CINXE.COM

Search results for: correlation filter

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: correlation filter</title> <meta name="description" content="Search results for: correlation filter"> <meta name="keywords" content="correlation filter"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="correlation filter" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="correlation filter"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4756</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: correlation filter</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4666</span> Adaptive Kaman Filter for Fault Diagnosis of Linear Parameter-Varying Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajamani%20Doraiswami">Rajamani Doraiswami</a>, <a href="https://publications.waset.org/abstracts/search?q=Lahouari%20Cheded"> Lahouari Cheded</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fault diagnosis of Linear Parameter-Varying (LPV) system using an adaptive Kalman filter is proposed. The LPV model is comprised of scheduling parameters, and the emulator parameters. The scheduling parameters are chosen such that they are capable of tracking variations in the system model as a result of changes in the operating regimes. The emulator parameters, on the other hand, simulate variations in the subsystems during the identification phase and have negligible effect during the operational phase. The nominal model and the influence vectors, which are the gradient of the feature vector respect to the emulator parameters, are identified off-line from a number of emulator parameter perturbed experiments. A Kalman filter is designed using the identified nominal model. As the system varies, the Kalman filter model is adapted using the scheduling variables. The residual is employed for fault diagnosis. The proposed scheme is successfully evaluated on simulated system as well as on a physical process control system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=identification" title="identification">identification</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20parameter-varying%20systems" title=" linear parameter-varying systems"> linear parameter-varying systems</a>, <a href="https://publications.waset.org/abstracts/search?q=least-squares%20estimation" title=" least-squares estimation"> least-squares estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20diagnosis" title=" fault diagnosis"> fault diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalman%20filter" title=" Kalman filter"> Kalman filter</a>, <a href="https://publications.waset.org/abstracts/search?q=emulators" title=" emulators"> emulators</a> </p> <a href="https://publications.waset.org/abstracts/7656/adaptive-kaman-filter-for-fault-diagnosis-of-linear-parameter-varying-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7656.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">499</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4665</span> Detection of Image Blur and Its Restoration for Image Enhancement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20V.%20Chidananda%20Murthy">M. V. Chidananda Murthy</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Z.%20Kurian"> M. Z. Kurian</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20S.%20Guruprasad"> H. S. Guruprasad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Image restoration in the process of communication is one of the emerging fields in the image processing. The motion analysis processing is the simplest case to detect motion in an image. Applications of motion analysis widely spread in many areas such as surveillance, remote sensing, film industry, navigation of autonomous vehicles, etc. The scene may contain multiple moving objects, by using motion analysis techniques the blur caused by the movement of the objects can be enhanced by filling-in occluded regions and reconstruction of transparent objects, and it also removes the motion blurring. This paper presents the design and comparison of various motion detection and enhancement filters. Median filter, Linear image deconvolution, Inverse filter, Pseudoinverse filter, Wiener filter, Lucy Richardson filter and Blind deconvolution filters are used to remove the blur. In this work, we have considered different types and different amount of blur for the analysis. Mean Square Error (MSE) and Peak Signal to Noise Ration (PSNR) are used to evaluate the performance of the filters. The designed system has been implemented in Matlab software and tested for synthetic and real-time images. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=image%20enhancement" title="image enhancement">image enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=motion%20analysis" title=" motion analysis"> motion analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=motion%20detection" title=" motion detection"> motion detection</a>, <a href="https://publications.waset.org/abstracts/search?q=motion%20estimation" title=" motion estimation"> motion estimation</a> </p> <a href="https://publications.waset.org/abstracts/59485/detection-of-image-blur-and-its-restoration-for-image-enhancement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59485.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4664</span> Quasiperiodic Magnetic Chains as Spin Filters </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arunava%20Chakrabarti">Arunava Chakrabarti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A one-dimensional chain of magnetic atoms, representative of a quantum gas in an artificial quasi-periodic potential and modeled by the well-known Aubry-Andre function and its variants are studied in respect of its capability of working as a spin filter for arbitrary spins. The basic formulation is explained in terms of a perfectly periodic chain first, where it is shown that a definite correlation between the spin S of the incoming particles and the magnetic moment h of the substrate atoms can open up a gap in the energy spectrum. This is crucial for a spin filtering action. The simple one-dimensional chain is shown to be equivalent to a 2S+1 strand ladder network. This equivalence is exploited to work out the condition for the opening of gaps. The formulation is then applied for a one-dimensional chain with quasi-periodic variation in the site potentials, the magnetic moments and their orientations following an Aubry-Andre modulation and its variants. In addition, we show that a certain correlation between the system parameters can generate absolutely continuous bands in such systems populated by Bloch like extended wave functions only, signaling the possibility of a metal-insulator transition. This is a case of correlated disorder (a deterministic one), and the results provide a non-trivial variation to the famous Anderson localization problem. We have worked within a tight binding formalism and have presented explicit results for the spin half, spin one, three halves and spin five half particles incident on the magnetic chain to explain our scheme and the central results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aubry-Andre%20model" title="Aubry-Andre model">Aubry-Andre model</a>, <a href="https://publications.waset.org/abstracts/search?q=correlated%20disorder" title=" correlated disorder"> correlated disorder</a>, <a href="https://publications.waset.org/abstracts/search?q=localization" title=" localization"> localization</a>, <a href="https://publications.waset.org/abstracts/search?q=spin%20filter" title=" spin filter"> spin filter</a> </p> <a href="https://publications.waset.org/abstracts/55612/quasiperiodic-magnetic-chains-as-spin-filters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55612.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4663</span> Potential Enhancement of Arsenic Removal Filter Commonly Used in South Asia: A Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarthak%20Karki">Sarthak Karki</a>, <a href="https://publications.waset.org/abstracts/search?q=Haribansha%20Timalsina"> Haribansha Timalsina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Kanchan Arsenic Filter is an economical low cost and termed the most efficient arsenic removal filter system in South Asian countries such as Nepal. But when the effluent quality was evaluated, it was seen to possess a lower removal rate of arsenite species. In addition to that, greater pathogenic growth and loss in overall efficacy with time due to precipitation of iron sulphates were the further complications. This brings the health issue on the front line as millions of people rely on groundwater sources for general water necessities. With this paper, we analyzed the mechanisms and changes in the efficiency of the extant filter system when integrated with activated laterite and hair column beds, plus an additional charcoal layer for inhibiting pathogen colonies. Hair column have rich keratin protein that binds with arsenic species, and similarly, raw laterite has huge deposits of iron and aluminum, all of these factors helping to remove heavy metal contaminants from water sources. Further study on the commercialized mass production of the new proposed filter and versatility analysis is required. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laterite" title="laterite">laterite</a>, <a href="https://publications.waset.org/abstracts/search?q=charcoal" title=" charcoal"> charcoal</a>, <a href="https://publications.waset.org/abstracts/search?q=arsenic%20removal" title=" arsenic removal"> arsenic removal</a>, <a href="https://publications.waset.org/abstracts/search?q=hair%20column" title=" hair column"> hair column</a> </p> <a href="https://publications.waset.org/abstracts/140992/potential-enhancement-of-arsenic-removal-filter-commonly-used-in-south-asia-a-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140992.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4662</span> Compact Dual-Band Bandpass Filter Based on Quarter Wavelength Stepped Impedance Resonators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu-Fu%20Chen">Yu-Fu Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Zih-Jyun%20Dai"> Zih-Jyun Dai</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen-Te%20Chiu"> Chen-Te Chiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Shiue-Chen%20Chiou"> Shiue-Chen Chiou</a>, <a href="https://publications.waset.org/abstracts/search?q=Yung-Wei%20Chen"> Yung-Wei Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Ming%20Lin"> Yu-Ming Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuan-Yu%20Chen"> Kuan-Yu Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Hung-Wei%20Wu"> Hung-Wei Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hsin-Ying%20Lee"> Hsin-Ying Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan-Kuin%20Su"> Yan-Kuin Su</a>, <a href="https://publications.waset.org/abstracts/search?q=Shoou-Jinn%20Chang"> Shoou-Jinn Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a compact dual-band bandpass filter that involves using the quarter wavelength stepped impedance resonators (SIRs) for achieving simultaneously compact circuit size and good dual-band performance. The filter is designed at 2.4 / 3.5 GHz and constructed by two pairs of quarter wavelength SIRs and source-load lines. By properly tuning the impedance ratio, length ratio and radius of via hole of the SIRs, dual-passbands performance can be easily determined. To improve the passband selectivity, the use of source-load lines is to increase coupling energy between the resonators. The filter is showing simple configuration, effective design method and small circuit size. The measured results are in good agreement with the simulation results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dual-band" title="dual-band">dual-band</a>, <a href="https://publications.waset.org/abstracts/search?q=bandpass%20filter" title=" bandpass filter"> bandpass filter</a>, <a href="https://publications.waset.org/abstracts/search?q=stepped%20impedance%20resonators" title=" stepped impedance resonators"> stepped impedance resonators</a>, <a href="https://publications.waset.org/abstracts/search?q=SIR" title=" SIR"> SIR</a> </p> <a href="https://publications.waset.org/abstracts/44601/compact-dual-band-bandpass-filter-based-on-quarter-wavelength-stepped-impedance-resonators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44601.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">517</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4661</span> Statically Fused Unbiased Converted Measurements Kalman Filter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhengkun%20Guo">Zhengkun Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Yanbin%20Li"> Yanbin Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Wenqing%20Wang"> Wenqing Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Bo%20Zou"> Bo Zou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The statically fused converted position and doppler measurements Kalman filter (SF-CMKF) with additive debiased measurement conversion has been previously presented to combine the resulting states of converted position measurements Kalman filter (CPMKF) and converted doppler measurement Kalman filter (CDMKF) to yield the final state estimates under minimum mean squared error (MMSE) criterion. However, the exact compensation for the bias in the polar-to-cartesian and spherical-to-cartesian conversion are multiplicative and depend on the statistics of the cosine of the angle measurement errors. As a result, the consistency and performance of the SF-CMKF may be suboptimal in large-angle error situations. In this paper, the multiplicative unbiased position and Doppler measurement conversion for 2D (polar-to-cartesian) tracking are derived, and the SF-CMKF is improved to use those conversions. Monte Carlo simulations are presented to demonstrate the statistical consistency of the multiplicative unbiased conversion and the superior performance of the modified SF-CMKF (SF-UCMKF). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=measurement%20conversion" title="measurement conversion">measurement conversion</a>, <a href="https://publications.waset.org/abstracts/search?q=Doppler" title=" Doppler"> Doppler</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalman%20filter" title=" Kalman filter"> Kalman filter</a>, <a href="https://publications.waset.org/abstracts/search?q=estimation" title=" estimation"> estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=tracking" title=" tracking"> tracking</a> </p> <a href="https://publications.waset.org/abstracts/136726/statically-fused-unbiased-converted-measurements-kalman-filter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136726.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4660</span> Extended Kalman Filter Based Direct Torque Control of Permanent Magnet Synchronous Motor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liang%20Qin">Liang Qin</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanan%20M.%20D.%20Habbi"> Hanan M. D. Habbi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A robust sensorless speed for permanent magnet synchronous motor (PMSM) has been presented for estimation of stator flux components and rotor speed based on The Extended Kalman Filter (EKF). The model of PMSM and its EKF models are modeled in Matlab /Sirnulink environment. The proposed EKF speed estimation method is also proved insensitive to the PMSM parameter variations. Simulation results demonstrate a good performance and robustness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DTC" title="DTC">DTC</a>, <a href="https://publications.waset.org/abstracts/search?q=Extended%20Kalman%20Filter%20%28EKF%29" title=" Extended Kalman Filter (EKF)"> Extended Kalman Filter (EKF)</a>, <a href="https://publications.waset.org/abstracts/search?q=PMSM" title=" PMSM"> PMSM</a>, <a href="https://publications.waset.org/abstracts/search?q=sensorless%20control" title=" sensorless control"> sensorless control</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-windup%20PI" title=" anti-windup PI"> anti-windup PI</a> </p> <a href="https://publications.waset.org/abstracts/22472/extended-kalman-filter-based-direct-torque-control-of-permanent-magnet-synchronous-motor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22472.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">664</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4659</span> Carbon Capture: Growth and Development of Membranes in Gas Sequestration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sreevalli%20Bokka">Sreevalli Bokka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Various technologies are emerging to capture or reduce carbon intensity from a gas stream, such as industrial effluent air and atmosphere. Of these technologies, filter membranes are emerging as a key player in carbon sequestering. The key advantages of these membranes are their high surface area and porosity. Fabricating a filter membrane that has high selectivity for carbon sequestration is challenging as material properties and processing parameters affect the membrane properties. In this study, the growth of the filter membranes and the critical material properties that impact carbon sequestration are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=membranes" title="membranes">membranes</a>, <a href="https://publications.waset.org/abstracts/search?q=filtration" title=" filtration"> filtration</a>, <a href="https://publications.waset.org/abstracts/search?q=separations" title=" separations"> separations</a>, <a href="https://publications.waset.org/abstracts/search?q=polymers" title=" polymers"> polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20capture" title=" carbon capture"> carbon capture</a> </p> <a href="https://publications.waset.org/abstracts/178891/carbon-capture-growth-and-development-of-membranes-in-gas-sequestration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178891.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4658</span> Design and Synthesis of Two Tunable Bandpass Filters Based on Varactors and Defected Ground Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M%27Hamed%20Boulakroune">M&#039;Hamed Boulakroune</a>, <a href="https://publications.waset.org/abstracts/search?q=Mouloud%20Challal"> Mouloud Challal</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassiba%20Louazene"> Hassiba Louazene</a>, <a href="https://publications.waset.org/abstracts/search?q=Saida%20Fentiz"> Saida Fentiz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a new ultra wideband (UWB) microstrip bandpass filter (BPF) at microwave frequencies. The first one is based on multiple-mode resonator (MMR) and rectangular-shaped defected ground structure (DGS). This filter, which is compact size of 25.2 x 3.8 mm2, provides in the pass band an insertion loss of 0.57 dB and a return loss greater than 12 dB. The second structure is a tunable bandpass filters using planar patch resonators based on diode varactor. This filter is formed by a triple mode circular patch resonator with two pairs of slots, in which the varactors are connected. Indeed, this filter is initially centered at 2.4 GHz, the center frequency of the tunable patch filter could be tuned up to 1.8 GHz simultaneously with the bandwidth, reaching high tuning ranges. Lossless simulations were compared to those considering the substrate dielectric, conductor losses, and the equivalent electrical circuit model of the tuning element in order to assess their effects. Within these variations, simulation results showed insertion loss better than 2 dB and return loss better than 10 dB over the passband. The proposed filters presents good performances and the simulation results are in satisfactory agreement with the experimentation ones reported elsewhere. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=defected%20ground%20structure" title="defected ground structure">defected ground structure</a>, <a href="https://publications.waset.org/abstracts/search?q=diode%20varactor" title=" diode varactor"> diode varactor</a>, <a href="https://publications.waset.org/abstracts/search?q=microstrip%20bandpass%20filter" title=" microstrip bandpass filter"> microstrip bandpass filter</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple-mode%20resonator" title=" multiple-mode resonator"> multiple-mode resonator</a> </p> <a href="https://publications.waset.org/abstracts/23038/design-and-synthesis-of-two-tunable-bandpass-filters-based-on-varactors-and-defected-ground-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23038.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4657</span> Speech Enhancement Using Kalman Filter in Communication</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eng.%20Alaa%20K.%20Satti%20Salih">Eng. Alaa K. Satti Salih</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Revolutions Applications such as telecommunications, hands-free communications, recording, etc. which need at least one microphone, the signal is usually infected by noise and echo. The important application is the speech enhancement, which is done to remove suppressed noises and echoes taken by a microphone, beside preferred speech. Accordingly, the microphone signal has to be cleaned using digital signal processing DSP tools before it is played out, transmitted, or stored. Engineers have so far tried different approaches to improving the speech by get back the desired speech signal from the noisy observations. Especially Mobile communication, so in this paper will do reconstruction of the speech signal, observed in additive background noise, using the Kalman filter technique to estimate the parameters of the Autoregressive Process (AR) in the state space model and the output speech signal obtained by the MATLAB. The accurate estimation by Kalman filter on speech would enhance and reduce the noise then compare and discuss the results between actual values and estimated values which produce the reconstructed signals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autoregressive%20process" title="autoregressive process">autoregressive process</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalman%20filter" title=" Kalman filter"> Kalman filter</a>, <a href="https://publications.waset.org/abstracts/search?q=Matlab" title=" Matlab"> Matlab</a>, <a href="https://publications.waset.org/abstracts/search?q=noise%20speech" title=" noise speech"> noise speech</a> </p> <a href="https://publications.waset.org/abstracts/7182/speech-enhancement-using-kalman-filter-in-communication" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7182.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4656</span> A Different Approach to Optimize Fuzzy Membership Functions with Extended FIR Filter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jun-Ho%20Chung">Jun-Ho Chung</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung-Hyun%20Yoo"> Sung-Hyun Yoo</a>, <a href="https://publications.waset.org/abstracts/search?q=In-Hwan%20Choi"> In-Hwan Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyun-Kook%20Lee"> Hyun-Kook Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Moon-Kyu%20Song"> Moon-Kyu Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Choon-Ki%20Ahn"> Choon-Ki Ahn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The extended finite impulse response (EFIR) filter is addressed to optimize membership functions (MFs) of the fuzzy model that has strong nonlinearity. MFs are important parts of the fuzzy logic system (FLS) and, thus optimizing MFs of FLS is one of approaches to improve the performance of output. We employ the EFIR as an alternative optimization option to nonlinear fuzzy model. The performance of EFIR is demonstrated on a fuzzy cruise control via a numerical example. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logic%20system" title="fuzzy logic system">fuzzy logic system</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=membership%20function" title=" membership function"> membership function</a>, <a href="https://publications.waset.org/abstracts/search?q=extended%20FIR%20filter" title=" extended FIR filter"> extended FIR filter</a> </p> <a href="https://publications.waset.org/abstracts/42104/a-different-approach-to-optimize-fuzzy-membership-functions-with-extended-fir-filter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42104.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">723</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4655</span> Real-Time Radar Tracking Based on Nonlinear Kalman Filter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Milca%20F.%20Coelho">Milca F. Coelho</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Bousson"> K. Bousson</a>, <a href="https://publications.waset.org/abstracts/search?q=Kawser%20Ahmed"> Kawser Ahmed </a> </p> <p class="card-text"><strong>Abstract:</strong></p> To accurately track an aerospace vehicle in a time-critical situation and in a highly nonlinear environment, is one of the strongest interests within the aerospace community. The tracking is achieved by estimating accurately the state of a moving target, which is composed of a set of variables that can provide a complete status of the system at a given time. One of the main ingredients for a good estimation performance is the use of efficient estimation algorithms. A well-known framework is the Kalman filtering methods, designed for prediction and estimation problems. The success of the Kalman Filter (KF) in engineering applications is mostly due to the Extended Kalman Filter (EKF), which is based on local linearization. Besides its popularity, the EKF presents several limitations. To address these limitations and as a possible solution to tracking problems, this paper proposes the use of the Ensemble Kalman Filter (EnKF). Although the EnKF is being extensively used in the context of weather forecasting and it is being recognized for producing accurate and computationally effective estimation on systems with a very high dimension, it is almost unknown by the tracking community. The EnKF was initially proposed as an attempt to improve the error covariance calculation, which on the classic Kalman Filter is difficult to implement. Also, in the EnKF method the prediction and analysis error covariances have ensemble representations. These ensembles have sizes which limit the number of degrees of freedom, in a way that the filter error covariance calculations are a lot more practical for modest ensemble sizes. In this paper, a realistic simulation of a radar tracking was performed, where the EnKF was applied and compared with the Extended Kalman Filter. The results suggested that the EnKF is a promising tool for tracking applications, offering more advantages in terms of performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kalman%20filter" title="Kalman filter">Kalman filter</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20state%20estimation" title=" nonlinear state estimation"> nonlinear state estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20tracking" title=" optimal tracking"> optimal tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20environment" title=" stochastic environment"> stochastic environment</a> </p> <a href="https://publications.waset.org/abstracts/107223/real-time-radar-tracking-based-on-nonlinear-kalman-filter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107223.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4654</span> A Particle Filter-Based Data Assimilation Method for Discrete Event Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhi%20Zhu">Zhi Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Boquan%20Zhang"> Boquan Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Tian%20Jing"> Tian Jing</a>, <a href="https://publications.waset.org/abstracts/search?q=Jingjing%20Li"> Jingjing Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Tao%20Wang"> Tao Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Data assimilation is a model and data hybrid-driven method that dynamically fuses new observation data with a numerical model to iteratively approach the real system state. It is widely used in state prediction and parameter inference of continuous systems. Because of the discrete event system’s non-linearity and non-Gaussianity, traditional Kalman Filter based on linear and Gaussian assumptions cannot perform data assimilation for such systems, so particle filter has gradually become a technical approach for discrete event simulation data assimilation. Hence, we proposed a particle filter-based discrete event simulation data assimilation method and took the unmanned aerial vehicle (UAV) maintenance service system as a proof of concept to conduct simulation experiments. The experimental results showed that the filtered state data is closer to the real state of the system, which verifies the effectiveness of the proposed method. This research can provide a reference framework for the data assimilation process of other complex nonlinear systems, such as discrete-time and agent simulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discrete%20event%20simulation" title="discrete event simulation">discrete event simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20assimilation" title=" data assimilation"> data assimilation</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20filter" title=" particle filter"> particle filter</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20and%20data-driven" title=" model and data-driven"> model and data-driven</a> </p> <a href="https://publications.waset.org/abstracts/192559/a-particle-filter-based-data-assimilation-method-for-discrete-event-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192559.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">17</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4653</span> An Algorithm Based on the Nonlinear Filter Generator for Speech Encryption</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Belmeguenai">A. Belmeguenai</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Mansouri"> K. Mansouri</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Djemili"> R. Djemili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work present a new algorithm based on the nonlinear filter generator for speech encryption and decryption. The proposed algorithm consists on the use a linear feedback shift register (LFSR) whose polynomial is primitive and nonlinear Boolean function. The purpose of this system is to construct Keystream with good statistical properties, but also easily computable on a machine with limited capacity calculated. This proposed speech encryption scheme is very simple, highly efficient, and fast to implement the speech encryption and decryption. We conclude the paper by showing that this system can resist certain known attacks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20filter%20generator" title="nonlinear filter generator">nonlinear filter generator</a>, <a href="https://publications.waset.org/abstracts/search?q=stream%20ciphers" title=" stream ciphers"> stream ciphers</a>, <a href="https://publications.waset.org/abstracts/search?q=speech%20encryption" title=" speech encryption"> speech encryption</a>, <a href="https://publications.waset.org/abstracts/search?q=security%20analysis" title=" security analysis"> security analysis</a> </p> <a href="https://publications.waset.org/abstracts/39095/an-algorithm-based-on-the-nonlinear-filter-generator-for-speech-encryption" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39095.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4652</span> The Effect of Chemical Degradation of a Nonwoven Filter Media Membrane in Polyester</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rachid%20El%20Aidani">Rachid El Aidani</a>, <a href="https://publications.waset.org/abstracts/search?q=Phuong%20Nguyen-Tri"> Phuong Nguyen-Tri</a>, <a href="https://publications.waset.org/abstracts/search?q=Toan%20Vu-Khanh"> Toan Vu-Khanh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The filter media in synthetic fibre is the most geotextile materials used in aerosol and drainage filtration, particularly for buildings soil reinforcement in civil engineering due to its appropriated properties and its low cost. However, the current understanding of the durability and stability of this material in real service conditions, especially under severe long-term conditions are completely limited. This study has examined the effects of the chemical aging of a filter media in polyester non-woven under different temperatures (50, 70 and 80˚C) and pH (2. 7 and 12). The effect of aging conditions on mechanical properties, morphology, permeability, thermal stability and molar weigh changes is investigated. The results showed a significant reduction of mechanical properties in term of tensile strength, puncture force and tearing forces of the filter media after chemical aging due to the chemical degradation. The molar mass and mechanical properties changes in different temperature and pH showed a complex dependence of material properties on environmental conditions. The SEM and AFM characterizations showed a significant impact of the thermal aging on the morphological properties of the fibers. Based on the obtained results, the lifetime of the material in different temperatures was determined by the use of the Arrhenius model. These results provide useful information to better understand phenomena occurring during chemical aging of the filter media and may help to predict the service lifetime of this material in real used conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonwoven%20membrane" title="nonwoven membrane">nonwoven membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20aging" title=" chemical aging"> chemical aging</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=lifetime" title=" lifetime"> lifetime</a>, <a href="https://publications.waset.org/abstracts/search?q=filter%20media" title=" filter media"> filter media</a> </p> <a href="https://publications.waset.org/abstracts/29432/the-effect-of-chemical-degradation-of-a-nonwoven-filter-media-membrane-in-polyester" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29432.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4651</span> Chemical Degradation of a Polyester Nonwoven Membrane Used in Aerosol and Drainage Filter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rachid%20El%20Aidani">Rachid El Aidani</a>, <a href="https://publications.waset.org/abstracts/search?q=Phuong%20Nguyen-Tri"> Phuong Nguyen-Tri</a>, <a href="https://publications.waset.org/abstracts/search?q=Toan%20Vu-Khanh"> Toan Vu-Khanh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The filter media in synthetic fibre is the most geotextile materials used in aerosol and drainage filtration, particularly for buildings soil reinforcement in civil engineering due to its appropriated properties and its low cost. However, the current understanding of the durability and stability of this material in real service conditions, especially under severe long-term conditions are completely limited. This study has examined the effects of the chemical aging of a filter media in polyester nonwoven under different temperatures (50, 70 and 80˚C) and pH (2. 7 and 12). The effect of aging conditions on mechanical properties, morphology, permeability, thermal stability and molar weigh changes is investigated. The results showed a significant reduction of mechanical properties in term of tensile strength, puncture force and tearing forces of the filter media after chemical aging due to the chemical degradation. The molar mass and mechanical properties changes in different temperature and pH showed a complex dependence of material properties on environmental conditions. The SEM and AFM characterizations showed a significant impact of the thermal aging on the morphological properties of the fibres. Based on the obtained results, the lifetime of the material in different temperatures was determined by the use of the Arrhenius model. These results provide useful information to better understand phenomena occurring during chemical aging of the filter media and may help to predict the service lifetime of this material in real used conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonwoven%20membrane" title="nonwoven membrane">nonwoven membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20aging" title=" chemical aging"> chemical aging</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=lifetime" title=" lifetime"> lifetime</a>, <a href="https://publications.waset.org/abstracts/search?q=filter%20media" title=" filter media"> filter media</a> </p> <a href="https://publications.waset.org/abstracts/29367/chemical-degradation-of-a-polyester-nonwoven-membrane-used-in-aerosol-and-drainage-filter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29367.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4650</span> Very Large Scale Integration Architecture of Finite Impulse Response Filter Implementation Using Retiming Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Jalaja">S. Jalaja</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Vijaya%20Prakash"> A. M. Vijaya Prakash </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recursive combination of an algorithm based on Karatsuba multiplication is exploited to design a generalized transpose and parallel Finite Impulse Response (FIR) Filter. Mid-range Karatsuba multiplication and Carry Save adder based on Karatsuba multiplication reduce time complexity for higher order multiplication implemented up to n-bit. As a result, we design modified N-tap Transpose and Parallel Symmetric FIR Filter Structure using Karatsuba algorithm. The mathematical formulation of the FFA Filter is derived. The proposed architecture involves significantly less area delay product (APD) then the existing block implementation. By adopting retiming technique, hardware cost is reduced further. The filter architecture is designed by using 90 nm technology library and is implemented by using cadence EDA Tool. The synthesized result shows better performance for different word length and block size. The design achieves switching activity reduction and low power consumption by applying with and without retiming for different combination of the circuit. The proposed structure achieves more than a half of the power reduction by adopting with and without retiming techniques compared to the earlier design structure. As a proof of the concept for block size 16 and filter length 64 for CKA method, it achieves a 51% as well as 70% less power by applying retiming technique, and for CSA method it achieves a 57% as well as 77% less power by applying retiming technique compared to the previously proposed design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carry%20save%20adder%20Karatsuba%20multiplication" title="carry save adder Karatsuba multiplication">carry save adder Karatsuba multiplication</a>, <a href="https://publications.waset.org/abstracts/search?q=mid%20range%20Karatsuba%20multiplication" title=" mid range Karatsuba multiplication"> mid range Karatsuba multiplication</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20FFA%20and%20transposed%20filter" title=" modified FFA and transposed filter"> modified FFA and transposed filter</a>, <a href="https://publications.waset.org/abstracts/search?q=retiming" title=" retiming"> retiming</a> </p> <a href="https://publications.waset.org/abstracts/56239/very-large-scale-integration-architecture-of-finite-impulse-response-filter-implementation-using-retiming-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56239.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4649</span> Spectral Efficiency Improvement in 5G Systems by Polyphase Decomposition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wilson%20Enr%C3%ADquez">Wilson Enríquez</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Cardenas"> Daniel Cardenas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article proposes a filter bank format combined with the mathematical tool called polyphase decomposition and the discrete Fourier transform (DFT) with the purpose of improving the performance of the fifth-generation communication systems (5G). We started with a review of the literature and the study of the filter bank theory and its combination with DFT in order to improve the performance of wireless communications since it reduces the computational complexity of these communication systems. With the proposed technique, several experiments were carried out in order to evaluate the structures in 5G systems. Finally, the results are presented in graphical form in terms of bit error rate against the ratio bit energy/noise power spectral density (BER vs. Eb / No). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-carrier%20system%20%285G%29" title="multi-carrier system (5G)">multi-carrier system (5G)</a>, <a href="https://publications.waset.org/abstracts/search?q=filter%20bank" title=" filter bank"> filter bank</a>, <a href="https://publications.waset.org/abstracts/search?q=polyphase%20decomposition" title=" polyphase decomposition"> polyphase decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=FIR%20equalizer" title=" FIR equalizer"> FIR equalizer</a> </p> <a href="https://publications.waset.org/abstracts/142477/spectral-efficiency-improvement-in-5g-systems-by-polyphase-decomposition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142477.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4648</span> A Bibliometric Analysis on Filter Bubble</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Misbah%20Fatma">Misbah Fatma</a>, <a href="https://publications.waset.org/abstracts/search?q=Anam%20Saiyeda"> Anam Saiyeda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This analysis charts the introduction and expansion of research into the filter bubble phenomena over the last 10 years using a large dataset of academic publications. This bibliometric study demonstrates how interdisciplinary filter bubble research is. The identification of key authors and organizations leading the filter bubble study sheds information on collaborative networks and knowledge transfer. Relevant papers are organized based on themes including algorithmic bias, polarisation, social media, and ethical implications through a systematic examination of the literature. In order to shed light on how these patterns have changed over time, the study plots their historical history. The study also looks at how research is distributed globally, showing geographic patterns and discrepancies in scholarly output. The results of this bibliometric analysis let us fully comprehend the development and reach of filter bubble research. This study offers insights into the ongoing discussion surrounding information personalization and its implications for societal discourse, democratic participation, and the potential risks to an informed citizenry by exposing dominant themes, interdisciplinary collaborations, and geographic patterns. In order to solve the problems caused by filter bubbles and to advance a more diverse and inclusive information environment, this analysis is essential for scholars and researchers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bibliometric%20analysis" title="bibliometric analysis">bibliometric analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20media" title=" social media"> social media</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20networking" title=" social networking"> social networking</a>, <a href="https://publications.waset.org/abstracts/search?q=algorithmic%20personalization" title=" algorithmic personalization"> algorithmic personalization</a>, <a href="https://publications.waset.org/abstracts/search?q=self-selection" title=" self-selection"> self-selection</a>, <a href="https://publications.waset.org/abstracts/search?q=content%20moderation%20policies%20and%20limited%20access%20to%20information" title=" content moderation policies and limited access to information"> content moderation policies and limited access to information</a>, <a href="https://publications.waset.org/abstracts/search?q=recommender%20system%20and%20polarization" title=" recommender system and polarization"> recommender system and polarization</a> </p> <a href="https://publications.waset.org/abstracts/174333/a-bibliometric-analysis-on-filter-bubble" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174333.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4647</span> A Three Phase Shunt Active Power Filter for Currents Harmonics Elimination and Reactive Power Compensation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amar%20Omeiri">Amar Omeiri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a three-phase shunt active power filter for current harmonics suppression and reactive power compensation using the supply current as reference. The proposed APF has a simple control circuit; it consists of detecting the supply current instead of the load current. The advantages of this APF are simplicity of control circuits and low implementation cost. The simulation results show that the proposed APF can compensate the reactive power and suppress current harmonics with two types of non-linear loads. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20power%20filter" title="active power filter">active power filter</a>, <a href="https://publications.waset.org/abstracts/search?q=current%20harmonics%20and%20reactive%20power%20compensation" title=" current harmonics and reactive power compensation"> current harmonics and reactive power compensation</a>, <a href="https://publications.waset.org/abstracts/search?q=PWM%20inverter" title=" PWM inverter"> PWM inverter</a>, <a href="https://publications.waset.org/abstracts/search?q=Total%20Harmonic%20Distortion" title=" Total Harmonic Distortion"> Total Harmonic Distortion</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20quality" title=" power quality"> power quality</a> </p> <a href="https://publications.waset.org/abstracts/23921/a-three-phase-shunt-active-power-filter-for-currents-harmonics-elimination-and-reactive-power-compensation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23921.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">588</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4646</span> Improving Temporal Correlations in Empirical Orthogonal Function Expansions for Data Interpolating Empirical Orthogonal Function Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ping%20Bo">Ping Bo</a>, <a href="https://publications.waset.org/abstracts/search?q=Meng%20Yunshan"> Meng Yunshan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Satellite-derived sea surface temperature (SST) is a key parameter for many operational and scientific applications. However, the disadvantage of SST data is a high percentage of missing data which is mainly caused by cloud coverage. Data Interpolating Empirical Orthogonal Function (DINEOF) algorithm is an EOF-based technique for reconstructing the missing data and has been widely used in oceanographic field. The reconstruction of SST images within a long time series using DINEOF can cause large discontinuities and one solution for this problem is to filter the temporal covariance matrix to reduce the spurious variability. Based on the previous researches, an algorithm is presented in this paper to improve the temporal correlations in EOF expansion. Similar with the previous researches, a filter, such as Laplacian filter, is implemented on the temporal covariance matrix, but the temporal relationship between two consecutive images which is used in the filter is considered in the presented algorithm, for example, two images in the same season are more likely correlated than those in the different seasons, hence the latter one is less weighted in the filter. The presented approach is tested for the monthly nighttime 4-km Advanced Very High Resolution Radiometer (AVHRR) Pathfinder SST for the long-term period spanning from 1989 to 2006. The results obtained from the presented algorithm are compared to those from the original DINEOF algorithm without filtering and from the DINEOF algorithm with filtering but without taking temporal relationship into account. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20interpolating%20empirical%20orthogonal%20function" title="data interpolating empirical orthogonal function">data interpolating empirical orthogonal function</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20reconstruction" title=" image reconstruction"> image reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=sea%20surface%20temperature" title=" sea surface temperature"> sea surface temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=temporal%20filter" title=" temporal filter"> temporal filter</a> </p> <a href="https://publications.waset.org/abstracts/64675/improving-temporal-correlations-in-empirical-orthogonal-function-expansions-for-data-interpolating-empirical-orthogonal-function-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64675.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4645</span> Hybrid Robust Estimation via Median Filter and Wavelet Thresholding with Automatic Boundary Correction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alsaidi%20M.%20Altaher">Alsaidi M. Altaher</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Tahir%20Ismail"> Mohd Tahir Ismail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wavelet thresholding has been a power tool in curve estimation and data analysis. In the presence of outliers this non parametric estimator can not suppress the outliers involved. This study proposes a new two-stage combined method based on the use of the median filter as primary step before applying wavelet thresholding. After suppressing the outliers in a signal through the median filter, the classical wavelet thresholding is then applied for removing the remaining noise. We use automatic boundary corrections; using a low order polynomial model or local polynomial model as a more realistic rule to correct the bias at the boundary region; instead of using the classical assumptions such periodic or symmetric. A simulation experiment has been conducted to evaluate the numerical performance of the proposed method. Results show strong evidences that the proposed method is extremely effective in terms of correcting the boundary bias and eliminating outlier’s sensitivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boundary%20correction" title="boundary correction">boundary correction</a>, <a href="https://publications.waset.org/abstracts/search?q=median%20filter" title=" median filter"> median filter</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelet%20thresholding" title=" wavelet thresholding"> wavelet thresholding</a> </p> <a href="https://publications.waset.org/abstracts/16883/hybrid-robust-estimation-via-median-filter-and-wavelet-thresholding-with-automatic-boundary-correction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16883.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4644</span> Indoor Temperature Estimation with FIR Filter Using R-C Network Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sung%20Hyun%20You">Sung Hyun You</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeong%20Hoon%20Kim"> Jeong Hoon Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Dae%20Ki%20Kim"> Dae Ki Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Choon%20Ki%20Ahn"> Choon Ki Ahn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we proposed a new strategy for estimating indoor temperature based on the modified resistance capacitance (R–C) network thermal dynamic model. Using minimum variance finite impulse response (FIR) filter, accurate indoor temperature estimation can be achieved. Our study is clarified by the experimental validation of the proposed indoor temperature estimation method. This experiment scenario environment is composed of a demand response (DR) server and home energy management system (HEMS) in a test bed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title="energy consumption">energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance-capacitance%20network%20model" title=" resistance-capacitance network model"> resistance-capacitance network model</a>, <a href="https://publications.waset.org/abstracts/search?q=demand%20response" title=" demand response"> demand response</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20impulse%20response%20filter" title=" finite impulse response filter"> finite impulse response filter</a> </p> <a href="https://publications.waset.org/abstracts/65608/indoor-temperature-estimation-with-fir-filter-using-r-c-network-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65608.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4643</span> Robust Heart Rate Estimation from Multiple Cardiovascular and Non-Cardiovascular Physiological Signals Using Signal Quality Indices and Kalman Filter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shalini%20Rankawat">Shalini Rankawat</a>, <a href="https://publications.waset.org/abstracts/search?q=Mansi%20Rankawat"> Mansi Rankawat</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahul%20Dubey"> Rahul Dubey</a>, <a href="https://publications.waset.org/abstracts/search?q=Mazad%20Zaveri"> Mazad Zaveri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Physiological signals such as electrocardiogram (ECG) and arterial blood pressure (ABP) in the intensive care unit (ICU) are often seriously corrupted by noise, artifacts, and missing data, which lead to errors in the estimation of heart rate (HR) and incidences of false alarm from ICU monitors. Clinical support in ICU requires most reliable heart rate estimation. Cardiac activity, because of its relatively high electrical energy, may introduce artifacts in Electroencephalogram (EEG), Electrooculogram (EOG), and Electromyogram (EMG) recordings. This paper presents a robust heart rate estimation method by detection of R-peaks of ECG artifacts in EEG, EMG & EOG signals, using energy-based function and a novel Signal Quality Index (SQI) assessment technique. SQIs of physiological signals (EEG, EMG, & EOG) were obtained by correlation of nonlinear energy operator (teager energy) of these signals with either ECG or ABP signal. HR is estimated from ECG, ABP, EEG, EMG, and EOG signals from separate Kalman filter based upon individual SQIs. Data fusion of each HR estimate was then performed by weighing each estimate by the Kalman filters’ SQI modified innovations. The fused signal HR estimate is more accurate and robust than any of the individual HR estimate. This method was evaluated on MIMIC II data base of PhysioNet from bedside monitors of ICU patients. The method provides an accurate HR estimate even in the presence of noise and artifacts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ECG" title="ECG">ECG</a>, <a href="https://publications.waset.org/abstracts/search?q=ABP" title=" ABP"> ABP</a>, <a href="https://publications.waset.org/abstracts/search?q=EEG" title=" EEG"> EEG</a>, <a href="https://publications.waset.org/abstracts/search?q=EMG" title=" EMG"> EMG</a>, <a href="https://publications.waset.org/abstracts/search?q=EOG" title=" EOG"> EOG</a>, <a href="https://publications.waset.org/abstracts/search?q=ECG%20artifacts" title=" ECG artifacts"> ECG artifacts</a>, <a href="https://publications.waset.org/abstracts/search?q=Teager-Kaiser%20energy" title=" Teager-Kaiser energy"> Teager-Kaiser energy</a>, <a href="https://publications.waset.org/abstracts/search?q=heart%20rate" title=" heart rate"> heart rate</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20quality%20index" title=" signal quality index"> signal quality index</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalman%20filter" title=" Kalman filter"> Kalman filter</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20fusion" title=" data fusion"> data fusion</a> </p> <a href="https://publications.waset.org/abstracts/17506/robust-heart-rate-estimation-from-multiple-cardiovascular-and-non-cardiovascular-physiological-signals-using-signal-quality-indices-and-kalman-filter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17506.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">696</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4642</span> Performance Analysis of Geophysical Database Referenced Navigation: The Combination of Gravity Gradient and Terrain Using Extended Kalman Filter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jisun%20Lee">Jisun Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Jay%20Hyoun%20Kwon"> Jay Hyoun Kwon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As an alternative way to compensate the INS (inertial navigation system) error in non-GNSS (Global Navigation Satellite System) environment, geophysical database referenced navigation is being studied. In this study, both gravity gradient and terrain data were combined to complement the weakness of sole geophysical data as well as to improve the stability of the positioning. The main process to compensate the INS error using geophysical database was constructed on the basis of the EKF (Extended Kalman Filter). In detail, two type of combination method, centralized and decentralized filter, were applied to check the pros and cons of its algorithm and to find more robust results. The performance of each navigation algorithm was evaluated based on the simulation by supposing that the aircraft flies with precise geophysical DB and sensors above nine different trajectories. Especially, the results were compared to the ones from sole geophysical database referenced navigation to check the improvement due to a combination of the heterogeneous geophysical database. It was found that the overall navigation performance was improved, but not all trajectories generated better navigation result by the combination of gravity gradient with terrain data. Also, it was found that the centralized filter generally showed more stable results. It is because that the way to allocate the weight for the decentralized filter could not be optimized due to the local inconsistency of geophysical data. In the future, switching of geophysical data or combining different navigation algorithm are necessary to obtain more robust navigation results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Extended%20Kalman%20Filter" title="Extended Kalman Filter">Extended Kalman Filter</a>, <a href="https://publications.waset.org/abstracts/search?q=geophysical%20database%20referenced%20navigation" title=" geophysical database referenced navigation"> geophysical database referenced navigation</a>, <a href="https://publications.waset.org/abstracts/search?q=gravity%20gradient" title=" gravity gradient"> gravity gradient</a>, <a href="https://publications.waset.org/abstracts/search?q=terrain" title=" terrain "> terrain </a> </p> <a href="https://publications.waset.org/abstracts/67266/performance-analysis-of-geophysical-database-referenced-navigation-the-combination-of-gravity-gradient-and-terrain-using-extended-kalman-filter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67266.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4641</span> An Image Stitching Approach for Scoliosis Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siti%20Salbiah%20Samsudin">Siti Salbiah Samsudin</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamzah%20Arof"> Hamzah Arof</a>, <a href="https://publications.waset.org/abstracts/search?q=Ainuddin%20Wahid%20Abdul%20Wahab"> Ainuddin Wahid Abdul Wahab</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Yamani%20Idna%20Idris"> Mohd Yamani Idna Idris</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Standard X-ray spine images produced by conventional screen-film technique have a limited field of view. This limitation may obstruct a complete inspection of the spine unless images of different parts of the spine are placed next to each other contiguously to form a complete structure. Another solution to producing a whole spine image is by assembling the digitized x-ray images of its parts automatically using image stitching. This paper presents a new Medical Image Stitching (MIS) method that utilizes Minimum Average Correlation Energy (MACE) filters to identify and merge pairs of x-ray medical images. The effectiveness of the proposed method is demonstrated in two sets of experiments involving two databases which contain a total of 40 pairs of overlapping and non-overlapping spine images. The experimental results are compared to those produced by the Normalized Cross Correlation (NCC) and Phase Only Correlation (POC) methods for comparison. It is found that the proposed method outperforms those of the NCC and POC methods in identifying both the overlapping and non-overlapping medical images. The efficacy of the proposed method is further vindicated by its average execution time which is about two to five times shorter than those of the POC and NCC methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=image%20stitching" title="image stitching">image stitching</a>, <a href="https://publications.waset.org/abstracts/search?q=MACE%20filter" title=" MACE filter"> MACE filter</a>, <a href="https://publications.waset.org/abstracts/search?q=panorama%20image" title=" panorama image"> panorama image</a>, <a href="https://publications.waset.org/abstracts/search?q=scoliosis" title=" scoliosis"> scoliosis</a> </p> <a href="https://publications.waset.org/abstracts/21723/an-image-stitching-approach-for-scoliosis-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21723.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4640</span> Utilization of Sphagnum Moss as a Jeepney Emission Filter for Smoke Density Reduction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Monique%20Joyce%20L.%20Disamburum">Monique Joyce L. Disamburum</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicole%20C.%20Faustino"> Nicole C. Faustino</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashley%20Angela%20A.%20Fazon"> Ashley Angela A. Fazon</a>, <a href="https://publications.waset.org/abstracts/search?q=Jessie%20F.%20Rubonal"> Jessie F. Rubonal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traditional jeepneys contribute significantly to air pollution in the Philippines, negatively affecting both the environment and people. In response, the researchers investigated Sphagnum moss which has high adsorbent properties and can be used as a filter. Therefore, this research aims to create a muffler filter additive to reduce the smoke density emitted by traditional jeepneys. Various materials, such as moss, cornstarch, a metal pipe, bolts, and a papermaking screen frame, were gathered. The moss underwent a blending process with a cornstarch mixture until it achieved a pulp-like consistency, subsequently molded using a papermaking screen frame and left for sun drying. Following this, a metal prototype was created by drilling holes around the tumbler and inserting bolts. The mesh wire containing the filter was carefully placed into the hole, secured by two bolts. In the final phase, there were three setups, each undergoing one trial in the LTO emission testing. Each trial consisted of six rounds of purging, and after that the average smoke density was measured. According to the findings of this study, the filter aided in lowering the average smoke density. The one layer setup produced an average of 1.521, whereas the two layer setup produced an average of 1.082. Using One-Way Anova, it was demonstrated that there is a significant difference between the setups. Furthermore, the Tukey HSD Post Hoc test revealed that Setups A and C differed significantly (p = 0.04604), with Setup C being the most successful in reducing smoke density (mean difference -1.4128). Overall, the researchers came to the conclusion that employing Sphagnum moss as a filter can lower the average smoke density released by traditional jeepneys. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sphagnum%20moss" title="sphagnum moss">sphagnum moss</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeepney%20filter" title=" Jeepney filter"> Jeepney filter</a>, <a href="https://publications.waset.org/abstracts/search?q=smoke%20density" title=" smoke density"> smoke density</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeepney%20emission" title=" Jeepney emission"> Jeepney emission</a> </p> <a href="https://publications.waset.org/abstracts/183150/utilization-of-sphagnum-moss-as-a-jeepney-emission-filter-for-smoke-density-reduction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183150.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">52</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4639</span> Removal of Tar Contents in Syngas by Using Different Fuel from Downdraft Biomass Gasification System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Awais">Muhammad Awais</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Li"> Wei Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Anjum%20Munir"> Anjum Munir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biomass gasification is a process of converting solid biomass ingredients into a combustible gas which can be used in electricity generation. Regardless of their applications in many fields, biomass gasification technology is still facing many cleaning issues of syngas. Tar production in biomass gasification process is one of the biggest challenges for this technology. The aimed of this study is to evaluate the tar contents in syngas produced from wood chips, corn cobs, coconut shells and mixture of corn cobs and wood chips as biomass fuel and tar removal efficiency of different cleaning units integrated with gassifier. Performance of different cleaning units, i.e., cyclone separator, wet scrubber, biomass filter, and auxiliary filter was tested under two biomass fuels. Results of this study indicate that wood chips produced less tar of 1736 mg/Nm³ as compared to corn cobs which produced tor 2489 mg/Nm³. It is also observed that coconut shells produced a high amount of tar. It was observed that when wood chips were used as a fuel, syngas tar contents were reduced from 6600 to 112 mg/Nm³ while in case of corn cob, they were reduced from 7500 mg/Nm³ to 220 mg/Nm³. Overall tar removal efficiencies of cyclone separator, wet scrubber, biomass filter, and auxiliary filter was 72%, 63%, 74%, 35% respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass" title="biomass">biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=gasification" title=" gasification"> gasification</a>, <a href="https://publications.waset.org/abstracts/search?q=tar" title=" tar"> tar</a>, <a href="https://publications.waset.org/abstracts/search?q=cleaning%20system" title=" cleaning system"> cleaning system</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass%20filter" title=" biomass filter"> biomass filter</a> </p> <a href="https://publications.waset.org/abstracts/104807/removal-of-tar-contents-in-syngas-by-using-different-fuel-from-downdraft-biomass-gasification-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104807.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4638</span> Measuring and Evaluating the Effectiveness of Mobile High Efficiency Particulate Air Filtering on Particulate Matter within the Road Traffic Network of a Sample of Non-Sparse and Sparse Urban Environments in the UK</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Richard%20Maguire">Richard Maguire </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research evaluates the efficiency of using mobile HEPA filters to reduce localized Particulate Matter (PM), Total Volatile Organic Chemical (TVOC) and Formaldehyde (HCHO) Air Pollution. The research is being performed using a standard HEPA filter that is tube fitted and attached to a motor vehicle. The velocity of the vehicle is used to generate the pressure difference that allows the filter to remove PM, VOC and HCOC pollution from the localized atmosphere of a road transport traffic route. The testing has been performed on a sample of traffic routes in Non-Sparse and Sparse urban environments within the UK. Pre and Post filter measuring of the PM2.5 Air Quality has been carried out along with demographics of the climate environment, including live filming of the traffic conditions. This provides a base line for future national and international research. The effectiveness measurement is generated through evaluating the difference in PM2.5 Air Quality measured pre- and post- the mobile filter test equipment. A series of further research opportunities and future exploitation options are made based on the results of the research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20efficiency%20particulate%20air" title="high efficiency particulate air">high efficiency particulate air</a>, <a href="https://publications.waset.org/abstracts/search?q=HEPA%20filter" title=" HEPA filter"> HEPA filter</a>, <a href="https://publications.waset.org/abstracts/search?q=particulate%20matter" title=" particulate matter"> particulate matter</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20pollution" title=" traffic pollution"> traffic pollution</a> </p> <a href="https://publications.waset.org/abstracts/104024/measuring-and-evaluating-the-effectiveness-of-mobile-high-efficiency-particulate-air-filtering-on-particulate-matter-within-the-road-traffic-network-of-a-sample-of-non-sparse-and-sparse-urban-environments-in-the-uk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104024.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4637</span> Modelling of Filters CO2 (Carbondioxide) and CO (Carbonmonoxide) Portable in Motor Vehicle&#039;s Exhaust with Absorbent Chitosan </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuandanis%20Wahyu%20Salam">Yuandanis Wahyu Salam</a>, <a href="https://publications.waset.org/abstracts/search?q=Irfi%20Panrepi"> Irfi Panrepi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nuraeni"> Nuraeni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increased of greenhouse gases, that is CO2 (carbondioxide) in atmosphere induce the rising of earth’s surface average temperature. One of the largest contributors to greenhouse gases is motor vehicles. Smoke which is emitted by motor’s exhaust containing gases such as CO2 (carbondioxide) and CO (carbon monoxide). Chemically, chitosan is cellulose like plant fiber that has the ability to bind like absorbant foam. Chitosan is a natural antacid (absorb toxins), when chitosan is spread over the surface of water, chitosan is able to absorb fats, oils, heavy metals, and other toxic substances. Judging from the nature of chitosan is able to absorb various toxic substances, it is expected that chitosan is also able to filter out gas emission from the motor vehicles. This study designing a carbondioxide filter in the exhaust of motor vehicles using chitosan as its absorbant. It aims to filter out gases in the exhaust so that CO2 and CO can be reducted before emitted by exhaust. Form of this reseach is study of literature and applied with experimental research of tool manufacture. Data collected through documentary studies by studying books, magazines, thesis, search on the internet as well as the relevant reference. This study will produce a filters which has main function to filter out CO2 and CO emissions that generated by vehicle’s exhaust and can be used as portable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=filter" title="filter">filter</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon" title=" carbon"> carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=carbondioxide" title=" carbondioxide"> carbondioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=exhaust" title=" exhaust"> exhaust</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan" title=" chitosan"> chitosan</a> </p> <a href="https://publications.waset.org/abstracts/36368/modelling-of-filters-co2-carbondioxide-and-co-carbonmonoxide-portable-in-motor-vehicles-exhaust-with-absorbent-chitosan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36368.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=correlation%20filter&amp;page=3" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=correlation%20filter&amp;page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=correlation%20filter&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=correlation%20filter&amp;page=3">3</a></li> <li class="page-item active"><span class="page-link">4</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=correlation%20filter&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=correlation%20filter&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=correlation%20filter&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=correlation%20filter&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=correlation%20filter&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=correlation%20filter&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=correlation%20filter&amp;page=158">158</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=correlation%20filter&amp;page=159">159</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=correlation%20filter&amp;page=5" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10