CINXE.COM

Search results for: chelate

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: chelate</title> <meta name="description" content="Search results for: chelate"> <meta name="keywords" content="chelate"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="chelate" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="chelate"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 18</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: chelate</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> The Effect of Chelate to RE Ratio on Upconversion Emissions Property of NaYF4: Yb3+ and Tm3+ Nanocrystals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Kaviani%20Darani">M. Kaviani Darani</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Bastani"> S. Bastani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ghahari"> M. Ghahari</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Kardar"> P. Kardar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper the NaYF4: Yb3+, Tm3+ nanocrystals were synthesized by hydrothermal method. Different chelating ligand type (citric acid, butanoic acid, and AOT) was selected to investigate the effect of their concentration on upconversion efficiency. Crystal structure and morphology have been well characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis. Photo luminescence were recorded on a spectrophotometer equipped with 980 nm laser diode az excitation source and an integerating sphere. The products with various morphologies range from sphere to cubic, hexagonal,prism and nanorods were prepared at different ratios. The particle size was found to be dependent on the nucleation rate, which, in turn, was affected by type and concentration of ligands. The optimum amount of chelate to RE ratio was obtained 0.75, 1.5, and 1 for Citric Acid, Butanoic Acid and AOT, respectively. Emissions in the UV (1D2-3H6), blue-violet(1D2-3F4), blue (1G4-3H6), red (1G4-3F4), and NIR (1G4-3H5) were observed and were the direct result of subsequent transfers of energy from the Yb3+ ion to the Tm3+ ion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=upconversion%20nanoparticles" title="upconversion nanoparticles">upconversion nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=NaYF4" title=" NaYF4"> NaYF4</a>, <a href="https://publications.waset.org/abstracts/search?q=lanthanide" title=" lanthanide"> lanthanide</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrothermal" title=" hydrothermal"> hydrothermal</a> </p> <a href="https://publications.waset.org/abstracts/18648/the-effect-of-chelate-to-re-ratio-on-upconversion-emissions-property-of-nayf4-yb3-and-tm3-nanocrystals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18648.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Effects of Amino Bisphosphonic Acid on the Growth and Phytoextraction Efficiency of Salix schwerinii Grown in Ni-Contaminated Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Mohsin">Muhammad Mohsin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mir%20Md%20Abdus%20Salam"> Mir Md Abdus Salam</a>, <a href="https://publications.waset.org/abstracts/search?q=Pertti%20Pulkkinen"> Pertti Pulkkinen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ari%20Pappinen"> Ari Pappinen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil polluted with elevated level of nickel (Ni) concentration may cause severe hazards to humans and forest ecosystems, for example, by polluting underground water reserves, affecting food quality and by reducing agricultural productivity. The present study investigated the phytoextraction ability of Salix schwerinii, enhanced with an application of the N100 (11-amino-1-hydroxyundecylidene) chelate. N100 has proved to be a non-toxic, low risk of leaching, environmentally friendly and easily biodegradable chelate that has a potential for metal chelation. The Salix were grown in garden soil that was also amended with nickel (Ni; 150 mg kg⁻¹). Multiple doses of N100 were applied to the treatments as follows: Ni + N100 1.2 g and Ni+ N100 2.4 g. Furthermore, N100 doses were also repeated with the control soil. The effect of N100 on height growth, biomass, and the accumulation of Ni in Salix in polluted soils was studied. In this study, N100 application was found to be effective in enhancing height and biomass growth under polluted treatments. Total reflection X-ray fluorescence (TXRF) spectrometry was used to determine the concentration of Ni in the Salix tissues. The total Ni concentrations in the soils amended with N100 increased substantially by up to 324% as compared to the control. The Ni translocation factor (TF) and bioconcentration factor (BF) values for S. schwerinii increased with the application of N100 as varied from 0.45–1.25 and 0.80‒1.50, respectively. This study revealed that S. schwerinii is suitable for the phytoextraction of Ni-contaminated soils. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bisphosphonic%20acid" title="bisphosphonic acid">bisphosphonic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel" title=" nickel"> nickel</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoextraction" title=" phytoextraction"> phytoextraction</a>, <a href="https://publications.waset.org/abstracts/search?q=Salix" title=" Salix"> Salix</a> </p> <a href="https://publications.waset.org/abstracts/102043/effects-of-amino-bisphosphonic-acid-on-the-growth-and-phytoextraction-efficiency-of-salix-schwerinii-grown-in-ni-contaminated-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102043.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Gadolinium-Based Polymer Nanostructures as Magnetic Resonance Imaging Contrast Agents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Franca%20De%20Sarno">Franca De Sarno</a>, <a href="https://publications.waset.org/abstracts/search?q=Alfonso%20Maria%20Ponsiglione"> Alfonso Maria Ponsiglione</a>, <a href="https://publications.waset.org/abstracts/search?q=Enza%20Torino"> Enza Torino</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent advances in diagnostic imaging technology have significantly contributed to a better understanding of specific changes associated with diseases progression. Among different imaging modalities, Magnetic Resonance Imaging (MRI) represents a noninvasive medical diagnostic technique, which shows low sensitivity and long acquisition time and it can discriminate between healthy and diseased tissues by providing 3D data. In order to improve the enhancement of MRI signals, some imaging exams require intravenous administration of contrast agents (CAs). Recently, emerging research reports a progressive deposition of these drugs, in particular, gadolinium-based contrast agents (GBCAs), in the body many years after multiple MRI scans. These discoveries confirm the need to have a biocompatible system able to boost a clinical relevant Gd-chelate. To this aim, several approaches based on engineered nanostructures have been proposed to overcome the common limitations of conventional CAs, such as the insufficient signal-to-noise ratios due to relaxivity and poor safety profile. In particular, nanocarriers, labeling or loading with CAs, capable of carrying high payloads of CAs have been developed. Currently, there’s no a comprehensive understanding of the thermodynamic contributions enable of boosting the efficacy of conventional CAs by using biopolymers matrix. Thus, considering the importance of MRI in diagnosing diseases, here it is reported a successful example of the next generation of these drugs where the commercial gadolinium chelate is incorporate into a biopolymer nanostructure, formed by cross-linked hyaluronic acid (HA), with improved relaxation properties. In addition, they are highlighted the basic principles ruling biopolymer-CA interactions in the perspective of their influence on the relaxometric properties of the CA by adopting a multidisciplinary experimental approach. On the basis of these discoveries, it is clear that the main point consists in increasing the rigidification of readily-available Gd-CAs within the biopolymer matrix by controlling the water dynamics, the physicochemical interactions, and the polymer conformations. In the end, the acquired knowledge about polymer-CA systems has been applied to develop of Gd-based HA nanoparticles with enhanced relaxometric properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biopolymers" title="biopolymers">biopolymers</a>, <a href="https://publications.waset.org/abstracts/search?q=MRI" title=" MRI"> MRI</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=contrast%20agent" title=" contrast agent"> contrast agent</a> </p> <a href="https://publications.waset.org/abstracts/92403/gadolinium-based-polymer-nanostructures-as-magnetic-resonance-imaging-contrast-agents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92403.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Effects of Lime and N100 on the Growth and Phytoextraction Capability of a Willow Variety (S. Viminalis × S. Schwerinii × S. Dasyclados) Grown in Contaminated Soils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mir%20Md.%20Abdus%20Salam">Mir Md. Abdus Salam</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Mohsin"> Muhammad Mohsin</a>, <a href="https://publications.waset.org/abstracts/search?q=Pertti%20Pulkkinen"> Pertti Pulkkinen</a>, <a href="https://publications.waset.org/abstracts/search?q=Paavo%20Pelkonen"> Paavo Pelkonen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ari%20Pappinen"> Ari Pappinen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil and water pollution caused by extensive mining practices can adversely affect environmental components, such as humans, animals, and plants. Despite a generally positive contribution to society, mining practices have become a serious threat to biological systems. As metals do not degrade completely, they require immobilization, toxicity reduction, or removal. A greenhouse experiment was conducted to evaluate the effects of lime and N100 (11-amino-1-hydroxyundecylidene) chelate amendment on the growth and phytoextraction potential of the willow variety Klara (S. viminalis × S. schwerinii × S. dasyclados) grown in soils heavily contaminated with copper (Cu). The plants were irrigated with tap or processed water (mine wastewater). The sequential extraction technique and inductively coupled plasma-mass spectrometry (ICP-MS) tool were used to determine the extractable metals and evaluate the fraction of metals in the soil that could be potentially available for plant uptake. The results suggest that the combined effects of the contaminated soil and processed water inhibited growth parameter values. In contrast, the accumulation of Cu in the plant tissues was increased compared to the control. When the soil was supplemented with lime and N100; growth parameter and resistance capacity were significantly higher compared to unamended soil treatments, especially in the contaminated soil treatments. The combined lime- and N100-amended soil treatment produced higher growth rate of biomass, resistance capacity and phytoextraction efficiency levels relative to either the lime-amended or the N100-amended soil treatments. This study provides practical evidence of the efficient chelate-assisted phytoextraction capability of Klara and highlights its potential as a viable and inexpensive novel approach for in-situ remediation of Cu-contaminated soils and mine wastewaters. Abandoned agricultural, industrial and mining sites can also be utilized by a Salix afforestation program without conflict with the production of food crops. This kind of program may create opportunities for bioenergy production and economic development, but contamination levels should be examined before bioenergy products are used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=copper" title="copper">copper</a>, <a href="https://publications.waset.org/abstracts/search?q=Klara" title=" Klara"> Klara</a>, <a href="https://publications.waset.org/abstracts/search?q=lime" title=" lime"> lime</a>, <a href="https://publications.waset.org/abstracts/search?q=N100" title=" N100"> N100</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoextraction" title=" phytoextraction"> phytoextraction</a> </p> <a href="https://publications.waset.org/abstracts/102041/effects-of-lime-and-n100-on-the-growth-and-phytoextraction-capability-of-a-willow-variety-s-viminalis-s-schwerinii-s-dasyclados-grown-in-contaminated-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102041.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Study of Dormancy-Breaking of Bitter Apple Seed (Citrullus Colocynthis L. Schard)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asghar%20Rahimi">Asghar Rahimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Majid%20Puryousef"> Majid Puryousef</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aimed to examine dormancy-breaking of bitter apple (Citrullus colocynthis) seed. Seeds of wild bitter apple collected from the Balochestan zone in east of Iran were subjected to different treatments including temperatures (20 and 30°C) and some dormancy breaking methods on breaking seed dormancy of bitter apple. Only 6 treatments from 12 dormancy breaking treatments were effective in dormancy breaking, therefore only effective treatments were analyzed. In general, germination percentage of cleaved seeds, soaked seeds in hot water (98°c) and soaking in H2SO4 in both temperatures was higher than other treatments and germination percentage of scarified seeds with sandy paper in both temperature was lower than other treatments. Also germination percentage of soaked seeds in hot water (98°c) and naturally cracked seeds in temperature 20°c was higher than 30°c. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=foliar%20application" title="foliar application">foliar application</a>, <a href="https://publications.waset.org/abstracts/search?q=nano%20chelate" title=" nano chelate"> nano chelate</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen" title=" nitrogen"> nitrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=Safflower" title=" Safflower"> Safflower</a> </p> <a href="https://publications.waset.org/abstracts/69540/study-of-dormancy-breaking-of-bitter-apple-seed-citrullus-colocynthis-l-schard" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69540.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Solution Thermodynamics, Photophysical and Computational Studies of TACH2OX, a C-3 Symmetric 8-Hydroxyquinoline: Abiotic Siderophore Analogue of Enterobactin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20K.%20Kanungo">B. K. Kanungo</a>, <a href="https://publications.waset.org/abstracts/search?q=Monika%20Thakur"> Monika Thakur</a>, <a href="https://publications.waset.org/abstracts/search?q=Minati%20Baral"> Minati Baral</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 8-hydroxyquinoline, (8HQ), experiences a renaissance due to its utility as a building block in metallosupramolecular chemistry and its versatile use of its derivatives in various fields of analytical chemistry, materials science, and pharmaceutics. It forms stable complexes with a variety of metal ions. Assembly of more than one such unit to form a polydentate chelator enhances its coordinating ability and the related properties due to the chelate effect resulting in high stability constant. Keeping in view the above, a nonadentate chelator N-[3,5-bis(8-hydroxyquinoline-2-amido)cyclohexyl]-8-hydroxyquinoline-2-carboxamide, (TACH2OX), containing a central cis,cis-1,3,5-triaminocyclohexane appended to three 8-hydroxyquinoline at 2-position through amide linkage is developed, and its solution thermodynamics, photophysical and Density Functional Theory (DFT) studies were undertaken. The synthesis of TACH2OX was carried out by condensation of cis,cis-1,3,5-triaminocyclohexane, (TACH) with 8‐hydroxyquinoline‐2‐carboxylic acid. The brown colored solid has been fully characterized through melting point, infrared, nuclear magnetic resonance, electrospray ionization mass and electronic spectroscopy. In solution, TACH2OX forms protonated complexes below pH 3.4, which consecutively deprotonates to generate trinegative ion with the rise of pH. Nine protonation constants for the ligand were obtained that ranges between 2.26 to 7.28. The interaction of the chelator with two trivalent metal ion Fe3+ and Al3+ were studied in aqueous solution at 298 K. The metal-ligand formation constants (ML) obtained by potentiometric and spectrophotometric method agree with each other. The protonated and hydrolyzed species were also detected in the system. The in-silico studies of the ligand, as well as the complexes including their protonated and deprotonated species assessed by density functional theory technique, gave an accurate correlation with each observed properties such as the protonation constants, stability constants, infra-red, nmr, electronic absorption and emission spectral bands. The nature of electronic and emission spectral bands in terms of number and type were ascertained from time-dependent density functional theory study and the natural transition orbitals (NTO). The global reactivity indices parameters were used for comparison of the reactivity of the ligand and the complex molecules. The natural bonding orbital (NBO) analysis could successfully describe the structure and bonding of the metal-ligand complexes specifying the percentage of contribution in atomic orbitals in the creation of molecular orbitals. The obtained high value of metal-ligand formation constants indicates that the newly synthesized chelator is a very powerful synthetic chelator. The minimum energy molecular modeling structure of the ligand suggests that the ligand, TACH2OX, in a tripodal fashion firmly coordinates to the metal ion as hexa-coordinated chelate displaying distorted octahedral geometry by binding through three sets of N, O- donor atoms, present in each pendant arm of the central tris-cyclohexaneamine tripod. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=complexes" title="complexes">complexes</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT" title=" DFT"> DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=formation%20constant" title=" formation constant"> formation constant</a>, <a href="https://publications.waset.org/abstracts/search?q=TACH2OX" title=" TACH2OX"> TACH2OX</a> </p> <a href="https://publications.waset.org/abstracts/121346/solution-thermodynamics-photophysical-and-computational-studies-of-tach2ox-a-c-3-symmetric-8-hydroxyquinoline-abiotic-siderophore-analogue-of-enterobactin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121346.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Interaction of between Cd and Zn in Barley (Hordeum vulgare L.) Plant for Phytoextraction Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Adilo%C4%9Flu">S. Adiloğlu</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Bellit%C3%BCrk"> K. Bellitürk</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Solmaz"> Y. Solmaz</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Adilo%C4%9Flu"> A. Adiloğlu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this research is to remediation of the cadmium (Cd) pollution in agricultural soils by using barley (<em>Hordeum vulgare </em>L<em>.</em>) plant. For this purpose, a pot experiment was done in greenhouse conditions. Cadmium (100 mg/kg) as CdSO<sub>4</sub>.8H<sub>2</sub>O forms was applied to each pot and incubated during 30 days. Then Ethylenediamine tetraacetic acid (EDTA) chelate was applied to each pot at five doses (0, 3, 6, 8 and 10 mmol/kg) 20 days before harvesting time of the barley plants. The plants were harvested after two months planting. According to the pot experiment results, Cd and Zn amounts of barley plant increased with increasing EDTA application and Zn and Cd contents of barley 20,13 and 1,35 mg/kg for 0 mmol /kg EDTA; 58,61 and 113,24 mg/kg for 10 mmol/kg EDTA doses, respectively. On the other hand, Cd and Zn concentrations of experiment soil increased with EDTA application to the soil samples. Zinc and Cd concentrations of soil 0,31 and 0,021 mg/kg for 0 mmol /kg EDTA; 2,39 and 67,40 mg/kg for 10 mmol/kg EDTA doses, respectively. These increases were found to be statistically significant at the level of 1 %. According to the results of the pot experiment, some heavy metal especially Cd pollution of barley (<em>Hordeum vulgare </em>L<em>.</em>) plant province can be remediated by the phytoextraction method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Barley" title="Barley">Barley</a>, <a href="https://publications.waset.org/abstracts/search?q=Hordeum%20vulgare%20L." title=" Hordeum vulgare L."> Hordeum vulgare L.</a>, <a href="https://publications.waset.org/abstracts/search?q=cadmium" title=" cadmium"> cadmium</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc" title=" zinc"> zinc</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoextraction" title=" phytoextraction"> phytoextraction</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20pollution" title=" soil pollution"> soil pollution</a> </p> <a href="https://publications.waset.org/abstracts/61817/interaction-of-between-cd-and-zn-in-barley-hordeum-vulgare-l-plant-for-phytoextraction-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61817.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Physicochemical and Antioxidative Characteristics of Black Bean Protein Hydrolysates Obtained from Different Enzymes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhaojun%20Zheng">Zhaojun Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuanfa%20Liu"> Yuanfa Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiaxin%20Li"> Jiaxin Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinwei%20Li"> Jinwei Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong-jiang%20Xu"> Yong-jiang Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen%20Cao"> Chen Cao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Black bean is an excellent protein source for preparing hydrolysates, which attract much attention due to their biological activity. The objective of this study was to characterize the physicochemical and antioxidant properties of black bean protein, hydrolyzed by ficin, bromelain or alcalase until 300 min of hydrolysis. Results showed that bromelain and alcalase hydrolysates possessed a higher degree of hydrolysis (DH) than that of ficin, thereby presenting different ultraviolet absorption, fluorescence intensity, and circular dichroism. Moreover, all hydrolysates possessed the capacity to scavenge DPPH radical with the lowest IC₅₀ of 21.11 µg/mL, as well as to chelate ferrous ion (Fe²⁺) with the IC₅₀ values ranging from 6.82 to 30.68 µg/mL. Intriguingly, the oxidation of linoleic acid, sunflower oil, and sunflower oil-in-water emulsion was remarkedly retarded by the three selected protein hydrolysates, especially by bromelain-treated protein hydrolysate, which might attribute to their high hydrophobicity and emulsifying properties. These findings can provide strong support for black bean protein hydrolysates to be employed in food products acting as natural antioxidant alternatives. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title="antioxidant activity">antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=black%20bean%20protein%20hydrolysate" title=" black bean protein hydrolysate"> black bean protein hydrolysate</a>, <a href="https://publications.waset.org/abstracts/search?q=emulsion%20physicochemical%20properties" title=" emulsion physicochemical properties"> emulsion physicochemical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=sunflower%20oil" title=" sunflower oil"> sunflower oil</a> </p> <a href="https://publications.waset.org/abstracts/105885/physicochemical-and-antioxidative-characteristics-of-black-bean-protein-hydrolysates-obtained-from-different-enzymes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105885.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Chelating Effect of Black Tea Extract Compared to Citric Acid in the Process of the Oxidation of Sunflower, Canola, Olive, and Tallow Oils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yousef%20Naserzadeh">Yousef Naserzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Niloufar%20Mahmoudi"> Niloufar Mahmoudi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oxidation resistance is one of the important parameters in maintaining the quality of olive oil during its storage. Ensuring the stability of the quality of olive oil is one of the important concerns of the producers and consumers. Prooxidants such as iron and copper accelerate the oxidation reaction, and also anti-oxidants and chelating compounds delay it. In this study, chelating effect of tea extract which contains significant amounts of tannic acid is investigated in comparison with citric acid. To do it, 0.1 ppm copper was added to these four kinds of oil, sunflower, olive, canola, and tallow, and then chelating effect of citric acid (0.01%), tannic acid (0.01%) and tea extract (0.1%) were measured by adding to this composition. To this end, the resistance time of the oils against oxidation was measured at 120 °C and an air flow of 20 liters per hour. And the value of peroxide was measured by oven test in six periods of 24 hours at 105 °C. The results showed that citric acid, tannic acid and tea extract had chelating property and increased the resistance time of the studied oils. As a result, considering chelating property and increasing resistance of oil, tannic acid showed better effect than tea extract and tea extract had better effect than citric acid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tannic%20acid" title="tannic acid">tannic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=chelate" title=" chelate"> chelate</a>, <a href="https://publications.waset.org/abstracts/search?q=edible%20oils" title=" edible oils"> edible oils</a>, <a href="https://publications.waset.org/abstracts/search?q=black%20tea%20extract" title=" black tea extract"> black tea extract</a>, <a href="https://publications.waset.org/abstracts/search?q=TBHQ" title=" TBHQ"> TBHQ</a> </p> <a href="https://publications.waset.org/abstracts/90906/chelating-effect-of-black-tea-extract-compared-to-citric-acid-in-the-process-of-the-oxidation-of-sunflower-canola-olive-and-tallow-oils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90906.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Adsorption and Corrosion Inhibition of New Synthesized Thiophene Schiff Base on Mild Steel in HCL Solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Elmsellem">H. Elmsellem</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Aouniti"> A. Aouniti</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Radi"> S. Radi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Chetouani"> A. Chetouani</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Hammouti"> B. Hammouti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The synthesis of new organic molecules offers various molecular structures containing heteroatoms and substituents for corrosion protection in acid pickling of metals. The most synthesized compounds are the nitrogen heterocyclic compounds, which are known to be excellent complex or chelate forming substances with metals. The choice of the inhibitor is based on two considerations: first it could be synthesized conveniently from relatively cheap raw materials, secondly, it contains the electron cloud on the aromatic ring or, the electro negative atoms such as nitrogen and oxygen in the relatively long chain compounds. In the present study, (NE)‐2‐methyl‐N‐(thiophen‐2‐ylmethylidene) aniline(T) was synthesized and its inhibiting action on the corrosion of mild steel in 1 M hydrochloric acid was examined by different corrosion methods, such as weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The experimental results suggest that this compound is an efficient corrosion inhibitor and the inhibition efficiency increases with the increase in inhibitor concentration. Adsorption of this compound on mild steel surface obeys Langmuir’s isotherm. Correlation between quantum chemical calculations and inhibition efficiency of the investigated compound is discussed using the Density Functional Theory method (DFT). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mild%20steel" title="mild steel">mild steel</a>, <a href="https://publications.waset.org/abstracts/search?q=Schiff%20base" title=" Schiff base"> Schiff base</a>, <a href="https://publications.waset.org/abstracts/search?q=inhibition" title=" inhibition"> inhibition</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=HCl" title=" HCl"> HCl</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20chemical" title=" quantum chemical"> quantum chemical</a> </p> <a href="https://publications.waset.org/abstracts/18046/adsorption-and-corrosion-inhibition-of-new-synthesized-thiophene-schiff-base-on-mild-steel-in-hcl-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18046.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Effect of Zinc-Lysine on Growth, Photosynthesis, Oxidative Stress and Antioxidant System and Chromium Uptake in Rice under Cr Stress</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shafaqat%20Ali">Shafaqat Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Afzal%20Hussain"> Afzal Hussain</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Rizwan"> Muhammad Rizwan</a>, <a href="https://publications.waset.org/abstracts/search?q=Longhua%20Wu"> Longhua Wu </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chromium (Cr) is one of the widespread and toxic trace elements present in the agricultural land. Chromium can enter into the food chain mainly through agricultural crops grown on Cr-contaminated soils such as rice (Oryza sativa L.). The current study was done to evaluate the effects of increasing concentrations foliar applied zinc (Zn) chelated with lysine (Zn-lys) (0, 10, 20, and 30 mg L⁻¹) on rice biomass, photosynthesis, oxidative stress, key antioxidant enzyme activities and Cr uptake under increasing levels of Cr in the soil (0, 100, 500 mg kg⁻¹). Cr-induced toxicity reduced the height of plants, biomass, chlorophyll contents, gas exchange parameters, and antioxidant enzyme activities while increased the Cr concentrations and oxidative stress (malondialdehyde, electrolyte leakage, and H₂O₂) in shoots and roots than control plants. Foliar application of Zn-lys increased the plant growth, photosynthesis, Zn concentrations, and enzyme activities in rice seedlings. In addition, Zn-lys reduced the Cr concentrations and oxidative stress compared to the respective Cr treatments alone. The present results indicate that foliar Zn-lys stimulates the antioxidant defense system in rice, increase the rice growth while reduced the Cr concentrations in plants by promoting the Zn uptake and photosynthesis. Taken together, foliar spray of Zn-lys chelate can efficiently be employed for improving plant growth and Zn contents while reducing Cr concentration in rice grown in Cr-contaminated and Zn-deficient soils. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidants" title="antioxidants">antioxidants</a>, <a href="https://publications.waset.org/abstracts/search?q=chromium" title=" chromium"> chromium</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc-lysine" title=" zinc-lysine"> zinc-lysine</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a>, <a href="https://publications.waset.org/abstracts/search?q=photosynthesis" title=" photosynthesis"> photosynthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=tolerance" title=" tolerance"> tolerance</a> </p> <a href="https://publications.waset.org/abstracts/76594/effect-of-zinc-lysine-on-growth-photosynthesis-oxidative-stress-and-antioxidant-system-and-chromium-uptake-in-rice-under-cr-stress" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76594.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Electrochemical/Electro-Catalytic Applications of Novel Alcohol Substituted Metallophthalocyanines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ipek%20Gunay">Ipek Gunay</a>, <a href="https://publications.waset.org/abstracts/search?q=Efe%20B.%20Orman"> Efe B. Orman</a>, <a href="https://publications.waset.org/abstracts/search?q=Metin%20Ozer"> Metin Ozer</a>, <a href="https://publications.waset.org/abstracts/search?q=Bekir%20Salih"> Bekir Salih</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20R.%20Ozkaya"> Ali R. Ozkaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phthalocyanines with macrocyclic ring containing at least three heteroatoms have nine or more membered structures. Metal-free phthalocyanines react with metal salts to obtain chelate complexes. This is one of the most important features of metal-free phthalocyanine as ligand structure. Although phthalocyanines have very similar properties with porphyrins, they have some advantages such as lower cost, easy to prepare, and chemical and thermal stability. It’s known that Pc compounds have shown one-electron metal-and/or ligand-based reversible or quasi-reversible reduction and oxidation processes. The redox properties of phthalocyanines are critically related to the desirable properties of these compounds in their technological applications. Thus, Pc complexes have also been receiving increasing interest in the area of fuel cells due to their high electrocatalytic activity in dioxygen reduction and fuel cell applications. In this study, novel phthalocyanine complexes coordinated with Fe(II) and Co (II) to be used as catalyst were synthesized. Aiming this goal, a new nitrile ligand was synthesized starting from 4-hydroxy-3,5-dimethoxy benzyl alcohol and 4-nitrophthalonitrile in the presence of K2CO3 as catalyst. After the isolation of the new type of nitrile and metal complexes, the characterization of mentioned compounds was achieved by IR, H-NMR and UV-vis methods. In addition, the electrochemical behaviour of Pc complexes was identified by cyclic voltammetry, square wave voltammetry and in situ spectroelectrochemical measurements. Furthermore, the catalytic performances of Pc complexes for oxygen reduction were tested by dynamic voltammetry measurements, carried out by the combined system of rotating ring-disk electrode and potentiostat, in a medium similar to fuel-cell working conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phthalocyanine" title="phthalocyanine">phthalocyanine</a>, <a href="https://publications.waset.org/abstracts/search?q=electrocatalysis" title=" electrocatalysis"> electrocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemistry" title=" electrochemistry"> electrochemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=in-situ%20spectroelectrochemistry" title=" in-situ spectroelectrochemistry"> in-situ spectroelectrochemistry</a> </p> <a href="https://publications.waset.org/abstracts/76061/electrochemicalelectro-catalytic-applications-of-novel-alcohol-substituted-metallophthalocyanines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76061.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> The Effect of Addition of White Mulberry Fruits on the Antioxidant Activity of the New Developed Bioactive Bread</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kobus-Cisowska%20Joanna">Kobus-Cisowska Joanna</a>, <a href="https://publications.waset.org/abstracts/search?q=Flaczyk%20Ewa"> Flaczyk Ewa</a>, <a href="https://publications.waset.org/abstracts/search?q=Gramza-Michalowska%20Anna"> Gramza-Michalowska Anna</a>, <a href="https://publications.waset.org/abstracts/search?q=Kmiecik%20Dominik"> Kmiecik Dominik</a>, <a href="https://publications.waset.org/abstracts/search?q=Przeor%20Monika"> Przeor Monika</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcinkowska%20Agata"> Marcinkowska Agata</a>, <a href="https://publications.waset.org/abstracts/search?q=Korczak%20J%C3%B3zef">Korczak Józef </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cereal products, including mainly bread is a staple food known from the beginning of history throughout the world. It is now believed that there is no replacement of the basic food. Bread, due to the high content of starch is the energy source for the proper functioning of our body. It also contains proteins, fats, vitamins, especially of the B group and vitamin E, a number of minerals, and fiber. The aim of the study was to evaluate the antioxidant activity of new developed bread premixes with mulberry fruits for people with anemia, diabetes, obesity and cardiovascular disease. From the finished product-bread, aqueous and methanol extracts was prepared, which in next step were analyzed to assess the activity of the radical DPPH test, ABTS, chelating activity, the ability to reduce metals. Extracts were prepared from bread were acquired with premixes directly after production and stored for three months. The resulting trial breads effect by different mechanisms of antioxidant. They showed the ability to scavenge radicals ABTS and DPPH and chelating activity. Methanol extracts showed significantly greater antioxidant activity in comparison with aqueous extracts, and the largest effect was estimated for sample of bread for anemia, diabetes and cardiovascular disease. The greatest ability to scavenging ABTS radicals showed breads for anemia, diabetes and cardiovascular disease, while smaller for anemia and control sample. It was shown that the methanol extracts of the breads samples showed no ability to chelate iron (II). These properties are observed only in the aqueous extracts. The greatest ability attempt had anemia while the lowest control sample. Financial supported by the UE Project no POIG 01.01.02-00-061/09. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=morus%20alba" title="morus alba">morus alba</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20radicals" title=" free radicals"> free radicals</a>, <a href="https://publications.waset.org/abstracts/search?q=polyphenols" title=" polyphenols "> polyphenols </a> </p> <a href="https://publications.waset.org/abstracts/11797/the-effect-of-addition-of-white-mulberry-fruits-on-the-antioxidant-activity-of-the-new-developed-bioactive-bread" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11797.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Preparation of Metal Containing Epoxy Polymer and Investigation of Their Properties as Fluorescent Probe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ertu%C4%9F%20Y%C4%B1ld%C4%B1r%C4%B1m">Ertuğ Yıldırım</a>, <a href="https://publications.waset.org/abstracts/search?q=Dile%20Kara"> Dile Kara</a>, <a href="https://publications.waset.org/abstracts/search?q=Salih%20Zeki%20Y%C4%B1ld%C4%B1z"> Salih Zeki Yıldız </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal containing polymers (MCPs) are macro molecules usually containing metal-ligand coordination units and are a multidisciplinary research field mainly based at the interface between coordination chemistry and polymer science. The progress of this area has also been reinforced by the growth of several other closely related disciplines including macro molecular engineering, crystal engineering, organic synthesis, supra molecular chemistry and colloidal and material science. Schiff base ligands are very effective in constructing supra molecular architectures such as coordination polymers, double helical and triple helical complexes. In addition, Schiff base derivatives incorporating a fluorescent moiety are appealing tools for optical sensing of metal ions. MCPs are well-known systems in which the combinations of local parameters are possible by means of fluoro metric techniques. Generally, without incorporation of the fluorescent groups with polymers is unspecific, and it is not useful to analyze their fluorescent properties. Therefore, it is necessary to prepare a new type epoxy polymers with fluorescent groups in terms of metal sensing prop and the other photo chemical applications. In the present study metal containing polymers were prepared via poly functional monomeric Schiff base metal chelate complexes in the presence of dis functional monomers such as diglycidyl ether Bisphenol A (DGEBA). The synthesized complexes and polymers were characterized by FTIR, UV-VIS and mass spectroscopies. The preparations of epoxy polymers have been carried out at 185 °C. The prepared composites having sharp and narrow excitation/emission properties are expected to be applicable in various systems such as heat-resistant polymers and photo voltaic devices. The prepared composite is also ideal for various applications, easily prepared, safe, and maintain good fluorescence properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Schiff%20base%20ligands" title="Schiff base ligands">Schiff base ligands</a>, <a href="https://publications.waset.org/abstracts/search?q=crystal%20engineering" title=" crystal engineering"> crystal engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescence%20properties" title=" fluorescence properties"> fluorescence properties</a>, <a href="https://publications.waset.org/abstracts/search?q=Metal%20Containing%20Polymers%20%28MCPs%29" title=" Metal Containing Polymers (MCPs)"> Metal Containing Polymers (MCPs)</a> </p> <a href="https://publications.waset.org/abstracts/17655/preparation-of-metal-containing-epoxy-polymer-and-investigation-of-their-properties-as-fluorescent-probe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17655.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Structure-Reactivity Relationship of Some Rhᴵᴵᴵ and Osᴵᴵᴵ Complexes with N-Inert Ligands in Ionic Liquids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jovana%20Bogojeski">Jovana Bogojeski</a>, <a href="https://publications.waset.org/abstracts/search?q=Dusan%20Cocic"> Dusan Cocic</a>, <a href="https://publications.waset.org/abstracts/search?q=Nenad%20Jankovic"> Nenad Jankovic</a>, <a href="https://publications.waset.org/abstracts/search?q=Angelina%20Petrovic"> Angelina Petrovic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Kinetically-inert transition metal complexes, such as Rh(III) and Os(III) complexes, attract increasing attention as leading scaffolds for the development of potential pharmacological agents due to their inertness and stability. Therefore, we have designed and fully characterized a few novel rhodium(III) and osmium(III) complexes with a tridentate nitrogen−donor chelate system. For some complexes, the crystal X-ray structure analysis was performed. Reactivity of the newly synthesized complexes towards small biomolecules, such as L-methionine (L-Met), guanosine-5’-monophosphate (5’-GMP), and glutathione (GSH) has been examined. Also, the reactivity of these complexes towards the DNA/RNA (Ribonucleic acid) duplexes was investigated. Obtained results show that the newly synthesized complexes exhibit good affinity towards the studied ligands. Results also show that the complexes react faster with the RNA duplex than with the DNA and that in the DNA duplex reaction is faster with 15mer GG than with the 22mer GG. The UV-Vis (Ultraviolet-visible spectroscopy) is absorption spectroscopy, and the EB (Ethidium bromide) displacement studies were used to examine the interaction of these complexes with CT-DNA and BSA (Bovine serum albumin). All studied complex showed good interaction ability with both the DNA and BSA. Furthermore, the DFT (Density-functional theory) calculation and docking studies were performed. The impact of the metal complex on the cytotoxicity was tested by MTT assay (a colorimetric assay for assessing cell metabolic activity) on HCT-116 lines (human colon cancer cell line). In addition, all these tests were repeated in the presence of several water-soluble biologically active ionic liquids. Attained results indicate that the ionic liquids increase the activity of the investigated complexes. All obtained results in this study imply that the introduction of different spectator ligand can be used to improve the reactivity of rhodium(III) and osmium(III) complexes. Finally, these results indicate that the examined complexes show reactivity characteristics needed for potential anti-tumor agents, with possible targets being both the DNA and proteins. Every new contribution in this field is highly warranted due to the current lack of clinically used Metallo-based alternatives to cisplatin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomolecules" title="biomolecules">biomolecules</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20liquids" title=" ionic liquids"> ionic liquids</a>, <a href="https://publications.waset.org/abstracts/search?q=osmium%28III%29" title=" osmium(III)"> osmium(III)</a>, <a href="https://publications.waset.org/abstracts/search?q=rhodium%28III%29" title=" rhodium(III)"> rhodium(III)</a> </p> <a href="https://publications.waset.org/abstracts/123362/structure-reactivity-relationship-of-some-rh-and-os-complexes-with-n-inert-ligands-in-ionic-liquids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123362.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Evaluation of Simple, Effective and Affordable Processing Methods to Reduce Phytates in the Legume Seeds Used for Feed Formulations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20A.%20Masevhe">N. A. Masevhe</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Nemukula"> M. Nemukula</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20Gololo"> S. S. Gololo</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20G.%20Kgosana"> K. G. Kgosana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background and Study Significance: Legume seeds are important in agriculture as they are used for feed formulations due to their nutrient-dense, low-cost, and easy accessibility. Although they are important sources of energy, proteins, carbohydrates, vitamins, and minerals, they contain abundant quantities of anti-nutritive factors that reduce the bioavailability of nutrients, digestibility of proteins, and mineral absorption in livestock. However, the removal of these factors is too costly as it requires expensive state-of-the-art techniques such as high pressure and thermal processing. Basic Methodologies: The aim of the study was to investigate cost-effective methods that can be used to reduce the inherent phytates as putative antinutrients in the legume seeds. The seeds of Arachis hypogaea, Pisum sativum and Vigna radiata L. were subjected to the single processing methods viz raw seeds plus dehulling (R+D), soaking plus dehulling (S+D), ordinary cooking plus dehulling (C+D), infusion plus dehulling (I+D), autoclave plus dehulling (A+D), microwave plus dehulling (M+D) and five combined methods (S+I+D; S+A+D; I+M+D; S+C+D; S+M+D). All the processed seeds were dried, ground into powder, extracted, and analyzed on a microplate reader to determine the percentage of phytates per dry mass of the legume seeds. Phytic acid was used as a positive control, and one-way ANOVA was used to determine the significant differences between the means of the processing methods at a threshold of 0.05. Major Findings: The results of the processing methods showed the percentage yield ranges of 39.1-96%, 67.4-88.8%, and 70.2-93.8% for V. radiata, A. hypogaea and P. sativum, respectively. Though the raw seeds contained the highest contents of phytates that ranged between 0.508 and 0.527%, as expected, the R+D resulted in a slightly lower phytate percentage range of 0.469-0.485%, while other processing methods resulted in phytate contents that were below 0.35%. The M+D and S+M+D methods showed low phytate percentage ranges of 0.276-0.296% and 0.272-0.294%, respectively, where the lowest percentage yield was determined in S+M+D of P. sativum. Furthermore, these results were found to be significantly different (p<0.05). Though phytates cause micronutrient deficits as they chelate important minerals such as calcium, zinc, iron, and magnesium, their reduction may enhance nutrient bioavailability since they cannot be digested by the ruminants. Concluding Statement: Despite the nutritive aspects of the processed legume seeds, which are still in progress, the M+D and S+M+D methods, which significantly reduced the phytates in the investigated legume seeds, may be recommended to the local farmers and feed-producing industries so as to enhance animal health and production at an affordable cost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-nutritive%20factors" title="anti-nutritive factors">anti-nutritive factors</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=legume%20seeds" title=" legume seeds"> legume seeds</a>, <a href="https://publications.waset.org/abstracts/search?q=phytate" title=" phytate"> phytate</a> </p> <a href="https://publications.waset.org/abstracts/188412/evaluation-of-simple-effective-and-affordable-processing-methods-to-reduce-phytates-in-the-legume-seeds-used-for-feed-formulations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188412.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">28</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Antiulcer Potential of Heme Oxygenase-1 Inducers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gawe%C5%82%20Magdalena">Gaweł Magdalena</a>, <a href="https://publications.waset.org/abstracts/search?q=Lipkowska%20Anna"> Lipkowska Anna</a>, <a href="https://publications.waset.org/abstracts/search?q=Olbert%20Magdalena"> Olbert Magdalena</a>, <a href="https://publications.waset.org/abstracts/search?q=Fr%C4%85ckiewicz%20Ewelina"> Frąckiewicz Ewelina</a>, <a href="https://publications.waset.org/abstracts/search?q=Librowski%20Tadeusz"> Librowski Tadeusz</a>, <a href="https://publications.waset.org/abstracts/search?q=Nowak%20Gabriel"> Nowak Gabriel</a>, <a href="https://publications.waset.org/abstracts/search?q=Pilc%20Andrzej"> Pilc Andrzej</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heme oxygenase-1 (HO-1), also known as heat shock protein 32 (HSP32), has been shown to be implicated in cytoprotection in various organs. Its activation plays a significant role in acute and chronic inflammation, protecting cells from oxidative injury and apoptosis. This inducible isoform of HO catalyzes the first and rate-limiting step in heme degradation to produce equimolar quantities of biologically active products: carbon monoxide (CO), free iron and biliverdin. CO has been reported to possess anti-apoptotic properties. Moreover, it inhibits the production of proinflammatory cytokines and stimulates the synthesis of the anti-inflammatory interleukin-10 (IL-10), as well as promotes vasodilatation at sites of inflammation. The second product of catalytic HO-1 activity, free cytotoxic iron, is promptly sequestered into the iron storage protein ferritin, which lowers the pro-oxidant state of the cell. The third product, biliverdin, is subsequently converted by biliverdin reductase into the bile pigment bilirubin, the most potent endogenous antioxidant among the constituents of human serum, which modulates immune effector functions and suppresses inflammatory response. Furthermore, being one of the so-called stress proteins, HO-1 adaptively responds to different stressors, such as reactive oxygen species (ROS), inflammatory cytokines and heavy metals and thus protects cells against such conditions as ischemia, hemorrhagic shock, heat shock or hypoxia. It is suggested that pharmacologic modulation of HO-1 may represent an effective strategy for prevention of stress and drug-induced gastrointestinal toxicity. HO-1 is constitutively expressed in normal gastric, intestinal and colonic mucosa and up-regulated during inflammation. It has been proven that HO-1 up-regulated by hemin, heme and cobalt-protoporphyrin ameliorates experimental colitis. In addition, the up-regulation of HO-1 partially explains the mechanism of action of 5-aminosalicylic acid (5-ASA), which is used clinically as an anti-colitis agent. In 2009 Ueda et al. has reported for the first time that mucosal protection by Polaprezinc, a chelate compound of zinc and L-carnosine used as an anti-ulcer drug in Japan, is also attributed to induction of HO-1 in the stomach. Since then, inducers of HO-1 are desired subject of research, as they may constitute therapeutically effective anti-ulcer drugs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heme%20oxygenase-1" title="heme oxygenase-1">heme oxygenase-1</a>, <a href="https://publications.waset.org/abstracts/search?q=gastric%20lesions" title=" gastric lesions"> gastric lesions</a>, <a href="https://publications.waset.org/abstracts/search?q=gastroprotection" title=" gastroprotection"> gastroprotection</a>, <a href="https://publications.waset.org/abstracts/search?q=Polaprezinc" title=" Polaprezinc"> Polaprezinc</a> </p> <a href="https://publications.waset.org/abstracts/16703/antiulcer-potential-of-heme-oxygenase-1-inducers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16703.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">504</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> The Effect of Lead(II) Lone Electron Pair and Non-Covalent Interactions on the Supramolecular Assembly and Fluorescence Properties of Pb(II)-Pyrrole-2-Carboxylato Polymer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Kowalik">M. Kowalik</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Masternak"> J. Masternak</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Kazimierczuk"> K. Kazimierczuk</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20V.%20Khavryuchenko"> O. V. Khavryuchenko</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Kupcewicz"> B. Kupcewicz</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Barszcz"> B. Barszcz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, the growing interest of chemists in metal-organic coordination polymers (MOCPs) is primarily derived from their intriguing structures and potential applications in catalysis, gas storage, molecular sensing, ion exchanges, nonlinear optics, luminescence, etc. Currently, we are devoting considerable effort to finding the proper method of synthesizing new coordination polymers containing S- or N-heteroaromatic carboxylates as linkers and characterizing the obtained Pb(II) compounds according to their structural diversity, luminescence, and thermal properties. The choice of Pb(II) as the central ion of MOCPs was motivated by several reasons mentioned in the literature: i) a large ionic radius allowing for a wide range of coordination numbers, ii) the stereoactivity of the 6s2 lone electron pair leading to a hemidirected or holodirected geometry, iii) a flexible coordination environment, and iv) the possibility to form secondary bonds and unusual non-covalent interactions, such as classic hydrogen bonds and π···π stacking interactions, as well as nonconventional hydrogen bonds and rarely reported tetrel bonds, Pb(lone pair)···π interactions, C–H···Pb agostic-type interactions or hydrogen bonds, and chelate ring stacking interactions. Moreover, the construction of coordination polymers requires the selection of proper ligands acting as linkers, because we are looking for materials exhibiting different network topologies and fluorescence properties, which point to potential applications. The reaction of Pb(NO₃)₂ with 1H-pyrrole-2-carboxylic acid (2prCOOH) leads to the formation of a new four-nuclear Pb(II) polymer, [Pb4(2prCOO)₈(H₂O)]ₙ, which has been characterized by CHN, FT-IR, TG, PL and single-crystal X-ray diffraction methods. In view of the primary Pb–O bonds, Pb1 and Pb2 show hemidirected pentagonal pyramidal geometries, while Pb2 and Pb4 display hemidirected octahedral geometries. The topology of the strongest Pb–O bonds was determined as the (4·8²) fes topology. Taking the secondary Pb–O bonds into account, the coordination number of Pb centres increased, Pb1 exhibited a hemidirected monocapped pentagonal pyramidal geometry, Pb2 and Pb4 exhibited a holodirected tricapped trigonal prismatic geometry, and Pb3 exhibited a holodirected bicapped trigonal prismatic geometry. Moreover, the Pb(II) lone pair stereoactivity was confirmed by DFT calculations. The 2D structure was expanded into 3D by the existence of non-covalent O/C–H···π and Pb···π interactions, which was confirmed by the Hirshfeld surface analysis. The above mentioned interactions improve the rigidity of the structure and facilitate the charge and energy transfer between metal centres, making the polymer a promising luminescent compound. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coordination%20polymers" title="coordination polymers">coordination polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescence%20properties" title=" fluorescence properties"> fluorescence properties</a>, <a href="https://publications.waset.org/abstracts/search?q=lead%28II%29" title=" lead(II)"> lead(II)</a>, <a href="https://publications.waset.org/abstracts/search?q=lone%20electron%20pair%20stereoactivity" title=" lone electron pair stereoactivity"> lone electron pair stereoactivity</a>, <a href="https://publications.waset.org/abstracts/search?q=non-covalent%20interactions" title=" non-covalent interactions"> non-covalent interactions</a> </p> <a href="https://publications.waset.org/abstracts/104460/the-effect-of-leadii-lone-electron-pair-and-non-covalent-interactions-on-the-supramolecular-assembly-and-fluorescence-properties-of-pbii-pyrrole-2-carboxylato-polymer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104460.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10