CINXE.COM

Search results for: MBES echo sounder

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: MBES echo sounder</title> <meta name="description" content="Search results for: MBES echo sounder"> <meta name="keywords" content="MBES echo sounder"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="MBES echo sounder" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="MBES echo sounder"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 129</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: MBES echo sounder</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">129</span> Analysis of Sediment Distribution around Karang Sela Coral Reef Using Multibeam Backscatter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Razak%20Zakariya">Razak Zakariya</a>, <a href="https://publications.waset.org/abstracts/search?q=Fazliana%20Mustajap"> Fazliana Mustajap</a>, <a href="https://publications.waset.org/abstracts/search?q=Lenny%20Sharinee%20Sakai"> Lenny Sharinee Sakai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A sediment map is quite important in the marine environment. The sediment itself contains thousands of information that can be used for other research. This study was conducted by using a multibeam echo sounder Reson T20 on 15 August 2020 at the Karang Sela (coral reef area) at Pulau Bidong. The study aims to identify the sediment type around the coral reef by using bathymetry and backscatter data. The sediment in the study area was collected as ground truthing data to verify the classification of the seabed. A dry sieving method was used to analyze the sediment sample by using a sieve shaker. PDS 2000 software was used for data acquisition, and Qimera QPS version 2.4.5 was used for processing the bathymetry data. Meanwhile, FMGT QPS version 7.10 processes the backscatter data. Then, backscatter data were analyzed by using the maximum likelihood classification tool in ArcGIS version 10.8 software. The result identified three types of sediments around the coral which were very coarse sand, coarse sand, and medium sand. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sediment%20type" title="sediment type">sediment type</a>, <a href="https://publications.waset.org/abstracts/search?q=MBES%20echo%20sounder" title=" MBES echo sounder"> MBES echo sounder</a>, <a href="https://publications.waset.org/abstracts/search?q=backscatter" title=" backscatter"> backscatter</a>, <a href="https://publications.waset.org/abstracts/search?q=ArcGIS" title=" ArcGIS"> ArcGIS</a> </p> <a href="https://publications.waset.org/abstracts/160228/analysis-of-sediment-distribution-around-karang-sela-coral-reef-using-multibeam-backscatter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160228.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">128</span> Submarine Topography and Beach Survey of Gang-Neung Port in South Korea, Using Multi-Beam Echo Sounder and Shipborne Mobile Light Detection and Ranging System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Won%20Hyuck%20Kim">Won Hyuck Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang%20Hwan%20Kim"> Chang Hwan Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyun%20Wook%20Kim"> Hyun Wook Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Myoung%20Hoon%20Lee"> Myoung Hoon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Chan%20Hong%20Park"> Chan Hong Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyeon%20Yeong%20Park"> Hyeon Yeong Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We conducted submarine topography & beach survey from December 2015 and January 2016 using multi-beam echo sounder EM3001(Kongsberg corporation) & Shipborne Mobile LiDAR System. Our survey area were the Anmok beach in Gangneung, South Korea. We made Shipborne Mobile LiDAR System for these survey. Shipborne Mobile LiDAR System includes LiDAR (RIEGL LMS-420i), IMU ((Inertial Measurement Unit, MAGUS Inertial+) and RTKGNSS (Real Time Kinematic Global Navigation Satellite System, LEIAC GS 15 GS25) for beach's measurement, LiDAR's motion compensation & precise position. Shipborne Mobile LiDAR System scans beach on the movable vessel using the laser. We mounted Shipborne Mobile LiDAR System on the top of the vessel. Before beach survey, we conducted eight circles IMU calibration survey for stabilizing heading of IMU. This exploration should be as close as possible to the beach. But our vessel could not come closer to the beach because of latency objects in the water. At the same time, we conduct submarine topography survey using multi-beam echo sounder EM3001. A multi-beam echo sounder is a device observing and recording the submarine topography using sound wave. We mounted multi-beam echo sounder on left side of the vessel. We were equipped with a motion sensor, DGNSS (Differential Global Navigation Satellite System), and SV (Sound velocity) sensor for the vessel's motion compensation, vessel's position, and the velocity of sound of seawater. Shipborne Mobile LiDAR System was able to reduce the consuming time of beach survey rather than previous conventional methods of beach survey. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anmok" title="Anmok">Anmok</a>, <a href="https://publications.waset.org/abstracts/search?q=beach%20survey" title=" beach survey"> beach survey</a>, <a href="https://publications.waset.org/abstracts/search?q=Shipborne%20Mobile%20LiDAR%20System" title=" Shipborne Mobile LiDAR System"> Shipborne Mobile LiDAR System</a>, <a href="https://publications.waset.org/abstracts/search?q=submarine%20topography" title=" submarine topography"> submarine topography</a> </p> <a href="https://publications.waset.org/abstracts/65092/submarine-topography-and-beach-survey-of-gang-neung-port-in-south-korea-using-multi-beam-echo-sounder-and-shipborne-mobile-light-detection-and-ranging-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65092.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">127</span> Artificial Habitat Mapping in Adriatic Sea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Annalisa%20Gaetani">Annalisa Gaetani</a>, <a href="https://publications.waset.org/abstracts/search?q=Anna%20Nora%20Tassetti"> Anna Nora Tassetti</a>, <a href="https://publications.waset.org/abstracts/search?q=Gianna%20Fabi"> Gianna Fabi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The hydroacoustic technology is an efficient tool to study the sea environment: the most recent advancement in artificial habitat mapping involves acoustic systems to investigate fish abundance, distribution and behavior in specific areas. Along with a detailed high-coverage bathymetric mapping of the seabed, the high-frequency Multibeam Echosounder (MBES) offers the potential of detecting fine-scale distribution of fish aggregation, combining its ability to detect at the same time the seafloor and the water column. Surveying fish schools distribution around artificial structures, MBES allows to evaluate how their presence modifies the biological natural habitat overtime in terms of fish attraction and abundance. In the last years, artificial habitat mapping experiences have been carried out by CNR-ISMAR in the Adriatic sea: fish assemblages aggregating at offshore gas platforms and artificial reefs have been systematically monitored employing different kinds of methodologies. This work focuses on two case studies: a gas extraction platform founded at 80 meters of depth in the central Adriatic sea, 30 miles far from the coast of Ancona, and the concrete and steel artificial reef of Senigallia, deployed by CNR-ISMAR about 1.2 miles offshore at a depth of 11.2 m . Relating the MBES data (metrical dimensions of fish assemblages, shape, depth, density etc.) with the results coming from other methodologies, such as experimental fishing surveys and underwater video camera, it has been possible to investigate the biological assemblage attracted by artificial structures hypothesizing which species populate the investigated area and their spatial dislocation from these artificial structures. Processing MBES bathymetric and water column data, 3D virtual scenes of the artificial habitats have been created, receiving an intuitive-looking depiction of their state and allowing overtime to evaluate their change in terms of dimensional characteristics and depth fish schools’ disposition. These MBES surveys play a leading part in the general multi-year programs carried out by CNR-ISMAR with the aim to assess potential biological changes linked to human activities on. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20habitat%20mapping" title="artificial habitat mapping">artificial habitat mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=fish%20assemblages" title=" fish assemblages"> fish assemblages</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroacustic%20technology" title=" hydroacustic technology"> hydroacustic technology</a>, <a href="https://publications.waset.org/abstracts/search?q=multibeam%20echosounder" title=" multibeam echosounder"> multibeam echosounder</a> </p> <a href="https://publications.waset.org/abstracts/42333/artificial-habitat-mapping-in-adriatic-sea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42333.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">126</span> An Assessment of Bathymetric Changes in the Lower Usuma Reservoir, Abuja, Nigera</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rayleigh%20Dada%20Abu">Rayleigh Dada Abu</a>, <a href="https://publications.waset.org/abstracts/search?q=Halilu%20Ahmad%20Shaba"> Halilu Ahmad Shaba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Siltation is a serious problem that affects public water supply infrastructures such as dams and reservoirs. It is a major problem which threatens the performance and sustainability of dams and reservoirs. It reduces the dam capacity for flood control, potable water supply, changes water stage, reduces water quality and recreational benefits. The focus of this study is the Lower Usuma reservoir. At completion the reservoir had a gross storage capacity of 100 × 106 m3 (100 million cubic metres), a maximum operational level of 587.440 m a.s.l., with a maximum depth of 49 m and a catchment area of 241 km2 at dam site with a daily designed production capacity of 10,000 cubic metres per hour. The reservoir is 1,300 m long and feeds the treatment plant mainly by gravity. The reservoir became operational in 1986 and no survey has been conducted to determine its current storage capacity and rate of siltation. Hydrographic survey of the reservoir by integrated acoustic echo-sounding technique was conducted in November 2012 to determine the level and rate of siltation. The result obtained shows that the reservoir has lost 12.0 meters depth to siltation in 26 years of its operation; indicating 24.5% loss in installed storage capacity. The present bathymetric survey provides baseline information for future work on siltation depth and annual rates of storage capacity loss for the Lower Usuma reservoir. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sedimentation" title="sedimentation">sedimentation</a>, <a href="https://publications.waset.org/abstracts/search?q=lower%20Usuma%20reservoir" title=" lower Usuma reservoir"> lower Usuma reservoir</a>, <a href="https://publications.waset.org/abstracts/search?q=acoustic%20echo%20sounder" title=" acoustic echo sounder"> acoustic echo sounder</a>, <a href="https://publications.waset.org/abstracts/search?q=bathymetric%20survey" title=" bathymetric survey "> bathymetric survey </a> </p> <a href="https://publications.waset.org/abstracts/18965/an-assessment-of-bathymetric-changes-in-the-lower-usuma-reservoir-abuja-nigera" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18965.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">515</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">125</span> Acoustic Echo Cancellation Using Different Adaptive Algorithms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Sharif">Hamid Sharif</a>, <a href="https://publications.waset.org/abstracts/search?q=Nazish%20Saleem%20Abbas"> Nazish Saleem Abbas</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Haris%20Jamil"> Muhammad Haris Jamil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An adaptive filter is a filter that self-adjusts its transfer function according to an optimization algorithm driven by an error signal. Because of the complexity of the optimization algorithms, most adaptive filters are digital filters. Adaptive filtering constitutes one of the core technologies in digital signal processing and finds numerous application areas in science as well as in industry. Adaptive filtering techniques are used in a wide range of applications, including adaptive noise cancellation and echo cancellation. Acoustic echo cancellation is a common occurrence in today’s telecommunication systems. The signal interference caused by acoustic echo is distracting to both users and causes a reduction in the quality of the communication. In this paper, we review different techniques of adaptive filtering to reduce this unwanted echo. In this paper, we see the behavior of techniques and algorithms of adaptive filtering like Least Mean Square (LMS), Normalized Least Mean Square (NLMS), Variable Step-Size Least Mean Square (VSLMS), Variable Step-Size Normalized Least Mean Square (VSNLMS), New Varying Step Size LMS Algorithm (NVSSLMS) and Recursive Least Square (RLS) algorithms to reduce this unwanted echo, to increase communication quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20acoustic" title="adaptive acoustic">adaptive acoustic</a>, <a href="https://publications.waset.org/abstracts/search?q=echo%20cancellation" title=" echo cancellation"> echo cancellation</a>, <a href="https://publications.waset.org/abstracts/search?q=LMS%20algorithm" title=" LMS algorithm"> LMS algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20filter" title=" adaptive filter"> adaptive filter</a>, <a href="https://publications.waset.org/abstracts/search?q=normalized%20least%20mean%20square%20%28NLMS%29" title=" normalized least mean square (NLMS)"> normalized least mean square (NLMS)</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20step-size%20least%20mean%20square%20%28VSLMS%29" title=" variable step-size least mean square (VSLMS)"> variable step-size least mean square (VSLMS)</a> </p> <a href="https://publications.waset.org/abstracts/167766/acoustic-echo-cancellation-using-different-adaptive-algorithms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167766.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">124</span> Environmentally Adaptive Acoustic Echo Suppression for Barge-in Speech Recognition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jong%20Han%20Joo">Jong Han Joo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jung%20Hoon%20Lee"> Jung Hoon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%20Sun%20Kim"> Young Sun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae%20Young%20Kang"> Jae Young Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Seung%20Ho%20Choi"> Seung Ho Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we propose a novel technique for acoustic echo suppression (AES) during speech recognition under barge-in conditions. Conventional AES methods based on spectral subtraction apply fixed weights to the estimated echo path transfer function (EPTF) at the current signal segment and to the EPTF estimated until the previous time interval. We propose a new approach that adaptively updates weight parameters in response to abrupt changes in the acoustic environment due to background noises or double-talk. Furthermore, we devised a voice activity detector and an initial time-delay estimator for barge-in speech recognition in communication networks. The initial time delay is estimated using log-spectral distance measure, as well as cross-correlation coefficients. The experimental results show that the developed techniques can be successfully applied in barge-in speech recognition systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20echo%20suppression" title="acoustic echo suppression">acoustic echo suppression</a>, <a href="https://publications.waset.org/abstracts/search?q=barge-in" title=" barge-in"> barge-in</a>, <a href="https://publications.waset.org/abstracts/search?q=speech%20recognition" title=" speech recognition"> speech recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=echo%20path%20transfer%20function" title=" echo path transfer function"> echo path transfer function</a>, <a href="https://publications.waset.org/abstracts/search?q=initial%20delay%20estimator" title=" initial delay estimator"> initial delay estimator</a>, <a href="https://publications.waset.org/abstracts/search?q=voice%20activity%20detector" title=" voice activity detector"> voice activity detector</a> </p> <a href="https://publications.waset.org/abstracts/17151/environmentally-adaptive-acoustic-echo-suppression-for-barge-in-speech-recognition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17151.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">123</span> MBES-CARIS Data Validation for the Bathymetric Mapping of Shallow Water in the Kingdom of Bahrain on the Arabian Gulf</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abderrazak%20Bannari">Abderrazak Bannari</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghadeer%20Kadhem"> Ghadeer Kadhem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objectives of this paper are the validation and the evaluation of MBES-CARIS BASE surface data performance for bathymetric mapping of shallow water in the Kingdom of Bahrain. The latter is an archipelago with a total land area of about 765.30 km², approximately 126 km of coastline and 8,000 km² of marine area, located in the Arabian Gulf, east of Saudi Arabia and west of Qatar (26° 00’ N, 50° 33’ E). To achieve our objectives, bathymetric attributed grid files (X, Y, and depth) generated from the coverage of ship-track MBSE data with 300 x 300 m cells, processed with CARIS-HIPS, were downloaded from the General Bathymetric Chart of the Oceans (GEBCO). Then, brought into ArcGIS and converted into a raster format following five steps: Exportation of GEBCO BASE surface data to the ASCII file; conversion of ASCII file to a points shape file; extraction of the area points covering the water boundary of the Kingdom of Bahrain and multiplying the depth values by -1 to get the negative values. Then, the simple Kriging method was used in ArcMap environment to generate a new raster bathymetric grid surface of 30×30 m cells, which was the basis of the subsequent analysis. Finally, for validation purposes, 2200 bathymetric points were extracted from a medium scale nautical map (1:100 000) considering different depths over the Bahrain national water boundary. The nautical map was scanned, georeferenced and overlaid on the MBES-CARIS generated raster bathymetric grid surface (step 5 above), and then homologous depth points were selected. Statistical analysis, expressed as a linear error at the 95% confidence level, showed a strong correlation coefficient (R² = 0.96) and a low RMSE (± 0.57 m) between the nautical map and derived MBSE-CARIS depths if we consider only the shallow areas with depths of less than 10 m (about 800 validation points). When we consider only deeper areas (> 10 m) the correlation coefficient is equal to 0.73 and the RMSE is equal to ± 2.43 m while if we consider the totality of 2200 validation points including all depths, the correlation coefficient is still significant (R² = 0.81) with satisfactory RMSE (± 1.57 m). Certainly, this significant variation can be caused by the MBSE that did not completely cover the bottom in several of the deeper pockmarks because of the rapid change in depth. In addition, steep slopes and the rough seafloor probably affect the acquired MBSE raw data. In addition, the interpolation of missed area values between MBSE acquisition swaths-lines (ship-tracked sounding data) may not reflect the true depths of these missed areas. However, globally the results of the MBES-CARIS data are very appropriate for bathymetric mapping of shallow water areas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bathymetry%20mapping" title="bathymetry mapping">bathymetry mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=multibeam%20echosounder%20systems" title=" multibeam echosounder systems"> multibeam echosounder systems</a>, <a href="https://publications.waset.org/abstracts/search?q=CARIS-HIPS" title=" CARIS-HIPS"> CARIS-HIPS</a>, <a href="https://publications.waset.org/abstracts/search?q=shallow%20water" title=" shallow water"> shallow water</a> </p> <a href="https://publications.waset.org/abstracts/54310/mbes-caris-data-validation-for-the-bathymetric-mapping-of-shallow-water-in-the-kingdom-of-bahrain-on-the-arabian-gulf" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54310.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">122</span> Comparison Analysis of Multi-Channel Echo Cancellation Using Adaptive Filters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sahar%20Mobeen">Sahar Mobeen</a>, <a href="https://publications.waset.org/abstracts/search?q=Anam%20Rafique"> Anam Rafique</a>, <a href="https://publications.waset.org/abstracts/search?q=Irum%20Baig"> Irum Baig</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Acoustic echo cancellation in multichannel is a system identification application. In real time environment, signal changes very rapidly which required adaptive algorithms such as Least Mean Square (LMS), Leaky Least Mean Square (LLMS), Normalized Least Mean square (NLMS) and average (AFA) having high convergence rate and stable. LMS and NLMS are widely used adaptive algorithm due to less computational complexity and AFA used of its high convergence rate. This research is based on comparison of acoustic echo (generated in a room) cancellation thorough LMS, LLMS, NLMS, AFA and newly proposed average normalized leaky least mean square (ANLLMS) adaptive filters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LMS" title="LMS">LMS</a>, <a href="https://publications.waset.org/abstracts/search?q=LLMS" title=" LLMS"> LLMS</a>, <a href="https://publications.waset.org/abstracts/search?q=NLMS" title=" NLMS"> NLMS</a>, <a href="https://publications.waset.org/abstracts/search?q=AFA" title=" AFA"> AFA</a>, <a href="https://publications.waset.org/abstracts/search?q=ANLLMS" title=" ANLLMS"> ANLLMS</a> </p> <a href="https://publications.waset.org/abstracts/28829/comparison-analysis-of-multi-channel-echo-cancellation-using-adaptive-filters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28829.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">566</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">121</span> Analysis Of Non-uniform Characteristics Of Small Underwater Targets Based On Clustering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tianyang%20Xu">Tianyang Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Small underwater targets generally have a non-centrosymmetric geometry, and the acoustic scattering field of the target has spatial inhomogeneity under active sonar detection conditions. In view of the above problems, this paper takes the hemispherical cylindrical shell as the research object, and considers the angle continuity implied in the echo characteristics, and proposes a cluster-driven research method for the non-uniform characteristics of target echo angle. First, the target echo features are extracted, and feature vectors are constructed. Secondly, the t-SNE algorithm is used to improve the internal connection of the feature vector in the low-dimensional feature space and to construct the visual feature space. Finally, the implicit angular relationship between echo features is extracted under unsupervised condition by cluster analysis. The reconstruction results of the local geometric structure of the target corresponding to different categories show that the method can effectively divide the angle interval of the local structure of the target according to the natural acoustic scattering characteristics of the target. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=underwater%20target%3B" title="underwater target;">underwater target;</a>, <a href="https://publications.waset.org/abstracts/search?q=non-uniform%20characteristics%3B" title=" non-uniform characteristics;"> non-uniform characteristics;</a>, <a href="https://publications.waset.org/abstracts/search?q=cluster-driven%20method%3B" title=" cluster-driven method;"> cluster-driven method;</a>, <a href="https://publications.waset.org/abstracts/search?q=acoustic%20scattering%20characteristics" title=" acoustic scattering characteristics"> acoustic scattering characteristics</a> </p> <a href="https://publications.waset.org/abstracts/169602/analysis-of-non-uniform-characteristics-of-small-underwater-targets-based-on-clustering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169602.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">120</span> Derivation of Bathymetry from High-Resolution Satellite Images: Comparison of Empirical Methods through Geographical Error Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anusha%20P.%20Wijesundara">Anusha P. Wijesundara</a>, <a href="https://publications.waset.org/abstracts/search?q=Dulap%20I.%20Rathnayake"> Dulap I. Rathnayake</a>, <a href="https://publications.waset.org/abstracts/search?q=Nihal%20D.%20Perera"> Nihal D. Perera</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bathymetric information is fundamental importance to coastal and marine planning and management, nautical navigation, and scientific studies of marine environments. Satellite-derived bathymetry data provide detailed information in areas where conventional sounding data is lacking and conventional surveys are inaccessible. The two empirical approaches of log-linear bathymetric inversion model and non-linear bathymetric inversion model are applied for deriving bathymetry from high-resolution multispectral satellite imagery. This study compares these two approaches by means of geographical error analysis for the site Kankesanturai using WorldView-2 satellite imagery. Based on the Levenberg-Marquardt method calibrated the parameters of non-linear inversion model and the multiple-linear regression model was applied to calibrate the log-linear inversion model. In order to calibrate both models, Single Beam Echo Sounding (SBES) data in this study area were used as reference points. Residuals were calculated as the difference between the derived depth values and the validation echo sounder bathymetry data and the geographical distribution of model residuals was mapped. The spatial autocorrelation was calculated by comparing the performance of the bathymetric models and the results showing the geographic errors for both models. A spatial error model was constructed from the initial bathymetry estimates and the estimates of autocorrelation. This spatial error model is used to generate more reliable estimates of bathymetry by quantifying autocorrelation of model error and incorporating this into an improved regression model. Log-linear model (R²=0.846) performs better than the non- linear model (R²=0.692). Finally, the spatial error models improved bathymetric estimates derived from linear and non-linear models up to R²=0.854 and R²=0.704 respectively. The Root Mean Square Error (RMSE) was calculated for all reference points in various depth ranges. The magnitude of the prediction error increases with depth for both the log-linear and the non-linear inversion models. Overall RMSE for log-linear and the non-linear inversion models were ±1.532 m and ±2.089 m, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=log-linear%20model" title="log-linear model">log-linear model</a>, <a href="https://publications.waset.org/abstracts/search?q=multi%20spectral" title=" multi spectral"> multi spectral</a>, <a href="https://publications.waset.org/abstracts/search?q=residuals" title=" residuals"> residuals</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20error%20model" title=" spatial error model "> spatial error model </a> </p> <a href="https://publications.waset.org/abstracts/90872/derivation-of-bathymetry-from-high-resolution-satellite-images-comparison-of-empirical-methods-through-geographical-error-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90872.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">119</span> Thickness Measurement and Void Detection in Concrete Elements through Ultrasonic Pulse</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leonel%20Lipa%20Cusi">Leonel Lipa Cusi</a>, <a href="https://publications.waset.org/abstracts/search?q=Enrique%20Nestor%20Pasquel%20Carbajal"> Enrique Nestor Pasquel Carbajal</a>, <a href="https://publications.waset.org/abstracts/search?q=Laura%20Marina%20Navarro%20Alvarado"> Laura Marina Navarro Alvarado</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20Del%20%C3%81lamo%20Carazas"> José Del Álamo Carazas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research analyses the accuracy of the ultrasound and the pulse echo ultrasound technic to find voids and to measure thickness of concrete elements. These mentioned air voids are simulated by polystyrene expanded and hollow containers of thin thickness made of plastic or cardboard of different sizes and shapes. These targets are distributed strategically inside concrete at different depths. For this research, a shear wave pulse echo ultrasonic device of 50 KHz is used to scan the concrete elements. Despite the small measurements of the concrete elements and because of voids’ size are near the half of the wavelength, pre and post processing steps like voltage, gain, SAFT, envelope and time compensation were made in order to improve imaging results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultrasonic" title="ultrasonic">ultrasonic</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=thickness" title=" thickness"> thickness</a>, <a href="https://publications.waset.org/abstracts/search?q=pulse%20echo" title=" pulse echo"> pulse echo</a>, <a href="https://publications.waset.org/abstracts/search?q=void" title=" void"> void</a> </p> <a href="https://publications.waset.org/abstracts/68618/thickness-measurement-and-void-detection-in-concrete-elements-through-ultrasonic-pulse" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68618.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">118</span> Estimation of Slab Depth, Column Size and Rebar Location of Concrete Specimen Using Impact Echo Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20T.%20Lee">Y. T. Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20H.%20Na"> J. H. Na</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20H.%20Kim"> S. H. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20U.%20Hong"> S. U. Hong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, an experimental research for estimation of slab depth, column size and location of rebar of concrete specimen is conducted using the Impact Echo Method (IE) based on stress wave among non-destructive test methods. Estimation of slab depth had total length of 1800×300 and 6 different depths including 150 mm, 180 mm, 210 mm, 240 mm, 270 mm and 300 mm. The concrete column specimen was manufactured by differentiating the size into 300×300×300 mm, 400×400×400 mm and 500×500×500 mm. In case of the specimen for estimation of rebar, rebar of ∅22 mm was used in a specimen of 300×370×200 and arranged at 130 mm and 150 mm from the top to the rebar top. As a result of error rate of slab depth was overall mean of 3.1%. Error rate of column size was overall mean of 1.7%. Mean error rate of rebar location was 1.72% for top, 1.19% for bottom and 1.5% for overall mean showing relative accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=impact%20echo%20method" title="impact echo method">impact echo method</a>, <a href="https://publications.waset.org/abstracts/search?q=estimation" title=" estimation"> estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=slab%20depth" title=" slab depth"> slab depth</a>, <a href="https://publications.waset.org/abstracts/search?q=column%20size" title=" column size"> column size</a>, <a href="https://publications.waset.org/abstracts/search?q=rebar%20location" title=" rebar location"> rebar location</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a> </p> <a href="https://publications.waset.org/abstracts/6106/estimation-of-slab-depth-column-size-and-rebar-location-of-concrete-specimen-using-impact-echo-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6106.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">117</span> Classification of Echo Signals Based on Deep Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aisulu%20Tileukulova">Aisulu Tileukulova</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhexebay%20Dauren"> Zhexebay Dauren</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Radar plays an important role because it is widely used in civil and military fields. Target detection is one of the most important radar applications. The accuracy of detecting inconspicuous aerial objects in radar facilities is lower against the background of noise. Convolutional neural networks can be used to improve the recognition of this type of aerial object. The purpose of this work is to develop an algorithm for recognizing aerial objects using convolutional neural networks, as well as training a neural network. In this paper, the structure of a convolutional neural network (CNN) consists of different types of layers: 8 convolutional layers and 3 layers of a fully connected perceptron. ReLU is used as an activation function in convolutional layers, while the last layer uses softmax. It is necessary to form a data set for training a neural network in order to detect a target. We built a Confusion Matrix of the CNN model to measure the effectiveness of our model. The results showed that the accuracy when testing the model was 95.7%. Classification of echo signals using CNN shows high accuracy and significantly speeds up the process of predicting the target. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radar" title="radar">radar</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20network" title=" convolutional neural network"> convolutional neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=echo%20signals" title=" echo signals"> echo signals</a> </p> <a href="https://publications.waset.org/abstracts/147596/classification-of-echo-signals-based-on-deep-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147596.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">116</span> MRI R2* of Liver in an Animal Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chiung-Yun%20Chang">Chiung-Yun Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Po-Chou%20Chen"> Po-Chou Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiun-Shiang%20Tzeng"> Jiun-Shiang Tzeng</a>, <a href="https://publications.waset.org/abstracts/search?q=Ka-Wai%20Mac"> Ka-Wai Mac</a>, <a href="https://publications.waset.org/abstracts/search?q=Chia-Chi%20Hsiao"> Chia-Chi Hsiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Jo-Chi%20Jao"> Jo-Chi Jao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aimed to measure R2* relaxation rates in the liver of New Zealand White (NZW) rabbits. R2* relaxation rate has been widely used in various hepatic diseases for iron overload by quantifying iron contents in liver. R2* relaxation rate is defined as the reciprocal of T2* relaxation time and mainly depends on the composition of tissue. Different tissues would have different R2* relaxation rates. The signal intensity decay in Magnetic resonance imaging (MRI) may be characterized by R2* relaxation rates. In this study, a 1.5T GE Signa HDxt whole body MR scanner equipped with an 8-channel high resolution knee coil was used to observe R2* values in NZW rabbit’s liver and muscle. Eight healthy NZW rabbits weighted 2 ~ 2.5 kg were recruited. After anesthesia using Zoletil 50 and Rompun 2% mixture, the abdomen of rabbit was landmarked at the center of knee coil to perform 3-plane localizer scan using fast spoiled gradient echo (FSPGR) pulse sequence. Afterward, multi-planar fast gradient echo (MFGR) scans were performed with 8 various echo times (TEs) (2/4/6/8/10/12/14/16 ms) to acquire images for R2* calculations. Regions of interest (ROIs) at liver and muscle were measured using Advantage workstation. Finally, the R2* was obtained by a linear regression of ln(SI) on TE. The results showed that the longer the echo time, the smaller the signal intensity. The R2* values of liver and muscle were 44.8  10.9 s-1 and 37.4  9.5 s-1, respectively. It implies that the iron concentration of liver is higher than that of muscle. In conclusion, R2* is correlated with iron contents in tissue. The correlations between R2* and iron content in NZW rabbit might be valuable for further exploration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liver" title="liver">liver</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20resonance%20imaging" title=" magnetic resonance imaging"> magnetic resonance imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=muscle" title=" muscle"> muscle</a>, <a href="https://publications.waset.org/abstracts/search?q=R2%2A%20relaxation%20rate" title=" R2* relaxation rate"> R2* relaxation rate</a> </p> <a href="https://publications.waset.org/abstracts/30632/mri-r2-of-liver-in-an-animal-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30632.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">436</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">115</span> Quality Evaluation of Backfill Grout in Tunnel Boring Machine Tail Void Using Impact-Echo (IE): Short-Time Fourier Transform (STFT) Numerical Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ju-Young%20Choi">Ju-Young Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ki-Il%20Song"> Ki-Il Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyoung-Yul%20Kim"> Kyoung-Yul Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During Tunnel Boring Machine (TBM) tunnel excavation, backfill grout should be injected after the installation of segment lining to ensure the stability of the tunnel and to minimize ground deformation. If grouting is not sufficient to fill the gap between the segments and rock mass, hydraulic pressures occur in the void, which can negatively influence the stability of the tunnel. Recently the tendency to use TBM tunnelling method to replace the drill and blast(NATM) method is increasing. However, there are only a few studies of evaluation of backfill grout. This study evaluates the TBM tunnel backfill state using Impact-Echo(IE). 3-layers, segment-grout-rock mass, are simulated by FLAC 2D, FDM-based software. The signals obtained from numerical analysis and IE test are analyzed by Short-Time Fourier Transform(STFT) in time domain, frequency domain, and time-frequency domain. The result of this study can be used to evaluate the quality of backfill grouting in tail void. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tunnel%20boring%20machine" title="tunnel boring machine">tunnel boring machine</a>, <a href="https://publications.waset.org/abstracts/search?q=backfill%20grout" title=" backfill grout"> backfill grout</a>, <a href="https://publications.waset.org/abstracts/search?q=impact-echo%20method" title=" impact-echo method"> impact-echo method</a>, <a href="https://publications.waset.org/abstracts/search?q=time-frequency%20domain%20analysis" title=" time-frequency domain analysis"> time-frequency domain analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20difference%20method" title=" finite difference method"> finite difference method</a> </p> <a href="https://publications.waset.org/abstracts/53362/quality-evaluation-of-backfill-grout-in-tunnel-boring-machine-tail-void-using-impact-echo-ie-short-time-fourier-transform-stft-numerical-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53362.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">114</span> An Investigation on Ultrasonic Pulse Velocity of Hybrid Fiber Reinforced Concretes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soner%20Guler">Soner Guler</a>, <a href="https://publications.waset.org/abstracts/search?q=Demet%20Yavuz"> Demet Yavuz</a>, <a href="https://publications.waset.org/abstracts/search?q=Refik%20Burak%20Taymu%C5%9F"> Refik Burak Taymuş</a>, <a href="https://publications.waset.org/abstracts/search?q=Fuat%20Korkut"> Fuat Korkut</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Because of the easy applying and not costing too much, ultrasonic pulse velocity (UPV) is one of the most used non-destructive techniques to determine concrete characteristics along with impact-echo, Schmidt rebound hammer (SRH) and pulse-echo. This article investigates the relationship between UPV and compressive strength of hybrid fiber reinforced concretes. Water/cement ratio (w/c) was kept at 0.4 for all concrete mixes. Compressive strength of concrete was targeted at 35 MPa. UPV testing and compressive strength tests were carried out at the curing age of 28 days. The UPV of concrete containing steel fibers has been found to be higher than plain concrete for all the testing groups. It is decided that there is not a certain relationship between fiber addition and strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20pulse%20velocity" title="ultrasonic pulse velocity">ultrasonic pulse velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20fiber" title=" hybrid fiber"> hybrid fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber" title=" fiber"> fiber</a> </p> <a href="https://publications.waset.org/abstracts/61142/an-investigation-on-ultrasonic-pulse-velocity-of-hybrid-fiber-reinforced-concretes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61142.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">113</span> Wind Power Forecasting Using Echo State Networks Optimized by Big Bang-Big Crunch Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20Hossein%20Hejazi">Amir Hossein Hejazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nima%20Amjady"> Nima Amjady</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, due to environmental issues traditional energy sources had been replaced by renewable ones. Wind energy as the fastest growing renewable energy shares a considerable percent of energy in power electricity markets. With this fast growth of wind energy worldwide, owners and operators of wind farms, transmission system operators, and energy traders need reliable and secure forecasts of wind energy production. In this paper, a new forecasting strategy is proposed for short-term wind power prediction based on Echo State Networks (ESN). The forecast engine utilizes state-of-the-art training process including dynamical reservoir with high capability to learn complex dynamics of wind power or wind vector signals. The study becomes more interesting by incorporating prediction of wind direction into forecast strategy. The Big Bang-Big Crunch (BB-BC) evolutionary optimization algorithm is adopted for adjusting free parameters of ESN-based forecaster. The proposed method is tested by real-world hourly data to show the efficiency of the forecasting engine for prediction of both wind vector and wind power output of aggregated wind power production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind%20power%20forecasting" title="wind power forecasting">wind power forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=echo%20state%20network" title=" echo state network"> echo state network</a>, <a href="https://publications.waset.org/abstracts/search?q=big%20bang-big%20crunch" title=" big bang-big crunch"> big bang-big crunch</a>, <a href="https://publications.waset.org/abstracts/search?q=evolutionary%20optimization%20algorithm" title=" evolutionary optimization algorithm"> evolutionary optimization algorithm</a> </p> <a href="https://publications.waset.org/abstracts/16586/wind-power-forecasting-using-echo-state-networks-optimized-by-big-bang-big-crunch-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16586.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">572</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">112</span> Developing Geriatric Oral Health Network is a Public Health Necessity for Older Adults</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Tabrizi">Maryam Tabrizi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahrzad%20Aarup"> Shahrzad Aarup</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objectives- Understanding the close association between oral health and overall health for older adults at the right time and right place, a person, focus treatment through Project ECHO telementoring. Methodology- Data from monthly ECHO telementoring sessions were provided for three years. Sessions including case presentations, overall health conditions, considering medications, organ functions limitations, including the level of cognition. Contributions- Providing the specialist level of providing care to all elderly regardless of their location and other health conditions and decreasing oral health inequity by increasing workforce via Project ECHO telementoring program worldwide. By 2030, the number of adults in the USA over the age of 65 will increase more than 60% (approx.46 million) and over 22 million (30%) of 74 million older Americans will need specialized geriatrician care. In 2025, a national shortage of medical geriatricians will be close to 27,000. Most individuals 65 and older do not receive oral health care due to lack of access, availability, or affordability. One of the main reasons is a significant shortage of Oral Health (OH) education and resources for the elderly, particularly in rural areas. Poor OH is a social stigma, a thread to quality and safety of overall health of the elderly with physical and cognitive decline. Poor OH conditions may be costly and sometimes life-threatening. Non-traumatic dental-related emergency department use in Texas alone was over $250 M in 2016. Most elderly over the age of 65 present with at least one or multiple chronic diseases such as arthritis, diabetes, heart diseases, and chronic obstructive pulmonary disease (COPD) are at higher risk to develop gum (periodontal) disease, yet they are less likely to get dental care. In addition, most older adults take both prescription and over-the-counter drugs; according to scientific studies, many of these medications cause dry mouth. Reduced saliva flow due to aging and medications may increase the risk of cavities and other oral conditions. Most dental schools have already increased geriatrics OH in their educational curriculums, but the aging population growth worldwide is faster than growing geriatrics dentists. However, without the use of advanced technology and creating a network between specialists and primary care providers, it is impossible to increase the workforce, provide equitable oral health to the elderly. Project ECHO is a guided practice model that revolutionizes health education and increases the workforce to provide best-practice specialty care and reduce health disparities. Training oral health providers for utilizing the Project ECHO model is a logical response to the shortage and increases oral health access to the elderly. Project ECHO trains general dentists & hygienists to provide specialty care services. This means more elderly can get the care they need, in the right place, at the right time, with better treatment outcomes and reduces costs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geriatric" title="geriatric">geriatric</a>, <a href="https://publications.waset.org/abstracts/search?q=oral%20health" title=" oral health"> oral health</a>, <a href="https://publications.waset.org/abstracts/search?q=project%20echo" title=" project echo"> project echo</a>, <a href="https://publications.waset.org/abstracts/search?q=chronic%20disease" title=" chronic disease"> chronic disease</a>, <a href="https://publications.waset.org/abstracts/search?q=oral%20health" title=" oral health"> oral health</a> </p> <a href="https://publications.waset.org/abstracts/140880/developing-geriatric-oral-health-network-is-a-public-health-necessity-for-older-adults" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140880.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">111</span> Clutter Suppression Based on Singular Value Decomposition and Fast Wavelet Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ruomeng%20Xiao">Ruomeng Xiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhulin%20Zong"> Zhulin Zong</a>, <a href="https://publications.waset.org/abstracts/search?q=Longfa%20Yang"> Longfa Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aiming at the problem that the target signal is difficult to detect under the strong ground clutter environment, this paper proposes a clutter suppression algorithm based on the combination of singular value decomposition and the Mallat fast wavelet algorithm. The method first carries out singular value decomposition on the radar echo data matrix, realizes the initial separation of target and clutter through the threshold processing of singular value, and then carries out wavelet decomposition on the echo data to find out the target location, and adopts the discard method to select the appropriate decomposition layer to reconstruct the target signal, which ensures the minimum loss of target information while suppressing the clutter. After the verification of the measured data, the method has a significant effect on the target extraction under low SCR, and the target reconstruction can be realized without the prior position information of the target and the method also has a certain enhancement on the output SCR compared with the traditional single wavelet processing method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clutter%20suppression" title="clutter suppression">clutter suppression</a>, <a href="https://publications.waset.org/abstracts/search?q=singular%20value%20decomposition" title=" singular value decomposition"> singular value decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelet%20transform" title=" wavelet transform"> wavelet transform</a>, <a href="https://publications.waset.org/abstracts/search?q=Mallat%20algorithm" title=" Mallat algorithm"> Mallat algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20SCR" title=" low SCR"> low SCR</a> </p> <a href="https://publications.waset.org/abstracts/181202/clutter-suppression-based-on-singular-value-decomposition-and-fast-wavelet-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181202.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">110</span> Equivalences and Contrasts in the Morphological Formation of Echo Words in Two Indo-Aryan Languages: Bengali and Odia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Subhanan%20Mandal">Subhanan Mandal</a>, <a href="https://publications.waset.org/abstracts/search?q=Bidisha%20Hore"> Bidisha Hore</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The linguistic process whereby repetition of all or part of the base word with or without internal change before or after the base itself takes place is regarded as reduplication. The reduplicated morphological construction annotates with itself a new grammatical category and meaning. Reduplication is a very frequent and abundant phenomenon in the eastern Indian languages from the states of West Bengal and Odisha, i.e. Bengali and Odia respectively. Bengali, an Indo-Aryan language and a part of the Indo-European language family is one of the largest spoken languages in India and is the national language of Bangladesh. Despite this classification, Bengali has certain influences in terms of vocabulary and grammar due to its geographical proximity to Tibeto-Burman and Austro-Asiatic language speaking communities. Bengali along with Odia belonged to a single linguistic branch. But with time and gradual linguistic changes due to various factors, Odia was the first to break away and develop as a separate distinct language. However, less of contrasts and more of similarities still exist among these languages along the line of linguistics, leaving apart the script. This paper deals with the procedure of echo word formations in Bengali and Odia. The morphological research of the two languages concerning the field of reduplication reveals several linguistic processes. The revelation is based on the information elicited from native language speakers and also on the analysis of echo words found in discourse and conversational patterns. For the purpose of partial reduplication analysis, prefixed class and suffixed class word formations are taken into consideration which show specific rule based changes. For example, in suffixed class categorization, both consonant and vowel alterations are found, following the rules: i) CVx à tVX, ii) CVCV à CVCi. Further classifications were also found on sentential studies of both languages which revealed complete reduplication complexities while forming echo words where the head word lose its original meaning. Complexities based on onomatopoetic/phonetic imitation of natural phenomena and not according to any rule-based occurrences were also found. Taking these aspects into consideration which are very prevalent in both the languages, inferences are drawn from the study which bring out many similarities in both the languages in this area in spite of branching away from each other several years ago. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=consonant%20alteration" title="consonant alteration">consonant alteration</a>, <a href="https://publications.waset.org/abstracts/search?q=onomatopoetic" title=" onomatopoetic"> onomatopoetic</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20reduplication%20and%20complete%20reduplication" title=" partial reduplication and complete reduplication"> partial reduplication and complete reduplication</a>, <a href="https://publications.waset.org/abstracts/search?q=reduplication" title=" reduplication"> reduplication</a>, <a href="https://publications.waset.org/abstracts/search?q=vowel%20alteration" title=" vowel alteration"> vowel alteration</a> </p> <a href="https://publications.waset.org/abstracts/57487/equivalences-and-contrasts-in-the-morphological-formation-of-echo-words-in-two-indo-aryan-languages-bengali-and-odia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57487.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">242</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">109</span> A Study on the Magnetic and Submarine Geology Structure of TA22 Seamount in Lau Basin, Tonga</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soon%20Young%20Choi">Soon Young Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Chan%20Hwan%20Kim"> Chan Hwan Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Chan%20Hong%20Park"> Chan Hong Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyung%20Rae%20Kim"> Hyung Rae Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Myoung%20Hoon%20Lee"> Myoung Hoon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyeon-Yeong%20Park"> Hyeon-Yeong Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We performed the marine magnetic, bathymetry and seismic survey at the TA22 seamount (in the Lau basin, SW Pacific) for finding the submarine hydrothermal deposits in October 2009. We acquired magnetic and bathymetry data sets by suing Overhouser Proton Magnetometer SeaSPY (Marine Magnetics Co.), Multi-beam Echo Sounder EM120 (Kongsberg Co.). We conducted the data processing to obtain detailed seabed topography, magnetic anomaly, reduction to the pole (RTP) and magnetization. Based on the magnetic properties result, we analyzed submarine geology structure of TA22 seamount with post-processed seismic profile. The detailed bathymetry of the TA22 seamount showed the left and right crest parts that have caldera features in each crest central part. The magnetic anomaly distribution of the TA22 seamount regionally displayed high magnetic anomalies in northern part and the low magnetic anomalies in southern part around the caldera features. The RTP magnetic anomaly distribution of the TA22 seamount presented commonly high magnetic anomalies in the each caldera central part. Also, it represented strong anomalies at the inside of caldera rather than outside flank of the caldera. The magnetization distribution of the TA22 seamount showed the low magnetization zone in the center of each caldera, high magnetization zone in the southern and northern east part. From analyzed the seismic profile map, The TA22 seamount area is showed for the inferred small mounds inside each caldera central part and it assumes to make possibility of sills by the magma in cases of the right caldera. Taking into account all results of this study (bathymetry, magnetic anomaly, RTP, magnetization, seismic profile) with rock samples at the left caldera area in 2009 survey, we suppose the possibility of hydrothermal deposits at mounds in each caldera central part and at outside flank of the caldera representing the low magnetization zone. We expect to have the better results by combined modeling from this study data with the other geological data (ex. detailed gravity, 3D seismic, petrologic study results and etc). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=detailed%20bathymetry" title="detailed bathymetry">detailed bathymetry</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20anomaly" title=" magnetic anomaly"> magnetic anomaly</a>, <a href="https://publications.waset.org/abstracts/search?q=seamounts" title=" seamounts"> seamounts</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20profile" title=" seismic profile"> seismic profile</a>, <a href="https://publications.waset.org/abstracts/search?q=SW%20Pacific" title=" SW Pacific"> SW Pacific</a> </p> <a href="https://publications.waset.org/abstracts/65090/a-study-on-the-magnetic-and-submarine-geology-structure-of-ta22-seamount-in-lau-basin-tonga" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65090.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">108</span> Reduplication In Urdu-Hindi Nonsensical Words: An OT Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Riaz%20Ahmed%20Mangrio">Riaz Ahmed Mangrio</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reduplication in Urdu-Hindi affects all major word categories, particles, and even nonsensical words. It conveys a variety of meanings, including distribution, emphasis, iteration, adjectival and adverbial. This study will primarily discuss reduplicative structures of nonsensical words in Urdu-Hindi and then briefly look at some examples from other Indo-Aryan languages to introduce the debate regarding the same structures in them. The goal of this study is to present counter-evidence against Keane (2005: 241), who claims “the base in the cases of lexical and phrasal echo reduplication is always independently meaningful”. However, Urdu-Hindi reduplication derives meaningful compounds from nonsensical words e.g. gũ mgũ (A) ‘silent and confused’ and d̪əb d̪əb-a (N) ‘one’s fear over others’. This needs a comprehensive examination to see whether and how the various structures form patterns of a base-reduplicant relationship or, rather, they are merely sub lexical items joining together to form a word pattern of any grammatical category in content words. Another interesting theoretical question arises within the Optimality framework: in an OT analysis, is it necessary to identify one of the two constituents as the base and the other as reduplicant? Or is it best to consider this a pattern, but then how does this fit in with an OT analysis? This may be an even more interesting theoretical question. Looking for the solution to such questions can serve to make an important contribution. In the case at hand, each of the two constituents is an independent nonsensical word, but their echo reduplication is nonetheless meaningful. This casts significant doubt upon Keane’s (2005: 241) observation of some examples from Hindi and Tamil reduplication that “the base in cases of lexical and phrasal echo reduplication is always independently meaningful”. The debate on the point becomes further interesting when the triplication of nonsensical words in Urdu-Hindi e.g. aẽ baẽ ʃaẽ (N) ‘useless talk’ is also seen, which is equally important to discuss. The example is challenging to Harrison’s (1973) claim that only the monosyllabic verbs in their progressive forms reduplicate twice to result in triplication, which is not the case with the example presented. The study will consist of a thorough descriptive analysis of the data for the purpose of documentation, and then there will be OT analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reduplication" title="reduplication">reduplication</a>, <a href="https://publications.waset.org/abstracts/search?q=urdu-hindi" title=" urdu-hindi"> urdu-hindi</a>, <a href="https://publications.waset.org/abstracts/search?q=nonsensical" title=" nonsensical"> nonsensical</a>, <a href="https://publications.waset.org/abstracts/search?q=optimality%20theory" title=" optimality theory"> optimality theory</a> </p> <a href="https://publications.waset.org/abstracts/164930/reduplication-in-urdu-hindi-nonsensical-words-an-ot-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164930.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">107</span> A World Map of Seabed Sediment Based on 50 Years of Knowledge</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Garlan">T. Garlan</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Gabelotaud"> I. Gabelotaud</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Lucas"> S. Lucas</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20March%C3%A8s"> E. Marchès</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Production of a global sedimentological seabed map has been initiated in 1995 to provide the necessary tool for searches of aircraft and boats lost at sea, to give sedimentary information for nautical charts, and to provide input data for acoustic propagation modelling. This original approach had already been initiated one century ago when the French hydrographic service and the University of Nancy had produced maps of the distribution of marine sediments of the French coasts and then sediment maps of the continental shelves of Europe and North America. The current map of the sediment of oceans presented was initiated with a UNESCO&#39;s general map of the deep ocean floor. This map was adapted using a unique sediment classification to present all types of sediments: from beaches to the deep seabed and from glacial deposits to tropical sediments. In order to allow good visualization and to be adapted to the different applications, only the granularity of sediments is represented. The published seabed maps are studied, if they present an interest, the nature of the seabed is extracted from them, the sediment classification is transcribed and the resulted map is integrated in the world map. Data come also from interpretations of Multibeam Echo Sounder (MES) imagery of large hydrographic surveys of deep-ocean. These allow a very high-quality mapping of areas that until then were represented as homogeneous. The third and principal source of data comes from the integration of regional maps produced specifically for this project. These regional maps are carried out using all the bathymetric and sedimentary data of a region. This step makes it possible to produce a regional synthesis map, with the realization of generalizations in the case of over-precise data. 86 regional maps of the Atlantic Ocean, the Mediterranean Sea, and the Indian Ocean have been produced and integrated into the world sedimentary map. This work is permanent and permits a digital version every two years, with the integration of some new maps. This article describes the choices made in terms of sediment classification, the scale of source data and the zonation of the variability of the quality. This map is the final step in a system comprising the Shom Sedimentary Database, enriched by more than one million punctual and surface items of data, and four series of coastal seabed maps at 1:10,000, 1:50,000, 1:200,000 and 1:1,000,000. This step by step approach makes it possible to take into account the progresses in knowledge made in the field of seabed characterization during the last decades. Thus, the arrival of new classification systems for seafloor has improved the recent seabed maps, and the compilation of these new maps with those previously published allows a gradual enrichment of the world sedimentary map. But there is still a lot of work to enhance some regions, which are still based on data acquired more than half a century ago. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=marine%20sedimentology" title="marine sedimentology">marine sedimentology</a>, <a href="https://publications.waset.org/abstracts/search?q=seabed%20map" title=" seabed map"> seabed map</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment%20classification" title=" sediment classification"> sediment classification</a>, <a href="https://publications.waset.org/abstracts/search?q=world%20ocean" title=" world ocean"> world ocean</a> </p> <a href="https://publications.waset.org/abstracts/78461/a-world-map-of-seabed-sediment-based-on-50-years-of-knowledge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78461.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">232</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">106</span> Transcending the Boundary of Traumas: Spatial Trauma in Richard Powers&#039; &#039;The Echo Maker&#039;</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nodi%20Islam">Nodi Islam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper critically reads Richard Powers’ novel The Echo Maker to read and understand the personal traumas of the characters in the novel depending on the various situations they face throughout the story. Also, the paper attempts to read different traumas and disorders due to their different situations. With a focus on the individual experiences, this paper addresses the core issues of trauma, which triggers their reactions and reads the novel through theories of Freud, Caruth, and other critics in this field. While transcending the boundary of personal and collective trauma, this paper suggests that traumas not only arise from the core mental issues, from both past or present memories; it also depends on places too which can be called, according to Yi-Fu Tuan, topophobia. Intimate places such as home provoke not only attachment and expectation but also produce fear in a person. Failure in identifying with such places means losing a central piece of identity of the individual. In order to analyse the traumas in the novel, the characters’ association with homes and places has been provided. This paper attempts to suggest that people are not traumatised because of what Freud explained as unpleasant memories of the past but also intimacy and lost identities related to a place can trigger trauma. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spatial%20trauma" title="spatial trauma">spatial trauma</a>, <a href="https://publications.waset.org/abstracts/search?q=traumatic%20stress%20disorder" title=" traumatic stress disorder"> traumatic stress disorder</a>, <a href="https://publications.waset.org/abstracts/search?q=identity%20and%20place" title=" identity and place"> identity and place</a>, <a href="https://publications.waset.org/abstracts/search?q=core%20mental%20issues" title=" core mental issues"> core mental issues</a> </p> <a href="https://publications.waset.org/abstracts/109813/transcending-the-boundary-of-traumas-spatial-trauma-in-richard-powers-the-echo-maker" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109813.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">105</span> Meditation and Insight Interpretation Using Quantum Circle Based-on Experiment and Quantum Relativity Formalism</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Somnath%20Bhattachryya">Somnath Bhattachryya</a>, <a href="https://publications.waset.org/abstracts/search?q=Montree%20Bunruangses"> Montree Bunruangses</a>, <a href="https://publications.waset.org/abstracts/search?q=Somchat%20Sonasang"> Somchat Sonasang</a>, <a href="https://publications.waset.org/abstracts/search?q=Preecha%20Yupapin"> Preecha Yupapin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study and research on meditation and insight, the design and experiment with electronic circuits to manipulate the meditators' mental circles that call the chakras to have the same size is proposed. The shape of the circuit is 4-ports, called an add-drop multiplexer, that studies the meditation structure called the four-mindfulness foundation, then uses an AC power signal as an input instead of the meditation time function, where various behaviors with the method of re-filtering the signal (successive filtering), like eight noble paths. Start by inputting a signal at a frequency that causes the velocity of the wave on the perimeter of the circuit to cause particles to have the speed of light in a vacuum. The signal changes from electromagnetic waves and matter waves according to the velocity (frequency) until it reaches the point of the relativistic limit. The electromagnetic waves are transformed into photons with properties of wave-particle overcoming the limits of the speed of light. As for the matter wave, it will travel to the other side and cannot pass through the relativistic limit, called a shadow signal (echo) that can have power from increasing speed but cannot create speed faster than light or insight. In the experiment, the only the side where the velocity is positive, only where the speed above light or the corresponding frequency indicates intelligence. Other side(echo) can be done by changing the input signal to the other side of the circuit to get the same result. But there is no intelligence or speed beyond light. It is also used to study the stretching, contraction of time and wormholes that can be applied for teleporting, Bose-Einstein condensate and teleprinting, quantum telephone. The teleporting can happen throughout the system with wave-particle and echo, which is when the speed of the particle is faster than the stretching or contraction of time, the particle will submerge in the wormhole, when the destination and time are determined, will travel through the wormhole. In a wormhole, time can determine in the future and the past. The experimental results using the microstrip circuit have been found to be by the principle of quantum relativity, which can be further developed for both tools and meditation practitioners for quantum technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantu%20meditation" title="quantu meditation">quantu meditation</a>, <a href="https://publications.waset.org/abstracts/search?q=insight%20picture" title=" insight picture"> insight picture</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20circuit" title=" quantum circuit"> quantum circuit</a>, <a href="https://publications.waset.org/abstracts/search?q=absolute%20time" title=" absolute time"> absolute time</a>, <a href="https://publications.waset.org/abstracts/search?q=teleportation" title=" teleportation"> teleportation</a> </p> <a href="https://publications.waset.org/abstracts/177305/meditation-and-insight-interpretation-using-quantum-circle-based-on-experiment-and-quantum-relativity-formalism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177305.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">104</span> Ultrasonic Evaluation of Periodic Rough Inaccessible Surfaces from Back Side</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chanh%20Nghia%20Nguyen">Chanh Nghia Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu%20Kurokawa"> Yu Kurokawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Hirotsugu%20Inoue"> Hirotsugu Inoue</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The surface roughness is an important parameter for evaluating the quality of material surfaces since it affects functions and performance of industrial components. Although stylus and optical techniques are commonly used for measuring the surface roughness, they are applicable only to accessible surfaces. In practice, surface roughness measurement from the back side is sometimes demanded, for example, in inspection of safety-critical parts such as inner surface of pipes. However, little attention has been paid to the measurement of back surface roughness so far. Since back surface is usually inaccessible by stylus or optical techniques, ultrasonic technique is one of the most effective among others. In this research, an ultrasonic pulse-echo technique is considered for evaluating the pitch and the height of back surface having periodic triangular profile as a very first step. The pitch of the surface profile is measured by applying the diffraction grating theory for oblique incidence; then the height is evaluated by numerical analysis based on the Kirchhoff theory for normal incidence. The validity of the proposed method was verified by both numerical simulation and experiment. It was confirmed that the pitch is accurately measured in most cases. The height was also evaluated with good accuracy when it is smaller than a half of the pitch because of the approximation in the Kirchhoff theory. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=back%20side" title="back side">back side</a>, <a href="https://publications.waset.org/abstracts/search?q=inaccessible%20surface" title=" inaccessible surface"> inaccessible surface</a>, <a href="https://publications.waset.org/abstracts/search?q=periodic%20roughness" title=" periodic roughness"> periodic roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=pulse-echo%20technique" title=" pulse-echo technique"> pulse-echo technique</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20NDE" title=" ultrasonic NDE"> ultrasonic NDE</a> </p> <a href="https://publications.waset.org/abstracts/61131/ultrasonic-evaluation-of-periodic-rough-inaccessible-surfaces-from-back-side" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61131.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">103</span> Benefits of Hybrid Mix in Renewable Energy and Integration with E-Efficient Compositions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Khalil">Ahmed Khalil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Increased energy demands around the world have led to the raise in power production which has resulted with more greenhouse gas emissions through fossil sources. These fossil sources and emissions cause deterioration in echo-system. Therefore, renewable energy sources come to the scene as echo-friendly and clean energy sourcing, whereas the electrical devices and energy needs decrease in the timeline. Each of these renewable energy sources contribute to the reduction of greenhouse gases and mitigate environmental deterioration. However, there are also some general and source-specific challenges, which influence the choice of the investors. The most prominent general challenge that effects end-users’ comfort and reliability is usually determined as the intermittence which derives from the diversions of source conditions, due to nature dynamics and uncontrolled periodic changes. Research and development professionals strive to mitigate intermittence challenge through material improvement for each renewable source whereas hybrid source mix stand as a solution. This solution prevails well, when single renewable technologies are upgraded further. On the other hand, integration of energy efficient devices and systems, raise the affirmative effect of such solution in means of less energy requirement in sustainability composition or scenario. This paper provides a glimpse on the advantages of composing renewable source mix versus single usage, with contribution of sampled e-efficient systems and devices. Accordingly it demonstrates the extended benefits, through planning and predictive estimation stages of Ahmadi Town Projects in Kuwait. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=e-efficient%20systems" title="e-efficient systems">e-efficient systems</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20source" title=" hybrid source"> hybrid source</a>, <a href="https://publications.waset.org/abstracts/search?q=intermittence%20challenge" title=" intermittence challenge"> intermittence challenge</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy "> renewable energy </a> </p> <a href="https://publications.waset.org/abstracts/123373/benefits-of-hybrid-mix-in-renewable-energy-and-integration-with-e-efficient-compositions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123373.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">102</span> COVID-19: The Cause or the Confounder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Praveenkumar%20Natarajan">Praveenkumar Natarajan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A 59-year-old male with no known co-morbidities was admitted to a private hospital for complaints of fever and cough and was diagnosed to haveCOVID-19. CT of the thorax revealed the involvement of 50% of the lungs. Screening ECG and ECHO were normal. The patient was treated with oxygen therapy and drugs and was discharged after 12 days of admission. Post-discharge, the patient remained symptom-free and continued his work. After one month, the patient developed a fever for three days, for which he took antipyretics. Subsequently, the patient developed sudden onset breathlessness, which rapidly progressed to grade 4 NYHA, and developed a cough as well. Suspecting COVID-19 reinfection, the patient visited a nearby hospital, where COVID–19 rt-PCR swabs turned out to be positive, and was referred to our hospital. On receiving, the patient had diffuse lung crepitations and a diastolic murmur in the neo-aortic area. CT thorax revealed pulmonary edema with areas of consolidation. ECHO revealed vegetation on the aortic valve with severe aortic regurgitation. Blood cultures were taken, which revealed the growth of Enterococcus faecalis. The diagnosis of infective endocarditis was made, and the patient was started on appropriate treatment. COVID–19 has effects on various systems, including the cardiovascular system. Even though infective endocarditis is common in the elderly with valvular heart disease, this patient had developed infective endocarditis in an apparently normal aortic valve. Infective endocarditis and COVID–19 can have similar presentations leading to diagnostic difficulties. COVID–19, affecting the heart valves causing valvulitis and predisposing them to the development of infective endocarditis, is also an area to be explored. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aortic%20regurgitation" title="aortic regurgitation">aortic regurgitation</a>, <a href="https://publications.waset.org/abstracts/search?q=COVID-19" title=" COVID-19"> COVID-19</a>, <a href="https://publications.waset.org/abstracts/search?q=infective%20endocarditis" title=" infective endocarditis"> infective endocarditis</a>, <a href="https://publications.waset.org/abstracts/search?q=valvulitis" title=" valvulitis"> valvulitis</a> </p> <a href="https://publications.waset.org/abstracts/136281/covid-19-the-cause-or-the-confounder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136281.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">101</span> Array Type Miniaturized Ultrasonic Sensors for Detecting Sinkhole in the City</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Won%20Young%20Choi">Won Young Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kwan%20Kyu%20Park"> Kwan Kyu Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, the road depression happening in the urban area is different from the cause of the sink hole and the generation mechanism occurring in the limestone area. The main cause of sinkholes occurring in the city center is the loss of soil due to the damage of old underground buried materials and groundwater discharge due to large underground excavation works. The method of detecting the sinkhole in the urban area is mostly using the Ground Penetration Radar (GPR). However, it is challenging to implement compact system and detecting watery state since it is based on electromagnetic waves. Although many ultrasonic underground detection studies have been conducted, near-ground detection (several tens of cm to several meters) has been developed for bulk systems using geophones as a receiver. The goal of this work is to fabricate a miniaturized sinkhole detecting system based on low-cost ultrasonic transducers of 40 kHz resonant frequency with high transmission pressure and receiving sensitivity. Motived by biomedical ultrasonic imaging methods, we detect air layers below the ground such as asphalt through the pulse-echo method. To improve image quality using multi-channel, linear array system is implemented, and image is acquired by classical synthetic aperture imaging method. We present the successful feasibility test of multi-channel sinkhole detector based on ultrasonic transducer. In this work, we presented and analyzed image results which are imaged by single channel pulse-echo imaging, synthetic aperture imaging. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=road%20depression" title="road depression">road depression</a>, <a href="https://publications.waset.org/abstracts/search?q=sinkhole" title=" sinkhole"> sinkhole</a>, <a href="https://publications.waset.org/abstracts/search?q=synthetic%20aperture%20imaging" title=" synthetic aperture imaging"> synthetic aperture imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20transducer" title=" ultrasonic transducer"> ultrasonic transducer</a> </p> <a href="https://publications.waset.org/abstracts/88771/array-type-miniaturized-ultrasonic-sensors-for-detecting-sinkhole-in-the-city" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88771.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">100</span> Numerical Calculation and Analysis of Fine Echo Characteristics of Underwater Hemispherical Cylindrical Shell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hongjian%20Jia">Hongjian Jia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A finite-length cylindrical shell with a spherical cap is a typical engineering approximation model of actual underwater targets. The research on the omni-directional acoustic scattering characteristics of this target model can provide a favorable basis for the detection and identification of actual underwater targets. The elastic resonance characteristics of the target are the results of the comprehensive effect of the target length, shell-thickness ratio and materials. Under the conditions of different materials and geometric dimensions, the coincidence resonance characteristics of the target have obvious differences. Aiming at this problem, this paper obtains the omni-directional acoustic scattering field of the underwater hemispherical cylindrical shell by numerical calculation and studies the influence of target geometric parameters (length, shell-thickness ratio) and material parameters on the coincidence resonance characteristics of the target in turn. The study found that the formant interval is not a stable value and changes with the incident angle. Among them, the formant interval is less affected by the target length and shell-thickness ratio and is significantly affected by the material properties, which is an effective feature for classifying and identifying targets of different materials. The quadratic polynomial is utilized to fully fit the change relationship between the formant interval and the angle. The results show that the three fitting coefficients of the stainless steel and aluminum targets are significantly different, which can be used as an effective feature parameter to characterize the target materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hemispherical%20cylindrical%20shell%3B" title="hemispherical cylindrical shell;">hemispherical cylindrical shell;</a>, <a href="https://publications.waset.org/abstracts/search?q=fine%20echo%20characteristics%3B" title=" fine echo characteristics;"> fine echo characteristics;</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20and%20material%20parameters%3B" title=" geometric and material parameters;"> geometric and material parameters;</a>, <a href="https://publications.waset.org/abstracts/search?q=formant%20interval" title=" formant interval"> formant interval</a> </p> <a href="https://publications.waset.org/abstracts/169606/numerical-calculation-and-analysis-of-fine-echo-characteristics-of-underwater-hemispherical-cylindrical-shell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169606.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=MBES%20echo%20sounder&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=MBES%20echo%20sounder&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=MBES%20echo%20sounder&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=MBES%20echo%20sounder&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=MBES%20echo%20sounder&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10