CINXE.COM

Search results for: imprinted polymers

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: imprinted polymers</title> <meta name="description" content="Search results for: imprinted polymers"> <meta name="keywords" content="imprinted polymers"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="imprinted polymers" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="imprinted polymers"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 687</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: imprinted polymers</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">687</span> Perspective for the Creation of Molecular Imprinted Polymers from Coal Waste</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alma%20Khasenovna%20Zhakina">Alma Khasenovna Zhakina</a>, <a href="https://publications.waset.org/abstracts/search?q=Arnt%20Oxana%20Vasilievna"> Arnt Oxana Vasilievna</a>, <a href="https://publications.waset.org/abstracts/search?q=Vasilets%20Evgeny%20Petrovich"> Vasilets Evgeny Petrovich</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this project is to develop methods for obtaining new molecularly imprinted polymers from coal waste to study their structure, structural and morphological features and properties. Recently, the development of molecularly imprinted polymers has become one of the hot topics for researchers. Modern research indicates the broad prospects of rapidly developing molecular imprinting technologies for creating a new generation of sorption materials. The attractiveness of this area of research lies in the fact that the use of imprinted polymers is not limited to scientific research; they are already being introduced in the chemical, pharmaceutical and biotechnological industries, primarily at the stages of purification of the final product. For the use of molecularly imprinted polymers in the development of sorption material, their ability to selectively remove pollutants, including trace concentrations, is of fundamental importance, and the exceptional stability of polymeric materials under harsh conditions makes it possible to simplify the process of water purification as a whole. The scientific and technical effect is associated with the development of technologies for the production of new molecularly imprinted polymers, the establishment of optimal conditions for their production and the creation of effective imprinted sorbents on their basis for wastewater treatment from heavy metals. The social effect is due to the fact that the use of coal waste as a feedstock for the production of imprinted sorbents will make it possible in the future to create new industries with additional jobs and obtain competitive multi-purpose products. The economic and multiplier effect is associated with the low cost of the final product due to the involvement of local coal waste in the production, reduction of transport, customs and other costs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=imprinted%20polymers" title="imprinted polymers">imprinted polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=coal%20waste" title=" coal waste"> coal waste</a>, <a href="https://publications.waset.org/abstracts/search?q=polymerization" title=" polymerization"> polymerization</a>, <a href="https://publications.waset.org/abstracts/search?q=template" title=" template"> template</a>, <a href="https://publications.waset.org/abstracts/search?q=customized%20sorbents" title=" customized sorbents"> customized sorbents</a> </p> <a href="https://publications.waset.org/abstracts/172852/perspective-for-the-creation-of-molecular-imprinted-polymers-from-coal-waste" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172852.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">686</span> Synthesis and Characterization of Molecularly Imprinted Polymer as a New Adsorbent for the Removal of Pyridine from Organic Medium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Opeyemi%20Elujulo">Opeyemi Elujulo</a>, <a href="https://publications.waset.org/abstracts/search?q=Aderonke%20Okoya"> Aderonke Okoya</a>, <a href="https://publications.waset.org/abstracts/search?q=Kehinde%20Awokoya"> Kehinde Awokoya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Molecularly imprinted polymers (MIP) for the adsorption of pyridine (PYD) was obtained from PYD (the template), styrene (the functional monomer), divinyl benzene (the crosslinker), benzoyl peroxide (the initiator), and water (the porogen). When the template was removed by solvent extraction, imprinted binding sites were left in the polymer material that are capable of selectively rebinding the target molecule. The material was characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry. Batch adsorption experiments were performed to study the adsorption of the material in terms of adsorption kinetics, isotherms, and thermodynamic parameters. The results showed that the imprinted polymer exhibited higher affinity for PYD compared to non-imprinted polymer (NIP). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=molecularly%20imprinted%20polymer" title="molecularly imprinted polymer">molecularly imprinted polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=bulk%20polymerization" title=" bulk polymerization"> bulk polymerization</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20pollutant" title=" environmental pollutant"> environmental pollutant</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a> </p> <a href="https://publications.waset.org/abstracts/129920/synthesis-and-characterization-of-molecularly-imprinted-polymer-as-a-new-adsorbent-for-the-removal-of-pyridine-from-organic-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129920.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">685</span> Development of an Aptamer-Molecularly Imprinted Polymer Based Electrochemical Sensor to Detect Pathogenic Bacteria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meltem%20Agar">Meltem Agar</a>, <a href="https://publications.waset.org/abstracts/search?q=Maisem%20Laabei"> Maisem Laabei</a>, <a href="https://publications.waset.org/abstracts/search?q=Hannah%20Leese"> Hannah Leese</a>, <a href="https://publications.waset.org/abstracts/search?q=Pedro%20Estrela"> Pedro Estrela</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pathogenic bacteria and the diseases they cause have become a global problem. Their early detection is vital and can only be possible by detecting the bacteria causing the disease accurately and rapidly. Great progress has been made in this field with the use of biosensors. Molecularly imprinted polymers have gain broad interest because of their excellent properties over natural receptors, such as being stable in a variety of conditions, inexpensive, biocompatible and having long shelf life. These properties make molecularly imprinted polymers an attractive candidate to be used in biosensors. In this study it is aimed to produce an aptamer-molecularly imprinted polymer based electrochemical sensor by utilizing the properties of molecularly imprinted polymers coupled with the enhanced specificity offered by DNA aptamers. These ‘apta-MIP’ sensors were used for the detection of Staphylococcus aureus and Escherichia coli. The experimental parameters for the fabrication of sensor were optimized, and detection of the bacteria was evaluated via Electrochemical Impedance Spectroscopy. Sensitivity and selectivity experiments were conducted. Furthermore, molecularly imprinted polymer only and aptamer only electrochemical sensors were produced separately, and their performance were compared with the electrochemical sensor produced in this study. Aptamer-molecularly imprinted polymer based electrochemical sensor showed good sensitivity and selectivity in terms of detection of Staphylococcus aureus and Escherichia coli. The performance of the sensor was assessed in buffer solution and tap water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aptamer" title="aptamer">aptamer</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20sensor" title=" electrochemical sensor"> electrochemical sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=staphylococcus%20aureus" title=" staphylococcus aureus"> staphylococcus aureus</a>, <a href="https://publications.waset.org/abstracts/search?q=molecularly%20imprinted%20polymer" title=" molecularly imprinted polymer"> molecularly imprinted polymer</a> </p> <a href="https://publications.waset.org/abstracts/171368/development-of-an-aptamer-molecularly-imprinted-polymer-based-electrochemical-sensor-to-detect-pathogenic-bacteria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171368.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">684</span> Synthesis of Ion Imprinted Polymer for Removal of Chromium(III) Ion in Environmental Samples </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elham%20Moniri">Elham Moniri</a>, <a href="https://publications.waset.org/abstracts/search?q=Zohre%20Moradi"> Zohre Moradi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, ion imprinted poly urea-formaldehyde was prepared. The morphology imprinted polymer was studied by scanning electron microscopy. Then, the effects of various parameters on Cr(III) sorption such as pH, contact time were investigated. The optimum pH value for sorption of Cr(III) was 6. The sorption capacity of imprinted poly urea-formaldehyde for Cr(III) were 4 mg.g−1. A Cr(III) removal of 97-98% was obtained. The profile of Cr(III) uptake on this sorbent reflects good accessibility of the chelating sites in the imprinted poly urea-formaldehyde. The developed method was utilized for determination of Cr(III) in environmental water samples by flame atomic absorption spectrometry with satisfactory results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chromium%20ion" title="chromium ion">chromium ion</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20sample" title=" environmental sample"> environmental sample</a>, <a href="https://publications.waset.org/abstracts/search?q=elimination" title=" elimination"> elimination</a>, <a href="https://publications.waset.org/abstracts/search?q=imprinted%20poly%20urea-formaldehyde" title=" imprinted poly urea-formaldehyde"> imprinted poly urea-formaldehyde</a>, <a href="https://publications.waset.org/abstracts/search?q=polymeric%20sorbent" title=" polymeric sorbent"> polymeric sorbent</a> </p> <a href="https://publications.waset.org/abstracts/35358/synthesis-of-ion-imprinted-polymer-for-removal-of-chromiumiii-ion-in-environmental-samples" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35358.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">683</span> Adsorption and Selective Determination Ametryne in Food Sample Using of Magnetically Separable Molecular Imprinted Polymers </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sajjad%20Hussain">Sajjad Hussain</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabir%20Khan"> Sabir Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Del%20Pilar%20Taboada%20Sotomayor"> Maria Del Pilar Taboada Sotomayor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work demonstrates the synthesis of magnetic molecularly imprinted polymers (MMIPs) for determination of a selected pesticide (ametryne) using high performance liquid chromatography (HPLC). Computational simulation can assist the choice of the most suitable monomer for the synthesis of polymers. The (MMIPs) were polymerized at the surface of Fe3O4@SiO2 magnetic nanoparticles (MNPs) using 2-vinylpyradine as functional monomer, ethylene-glycol-dimethacrylate (EGDMA) is a cross-linking agent and 2,2-Azobisisobutyronitrile (AIBN) used as radical initiator. Magnetic non-molecularly imprinted polymer (MNIPs) was also prepared under the same conditions without analyte. The MMIPs were characterized by scanning electron microscopy (SEM), Brunauer, Emmett and Teller (BET) and Fourier transform infrared spectroscopy (FTIR). Pseudo first order and pseudo second order model were applied to study kinetics of adsorption and it was found that adsorption process followed the pseudo first order kinetic model. Adsorption equilibrium data was fitted to Freundlich and Langmuir isotherms and the sorption equilibrium process was well described by Langmuir isotherm mode. The selectivity coefficients (α) of MMIPs for ametryne with respect to atrazine, ciprofloxacin and folic acid were 4.28, 12.32, and 14.53 respectively. The spiked recoveries ranged between 91.33 and 106.80% were obtained. The results showed high affinity and selectivity of MMIPs for pesticide ametryne in the food samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=molecularly%20imprinted%20polymer" title="molecularly imprinted polymer">molecularly imprinted polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=pesticides" title=" pesticides"> pesticides</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20nanoparticles" title=" magnetic nanoparticles"> magnetic nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a> </p> <a href="https://publications.waset.org/abstracts/21370/adsorption-and-selective-determination-ametryne-in-food-sample-using-of-magnetically-separable-molecular-imprinted-polymers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21370.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">486</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">682</span> Use of Magnetically Separable Molecular Imprinted Polymers for Determination of Pesticides in Food Samples</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sabir%20Khan">Sabir Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sajjad%20Hussain"> Sajjad Hussain</a>, <a href="https://publications.waset.org/abstracts/search?q=Ademar%20Wong"> Ademar Wong</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Del%20Pilar%20Taboada%20Sotomayor"> Maria Del Pilar Taboada Sotomayor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work aims to develop magnetic molecularly imprinted polymers (MMIPs) for determination of a selected pesticide (ametryne) using high-performance liquid chromatography (HPLC). Computational simulation can assist the choice of the most suitable monomer for the synthesis of polymers. The (MMIPs) were polymerized at the surface of Fe3O4@SiO2 magnetic nanoparticles (MNPs) using 2-vinylpyradine as functional monomer, ethylene-glycol-dimethacrylate (EGDMA) is a cross-linking agent and 2,2-Azobisisobutyronitrile (AIBN) used as radical initiator. Magnetic non-molecularly imprinted polymer (MNIPs) was also prepared under the same conditions without analyte. The MMIPs were characterized by scanning electron microscopy (SEM), Brunauer, Emmett and Teller (BET) and Fourier transform infrared spectroscopy (FTIR). Pseudo first-order and pseudo second order model were applied to study kinetics of adsorption and it was found that adsorption process followed the pseudo-first-order kinetic model. Adsorption equilibrium data was fitted to Freundlich and Langmuir isotherms and the sorption equilibrium process was well described by Langmuir isotherm mode. The selectivity coefficients (α) of MMIPs for ametryne with respect to atrazine, ciprofloxacin and folic acid were 4.28, 12.32 and 14.53 respectively. The spiked recoveries ranged between 91.33 and 106.80% were obtained. The results showed high affinity and selectivity of MMIPs for pesticide ametryne in the food samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=molecularly%20imprinted%20polymer" title="molecularly imprinted polymer">molecularly imprinted polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=pesticides" title=" pesticides"> pesticides</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20nanoparticles" title=" magnetic nanoparticles"> magnetic nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a> </p> <a href="https://publications.waset.org/abstracts/20912/use-of-magnetically-separable-molecular-imprinted-polymers-for-determination-of-pesticides-in-food-samples" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20912.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">466</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">681</span> A Multi-Templated Fe-Ni-Cu Ion Imprinted Polymer for the Selective and Simultaneous Removal of Toxic Metallic Ions from Wastewater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Morlu%20Stevens">Morlu Stevens</a>, <a href="https://publications.waset.org/abstracts/search?q=Bareki%20Batlokwa"> Bareki Batlokwa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of treated wastewater is widely employed to compensate for the scarcity of safe and uncontaminated freshwater. However, the existence of toxic heavy metal ions in the wastewater pose a health hazard to animals and the environment, hence, the importance for an effective technique to tackle the challenge. A multi-templated ion imprinted sorbent (Fe,Ni,Cu-IIP) for the simultaneous removal of heavy metal ions from waste water was synthesised employing molecular imprinting technology (MIT) via thermal free radical bulk polymerization technique. Methacrylic acid (MAA) was employed as the functional monomer, and ethylene glycol dimethylacrylate (EGDMA) as cross-linking agent, azobisisobutyronitrile (AIBN) as the initiator, Fe, Ni, Cu ions as template ions, and 1,10-phenanthroline as the complexing agent. The template ions were exhaustively washed off the synthesized polymer by solvent extraction in several washing steps, while periodically increasing solvent (HCl) concentration from 1.0 M to 10.0 M. The physical and chemical properties of the sorbents were investigated using Fourier Transform Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD) and Atomic Force Microscopy (AFM) were employed. Optimization of operational parameters such as time, pH and sorbent dosage to evaluate the effectiveness of sorbents were investigated and found to be 15 min, 7.5 and 666.7 mg/L respectively. Selectivity of ion-imprinted polymers and competitive sorption studies between the template and similar ions were carried out and showed good selectivity towards the targeted metal ion by removing 90% - 98% of the templated ions as compared to 58% - 62% of similar ions. The sorbents were further applied for the selective removal of Fe, Ni and Cu from real wastewater samples and recoveries of 92.14 ± 0.16% - 106.09 ± 0.17% and linearities of R2 = 0.9993 - R2 = 0.9997 were achieved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ion%20imprinting" title="ion imprinting">ion imprinting</a>, <a href="https://publications.waset.org/abstracts/search?q=ion%20imprinted%20polymers" title=" ion imprinted polymers"> ion imprinted polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/58114/a-multi-templated-fe-ni-cu-ion-imprinted-polymer-for-the-selective-and-simultaneous-removal-of-toxic-metallic-ions-from-wastewater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58114.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">680</span> Determination of Cyclic Citrullinated Peptide Antibodies on Quartz Crystal Microbalance Based Nanosensors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Saylan">Y. Saylan</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Y%C4%B1lmaz"> F. Yılmaz</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Denizli"> A. Denizli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rheumatoid arthritis (RA) which is the most common autoimmune disorder of the body's own immune system attacking healthy cells. RA has both articular and systemic effects.Until now romatiod factor (RF) assay is used the most commonly diagnosed RA but it is not specific. Anti-cyclic citrullinated peptide (anti-CCP) antibodies are IgG autoantibodies which recognize citrullinated peptides and offer improved specificity in early diagnosis of RA compared to RF. Anti-CCP antibodies have specificity for the diagnosis of RA from 91 to 98% and the sensitivity rate of 41-68%. Molecularly imprinted polymers (MIP) are materials that are easy to prepare, less expensive, stable have a talent for molecular recognition and also can be manufactured in large quantities with good reproducibility. Molecular recognition-based adsorption techniques have received much attention in several fields because of their high selectivity for target molecules. Quartz crystal microbalance (QCM) is an effective, simple, inexpensive approach mass changes that can be converted into an electrical signal. The applications for specific determination of chemical substances or biomolecules, crystal electrodes, cover by the thin films for bind or adsorption of molecules. In this study, we have focused our attention on combining of molecular imprinting into nanofilms and QCM nanosensor approaches and producing QCM nanosensor for anti-CCP, chosen as a model protein, using anti-CCP imprinted nanofilms. For this aim, anti-CCP imprinted QCM nanosensor was characterized by Fourier transform infrared spectroscopy, atomic force microscopy, contact angle measurements and ellipsometry. The non-imprinted nanosensor was also prepared to evaluate the selectivity of the imprinted nanosensor. Anti-CCP imprinted QCM nanosensor was tested for real-time detection of anti-CCP from aqueous solution. The kinetic and affinity studies were determined by using anti-CCP solutions with different concentrations. The responses related with mass shifts (Δm) and frequency shifts (Δf) were used to evaluate adsorption properties and to calculate binding (Ka) and dissociation (Kd) constants. To show the selectivity of the anti-CCP imprinted QCM nanosensor, competitive adsorption of anti-CCP and IgM was investigated.The results indicate that anti-CCP imprinted QCM nanosensor has a higher adsorption capabilities for anti-CCP than for IgM, due to selective cavities in the polymer structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-CCP" title="anti-CCP">anti-CCP</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20imprinting" title=" molecular imprinting"> molecular imprinting</a>, <a href="https://publications.waset.org/abstracts/search?q=nanosensor" title=" nanosensor"> nanosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=rheumatoid%20arthritis" title=" rheumatoid arthritis"> rheumatoid arthritis</a>, <a href="https://publications.waset.org/abstracts/search?q=QCM" title=" QCM"> QCM</a> </p> <a href="https://publications.waset.org/abstracts/23259/determination-of-cyclic-citrullinated-peptide-antibodies-on-quartz-crystal-microbalance-based-nanosensors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23259.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">679</span> Molecularly Imprinted Polymer and Computational Study of (E)-2-Cyano-3-(Dimethylamino)-N-(2,4-Dioxo-1,2,3,4-Tetrahydropyrimidin-5-Yl)Acrylam-Ide and Its Applications in Industrial Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asmaa%20M.%20Fahim">Asmaa M. Fahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this investigation, the (E)-2-cyano-3-(dimethylamino)-N-(2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)acrylam-ide (4) which used TAM as a template which interacts with Methacrylic Acid (MAA) monomer, in the presence of CH₃CN as progen. The TAM-MMA complex interactions are dependent on stable hydrogen bonding interaction between the carboxylic acid group of TAM(Template) and the hydroxyl group of MMA(methyl methacrylate) with minimal interference of porogen CH₃CN. The physical computational studies were used to optimize their structures and frequency calculations. The binding energies between TAM with different monomers showed the most stable molar ratio of 1:4, which was confirmed through experimental analysis. The optimized polymers were investigated in industrial applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=molecular%20imprinted%20polymer" title="molecular imprinted polymer">molecular imprinted polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20studies" title=" computational studies"> computational studies</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20analysis" title=" spectral analysis"> spectral analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20applications" title=" industrial applications"> industrial applications</a> </p> <a href="https://publications.waset.org/abstracts/115228/molecularly-imprinted-polymer-and-computational-study-of-e-2-cyano-3-dimethylamino-n-24-dioxo-1234-tetrahydropyrimidin-5-ylacrylam-ide-and-its-applications-in-industrial-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115228.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">678</span> Consequence of Multi-Templating of Closely Related Structural Analogues on a Chitosan-Methacryllic Acid Molecularly Imprinted Polymer Matrix-Thermal and Chromatographic Traits</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.Ofoegbu">O.Ofoegbu</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Roongnapa"> S. Roongnapa</a>, <a href="https://publications.waset.org/abstracts/search?q=A.N.%20Eboatu"> A.N. Eboatu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most polluted environments, most challengingly, aerosol types, contain a cocktail of different toxicants. Multi-templating of matrices have been the recent target by researchers in a bid to solving complex mixed-toxicant challenges using single or common remediation systems. This investigation looks at the effect of such multi-templated system vis-a-vis the synthesis by non-covalent interaction, of a molecularly imprinted polymer architecture using nicotine and its structural analogue Phenylalanine amide individually and, in the blend, (50:50), as template materials in a Chitosan-Methacrylic acid functional monomer matrix. The temperature for polymerization is 60OC and time for polymerization, 12hrs (water bath heating), 4mins for (microwave heating). The characteristic thermal properties of the molecularly imprinted materials are investigated using Simultaneous Thermal Analysis (STA) profiling, while the absorption and separation efficiencies based on the relative retention times and peak areas of templates were studied amongst other properties. Transmission Electron Microscopy (TEM) results obtained, show the creation of heterogeneous nanocavities, regardless, the introduction of Caffeine a close structural analogue presented near-zero perfusion. This confirms the selectivity and specificity of the templated polymers despite its dual-templated nature. The STA results presented the materials as having decomposition temperatures above 250OC and a relative loss in mass of less than19% over a period within 50mins of heating. Consequent to this outcome, multi-templated systems can be fabricated to sequester specifically and selectively targeted toxicants in a mixed toxicant populated system effectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chitosan" title="chitosan">chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=dual-templated" title=" dual-templated"> dual-templated</a>, <a href="https://publications.waset.org/abstracts/search?q=methacrylic%20acid" title=" methacrylic acid"> methacrylic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed-toxicants" title=" mixed-toxicants"> mixed-toxicants</a>, <a href="https://publications.waset.org/abstracts/search?q=molecularly-imprinted-polymer" title=" molecularly-imprinted-polymer"> molecularly-imprinted-polymer</a> </p> <a href="https://publications.waset.org/abstracts/94989/consequence-of-multi-templating-of-closely-related-structural-analogues-on-a-chitosan-methacryllic-acid-molecularly-imprinted-polymer-matrix-thermal-and-chromatographic-traits" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94989.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">677</span> Extraction and Quantification of Triclosan in Wastewater Samples Using Molecularly Imprinted Membrane Adsorbent</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siyabonga%20Aubrey%20Mhlongo">Siyabonga Aubrey Mhlongo</a>, <a href="https://publications.waset.org/abstracts/search?q=Linda%20Lunga%20Sibali"> Linda Lunga Sibali</a>, <a href="https://publications.waset.org/abstracts/search?q=Phumlane%20Selby%20Mdluli"> Phumlane Selby Mdluli</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Papoh%20Ndibewu"> Peter Papoh Ndibewu</a>, <a href="https://publications.waset.org/abstracts/search?q=Kholofelo%20Clifford%20Malematja"> Kholofelo Clifford Malematja</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reports on the successful extraction and quantification of an antibacterial and antifungal agent present in some consumer products (Triclosan: C₁₂H₇Cl₃O₂)generally found in wastewater or effluents using molecularly imprinted membrane adsorbent (MIMs) followed by quantification and removal on a high-performance liquid chromatography (HPLC). Triclosan is an antibacterial and antifungal agent present in some consumer products like toothpaste, soaps, detergents, toys, and surgical cleaning treatments. The MIMs was fabricated usingpolyvinylidene fluoride (PVDF) polymer with selective micro composite particles known as molecularly imprinted polymers (MIPs)via a phase inversion by immersion precipitation technique. This resulted in an improved hydrophilicity and mechanical behaviour of the membranes. Wastewater samples were collected from the Umbogintwini Industrial Complex (UIC) (south coast of Durban, KwaZulu-Natal in South Africa). central UIC effluent treatment plant and pre-treated before analysis. Experimental parameters such as sample size, contact time, stirring speed were optimised. The resultant MIMs had an adsorption efficiency of 97% of TCS with reference to NIMs and bare membrane, which had 92%, 88%, respectively. The analytical method utilized in this review had limits of detection (LoD) and limits of quantification (LoQ) of 0.22, 0.71µgL-1 in wastewater effluent, respectively. The percentage recovery for the effluent samples was 68%. The detection of TCS was monitored for 10 consecutive days, where optimum TCS traces detected in the treated wastewater was 55.0μg/L inday 9 of the monitored days, while the lowest detected was 6.0μg/L. As the concentrations of analytefound in effluent water samples were not so diverse, this study suggested that MIMs could be the best potential adsorbent for the development and continuous progress in membrane technologyand environmental sciences, lending its capability to desalination. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=molecularly%20imprinted%20membrane" title="molecularly imprinted membrane">molecularly imprinted membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=triclosan" title=" triclosan"> triclosan</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20inversion" title=" phase inversion"> phase inversion</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/151834/extraction-and-quantification-of-triclosan-in-wastewater-samples-using-molecularly-imprinted-membrane-adsorbent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151834.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">676</span> Generating a Multiplex Sensing Platform for the Accurate Diagnosis of Sepsis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Demertzis">N. Demertzis</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20L.%20Bowen"> J. L. Bowen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sepsis is a complex and rapidly evolving condition, resulting from uncontrolled prolonged activation of host immune system due to pathogenic insult. The aim of this study is the development of a multiplex electrochemical sensing platform, capable of detecting both pathogen associated and host immune markers to enable the rapid and definitive diagnosis of sepsis. A combination of aptamers and molecular imprinting approaches have been employed to generate sensing systems for lipopolysaccharide (LPS), c-reactive protein (CRP) and procalcitonin (PCT). Gold working electrodes were mechanically polished and electrochemically cleaned with 0.1 M sulphuric acid using cyclic voltammetry (CV). Following activation, a self-assembled monolayer (SAM) was generated, by incubating the electrodes with a thiolated anti-LPS aptamer / dithiodibutiric acid (DTBA) mixture (1:20). 3-aminophenylboronic acid (3-APBA) in combination with the anti-LPS aptamer was used for the development of the hybrid molecularly imprinted sensor (apta-MIP). Aptasensors, targeting PCT and CRP were also fabricated, following the same approach as in the case of LPS, with mercaptohexanol (MCH) replacing DTBA. In the case of the CRP aptasensor, the SAM was formed following incubation of a 1:1 aptamer: MCH mixture. However, in the case of PCT, the SAM was formed with the aptamer itself, with subsequent backfilling with 1 μM MCH. The binding performance of all systems has been evaluated using electrochemical impedance spectroscopy. The apta-MIP’s polymer thickness is controlled by varying the number of electropolymerisation cycles. In the ideal number of polymerisation cycles, the polymer must cover the electrode surface and create a binding pocket around LPS and its aptamer binding site. Less polymerisation cycles will create a hybrid system which resembles an aptasensor, while more cycles will be able to cover the complex and demonstrate a bulk polymer-like behaviour. Both aptasensor and apta-MIP were challenged with LPS and compared to conventional imprinted (absence of aptamer from the binding site, polymer formed in presence of LPS) and non-imprinted polymers (NIPS, absence of LPS whilst hybrid polymer is formed). A stable LPS aptasensor, capable of detecting down to 5 pg/ml of LPS was generated. The apparent Kd of the system was estimated at 17 pM, with a Bmax of approximately 50 pM. The aptasensor demonstrated high specificity to LPS. The apta-MIP demonstrated superior recognition properties with a limit of detection of 1 fg/ml and a Bmax of 100 pg/ml. The CRP and PCT aptasensors were both able to detect down to 5 pg/ml. Whilst full binding performance is currently being evaluated, there is none of the sensors demonstrate cross-reactivity towards LPS, CRP or PCT. In conclusion, stable aptasensors capable of detecting LPS, PCT and CRP at low concentrations have been generated. The realisation of a multiplex panel such as described herein, will effectively contribute to the rapid, personalised diagnosis of sepsis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aptamer" title="aptamer">aptamer</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20impedance%20spectroscopy" title=" electrochemical impedance spectroscopy"> electrochemical impedance spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=molecularly%20imprinted%20polymers" title=" molecularly imprinted polymers"> molecularly imprinted polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=sepsis" title=" sepsis"> sepsis</a> </p> <a href="https://publications.waset.org/abstracts/99827/generating-a-multiplex-sensing-platform-for-the-accurate-diagnosis-of-sepsis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99827.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">675</span> Efficiency of a Molecularly Imprinted Polymer for Selective Removal of Chlorpyrifos from Water Samples</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oya%20A.%20Urucu">Oya A. Urucu</a>, <a href="https://publications.waset.org/abstracts/search?q=Asl%C4%B1%20B.%20%C3%87i%C4%9Fil"> Aslı B. Çiğil</a>, <a href="https://publications.waset.org/abstracts/search?q=Hatice%20Birtane"> Hatice Birtane</a>, <a href="https://publications.waset.org/abstracts/search?q=Ece%20K.%20Yetimo%C4%9Flu"> Ece K. Yetimoğlu</a>, <a href="https://publications.waset.org/abstracts/search?q=Memet%20Vezir%20Kahraman"> Memet Vezir Kahraman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chlorpyrifos is an organophosphorus pesticide which can be found in environmental water samples. The efficiency and reuse of a molecularly imprinted polymer (chlorpyrifos - MIP) were investigated for the selective removal of chlorpyrifos residues. MIP was prepared with UV curing thiol-ene polymerization technology by using multifunctional thiol and ene monomers. The thiol-ene curing reaction is a radical induced process, however unlike other photoinitiated polymerization processes, this polymerization process is a free-radical reaction that proceeds by a step-growth mechanism, involving two main steps; a free-radical addition followed by a chain transfer reaction. It assures a very rapidly formation of a uniform crosslinked network with low shrinkage, reduced oxygen inhibition during curing and excellent adhesion. In this study, thiol-ene based UV-curable polymeric materials were prepared by mixing pentaerythritol tetrakis(3-mercaptopropionate), glyoxal bis diallyl acetal, polyethylene glycol diacrylate (PEGDA) and photoinitiator. Chlorpyrifos was added at a definite ratio to the prepared formulation. Chemical structure and thermal properties were characterized by FTIR and thermogravimetric analysis (TGA), respectively. The pesticide analysis was performed by gas chromatography-mass spectrometry (GC-MS). The influences of some analytical parameters such as pH, sample volume, amounts of analyte concentration were studied for the quantitative recoveries of the analyte. The proposed MIP method was applied to the determination of chlorpyrifos in river and tap water samples. The use of the MIP provided a selective and easy solution for removing chlorpyrifos from the water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=molecularly%20imprinted%20polymers" title="molecularly imprinted polymers">molecularly imprinted polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=selective%20removal" title=" selective removal"> selective removal</a>, <a href="https://publications.waset.org/abstracts/search?q=thilol-ene" title=" thilol-ene"> thilol-ene</a>, <a href="https://publications.waset.org/abstracts/search?q=uv-curable%20polymer" title=" uv-curable polymer"> uv-curable polymer</a> </p> <a href="https://publications.waset.org/abstracts/44897/efficiency-of-a-molecularly-imprinted-polymer-for-selective-removal-of-chlorpyrifos-from-water-samples" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44897.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">674</span> Improving Binding Selectivity in Molecularly Imprinted Polymers from Templates of Higher Biomolecular Weight: An Application in Cancer Targeting and Drug Delivery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ben%20Otange">Ben Otange</a>, <a href="https://publications.waset.org/abstracts/search?q=Wolfgang%20Parak"> Wolfgang Parak</a>, <a href="https://publications.waset.org/abstracts/search?q=Florian%20Schulz"> Florian Schulz</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Alexander%20Rubhausen"> Michael Alexander Rubhausen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The feasibility of extending the usage of molecular imprinting technique in complex biomolecules is demonstrated in this research. This technique is promising in diverse applications in areas such as drug delivery, diagnosis of diseases, catalysts, and impurities detection as well as treatment of various complications. While molecularly imprinted polymers MIP remain robust in the synthesis of molecules with remarkable binding sites that have high affinities to specific molecules of interest, extending the usage to complex biomolecules remains futile. This work reports on the successful synthesis of MIP from complex proteins: BSA, Transferrin, and MUC1. We show in this research that despite the heterogeneous binding sites and higher conformational flexibility of the chosen proteins, relying on their respective epitopes and motifs rather than the whole template produces highly sensitive and selective MIPs for specific molecular binding. Introduction: Proteins are vital in most biological processes, ranging from cell structure and structural integrity to complex functions such as transport and immunity in biological systems. Unlike other imprinting templates, proteins have heterogeneous binding sites in their complex long-chain structure, which makes their imprinting to be marred by challenges. In addressing this challenge, our attention is inclined toward the targeted delivery, which will use molecular imprinting on the particle surface so that these particles may recognize overexpressed proteins on the target cells. Our goal is thus to make surfaces of nanoparticles that specifically bind to the target cells. Results and Discussions: Using epitopes of BSA and MUC1 proteins and motifs with conserved receptors of transferrin as the respective templates for MIPs, significant improvement in the MIP sensitivity to the binding of complex protein templates was noted. Through the Fluorescence Correlation Spectroscopy FCS measurements on the size of protein corona after incubation of the synthesized nanoparticles with proteins, we noted a high affinity of MIPs to the binding of their respective complex proteins. In addition, quantitative analysis of hard corona using SDS-PAGE showed that only a specific protein was strongly bound on the respective MIPs when incubated with similar concentrations of the protein mixture. Conclusion: Our findings have shown that the merits of MIPs can be extended to complex molecules of higher biomolecular mass. As such, the unique merits of the technique, including high sensitivity and selectivity, relative ease of synthesis, production of materials with higher physical robustness, and higher stability, can be extended to more templates that were previously not suitable candidates despite their abundance and usage within the body. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=molecularly%20imprinted%20polymers" title="molecularly imprinted polymers">molecularly imprinted polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20binding" title=" specific binding"> specific binding</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20delivery" title=" drug delivery"> drug delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20biomolecular%20mass-templates" title=" high biomolecular mass-templates"> high biomolecular mass-templates</a> </p> <a href="https://publications.waset.org/abstracts/183240/improving-binding-selectivity-in-molecularly-imprinted-polymers-from-templates-of-higher-biomolecular-weight-an-application-in-cancer-targeting-and-drug-delivery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183240.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">55</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">673</span> Chromatographic Preparation and Performance on Zinc Ion Imprinted Monolithic Column and Its Adsorption Property</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=X.%20Han">X. Han</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Duan"> S. Duan</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Liu"> C. Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Zhou"> C. Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Zhu"> W. Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Kong"> L. Kong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ionic imprinting technique refers to the three-dimensional rigid structure with the fixed pore sizes, which was formed by the binding interactions of ions and functional monomers and used ions as the template, it has a high level of recognition to the ionic template. The preparation of monolithic column by the in-situ polymerization need to put the compound of template, functional monomers, cross-linking agent and initiating agent into the solution, dissolve it and inject to the column tube, and then the compound will have a polymerization reaction at a certain temperature, after the synthetic reaction, we washed out the unread template and solution. The monolithic columns are easy to prepare, low consumption and cost-effective with fast mass transfer, besides, they have many chemical functions. But the monolithic columns have some problems in the practical application, such as low-efficiency, quantitative analysis cannot be performed accurately because of the peak shape is wide and has tailing phenomena; the choice of polymerization systems is limited and the lack of theoretical foundations. Thus the optimization of components and preparation methods is an important research direction. During the preparation of ionic imprinted monolithic columns, pore-forming agent can make the polymer generate the porous structure, which can influence the physical properties of polymer, what’ s more, it can directly decide the stability and selectivity of polymerization reaction. The compounds generated in the pre-polymerization reaction could directly decide the identification and screening capabilities of imprinted polymer; thus the choice of pore-forming agent is quite critical in the preparation of imprinted monolithic columns. This article mainly focuses on the research that when using different pore-forming agents, the impact of zinc ion imprinted monolithic column on the enrichment performance of zinc ion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20performance%20liquid%20chromatography%20%28HPLC%29" title="high performance liquid chromatography (HPLC)">high performance liquid chromatography (HPLC)</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20imprinting" title=" ionic imprinting"> ionic imprinting</a>, <a href="https://publications.waset.org/abstracts/search?q=monolithic%20column" title=" monolithic column"> monolithic column</a>, <a href="https://publications.waset.org/abstracts/search?q=pore-forming%20agent" title=" pore-forming agent"> pore-forming agent</a> </p> <a href="https://publications.waset.org/abstracts/82128/chromatographic-preparation-and-performance-on-zinc-ion-imprinted-monolithic-column-and-its-adsorption-property" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82128.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">672</span> A Sensitive Approach on Trace Analysis of Methylparaben in Wastewater and Cosmetic Products Using Molecularly Imprinted Polymer </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soukaina%20Motia">Soukaina Motia</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadia%20El%20Alami%20El%20Hassani"> Nadia El Alami El Hassani</a>, <a href="https://publications.waset.org/abstracts/search?q=Alassane%20Diouf"> Alassane Diouf</a>, <a href="https://publications.waset.org/abstracts/search?q=Benachir%20Bouchikhi"> Benachir Bouchikhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nezha%20El%20Bari"> Nezha El Bari </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Parabens are the antimicrobial molecules largely used in cosmetic products as a preservative agent. Among them, the methylparaben (MP) is the most frequently used ingredient in cosmetic preparations. Nevertheless, their potential dangers led to the development of sensible and reliable methods for their determination in environmental samples. Firstly, a sensitive and selective molecular imprinted polymer (MIP) based on screen-printed gold electrode (Au-SPE), assembled on a polymeric layer of carboxylated poly(vinyl-chloride) (PVC-COOH), was developed. After the template removal, the obtained material was able to rebind MP and discriminate it among other interfering species such as glucose, sucrose, and citric acid. The behavior of molecular imprinted sensor was characterized by Cyclic Voltammetry (CV), Differential Pulse Voltammetry (DPV) and Electrochemical Impedance Spectroscopy (EIS) techniques. Then, the biosensor was found to have a linear detection range from 0.1 pg.mL<sup>-1</sup> to 1 ng.mL<sup>-1</sup> and a low limit of detection of 0.12 fg.mL<sup>-1</sup> and 5.18 pg.mL<sup>-1</sup> by DPV and EIS, respectively. For applications, this biosensor was employed to determine MP content in four wastewaters in Meknes city and two cosmetic products (shower gel and shampoo). The operational reproducibility and stability of this biosensor were also studied. Secondly, another MIP biosensor based on tungsten trioxide (WO<sub>3</sub>) functionalized by gold nanoparticles (Au-NPs) assembled on a polymeric layer of PVC-COOH was developed. The main goal was to increase the sensitivity of the biosensor. The developed MIP biosensor was successfully applied for the MP determination in wastewater samples and cosmetic products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cosmetic%20products" title="cosmetic products">cosmetic products</a>, <a href="https://publications.waset.org/abstracts/search?q=methylparaben" title=" methylparaben"> methylparaben</a>, <a href="https://publications.waset.org/abstracts/search?q=molecularly%20imprinted%20polymer" title=" molecularly imprinted polymer"> molecularly imprinted polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/65699/a-sensitive-approach-on-trace-analysis-of-methylparaben-in-wastewater-and-cosmetic-products-using-molecularly-imprinted-polymer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65699.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">671</span> Fabrication of a New Electrochemical Sensor Based on New Nanostructured Molecularly Imprinted Polypyrrole for Selective and Sensitive Determination of Morphine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samaneh%20Nabavi">Samaneh Nabavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadi%20Shirzad"> Hadi Shirzad</a>, <a href="https://publications.waset.org/abstracts/search?q=Arash%20Ghoorchian"> Arash Ghoorchian</a>, <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Shanesaz"> Maryam Shanesaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Naderi"> Reza Naderi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Morphine (MO), the most effective painkiller, is considered the reference by which analgesics are assessed. It is very necessary for the biomedical applications to detect and maintain the MO concentrations in the blood and urine with in safe ranges. To date, there are many expensive techniques for detecting MO. Recently, many electrochemical sensors for direct determination of MO were constructed. The molecularly imprinted polymer (MIP) is a polymeric material, which has a built-in functionality for the recognition of a particular chemical substance with its complementary cavity.This paper reports a sensor for MO using a combination of a molecularly imprinted polymer (MIP) and differential-pulse voltammetry (DPV). Electropolymerization of MO doped polypyrrole yielded poor quality, but a well-doped, nanostructure and increased impregnation has been obtained in the pH=12. Above a pH of 11, MO is in the anionic forms. The effect of various experimental parameters including pH, scan rate and accumulation time on the voltammetric response of MO was investigated. At the optimum conditions, the concentration of MO was determined using DPV in a linear range of 7.07 × 10−6 to 2.1 × 10−4 mol L−1 with a correlation coefficient of 0.999, and a detection limit of 13.3 × 10-8 mol L−1, respectively. The effect of common interferences on the current response of MO namely ascorbic acid (AA) and uric acid (UA) is studied. The modified electrode can be used for the determination of MO spiked into urine samples, and excellent recovery results were obtained. The nanostructured polypyrrole films were characterized by field emission scanning electron microscopy (FESEM) and furrier transforms infrared (FTIR). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=morphine%20detection" title="morphine detection">morphine detection</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor" title=" sensor"> sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=polypyrrole" title=" polypyrrole"> polypyrrole</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructure" title=" nanostructure"> nanostructure</a>, <a href="https://publications.waset.org/abstracts/search?q=molecularly%20imprinted%20polymer" title=" molecularly imprinted polymer"> molecularly imprinted polymer</a> </p> <a href="https://publications.waset.org/abstracts/28071/fabrication-of-a-new-electrochemical-sensor-based-on-new-nanostructured-molecularly-imprinted-polypyrrole-for-selective-and-sensitive-determination-of-morphine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28071.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">423</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">670</span> Synthesis of MIPs towards Precursors and Intermediates of Illicit Drugs and Their following Application in Sensing Unit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Graniczkowska">K. Graniczkowska</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Beloglazova"> N. Beloglazova</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20De%20Saeger"> S. De Saeger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The threat of synthetic drugs is one of the most significant current drug problems worldwide. The use of drugs of abuse has increased dramatically during the past three decades. Among others, Amphetamine-Type Stimulants (ATS) are globally the second most widely used drugs after cannabis, exceeding the use of cocaine and heroin. ATS are potent central nervous system (CNS) stimulants, capable of inducing euphoric static similar to cocaine. Recreational use of ATS is widespread, even though warnings of irreversible damage of the CNS were reported. ATS pose a big problem and their production contributes to the pollution of the environment by discharging big volumes of liquid waste to sewage system. Therefore, there is a demand to develop robust and sensitive sensors that can detect ATS and their intermediates in environmental water samples. A rapid and simple test is required. Analysis of environmental water samples (which sometimes can be a harsh environment) using antibody-based tests cannot be applied. Therefore, molecular imprinted polymers (MIPs), which are known as synthetic antibodies, have been chosen for that approach. MIPs are characterized with a high mechanical and thermal stability, show chemical resistance in a broad pH range and various organic or aqueous solvents. These properties make them the preferred type of receptors for application in the harsh conditions imposed by environmental samples. To the best of our knowledge, there are no existing MIPs-based sensors toward amphetamine and its intermediates. Also not many commercial MIPs for this application are available. Therefore, the aim of this study was to compare different techniques to obtain MIPs with high specificity towards ATS and characterize them for following use in a sensing unit. MIPs against amphetamine and its intermediates were synthesized using a few different techniques, such as electro-, thermo- and UV-initiated polymerization. Different monomers, cross linkers and initiators, in various ratios, were tested to obtain the best sensitivity and polymers properties. Subsequently, specificity and selectivity were compared with commercially available MIPs against amphetamine. Different linkers, such as lipoic acid, 3-mercaptopioponic acid and tyramine were examined, in combination with several immobilization techniques, to select the best procedure for attaching particles on sensor surface. Performed experiments allowed choosing an optimal method for the intended sensor application. Stability of MIPs in extreme conditions, such as highly acidic or basic was determined. Obtained results led to the conclusion about MIPs based sensor applicability in sewage system testing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amphetamine%20type%20stimulants" title="amphetamine type stimulants">amphetamine type stimulants</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20imprinted%20polymers" title=" molecular imprinted polymers"> molecular imprinted polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=MIPs" title=" MIPs"> MIPs</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor" title=" sensor"> sensor</a> </p> <a href="https://publications.waset.org/abstracts/44041/synthesis-of-mips-towards-precursors-and-intermediates-of-illicit-drugs-and-their-following-application-in-sensing-unit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44041.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">669</span> Synthesis of Telechelic Polymers for Asphalt Pavements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paula%20C%20Arroyo">Paula C Arroyo</a>, <a href="https://publications.waset.org/abstracts/search?q=Norma%20A%20S%C3%A1nchez"> Norma A Sánchez</a>, <a href="https://publications.waset.org/abstracts/search?q=Mikhail%20Tlenkopatchev"> Mikhail Tlenkopatchev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The continuous growth in population has resulted in an increment in road construction. The road construction requires more lasting and resistant pavements. Among the different applications of polymers, the reinforcement of pavements throw the modification of asphalt has demonstrated to be an area of special interest for new polymers. The modified asphalt should exhibit a considerable good performance, good elastic properties and an increment in the performance grade (PG). Some of the current polymers used in asphalt are styrene butadiene styrene (SBS), poly(n-butyl methacrylate)-(glycidyl methacrylate) and ethylene-vinyl acetate EVA. The goal of this study was to synthesize low molecular weight (2,000 – 150,000 D) telechelic polymers to be applied at low concentrations in asphalt in order to modify its rheological properties and make it more resistant and durable. The telechelic polymers were obtained from different molar relationships between tensioned and functionalized olefins by ring opening metathesis polymerization (ROMP) and cross metathesis (CR). The synthesis was carried out under inert conditions with Grubbs second generation catalyst. The reaction efficiency was superior to 96% and telechelic polymers were characterized. The telechelic polymers were used to modify asphalt and the rheological properties of the modified asphalt were evaluated finding that at low concentrations (1%) the PG increased in one or two degrees. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asphalt%20polymers" title="asphalt polymers">asphalt polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=metathesis%20polymers" title=" metathesis polymers"> metathesis polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=telechelic%20polymers" title=" telechelic polymers"> telechelic polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20asphalt" title=" modified asphalt"> modified asphalt</a> </p> <a href="https://publications.waset.org/abstracts/43987/synthesis-of-telechelic-polymers-for-asphalt-pavements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43987.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">668</span> The Fabrication of Stress Sensing Based on Artificial Antibodies to Cortisol by Molecular Imprinted Polymer </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Supannika%20Klangphukhiew">Supannika Klangphukhiew</a>, <a href="https://publications.waset.org/abstracts/search?q=Roongnapa%20Srichana"> Roongnapa Srichana</a>, <a href="https://publications.waset.org/abstracts/search?q=Rina%20Patramanon"> Rina Patramanon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cortisol has been used as a well-known commercial stress biomarker. A homeostasis response to psychological stress is indicated by an increased level of cortisol produced in hypothalamus-pituitary-adrenal (HPA) axis. Chronic psychological stress contributing to the high level of cortisol relates to several health problems. In this study, the cortisol biosensor was fabricated that mimicked the natural receptors. The artificial antibodies were prepared using molecular imprinted polymer technique that can imitate the performance of natural anti-cortisol antibody with high stability. Cortisol-molecular imprinted polymer (cortisol-MIP) was obtained using the multi-step swelling and polymerization protocol with cortisol as a target molecule combining methacrylic acid:acrylamide (2:1) with bisacryloyl-1,2-dihydroxy-1,2-ethylenediamine and ethylenedioxy-N-methylamphetamine as cross-linkers. Cortisol-MIP was integrated to the sensor. It was coated on the disposable screen-printed carbon electrode (SPCE) for portable electrochemical analysis. The physical properties of Cortisol-MIP were characterized by means of electron microscope techniques. The binding characteristics were evaluated via covalent patterns changing in FTIR spectra which were related to voltammetry response. The performance of cortisol-MIP modified SPCE was investigated in terms of detection range, high selectivity with a detection limit of 1.28 ng/ml. The disposable cortisol biosensor represented an application of MIP technique to recognize steroids according to their structures with feasibility and cost-effectiveness that can be developed to use in point-of-care. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stress%20biomarker" title="stress biomarker">stress biomarker</a>, <a href="https://publications.waset.org/abstracts/search?q=cortisol" title=" cortisol"> cortisol</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20imprinted%20polymer" title=" molecular imprinted polymer"> molecular imprinted polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=screen-printed%20carbon%20electrode" title=" screen-printed carbon electrode"> screen-printed carbon electrode</a> </p> <a href="https://publications.waset.org/abstracts/63750/the-fabrication-of-stress-sensing-based-on-artificial-antibodies-to-cortisol-by-molecular-imprinted-polymer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63750.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">667</span> Multi-Template Molecularly Imprinted Polymer: Synthesis, Characterization and Removal of Selected Acidic Pharmaceuticals from Wastewater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lawrence%20Mzukisi%20Madikizela">Lawrence Mzukisi Madikizela</a>, <a href="https://publications.waset.org/abstracts/search?q=Luke%20Chimuka"> Luke Chimuka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Removal of organics from wastewater offers a better water quality, therefore, the purpose of this work was to investigate the use of molecularly imprinted polymer (MIP) for the elimination of selected organics from water. A multi-template MIP for the adsorption of naproxen, ibuprofen and diclofenac was synthesized using a bulk polymerization method. A MIP was synthesized at 70°C by employing 2-vinylpyridine, ethylene glycol dimethacrylate, toluene and 1,1’-azobis-(cyclohexanecarbonitrile) as functional monomer, cross-linker, porogen and initiator, respectively. Thermogravimetric characterization indicated that the polymer backbone collapses at 250°C and scanning electron microscopy revealed the porous and roughness nature of the MIP after elution of templates. The performance of the MIP in aqueous solutions was evaluated by optimizing several adsorption parameters. The optimized adsorption conditions were 50 mg of MIP, extraction time of 10 min, a sample pH of 4.6 and the initial concentration of 30 mg/L. The imprinting factors obtained for naproxen, ibuprofen and diclofenac were 1.25, 1.42, and 2.01, respectively. The order of selectivity for the MIP was; diclofenac > ibuprofen > naproxen. MIP showed great swelling in water with an initial swelling rate of 2.62 g/(g min). The synthesized MIP proved to be able to adsorb naproxen, ibuprofen and diclofenac from contaminated deionized water, wastewater influent and effluent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=molecularly%20imprinted%20polymer" title=" molecularly imprinted polymer"> molecularly imprinted polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=multi%20template" title=" multi template"> multi template</a>, <a href="https://publications.waset.org/abstracts/search?q=pharmaceuticals" title=" pharmaceuticals"> pharmaceuticals</a> </p> <a href="https://publications.waset.org/abstracts/43263/multi-template-molecularly-imprinted-polymer-synthesis-characterization-and-removal-of-selected-acidic-pharmaceuticals-from-wastewater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43263.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">666</span> The Untold Story of the Importance of ‘Insignia Imprinted’ for the Heritage Clay Roof Tiles in Malaysia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Sulaiman">M. S. Sulaiman</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Hassan"> N. Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Aziz"> M. A. Aziz</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20A.%20Haron"> M. S. A. Haron</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20H.%20A.%20Halim"> J. H. A. Halim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The classic profile of heritage clay roof tiles gives unique characteristics and timeless style to the almost historical building. It is not only designed to meet basic construction needs, offering great performance and durability but also highlights unnoticed stamp impressions, known as ‘insignia imprinted.’ It seems that the insignia imprinted is not significant to all stakeholders, especially in preserving heritage clay roof tiles in Malaysia. They are not even realized the existence and importance of that element, where it represents the cognitive and social character of that particular era. It creates a sense of belongings for the manufacturers regarding their most elementary features, such as a fortress, crown, fauna and etc. This research aims to identify and analyze the late stamp marks on heritage interlocking clay roof tiles in a government heritage building in Malaysia. The methodology used is literature reviews (desktop study), observation on sites, and interviews. Initial findings from the preliminary observation on-site in Peninsular Malaysia show some evidence that the stamp marks appear on the front and back sides of the tile that indicates the year, manufacturer, code numbers, and logos. Almost more than 30 samples of different types of stamp marks were found and collected. Some of which had been described Guichard & Carvin Cie Marsielle St Andre France, Pierre Sacoman St Henry Marsielle, Tuileries Aixoises Les Milles B.D.R France, The Calicut Tile Co Feroke, And B. Pinto & Co Mangalore dated 1865, 1919 and 1936. In view of this abundance of materials, it will lead to the establishment of a comprehensive database consisting of detailed specifications and material performance for future conservation works and maintenance purposes that will sustain for future references. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clay%20roof%20tiles" title="clay roof tiles">clay roof tiles</a>, <a href="https://publications.waset.org/abstracts/search?q=insignia%20imprinted" title=" insignia imprinted"> insignia imprinted</a>, <a href="https://publications.waset.org/abstracts/search?q=interlocking" title=" interlocking"> interlocking</a>, <a href="https://publications.waset.org/abstracts/search?q=stamp%20mark" title=" stamp mark"> stamp mark</a> </p> <a href="https://publications.waset.org/abstracts/160595/the-untold-story-of-the-importance-of-insignia-imprinted-for-the-heritage-clay-roof-tiles-in-malaysia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160595.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">665</span> Synthesis of Highly Sensitive Molecular Imprinted Sensor for Selective Determination of Doxycycline in Honey Samples</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nadia%20El%20Alami%20El%20Hassani">Nadia El Alami El Hassani</a>, <a href="https://publications.waset.org/abstracts/search?q=Soukaina%20Motia"> Soukaina Motia</a>, <a href="https://publications.waset.org/abstracts/search?q=Benachir%20Bouchikhi"> Benachir Bouchikhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nezha%20El%20Bari"> Nezha El Bari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Doxycycline (DXy) is a cycline antibiotic, most frequently prescribed to treat bacterial infections in veterinary medicine. However, its broad antimicrobial activity and low cost, lead to an intensive use, which can seriously affect human health. Therefore, its spread in the food products has to be monitored. The scope of this work was to synthetize a sensitive and very selective molecularly imprinted polymer (MIP) for DXy detection in honey samples. Firstly, the synthesis of this biosensor was performed by casting a layer of carboxylate polyvinyl chloride (PVC-COOH) on the working surface of a gold screen-printed electrode (Au-SPE) in order to bind covalently the analyte under mild conditions. Secondly, DXy as a template molecule was bounded to the activated carboxylic groups, and the formation of MIP was performed by a biocompatible polymer by the mean of polyacrylamide matrix. Then, DXy was detected by measurements of differential pulse voltammetry (DPV). A non-imprinted polymer (NIP) prepared in the same conditions and without the use of template molecule was also performed. We have noticed that the elaborated biosensor exhibits a high sensitivity and a linear behavior between the regenerated current and the logarithmic concentrations of DXy from 0.1 pg.mL<sup>&minus;1</sup> to 1000 pg.mL<sup>&minus;1</sup>. This technic was successfully applied to determine DXy residues in honey samples with a limit of detection (LOD) of 0.1 pg.mL<sup>&minus;1</sup> and an excellent selectivity when compared to the results of oxytetracycline (OXy) as analogous interfering compound. The proposed method is cheap, sensitive, selective, simple, and is applied successfully to detect DXy in honey with the recoveries of 87% and 95%. Considering these advantages, this system provides a further perspective for food quality control in industrial fields. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=doxycycline" title="doxycycline">doxycycline</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20sensor" title=" electrochemical sensor"> electrochemical sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20control" title=" food control"> food control</a>, <a href="https://publications.waset.org/abstracts/search?q=gold%20nanoparticles" title=" gold nanoparticles"> gold nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=honey" title=" honey"> honey</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20imprinted%20polymer" title=" molecular imprinted polymer"> molecular imprinted polymer</a> </p> <a href="https://publications.waset.org/abstracts/65683/synthesis-of-highly-sensitive-molecular-imprinted-sensor-for-selective-determination-of-doxycycline-in-honey-samples" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65683.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">664</span> Molecularly Imprinted Nanoparticles (MIP NPs) as Non-Animal Antibodies Substitutes for Detection of Viruses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alessandro%20Poma">Alessandro Poma</a>, <a href="https://publications.waset.org/abstracts/search?q=Kal%20Karim"> Kal Karim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergey%20Piletsky"> Sergey Piletsky</a>, <a href="https://publications.waset.org/abstracts/search?q=Giuseppe%20Battaglia"> Giuseppe Battaglia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The recent increasing emergency threat to public health of infectious influenza diseases has prompted interest in the detection of avian influenza virus (AIV) H5N1 in humans as well as animals. A variety of technologies for diagnosing AIV infection have been developed. However, various disadvantages (costs, lengthy analyses, and need for high-containment facilities) make these methods less than ideal in their practical application. Molecularly Imprinted Polymeric Nanoparticles (MIP NPs) are suitable to overcome these limitations by having high affinity, selectivity, versatility, scalability and cost-effectiveness with the versatility of post-modification (labeling – fluorescent, magnetic, optical) opening the way to the potential introduction of improved diagnostic tests capable of providing rapid differential diagnosis. Here we present our first results in the production and testing of MIP NPs for the detection of AIV H5N1. Recent developments in the solid-phase synthesis of MIP NPs mean that for the first time a reliable supply of ‘soluble’ synthetic antibodies can be made available for testing as potential biological or diagnostic active molecules. The MIP NPs have the potential to detect viruses that are widely circulating in farm animals and indeed humans. Early and accurate identification of the infectious agent will expedite appropriate control measures. Thus, diagnosis at an early stage of infection of a herd or flock or individual maximizes the efficiency with which containment, prevention and possibly treatment strategies can be implemented. More importantly, substantiating the practicability’s of these novel reagents should lead to an initial reduction and eventually to a potential total replacement of animals, both large and small, to raise such specific serological materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=influenza%20virus" title="influenza virus">influenza virus</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20imprinting" title=" molecular imprinting"> molecular imprinting</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=polymers" title=" polymers"> polymers</a> </p> <a href="https://publications.waset.org/abstracts/29566/molecularly-imprinted-nanoparticles-mip-nps-as-non-animal-antibodies-substitutes-for-detection-of-viruses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29566.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">663</span> Rheological Properties of PP/EVA Blends</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Othman%20Y.%20Alothman">Othman Y. Alothman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study aims to investigate the effects of blend ratio, VA content and temperature on the rheological properties of PPEVA blends. The results show that all pure polymers and their blends show typical shear thinning behaviour. All neat polymers exhibit power-low type flow behaviour, with the viscosity order as EVA328 > EVA206 > PP in almost all frequency ranges. As temperature increases, the viscosity of all polymers decreases as expected, and the viscosity becomes more sensitive to the addition of EVA. Two different regions can be observed on the flow curve of some of the polymers and their blends, which is thought to be due to slip-stick transition or melt fracture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polypropylene" title="polypropylene">polypropylene</a>, <a href="https://publications.waset.org/abstracts/search?q=ethylene%20vinyl%20acetate" title=" ethylene vinyl acetate"> ethylene vinyl acetate</a>, <a href="https://publications.waset.org/abstracts/search?q=blends" title=" blends"> blends</a>, <a href="https://publications.waset.org/abstracts/search?q=rheological%20properties" title=" rheological properties"> rheological properties</a> </p> <a href="https://publications.waset.org/abstracts/7141/rheological-properties-of-ppeva-blends" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7141.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">662</span> Investigation of the Effect of Phosphorous on the Flame Retardant Polyacrylonitrile Nanofiber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Y%C4%B1lmaz">Mustafa Yılmaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmet%20Akar"> Ahmet Akar</a>, <a href="https://publications.waset.org/abstracts/search?q=Nesrin%20K%C3%B6ken"> Nesrin Köken</a>, <a href="https://publications.waset.org/abstracts/search?q=Nilg%C3%BCn%20K%C4%B1z%C4%B1lcan"> Nilgün Kızılcan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Commercially available poly(acrylonitrile-co-vinyl acetate) P(AN-VA) or poly(acrylonitrile-co-methyl acrylate) P(AN-MA) are not satisfactory to meet the demand in flame and fire-resistance. In this work, vinylphosphonic acid is used during polymerization of acrylonitrile, vinyl acetate, methacrylic acid to produce fire-retardant polymers. These phosphorus containing polymers are successfully spun in the form of nanofibers. Properties such as water absorption of polymers are also determined and compared with commercial polymers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flame%20retardant" title="flame retardant">flame retardant</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofiber" title=" nanofiber"> nanofiber</a>, <a href="https://publications.waset.org/abstracts/search?q=polyacrylonitrile" title=" polyacrylonitrile"> polyacrylonitrile</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphorous%20compound" title=" phosphorous compound"> phosphorous compound</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane" title=" membrane"> membrane</a> </p> <a href="https://publications.waset.org/abstracts/101411/investigation-of-the-effect-of-phosphorous-on-the-flame-retardant-polyacrylonitrile-nanofiber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101411.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">661</span> The Application of Polymers in Enhanced Oil Recovery: Recent Trends </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20M.%20Rudd">Reza M. Rudd</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Saeedi"> Ali Saeedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Colin%20Wood"> Colin Wood</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article, the latest advancements made in the applications of polymers in the enhanced hydrocarbon recovery technologies are investigated. For this purpose, different classes of polymers are reviewed and the latest progresses made in making them suitable for application under harsh reservoir conditions are discussed. The main reservoir conditions whose effects are taken into account include the temperature, rock mineralogy and brine salinity and composition. For profile modification and blocking the thief zones, polymers are used in the form of nanocomposite hydrogels. Polymers are also used as thickeners during CO2 flooding. Also, they are used in enhanced gas recovery, to inhibit the mixing of injection gas with the in-situ natural gas. This review covers the main types of polymers, their functions and the challenges in their applications, some of which are mentioned above. Included in this review are also the latest progresses made in the development of new polymeric surfactants used for surfactant flooding. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EOR" title="EOR">EOR</a>, <a href="https://publications.waset.org/abstracts/search?q=EGR" title=" EGR"> EGR</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20flooding" title=" polymer flooding"> polymer flooding</a>, <a href="https://publications.waset.org/abstracts/search?q=profile%20modification" title=" profile modification"> profile modification</a>, <a href="https://publications.waset.org/abstracts/search?q=mobility%20control" title=" mobility control"> mobility control</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite%20hydrogels" title=" nanocomposite hydrogels"> nanocomposite hydrogels</a>, <a href="https://publications.waset.org/abstracts/search?q=CO2%20flooding" title=" CO2 flooding"> CO2 flooding</a>, <a href="https://publications.waset.org/abstracts/search?q=polymeric%20surfactants" title=" polymeric surfactants"> polymeric surfactants</a> </p> <a href="https://publications.waset.org/abstracts/58545/the-application-of-polymers-in-enhanced-oil-recovery-recent-trends" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58545.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">567</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">660</span> Uniaxial Alignment and Ion Exchange Doping to Enhance the Thermoelectric Properties of Organic Polymers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wenjin%20Zhu">Wenjin Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ian%20E.%20Jacobs"> Ian E. Jacobs</a>, <a href="https://publications.waset.org/abstracts/search?q=Henning%20Sirringhaus"> Henning Sirringhaus</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This project delves into the efficiency of uniaxial alignment and ion exchange doping as methods to optimize the thermoelectric properties of organic polymers. The anisotropic nature of charge transport in conjugated polymers is capitalized upon through the uniaxial alignment of polymer backbones, ensuring charge transport is streamlined along these backbones. Ion exchange doping has demonstrated superiority over traditional molecular and electrochemical doping methods, amplifying charge carrier densities. By integrating these two techniques, we've observed marked improvements in the thermoelectric attributes of specific conjugated polymers such as PBTTT and DPP based polymers. We demonstrate respectable power factors of 172.6 μW m⁻¹ K⁻² in PBTTT system and 41.7 μW m⁻¹ K⁻² in DPP system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organic%20electronics" title="organic electronics">organic electronics</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoelectrics" title=" thermoelectrics"> thermoelectrics</a>, <a href="https://publications.waset.org/abstracts/search?q=uniaxial%20alignment" title=" uniaxial alignment"> uniaxial alignment</a>, <a href="https://publications.waset.org/abstracts/search?q=ion%20exchange%20doping" title=" ion exchange doping"> ion exchange doping</a> </p> <a href="https://publications.waset.org/abstracts/178330/uniaxial-alignment-and-ion-exchange-doping-to-enhance-the-thermoelectric-properties-of-organic-polymers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178330.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">659</span> Polymer Application in Fashion and Textile Engineering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatemeh%20Karimi">Fatemeh Karimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The fashion and textile industry is undergoing a profound transformation, with polymers playing an increasingly pivotal role in driving innovation and sustainability. This paper explores the application of polymers in fashion and textile engineering, focusing on their impact on material properties, sustainability, and the future of garment production. Polymers, both synthetic and bio-based, offer unique opportunities to enhance the performance, durability, and environmental footprint of textiles. By examining recent advancements in polymer science and their integration into fashion design and production, we provide insights into how these materials are reshaping the industry. This paper also discusses the challenges and opportunities associated with the use of polymers, particularly in the context of sustainable fashion and circular economy practices. Through case studies and industry examples, we highlight the innovative ways in which polymers are being utilized to meet the evolving demands of consumers and the industry's sustainability goals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polymer%20textiles" title="polymer textiles">polymer textiles</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20fashion" title=" sustainable fashion"> sustainable fashion</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-based%20polymers" title=" bio-based polymers"> bio-based polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20textiles" title=" smart textiles"> smart textiles</a>, <a href="https://publications.waset.org/abstracts/search?q=fashion%20innovation" title=" fashion innovation"> fashion innovation</a>, <a href="https://publications.waset.org/abstracts/search?q=circular%20economy" title=" circular economy"> circular economy</a>, <a href="https://publications.waset.org/abstracts/search?q=textile%20engineering" title=" textile engineering"> textile engineering</a> </p> <a href="https://publications.waset.org/abstracts/189915/polymer-application-in-fashion-and-textile-engineering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189915.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">20</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">658</span> Symmetric Polymerization with Dynamical Resolution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muddser%20Ghaffar">Muddser Ghaffar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In material science, synthetic chiral polymers are becoming increasingly significant due to their distinct properties that distinguish them from other polymer materials. One special technique for producing well-defined chiral polymers is asymmetric kinetic resolution polymerization (AKRP), which adds stereo regularity to a polymer chain by the kinetic resolution of a race mate preferentially polymerizing one enantiomer. Apart from making it possible to characterize chiral polymers enantioselective, AKRP can synthesize chiral polymers with high stereo selectivity. This review includes the literature on the use of enzymes, chiral metal complexes, and organ catalysts as AKRP promoters. One enantiomer reacts more quickly than the other in this kind of polymerisation, quickly entering the expanding polymer chain, while the kinetically less reactive enantiomer stays unreactive and is readily separated using straightforward purification techniques. The degree of chiral induction and overall chirality of the chiral polymers that are generated may be assessed using the enantiomeric excess (ee) of the initial monomer, which is frequently determined by chiral HPLC analysis, throughout the polymerisation process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stereo%20regularity" title="stereo regularity">stereo regularity</a>, <a href="https://publications.waset.org/abstracts/search?q=polymers" title=" polymers"> polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamical" title=" dynamical"> dynamical</a>, <a href="https://publications.waset.org/abstracts/search?q=symmetric" title=" symmetric"> symmetric</a> </p> <a href="https://publications.waset.org/abstracts/193168/symmetric-polymerization-with-dynamical-resolution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193168.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">13</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=imprinted%20polymers&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=imprinted%20polymers&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=imprinted%20polymers&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=imprinted%20polymers&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=imprinted%20polymers&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=imprinted%20polymers&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=imprinted%20polymers&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=imprinted%20polymers&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=imprinted%20polymers&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=imprinted%20polymers&amp;page=22">22</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=imprinted%20polymers&amp;page=23">23</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=imprinted%20polymers&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10