetic engineering"> genetic engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=EDCs" title=" EDCs"> EDCs</a> </p> <a href="https://publications.waset.org/abstracts/68383/sensing-endocrine-disrupting-chemicals-by-virus-based-structural-colour-nanostructure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68383.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">242</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Sertraline Chronic Exposure: Impact on Reproduction and Behavior on the Key Benthic Invertebrate Capitella teleta</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Martina%20Santobuono">Martina Santobuono</a>, <a href="https://publications.waset.org/abstracts/search?q=Wing%20Sze%20Chan"> Wing Sze Chan</a>, <a href="https://publications.waset.org/abstracts/search?q=Elettra%20D%27Amico"> Elettra D&#039;Amico</a>, <a href="https://publications.waset.org/abstracts/search?q=Henriette%20Selck"> Henriette Selck</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chemicals in modern society are fundamental in many different aspects of daily human life. We use a wide range of substances, including polychlorinated compounds, pesticides, plasticizers, and pharmaceuticals, to name a few. These compounds are excessively produced, and this has led to their introduction to the environment and food resources. Municipal and industrial effluents, landfills, and agricultural runoffs are a few examples of sources of chemical pollution. Many of these compounds, such as pharmaceuticals, have been proven to mimic or alter the performance of the hormone system, thus disrupting its normal function and altering the behavior and reproductive capability of non-target organisms. Antidepressants are pharmaceuticals commonly detected in the environment, usually in the range of ng L⁻¹ and µg L⁻¹. Since they are designed to have a biological effect at low concentrations, they might pose a risk to the native species, especially if exposure lasts for long periods. Hydrophobic antidepressants, like the selective serotonin reuptake inhibitor (SSRI) Sertraline, can sorb to the particles in the water column and eventually accumulate in the sediment compartment. Thus, deposit-feeding organisms may be at particular risk of exposure. The polychaete Capitella teleta is widespread in estuarine organically enriched sediments, being a key deposit-feeder involved in geochemistry processes happening in sediments. Since antidepressants are neurotoxic chemicals and endocrine disruptors, the aim of this work was to test if sediment-associated Sertraline impacts burrowing- and feeding behavior as well as reproduction capability in Capitella teleta in a chronic exposure set-up, which could better mimic what happens in the environment. 7 days old juveniles were selected and exposed to different concentrations of Sertraline for an entire generation until the mature stage was reached. This work was able to show that some concentrations of Sertraline altered growth and the time of first reproduction in Capitella teleta juveniles, potentially disrupting the population’s capability of survival. Acknowledgments: This Ph.D. position is part of the CHRONIC project “Chronic exposure scenarios driving environmental risks of Chemicals”, which is an Innovative Training Network (ITN) funded by the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Actions (MSCA). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antidepressants" title="antidepressants">antidepressants</a>, <a href="https://publications.waset.org/abstracts/search?q=Capitella%20teleta" title=" Capitella teleta"> Capitella teleta</a>, <a href="https://publications.waset.org/abstracts/search?q=chronic%20exposure" title=" chronic exposure"> chronic exposure</a>, <a href="https://publications.waset.org/abstracts/search?q=endocrine%20disruption" title=" endocrine disruption"> endocrine disruption</a>, <a href="https://publications.waset.org/abstracts/search?q=sublethal%20endpoints" title=" sublethal endpoints"> sublethal endpoints</a>, <a href="https://publications.waset.org/abstracts/search?q=neurotoxicity" title=" neurotoxicity"> neurotoxicity</a> </p> <a href="https://publications.waset.org/abstracts/155922/sertraline-chronic-exposure-impact-on-reproduction-and-behavior-on-the-key-benthic-invertebrate-capitella-teleta" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155922.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Organic Light Emitting Devices Based on Low Symmetry Coordination Structured Lanthanide Complexes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zubair%20Ahmed">Zubair Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrea%20Barbieri"> Andrea Barbieri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The need to reduce energy consumption has prompted a considerable research effort for developing alternative energy-efficient lighting systems to replace conventional light sources (i.e., incandescent and fluorescent lamps). Organic light emitting device (OLED) technology offers the distinctive possibility to fabricate large area flat devices by vacuum or solution processing. Lanthanide β-diketonates complexes, due to unique photophysical properties of Ln(III) ions, have been explored as emitting layers in OLED displays and in solid-state lighting (SSL) in order to achieve high efficiency and color purity. For such applications, the excellent photoluminescence quantum yield (PLQY) and stability are the two key points that can be achieved simply by selecting the proper organic ligands around the Ln ion in a coordination sphere. Regarding the strategies to enhance the PLQY, the most common is the suppression of the radiationless deactivation pathways due to the presence of high-frequency oscillators (e.g., OH, –CH groups) around the Ln centre. Recently, a different approach to maximize the PLQY of Ln(β-DKs) has been proposed (named 'Escalate Coordination Anisotropy', ECA). It is based on the assumption that coordinating the Ln ion with different ligands will break the centrosymmetry of the molecule leading to less forbidden transitions (loosening the constraints of the Laporte rule). The OLEDs based on such complexes are available, but with low efficiency and stability. In order to get efficient devices, there is a need to develop some new Ln complexes with enhanced PLQYs and stabilities. For this purpose, the Ln complexes, both visible and (NIR) emitting, of variant coordination structures based on the various fluorinated/non-fluorinated β-diketones and O/N-donor neutral ligands were synthesized using a one step in situ method. In this method, the β-diketones, base, LnCl₃.nH₂O and neutral ligands were mixed in a 3:3:1:1 M ratio in ethanol that gave air and moisture stable complexes. Further, they were characterized by means of elemental analysis, NMR spectroscopy and single crystal X-ray diffraction. Thereafter, their photophysical properties were studied to select the best complexes for the fabrication of stable and efficient OLEDs. Finally, the OLEDs were fabricated and investigated using these complexes as emitting layers along with other organic layers like NPB,N,N′-Di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine (hole-transporting layer), BCP, 2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline (hole-blocker) and Alq3 (electron-transporting layer). The layers were sequentially deposited under high vacuum environment by thermal evaporation onto ITO glass substrates. Moreover, co-deposition techniques were used to improve charge transport in the devices and to avoid quenching phenomena. The devices show strong electroluminescence at 612, 998, 1064 and 1534 nm corresponding to ⁵D₀ →⁷F₂(Eu), ²F₅/₂ → ²F₇/₂ (Yb), ⁴F₃/₂→ ⁴I₉/₂ (Nd) and ⁴I1₃/₂→ ⁴I1₅/₂ (Er). All the devices fabricated show good efficiency as well as stability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electroluminescence" title="electroluminescence">electroluminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=lanthanides" title=" lanthanides"> lanthanides</a>, <a href="https://publications.waset.org/abstracts/search?q=paramagnetic%20NMR" title=" paramagnetic NMR"> paramagnetic NMR</a>, <a href="https://publications.waset.org/abstracts/search?q=photoluminescence" title=" photoluminescence"> photoluminescence</a> </p> <a href="https://publications.waset.org/abstracts/98538/organic-light-emitting-devices-based-on-low-symmetry-coordination-structured-lanthanide-complexes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98538.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Assessing Sydney Tar Ponds Remediation and Natural Sediment Recovery in Nova Scotia, Canada</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tony%20R.%20Walker">Tony R. Walker</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Devin%20MacAskill"> N. Devin MacAskill</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20Thalhiemer"> Andrew Thalhiemer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sydney Harbour, Nova Scotia has long been subject to effluent and atmospheric inputs of metals, polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyls (PCBs) from a large coking operation and steel plant that operated in Sydney for nearly a century until closure in 1988. Contaminated effluents from the industrial site resulted in the creation of the Sydney Tar Ponds, one of Canada’s largest contaminated sites. Since its closure, there have been several attempts to remediate this former industrial site and finally, in 2004, the governments of Canada and Nova Scotia committed to remediate the site to reduce potential ecological and human health risks to the environment. The Sydney Tar Ponds and Coke Ovens cleanup project has become the most prominent remediation project in Canada today. As an integral part of remediation of the site (i.e., which consisted of solidification/stabilization and associated capping of the Tar Ponds), an extensive multiple media environmental effects program was implemented to assess what effects remediation had on the surrounding environment, and, in particular, harbour sediments. Additionally, longer-term natural sediment recovery rates of select contaminants predicted for the harbour sediments were compared to current conditions. During remediation, potential contributions to sediment quality, in addition to remedial efforts, were evaluated which included a significant harbour dredging project, propeller wash from harbour traffic, storm events, adjacent loading/unloading of coal and municipal wastewater treatment discharges. Two sediment sampling methodologies, sediment grab and gravity corer, were also compared to evaluate the detection of subtle changes in sediment quality. Results indicated that overall spatial distribution pattern of historical contaminants remains unchanged, although at much lower concentrations than previously reported, due to natural recovery. Measurements of sediment indicator parameter concentrations confirmed that natural recovery rates of Sydney Harbour sediments were in broad agreement with predicted concentrations, in spite of ongoing remediation activities. Overall, most measured parameters in sediments showed little temporal variability even when using different sampling methodologies, during three years of remediation compared to baseline, except for the detection of significant increases in total PAH concentrations noted during one year of remediation monitoring. The data confirmed the effectiveness of mitigation measures implemented during construction relative to harbour sediment quality, despite other anthropogenic activities and the dynamic nature of the harbour. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contaminated%20sediment" title="contaminated sediment">contaminated sediment</a>, <a href="https://publications.waset.org/abstracts/search?q=monitoring" title=" monitoring"> monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=recovery" title=" recovery"> recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=remediation" title=" remediation"> remediation</a> </p> <a href="https://publications.waset.org/abstracts/42968/assessing-sydney-tar-ponds-remediation-and-natural-sediment-recovery-in-nova-scotia-canada" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42968.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=polychlorinated%20biphenyl&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=polychlorinated%20biphenyl&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10