CINXE.COM
Search results for: natural Language processing
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: natural Language processing</title> <meta name="description" content="Search results for: natural Language processing"> <meta name="keywords" content="natural Language processing"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="natural Language processing" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="natural Language processing"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 12123</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: natural Language processing</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12123</span> Role of Natural Language Processing in Information Retrieval; Challenges and Opportunities </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khaled%20M.%20Alhawiti">Khaled M. Alhawiti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims to analyze the role of natural language processing (NLP). The paper will discuss the role in the context of automated data retrieval, automated question answer, and text structuring. NLP techniques are gaining wider acceptance in real life applications and industrial concerns. There are various complexities involved in processing the text of natural language that could satisfy the need of decision makers. This paper begins with the description of the qualities of NLP practices. The paper then focuses on the challenges in natural language processing. The paper also discusses major techniques of NLP. The last section describes opportunities and challenges for future research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20retrieval" title="data retrieval">data retrieval</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20retrieval" title=" information retrieval"> information retrieval</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20language%20processing" title=" natural language processing"> natural language processing</a>, <a href="https://publications.waset.org/abstracts/search?q=text%20structuring" title=" text structuring"> text structuring</a> </p> <a href="https://publications.waset.org/abstracts/21284/role-of-natural-language-processing-in-information-retrieval-challenges-and-opportunities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21284.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12122</span> Impact of Natural Language Processing in Educational Setting: An Effective Approach towards Improved Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khaled%20M.%20Alhawiti">Khaled M. Alhawiti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural Language Processing (NLP) is an effective approach for bringing improvement in educational setting. This involves initiating the process of learning through the natural acquisition in the educational systems. It is based on following effective approaches for providing the solution for various problems and issues in education. Natural Language Processing provides solution in a variety of different fields associated with the social and cultural context of language learning. It is based on involving various tools and techniques such as grammar, syntax, and structure of text. It is effective approach for teachers, students, authors, and educators for providing assistance for writing, analysis, and assessment procedure. Natural Language Processing is widely integrated in the large number of educational contexts such as research, science, linguistics, e-learning, evaluations system, and various other educational settings such as schools, higher education system, and universities. Natural Language Processing is based on applying scientific approach in the educational settings. In the educational settings, NLP is an effective approach to ensure that students can learn easily in the same way as they acquired language in the natural settings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20language%20processing" title="natural language processing">natural language processing</a>, <a href="https://publications.waset.org/abstracts/search?q=education" title=" education"> education</a>, <a href="https://publications.waset.org/abstracts/search?q=application" title=" application"> application</a>, <a href="https://publications.waset.org/abstracts/search?q=e-learning" title=" e-learning"> e-learning</a>, <a href="https://publications.waset.org/abstracts/search?q=scientific%20studies" title=" scientific studies"> scientific studies</a>, <a href="https://publications.waset.org/abstracts/search?q=educational%20system" title=" educational system"> educational system</a> </p> <a href="https://publications.waset.org/abstracts/21292/impact-of-natural-language-processing-in-educational-setting-an-effective-approach-towards-improved-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21292.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">503</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12121</span> Natural Language Processing; the Future of Clinical Record Management </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khaled%20M.%20Alhawiti">Khaled M. Alhawiti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the future of medicine and the use of Natural language processing. The importance of having correct clinical information available online is remarkable; improving patient care at affordable costs could be achieved using automated applications to use the online clinical information. The major challenge towards the retrieval of such vital information is to have it appropriately coded. Majority of the online patient reports are not found to be coded and not accessible as its recorded in natural language text. The use of Natural Language processing provides a feasible solution by retrieving and organizing clinical information, available in text and transforming clinical data that is available for use. Systems used in NLP are rather complex to construct, as they entail considerable knowledge, however significant development has been made. Newly formed NLP systems have been tested and have established performance that is promising and considered as practical clinical applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clinical%20information" title="clinical information">clinical information</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20retrieval" title=" information retrieval"> information retrieval</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20language%20processing" title=" natural language processing"> natural language processing</a>, <a href="https://publications.waset.org/abstracts/search?q=automated%20applications" title=" automated applications"> automated applications</a> </p> <a href="https://publications.waset.org/abstracts/26320/natural-language-processing-the-future-of-clinical-record-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26320.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12120</span> A Review of Research on Pre-training Technology for Natural Language Processing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moquan%20Gong">Moquan Gong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, with the rapid development of deep learning, pre-training technology for natural language processing has made great progress. The early field of natural language processing has long used word vector methods such as Word2Vec to encode text. These word vector methods can also be regarded as static pre-training techniques. However, this context-free text representation brings very limited improvement to subsequent natural language processing tasks and cannot solve the problem of word polysemy. ELMo proposes a context-sensitive text representation method that can effectively handle polysemy problems. Since then, pre-training language models such as GPT and BERT have been proposed one after another. Among them, the BERT model has significantly improved its performance on many typical downstream tasks, greatly promoting the technological development in the field of natural language processing, and has since entered the field of natural language processing. The era of dynamic pre-training technology. Since then, a large number of pre-trained language models based on BERT and XLNet have continued to emerge, and pre-training technology has become an indispensable mainstream technology in the field of natural language processing. This article first gives an overview of pre-training technology and its development history, and introduces in detail the classic pre-training technology in the field of natural language processing, including early static pre-training technology and classic dynamic pre-training technology; and then briefly sorts out a series of enlightening technologies. Pre-training technology, including improved models based on BERT and XLNet; on this basis, analyze the problems faced by current pre-training technology research; finally, look forward to the future development trend of pre-training technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20language%20processing" title="natural language processing">natural language processing</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-training" title=" pre-training"> pre-training</a>, <a href="https://publications.waset.org/abstracts/search?q=language%20model" title=" language model"> language model</a>, <a href="https://publications.waset.org/abstracts/search?q=word%20vectors" title=" word vectors"> word vectors</a> </p> <a href="https://publications.waset.org/abstracts/183121/a-review-of-research-on-pre-training-technology-for-natural-language-processing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183121.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">57</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12119</span> Resource Creation Using Natural Language Processing Techniques for Malay Translated Qur'an</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nor%20Diana%20Ahmad">Nor Diana Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Eric%20Atwell"> Eric Atwell</a>, <a href="https://publications.waset.org/abstracts/search?q=Brandon%20Bennett"> Brandon Bennett</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Text processing techniques for English have been developed for several decades. But for the Malay language, text processing methods are still far behind. Moreover, there are limited resources, tools for computational linguistic analysis available for the Malay language. Therefore, this research presents the use of natural language processing (NLP) in processing Malay translated Qur’an text. As the result, a new language resource for Malay translated Qur’an was created. This resource will help other researchers to build the necessary processing tools for the Malay language. This research also develops a simple question-answer prototype to demonstrate the use of the Malay Qur’an resource for text processing. This prototype has been developed using Python. The prototype pre-processes the Malay Qur’an and an input query using a stemming algorithm and then searches for occurrences of the query word stem. The result produced shows improved matching likelihood between user query and its answer. A POS-tagging algorithm has also been produced. The stemming and tagging algorithms can be used as tools for research related to other Malay texts and can be used to support applications such as information retrieval, question answering systems, ontology-based search and other text analysis tasks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=language%20resource" title="language resource">language resource</a>, <a href="https://publications.waset.org/abstracts/search?q=Malay%20translated%20Qur%27an" title=" Malay translated Qur'an"> Malay translated Qur'an</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20language%20processing%20%28NLP%29" title=" natural language processing (NLP)"> natural language processing (NLP)</a>, <a href="https://publications.waset.org/abstracts/search?q=text%20processing" title=" text processing"> text processing</a> </p> <a href="https://publications.waset.org/abstracts/92441/resource-creation-using-natural-language-processing-techniques-for-malay-translated-quran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92441.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12118</span> Resume Ranking Using Custom Word2vec and Rule-Based Natural Language Processing Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Subodh%20Chandra%20Shakya">Subodh Chandra Shakya</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajendra%20Sapkota"> Rajendra Sapkota</a>, <a href="https://publications.waset.org/abstracts/search?q=Aakash%20Tamang"> Aakash Tamang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shushant%20Pudasaini"> Shushant Pudasaini</a>, <a href="https://publications.waset.org/abstracts/search?q=Sujan%20Adhikari"> Sujan Adhikari</a>, <a href="https://publications.waset.org/abstracts/search?q=Sajjan%20Adhikari"> Sajjan Adhikari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lots of efforts have been made in order to measure the semantic similarity between the text corpora in the documents. Techniques have been evolved to measure the similarity of two documents. One such state-of-art technique in the field of Natural Language Processing (NLP) is word to vector models, which converts the words into their word-embedding and measures the similarity between the vectors. We found this to be quite useful for the task of resume ranking. So, this research paper is the implementation of the word2vec model along with other Natural Language Processing techniques in order to rank the resumes for the particular job description so as to automate the process of hiring. The research paper proposes the system and the findings that were made during the process of building the system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chunking" title="chunking">chunking</a>, <a href="https://publications.waset.org/abstracts/search?q=document%20similarity" title=" document similarity"> document similarity</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20extraction" title=" information extraction"> information extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20language%20processing" title=" natural language processing"> natural language processing</a>, <a href="https://publications.waset.org/abstracts/search?q=word2vec" title=" word2vec"> word2vec</a>, <a href="https://publications.waset.org/abstracts/search?q=word%20embedding" title=" word embedding"> word embedding</a> </p> <a href="https://publications.waset.org/abstracts/129534/resume-ranking-using-custom-word2vec-and-rule-based-natural-language-processing-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129534.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12117</span> Gender Bias in Natural Language Processing: Machines Reflect Misogyny in Society</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Irene%20Yi">Irene Yi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Machine learning, natural language processing, and neural network models of language are becoming more and more prevalent in the fields of technology and linguistics today. Training data for machines are at best, large corpora of human literature and at worst, a reflection of the ugliness in society. Machines have been trained on millions of human books, only to find that in the course of human history, derogatory and sexist adjectives are used significantly more frequently when describing females in history and literature than when describing males. This is extremely problematic, both as training data, and as the outcome of natural language processing. As machines start to handle more responsibilities, it is crucial to ensure that they do not take with them historical sexist and misogynistic notions. This paper gathers data and algorithms from neural network models of language having to deal with syntax, semantics, sociolinguistics, and text classification. Results are significant in showing the existing intentional and unintentional misogynistic notions used to train machines, as well as in developing better technologies that take into account the semantics and syntax of text to be more mindful and reflect gender equality. Further, this paper deals with the idea of non-binary gender pronouns and how machines can process these pronouns correctly, given its semantic and syntactic context. This paper also delves into the implications of gendered grammar and its effect, cross-linguistically, on natural language processing. Languages such as French or Spanish not only have rigid gendered grammar rules, but also historically patriarchal societies. The progression of society comes hand in hand with not only its language, but how machines process those natural languages. These ideas are all extremely vital to the development of natural language models in technology, and they must be taken into account immediately. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gendered%20grammar" title="gendered grammar">gendered grammar</a>, <a href="https://publications.waset.org/abstracts/search?q=misogynistic%20language" title=" misogynistic language"> misogynistic language</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20language%20processing" title=" natural language processing"> natural language processing</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title=" neural networks"> neural networks</a> </p> <a href="https://publications.waset.org/abstracts/123692/gender-bias-in-natural-language-processing-machines-reflect-misogyny-in-society" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123692.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12116</span> Application of Natural Language Processing in Education</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khaled%20M.%20Alhawiti">Khaled M. Alhawiti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reading capability is a major segment of language competency. On the other hand, discovering topical writings at a fitting level for outside and second language learners is a test for educators. We address this issue utilizing natural language preparing innovation to survey reading level and streamline content. In the connection of outside and second-language learning, existing measures of reading level are not appropriate to this errand. Related work has demonstrated the profit of utilizing measurable language preparing procedures; we expand these thoughts and incorporate other potential peculiarities to measure intelligibility. In the first piece of this examination, we join characteristics from measurable language models, customary reading level measures and other language preparing apparatuses to deliver a finer technique for recognizing reading level. We examine the execution of human annotators and assess results for our finders concerning human appraisals. A key commitment is that our identifiers are trainable; with preparing and test information from the same space, our finders beat more general reading level instruments (Flesch-Kincaid and Lexile). Trainability will permit execution to be tuned to address the needs of specific gatherings or understudies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20language%20processing" title="natural language processing">natural language processing</a>, <a href="https://publications.waset.org/abstracts/search?q=trainability" title=" trainability"> trainability</a>, <a href="https://publications.waset.org/abstracts/search?q=syntactic%20simplification%20tools" title=" syntactic simplification tools"> syntactic simplification tools</a>, <a href="https://publications.waset.org/abstracts/search?q=education" title=" education"> education</a> </p> <a href="https://publications.waset.org/abstracts/21289/application-of-natural-language-processing-in-education" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21289.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">490</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12115</span> How Western Donors Allocate Official Development Assistance: New Evidence From a Natural Language Processing Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Benson">Daniel Benson</a>, <a href="https://publications.waset.org/abstracts/search?q=Yundan%20Gong"> Yundan Gong</a>, <a href="https://publications.waset.org/abstracts/search?q=Hannah%20Kirk"> Hannah Kirk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Advancement in national language processing techniques has led to increased data processing speeds, and reduced the need for cumbersome, manual data processing that is often required when processing data from multilateral organizations for specific purposes. As such, using named entity recognition (NER) modeling and the Organisation of Economically Developed Countries (OECD) Creditor Reporting System database, we present the first geotagged dataset of OECD donor Official Development Assistance (ODA) projects on a global, subnational basis. Our resulting data contains 52,086 ODA projects geocoded to subnational locations across 115 countries, worth a combined $87.9bn. This represents the first global, OECD donor ODA project database with geocoded projects. We use this new data to revisit old questions of how ‘well’ donors allocate ODA to the developing world. This understanding is imperative for policymakers seeking to improve ODA effectiveness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=international%20aid" title="international aid">international aid</a>, <a href="https://publications.waset.org/abstracts/search?q=geocoding" title=" geocoding"> geocoding</a>, <a href="https://publications.waset.org/abstracts/search?q=subnational%20data" title=" subnational data"> subnational data</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20language%20processing" title=" natural language processing"> natural language processing</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a> </p> <a href="https://publications.waset.org/abstracts/176229/how-western-donors-allocate-official-development-assistance-new-evidence-from-a-natural-language-processing-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176229.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12114</span> Context Detection in Spreadsheets Based on Automatically Inferred Table Schema</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Wachtel">Alexander Wachtel</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20T.%20Franzen"> Michael T. Franzen</a>, <a href="https://publications.waset.org/abstracts/search?q=Walter%20F.%20Tichy"> Walter F. Tichy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Programming requires years of training. With natural language and end user development methods, programming could become available to everyone. It enables end users to program their own devices and extend the functionality of the existing system without any knowledge of programming languages. In this paper, we describe an Interactive Spreadsheet Processing Module (ISPM), a natural language interface to spreadsheets that allows users to address ranges within the spreadsheet based on inferred table schema. Using the ISPM, end users are able to search for values in the schema of the table and to address the data in spreadsheets implicitly. Furthermore, it enables them to select and sort the spreadsheet data by using natural language. ISPM uses a machine learning technique to automatically infer areas within a spreadsheet, including different kinds of headers and data ranges. Since ranges can be identified from natural language queries, the end users can query the data using natural language. During the evaluation 12 undergraduate students were asked to perform operations (sum, sort, group and select) using the system and also Excel without ISPM interface, and the time taken for task completion was compared across the two systems. Only for the selection task did users take less time in Excel (since they directly selected the cells using the mouse) than in ISPM, by using natural language for end user software engineering, to overcome the present bottleneck of professional developers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20language%20processing" title="natural language processing">natural language processing</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20language%20interfaces" title=" natural language interfaces"> natural language interfaces</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20computer%20interaction" title=" human computer interaction"> human computer interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=end%20user%20development" title=" end user development"> end user development</a>, <a href="https://publications.waset.org/abstracts/search?q=dialog%20systems" title=" dialog systems"> dialog systems</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20recognition" title=" data recognition"> data recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=spreadsheet" title=" spreadsheet"> spreadsheet</a> </p> <a href="https://publications.waset.org/abstracts/54528/context-detection-in-spreadsheets-based-on-automatically-inferred-table-schema" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54528.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12113</span> Research on the Risks of Railroad Receiving and Dispatching Trains Operators: Natural Language Processing Risk Text Mining</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yangze%20Lan">Yangze Lan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruihua%20Xv"> Ruihua Xv</a>, <a href="https://publications.waset.org/abstracts/search?q=Feng%20Zhou"> Feng Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Yijia%20Shan"> Yijia Shan</a>, <a href="https://publications.waset.org/abstracts/search?q=Longhao%20Zhang"> Longhao Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Qinghui%20Xv"> Qinghui Xv</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Receiving and dispatching trains is an important part of railroad organization, and the risky evaluation of operating personnel is still reflected by scores, lacking further excavation of wrong answers and operating accidents. With natural language processing (NLP) technology, this study extracts the keywords and key phrases of 40 relevant risk events about receiving and dispatching trains and reclassifies the risk events into 8 categories, such as train approach and signal risks, dispatching command risks, and so on. Based on the historical risk data of personnel, the K-Means clustering method is used to classify the risk level of personnel. The result indicates that the high-risk operating personnel need to strengthen the training of train receiving and dispatching operations towards essential trains and abnormal situations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=receiving%20and%20dispatching%20trains" title="receiving and dispatching trains">receiving and dispatching trains</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20language%20processing" title=" natural language processing"> natural language processing</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20evaluation" title=" risk evaluation"> risk evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=K-means%20clustering" title=" K-means clustering"> K-means clustering</a> </p> <a href="https://publications.waset.org/abstracts/176556/research-on-the-risks-of-railroad-receiving-and-dispatching-trains-operators-natural-language-processing-risk-text-mining" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176556.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12112</span> Intelligent Chatbot Generating Dynamic Responses Through Natural Language Processing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aarnav%20Singh">Aarnav Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Jatin%20Moolchandani"> Jatin Moolchandani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The proposed research work aims to build a query-based AI chatbot that can answer any question related to any topic. A chatbot is software that converses with users via text messages. In the proposed system, we aim to build a chatbot that generates a response based on the user’s query. For this, we use natural language processing to analyze the query and some set of texts to form a concise answer. The texts are obtained through web-scrapping and filtering all the credible sources from a web search. The objective of this project is to provide a chatbot that is able to provide simple and accurate answers without the user having to read through a large number of articles and websites. Creating an AI chatbot that can answer a variety of user questions on a variety of topics is the goal of the proposed research project. This chatbot uses natural language processing to comprehend user inquiries and provides succinct responses by examining a collection of writings that were scraped from the internet. The texts are carefully selected from reliable websites that are found via internet searches. This project aims to provide users with a chatbot that provides clear and precise responses, removing the need to go through several articles and web pages in great detail. In addition to exploring the reasons for their broad acceptance and their usefulness across many industries, this article offers an overview of the interest in chatbots throughout the world. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chatbot" title="Chatbot">Chatbot</a>, <a href="https://publications.waset.org/abstracts/search?q=Artificial%20Intelligence" title=" Artificial Intelligence"> Artificial Intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20language%20processing" title=" natural language processing"> natural language processing</a>, <a href="https://publications.waset.org/abstracts/search?q=web%20scrapping" title=" web scrapping"> web scrapping</a> </p> <a href="https://publications.waset.org/abstracts/176712/intelligent-chatbot-generating-dynamic-responses-through-natural-language-processing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176712.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12111</span> Genomic Sequence Representation Learning: An Analysis of K-Mer Vector Embedding Dimensionality</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=James%20Jr.%20Mashiyane">James Jr. Mashiyane</a>, <a href="https://publications.waset.org/abstracts/search?q=Risuna%20Nkolele"> Risuna Nkolele</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephanie%20J.%20M%C3%BCller"> Stephanie J. Müller</a>, <a href="https://publications.waset.org/abstracts/search?q=Gciniwe%20S.%20Dlamini"> Gciniwe S. Dlamini</a>, <a href="https://publications.waset.org/abstracts/search?q=Rebone%20L.%20Meraba"> Rebone L. Meraba</a>, <a href="https://publications.waset.org/abstracts/search?q=Darlington%20S.%20Mapiye"> Darlington S. Mapiye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When performing language tasks in natural language processing (NLP), the dimensionality of word embeddings is chosen either ad-hoc or is calculated by optimizing the Pairwise Inner Product (PIP) loss. The PIP loss is a metric that measures the dissimilarity between word embeddings, and it is obtained through matrix perturbation theory by utilizing the unitary invariance of word embeddings. Unlike in natural language, in genomics, especially in genome sequence processing, unlike in natural language processing, there is no notion of a “word,” but rather, there are sequence substrings of length k called k-mers. K-mers sizes matter, and they vary depending on the goal of the task at hand. The dimensionality of word embeddings in NLP has been studied using the matrix perturbation theory and the PIP loss. In this paper, the sufficiency and reliability of applying word-embedding algorithms to various genomic sequence datasets are investigated to understand the relationship between the k-mer size and their embedding dimension. This is completed by studying the scaling capability of three embedding algorithms, namely Latent Semantic analysis (LSA), Word2Vec, and Global Vectors (GloVe), with respect to the k-mer size. Utilising the PIP loss as a metric to train embeddings on different datasets, we also show that Word2Vec outperforms LSA and GloVe in accurate computing embeddings as both the k-mer size and vocabulary increase. Finally, the shortcomings of natural language processing embedding algorithms in performing genomic tasks are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=word%20embeddings" title="word embeddings">word embeddings</a>, <a href="https://publications.waset.org/abstracts/search?q=k-mer%20embedding" title=" k-mer embedding"> k-mer embedding</a>, <a href="https://publications.waset.org/abstracts/search?q=dimensionality%0D%0Areduction" title=" dimensionality reduction"> dimensionality reduction</a> </p> <a href="https://publications.waset.org/abstracts/151370/genomic-sequence-representation-learning-an-analysis-of-k-mer-vector-embedding-dimensionality" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151370.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12110</span> Detecting Paraphrases in Arabic Text</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amal%20Alshahrani">Amal Alshahrani</a>, <a href="https://publications.waset.org/abstracts/search?q=Allan%20Ramsay"> Allan Ramsay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Paraphrasing is one of the important tasks in natural language processing; i.e. alternative ways to express the same concept by using different words or phrases. Paraphrases can be used in many natural language applications, such as Information Retrieval, Machine Translation, Question Answering, Text Summarization, or Information Extraction. To obtain pairs of sentences that are paraphrases we create a system that automatically extracts paraphrases from a corpus, which is built from different sources of news article since these are likely to contain paraphrases when they report the same event on the same day. There are existing simple standard approaches (e.g. TF-IDF vector space, cosine similarity) and alignment technique (e.g. Dynamic Time Warping (DTW)) for extracting paraphrase which have been applied to the English. However, the performance of these approaches could be affected when they are applied to another language, for instance Arabic language, due to the presence of phenomena which are not present in English, such as Free Word Order, Zero copula, and Pro-dropping. These phenomena will affect the performance of these algorithms. Thus, if we can analysis how the existing algorithms for English fail for Arabic then we can find a solution for Arabic. The results are promising. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20language%20processing" title="natural language processing">natural language processing</a>, <a href="https://publications.waset.org/abstracts/search?q=TF-IDF" title=" TF-IDF"> TF-IDF</a>, <a href="https://publications.waset.org/abstracts/search?q=cosine%20similarity" title=" cosine similarity"> cosine similarity</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20time%20warping%20%28DTW%29" title=" dynamic time warping (DTW)"> dynamic time warping (DTW)</a> </p> <a href="https://publications.waset.org/abstracts/35776/detecting-paraphrases-in-arabic-text" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35776.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12109</span> Online Learning Versus Face to Face Learning: A Sentiment Analysis on General Education Mathematics in the Modern World of University of San Carlos School of Arts and Sciences Students Using Natural Language Processing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Derek%20Brandon%20G.%20Yu">Derek Brandon G. Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Clyde%20Vincent%20O.%20Pilapil"> Clyde Vincent O. Pilapil</a>, <a href="https://publications.waset.org/abstracts/search?q=Christine%20F.%20Pe%C3%B1a"> Christine F. Peña</a> </p> <p class="card-text"><strong>Abstract:</strong></p> College students of Cebu province have been indoors since March 2020, and a challenge encountered is the sudden shift from face to face to online learning and with the lack of empirical data on online learning on Higher Education Institutions (HEIs) in the Philippines. Sentiments on face to face and online learning will be collected from University of San Carlos (USC), School of Arts and Sciences (SAS) students regarding Mathematics in the Modern World (MMW), a General Education (GE) course. Natural Language Processing with machine learning algorithms will be used to classify the sentiments of the students. Results of the research study are the themes identified through topic modelling and the overall sentiments of the students in USC SAS <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20language%20processing" title="natural language processing">natural language processing</a>, <a href="https://publications.waset.org/abstracts/search?q=online%20learning" title=" online learning"> online learning</a>, <a href="https://publications.waset.org/abstracts/search?q=sentiment%20analysis" title=" sentiment analysis"> sentiment analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=topic%20modelling" title=" topic modelling"> topic modelling</a> </p> <a href="https://publications.waset.org/abstracts/144598/online-learning-versus-face-to-face-learning-a-sentiment-analysis-on-general-education-mathematics-in-the-modern-world-of-university-of-san-carlos-school-of-arts-and-sciences-students-using-natural-language-processing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144598.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12108</span> A Controlled Natural Language Assisted Approach for the Design and Automated Processing of Service Level Agreements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christopher%20Schwarz">Christopher Schwarz</a>, <a href="https://publications.waset.org/abstracts/search?q=Katrin%20Riegler"> Katrin Riegler</a>, <a href="https://publications.waset.org/abstracts/search?q=Erwin%20Zinser"> Erwin Zinser</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The management of outsourcing relationships between IT service providers and their customers proofs to be a critical issue that has to be stipulated by means of Service Level Agreements (SLAs). Since service requirements differ from customer to customer, SLA content and language structures vary largely, standardized SLA templates may not be used and an automated processing of SLA content is not possible. Hence, SLA management is usually a time-consuming and inefficient manual process. For overcoming these challenges, this paper presents an innovative and ITIL V3-conform approach for automated SLA design and management using controlled natural language in enterprise collaboration portals. The proposed novel concept is based on a self-developed controlled natural language that follows a subject-predicate-object approach to specify well-defined SLA content structures that act as templates for customized contracts and support automated SLA processing. The derived results eventually enable IT service providers to automate several SLA request, approval and negotiation processes by means of workflows and business rules within an enterprise collaboration portal. The illustrated prototypical realization gives evidence of the practical relevance in service-oriented scenarios as well as the high flexibility and adaptability of the presented model. Thus, the prototype enables the automated creation of well defined, customized SLA documents, providing a knowledge representation that is both human understandable and machine processable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automated%20processing" title="automated processing">automated processing</a>, <a href="https://publications.waset.org/abstracts/search?q=controlled%20natural%20language" title=" controlled natural language"> controlled natural language</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge%20representation" title=" knowledge representation"> knowledge representation</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20technology%20outsourcing" title=" information technology outsourcing"> information technology outsourcing</a>, <a href="https://publications.waset.org/abstracts/search?q=service%20level%20management" title=" service level management"> service level management</a> </p> <a href="https://publications.waset.org/abstracts/5964/a-controlled-natural-language-assisted-approach-for-the-design-and-automated-processing-of-service-level-agreements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5964.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12107</span> A Newspapers Expectations Indicator from Web Scraping</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pilar%20Rey%20del%20Castillo">Pilar Rey del Castillo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This document describes the building of an average indicator of the general sentiments about the future exposed in the newspapers in Spain. The raw data are collected through the scraping of the Digital Periodical and Newspaper Library website. Basic tools of natural language processing are later applied to the collected information to evaluate the sentiment strength of each word in the texts using a polarized dictionary. The last step consists of summarizing these sentiments to produce daily indices. The results are a first insight into the applicability of these techniques to produce periodic sentiment indicators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20language%20processing" title="natural language processing">natural language processing</a>, <a href="https://publications.waset.org/abstracts/search?q=periodic%20indicator" title=" periodic indicator"> periodic indicator</a>, <a href="https://publications.waset.org/abstracts/search?q=sentiment%20analysis" title=" sentiment analysis"> sentiment analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=web%20scraping" title=" web scraping"> web scraping</a> </p> <a href="https://publications.waset.org/abstracts/143267/a-newspapers-expectations-indicator-from-web-scraping" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143267.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12106</span> Leveraging Large Language Models to Build a Cutting-Edge French Word Sense Disambiguation Corpus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mouheb%20Mehdoui">Mouheb Mehdoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Amel%20Fraisse"> Amel Fraisse</a>, <a href="https://publications.waset.org/abstracts/search?q=Mounir%20Zrigui"> Mounir Zrigui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the increasing amount of data circulating over the Web, there is a growing need to develop and deploy tools aimed at unraveling semantic nuances within text or sentences. The challenges in extracting precise meanings arise from the complexity of natural language, while words usually have multiple interpretations depending on the context. The challenge of precisely interpreting words within a given context is what the task of Word Sense Disambiguation meets. It is a very old domain within the area of Natural Language Processing aimed at determining a word’s meaning that it is going to carry in a particular context, hence increasing the correctness of applications processing the language. Numerous linguistic resources are accessible online, including WordNet, thesauri, and dictionaries, enabling exploration of diverse contextual meanings. However, several limitations persist. These include the scarcity of resources for certain languages, a limited number of examples within corpora, and the challenge of accurately detecting the topic or context covered by text, which significantly impacts word sense disambiguation. This paper will discuss the different approaches to WSD and review corpora available for this task. We will contrast these approaches, highlighting the limitations, which will allow us to build a corpus in French, targeted for WSD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=semantic%20enrichment" title="semantic enrichment">semantic enrichment</a>, <a href="https://publications.waset.org/abstracts/search?q=disambiguation" title=" disambiguation"> disambiguation</a>, <a href="https://publications.waset.org/abstracts/search?q=context%20fusion" title=" context fusion"> context fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20language%20processing" title=" natural language processing"> natural language processing</a>, <a href="https://publications.waset.org/abstracts/search?q=multilingual%20applications" title=" multilingual applications"> multilingual applications</a> </p> <a href="https://publications.waset.org/abstracts/193871/leveraging-large-language-models-to-build-a-cutting-edge-french-word-sense-disambiguation-corpus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193871.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">7</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12105</span> Morphology of Cartographic Words: A Perspective from Chinese Characters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xinyu%20Gong">Xinyu Gong</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhilin%20Li"> Zhilin Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Xintao%20Liu"> Xintao Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Maps are a means of communication. Cartographic language involves established theories of natural language for understanding maps. “Cartographic words’, or “map symbols”, are crucial elements of cartographic language. Personalized mapping is increasingly popular, with growing demands for customized map-making by the general public. Automated symbol-making and customization play a key role in personalized mapping. However, formal representations for the automated construction of map symbols are still lacking. In natural language, the process of word and sentence construction can be formalized. Through the analogy between natural language and graphical language, formal representations of natural language construction can be used as a reference for constructing cartographic language. We selected Chinese character structures (i.e., S <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=personalized%20mapping" title="personalized mapping">personalized mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=Chinese%20character" title=" Chinese character"> Chinese character</a>, <a href="https://publications.waset.org/abstracts/search?q=cartographic%20language" title=" cartographic language"> cartographic language</a>, <a href="https://publications.waset.org/abstracts/search?q=map%20symbols" title=" map symbols"> map symbols</a> </p> <a href="https://publications.waset.org/abstracts/131340/morphology-of-cartographic-words-a-perspective-from-chinese-characters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131340.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12104</span> Models and Metamodels for Computer-Assisted Natural Language Grammar Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Evgeny%20Pyshkin">Evgeny Pyshkin</a>, <a href="https://publications.waset.org/abstracts/search?q=Maxim%20Mozgovoy"> Maxim Mozgovoy</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladislav%20Volkov"> Vladislav Volkov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper follows a discourse on computer-assisted language learning. We examine problems of foreign language teaching and learning and introduce a metamodel that can be used to define learning models of language grammar structures in order to support teacher/student interaction. Special attention is paid to the concept of a virtual language lab. Our approach to language education assumes to encourage learners to experiment with a language and to learn by discovering patterns of grammatically correct structures created and managed by a language expert. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computer-assisted%20instruction" title="computer-assisted instruction">computer-assisted instruction</a>, <a href="https://publications.waset.org/abstracts/search?q=language%20learning" title=" language learning"> language learning</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20language%20grammar%20models" title=" natural language grammar models"> natural language grammar models</a>, <a href="https://publications.waset.org/abstracts/search?q=HCI" title=" HCI"> HCI</a> </p> <a href="https://publications.waset.org/abstracts/15680/models-and-metamodels-for-computer-assisted-natural-language-grammar-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15680.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">519</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12103</span> Exploring the Potential of Replika: An AI Chatbot for Mental Health Support</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nashwah%20Alnajjar">Nashwah Alnajjar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research paper provides an overview of Replika, an AI chatbot application that uses natural language processing technology to engage in conversations with users. The app was developed to provide users with a virtual AI friend who can converse with them on various topics, including mental health. This study explores the experiences of Replika users using quantitative research methodology. A survey was conducted with 12 participants to collect data on their demographics, usage patterns, and experiences with the Replika app. The results showed that Replika has the potential to play a role in mental health support and well-being. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Replika" title="Replika">Replika</a>, <a href="https://publications.waset.org/abstracts/search?q=chatbot" title=" chatbot"> chatbot</a>, <a href="https://publications.waset.org/abstracts/search?q=mental%20health" title=" mental health"> mental health</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title=" artificial intelligence"> artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20language%20processing" title=" natural language processing"> natural language processing</a> </p> <a href="https://publications.waset.org/abstracts/167498/exploring-the-potential-of-replika-an-ai-chatbot-for-mental-health-support" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167498.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12102</span> A Survey of the Applications of Sentiment Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pingping%20Lin">Pingping Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Xudong%20Luo"> Xudong Luo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural language often conveys emotions of speakers. Therefore, sentiment analysis on what people say is prevalent in the field of natural language process and has great application value in many practical problems. Thus, to help people understand its application value, in this paper, we survey various applications of sentiment analysis, including the ones in online business and offline business as well as other types of its applications. In particular, we give some application examples in intelligent customer service systems in China. Besides, we compare the applications of sentiment analysis on Twitter, Weibo, Taobao and Facebook, and discuss some challenges. Finally, we point out the challenges faced in the applications of sentiment analysis and the work that is worth being studied in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=application" title="application">application</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20language%20processing" title=" natural language processing"> natural language processing</a>, <a href="https://publications.waset.org/abstracts/search?q=online%20comments" title=" online comments"> online comments</a>, <a href="https://publications.waset.org/abstracts/search?q=sentiment%20analysis" title=" sentiment analysis "> sentiment analysis </a> </p> <a href="https://publications.waset.org/abstracts/128022/a-survey-of-the-applications-of-sentiment-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128022.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12101</span> Topic-to-Essay Generation with Event Element Constraints</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yufen%20Qin">Yufen Qin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Topic-to-Essay generation is a challenging task in Natural language processing, which aims to generate novel, diverse, and topic-related text based on user input. Previous research has overlooked the generation of articles under the constraints of event elements, resulting in issues such as incomplete event elements and logical inconsistencies in the generated results. To fill this gap, this paper proposes an event-constrained approach for a topic-to-essay generation that enforces the completeness of event elements during the generation process. Additionally, a language model is employed to verify the logical consistency of the generated results. Experimental results demonstrate that the proposed model achieves a better BLEU-2 score and performs better than the baseline in terms of subjective evaluation on a real dataset, indicating its capability to generate higher-quality topic-related text. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=event%20element" title="event element">event element</a>, <a href="https://publications.waset.org/abstracts/search?q=language%20model" title=" language model"> language model</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20language%20processing" title=" natural language processing"> natural language processing</a>, <a href="https://publications.waset.org/abstracts/search?q=topic-to-essay%20generation." title=" topic-to-essay generation."> topic-to-essay generation.</a> </p> <a href="https://publications.waset.org/abstracts/168393/topic-to-essay-generation-with-event-element-constraints" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168393.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12100</span> Part of Speech Tagging Using Statistical Approach for Nepali Text</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Archit%20Yajnik">Archit Yajnik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Part of Speech Tagging has always been a challenging task in the era of Natural Language Processing. This article presents POS tagging for Nepali text using Hidden Markov Model and Viterbi algorithm. From the Nepali text, annotated corpus training and testing data set are randomly separated. Both methods are employed on the data sets. Viterbi algorithm is found to be computationally faster and accurate as compared to HMM. The accuracy of 95.43% is achieved using Viterbi algorithm. Error analysis where the mismatches took place is elaborately discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hidden%20markov%20model" title="hidden markov model">hidden markov model</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20language%20processing" title=" natural language processing"> natural language processing</a>, <a href="https://publications.waset.org/abstracts/search?q=POS%20tagging" title=" POS tagging"> POS tagging</a>, <a href="https://publications.waset.org/abstracts/search?q=viterbi%20algorithm" title=" viterbi algorithm"> viterbi algorithm</a> </p> <a href="https://publications.waset.org/abstracts/61160/part-of-speech-tagging-using-statistical-approach-for-nepali-text" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61160.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12099</span> Resource Framework Descriptors for Interestingness in Data </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20B.%20Abhilash">C. B. Abhilash</a>, <a href="https://publications.waset.org/abstracts/search?q=Kavi%20Mahesh"> Kavi Mahesh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Human beings are the most advanced species on earth; it's all because of the ability to communicate and share information via human language. In today's world, a huge amount of data is available on the web in text format. This has also resulted in the generation of big data in structured and unstructured formats. In general, the data is in the textual form, which is highly unstructured. To get insights and actionable content from this data, we need to incorporate the concepts of text mining and natural language processing. In our study, we mainly focus on Interesting data through which interesting facts are generated for the knowledge base. The approach is to derive the analytics from the text via the application of natural language processing. Using semantic web Resource framework descriptors (RDF), we generate the triple from the given data and derive the interesting patterns. The methodology also illustrates data integration using the RDF for reliable, interesting patterns. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=RDF" title="RDF">RDF</a>, <a href="https://publications.waset.org/abstracts/search?q=interestingness" title=" interestingness"> interestingness</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge%20base" title=" knowledge base"> knowledge base</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20data" title=" semantic data"> semantic data</a> </p> <a href="https://publications.waset.org/abstracts/130576/resource-framework-descriptors-for-interestingness-in-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130576.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12098</span> JaCoText: A Pretrained Model for Java Code-Text Generation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jessica%20Lopez%20Espejel">Jessica Lopez Espejel</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahaman%20Sanoussi%20Yahaya%20Alassan"> Mahaman Sanoussi Yahaya Alassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Walid%20Dahhane"> Walid Dahhane</a>, <a href="https://publications.waset.org/abstracts/search?q=El%20Hassane%20Ettifouri"> El Hassane Ettifouri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pretrained transformer-based models have shown high performance in natural language generation tasks. However, a new wave of interest has surged: automatic programming language code generation. This task consists of translating natural language instructions to a source code. Despite the fact that well-known pre-trained models on language generation have achieved good performance in learning programming languages, effort is still needed in automatic code generation. In this paper, we introduce JaCoText, a model based on Transformer neural network. It aims to generate java source code from natural language text. JaCoText leverages the advantages of both natural language and code generation models. More specifically, we study some findings from state of the art and use them to (1) initialize our model from powerful pre-trained models, (2) explore additional pretraining on our java dataset, (3) lead experiments combining the unimodal and bimodal data in training, and (4) scale the input and output length during the fine-tuning of the model. Conducted experiments on CONCODE dataset show that JaCoText achieves new state-of-the-art results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=java%20code%20generation" title="java code generation">java code generation</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20language%20processing" title=" natural language processing"> natural language processing</a>, <a href="https://publications.waset.org/abstracts/search?q=sequence-to-sequence%20models" title=" sequence-to-sequence models"> sequence-to-sequence models</a>, <a href="https://publications.waset.org/abstracts/search?q=transformer%20neural%20networks" title=" transformer neural networks"> transformer neural networks</a> </p> <a href="https://publications.waset.org/abstracts/156766/jacotext-a-pretrained-model-for-java-code-text-generation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156766.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12097</span> Implementing a Database from a Requirement Specification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Omer">M. Omer</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Wilson"> D. Wilson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Creating a database scheme is essentially a manual process. From a requirement specification, the information contained within has to be analyzed and reduced into a set of tables, attributes and relationships. This is a time-consuming process that has to go through several stages before an acceptable database schema is achieved. The purpose of this paper is to implement a Natural Language Processing (NLP) based tool to produce a from a requirement specification. The Stanford CoreNLP version 3.3.1 and the Java programming were used to implement the proposed model. The outcome of this study indicates that the first draft of a relational database schema can be extracted from a requirement specification by using NLP tools and techniques with minimum user intervention. Therefore, this method is a step forward in finding a solution that requires little or no user intervention. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=information%20extraction" title="information extraction">information extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20language%20processing" title=" natural language processing"> natural language processing</a>, <a href="https://publications.waset.org/abstracts/search?q=relation%20extraction" title=" relation extraction"> relation extraction</a> </p> <a href="https://publications.waset.org/abstracts/11073/implementing-a-database-from-a-requirement-specification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11073.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12096</span> Testing Chat-GPT: An AI Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jana%20Ismail">Jana Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Layla%20Fallatah"> Layla Fallatah</a>, <a href="https://publications.waset.org/abstracts/search?q=Maha%20Alshmaisi"> Maha Alshmaisi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> ChatGPT, a cutting-edge language model built on the GPT-3.5 architecture, has garnered attention for its profound natural language processing capabilities, holding promise for transformative applications in customer service and content creation. This study delves into ChatGPT's architecture, aiming to comprehensively understand its strengths and potential limitations. Through systematic experiments across diverse domains, such as general knowledge and creative writing, we evaluated the model's coherence, context retention, and task-specific accuracy. While ChatGPT excels in generating human-like responses and demonstrates adaptability, occasional inaccuracies and sensitivity to input phrasing were observed. The study emphasizes the impact of prompt design on output quality, providing valuable insights for the nuanced deployment of ChatGPT in conversational AI and contributing to the ongoing discourse on the evolving landscape of natural language processing in artificial intelligence. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20Inelegance" title="artificial Inelegance">artificial Inelegance</a>, <a href="https://publications.waset.org/abstracts/search?q=chatGPT" title=" chatGPT"> chatGPT</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20AI" title=" open AI"> open AI</a>, <a href="https://publications.waset.org/abstracts/search?q=NLP" title=" NLP"> NLP</a> </p> <a href="https://publications.waset.org/abstracts/179027/testing-chat-gpt-an-ai-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179027.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12095</span> Computational Linguistic Implications of Gender Bias: Machines Reflect Misogyny in Society</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Irene%20Yi">Irene Yi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Machine learning, natural language processing, and neural network models of language are becoming more and more prevalent in the fields of technology and linguistics today. Training data for machines are at best, large corpora of human literature and at worst, a reflection of the ugliness in society. Computational linguistics is a growing field dealing with such issues of data collection for technological development. Machines have been trained on millions of human books, only to find that in the course of human history, derogatory and sexist adjectives are used significantly more frequently when describing females in history and literature than when describing males. This is extremely problematic, both as training data, and as the outcome of natural language processing. As machines start to handle more responsibilities, it is crucial to ensure that they do not take with them historical sexist and misogynistic notions. This paper gathers data and algorithms from neural network models of language having to deal with syntax, semantics, sociolinguistics, and text classification. Computational analysis on such linguistic data is used to find patterns of misogyny. Results are significant in showing the existing intentional and unintentional misogynistic notions used to train machines, as well as in developing better technologies that take into account the semantics and syntax of text to be more mindful and reflect gender equality. Further, this paper deals with the idea of non-binary gender pronouns and how machines can process these pronouns correctly, given its semantic and syntactic context. This paper also delves into the implications of gendered grammar and its effect, cross-linguistically, on natural language processing. Languages such as French or Spanish not only have rigid gendered grammar rules, but also historically patriarchal societies. The progression of society comes hand in hand with not only its language, but how machines process those natural languages. These ideas are all extremely vital to the development of natural language models in technology, and they must be taken into account immediately. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20analysis" title="computational analysis">computational analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=gendered%20grammar" title=" gendered grammar"> gendered grammar</a>, <a href="https://publications.waset.org/abstracts/search?q=misogynistic%20language" title=" misogynistic language"> misogynistic language</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title=" neural networks"> neural networks</a> </p> <a href="https://publications.waset.org/abstracts/123722/computational-linguistic-implications-of-gender-bias-machines-reflect-misogyny-in-society" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123722.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12094</span> Improving Machine Learning Translation of Hausa Using Named Entity Recognition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aishatu%20Ibrahim%20Birma">Aishatu Ibrahim Birma</a>, <a href="https://publications.waset.org/abstracts/search?q=Aminu%20Tukur"> Aminu Tukur</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulkarim%20Abbass%20Gora"> Abdulkarim Abbass Gora</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Machine translation plays a vital role in the Field of Natural Language Processing (NLP), breaking down language barriers and enabling communication across diverse communities. In the context of Hausa, a widely spoken language in West Africa, mainly in Nigeria, effective translation systems are essential for enabling seamless communication and promoting cultural exchange. However, due to the unique linguistic characteristics of Hausa, accurate translation remains a challenging task. The research proposes an approach to improving the machine learning translation of Hausa by integrating Named Entity Recognition (NER) techniques. Named entities, such as person names, locations, organizations, and dates, are critical components of a language's structure and meaning. Incorporating NER into the translation process can enhance the quality and accuracy of translations by preserving the integrity of named entities and also maintaining consistency in translating entities (e.g., proper names), and addressing the cultural references specific to Hausa. The NER will be incorporated into Neural Machine Translation (NMT) for the Hausa to English Translation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=machine%20translation" title="machine translation">machine translation</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20language%20processing%20%28NLP%29" title=" natural language processing (NLP)"> natural language processing (NLP)</a>, <a href="https://publications.waset.org/abstracts/search?q=named%20entity%20recognition%20%28NER%29" title=" named entity recognition (NER)"> named entity recognition (NER)</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20machine%20translation%20%28NMT%29" title=" neural machine translation (NMT)"> neural machine translation (NMT)</a> </p> <a href="https://publications.waset.org/abstracts/185968/improving-machine-learning-translation-of-hausa-using-named-entity-recognition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185968.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">43</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20Language%20processing&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20Language%20processing&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20Language%20processing&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20Language%20processing&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20Language%20processing&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20Language%20processing&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20Language%20processing&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20Language%20processing&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20Language%20processing&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20Language%20processing&page=404">404</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20Language%20processing&page=405">405</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20Language%20processing&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>