CINXE.COM

Search results for: multiphase equilibrium

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: multiphase equilibrium</title> <meta name="description" content="Search results for: multiphase equilibrium"> <meta name="keywords" content="multiphase equilibrium"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="multiphase equilibrium" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="multiphase equilibrium"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1013</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: multiphase equilibrium</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1013</span> Multiphase Equilibrium Characterization Model For Hydrate-Containing Systems Based On Trust-Region Method Non-Iterative Solving Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhuoran%20Li">Zhuoran Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Guan%20Qin"> Guan Qin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A robust and efficient compositional equilibrium characterization model for hydrate-containing systems is required, especially for time-critical simulations such as subsea pipeline flow assurance analysis, compositional simulation in hydrate reservoirs etc. A multiphase flash calculation framework, which combines Gibbs energy minimization function and cubic plus association (CPA) EoS, is developed to describe the highly non-ideal phase behavior of hydrate-containing systems. A non-iterative eigenvalue problem-solving approach for the trust-region sub-problem is selected to guarantee efficiency. The developed flash model is based on the state-of-the-art objective function proposed by Michelsen to minimize the Gibbs energy of the multiphase system. It is conceivable that a hydrate-containing system always contains polar components (such as water and hydrate inhibitors), introducing hydrogen bonds to influence phase behavior. Thus, the cubic plus associating (CPA) EoS is utilized to compute the thermodynamic parameters. The solid solution theory proposed by van der Waals and Platteeuw is applied to represent hydrate phase parameters. The trust-region method combined with the trust-region sub-problem non-iterative eigenvalue problem-solving approach is utilized to ensure fast convergence. The developed multiphase flash model's accuracy performance is validated by three available models (one published and two commercial models). Hundreds of published hydrate-containing system equilibrium experimental data are collected to act as the standard group for the accuracy test. The accuracy comparing results show that our model has superior performances over two models and comparable calculation accuracy to CSMGem. Efficiency performance test also has been carried out. Because the trust-region method can determine the optimization step's direction and size simultaneously, fast solution progress can be obtained. The comparison results show that less iteration number is needed to optimize the objective function by utilizing trust-region methods than applying line search methods. The non-iterative eigenvalue problem approach also performs faster computation speed than the conventional iterative solving algorithm for the trust-region sub-problem, further improving the calculation efficiency. A new thermodynamic framework of the multiphase flash model for the hydrate-containing system has been constructed in this work. Sensitive analysis and numerical experiments have been carried out to prove the accuracy and efficiency of this model. Furthermore, based on the current thermodynamic model in the oil and gas industry, implementing this model is simple. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=equation%20of%20state" title="equation of state">equation of state</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrates" title=" hydrates"> hydrates</a>, <a href="https://publications.waset.org/abstracts/search?q=multiphase%20equilibrium" title=" multiphase equilibrium"> multiphase equilibrium</a>, <a href="https://publications.waset.org/abstracts/search?q=trust-region%20method" title=" trust-region method"> trust-region method</a> </p> <a href="https://publications.waset.org/abstracts/131961/multiphase-equilibrium-characterization-model-for-hydrate-containing-systems-based-on-trust-region-method-non-iterative-solving-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131961.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1012</span> Reliability Verification of the Performance Evaluation of Multiphase Pump</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joon-Hyung%20Kim">Joon-Hyung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Him-Chan%20Lee"> Him-Chan Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin-Hyuk%20Kim"> Jin-Hyuk Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong-Kab%20Lee"> Yong-Kab Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Young-Seok%20Choi"> Young-Seok Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The crude oil in an oil well exists in various phases such as gas, seawater, and sand, as well as oil. Therefore, a phase separator is needed at the front of a single-phase pump for pressurization and transfer. On the other hand, the application of a multiphase pump can provide such advantages as simplification of the equipment structure and cost savings, because there is no need for a phase separation process. Therefore, the crude oil transfer method using a multiphase pump is being applied to recently developed oil wells. Due to this increase in demand, technical demands for the development of multiphase pumps are sharply increasing, but the progress of research into related technologies is insufficient, due to the nature of multiphase pumps that require high levels of skills. This study was conducted to verify the reliability of pump performance evaluation using numerical analysis, which is the basis of the development of a multiphase pump. For this study, a model was designed by selecting the specifications of the pump under study. The performance of the designed model was evaluated through numerical analysis and experiment, and the results of the performance evaluation were compared to verify the reliability of the result using numerical analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multiphase%20pump" title="multiphase pump">multiphase pump</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20analysis" title=" numerical analysis"> numerical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=experiment" title=" experiment"> experiment</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20evaluation" title=" performance evaluation"> performance evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability%20verification" title=" reliability verification"> reliability verification</a> </p> <a href="https://publications.waset.org/abstracts/11645/reliability-verification-of-the-performance-evaluation-of-multiphase-pump" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11645.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1011</span> Radiation Dose and Associated Exposure Parameters in Selected MDCT Scanners in Multiphase Scan of Abdomen-Pelvic Region: A Clinical Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Sathyathas">P. Sathyathas</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20I.%20S.%20W.%20Herath"> H. M. I. S. W. Herath</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Amalraj"> T. Amalraj</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20J.%20M.%20A.%20L.%20Jayasinghe"> U. J. M. A. L. Jayasinghe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over two thirds of medical radiation can now be attributed to Computed Tomography (CT). There is little information on amount of radiation received from multiphase CT scan of abdomen- pelvic region in clinical practice. We sought to estimate the radiation dose and associated exposure parameters in the multiphase abdomen - pelvic scan of Multideteror Computed Tomography (MDCT) studies in clinical practice. This was a retrospective cross sectional studies describing radiation dose associated with main exposure parameters in diagnostic multiphase abdomen - pelvic scans performed on 152 consecutive patients by two different sixteen slice CT scanners. Patient information, exposure parameters of CTDI (volume), DLP, kVp, mAs and pitch were recorded for every phases of abdomen- a pelvic study from dose report of MDCT scanners (MDCTs). Age of patients range from 14 years to 87 years in both MDCT scanners. Overall CTDI (volume) median was 63.8 (±10.4) mGy for a multiphase abdominal-pelvic scan with scanner A while it was 35.4 (±15.6) mGy for scanner B. Patients' effective dose for multiphase abdomen - pelvic CT scan range from 8.2 mSv to 58 mSv. Median effective dose for patients, who underwent multiphase abdomen- pelvis scan with scanner A and B were 38.5 (± 8.2) mSv and 21.3 (± 8.6) mSv respectively. Median value of exposure parameters of mAs, kVp and pitch, were 150 (±29.7), 130 (±15.3) and 1.3 (±0.1) respectively in scanner A. In scanner B; they were 60 (±14.5), 120 and 1. The median effective dose for patients between multiphase abdomen-pelvic scan of both MDCT, a significant different (P<0.05) was observed. Multiphase abdomen – pelvic scan of clinical study shows significant different of effective dose with reference level of phantom studies (8-14mSv) and it depends on the type of vendors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=abdomen-pelvic%20region" title="abdomen-pelvic region">abdomen-pelvic region</a>, <a href="https://publications.waset.org/abstracts/search?q=computed%20tomography" title=" computed tomography"> computed tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=exposure%20parameters" title=" exposure parameters"> exposure parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20dose" title=" radiation dose"> radiation dose</a> </p> <a href="https://publications.waset.org/abstracts/46083/radiation-dose-and-associated-exposure-parameters-in-selected-mdct-scanners-in-multiphase-scan-of-abdomen-pelvic-region-a-clinical-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46083.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1010</span> Overview on the Failure in the Multiphase Mechanical Seal in Centrifugal Pumps</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aydin%20Azizi">Aydin Azizi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Al.%20Azizi"> Ahmed Al. Azizi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mechanical seals are essential components in centrifugal pumps since they help in controlling leaking out of the liquid that is pumped under pressure. Unlike the common types of packaging, mechanical seals are highly efficient and they reduce leakage by a great extent. However, all multiphase mechanical seals leak and they are subject to failure. Some of the factors that have been recognized to their failure include excessive heating, open seal faces, as well as environment related factors that trigger failure of the materials used to manufacture seals. The proposed research study will explore the failure of multiphase mechanical seal in centrifugal pumps. The objective of the study includes how to reduce the failure in multiphase mechanical seals and to make them more efficient. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mechanical%20seals" title="mechanical seals">mechanical seals</a>, <a href="https://publications.waset.org/abstracts/search?q=centrifugal%20pumps" title=" centrifugal pumps"> centrifugal pumps</a>, <a href="https://publications.waset.org/abstracts/search?q=multi%20phase%20failure" title=" multi phase failure"> multi phase failure</a>, <a href="https://publications.waset.org/abstracts/search?q=excessive%20heating" title=" excessive heating"> excessive heating</a> </p> <a href="https://publications.waset.org/abstracts/44065/overview-on-the-failure-in-the-multiphase-mechanical-seal-in-centrifugal-pumps" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44065.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1009</span> Multiphase Coexistence for Aqueous System with Hydrophilic Agent</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20B.%20Hong">G. B. Hong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Liquid-Liquid Equilibrium (LLE) data are measured for the ternary mixtures of water + 1-butanol + butyl acetate and quaternary mixtures of water + 1-butanol + butyl acetate + glycerol at atmospheric pressure at 313.15 K. In addition, isothermal Vapor–Liquid–Liquid Equilibrium (VLLE) data are determined experimentally at 333.15 K. The region of heterogeneity is found to increase as the hydrophilic agent (glycerol) is introduced into the aqueous mixtures. The experimental data are correlated with the NRTL model. The predicted results from the solution model with the model parameters determined from the constituent binaries are also compared with the experimental values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LLE" title="LLE">LLE</a>, <a href="https://publications.waset.org/abstracts/search?q=VLLE" title=" VLLE"> VLLE</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophilic%20agent" title=" hydrophilic agent"> hydrophilic agent</a>, <a href="https://publications.waset.org/abstracts/search?q=NRTL" title=" NRTL"> NRTL</a> </p> <a href="https://publications.waset.org/abstracts/3968/multiphase-coexistence-for-aqueous-system-with-hydrophilic-agent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3968.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">243</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1008</span> High Pressure Multiphase Flow Experiments: The Impact of Pressure on Flow Patterns Using an X-Ray Tomography Visualisation System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sandy%20Black">Sandy Black</a>, <a href="https://publications.waset.org/abstracts/search?q=Calum%20McLaughlin"> Calum McLaughlin</a>, <a href="https://publications.waset.org/abstracts/search?q=Alessandro%20Pranzitelli"> Alessandro Pranzitelli</a>, <a href="https://publications.waset.org/abstracts/search?q=Marc%20Laing"> Marc Laing</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multiphase flow structures of two-phase multicomponent fluids were experimentally investigated in a large diameter high-pressure pipeline up to 130 bar at TÜV SÜD’s National Engineering Laboratory Advanced Multiphase Facility. One of the main objectives of the experimental test campaign was to evaluate the impact of pressure on multiphase flow patterns as much of the existing information is based on low-pressure measurements. The experiments were performed in a horizontal and vertical orientation in both 4-inch and 6-inch pipework using nitrogen, ExxsolTM D140 oil, and a 6% aqueous solution of NaCl at incremental pressures from 10 bar to 130 bar. To visualise the detailed structure of the flow of the entire cross-section of the pipe, a fast response X-ray tomography system was used. A wide range of superficial velocities from 0.6 m/s to 24.0 m/s for gas and 0.04 m/s and 6.48 m/s for liquid was examined to evaluate different flow regimes. The results illustrated the suppression of instabilities between the gas and the liquid at the measurement location and that intermittent or slug flow was observed less frequently as the pressure was increased. CFD modellings of low and high-pressure simulations were able to successfully predict the likelihood of intermittent flow; however, further tuning is necessary to predict the slugging frequency. The dataset generated is unique as limited datasets exist above 100 bar and is of considerable value to multiphase flow specialists and numerical modellers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title="computational fluid dynamics">computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20pressure" title=" high pressure"> high pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=multiphase" title=" multiphase"> multiphase</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20tomography" title=" X-ray tomography"> X-ray tomography</a> </p> <a href="https://publications.waset.org/abstracts/133117/high-pressure-multiphase-flow-experiments-the-impact-of-pressure-on-flow-patterns-using-an-x-ray-tomography-visualisation-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133117.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1007</span> The Unsteady Non-Equilibrium Distribution Function and Exact Equilibrium Time for a Dilute Gas Affected by Thermal Radiation Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Taha%20Zakaraia%20Abdel%20Wahid">Taha Zakaraia Abdel Wahid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The behavior of the unsteady non-equilibrium distribution function for a dilute gas under the effect of non-linear thermal radiation field is presented. For the best of our knowledge this is done for the first time at all. The distinction and comparisons between the unsteady perturbed and the unsteady equilibrium velocity distribution functions are illustrated. The equilibrium time for the dilute gas is determined for the first time. The non-equilibrium thermodynamic properties of the system (gas+the heated plate) are investigated. The results are applied to the Argon gas, for various values of radiation field intensity. 3D-Graphics illustrating the calculated variables are drawn to predict their behavior. The results are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dilute%20gas" title="dilute gas">dilute gas</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20field" title=" radiation field"> radiation field</a>, <a href="https://publications.waset.org/abstracts/search?q=exact%20solutions" title=" exact solutions"> exact solutions</a>, <a href="https://publications.waset.org/abstracts/search?q=travelling%20wave%20method" title=" travelling wave method"> travelling wave method</a>, <a href="https://publications.waset.org/abstracts/search?q=unsteady%20BGK%20model" title=" unsteady BGK model"> unsteady BGK model</a>, <a href="https://publications.waset.org/abstracts/search?q=irreversible%20thermodynamics" title=" irreversible thermodynamics"> irreversible thermodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=unsteady%20non-equilibrium%20distribution%20functions" title=" unsteady non-equilibrium distribution functions"> unsteady non-equilibrium distribution functions</a> </p> <a href="https://publications.waset.org/abstracts/10132/the-unsteady-non-equilibrium-distribution-function-and-exact-equilibrium-time-for-a-dilute-gas-affected-by-thermal-radiation-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10132.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">495</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1006</span> Phase Detection Using Infrared Spectroscopy: A Build up to Inline Gas–Liquid Flow Characterization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kwame%20Sarkodie">Kwame Sarkodie</a>, <a href="https://publications.waset.org/abstracts/search?q=William%20Cheung"> William Cheung</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20R.%20Fergursson"> Andrew R. Fergursson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The characterization of multiphase flow has gained enormous attention for most petroleum and chemical industrial processes. In order to fully characterize fluid phases in a stream or containment, there needs to be a profound knowledge of the existing composition of fluids present. This introduces a problem for real-time monitoring of fluid dynamics such as fluid distributions, and phase fractions. This work presents a simple technique of correlating absorbance spectrums of water, oil and air bubble present in containment. These spectra absorption outputs are derived by using an Fourier Infrared spectrometer. During the testing, air bubbles were introduced into static water column and oil containment and with light absorbed in the infrared regions of specific wavelength ranges. Attenuation coefficients are derived for various combinations of water, gas and oil which reveal the presence of each phase in the samples. The results from this work are preliminary and viewed as a build up to the design of a multiphase flow rig which has an infrared sensor pair to be used for multiphase flow characterization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=attenuation" title="attenuation">attenuation</a>, <a href="https://publications.waset.org/abstracts/search?q=infrared" title=" infrared"> infrared</a>, <a href="https://publications.waset.org/abstracts/search?q=multiphase" title=" multiphase"> multiphase</a>, <a href="https://publications.waset.org/abstracts/search?q=spectroscopy" title=" spectroscopy"> spectroscopy</a> </p> <a href="https://publications.waset.org/abstracts/71887/phase-detection-using-infrared-spectroscopy-a-build-up-to-inline-gas-liquid-flow-characterization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71887.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1005</span> Multiple Winding Multiphase Motor for Electric Drive System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhao%20Tianxu">Zhao Tianxu</a>, <a href="https://publications.waset.org/abstracts/search?q=Cui%20Shumei"> Cui Shumei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes a novel multiphase motor structure. The armature winding consists of several independent multiphase windings that have different rating rotate speed and power. Compared to conventional motor, the novel motor structure has more operation mode and fault tolerance mode, which makes it adapt to high-reliability requirement situation such as electric vehicle, aircraft and ship. Performance of novel motor structure varies with winding match. In order to find optimum control strategy, motor torque character, efficiency performance and fault tolerance ability under different operation mode are analyzed in this paper, and torque distribution strategy for efficiency optimization is proposed. Simulation analyze is taken and the result shows that proposed structure has the same efficiency on heavy load and higher efficiency on light load operation points, which expands high efficiency area of motor and cruise range of vehicle. The proposed structure can improve motor highest speed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multiphase%20motor" title="multiphase motor">multiphase motor</a>, <a href="https://publications.waset.org/abstracts/search?q=armature%20winding%20match" title=" armature winding match"> armature winding match</a>, <a href="https://publications.waset.org/abstracts/search?q=torque%20distribution%20strategy" title=" torque distribution strategy"> torque distribution strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency "> efficiency </a> </p> <a href="https://publications.waset.org/abstracts/78081/multiple-winding-multiphase-motor-for-electric-drive-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78081.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1004</span> MHD Equilibrium Study in Alborz Tokamak</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryamosadat%20Ghasemi">Maryamosadat Ghasemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Amrollahi"> Reza Amrollahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plasma equilibrium geometry has a great influence on the confinement and magnetohydrodynamic stability in tokamaks. The poloidal field (PF) system of a tokamak should be able to support this plasma equilibrium geometry. In this work the prepared numerical code based on radial basis functions are presented and used to solve the Grad–Shafranov (GS) equation for the axisymmetric equilibrium of tokamak plasma. The radial basis functions (RBFs) which is a kind of numerical meshfree method (MFM) for solving partial differential equations (PDEs) has appeared in the last decade and is developing significantly in the last few years. This technique is applied in this study to obtain the equilibrium configuration for Alborz Tokamak. The behavior of numerical solution convergences show the validation of this calculations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=equilibrium" title="equilibrium">equilibrium</a>, <a href="https://publications.waset.org/abstracts/search?q=grad%E2%80%93shafranov" title=" grad–shafranov"> grad–shafranov</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20basis%20functions" title=" radial basis functions"> radial basis functions</a>, <a href="https://publications.waset.org/abstracts/search?q=Alborz%20Tokamak" title=" Alborz Tokamak"> Alborz Tokamak</a> </p> <a href="https://publications.waset.org/abstracts/30952/mhd-equilibrium-study-in-alborz-tokamak" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30952.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">473</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1003</span> Evaluation of Turbulence Modelling of Gas-Liquid Two-Phase Flow in a Venturi</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mengke%20Zhan">Mengke Zhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng-Gang%20Xie"> Cheng-Gang Xie</a>, <a href="https://publications.waset.org/abstracts/search?q=Jian-Jun%20Shu"> Jian-Jun Shu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A venturi flowmeter is a common device used in multiphase flow rate measurement in the upstream oil and gas industry. Having a robust computational model for multiphase flow in a venturi is desirable for understanding the gas-liquid and fluid-pipe interactions and predicting pressure and phase distributions under various flow conditions. A steady Eulerian-Eulerian framework is used to simulate upward gas-liquid flow in a vertical venturi. The simulation results are compared with experimental measurements of venturi differential pressure and chord-averaged gas holdup in the venturi throat section. The choice of turbulence model is nontrivial in the multiphase flow modelling in a venturi. The performance cross-comparison of the k-ϵ model, Reynolds stress model (RSM) and shear-stress transport (SST) k-ω turbulence model is made in the study. In terms of accuracy and computational cost, the SST k-ω turbulence model is observed to be the most efficient. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics%20%28CFD%29" title="computational fluid dynamics (CFD)">computational fluid dynamics (CFD)</a>, <a href="https://publications.waset.org/abstracts/search?q=gas-liquid%20flow" title=" gas-liquid flow"> gas-liquid flow</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence%20modelling" title=" turbulence modelling"> turbulence modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=venturi" title=" venturi"> venturi</a> </p> <a href="https://publications.waset.org/abstracts/129246/evaluation-of-turbulence-modelling-of-gas-liquid-two-phase-flow-in-a-venturi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129246.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1002</span> The Behavior of Unsteady Non-Equilibrium Distribution Function and Exact Equilibrium Time for a Dilute Gas Mixture Affected by Thermal Radiation Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Taha%20Zakaraia%20Abdel%20Wahid">Taha Zakaraia Abdel Wahid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, a development of the papers is introduced. The behavior of the unsteady non-equilibrium distribution functions for a rarefied gas mixture under the effect of non-linear thermal radiation field is presented. For the best of our knowledge this is done for the first time at all. The distinction and comparisons between the unsteady perturbed and the unsteady equilibrium velocity distribution functions are illustrated. The equilibrium time for the rarefied gas mixture is determined for the first time. The non-equilibrium thermodynamic properties of the system is investigated. The results are applied to the Argon-Neon binary gas mixture, for various values of both of molar fraction parameters and radiation field intensity. 3D-Graphics illustrating the calculated variables are drawn to predict their behavior and the results are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radiation%20field" title="radiation field">radiation field</a>, <a href="https://publications.waset.org/abstracts/search?q=binary%20gas%20mixture" title=" binary gas mixture"> binary gas mixture</a>, <a href="https://publications.waset.org/abstracts/search?q=exact%20solutions" title=" exact solutions"> exact solutions</a>, <a href="https://publications.waset.org/abstracts/search?q=travelling%20wave%20method" title=" travelling wave method"> travelling wave method</a>, <a href="https://publications.waset.org/abstracts/search?q=unsteady%20BGK%20model" title=" unsteady BGK model"> unsteady BGK model</a>, <a href="https://publications.waset.org/abstracts/search?q=irreversible%20thermodynamics" title=" irreversible thermodynamics"> irreversible thermodynamics</a> </p> <a href="https://publications.waset.org/abstracts/10477/the-behavior-of-unsteady-non-equilibrium-distribution-function-and-exact-equilibrium-time-for-a-dilute-gas-mixture-affected-by-thermal-radiation-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10477.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1001</span> Analytical Model of Multiphase Machines Under Electrical Faults: Application on Dual Stator Asynchronous Machine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nacera%20Yassa">Nacera Yassa</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelmalek%20Saidoune"> Abdelmalek Saidoune</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghania%20Ouadfel"> Ghania Ouadfel</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamza%20Houassine"> Hamza Houassine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rapid advancement in electrical technologies has underscored the increasing importance of multiphase machines across various industrial sectors. These machines offer significant advantages in terms of efficiency, compactness, and reliability compared to their single-phase counterparts. However, early detection and diagnosis of electrical faults remain critical challenges to ensure the durability and safety of these complex systems. This paper presents an advanced analytical model for multiphase machines, with a particular focus on dual stator asynchronous machines. The primary objective is to develop a robust diagnostic tool capable of effectively detecting and locating electrical faults in these machines, including short circuits, winding faults, and voltage imbalances. The proposed methodology relies on an analytical approach combining electrical machine theory, modeling of magnetic and electrical circuits, and advanced signal analysis techniques. By employing detailed analytical equations, the developed model accurately simulates the behavior of multiphase machines in the presence of electrical faults. The effectiveness of the proposed model is demonstrated through a series of case studies and numerical simulations. In particular, special attention is given to analyzing the dynamic behavior of machines under different types of faults, as well as optimizing diagnostic and recovery strategies. The obtained results pave the way for new advancements in the field of multiphase machine diagnostics, with potential applications in various sectors such as automotive, aerospace, and renewable energies. By providing precise and reliable tools for early fault detection, this research contributes to improving the reliability and durability of complex electrical systems while reducing maintenance and operation costs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=faults" title="faults">faults</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnosis" title=" diagnosis"> diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling" title=" modelling"> modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=multiphase%20machine" title=" multiphase machine"> multiphase machine</a> </p> <a href="https://publications.waset.org/abstracts/185456/analytical-model-of-multiphase-machines-under-electrical-faults-application-on-dual-stator-asynchronous-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185456.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1000</span> Numerical Study of Wettability on the Triangular Micro-pillared Surfaces Using Lattice Boltzmann Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ganesh%20Meshram">Ganesh Meshram</a>, <a href="https://publications.waset.org/abstracts/search?q=Gloria%20Biswal"> Gloria Biswal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we present the numerical investigation of surface wettability on triangular micropillar surfaces by using a two-dimensional (2D) pseudo-potential multiphase lattice Boltzmann method with a D2Q9 model for various interaction parameters of the range varies from -1.40 to -2.50. Initially, simulation of the equilibrium state of a water droplet on a flat surface is considered for various interaction parameters to examine the accuracy of the present numerical model. We then imposed the microscale pillars on the bottom wall of the surface with different heights of the pillars to form the hydrophobic and superhydrophobic surfaces which enable the higher contact angle. The wettability of surfaces is simulated with water droplets of radius 100 lattice units in the domain of 800x800 lattice units. The present study shows that increasing the interaction parameter of the pillared hydrophobic surfaces dramatically reduces the contact area between water droplets and solid walls due to the momentum redirection phenomenon. Contact angles for different values of interaction strength have been validated qualitatively with the analytical results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contact%20angle" title="contact angle">contact angle</a>, <a href="https://publications.waset.org/abstracts/search?q=lattice%20boltzmann%20method" title=" lattice boltzmann method"> lattice boltzmann method</a>, <a href="https://publications.waset.org/abstracts/search?q=d2q9%20model" title=" d2q9 model"> d2q9 model</a>, <a href="https://publications.waset.org/abstracts/search?q=pseudo-potential%20multiphase%20method" title=" pseudo-potential multiphase method"> pseudo-potential multiphase method</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophobic%20surfaces" title=" hydrophobic surfaces"> hydrophobic surfaces</a>, <a href="https://publications.waset.org/abstracts/search?q=wenzel%20state" title=" wenzel state"> wenzel state</a>, <a href="https://publications.waset.org/abstracts/search?q=cassie-baxter%20state" title=" cassie-baxter state"> cassie-baxter state</a>, <a href="https://publications.waset.org/abstracts/search?q=wettability" title=" wettability"> wettability</a> </p> <a href="https://publications.waset.org/abstracts/167911/numerical-study-of-wettability-on-the-triangular-micro-pillared-surfaces-using-lattice-boltzmann-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167911.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">999</span> Message Passing Neural Network (MPNN) Approach to Multiphase Diffusion in Reservoirs for Well Interconnection Assessments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Margarita%20Mayoral-Villa">Margarita Mayoral-Villa</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Klapp"> J. Klapp</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Di%20G.%20Sigalotti"> L. Di G. Sigalotti</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20E.%20V.%20Guzm%C3%A1n"> J. E. V. Guzmán</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Automated learning techniques are widely applied in the energy sector to address challenging problems from a practical point of view. To this end, we discuss the implementation of a Message Passing algorithm (MPNN)within a Graph Neural Network(GNN)to leverage the neighborhood of a set of nodes during the aggregation process. This approach enables the characterization of multiphase diffusion processes in the reservoir, such that the flow paths underlying the interconnections between multiple wells may be inferred from previously available data on flow rates and bottomhole pressures. The results thus obtained compare favorably with the predictions produced by the Reduced Order Capacitance-Resistance Models (CRM) and suggest the potential of MPNNs to enhance the robustness of the forecasts while improving the computational efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multiphase%20diffusion" title="multiphase diffusion">multiphase diffusion</a>, <a href="https://publications.waset.org/abstracts/search?q=message%20passing%20neural%20network" title=" message passing neural network"> message passing neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=well%20interconnection" title=" well interconnection"> well interconnection</a>, <a href="https://publications.waset.org/abstracts/search?q=interwell%20connectivity" title=" interwell connectivity"> interwell connectivity</a>, <a href="https://publications.waset.org/abstracts/search?q=graph%20neural%20network" title=" graph neural network"> graph neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=capacitance-resistance%20models" title=" capacitance-resistance models"> capacitance-resistance models</a> </p> <a href="https://publications.waset.org/abstracts/146840/message-passing-neural-network-mpnn-approach-to-multiphase-diffusion-in-reservoirs-for-well-interconnection-assessments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146840.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">998</span> Simulation of Wave Propagation in Multiphase Medium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Edip%20Kemal">Edip Kemal</a>, <a href="https://publications.waset.org/abstracts/search?q=Sheshov%20Vlatko"> Sheshov Vlatko</a>, <a href="https://publications.waset.org/abstracts/search?q=Bojadjieva%20Julijana"> Bojadjieva Julijana</a>, <a href="https://publications.waset.org/abstracts/search?q=Bogdanovic%20ALeksandra"> Bogdanovic ALeksandra</a>, <a href="https://publications.waset.org/abstracts/search?q=Gjorgjeska%20Irena"> Gjorgjeska Irena</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The wave propagation phenomenon in porous domains is of great importance in the field of geotechnical earthquake engineering. In these kinds of problems, the elastic waves propagate from the interior to the exterior domain and require special treatment at the computational level since apart from displacement in the solid-state there is a p-wave that takes place in the pore water phase. In this paper, a study on the implementation of multiphase finite elements is presented. The proposed algorithm is implemented in the ANSYS finite element software and tested on one-dimensional wave propagation considering both pore pressure wave propagation and displacement fields. In the simulation of porous media such as soils, the behavior is governed largely by the interaction of the solid skeleton with water and/or air in the pores. Therefore, coupled problems of fluid flow and deformation of the solid skeleton are considered in a detailed way. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wave%20propagation" title="wave propagation">wave propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=multiphase%20model" title=" multiphase model"> multiphase model</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20methods" title=" numerical methods"> numerical methods</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a> </p> <a href="https://publications.waset.org/abstracts/144167/simulation-of-wave-propagation-in-multiphase-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144167.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">997</span> Multiphase Flow Model for 3D Numerical Model Using ANSYS for Flow over Stepped Cascade with End Sill</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dheyaa%20Wajid%20Abbood">Dheyaa Wajid Abbood</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanan%20Hussien%20Abood"> Hanan Hussien Abood</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stepped cascade has been utilized as a hydraulic structure for years. It has proven to be the least costly aeration system in replenishing dissolved oxygen. Numerical modeling of stepped cascade with end sill is very complicated and challenging because of the high roughness and velocity re circulation regions. Volume of fluid multiphase flow model (VOF) is used .The realizable k-ξ model is chosen to simulate turbulence. The computational results are compared with lab-scale stepped cascade data. The lab –scale model was constructed in the hydraulic laboratory, Al-Mustansiriya University, Iraq. The stepped cascade was 0.23 m wide and consisted of 3 steps each 0.2m high and 0.6 m long with variable end sill. The discharge was varied from 1 to 4 l/s. ANSYS has been employed to simulate the experimental data and their related results. This study shows that ANSYS is able to predict results almost the same as experimental findings in some regions of the structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stepped%20cascade%20weir" title="stepped cascade weir">stepped cascade weir</a>, <a href="https://publications.waset.org/abstracts/search?q=aeration" title=" aeration"> aeration</a>, <a href="https://publications.waset.org/abstracts/search?q=multiphase%20flow%20model" title=" multiphase flow model"> multiphase flow model</a>, <a href="https://publications.waset.org/abstracts/search?q=ansys" title=" ansys"> ansys</a> </p> <a href="https://publications.waset.org/abstracts/30556/multiphase-flow-model-for-3d-numerical-model-using-ansys-for-flow-over-stepped-cascade-with-end-sill" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30556.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">996</span> Real-Time Monitoring of Complex Multiphase Behavior in a High Pressure and High Temperature Microfluidic Chip</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ren%C3%A9e%20M.%20Ripken">Renée M. Ripken</a>, <a href="https://publications.waset.org/abstracts/search?q=Johannes%20G.%20E.%20Gardeniers"> Johannes G. E. Gardeniers</a>, <a href="https://publications.waset.org/abstracts/search?q=S%C3%A9verine%20Le%20Gac"> Séverine Le Gac</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Controlling the multiphase behavior of aqueous biomass mixtures is essential when working in the biomass conversion industry. Here, the vapor/liquid equilibria (VLE) of ethylene glycol, glycerol, and xylitol were studied for temperatures between 25 and 200 °C and pressures of 1 to 10 bar. These experiments were performed in a microfluidic platform, which exhibits excellent heat transfer properties so that equilibrium is reached fast. Firstly, the saturated vapor pressure as a function of the temperature and the substrate mole fraction of the substrate was calculated using AspenPlus with a Redlich-Kwong-Soave Boston-Mathias (RKS-BM) model. Secondly, we developed a high-pressure and high-temperature microfluidic set-up for experimental validation. Furthermore, we have studied the multiphase flow pattern that occurs after the saturation temperature was achieved. A glass-silicon microfluidic device containing a 0.4 or 0.2 m long meandering channel with a depth of 250 μm and a width of 250 or 500 μm was fabricated using standard microfabrication techniques. This device was placed in a dedicated chip-holder, which includes a ceramic heater on the silicon side. The temperature was controlled and monitored by three K-type thermocouples: two were located between the heater and the silicon substrate, one to set the temperature and one to measure it, and the third one was placed in a 300 μm wide and 450 μm deep groove on the glass side to determine the heat loss over the silicon. An adjustable back pressure regulator and a pressure meter were added to control and evaluate the pressure during the experiment. Aqueous biomass solutions (10 wt%) were pumped at a flow rate of 10 μL/min using a syringe pump, and the temperature was slowly increased until the theoretical saturation temperature for the pre-set pressure was reached. First and surprisingly, a significant difference was observed between our theoretical saturation temperature and the experimental results. The experimental values were 10’s of degrees higher than the calculated ones and, in some cases, saturation could not be achieved. This discrepancy can be explained in different ways. Firstly, the pressure in the microchannel is locally higher due to both the thermal expansion of the liquid and the Laplace pressure that has to be overcome before a gas bubble can be formed. Secondly, superheating effects are likely to be present. Next, once saturation was reached, the flow pattern of the gas/liquid multiphase system was recorded. In our device, the point of nucleation can be controlled by taking advantage of the pressure drop across the channel and the accurate control of the temperature. Specifically, a higher temperature resulted in nucleation further upstream in the channel. As the void fraction increases downstream, the flow regime changes along the channel from bubbly flow to Taylor flow and later to annular flow. All three flow regimes were observed simultaneously. The findings of this study are key for the development and optimization of a microreactor for hydrogen production from biomass. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass%20conversion" title="biomass conversion">biomass conversion</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20pressure%20and%20high%20temperature%20microfluidics" title=" high pressure and high temperature microfluidics"> high pressure and high temperature microfluidics</a>, <a href="https://publications.waset.org/abstracts/search?q=multiphase" title=" multiphase"> multiphase</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20diagrams" title=" phase diagrams"> phase diagrams</a>, <a href="https://publications.waset.org/abstracts/search?q=superheating" title=" superheating"> superheating</a> </p> <a href="https://publications.waset.org/abstracts/63404/real-time-monitoring-of-complex-multiphase-behavior-in-a-high-pressure-and-high-temperature-microfluidic-chip" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63404.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">995</span> Pure Scalar Equilibria for Normal-Form Games</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Herbert%20W.%20Corley">Herbert W. Corley</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A scalar equilibrium (SE) is an alternative type of equilibrium in pure strategies for an n-person normal-form game G. It is defined using optimization techniques to obtain a pure strategy for each player of G by maximizing an appropriate utility function over the acceptable joint actions. The players’ actions are determined by the choice of the utility function. Such a utility function could be agreed upon by the players or chosen by an arbitrator. An SE is an equilibrium since no players of G can increase the value of this utility function by changing their strategies. SEs are formally defined, and examples are given. In a greedy SE, the goal is to assign actions to the players giving them the largest individual payoffs jointly possible. In a weighted SE, each player is assigned weights modeling the degree to which he helps every player, including himself, achieve as large a payoff as jointly possible. In a compromise SE, each player wants a fair payoff for a reasonable interpretation of fairness. In a parity SE, the players want their payoffs to be as nearly equal as jointly possible. Finally, a satisficing SE achieves a personal target payoff value for each player. The vector payoffs associated with each of these SEs are shown to be Pareto optimal among all such acceptable vectors, as well as computationally tractable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compromise%20equilibrium" title="compromise equilibrium">compromise equilibrium</a>, <a href="https://publications.waset.org/abstracts/search?q=greedy%20equilibrium" title=" greedy equilibrium"> greedy equilibrium</a>, <a href="https://publications.waset.org/abstracts/search?q=normal-form%20game" title=" normal-form game"> normal-form game</a>, <a href="https://publications.waset.org/abstracts/search?q=parity%20equilibrium" title=" parity equilibrium"> parity equilibrium</a>, <a href="https://publications.waset.org/abstracts/search?q=pure%20strategies" title=" pure strategies"> pure strategies</a>, <a href="https://publications.waset.org/abstracts/search?q=satisficing%20equilibrium" title=" satisficing equilibrium"> satisficing equilibrium</a>, <a href="https://publications.waset.org/abstracts/search?q=scalar%20equilibria" title=" scalar equilibria"> scalar equilibria</a>, <a href="https://publications.waset.org/abstracts/search?q=utility%20function" title=" utility function"> utility function</a>, <a href="https://publications.waset.org/abstracts/search?q=weighted%20equilibrium" title=" weighted equilibrium"> weighted equilibrium</a> </p> <a href="https://publications.waset.org/abstracts/153301/pure-scalar-equilibria-for-normal-form-games" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153301.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">994</span> Implementation of a Lattice Boltzmann Method for Multiphase Flows with High Density Ratios</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Norjan%20Jumaa">Norjan Jumaa</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Graham"> David Graham</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present a Lattice Boltzmann Method (LBM) for multiphase flows with high viscosity and density ratios. The motion of the interface between fluids is modelled by solving the Cahn-Hilliard (CH) equation with LBM. Incompressibility of the velocity fields in each phase is imposed by using a pressure correction scheme. We use a unified LBM approach with separate formulations for the phase field, the pressure less Naiver-Stokes (NS) equations and the pressure Poisson equation required for correction of the velocity field. The implementation has been verified for various test case. Here, we present results for some complex flow problems including two dimensional single and multiple mode Rayleigh-Taylor instability and we obtain good results when comparing with those in the literature. The main focus of our work is related to interactions between aerated or non-aerated waves and structures so we also present results for both high viscosity and low viscosity waves. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lattice%20Boltzmann%20method" title="lattice Boltzmann method">lattice Boltzmann method</a>, <a href="https://publications.waset.org/abstracts/search?q=multiphase%20flows" title=" multiphase flows"> multiphase flows</a>, <a href="https://publications.waset.org/abstracts/search?q=Rayleigh-Taylor%20instability" title=" Rayleigh-Taylor instability"> Rayleigh-Taylor instability</a>, <a href="https://publications.waset.org/abstracts/search?q=waves" title=" waves"> waves</a> </p> <a href="https://publications.waset.org/abstracts/79505/implementation-of-a-lattice-boltzmann-method-for-multiphase-flows-with-high-density-ratios" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79505.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">993</span> Low-Voltage Multiphase Brushless DC Motor for Electric Vehicle Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mengesha%20Mamo%20Wogari">Mengesha Mamo Wogari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, low voltage multiphase brushless DC motor with square wave air-gap flux distribution for electric vehicle application is proposed. Ten-phase, 5 kW motor, has been designed and simulated by finite element methods demonstrating the desired high torque capability at low speed and flux weakening operation for high-speed operations. The motor torque is proportional to number of phases for a constant phase current and air-gap flux. The concept of vector control and simple space vector modulation technique is used on MATLAB to control the motor demonstrating simple switching pattern for selected number of phases. The low voltage DC and inverter output AC are desired characteristics to avoid any electric shock in the vehicle, accidentally and during abnormal conditions. The switching devices for inverter are of low-voltage rating and cost effective though their number is equal to twice the number of phases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brushless%20DC%20motors" title="brushless DC motors">brushless DC motors</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20Vehicle" title=" electric Vehicle"> electric Vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20methods" title=" finite element methods"> finite element methods</a>, <a href="https://publications.waset.org/abstracts/search?q=Low-voltage%20inverter" title=" Low-voltage inverter"> Low-voltage inverter</a>, <a href="https://publications.waset.org/abstracts/search?q=multiphase" title=" multiphase"> multiphase</a> </p> <a href="https://publications.waset.org/abstracts/106746/low-voltage-multiphase-brushless-dc-motor-for-electric-vehicle-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106746.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">992</span> Oryzanol Recovery from Rice Bran Oil: Adsorption Equilibrium Models Through Kinetics Data Approachments </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.D.%20Susanti">A.D. Susanti</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20B.%20Sediawan"> W. B. Sediawan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.K.%20Wirawan"> S.K. Wirawan</a>, <a href="https://publications.waset.org/abstracts/search?q=Budhijanto"> Budhijanto</a>, <a href="https://publications.waset.org/abstracts/search?q=Ritmaleni"> Ritmaleni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oryzanol content in rice bran oil (RBO) naturally has high antioxidant activity. Its reviewed has several health properties and high interested in pharmacy, cosmetics, and nutrition’s. Because of the low concentration of oryzanol in crude RBO (0.9-2.9%) then its need to be further processed for practical usage, such as via adsorption process. In this study, investigation and adjustment of adsorption equilibrium models were conducted through the kinetic data approachments. Mathematical modeling on kinetics of batch adsorption of oryzanol separation from RBO has been set-up and then applied for equilibrium results. The size of adsorbent particles used in this case are usually relatively small then the concentration in the adsorbent is assumed to be not different. Hence, the adsorption rate is controlled by the rate of oryzanol mass transfer from the bulk fluid of RBO to the surface of silica gel. In this approachments, the rate of mass transfer is assumed to be proportional to the concentration deviation from the equilibrium state. The equilibrium models applied were Langmuir, coefficient distribution, and Freundlich with the values of the parameters obtained from equilibrium results. It turned out that the models set-up can quantitatively describe the experimental kinetics data and the adjustment of the values of equilibrium isotherm parameters significantly improves the accuracy of the model. And then the value of mass transfer coefficient per unit adsorbent mass (kca) is obtained by curve fitting. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption%20equilibrium" title="adsorption equilibrium">adsorption equilibrium</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption%20kinetics" title=" adsorption kinetics"> adsorption kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=oryzanol" title=" oryzanol"> oryzanol</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20bran%20oil" title=" rice bran oil "> rice bran oil </a> </p> <a href="https://publications.waset.org/abstracts/31079/oryzanol-recovery-from-rice-bran-oil-adsorption-equilibrium-models-through-kinetics-data-approachments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31079.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">991</span> Teaching and Learning Dialectical Relationship between Thermodynamic Equilibrium and Reaction Rate Constant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Anwar">Mohammad Anwar</a>, <a href="https://publications.waset.org/abstracts/search?q=Shah%20Waliullah"> Shah Waliullah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of science and technology in the present era has an urgent demand for the training of thinking of undergraduates. This requirement actively promotes research and teaching of basic theories, beneficial to the career development of students. This study clarified the dialectical relation between the thermodynamic equilibrium constant and reaction rate constant through the contrast thinking method. Findings reveal that both the isobaric Van't Hoff equation and the Arrhenius equation had four similar forms, and the change in the trend of both constants showed a similar law. By the derivation of the formation rate constant of the product (KY) and the consumption rate constant of the reactant (KA), the ratio of both constants at the end state indicated the nature of the equilibrium state in agreement with that of the thermodynamic equilibrium constant (K^θ (T)). This study has thus presented that the thermodynamic equilibrium constant contained the characteristics of microscopic dynamics based on the analysis of the reaction mechanism, and both constants are organically connected and unified. The reaction enthalpy and activation energy are closely related to each other with the same connotation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermodynamic%20equilibrium%20constant" title="thermodynamic equilibrium constant">thermodynamic equilibrium constant</a>, <a href="https://publications.waset.org/abstracts/search?q=reaction%20rate%20constant" title=" reaction rate constant"> reaction rate constant</a>, <a href="https://publications.waset.org/abstracts/search?q=PBL%20teaching" title=" PBL teaching"> PBL teaching</a>, <a href="https://publications.waset.org/abstracts/search?q=dialectical%20relation" title=" dialectical relation"> dialectical relation</a>, <a href="https://publications.waset.org/abstracts/search?q=innovative%20thinking" title=" innovative thinking"> innovative thinking</a> </p> <a href="https://publications.waset.org/abstracts/161693/teaching-and-learning-dialectical-relationship-between-thermodynamic-equilibrium-and-reaction-rate-constant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161693.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">990</span> Stability of Out-Of-Plane Equilibrium Points in the Elliptic Restricted Three-Body Problem with Oblateness up to Zonal Harmonic J₄ of Both Primaries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kanshio%20Richard%20Tyokyaa">Kanshio Richard Tyokyaa</a>, <a href="https://publications.waset.org/abstracts/search?q=Jagadish%20Singh"> Jagadish Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we examined the location and stability of Out-Of-Plane Equilibrium points in the elliptic restricted three-body problem of an infinitesimal body when both primaries are taken as oblate spheroids with oblateness up to zonal harmonic J₄. The positions of the Equilibrium points L₆,₇ and their stability depend on the oblateness of the primaries and the eccentricity of their orbits. We explored the problem numerically to show the effects of parameters involved in the position and stability of the Out-Of-Plane Equilibrium points for the systems: HD188753 and Gliese 667. It is found that their positions are affected by the oblateness of the primaries, eccentricity and the semi-major axis of the orbits, but its stability behavior remains unchanged and is unstable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=out-of-plane" title="out-of-plane">out-of-plane</a>, <a href="https://publications.waset.org/abstracts/search?q=equilibrium%20points" title=" equilibrium points"> equilibrium points</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=elliptic%20restricted%20three-body%20problem" title=" elliptic restricted three-body problem"> elliptic restricted three-body problem</a>, <a href="https://publications.waset.org/abstracts/search?q=oblateness" title=" oblateness"> oblateness</a>, <a href="https://publications.waset.org/abstracts/search?q=zonal%20harmonic" title=" zonal harmonic"> zonal harmonic</a> </p> <a href="https://publications.waset.org/abstracts/91381/stability-of-out-of-plane-equilibrium-points-in-the-elliptic-restricted-three-body-problem-with-oblateness-up-to-zonal-harmonic-j4-of-both-primaries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91381.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">193</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">989</span> GAC Adsorption Modelling of Metsulfuron Methyl from Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nathaporn%20Areerachakul">Nathaporn Areerachakul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the adsorption capacity of GAC with metsulfuron methyl was evaluated by using adsorption equilibrium and a fixed bed. Mathematical modelling was also used to simulate the GAC adsorption behavior. Adsorption equilibrium experiment of GAC was conducted using a constant concentration of metsulfuron methyl of 10 mg/L. The purpose of this study was to find the single component equilibrium concentration of herbicide. The adsorption behavior was simulated using the Langmuir, Freundlich, and Sips isotherm. The Sips isotherm fitted the experimental data reasonably well with an error of 6.6 % compared with 15.72 % and 7.07% for the Langmuir isotherm and Freudrich isotherm. Modelling using GAC adsorption theory could not replicate the experimental results in fixed bed column of 10 and 15 cm bed depths after a period more than 10 days of operation. This phenomenon is attributed to the formation of micro-organism (BAC) on the surface of GAC in addition to GAC alone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=isotherm" title="isotherm">isotherm</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption%20equilibrium" title=" adsorption equilibrium"> adsorption equilibrium</a>, <a href="https://publications.waset.org/abstracts/search?q=GAC" title=" GAC"> GAC</a>, <a href="https://publications.waset.org/abstracts/search?q=metsulfuron%20methyl" title=" metsulfuron methyl"> metsulfuron methyl</a> </p> <a href="https://publications.waset.org/abstracts/8935/gac-adsorption-modelling-of-metsulfuron-methyl-from-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8935.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">988</span> Subsea Processing: Deepwater Operation and Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md%20Imtiaz">Md Imtiaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanchita%20Dei"> Sanchita Dei</a>, <a href="https://publications.waset.org/abstracts/search?q=Shubham%20Damke"> Shubham Damke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, there has been a rapidly accelerating shift from traditional surface processing operations to subsea processing operation. This shift has been driven by a number of factors including the depletion of shallow fields around the world, technological advances in subsea processing equipment, the need for production from marginal fields, and lower initial upfront investment costs compared to traditional production facilities. Moving production facilities to the seafloor offers a number of advantage, including a reduction in field development costs, increased production rates from subsea wells, reduction in the need for chemical injection, minimization of risks to worker ,reduction in spills due to hurricane damage, and increased in oil production by enabling production from marginal fields. Subsea processing consists of a range of technologies for separation, pumping, compression that enables production from offshore well without the need for surface facilities. At present, there are two primary technologies being used for subsea processing: subsea multiphase pumping and subsea separation. Multiphase pumping is the most basic subsea processing technology. Multiphase pumping involves the use of boosting system to transport the multiphase mixture through pipelines to floating production vessels. The separation system is combined with single phase pumps or water would be removed and either pumped to the surface, re-injected, or discharged to the sea. Subsea processing can allow for an entire topside facility to be decommissioned and the processed fluids to be tied back to a new, more distant, host. This type of application reduces costs and increased both overall facility and integrity and recoverable reserve. In future, full subsea processing could be possible, thereby eliminating the need for surface facilities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FPSO" title="FPSO">FPSO</a>, <a href="https://publications.waset.org/abstracts/search?q=marginal%20field" title=" marginal field"> marginal field</a>, <a href="https://publications.waset.org/abstracts/search?q=Subsea%20processing" title=" Subsea processing"> Subsea processing</a>, <a href="https://publications.waset.org/abstracts/search?q=SWAG" title=" SWAG"> SWAG</a> </p> <a href="https://publications.waset.org/abstracts/33428/subsea-processing-deepwater-operation-and-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33428.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">987</span> Computational Fluid Dynamics Simulation on Heat Transfer of Hot Air Bubble Injection into Water Column</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jae-Yeong%20Choi">Jae-Yeong Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Gyu-Mok%20Jeon"> Gyu-Mok Jeon</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong-Chun%20Park"> Jong-Chun Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong-Jin%20Cho"> Yong-Jin Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Seok-Tae%20Yoon"> Seok-Tae Yoon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When air flow is injected into water, bubbles are formed in various types inside the water pool along with the air flow rate. The bubbles are floated in equilibrium with forces such as buoyancy, surface tension and shear force. Single bubble generated at low flow rate maintains shape, but bubbles with high flow rate break up to make mixing and turbulence. In addition to this phenomenon, as the hot air bubbles are injected into the water, heat affects the interface of phases. Therefore, the main scope of the present work reveals how to proceed heat transfer between water and hot air bubbles injected into water. In the present study, a series of CFD simulation for the heat transfer of hot bubbles injected through a nozzle near the bottom in a cylindrical water column are performed using a commercial CFD software, STAR-CCM+. The governing equations for incompressible and viscous flow are the continuous and the RaNS (Reynolds- averaged Navier-Stokes) equations and discretized by the FVM (Finite Volume Method) manner. For solving multi-phase flow, the Eulerian multiphase model is employed and the interface is defined by VOF (Volume-of-Fluid) technique. As a turbulence model, the SST k-w model considering the buoyancy effects is introduced. For spatial differencing the 3th-order MUSCL scheme is adopted and the 2nd-order implicit scheme for time integration. As the results, the dynamic behavior of the rising hot bubbles with the flow rate injected and regarding heat transfer mechanism are discussed based on the simulation results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title="heat transfer">heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20bubble%20injection" title=" hot bubble injection"> hot bubble injection</a>, <a href="https://publications.waset.org/abstracts/search?q=eulerian%20multiphase%20model" title=" eulerian multiphase model"> eulerian multiphase model</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20rate" title=" flow rate"> flow rate</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD%20%28Computational%20Fluid%20Dynamics%29" title=" CFD (Computational Fluid Dynamics)"> CFD (Computational Fluid Dynamics)</a> </p> <a href="https://publications.waset.org/abstracts/87141/computational-fluid-dynamics-simulation-on-heat-transfer-of-hot-air-bubble-injection-into-water-column" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87141.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">986</span> Effect of Boundary Condition on Granular Pressure of Gas-Solid Flow in a Rotating Drum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rezwana%20Rahman">Rezwana Rahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Various simulations have been conducted to understand the particle's macroscopic behavior in the solid-gas multiphase flow in rotating drums in the past. In these studies, the particle-wall no-slip boundary condition was usually adopted. However, the non-slip boundary condition is rarely encountered in real systems. A little effort has been made to investigate the particle behavior at slip boundary conditions. The paper represents a study of the gas-solid flow in a horizontal rotating drum at a slip boundary wall condition. Two different sizes of particles with the same density have been considered. The Eulerian–Eulerian multiphase model with the kinetic theory of granular flow was used in the simulations. The granular pressure at the rolling flow regime with specularity coefficient 1 was examined and compared with that obtained based on the no-slip boundary condition. The results reveal that the profiles of granular pressure distribution on the transverse plane of the drum are similar for both boundary conditions. But, overall, compared with those for the no-slip boundary condition, the values of granular pressure for specularity coefficient 1 are larger for the larger particle and smaller for the smaller particle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boundary%20condition" title="boundary condition">boundary condition</a>, <a href="https://publications.waset.org/abstracts/search?q=eulerian%E2%80%93eulerian" title=" eulerian–eulerian"> eulerian–eulerian</a>, <a href="https://publications.waset.org/abstracts/search?q=multiphase" title=" multiphase"> multiphase</a>, <a href="https://publications.waset.org/abstracts/search?q=specularity%20coefficient" title=" specularity coefficient"> specularity coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=transverse%20plane" title=" transverse plane"> transverse plane</a> </p> <a href="https://publications.waset.org/abstracts/138424/effect-of-boundary-condition-on-granular-pressure-of-gas-solid-flow-in-a-rotating-drum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138424.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">985</span> Using Axiomatic Design for Developing a Framework of Manufacturing Cloud Service Composition in the Equilibrium State</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ehsan%20Vaziri%20Goodarzi">Ehsan Vaziri Goodarzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmood%20Houshmand"> Mahmood Houshmand</a>, <a href="https://publications.waset.org/abstracts/search?q=Omid%20Fatahi%20Valilai"> Omid Fatahi Valilai</a>, <a href="https://publications.waset.org/abstracts/search?q=Vahidreza%20Ghezavati"> Vahidreza Ghezavati</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahrooz%20Bamdad"> Shahrooz Bamdad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One important paradigm of industry 4.0 is Cloud Manufacturing (CM).&nbsp;In CM everything is considered as a service, therefore, the CM platform should consider all service provider&#39;s capabilities and tries to integrate services in an equilibrium state. This research develops a framework for implementing manufacturing cloud service composition in the equilibrium state. The developed framework using&nbsp;well-known tools called axiomatic design&nbsp;(AD) and game theory. The research has investigated the factors for forming equilibrium for measures of the manufacturing cloud service composition. Functional requirements (FRs) represent the measures of manufacturing cloud service composition in the equilibrium state. These FRs satisfied by related Design Parameters (DPs). The FRs and DPs are defined by considering the game theory, QoS, consumer needs, parallel and cooperative services. Ultimately, four FRs and DPs represent the framework. To insure the validity of the framework, the authors have used the first AD&rsquo;s independent axiom. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=axiomatic%20design" title="axiomatic design">axiomatic design</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20cloud%20service%20composition" title=" manufacturing cloud service composition"> manufacturing cloud service composition</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20manufacturing" title=" cloud manufacturing"> cloud manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=industry%204.0" title=" industry 4.0"> industry 4.0</a> </p> <a href="https://publications.waset.org/abstracts/113120/using-axiomatic-design-for-developing-a-framework-of-manufacturing-cloud-service-composition-in-the-equilibrium-state" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113120.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">984</span> A Geometric Interpolation Scheme in Overset Meshes for the Piecewise Linear Interface Calculation Volume of Fluid Method in Multiphase Flows</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yanni%20Chang">Yanni Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Dezhi%20Dai"> Dezhi Dai</a>, <a href="https://publications.waset.org/abstracts/search?q=Albert%20Y.%20Tong"> Albert Y. Tong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Piecewise linear interface calculation (PLIC) schemes are widely used in the volume-of-fluid (VOF) method to capture interfaces in numerical simulations of multiphase flows. Dynamic overset meshes can be especially useful in applications involving component motions and complex geometric shapes. In the present study, the VOF value of an acceptor cell is evaluated in a geometric way that transfers the fraction field between the meshes precisely with reconstructed interfaces from the corresponding donor elements. The acceptor cell value is evaluated by using a weighted average of its donors for most of the overset interpolation schemes for continuous flow variables. The weighting factors are obtained by different algebraic methods. Unlike the continuous flow variables, the VOF equation is a step function near the interfaces, which ranges from zero to unity rapidly. A geometric interpolation scheme of the VOF field in overset meshes for the PLIC-VOF method has been proposed in the paper. It has been tested successfully in quadrilateral/hexahedral overset meshes by employing several VOF advection tests with imposed solenoidal velocity fields. The proposed algorithm has been shown to yield higher accuracy in mass conservation and interface reconstruction compared with three other algebraic ones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interpolation%20scheme" title="interpolation scheme">interpolation scheme</a>, <a href="https://publications.waset.org/abstracts/search?q=multiphase%20flows" title=" multiphase flows"> multiphase flows</a>, <a href="https://publications.waset.org/abstracts/search?q=overset%20meshes" title=" overset meshes"> overset meshes</a>, <a href="https://publications.waset.org/abstracts/search?q=PLIC-VOF%20method" title=" PLIC-VOF method"> PLIC-VOF method</a> </p> <a href="https://publications.waset.org/abstracts/113095/a-geometric-interpolation-scheme-in-overset-meshes-for-the-piecewise-linear-interface-calculation-volume-of-fluid-method-in-multiphase-flows" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113095.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=multiphase%20equilibrium&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=multiphase%20equilibrium&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=multiphase%20equilibrium&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=multiphase%20equilibrium&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=multiphase%20equilibrium&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=multiphase%20equilibrium&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=multiphase%20equilibrium&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=multiphase%20equilibrium&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=multiphase%20equilibrium&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=multiphase%20equilibrium&amp;page=33">33</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=multiphase%20equilibrium&amp;page=34">34</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=multiphase%20equilibrium&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10