CINXE.COM

Search results for: mixed convection

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: mixed convection</title> <meta name="description" content="Search results for: mixed convection"> <meta name="keywords" content="mixed convection"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="mixed convection" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="mixed convection"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 878</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: mixed convection</h1> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">878</span> Numerical Analysis of Laminar Mixed Convection within a Complex Geometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Y.%20Lasbet">Y. Lasbet</a>, <a href="https://publications.waset.org/search?q=A.%20L.%20Boukhalkhal"> A. L. Boukhalkhal</a>, <a href="https://publications.waset.org/search?q=K.%20Loubar"> K. Loubar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study of mixed convection is, usually, focused on the straight channels in which the onset of the mixed convection is well defined as function of the ratio between Grashof number and Reynolds number, Gr/Re. This is not the case for a complex channel wherein the mixed convection is not sufficiently examined in the literature. Our paper focuses on the study of the mixed convection in a complex geometry in which our main contribution reveals that the critical value of the ratio Gr/Re for the onset of the mixed convection increases highly in the type of geometry contrary to the straight channel. Furthermore, the accentuated secondary flow in this geometry prevents the thermal stratification in the flow and consequently the buoyancy driven becomes negligible. To perform these objectives, a numerical study in complex geometry for several values of the ratio Gr/Re with prescribed wall heat flux (H2), was realized by using the CFD code. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Complex%20geometry" title="Complex geometry">Complex geometry</a>, <a href="https://publications.waset.org/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/search?q=laminar%20flow" title=" laminar flow"> laminar flow</a>, <a href="https://publications.waset.org/search?q=mixed%20convection" title=" mixed convection"> mixed convection</a>, <a href="https://publications.waset.org/search?q=Nusselt%20number." title=" Nusselt number."> Nusselt number.</a> </p> <a href="https://publications.waset.org/10003744/numerical-analysis-of-laminar-mixed-convection-within-a-complex-geometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10003744/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10003744/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10003744/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10003744/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10003744/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10003744/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10003744/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10003744/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10003744/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10003744/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10003744.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1755</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">877</span> Mixed Convection Boundary Layer Flow from a Vertical Cone in a Porous Medium Filled with a Nanofluid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ezzah%20Liana%20Ahmad%20Fauzi">Ezzah Liana Ahmad Fauzi</a>, <a href="https://publications.waset.org/search?q=Syakila%20Ahmad"> Syakila Ahmad</a>, <a href="https://publications.waset.org/search?q=Ioan%20Pop"> Ioan Pop</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The steady mixed convection boundary layer flow from a vertical cone in a porous medium filled with a nanofluid is numerically investigated using different types of nanoparticles as Cu (copper), Al2O3 (alumina) and TiO2 (titania). The boundary value problem is solved by using the shooting technique by reducing it into an ordinary differential equation. Results of interest for the local Nusselt number with various values of the constant mixed convection parameter and nanoparticle volume fraction parameter are evaluated. It is found that dual solutions exist for a certain range of mixed convection parameter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=boundary%20layer" title="boundary layer">boundary layer</a>, <a href="https://publications.waset.org/search?q=mixed%20convection" title=" mixed convection"> mixed convection</a>, <a href="https://publications.waset.org/search?q=nanofluid" title=" nanofluid"> nanofluid</a>, <a href="https://publications.waset.org/search?q=porous%0Amedium" title=" porous medium"> porous medium</a>, <a href="https://publications.waset.org/search?q=vertical%20cone." title=" vertical cone."> vertical cone.</a> </p> <a href="https://publications.waset.org/13549/mixed-convection-boundary-layer-flow-from-a-vertical-cone-in-a-porous-medium-filled-with-a-nanofluid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/13549/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/13549/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/13549/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/13549/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/13549/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/13549/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/13549/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/13549/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/13549/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/13549/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/13549.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2291</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">876</span> Dual Solutions in Mixed Convection Boundary Layer Flow: A Stability Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Anuar%20Ishak">Anuar Ishak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The mixed convection stagnation point flow toward a vertical plate is investigated. The external flow impinges normal to the heated plate and the surface temperature is assumed to vary linearly with the distance from the stagnation point. The governing partial differential equations are transformed into a set of ordinary differential equations, which are then solved numerically using MATLAB routine boundary value problem solver bvp4c. Numerical results show that dual solutions are possible for a certain range of the mixed convection parameter. A stability analysis is performed to determine which solution is linearly stable and physically realizable.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Dual%20solutions" title="Dual solutions">Dual solutions</a>, <a href="https://publications.waset.org/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/search?q=mixed%20convection" title=" mixed convection"> mixed convection</a>, <a href="https://publications.waset.org/search?q=stability%20analysis." title=" stability analysis. "> stability analysis. </a> </p> <a href="https://publications.waset.org/9999264/dual-solutions-in-mixed-convection-boundary-layer-flow-a-stability-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9999264/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9999264/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9999264/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9999264/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9999264/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9999264/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9999264/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9999264/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9999264/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9999264/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9999264.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2482</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">875</span> Thermosolutal MHD Mixed Marangoni Convective Boundary Layers in the Presence of Suction or Injection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Noraini%20Ahmad">Noraini Ahmad</a>, <a href="https://publications.waset.org/search?q=Seripah%20Awang%20Kechil"> Seripah Awang Kechil</a>, <a href="https://publications.waset.org/search?q=Norma%20Mohd%20Basir"> Norma Mohd Basir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The steady coupled dissipative layers, called Marangoni mixed convection boundary layers, in the presence of a magnetic field and solute concentration that are formed along the surface of two immiscible fluids with uniform suction or injection effects is examined. The similarity boundary layer equations are solved numerically using the Runge-Kutta Fehlberg with shooting technique. The Marangoni, buoyancy and external pressure gradient effects that are generated in mixed convection boundary layer flow are assessed. The velocity, temperature and concentration boundary layers thickness decrease with the increase of the magnetic field strength and the injection to suction. For buoyancy-opposed flow, the Marangoni mixed convection parameter enhances the velocity boundary layer but decreases the temperature and concentration boundary layers. However, for the buoyancy-assisted flow, the Marangoni mixed convection parameter decelerates the velocity but increases the temperature and concentration boundary layers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Magnetic%20field" title="Magnetic field">Magnetic field</a>, <a href="https://publications.waset.org/search?q=mixed%20Marangoni%20convection" title=" mixed Marangoni convection"> mixed Marangoni convection</a>, <a href="https://publications.waset.org/search?q=similarity%20boundary%20layers" title=" similarity boundary layers"> similarity boundary layers</a>, <a href="https://publications.waset.org/search?q=solute%20concentration." title=" solute concentration."> solute concentration.</a> </p> <a href="https://publications.waset.org/15814/thermosolutal-mhd-mixed-marangoni-convective-boundary-layers-in-the-presence-of-suction-or-injection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/15814/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/15814/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/15814/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/15814/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/15814/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/15814/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/15814/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/15814/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/15814/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/15814/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/15814.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1882</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">874</span> Natural and Mixed Convection Heat Transfer Cooling of Discrete Heat Sources Placed Near the Bottom on a PCB</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Tapano%20Kumar%20Hotta">Tapano Kumar Hotta</a>, <a href="https://publications.waset.org/search?q=S%20P%20Venkateshan"> S P Venkateshan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Steady state experiments have been conducted for natural and mixed convection heat transfer, from five different sized protruding discrete heat sources, placed at the bottom position on a PCB and mounted on a vertical channel. The characteristic length ( Lh ) of heat sources vary from 0.005 to 0.011 m. The study has been done for different range of Reynolds number and modified Grashof number. From the experiment, the surface temperature distribution and the Nusselt number of discrete heat sources have been obtained and the effects of Reynold number and Richardson number on them have been discussed. The objective is to find the rate of heat dissipation from heat sources, by placing them at the bottom position on a PCB and to compare both modes of cooling of heat sources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Discrete%20heat%20source" title="Discrete heat source">Discrete heat source</a>, <a href="https://publications.waset.org/search?q=mixed%20convection" title=" mixed convection"> mixed convection</a>, <a href="https://publications.waset.org/search?q=natural%0Aconvection" title=" natural convection"> natural convection</a>, <a href="https://publications.waset.org/search?q=vertical%20channel" title=" vertical channel"> vertical channel</a> </p> <a href="https://publications.waset.org/9581/natural-and-mixed-convection-heat-transfer-cooling-of-discrete-heat-sources-placed-near-the-bottom-on-a-pcb" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9581/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9581/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9581/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9581/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9581/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9581/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9581/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9581/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9581/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9581/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9581.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2062</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">873</span> MHD Mixed Convection in a Vertical Porous Channel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=B.%20Fersadou">B. Fersadou</a>, <a href="https://publications.waset.org/search?q=H.%20Kahalerras"> H. Kahalerras</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work deals with the problem of MHD mixed convection in a completely porous and differentially heated vertical channel. The model of Darcy-Brinkman-Forchheimer with the Boussinesq approximation is adopted and the governing equations are solved by the finite volume method. The effects of magnetic field and buoyancy force intensities are given by the Hartmann and Richardson numbers respectively, as well as the Joule heating represented by Eckert number on the velocity and temperature fields, are examined. The main results show an augmentation of heat transfer rate with the decrease of Darcy number and the increase of Ri and Ha when Joule heating is neglected. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Heat%20sources" title="Heat sources">Heat sources</a>, <a href="https://publications.waset.org/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a>, <a href="https://publications.waset.org/search?q=mixed%20convection" title=" mixed convection"> mixed convection</a>, <a href="https://publications.waset.org/search?q=porous%20channel." title=" porous channel."> porous channel.</a> </p> <a href="https://publications.waset.org/10002667/mhd-mixed-convection-in-a-vertical-porous-channel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10002667/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10002667/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10002667/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10002667/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10002667/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10002667/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10002667/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10002667/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10002667/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10002667/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10002667.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2583</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">872</span> A New Time Discontinuous Expanded Mixed Element Method for Convection-dominated Diffusion Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Jinfeng%20Wang">Jinfeng Wang</a>, <a href="https://publications.waset.org/search?q=Yuanhong%20Bi"> Yuanhong Bi</a>, <a href="https://publications.waset.org/search?q=Hong%20Li"> Hong Li</a>, <a href="https://publications.waset.org/search?q=Yang%20Liu"> Yang Liu</a>, <a href="https://publications.waset.org/search?q=Meng%20Zhao"> Meng Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this paper, a new time discontinuous expanded mixed finite element method is proposed and analyzed for two-order convection-dominated diffusion problem. The proofs of the stability of the proposed scheme and the uniqueness of the discrete solution are given. Moreover, the error estimates of the scalar unknown, its gradient and its flux in the L1( &macr; J,L2( )-norm are obtained.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Convection-dominated%20diffusion%20equation" title="Convection-dominated diffusion equation">Convection-dominated diffusion equation</a>, <a href="https://publications.waset.org/search?q=expanded%20mixed%20method" title=" expanded mixed method"> expanded mixed method</a>, <a href="https://publications.waset.org/search?q=time%20discontinuous%20scheme" title=" time discontinuous scheme"> time discontinuous scheme</a>, <a href="https://publications.waset.org/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/search?q=error%20estimates." title=" error estimates."> error estimates.</a> </p> <a href="https://publications.waset.org/9513/a-new-time-discontinuous-expanded-mixed-element-method-for-convection-dominated-diffusion-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9513/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9513/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9513/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9513/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9513/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9513/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9513/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9513/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9513/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9513/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9513.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1311</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">871</span> Simulation of Fluid Flow and Heat Transfer in the Inclined Enclosure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20Karimipour">A. Karimipour</a>, <a href="https://publications.waset.org/search?q=M.%20Afrand"> M. Afrand</a>, <a href="https://publications.waset.org/search?q=M.%20Akbari"> M. Akbari</a>, <a href="https://publications.waset.org/search?q=M.R.%20Safaei"> M.R. Safaei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Mixed convection in two-dimensional shallow rectangular enclosure is considered. The top hot wall moves with constant velocity while the cold bottom wall has no motion. Simulations are performed for Richardson number ranging from Ri = 0.001 to 100 and for Reynolds number keeping fixed at Re = 408.21. Under these conditions cavity encompasses three regimes: dominating forced, mixed and free convection flow. The Prandtl number is set to 6 and the effects of cavity inclination on the flow and heat transfer are studied for different Richardson number. With increasing the inclination angle, interesting behavior of the flow and thermal fields are observed. The streamlines and isotherm plots and the variation of the Nusselt numbers on the hot wall are presented. The average Nusselt number is found to increase with cavity inclination for Ri &sup3; 1 . Also it is shown that the average Nusselt number changes mildly with the cavity inclination in the dominant forced convection regime but it increases considerably in the regime with dominant natural convection.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Mixed%20convection" title="Mixed convection">Mixed convection</a>, <a href="https://publications.waset.org/search?q=inclined%20driven%20cavity" title=" inclined driven cavity"> inclined driven cavity</a>, <a href="https://publications.waset.org/search?q=Richardson%20number." title=" Richardson number."> Richardson number.</a> </p> <a href="https://publications.waset.org/14867/simulation-of-fluid-flow-and-heat-transfer-in-the-inclined-enclosure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/14867/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/14867/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/14867/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/14867/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/14867/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/14867/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/14867/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/14867/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/14867/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/14867/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/14867.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1871</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">870</span> Numerical Study of Laminar Mixed Convection Heat Transfer of a Nanofluid in a Concentric Annular Tube Using Two-Phase Mixture Model </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Roghayyeh%20Motallebzadeh">Roghayyeh Motallebzadeh</a>, <a href="https://publications.waset.org/search?q=Shahin%20Hajizadeh"> Shahin Hajizadeh</a>, <a href="https://publications.waset.org/search?q=Mohammad%20Reza%20Ghasemi"> Mohammad Reza Ghasemi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Laminar mixed Convection heat transfer of a nanofluid with prescribed constant heat flux on the inner wall of horizontal annular tube has been studied numerically based on two-phase mixture model in different Rayleigh Numbers and Azimuth angles. Effects of applying of different volume fractions of Al<sub>2</sub>O<sub>3</sub> nanoparticles in water as a base fluid on hydrodynamic and thermal behaviors of the fluid flow such as axial velocity, secondary flow, temperature, heat transfer coefficient and friction coefficient at the inner and outer wall region, has been investigated. Conservation equations in elliptical form has been utilized and solved in three dimensions for a steady flow. It is observed that, there is a good agreement between results in this work and previously published experimental and numerical works on mixed convection in horizontal annulus. These particles cause to increase convection heat transfer coefficient of the fluid, meanwhile there is no considerable effect on friction coefficient.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Buoyancy%20force" title="Buoyancy force">Buoyancy force</a>, <a href="https://publications.waset.org/search?q=Laminar%20mixed%20convection" title=" Laminar mixed convection"> Laminar mixed convection</a>, <a href="https://publications.waset.org/search?q=Mixture%20model" title=" Mixture model"> Mixture model</a>, <a href="https://publications.waset.org/search?q=Nanofluid" title=" Nanofluid"> Nanofluid</a>, <a href="https://publications.waset.org/search?q=Two-phase." title=" Two-phase."> Two-phase.</a> </p> <a href="https://publications.waset.org/9997739/numerical-study-of-laminar-mixed-convection-heat-transfer-of-a-nanofluid-in-a-concentric-annular-tube-using-two-phase-mixture-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9997739/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9997739/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9997739/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9997739/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9997739/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9997739/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9997739/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9997739/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9997739/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9997739/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9997739.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2826</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">869</span> Periodic Mixed Convection of a Nanofluid in a Cavity with Top Lid Sinusoidal Motion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Arash%20Karimipour">Arash Karimipour</a>, <a href="https://publications.waset.org/search?q=M.%20Afrand"> M. Afrand</a>, <a href="https://publications.waset.org/search?q=M.%20M.%20Bazofti"> M. M. Bazofti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The periodic mixed convection of a water-copper nanofluid inside a rectangular cavity with aspect ratio of 3 is investigated numerically. The temperature of the bottom wall of the cavity is assumed greater than the temperature of the top lid which oscillates horizontally with the velocity defined as u = u0 sin (ω t). The effects of Richardson number, Ri, and volume fraction of nanoparticles on the flow and thermal behavior of the nanofluid are investigated. Velocity and temperature profiles, streamlines and isotherms are presented. It is observed that when Ri < 1, heat transfer rate is much greater than when Ri > 1. The higher value of Ri corresponds to a lower value of the amplitude of the oscillation of Num in the steady periodic state. Moreover, increasing the volume fraction of the nanoparticles increases the heat transfer rate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Nanofluid" title="Nanofluid">Nanofluid</a>, <a href="https://publications.waset.org/search?q=Top%20lid%20oscillation" title=" Top lid oscillation"> Top lid oscillation</a>, <a href="https://publications.waset.org/search?q=Mixed%20convection" title=" Mixed convection"> Mixed convection</a>, <a href="https://publications.waset.org/search?q=Volume%20fraction" title=" Volume fraction"> Volume fraction</a> </p> <a href="https://publications.waset.org/15506/periodic-mixed-convection-of-a-nanofluid-in-a-cavity-with-top-lid-sinusoidal-motion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/15506/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/15506/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/15506/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/15506/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/15506/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/15506/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/15506/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/15506/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/15506/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/15506/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/15506.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1729</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">868</span> Conjugate Heat and Mass Transfer for MHD Mixed Convection with Viscous Dissipation and Radiation Effect for Viscoelastic Fluid past a Stretching Sheet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Kai-Long%20Hsiao">Kai-Long Hsiao</a>, <a href="https://publications.waset.org/search?q=BorMing%20Lee"> BorMing Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, an analysis has been performed for conjugate heat and mass transfer of a steady laminar boundary-layer mixed convection of magnetic hydrodynamic (MHD) flow with radiation effect of second grade subject to suction past a stretching sheet. Parameters E Nr, Gr, Gc, Ec and Sc represent the dominance of the viscoelastic fluid heat and mass transfer effect which have presented in governing equations, respectively. The similar transformation and the finite-difference method have been used to analyze the present problem. The conjugate heat and mass transfer results show that the non-Newtonian viscoelastic fluid has a better heat transfer effect than the Newtonian fluid. The free convection with a larger r G or c G has a good heat transfer effect better than a smaller r G or c G , and the radiative convection has a good heat transfer effect better than non-radiative convection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Conjugate%20heat%20and%20mass%20transfer" title="Conjugate heat and mass transfer">Conjugate heat and mass transfer</a>, <a href="https://publications.waset.org/search?q=Radiation%20effect" title=" Radiation effect"> Radiation effect</a>, <a href="https://publications.waset.org/search?q=Magnetic%20effect" title="Magnetic effect">Magnetic effect</a>, <a href="https://publications.waset.org/search?q=Viscoelastic%20fluid" title=" Viscoelastic fluid"> Viscoelastic fluid</a>, <a href="https://publications.waset.org/search?q=Viscous%20dissipation" title=" Viscous dissipation"> Viscous dissipation</a>, <a href="https://publications.waset.org/search?q=Stretchingsheet." title=" Stretchingsheet."> Stretchingsheet.</a> </p> <a href="https://publications.waset.org/15267/conjugate-heat-and-mass-transfer-for-mhd-mixed-convection-with-viscous-dissipation-and-radiation-effect-for-viscoelastic-fluid-past-a-stretching-sheet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/15267/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/15267/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/15267/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/15267/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/15267/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/15267/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/15267/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/15267/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/15267/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/15267/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/15267.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1680</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">867</span> Mixed Convection Heat Transfer of Copper Oxide-Heat Transfer Oil Nanofluid in Vertical Tube</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Farhad%20Hekmatipour">Farhad Hekmatipour</a>, <a href="https://publications.waset.org/search?q=M.%20A.%20Akhavan-Behabadi"> M. A. Akhavan-Behabadi</a>, <a href="https://publications.waset.org/search?q=Farzad%20Hekmatipour"> Farzad Hekmatipour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this paper, experiments were conducted to investigate the heat transfer of Copper Oxide-Heat Transfer Oil (CuO-HTO) nanofluid laminar flow in vertical smooth and microfin tubes as the surface temperature is constant. The effect of adding the nanoparticle to base fluid and Richardson number on the heat transfer enhancement is investigated as Richardson number increases from 0.1 to 0.7. The experimental results demonstrate that the combined forced-natural convection heat transfer rate may be improved significantly with an increment of mass nanoparticle concentration from 0% to 1.5%. In this experiment, a correlation is also proposed to predict the mixed convection heat transfer rate of CuO-HTO nanofluid flow. The maximum deviation of both correlations is less than 14%. Moreover, a correlation is presented to estimate the Nusselt number inside vertical smooth and microfin tubes as Rayleigh number is between 2&acute;105 and 6.8&acute;106 with the maximum deviation of 12%.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Nanofluid" title="Nanofluid">Nanofluid</a>, <a href="https://publications.waset.org/search?q=heat%20transfer%20oil" title=" heat transfer oil"> heat transfer oil</a>, <a href="https://publications.waset.org/search?q=mixed%20convection" title=" mixed convection"> mixed convection</a>, <a href="https://publications.waset.org/search?q=vertical%20tube" title=" vertical tube"> vertical tube</a>, <a href="https://publications.waset.org/search?q=laminar%20flow." title=" laminar flow."> laminar flow.</a> </p> <a href="https://publications.waset.org/10009946/mixed-convection-heat-transfer-of-copper-oxide-heat-transfer-oil-nanofluid-in-vertical-tube" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10009946/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10009946/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10009946/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10009946/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10009946/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10009946/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10009946/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10009946/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10009946/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10009946/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10009946.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">961</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">866</span> Conjugate Mixed Convection Heat Transfer and Entropy Generation of Cu-Water Nanofluid in an Enclosure with Thick Wavy Bottom Wall</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Sanjib%20Kr%20Pal">Sanjib Kr Pal</a>, <a href="https://publications.waset.org/search?q=S.%20Bhattacharyya"> S. Bhattacharyya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mixed convection of Cu-water nanofluid in an enclosure with thick wavy bottom wall has been investigated numerically. A co-ordinate transformation method is used to transform the computational domain into an orthogonal co-ordinate system. The governing equations in the computational domain are solved through a pressure correction based iterative algorithm. The fluid flow and heat transfer characteristics are analyzed for a wide range of Richardson number (0.1 &le; Ri &le; 5), nanoparticle volume concentration (0.0 &le; ϕ &le; 0.2), amplitude (0.0 &le; &alpha; &le; 0.1) of the wavy thick- bottom wall and the wave number (&omega;) at a fixed Reynolds number. Obtained results showed that heat transfer rate increases remarkably by adding the nanoparticles. Heat transfer rate is dependent on the wavy wall amplitude and wave number and decreases with increasing Richardson number for fixed amplitude and wave number. The Bejan number and the entropy generation are determined to analyze the thermodynamic optimization of the mixed convection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Entropy%20generation" title="Entropy generation">Entropy generation</a>, <a href="https://publications.waset.org/search?q=mixed%20convection" title=" mixed convection"> mixed convection</a>, <a href="https://publications.waset.org/search?q=conjugate%20heat%0D%0Atransfer" title=" conjugate heat transfer"> conjugate heat transfer</a>, <a href="https://publications.waset.org/search?q=numerical" title=" numerical"> numerical</a>, <a href="https://publications.waset.org/search?q=nanofluid" title=" nanofluid"> nanofluid</a>, <a href="https://publications.waset.org/search?q=wall%20waviness." title=" wall waviness."> wall waviness.</a> </p> <a href="https://publications.waset.org/10007127/conjugate-mixed-convection-heat-transfer-and-entropy-generation-of-cu-water-nanofluid-in-an-enclosure-with-thick-wavy-bottom-wall" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10007127/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10007127/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10007127/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10007127/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10007127/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10007127/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10007127/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10007127/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10007127/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10007127/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10007127.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1046</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">865</span> Study on Mixed Convection Heat Transfer in Vertical Ducts with Radiation Effects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=G.%20Rajamohan">G. Rajamohan</a>, <a href="https://publications.waset.org/search?q=N.%20Ramesh"> N. Ramesh</a>, <a href="https://publications.waset.org/search?q=P.%20Kumar"> P. Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Experiments have been performed to investigate the radiation effects on mixed convection heat transfer for thermally developing airflow in vertical ducts with two differentially heated isothermal walls and two adiabatic walls. The investigation covers the Reynolds number Re = 800 to Re = 2900, heat flux varied from 256 W/m2 to 863 W/m2, hot wall temperature ranges from 27&deg;C to 100 &deg;C, aspect ratios 1 &amp; 0.5 and the emissivity of internal walls are 0.05 and 0.85. In the present study, combined flow visualization was conducted to observe the flow patterns. The effect of surface temperature along the walls was studied to investigate the local Nusselt number variation within the duct. The result shows that flow condition and radiation significantly affect the total Nusselt number and tends to reduce the buoyancy condition.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Mixed%20convection" title="Mixed convection">Mixed convection</a>, <a href="https://publications.waset.org/search?q=vertical%20duct" title=" vertical duct"> vertical duct</a>, <a href="https://publications.waset.org/search?q=thermally%20developing%20and%20radiation%20effects." title=" thermally developing and radiation effects."> thermally developing and radiation effects.</a> </p> <a href="https://publications.waset.org/6360/study-on-mixed-convection-heat-transfer-in-vertical-ducts-with-radiation-effects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/6360/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/6360/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/6360/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/6360/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/6360/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/6360/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/6360/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/6360/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/6360/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/6360/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/6360.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2757</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">864</span> Conjugate Heat transfer over an Unsteady Stretching Sheet Mixed Convection with Magnetic Effect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Kai-Long%20Hsiao">Kai-Long Hsiao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A conjugate heat transfer for steady two-dimensional mixed convection with magnetic hydrodynamic (MHD) flow of an incompressible quiescent fluid over an unsteady thermal forming stretching sheet has been studied. A parameter, M, which is used to represent the dominance of the magnetic effect has been presented in governing equations. The similar transformation and an implicit finite-difference method have been used to analyze the present problem. The numerical solutions of the flow velocity distributions, temperature profiles, the wall unknown values of f''(0) and '(θ (0) for calculating the heat transfer of the similar boundary-layer flow are carried out as functions of the unsteadiness parameter (S), the Prandtl number (Pr), the space-dependent parameter (A) and temperature-dependent parameter (B) for heat source/sink and the magnetic parameter (M). The effects of these parameters have also discussed. At the results, it will produce greater heat transfer effect with a larger Pr and M, S, A, B will reduce heat transfer effects. At last, conjugate heat transfer for the free convection with a larger G has a good heat transfer effect better than a smaller G=0. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Finite-difference%20method" title="Finite-difference method">Finite-difference method</a>, <a href="https://publications.waset.org/search?q=Conjugate%20heat%20transfer" title=" Conjugate heat transfer"> Conjugate heat transfer</a>, <a href="https://publications.waset.org/search?q=Unsteady%20Stretching%20Sheet" title="Unsteady Stretching Sheet">Unsteady Stretching Sheet</a>, <a href="https://publications.waset.org/search?q=MHD" title=" MHD"> MHD</a>, <a href="https://publications.waset.org/search?q=Mixed%20convection." title=" Mixed convection."> Mixed convection.</a> </p> <a href="https://publications.waset.org/4670/conjugate-heat-transfer-over-an-unsteady-stretching-sheet-mixed-convection-with-magnetic-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/4670/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/4670/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/4670/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/4670/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/4670/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/4670/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/4670/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/4670/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/4670/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/4670/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/4670.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1584</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">863</span> Convective Heat Transfer of Internal Electronic Components in a Headlight Geometry </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Jan%20Langebach">Jan Langebach</a>, <a href="https://publications.waset.org/search?q=Peter%20Fischer"> Peter Fischer</a>, <a href="https://publications.waset.org/search?q=Christian%20Karcher"> Christian Karcher</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A numerical study is presented on convective heat transfer in enclosures. The results are addressed to automotive headlights containing new-age light sources like Light Emitting Diodes (LED). The heat transfer from the heat source (LED) to the enclosure walls is investigated for mixed convection as interaction of the forced convection flow from an inlet and an outlet port and the natural convection at the heat source. Unlike existing studies, inlet and outlet port are thermally coupled and do not serve to remove hot fluid. The input power of the heat source is expressed by the Rayleigh number. The internal position of the heat source, the aspect ratio of the enclosure, and the inclination angle of one wall are varied. The results are given in terms of the global Nusselt number and the enclosure Nusselt number that characterize the heat transfer from the source and from the interior fluid to the enclosure walls, respectively. It is found that the heat transfer from the source to the fluid can be maximized if the source is placed in the main stream from the inlet to the outlet port. In this case, the Reynolds number and heat source position have the major impact on the heat transfer. A disadvantageous position has been found where natural and forced convection compete each other. The overall heat transfer from the source to the wall increases with increasing Reynolds number as well as with increasing aspect ratio and decreasing inclination angle. The heat transfer from the interior fluid to the enclosure wall increases upon decreasing the aspect ratio and increasing the inclination angle. This counteracting behaviour is caused by the variation of the area of the enclosure wall. All mixed convection results are compared to the natural convection limit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Enclosure" title="Enclosure">Enclosure</a>, <a href="https://publications.waset.org/search?q=heat%20source" title=" heat source"> heat source</a>, <a href="https://publications.waset.org/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/search?q=mixed%0Aconvection." title=" mixed convection."> mixed convection.</a> </p> <a href="https://publications.waset.org/4676/convective-heat-transfer-of-internal-electronic-components-in-a-headlight-geometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/4676/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/4676/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/4676/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/4676/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/4676/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/4676/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/4676/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/4676/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/4676/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/4676/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/4676.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1790</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">862</span> Mixed Convective Heat Transfer in Water-Based Al2O3 Nanofluid in Horizontal Rectangular Duct</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Nur%20Irmawati">Nur Irmawati</a>, <a href="https://publications.waset.org/search?q=H.A.%20Mohammed"> H.A. Mohammed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In the present study, mixed convection in a horizontal rectangular duct using Al2O3 is numerically investigated. The effects of different Rayleigh number, Reynolds number and radiation on flow and heat transfer characteristics are studied in detail. This study covers Rayleigh number in the range of 2 &times; 10^6 &le; Ra &le; 2 &times; 10^7 and Reynolds number in the range of 100 &le; Re &le; 1100. Results reveal that the Nusselt number increases as Reynolds and Rayleigh numbers increase. It is also found that the dimensionless temperature distribution increases as Rayleigh number increases.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Numerical%20simulation" title="Numerical simulation">Numerical simulation</a>, <a href="https://publications.waset.org/search?q=Mixed%20convection" title=" Mixed convection"> Mixed convection</a>, <a href="https://publications.waset.org/search?q=Horizontal%0D%0Arectangular%20duct" title=" Horizontal rectangular duct"> Horizontal rectangular duct</a>, <a href="https://publications.waset.org/search?q=Nanofluids." title=" Nanofluids."> Nanofluids.</a> </p> <a href="https://publications.waset.org/10000333/mixed-convective-heat-transfer-in-water-based-al2o3-nanofluid-in-horizontal-rectangular-duct" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000333/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000333/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000333/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000333/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000333/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000333/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000333/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000333/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000333/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000333/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000333.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2359</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">861</span> Numerical Study of Mixed Convection Coupled to Radiation in a Square Cavity with a Lid-Driven</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mohamed%20Amine%20Belmiloud">Mohamed Amine Belmiloud</a>, <a href="https://publications.waset.org/search?q=Nord%20Eddine%20Sad%20Chemloul"> Nord Eddine Sad Chemloul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we investigated numerically heat transfer by mixed convection coupled to radiation in a square cavity; the upper horizontal wall is movable. The purpose of this study is to see the influence of the emissivity ε and the varying of the Richardson number Ri on the variation of average Nusselt number Nu. The vertical walls of the cavity are differentially heated, the left wall is maintained at a uniform temperature higher than the right wall, and the two horizontal walls are adiabatic. The finite volume method is used for solving the dimensionless Governing Equations. Emissivity values used in this study are ranged between 0 and 1, the Richardson number in the range 0.1 to 10. The Rayleigh number is fixed to Ra=104 and the Prandtl number is maintained constant Pr=0.71. Streamlines, isothermal lines and the average Nusselt number are presented according to the surface emissivity. The results of this study show that the Richardson number Ri and emissivity ε affect the average Nusselt number. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Numerical%20study" title="Numerical study">Numerical study</a>, <a href="https://publications.waset.org/search?q=mixed%20convection" title=" mixed convection"> mixed convection</a>, <a href="https://publications.waset.org/search?q=square%20cavity" title=" square cavity"> square cavity</a>, <a href="https://publications.waset.org/search?q=wall%20emissivity" title=" wall emissivity"> wall emissivity</a>, <a href="https://publications.waset.org/search?q=lid-driven." title=" lid-driven."> lid-driven.</a> </p> <a href="https://publications.waset.org/10002854/numerical-study-of-mixed-convection-coupled-to-radiation-in-a-square-cavity-with-a-lid-driven" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10002854/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10002854/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10002854/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10002854/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10002854/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10002854/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10002854/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10002854/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10002854/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10002854/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10002854.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2241</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">860</span> Effect of Buoyancy Ratio on Non-Darcy Mixed Convection in a Vertical Channel: A Thermal Non-equilibrium Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Manish%20K.%20Khandelwal">Manish K. Khandelwal</a>, <a href="https://publications.waset.org/search?q=P.%20Bera"> P. Bera</a>, <a href="https://publications.waset.org/search?q=A.%20Chakrabarti"> A. Chakrabarti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article presents a numerical study of the doublediffusive mixed convection in a vertical channel filled with porous medium by using non-equilibrium model. The flow is assumed fully developed, uni-directional and steady state. The controlling parameters are thermal Rayleigh number (RaT ), Darcy number (Da), Forchheimer number (F), buoyancy ratio (N), inter phase heat transfer coefficient (H), and porosity scaled thermal conductivity ratio (γ). The Brinkman-extended non-Darcy model is considered. The governing equations are solved by spectral collocation method. The main emphasize is given on flow profiles as well as heat and solute transfer rates, when two diffusive components in terms of buoyancy ratio are in favor (against) of each other and solid matrix and fluid are thermally non-equilibrium. The results show that, for aiding flow (RaT = 1000), the heat transfer rate of fluid (Nuf ) increases upto a certain value of H, beyond that decreases smoothly and converges to a constant, whereas in case of opposing flow (RaT = -1000), the result is same for N = 0 and 1. The variation of Nuf in (N, Nuf )-plane shows sinusoidal pattern for RaT = -1000. For both cases (aiding and opposing) the flow destabilize on increasing N by inviting point of inflection or flow separation on the velocity profile. Overall, the buoyancy force have significant impact on the non-Darcy mixed convection under LTNE conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=buoyancy%20ratio" title="buoyancy ratio">buoyancy ratio</a>, <a href="https://publications.waset.org/search?q=mixed%20convection" title=" mixed convection"> mixed convection</a>, <a href="https://publications.waset.org/search?q=non-Darcy%20model" title=" non-Darcy model"> non-Darcy model</a>, <a href="https://publications.waset.org/search?q=thermal%20non-equilibrium" title=" thermal non-equilibrium"> thermal non-equilibrium</a> </p> <a href="https://publications.waset.org/8046/effect-of-buoyancy-ratio-on-non-darcy-mixed-convection-in-a-vertical-channel-a-thermal-non-equilibrium-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/8046/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/8046/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/8046/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/8046/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/8046/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/8046/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/8046/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/8046/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/8046/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/8046/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/8046.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1958</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">859</span> Mixed Convection with Radiation Effect over a Nonlinearly Stretching Sheet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Kai-Long%20Hsiao">Kai-Long Hsiao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, an analysis has been performed for free convection with radiation effect over a thermal forming nonlinearly stretching sheet. Parameters n, k0, Pr, G represent the dominance of the nonlinearly effect, radiation effect, heat transfer and free convection effects which have been presented in governing equations, respectively. The similarity transformation and the finite-difference methods have been used to analyze the present problem. From the results, we find that the effects of parameters n, k0, Pr, Ec and G to the nonlinearly stretching sheet. The increase of Prandtl number Pr, free convection parameter G or radiation parameter k0 resulting in the increase of heat transfer effects, but increase of the viscous dissipation number Ec will decrease of heat transfer effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Nonlinearly%20stretching%20sheet" title="Nonlinearly stretching sheet">Nonlinearly stretching sheet</a>, <a href="https://publications.waset.org/search?q=Free%20convection" title=" Free convection"> Free convection</a>, <a href="https://publications.waset.org/search?q=Finite-difference" title="Finite-difference">Finite-difference</a>, <a href="https://publications.waset.org/search?q=Radiation%20effect." title=" Radiation effect."> Radiation effect.</a> </p> <a href="https://publications.waset.org/11853/mixed-convection-with-radiation-effect-over-a-nonlinearly-stretching-sheet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/11853/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/11853/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/11853/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/11853/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/11853/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/11853/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/11853/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/11853/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/11853/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/11853/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/11853.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1757</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">858</span> Numerical Simulation of Convection Heat Transfer in a Lid-Driven Cavity with an Open Side</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.Jafari">M.Jafari</a>, <a href="https://publications.waset.org/search?q=M.Farhadi"> M.Farhadi</a>, <a href="https://publications.waset.org/search?q=K.sedighi"> K.sedighi</a>, <a href="https://publications.waset.org/search?q=E.Fattahi"> E.Fattahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this manuscript, the LBM is applied for simulating of Mixed Convection in a Lid-Driven cavity with an open side. The cavity horizontal walls are insulated while the west Lid-driven wall is maintained at a uniform temperature higher than the ambient. Prandtl number (Pr) is fixed to 0.71 (air) while Reynolds number (Re) , Richardson number (Ri) and aspect ratio (A) of the cavity are changed in the range of 50-150 , of 0.1-10 and of 1-4 , respectively. The numerical code is validated for the standard square cavity, and then the results of an open ended cavity are presented. Result shows by increasing of aspect ratio, the average Nusselt number (Nu) on lid- driven wall decreases and with same Reynolds number (Re) by increasing of aspect ratio (A), Richardson number plays more important role in heat transfer rate.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Lattice%20Boltzmann%20Method" title="Lattice Boltzmann Method">Lattice Boltzmann Method</a>, <a href="https://publications.waset.org/search?q=Open%20ended%20cavity" title=" Open ended cavity"> Open ended cavity</a>, <a href="https://publications.waset.org/search?q=Mixed%20convection" title=" Mixed convection"> Mixed convection</a>, <a href="https://publications.waset.org/search?q=Lid-driven%20cavity." title=" Lid-driven cavity."> Lid-driven cavity.</a> </p> <a href="https://publications.waset.org/11893/numerical-simulation-of-convection-heat-transfer-in-a-lid-driven-cavity-with-an-open-side" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/11893/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/11893/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/11893/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/11893/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/11893/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/11893/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/11893/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/11893/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/11893/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/11893/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/11893.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2646</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">857</span> Mixed Convection in a Vertical Heated Channel: Influence of the Aspect Ratio</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ameni%20Mokni">Ameni Mokni </a>, <a href="https://publications.waset.org/search?q=Hatem%20Mhiri"> Hatem Mhiri </a>, <a href="https://publications.waset.org/search?q=Georges%20Le%20Palec"> Georges Le Palec </a>, <a href="https://publications.waset.org/search?q=Philippe%20Bournot"> Philippe Bournot </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In mechanical and environmental engineering, mixed convection is a frequently encountered thermal fluid phenomenon which exists in atmospheric environment, urban canopy flows, ocean currents, gas turbines, heat exchangers, and computer chip cooling systems etc... . This paper deals with a numerical investigation of mixed convection in a vertical heated channel. This flow results from the mixing of the up-going fluid along walls of the channel with the one issued from a flat nozzle located in its entry section. The fluiddynamic and heat-transfer characteristics of vented vertical channels are investigated for constant heat-flux boundary conditions, a Rayleigh number equal to 2.57 1010, for two jet Reynolds number Re=3 103 and 2104 and the aspect ratio in the 8-20 range. The system of governing equations is solved with a finite volumes method and an implicit scheme. The obtained results show that the turbulence and the jet-wall interaction activate the heat transfer, as does the drive of ambient air by the jet. For low Reynolds number Re=3 103, the increase of the aspect Ratio enhances the heat transfer of about 3%, however; for Re=2 104, the heat transfer enhancement is of about 12%. The numerical velocity, pressure and temperature fields are post-processed to compute the quantities of engineering interest such as the induced mass flow rate, and average Nusselt number, in terms of Rayleigh, Reynolds numbers and dimensionless geometric parameters are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Aspect%20Ratio" title="Aspect Ratio">Aspect Ratio</a>, <a href="https://publications.waset.org/search?q=Channel" title=" Channel"> Channel</a>, <a href="https://publications.waset.org/search?q=Jet" title=" Jet"> Jet</a>, <a href="https://publications.waset.org/search?q=Mixed%20convection" title=" Mixed convection"> Mixed convection</a> </p> <a href="https://publications.waset.org/10118/mixed-convection-in-a-vertical-heated-channel-influence-of-the-aspect-ratio" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10118/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10118/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10118/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10118/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10118/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10118/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10118/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10118/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10118/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10118/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10118.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2178</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">856</span> CFD Investigation of Turbulent Mixed Convection Heat Transfer in a Closed Lid-Driven Cavity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20Khaleel">A. Khaleel</a>, <a href="https://publications.waset.org/search?q=S.%20Gao"> S. Gao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Both steady and unsteady turbulent mixed convection heat transfer in a 3D lid-driven enclosure, which has constant heat flux on the middle of bottom wall and with isothermal moving sidewalls, is reported in this paper for working fluid with Prandtl number Pr = 0.71. The other walls are adiabatic and stationary. The dimensionless parameters used in this research are Reynolds number, Re = 5000, 10000 and 15000, and Richardson number, Ri = 1 and 10. The simulations have been done by using different turbulent methods such as RANS, URANS, and LES. The effects of using different k-ε models such as standard, RNG and Realizable k-ε model are investigated. Interesting behaviours of the thermal and flow fields with changing the Re or Ri numbers are observed. Isotherm and turbulent kinetic energy distributions and variation of local Nusselt number at the hot bottom wall are studied as well. The local Nusselt number is found increasing with increasing either Re or Ri number. In addition, the turbulent kinetic energy is discernibly affected by increasing Re number. Moreover, the LES results have shown good ability of this method in predicting more detailed flow structures in the cavity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Mixed%20convection" title="Mixed convection">Mixed convection</a>, <a href="https://publications.waset.org/search?q=Lid-driven%20cavity" title=" Lid-driven cavity"> Lid-driven cavity</a>, <a href="https://publications.waset.org/search?q=Turbulent%0D%0Aflow" title=" Turbulent flow"> Turbulent flow</a>, <a href="https://publications.waset.org/search?q=RANS%20model" title=" RANS model"> RANS model</a>, <a href="https://publications.waset.org/search?q=URANS%20model" title=" URANS model"> URANS model</a>, <a href="https://publications.waset.org/search?q=Large%20eddy%20simulation." title=" Large eddy simulation."> Large eddy simulation.</a> </p> <a href="https://publications.waset.org/10003119/cfd-investigation-of-turbulent-mixed-convection-heat-transfer-in-a-closed-lid-driven-cavity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10003119/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10003119/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10003119/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10003119/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10003119/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10003119/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10003119/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10003119/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10003119/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10003119/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10003119.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2274</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">855</span> Mixed Convection Enhancement in a 3D Lid-Driven Cavity Containing a Rotating Cylinder by Applying an Artificial Roughness</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ali%20Khaleel%20Kareem">Ali Khaleel Kareem</a>, <a href="https://publications.waset.org/search?q=Shian%20Gao"> Shian Gao</a>, <a href="https://publications.waset.org/search?q=Ahmed%20Qasim%20Ahmed"> Ahmed Qasim Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A numerical investigation of unsteady mixed convection heat transfer in a 3D moving top wall enclosure, which has a central rotating cylinder and uses either artificial roughness on the bottom hot plate or smooth bottom hot plate to study the heat transfer enhancement, is completed for fixed circular cylinder, and anticlockwise and clockwise rotational speeds, -1 &le; &Omega; &le; 1, at Reynolds number of 5000. The top lid-driven wall was cooled, while the other remaining walls that completed obstructed cubic were kept insulated and motionless. A standard k-&epsilon; model of Unsteady Reynolds-Averaged Navier-Stokes (URANS) method is involved to deal with turbulent flow. It has been clearly noted that artificial roughness can strongly control the thermal fields and fluid flow patterns. Ultimately, the heat transfer rate has been dramatically increased by involving artificial roughness on the heated bottom wall in the presence of rotating cylinder. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Artificial%20roughness" title="Artificial roughness">Artificial roughness</a>, <a href="https://publications.waset.org/search?q=Lid-driven%20cavity" title=" Lid-driven cavity"> Lid-driven cavity</a>, <a href="https://publications.waset.org/search?q=Mixed%20convection%20heat%20transfer" title=" Mixed convection heat transfer"> Mixed convection heat transfer</a>, <a href="https://publications.waset.org/search?q=Rotating%20cylinder" title=" Rotating cylinder"> Rotating cylinder</a>, <a href="https://publications.waset.org/search?q=URANS%20method." title=" URANS method."> URANS method.</a> </p> <a href="https://publications.waset.org/10008884/mixed-convection-enhancement-in-a-3d-lid-driven-cavity-containing-a-rotating-cylinder-by-applying-an-artificial-roughness" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10008884/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10008884/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10008884/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10008884/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10008884/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10008884/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10008884/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10008884/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10008884/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10008884/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10008884.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1155</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">854</span> Effects of Mixed Convection and Double Dispersion on Semi Infinite Vertical Plate in Presence of Radiation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.S.N.Murti">A.S.N.Murti</a>, <a href="https://publications.waset.org/search?q=D.R.V.S.R.K.%20Sastry"> D.R.V.S.R.K. Sastry</a>, <a href="https://publications.waset.org/search?q=P.K.%20Kameswaran"> P.K. Kameswaran</a>, <a href="https://publications.waset.org/search?q=T.%20Poorna%20Kantha"> T. Poorna Kantha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the effects of radiation, chemical reaction and double dispersion on mixed convection heat and mass transfer along a semi vertical plate are considered. The plate is embedded in a Newtonian fluid saturated non - Darcy (Forchheimer flow model) porous medium. The Forchheimer extension and first order chemical reaction are considered in the flow equations. The governing sets of partial differential equations are nondimensionalized and reduced to a set of ordinary differential equations which are then solved numerically by Fourth order Runge– Kutta method. Numerical results for the detail of the velocity, temperature, and concentration profiles as well as heat transfer rates (Nusselt number) and mass transfer rates (Sherwood number) against various parameters are presented in graphs. The obtained results are checked against previously published work for special cases of the problem and are found to be in good agreement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Radiation" title="Radiation">Radiation</a>, <a href="https://publications.waset.org/search?q=Chemical%20reaction" title=" Chemical reaction"> Chemical reaction</a>, <a href="https://publications.waset.org/search?q=Double%20dispersion" title=" Double dispersion"> Double dispersion</a>, <a href="https://publications.waset.org/search?q=Mixed%20convection" title=" Mixed convection"> Mixed convection</a>, <a href="https://publications.waset.org/search?q=Heat%20and%20Mass%20transfer" title=" Heat and Mass transfer"> Heat and Mass transfer</a> </p> <a href="https://publications.waset.org/10277/effects-of-mixed-convection-and-double-dispersion-on-semi-infinite-vertical-plate-in-presence-of-radiation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10277/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10277/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10277/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10277/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10277/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10277/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10277/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10277/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10277/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10277/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10277.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1713</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">853</span> Numerical Investigation of Developing Mixed Convection in Isothermal Circular and Annular Sector Ducts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ayad%20A.%20Abdalla">Ayad A. Abdalla</a>, <a href="https://publications.waset.org/search?q=Elhadi%20I.%20Elhadi"> Elhadi I. Elhadi</a>, <a href="https://publications.waset.org/search?q=Hisham%20A.%20Elfergani"> Hisham A. Elfergani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Developing mixed convection in circular and annular sector ducts is investigated numerically for steady laminar flow of an incompressible Newtonian fluid with <em>Pr</em> = 0.7 and a wide range of Grashof number (0 &pound; Gr &pound; 10<sup>7</sup>). Investigation is limited to the case of heating in circular and annular sector ducts with apex angle of 2ϕ = &pi;/4 for the thermal boundary condition of uniform wall temperature axially and peripherally. A numerical, finite control volume approach based on the SIMPLER algorithm is employed to solve the 3D governing equations. Numerical analysis is conducted using marching technique in the axial direction with axial conduction, axial mass diffusion, and viscous dissipation within the fluid are assumed negligible. The results include developing secondary flow patterns, developing temperature and axial velocity fields, local Nusselt number, local friction factor, and local apparent friction factor. Comparisons are made with the literature and satisfactory agreement is obtained. It is found that free convection enhances the local heat transfer in some cases by up to 2.5 times from predictions which account for forced convection only and the enhancement increases as Grashof number increases. Duct geometry and Grashof number strongly influence the heat transfer and pressure drop characteristics.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Mixed%20convection" title="Mixed convection">Mixed convection</a>, <a href="https://publications.waset.org/search?q=annular%20and%20circular%20sector%20ducts" title=" annular and circular sector ducts"> annular and circular sector ducts</a>, <a href="https://publications.waset.org/search?q=heat%20transfer%20enhancement" title=" heat transfer enhancement"> heat transfer enhancement</a>, <a href="https://publications.waset.org/search?q=pressure%20drop." title=" pressure drop. "> pressure drop. </a> </p> <a href="https://publications.waset.org/10011918/numerical-investigation-of-developing-mixed-convection-in-isothermal-circular-and-annular-sector-ducts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10011918/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10011918/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10011918/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10011918/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10011918/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10011918/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10011918/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10011918/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10011918/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10011918/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10011918.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">547</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">852</span> Simulation of Fluid Flow and Heat Transfer in Inclined Cavity using Lattice Boltzmann Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Arash%20Karimipour">Arash Karimipour</a>, <a href="https://publications.waset.org/search?q=A.%20Hossein%20Nezhad"> A. Hossein Nezhad</a>, <a href="https://publications.waset.org/search?q=E.%20Shirani"> E. Shirani</a>, <a href="https://publications.waset.org/search?q=A.%20Safaei"> A. Safaei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this paper, Lattice Boltzmann Method (LBM) is used to study laminar flow with mixed convection heat transfer inside a two-dimensional inclined lid-driven rectangular cavity with aspect ratio AR = 3. Bottom wall of the cavity is maintained at lower temperature than the top lid, and its vertical walls are assumed insulated. Top lid motion results in fluid motion inside the cavity. Inclination of the cavity causes horizontal and vertical components of velocity to be affected by buoyancy force. To include this effect, calculation procedure of macroscopic properties by LBM is changed and collision term of Boltzmann equation is modified. A computer program is developed to simulate this problem using BGK model of lattice Boltzmann method. The effects of the variations of Richardson number and inclination angle on the thermal and flow behavior of the fluid inside the cavity are investigated. The results are presented as velocity and temperature profiles, stream function contours and isotherms. It is concluded that LBM has good potential to simulate mixed convection heat transfer problems.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=gravity" title="gravity">gravity</a>, <a href="https://publications.waset.org/search?q=inclined%20lid%20driven%20cavity" title=" inclined lid driven cavity"> inclined lid driven cavity</a>, <a href="https://publications.waset.org/search?q=lattice%20Boltzmannmethod" title=" lattice Boltzmannmethod"> lattice Boltzmannmethod</a>, <a href="https://publications.waset.org/search?q=mixed%20convection." title=" mixed convection."> mixed convection.</a> </p> <a href="https://publications.waset.org/2506/simulation-of-fluid-flow-and-heat-transfer-in-inclined-cavity-using-lattice-boltzmann-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/2506/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/2506/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/2506/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/2506/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/2506/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/2506/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/2506/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/2506/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/2506/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/2506/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/2506.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1954</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">851</span> Hall Effect on MHD Mixed Convection Flow of Viscous-Elastic Incompressible Fluid Past of an Infinite Porous Medium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=T.%20K.%20Das">T. K. Das</a>, <a href="https://publications.waset.org/search?q=N.%20Senapatil"> N. Senapatil</a>, <a href="https://publications.waset.org/search?q=R.%20K.%20Dhal"> R. K. Dhal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>An unsteady mixed free convection MHD flow of elastic-viscous incompressible fluid past an infinite vertical porous flat plate is investigated when the presence of heat Source/sink, temperature and concentration are assumed to be oscillating with time and hall effect. The governing equations are solved by complex variable technique. The expressions for the velocity field, temperature field and species concentration are demonstrated in graphs. The effects of the Prandtl number, the Grashof number, modified Grashof number, the Schimidt number, the Hall parameter, Elastic parameter &amp; Magnetic parameter are discussed.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=MHD" title="MHD">MHD</a>, <a href="https://publications.waset.org/search?q=Mixed%20convective" title=" Mixed convective"> Mixed convective</a>, <a href="https://publications.waset.org/search?q=Elastic-viscous%20incompressible" title=" Elastic-viscous incompressible"> Elastic-viscous incompressible</a>, <a href="https://publications.waset.org/search?q=rotational" title=" rotational"> rotational</a>, <a href="https://publications.waset.org/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/search?q=mass%20transfer" title=" mass transfer"> mass transfer</a>, <a href="https://publications.waset.org/search?q=suction%20and%20injection." title=" suction and injection."> suction and injection.</a> </p> <a href="https://publications.waset.org/17347/hall-effect-on-mhd-mixed-convection-flow-of-viscous-elastic-incompressible-fluid-past-of-an-infinite-porous-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/17347/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/17347/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/17347/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/17347/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/17347/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/17347/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/17347/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/17347/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/17347/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/17347/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/17347.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1978</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">850</span> Numerical Study of Vertical Wall Jets: Influence of the Prandtl Number</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Am%C3%A8ni%20Mokni">Amèni Mokni</a>, <a href="https://publications.waset.org/search?q=Hatem%20Mhiri"> Hatem Mhiri</a>, <a href="https://publications.waset.org/search?q=Georges%20Le%20Palec"> Georges Le Palec</a>, <a href="https://publications.waset.org/search?q=Philippe%20Bournot"> Philippe Bournot</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is a numerical investigation of a laminar isothermal plane two dimensional wall jet. Special attention has been paid to the effect of the inlet conditions at the nozzle exit on the hydrodynamic and thermal characteristics of the flow. The behaviour of various fluids evolving in both forced and mixed convection regimes near a vertical plate plane is carried out. The system of governing equations is solved with an implicit finite difference scheme. For numerical stability we use a staggered non uniform grid. The obtained results show that the effect of the Prandtl number is significant in the plume region in which the jet flow is governed by buoyant forces. Further for ascending X values, the buoyancy forces become dominating, and a certain agreement between the temperature profiles are observed, which shows that the velocity profile has no longer influence on the wall temperature evolution in this region. Fluids with low Prandtl number warm up more importantly, because for such fluids the effect of heat diffusion is higher. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Forced%20convection" title="Forced convection">Forced convection</a>, <a href="https://publications.waset.org/search?q=Mixed%20convection" title=" Mixed convection"> Mixed convection</a>, <a href="https://publications.waset.org/search?q=Prandtl%0D%0Anumber" title=" Prandtl number"> Prandtl number</a>, <a href="https://publications.waset.org/search?q=Wall%20jet." title=" Wall jet."> Wall jet.</a> </p> <a href="https://publications.waset.org/9142/numerical-study-of-vertical-wall-jets-influence-of-the-prandtl-number" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9142/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9142/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9142/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9142/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9142/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9142/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9142/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9142/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9142/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9142/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9142.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1777</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">849</span> An Experimental Study of the Effect of Coil Step on Heat Transfer Coefficient in Shell- Side of Shell-and-Coil Heat Exchanger</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mofid%20Gorji%20Bandpy">Mofid Gorji Bandpy</a>, <a href="https://publications.waset.org/search?q=Hasan%20Sajjadi"> Hasan Sajjadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study the mixed convection heat transfer in a coil-in-shell heat exchanger for various Reynolds numbers and various dimensionless coil pitch was experimentally investigated. The experiments were conducted for both laminar and turbulent flow inside coil and the effects of coil pitch on shell-side heat transfer coefficient of the heat exchanger were studied. The particular difference in this study in comparison with the other similar studies was the boundary conditions for the helical coils. The results indicate that with the increase of coil pitch, shell-side heat transfer coefficient is increased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Coil%20pitch" title="Coil pitch">Coil pitch</a>, <a href="https://publications.waset.org/search?q=Shell-and-Coil%20heat%20exchanger" title=" Shell-and-Coil heat exchanger"> Shell-and-Coil heat exchanger</a>, <a href="https://publications.waset.org/search?q=Mixed%0Aconvection" title=" Mixed convection"> Mixed convection</a>, <a href="https://publications.waset.org/search?q=Experimental%20investigation." title=" Experimental investigation."> Experimental investigation.</a> </p> <a href="https://publications.waset.org/11538/an-experimental-study-of-the-effect-of-coil-step-on-heat-transfer-coefficient-in-shell-side-of-shell-and-coil-heat-exchanger" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/11538/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/11538/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/11538/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/11538/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/11538/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/11538/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/11538/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/11538/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/11538/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/11538/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/11538.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2458</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=mixed%20convection&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=mixed%20convection&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=mixed%20convection&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=mixed%20convection&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=mixed%20convection&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=mixed%20convection&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=mixed%20convection&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=mixed%20convection&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=mixed%20convection&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=mixed%20convection&amp;page=29">29</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=mixed%20convection&amp;page=30">30</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=mixed%20convection&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10