CINXE.COM

Laplacian matrix - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Laplacian matrix - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"5e236fb5-4a1d-4fec-886c-8ffd7b2eff93","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Laplacian_matrix","wgTitle":"Laplacian matrix","wgCurRevisionId":1253781572,"wgRevisionId":1253781572,"wgArticleId":1448472,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Use American English from March 2019","All Wikipedia articles written in American English","Articles with short description","Short description matches Wikidata","Algebraic graph theory","Matrices","Numerical differential equations"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Laplacian_matrix","wgRelevantArticleId":1448472,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[], "wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":50000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q772067","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false, "wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin", "mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Laplacian matrix - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Laplacian_matrix"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Laplacian_matrix&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Laplacian_matrix"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Laplacian_matrix rootpage-Laplacian_matrix skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Laplacian+matrix" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Laplacian+matrix" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Laplacian+matrix" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Laplacian+matrix" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Definitions_for_simple_graphs" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Definitions_for_simple_graphs"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Definitions for <i>simple graphs</i></span> </div> </a> <button aria-controls="toc-Definitions_for_simple_graphs-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Definitions for <i>simple graphs</i> subsection</span> </button> <ul id="toc-Definitions_for_simple_graphs-sublist" class="vector-toc-list"> <li id="toc-Laplacian_matrix" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Laplacian_matrix"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Laplacian matrix</span> </div> </a> <ul id="toc-Laplacian_matrix-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Laplacian_matrix_for_an_undirected_graph_via_the_oriented_incidence_matrix" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Laplacian_matrix_for_an_undirected_graph_via_the_oriented_incidence_matrix"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2</span> <span>Laplacian matrix for an undirected graph via the oriented incidence matrix</span> </div> </a> <ul id="toc-Laplacian_matrix_for_an_undirected_graph_via_the_oriented_incidence_matrix-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Symmetric_Laplacian_for_a_directed_graph" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Symmetric_Laplacian_for_a_directed_graph"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.3</span> <span>Symmetric Laplacian for a directed graph</span> </div> </a> <ul id="toc-Symmetric_Laplacian_for_a_directed_graph-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Laplacian_matrix_normalization" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Laplacian_matrix_normalization"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.4</span> <span>Laplacian matrix normalization</span> </div> </a> <ul id="toc-Laplacian_matrix_normalization-sublist" class="vector-toc-list"> <li id="toc-Symmetrically_normalized_Laplacian" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Symmetrically_normalized_Laplacian"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.4.1</span> <span>Symmetrically normalized Laplacian</span> </div> </a> <ul id="toc-Symmetrically_normalized_Laplacian-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Left_(random-walk)_and_right_normalized_Laplacians" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Left_(random-walk)_and_right_normalized_Laplacians"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.4.2</span> <span>Left (random-walk) and right normalized Laplacians</span> </div> </a> <ul id="toc-Left_(random-walk)_and_right_normalized_Laplacians-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </li> <li id="toc-Definitions_for_graphs_with_weighted_edges" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Definitions_for_graphs_with_weighted_edges"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Definitions for graphs with weighted edges</span> </div> </a> <button aria-controls="toc-Definitions_for_graphs_with_weighted_edges-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Definitions for graphs with weighted edges subsection</span> </button> <ul id="toc-Definitions_for_graphs_with_weighted_edges-sublist" class="vector-toc-list"> <li id="toc-Laplacian_matrix_2" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Laplacian_matrix_2"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Laplacian matrix</span> </div> </a> <ul id="toc-Laplacian_matrix_2-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Symmetric_Laplacian_via_the_incidence_matrix" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Symmetric_Laplacian_via_the_incidence_matrix"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Symmetric Laplacian via the incidence matrix</span> </div> </a> <ul id="toc-Symmetric_Laplacian_via_the_incidence_matrix-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Symmetric_Laplacian_for_a_directed_graph_2" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Symmetric_Laplacian_for_a_directed_graph_2"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>Symmetric Laplacian for a directed graph</span> </div> </a> <ul id="toc-Symmetric_Laplacian_for_a_directed_graph_2-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Laplacian_matrix_normalization_2" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Laplacian_matrix_normalization_2"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4</span> <span>Laplacian matrix normalization</span> </div> </a> <ul id="toc-Laplacian_matrix_normalization_2-sublist" class="vector-toc-list"> <li id="toc-Symmetrically_normalized_Laplacian_2" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Symmetrically_normalized_Laplacian_2"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4.1</span> <span>Symmetrically normalized Laplacian</span> </div> </a> <ul id="toc-Symmetrically_normalized_Laplacian_2-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Random_walk_normalized_Laplacian" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Random_walk_normalized_Laplacian"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4.2</span> <span>Random walk normalized Laplacian</span> </div> </a> <ul id="toc-Random_walk_normalized_Laplacian-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Negative_weights" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Negative_weights"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4.3</span> <span>Negative weights</span> </div> </a> <ul id="toc-Negative_weights-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </li> <li id="toc-Properties" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Properties</span> </div> </a> <ul id="toc-Properties-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Interpretation_as_the_discrete_Laplace_operator_approximating_the_continuous_Laplacian" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Interpretation_as_the_discrete_Laplace_operator_approximating_the_continuous_Laplacian"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Interpretation as the discrete Laplace operator approximating the continuous Laplacian</span> </div> </a> <ul id="toc-Interpretation_as_the_discrete_Laplace_operator_approximating_the_continuous_Laplacian-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Generalizations_and_extensions_of_the_Laplacian_matrix" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Generalizations_and_extensions_of_the_Laplacian_matrix"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Generalizations and extensions of the Laplacian matrix</span> </div> </a> <button aria-controls="toc-Generalizations_and_extensions_of_the_Laplacian_matrix-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Generalizations and extensions of the Laplacian matrix subsection</span> </button> <ul id="toc-Generalizations_and_extensions_of_the_Laplacian_matrix-sublist" class="vector-toc-list"> <li id="toc-Generalized_Laplacian" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Generalized_Laplacian"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Generalized Laplacian</span> </div> </a> <ul id="toc-Generalized_Laplacian-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Admittance_matrix_of_an_AC_circuit" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Admittance_matrix_of_an_AC_circuit"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Admittance matrix of an AC circuit</span> </div> </a> <ul id="toc-Admittance_matrix_of_an_AC_circuit-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Magnetic_Laplacian" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Magnetic_Laplacian"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.3</span> <span>Magnetic Laplacian</span> </div> </a> <ul id="toc-Magnetic_Laplacian-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Deformed_Laplacian" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Deformed_Laplacian"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.4</span> <span>Deformed Laplacian</span> </div> </a> <ul id="toc-Deformed_Laplacian-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Signless_Laplacian" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Signless_Laplacian"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.5</span> <span>Signless Laplacian</span> </div> </a> <ul id="toc-Signless_Laplacian-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Directed_multigraphs" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Directed_multigraphs"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.6</span> <span>Directed multigraphs</span> </div> </a> <ul id="toc-Directed_multigraphs-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Open_source_software_implementations" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Open_source_software_implementations"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Open source software implementations</span> </div> </a> <ul id="toc-Open_source_software_implementations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Application_software" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Application_software"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Application software</span> </div> </a> <ul id="toc-Application_software-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Laplacian matrix</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 19 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-19" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">19 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%85%D8%B5%D9%81%D9%88%D9%81%D8%A9_%D9%84%D8%A7%D8%A8%D9%84%D8%A7%D8%B3" title="مصفوفة لابلاس – Arabic" lang="ar" hreflang="ar" data-title="مصفوفة لابلاس" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Matriu_laplaciana" title="Matriu laplaciana – Catalan" lang="ca" hreflang="ca" data-title="Matriu laplaciana" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Laplace-Matrix" title="Laplace-Matrix – German" lang="de" hreflang="de" data-title="Laplace-Matrix" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Matriz_laplaciana" title="Matriz laplaciana – Spanish" lang="es" hreflang="es" data-title="Matriz laplaciana" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Matrice_laplacienne" title="Matrice laplacienne – French" lang="fr" hreflang="fr" data-title="Matrice laplacienne" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EA%B7%B8%EB%9E%98%ED%94%84_%EB%9D%BC%ED%94%8C%EB%9D%BC%EC%8A%A4_%EC%97%B0%EC%82%B0%EC%9E%90" title="그래프 라플라스 연산자 – Korean" lang="ko" hreflang="ko" data-title="그래프 라플라스 연산자" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Matrice_laplaciana" title="Matrice laplaciana – Italian" lang="it" hreflang="it" data-title="Matrice laplaciana" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%9E%D7%98%D7%A8%D7%99%D7%A6%D7%AA_%D7%9C%D7%A4%D7%9C%D7%A1%D7%99%D7%90%D7%9F" title="מטריצת לפלסיאן – Hebrew" lang="he" hreflang="he" data-title="מטריצת לפלסיאן" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%83%A9%E3%83%97%E3%83%A9%E3%82%B7%E3%82%A2%E3%83%B3%E8%A1%8C%E5%88%97" title="ラプラシアン行列 – Japanese" lang="ja" hreflang="ja" data-title="ラプラシアン行列" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Matriz_Laplaciana" title="Matriz Laplaciana – Portuguese" lang="pt" hreflang="pt" data-title="Matriz Laplaciana" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D1%80%D0%B8%D1%86%D0%B0_%D0%9A%D0%B8%D1%80%D1%85%D0%B3%D0%BE%D1%84%D0%B0" title="Матрица Кирхгофа – Russian" lang="ru" hreflang="ru" data-title="Матрица Кирхгофа" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Laplaceova_matrika" title="Laplaceova matrika – Slovenian" lang="sl" hreflang="sl" data-title="Laplaceova matrika" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Laplacen_matriisi" title="Laplacen matriisi – Finnish" lang="fi" hreflang="fi" data-title="Laplacen matriisi" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Laplacematris" title="Laplacematris – Swedish" lang="sv" hreflang="sv" data-title="Laplacematris" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%87%E0%AE%B2%E0%AE%BE%E0%AE%AA%E0%AF%8D%E0%AE%B2%E0%AE%BE%E0%AE%9A%E0%AE%BF%E0%AE%AF_%E0%AE%85%E0%AE%A3%E0%AE%BF" title="இலாப்லாசிய அணி – Tamil" lang="ta" hreflang="ta" data-title="இலாப்லாசிய அணி" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D1%80%D0%B8%D1%86%D1%8F_%D0%9A%D1%96%D1%80%D1%85%D0%B3%D0%BE%D1%84%D0%B0" title="Матриця Кірхгофа – Ukrainian" lang="uk" hreflang="uk" data-title="Матриця Кірхгофа" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Ma_tr%E1%BA%ADn_Laplace" title="Ma trận Laplace – Vietnamese" lang="vi" hreflang="vi" data-title="Ma trận Laplace" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E6%8B%89%E6%99%AE%E6%8B%89%E6%96%AF%E7%9F%A9%E9%99%A3" title="拉普拉斯矩陣 – Cantonese" lang="yue" hreflang="yue" data-title="拉普拉斯矩陣" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E8%B0%83%E5%92%8C%E7%9F%A9%E9%98%B5" title="调和矩阵 – Chinese" lang="zh" hreflang="zh" data-title="调和矩阵" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q772067#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Laplacian_matrix" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Laplacian_matrix" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Laplacian_matrix"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Laplacian_matrix&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Laplacian_matrix&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Laplacian_matrix"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Laplacian_matrix&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Laplacian_matrix&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Laplacian_matrix" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Laplacian_matrix" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Laplacian_matrix&amp;oldid=1253781572" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Laplacian_matrix&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Laplacian_matrix&amp;id=1253781572&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FLaplacian_matrix"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FLaplacian_matrix"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Laplacian_matrix&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Laplacian_matrix&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q772067" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><p class="mw-empty-elt"> </p> <div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Matrix representation of a graph</div> <p>In the <a href="/wiki/Mathematics" title="Mathematics">mathematical</a> field of <a href="/wiki/Graph_theory" title="Graph theory">graph theory</a>, the <b>Laplacian matrix</b>, also called the <b><a href="/wiki/Discrete_Laplace_operator#Graph_Laplacians" title="Discrete Laplace operator">graph Laplacian</a></b>, <b><a href="/wiki/Admittance_matrix" class="mw-redirect" title="Admittance matrix">admittance matrix</a></b>, <b>Kirchhoff matrix</b> or <b><a href="/wiki/Discrete_Laplace_operator" title="Discrete Laplace operator">discrete Laplacian</a></b>, is a <a href="/wiki/Matrix_(mathematics)" title="Matrix (mathematics)">matrix</a> representation of a <a href="/wiki/Graph_(discrete_mathematics)" title="Graph (discrete mathematics)">graph</a>. Named after <a href="/wiki/Pierre-Simon_Laplace" title="Pierre-Simon Laplace">Pierre-Simon Laplace</a>, the graph Laplacian matrix can be viewed as a matrix form of the negative <a href="/wiki/Discrete_Laplace_operator" title="Discrete Laplace operator">discrete Laplace operator</a> on a graph approximating the negative continuous <a href="/wiki/Laplacian" class="mw-redirect" title="Laplacian">Laplacian</a> obtained by the <a href="/wiki/Finite_difference_method" title="Finite difference method">finite difference method</a>. </p><p>The Laplacian matrix relates to many useful properties of a graph. Together with <a href="/wiki/Kirchhoff%27s_theorem" title="Kirchhoff&#39;s theorem">Kirchhoff's theorem</a>, it can be used to calculate the number of <a href="/wiki/Spanning_tree_(mathematics)" class="mw-redirect" title="Spanning tree (mathematics)">spanning trees</a> for a given graph. The <a href="/wiki/Cut_(graph_theory)#Sparsest_cut" title="Cut (graph theory)">sparsest cut</a> of a graph can be approximated through the <a href="/wiki/Fiedler_vector" class="mw-redirect" title="Fiedler vector">Fiedler vector</a> — the eigenvector corresponding to the second smallest eigenvalue of the graph Laplacian — as established by <a href="/wiki/Cheeger_constant_(graph_theory)#Cheeger_Inequalities" title="Cheeger constant (graph theory)">Cheeger's inequality</a>. The <a href="/wiki/Eigendecomposition_of_a_matrix" title="Eigendecomposition of a matrix">spectral decomposition</a> of the Laplacian matrix allows constructing <a href="/wiki/Nonlinear_dimensionality_reduction#Laplacian_eigenmaps" title="Nonlinear dimensionality reduction">low dimensional embeddings</a> that appear in many <a href="/wiki/Machine_learning" title="Machine learning">machine learning</a> applications and determines a <a href="/wiki/Spectral_layout" title="Spectral layout">spectral layout</a> in <a href="/wiki/Graph_drawing" title="Graph drawing">graph drawing</a>. Graph-based <a href="/wiki/Signal_processing" title="Signal processing">signal processing</a> is based on the <a href="/wiki/Graph_Fourier_transform" title="Graph Fourier transform">graph Fourier transform</a> that extends the traditional <a href="/wiki/Discrete_Fourier_transform" title="Discrete Fourier transform">discrete Fourier transform</a> by substituting the standard basis of <a href="/wiki/Complex_number" title="Complex number">complex</a> <a href="/wiki/Sine_wave" title="Sine wave">sinusoids</a> for eigenvectors of the Laplacian matrix of a graph corresponding to the signal. </p><p>The Laplacian matrix is the easiest to define for a <a href="/wiki/Simple_graph" class="mw-redirect" title="Simple graph">simple graph</a>, but more common in applications for an <a href="/wiki/Glossary_of_graph_theory#weighted_graph" title="Glossary of graph theory">edge-weighted graph</a>, i.e., with weights on its edges — the entries of the graph <a href="/wiki/Adjacency_matrix" title="Adjacency matrix">adjacency matrix</a>. <a href="/wiki/Spectral_graph_theory" title="Spectral graph theory">Spectral graph theory</a> relates properties of a graph to a spectrum, i.e., eigenvalues, and eigenvectors of matrices associated with the graph, such as its adjacency matrix or Laplacian matrix. Imbalanced weights may undesirably affect the matrix spectrum, leading to the need of normalization — a column/row scaling of the matrix entries — resulting in normalized adjacency and Laplacian matrices. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Definitions_for_simple_graphs">Definitions for <i>simple graphs</i></h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Laplacian_matrix&amp;action=edit&amp;section=1" title="Edit section: Definitions for simple graphs"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Laplacian_matrix">Laplacian matrix</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Laplacian_matrix&amp;action=edit&amp;section=2" title="Edit section: Laplacian matrix"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Given a <a href="/wiki/Simple_graph" class="mw-redirect" title="Simple graph">simple graph</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle G}"></span> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> vertices <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v_{1},\ldots ,v_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v_{1},\ldots ,v_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb40a91abab8b7bfb0e84b074732b2f044fd56ef" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.706ex; height:2.009ex;" alt="{\displaystyle v_{1},\ldots ,v_{n}}"></span>, its Laplacian matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle L_{n\times n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x00D7;<!-- × --></mo> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle L_{n\times n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/546e2e717bd8fbd7b1211edfb1434921021769fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.066ex; height:2.509ex;" alt="{\textstyle L_{n\times n}}"></span> is defined element-wise as<sup id="cite_ref-Fan_Chung_1-0" class="reference"><a href="#cite_note-Fan_Chung-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L_{i,j}:={\begin{cases}\deg(v_{i})&amp;{\mbox{if}}\ i=j\\-1&amp;{\mbox{if}}\ i\neq j\ {\mbox{and}}\ v_{i}{\mbox{ is adjacent to }}v_{j}\\0&amp;{\mbox{otherwise}},\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>:=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mi>deg</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>if</mtext> </mstyle> </mrow> <mtext>&#xA0;</mtext> <mi>i</mi> <mo>=</mo> <mi>j</mi> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>if</mtext> </mstyle> </mrow> <mtext>&#xA0;</mtext> <mi>i</mi> <mo>&#x2260;<!-- ≠ --></mo> <mi>j</mi> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>and</mtext> </mstyle> </mrow> <mtext>&#xA0;</mtext> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>&#xA0;is adjacent to&#xA0;</mtext> </mstyle> </mrow> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>otherwise</mtext> </mstyle> </mrow> <mo>,</mo> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L_{i,j}:={\begin{cases}\deg(v_{i})&amp;{\mbox{if}}\ i=j\\-1&amp;{\mbox{if}}\ i\neq j\ {\mbox{and}}\ v_{i}{\mbox{ is adjacent to }}v_{j}\\0&amp;{\mbox{otherwise}},\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0cb1fbbbf7819fa84d4f0b1cad18620b08f0c2e9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.838ex; width:49.842ex; height:8.843ex;" alt="{\displaystyle L_{i,j}:={\begin{cases}\deg(v_{i})&amp;{\mbox{if}}\ i=j\\-1&amp;{\mbox{if}}\ i\neq j\ {\mbox{and}}\ v_{i}{\mbox{ is adjacent to }}v_{j}\\0&amp;{\mbox{otherwise}},\end{cases}}}"></span></dd></dl> <p>or equivalently by the matrix </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L=D-A,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo>=</mo> <mi>D</mi> <mo>&#x2212;<!-- − --></mo> <mi>A</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L=D-A,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/712994d22cc3a9e0bd6148764a17c1628f843062" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.836ex; height:2.509ex;" alt="{\displaystyle L=D-A,}"></span></dd></dl> <p>where <i>D</i> is the <a href="/wiki/Degree_matrix" title="Degree matrix">degree matrix</a> and <i>A</i> is the <a href="/wiki/Adjacency_matrix" title="Adjacency matrix">adjacency matrix</a> of the graph. Since <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/febc2b9ff73bcca7b3fdb1432fddd1cdf3c8403c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\textstyle G}"></span> is a simple graph, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a118c6ad00742b3f5dccd2f0e74b5e369df6fd31" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\textstyle A}"></span> only contains 1s or 0s and its diagonal elements are all 0s. </p><p>Here is a simple example of a labelled, undirected graph and its Laplacian matrix. </p> <table class="wikitable"> <tbody><tr> <th><a href="/wiki/Labelled_graph" class="mw-redirect" title="Labelled graph">Labelled graph</a> </th> <th><a href="/wiki/Degree_matrix" title="Degree matrix">Degree matrix</a> </th> <th><a href="/wiki/Adjacency_matrix" title="Adjacency matrix">Adjacency matrix</a> </th> <th>Laplacian matrix </th></tr> <tr> <td><span typeof="mw:File"><a href="/wiki/File:6n-graf.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/5b/6n-graf.svg/175px-6n-graf.svg.png" decoding="async" width="175" height="116" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/5b/6n-graf.svg/263px-6n-graf.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/5b/6n-graf.svg/350px-6n-graf.svg.png 2x" data-file-width="333" data-file-height="220" /></a></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left({\begin{array}{rrrrrr}2&amp;0&amp;0&amp;0&amp;0&amp;0\\0&amp;3&amp;0&amp;0&amp;0&amp;0\\0&amp;0&amp;2&amp;0&amp;0&amp;0\\0&amp;0&amp;0&amp;3&amp;0&amp;0\\0&amp;0&amp;0&amp;0&amp;3&amp;0\\0&amp;0&amp;0&amp;0&amp;0&amp;1\\\end{array}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right right right right right right" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>2</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>3</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>2</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>3</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>3</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left({\begin{array}{rrrrrr}2&amp;0&amp;0&amp;0&amp;0&amp;0\\0&amp;3&amp;0&amp;0&amp;0&amp;0\\0&amp;0&amp;2&amp;0&amp;0&amp;0\\0&amp;0&amp;0&amp;3&amp;0&amp;0\\0&amp;0&amp;0&amp;0&amp;3&amp;0\\0&amp;0&amp;0&amp;0&amp;0&amp;1\\\end{array}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0836612538d7223e6729f81660abba11866765ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -9.005ex; width:23.406ex; height:19.176ex;" alt="{\textstyle \left({\begin{array}{rrrrrr}2&amp;0&amp;0&amp;0&amp;0&amp;0\\0&amp;3&amp;0&amp;0&amp;0&amp;0\\0&amp;0&amp;2&amp;0&amp;0&amp;0\\0&amp;0&amp;0&amp;3&amp;0&amp;0\\0&amp;0&amp;0&amp;0&amp;3&amp;0\\0&amp;0&amp;0&amp;0&amp;0&amp;1\\\end{array}}\right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left({\begin{array}{rrrrrr}0&amp;1&amp;0&amp;0&amp;1&amp;0\\1&amp;0&amp;1&amp;0&amp;1&amp;0\\0&amp;1&amp;0&amp;1&amp;0&amp;0\\0&amp;0&amp;1&amp;0&amp;1&amp;1\\1&amp;1&amp;0&amp;1&amp;0&amp;0\\0&amp;0&amp;0&amp;1&amp;0&amp;0\\\end{array}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right right right right right right" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left({\begin{array}{rrrrrr}0&amp;1&amp;0&amp;0&amp;1&amp;0\\1&amp;0&amp;1&amp;0&amp;1&amp;0\\0&amp;1&amp;0&amp;1&amp;0&amp;0\\0&amp;0&amp;1&amp;0&amp;1&amp;1\\1&amp;1&amp;0&amp;1&amp;0&amp;0\\0&amp;0&amp;0&amp;1&amp;0&amp;0\\\end{array}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/56ef36960e2a1893b5a6fb8388458f223af37793" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -9.005ex; width:23.406ex; height:19.176ex;" alt="{\textstyle \left({\begin{array}{rrrrrr}0&amp;1&amp;0&amp;0&amp;1&amp;0\\1&amp;0&amp;1&amp;0&amp;1&amp;0\\0&amp;1&amp;0&amp;1&amp;0&amp;0\\0&amp;0&amp;1&amp;0&amp;1&amp;1\\1&amp;1&amp;0&amp;1&amp;0&amp;0\\0&amp;0&amp;0&amp;1&amp;0&amp;0\\\end{array}}\right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left({\begin{array}{rrrrrr}2&amp;-1&amp;0&amp;0&amp;-1&amp;0\\-1&amp;3&amp;-1&amp;0&amp;-1&amp;0\\0&amp;-1&amp;2&amp;-1&amp;0&amp;0\\0&amp;0&amp;-1&amp;3&amp;-1&amp;-1\\-1&amp;-1&amp;0&amp;-1&amp;3&amp;0\\0&amp;0&amp;0&amp;-1&amp;0&amp;1\\\end{array}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right right right right right right" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>2</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>3</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>2</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>3</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>3</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left({\begin{array}{rrrrrr}2&amp;-1&amp;0&amp;0&amp;-1&amp;0\\-1&amp;3&amp;-1&amp;0&amp;-1&amp;0\\0&amp;-1&amp;2&amp;-1&amp;0&amp;0\\0&amp;0&amp;-1&amp;3&amp;-1&amp;-1\\-1&amp;-1&amp;0&amp;-1&amp;3&amp;0\\0&amp;0&amp;0&amp;-1&amp;0&amp;1\\\end{array}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e495d70fe91b270e0c3e05fdba207d95c8658d32" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -9.005ex; width:34.255ex; height:19.176ex;" alt="{\textstyle \left({\begin{array}{rrrrrr}2&amp;-1&amp;0&amp;0&amp;-1&amp;0\\-1&amp;3&amp;-1&amp;0&amp;-1&amp;0\\0&amp;-1&amp;2&amp;-1&amp;0&amp;0\\0&amp;0&amp;-1&amp;3&amp;-1&amp;-1\\-1&amp;-1&amp;0&amp;-1&amp;3&amp;0\\0&amp;0&amp;0&amp;-1&amp;0&amp;1\\\end{array}}\right)}"></span> </td></tr></tbody></table> <p>We observe for the undirected graph that both the <a href="/wiki/Adjacency_matrix" title="Adjacency matrix">adjacency matrix</a> and the Laplacian matrix are symmetric, and that row- and column-sums of the Laplacian matrix are all zeros (which directly implies that the Laplacian matrix is singular). </p><p>For <a href="/wiki/Directed_graph" title="Directed graph">directed graphs</a>, either the <a href="/wiki/Degree_(graph_theory)" title="Degree (graph theory)">indegree or outdegree</a> might be used, depending on the application, as in the following example: </p> <table class="wikitable"> <tbody><tr> <th>Labelled graph </th> <th><a href="/wiki/Adjacency_matrix" title="Adjacency matrix">Adjacency matrix</a> </th> <th>Out-Degree matrix </th> <th>Out-Degree Laplacian </th> <th>In-Degree matrix </th> <th>In-Degree Laplacian </th></tr> <tr> <td><figure class="mw-halign-center" typeof="mw:File"><a href="/wiki/File:3_node_Directed_graph.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/15/3_node_Directed_graph.png/100px-3_node_Directed_graph.png" decoding="async" width="100" height="88" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/15/3_node_Directed_graph.png/150px-3_node_Directed_graph.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/15/3_node_Directed_graph.png/200px-3_node_Directed_graph.png 2x" data-file-width="600" data-file-height="529" /></a><figcaption></figcaption></figure> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left({\begin{array}{rrr}0&amp;1&amp;1\\0&amp;0&amp;1\\1&amp;0&amp;0\\\end{array}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right right right" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left({\begin{array}{rrr}0&amp;1&amp;1\\0&amp;0&amp;1\\1&amp;0&amp;0\\\end{array}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6f3eede6e0fdb65007814bf3bd70dc5bf4ce9ff6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:12.951ex; height:9.176ex;" alt="{\textstyle \left({\begin{array}{rrr}0&amp;1&amp;1\\0&amp;0&amp;1\\1&amp;0&amp;0\\\end{array}}\right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left({\begin{array}{rrr}2&amp;0&amp;0\\0&amp;1&amp;0\\0&amp;0&amp;1\\\end{array}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right right right" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>2</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left({\begin{array}{rrr}2&amp;0&amp;0\\0&amp;1&amp;0\\0&amp;0&amp;1\\\end{array}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3974694bf18cbff53cda15af92ae700e9002695e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:12.951ex; height:9.176ex;" alt="{\textstyle \left({\begin{array}{rrr}2&amp;0&amp;0\\0&amp;1&amp;0\\0&amp;0&amp;1\\\end{array}}\right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left({\begin{array}{rrr}2&amp;-1&amp;-1\\0&amp;1&amp;-1\\-1&amp;0&amp;1\\\end{array}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right right right" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>2</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left({\begin{array}{rrr}2&amp;-1&amp;-1\\0&amp;1&amp;-1\\-1&amp;0&amp;1\\\end{array}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb159d87de6076ff54efc58144b3b55b2f909db9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:18.375ex; height:9.176ex;" alt="{\textstyle \left({\begin{array}{rrr}2&amp;-1&amp;-1\\0&amp;1&amp;-1\\-1&amp;0&amp;1\\\end{array}}\right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left({\begin{array}{rrr}1&amp;0&amp;0\\0&amp;1&amp;0\\0&amp;0&amp;2\\\end{array}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right right right" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>2</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left({\begin{array}{rrr}1&amp;0&amp;0\\0&amp;1&amp;0\\0&amp;0&amp;2\\\end{array}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/55d72f70c5d93d6ebf3336ee890168c1bd75538f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:12.951ex; height:9.176ex;" alt="{\textstyle \left({\begin{array}{rrr}1&amp;0&amp;0\\0&amp;1&amp;0\\0&amp;0&amp;2\\\end{array}}\right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left({\begin{array}{rrr}1&amp;-1&amp;-1\\0&amp;1&amp;-1\\-1&amp;0&amp;2\\\end{array}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right right right" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>2</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left({\begin{array}{rrr}1&amp;-1&amp;-1\\0&amp;1&amp;-1\\-1&amp;0&amp;2\\\end{array}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/89385fb3a74231a96a6c920966a397a406acd3b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:18.375ex; height:9.176ex;" alt="{\textstyle \left({\begin{array}{rrr}1&amp;-1&amp;-1\\0&amp;1&amp;-1\\-1&amp;0&amp;2\\\end{array}}\right)}"></span> </td></tr></tbody></table> <p>In the directed graph, both the <a href="/wiki/Adjacency_matrix" title="Adjacency matrix">adjacency matrix</a> and the Laplacian matrix are asymmetric. In its Laplacian matrix, column-sums or row-sums are zero, depending on whether the <a href="/wiki/Degree_(graph_theory)" title="Degree (graph theory)">indegree or outdegree</a> has been used. </p> <div class="mw-heading mw-heading3"><h3 id="Laplacian_matrix_for_an_undirected_graph_via_the_oriented_incidence_matrix">Laplacian matrix for an undirected graph via the oriented incidence matrix</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Laplacian_matrix&amp;action=edit&amp;section=3" title="Edit section: Laplacian matrix for an undirected graph via the oriented incidence matrix"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle |v|\times |e|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle |v|\times |e|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9b36e5de913ed9f9b29d97510170a7bbaeaaf6b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.639ex; height:2.843ex;" alt="{\textstyle |v|\times |e|}"></span> oriented <a href="/wiki/Incidence_matrix" title="Incidence matrix">incidence matrix</a> <i>B</i> with element <i>B</i><sub><i>ve</i></sub> for the vertex <i>v</i> and the edge <i>e</i> (connecting vertices <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle v_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle v_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6126ad3375b4bd895f169ef76fc2946672ec8d17" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.927ex; height:2.009ex;" alt="{\textstyle v_{i}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle v_{j}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle v_{j}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b3f568e53bcdaed8afc85aac830156e94884b45" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.037ex; height:2.343ex;" alt="{\textstyle v_{j}}"></span>, with <i>i</i>&#160;≠&#160;<i>j</i>) is defined by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{ve}=\left\{{\begin{array}{rl}1,&amp;{\text{if }}v=v_{i}\\-1,&amp;{\text{if }}v=v_{j}\\0,&amp;{\text{otherwise}}.\end{array}}\right.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> <mi>e</mi> </mrow> </msub> <mo>=</mo> <mrow> <mo>{</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> <mo>,</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>if&#xA0;</mtext> </mrow> <mi>v</mi> <mo>=</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>,</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>if&#xA0;</mtext> </mrow> <mi>v</mi> <mo>=</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> <mo>,</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>otherwise</mtext> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{ve}=\left\{{\begin{array}{rl}1,&amp;{\text{if }}v=v_{i}\\-1,&amp;{\text{if }}v=v_{j}\\0,&amp;{\text{otherwise}}.\end{array}}\right.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9713798e3993aa9c589b84e9690fc1c1d86698c7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.171ex; width:25.64ex; height:9.509ex;" alt="{\displaystyle B_{ve}=\left\{{\begin{array}{rl}1,&amp;{\text{if }}v=v_{i}\\-1,&amp;{\text{if }}v=v_{j}\\0,&amp;{\text{otherwise}}.\end{array}}\right.}"></span></dd></dl> <p>Even though the edges in this definition are technically directed, their directions can be arbitrary, still resulting in the same symmetric Laplacian <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle |v|\times |v|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle |v|\times |v|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c25465612a3bf69ef26566b8d4f5ad4562cf4136" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.683ex; height:2.843ex;" alt="{\textstyle |v|\times |v|}"></span> matrix <i>L</i> defined as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L=BB^{\textsf {T}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo>=</mo> <mi>B</mi> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="sans-serif">T</mtext> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L=BB^{\textsf {T}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1264fb5a45117177572de405ff4e9e5f88d92896" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.561ex; height:2.676ex;" alt="{\displaystyle L=BB^{\textsf {T}}}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle B^{\textsf {T}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="sans-serif">T</mtext> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle B^{\textsf {T}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f59a8ce346d71e155f4207edbf601f12eef0821e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.116ex; height:2.509ex;" alt="{\textstyle B^{\textsf {T}}}"></span> is the <a href="/wiki/Transpose" title="Transpose">matrix transpose</a> of <i>B</i>. </p> <table class="wikitable"> <tbody><tr> <th><a href="/wiki/Undirected_graph" class="mw-redirect" title="Undirected graph">Undirected graph</a> </th> <th><a href="/wiki/Incidence_matrix" title="Incidence matrix">Incidence matrix</a> </th> <th>Laplacian matrix </th></tr> <tr> <td><span typeof="mw:File"><a href="/wiki/File:Labeled_undirected_graph.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/90/Labeled_undirected_graph.svg/100px-Labeled_undirected_graph.svg.png" decoding="async" width="100" height="102" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/90/Labeled_undirected_graph.svg/150px-Labeled_undirected_graph.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/90/Labeled_undirected_graph.svg/200px-Labeled_undirected_graph.svg.png 2x" data-file-width="445" data-file-height="455" /></a></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left({\begin{array}{rrrr}1&amp;1&amp;1&amp;0\\-1&amp;0&amp;0&amp;0\\0&amp;-1&amp;0&amp;1\\0&amp;0&amp;-1&amp;-1\\\end{array}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right right right right" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left({\begin{array}{rrrr}1&amp;1&amp;1&amp;0\\-1&amp;0&amp;0&amp;0\\0&amp;-1&amp;0&amp;1\\0&amp;0&amp;-1&amp;-1\\\end{array}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/77ad3181cf7625667615283f520b6115a3c99b5b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:23.668ex; height:12.509ex;" alt="{\textstyle \left({\begin{array}{rrrr}1&amp;1&amp;1&amp;0\\-1&amp;0&amp;0&amp;0\\0&amp;-1&amp;0&amp;1\\0&amp;0&amp;-1&amp;-1\\\end{array}}\right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left({\begin{array}{rrrr}3&amp;-1&amp;-1&amp;-1\\-1&amp;1&amp;0&amp;0\\-1&amp;0&amp;2&amp;-1\\-1&amp;0&amp;-1&amp;2\\\end{array}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right right right right" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>3</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>2</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>2</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left({\begin{array}{rrrr}3&amp;-1&amp;-1&amp;-1\\-1&amp;1&amp;0&amp;0\\-1&amp;0&amp;2&amp;-1\\-1&amp;0&amp;-1&amp;2\\\end{array}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59d02ba81e0e0c97de64d3385ff07f5362c1234a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:23.668ex; height:12.509ex;" alt="{\textstyle \left({\begin{array}{rrrr}3&amp;-1&amp;-1&amp;-1\\-1&amp;1&amp;0&amp;0\\-1&amp;0&amp;2&amp;-1\\-1&amp;0&amp;-1&amp;2\\\end{array}}\right)}"></span> </td></tr></tbody></table> <p>An alternative product <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B^{\textsf {T}}B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="sans-serif">T</mtext> </mrow> </mrow> </msup> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B^{\textsf {T}}B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9704d2a682926a4d24e9eb217ed7afe255bd6d09" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.88ex; height:2.676ex;" alt="{\displaystyle B^{\textsf {T}}B}"></span> defines the so-called <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle |e|\times |e|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle |e|\times |e|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/34d379e7e02f9cd24f6d759f7d5a1254bcbc520c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.595ex; height:2.843ex;" alt="{\textstyle |e|\times |e|}"></span> <i>edge-based Laplacian,</i> as opposed to the original commonly used <i>vertex-based Laplacian</i> matrix <i>L</i>. </p> <div class="mw-heading mw-heading3"><h3 id="Symmetric_Laplacian_for_a_directed_graph">Symmetric Laplacian for a directed graph</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Laplacian_matrix&amp;action=edit&amp;section=4" title="Edit section: Symmetric Laplacian for a directed graph"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Laplacian matrix of a directed graph is by definition generally non-symmetric, while, e.g., traditional <a href="/wiki/Spectral_clustering" title="Spectral clustering">spectral clustering</a> is primarily developed for undirected graphs with symmetric adjacency and Laplacian matrices. A trivial approach to apply techniques requiring the symmetry is to turn the original directed graph into an undirected graph and build the Laplacian matrix for the latter. </p><p>In the matrix notation, the adjacency matrix of the undirected graph could, e.g., be defined as a <a href="/wiki/OR_gate" title="OR gate">Boolean sum</a> of the adjacency matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> of the original directed graph and its <a href="/wiki/Matrix_transpose" class="mw-redirect" title="Matrix transpose">matrix transpose</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A^{T}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A^{T}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d978c0c4f22282a313e4107f97b9eda56315b258" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.132ex; height:2.676ex;" alt="{\displaystyle A^{T}}"></span>, where the zero and one entries of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> are treated as logical, rather than numerical, values, as in the following example: </p> <table class="wikitable"> <tbody><tr> <th><a href="/wiki/Adjacency_matrix" title="Adjacency matrix">Adjacency matrix</a> </th> <th>Symmetrized adjacency </th> <th>Symmetric Laplacian matrix </th></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left({\begin{array}{ccc}0&amp;1&amp;1\\0&amp;0&amp;1\\1&amp;0&amp;0\\\end{array}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="center center center" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left({\begin{array}{ccc}0&amp;1&amp;1\\0&amp;0&amp;1\\1&amp;0&amp;0\\\end{array}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb5ce93ab7029fc2c91ac4252433a702b89e96a3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:12.951ex; height:9.176ex;" alt="{\textstyle \left({\begin{array}{ccc}0&amp;1&amp;1\\0&amp;0&amp;1\\1&amp;0&amp;0\\\end{array}}\right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left({\begin{array}{ccc}0&amp;1&amp;1\\1&amp;0&amp;1\\1&amp;1&amp;0\\\end{array}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="center center center" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left({\begin{array}{ccc}0&amp;1&amp;1\\1&amp;0&amp;1\\1&amp;1&amp;0\\\end{array}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4390485518f74aff189417be468e9b928386f074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:12.951ex; height:9.176ex;" alt="{\textstyle \left({\begin{array}{ccc}0&amp;1&amp;1\\1&amp;0&amp;1\\1&amp;1&amp;0\\\end{array}}\right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left({\begin{array}{ccc}2&amp;-1&amp;-1\\-1&amp;2&amp;-1\\-1&amp;-1&amp;2\\\end{array}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="center center center" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>2</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>2</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>2</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left({\begin{array}{ccc}2&amp;-1&amp;-1\\-1&amp;2&amp;-1\\-1&amp;-1&amp;2\\\end{array}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/56b475f3a73811fc4c56da657e5f3668b68f1368" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:18.375ex; height:9.176ex;" alt="{\textstyle \left({\begin{array}{ccc}2&amp;-1&amp;-1\\-1&amp;2&amp;-1\\-1&amp;-1&amp;2\\\end{array}}\right)}"></span> </td></tr></tbody></table> <div class="mw-heading mw-heading3"><h3 id="Laplacian_matrix_normalization">Laplacian matrix normalization</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Laplacian_matrix&amp;action=edit&amp;section=5" title="Edit section: Laplacian matrix normalization"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A vertex with a large degree, also called a <i>heavy node,</i> results in a large diagonal entry in the Laplacian matrix dominating the matrix properties. Normalization is aimed to make the influence of such vertices more equal to that of other vertices, by dividing the entries of the Laplacian matrix by the vertex degrees. To avoid division by zero, isolated vertices with zero degrees are excluded from the process of the normalization. </p> <div class="mw-heading mw-heading4"><h4 id="Symmetrically_normalized_Laplacian">Symmetrically normalized Laplacian</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Laplacian_matrix&amp;action=edit&amp;section=6" title="Edit section: Symmetrically normalized Laplacian"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The symmetrically normalized Laplacian matrix is defined as:<sup id="cite_ref-Fan_Chung_1-1" class="reference"><a href="#cite_note-Fan_Chung-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{\text{sym}}:=(D^{+})^{1/2}L(D^{+})^{1/2}=I-(D^{+})^{1/2}A(D^{+})^{1/2},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>sym</mtext> </mrow> </msup> <mo>:=</mo> <mo stretchy="false">(</mo> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> <mi>L</mi> <mo stretchy="false">(</mo> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mi>I</mi> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> <mi>A</mi> <mo stretchy="false">(</mo> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{\text{sym}}:=(D^{+})^{1/2}L(D^{+})^{1/2}=I-(D^{+})^{1/2}A(D^{+})^{1/2},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/381dda52782e0a91149c51ca69bb4e183891a8eb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:51.299ex; height:3.343ex;" alt="{\displaystyle L^{\text{sym}}:=(D^{+})^{1/2}L(D^{+})^{1/2}=I-(D^{+})^{1/2}A(D^{+})^{1/2},}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D^{+}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D^{+}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cd4db53bf465a1b1357923aee2e0afffa7e124b8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.435ex; height:2.509ex;" alt="{\displaystyle D^{+}}"></span> is the <a href="/wiki/Moore%E2%80%93Penrose_inverse" title="Moore–Penrose inverse">Moore–Penrose inverse</a>. </p><p>The elements of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle L^{\text{sym}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>sym</mtext> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle L^{\text{sym}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2c77f75035a9dd5b636edf0064c6d8bbfa897989" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.7ex; height:2.176ex;" alt="{\textstyle L^{\text{sym}}}"></span> are thus given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L_{i,j}^{\text{sym}}:={\begin{cases}1&amp;{\mbox{if }}i=j{\mbox{ and }}\deg(v_{i})\neq 0\\-{\frac {1}{\sqrt {\deg(v_{i})\deg(v_{j})}}}&amp;{\mbox{if }}i\neq j{\mbox{ and }}v_{i}{\mbox{ is adjacent to }}v_{j}\\0&amp;{\mbox{otherwise}}.\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>sym</mtext> </mrow> </msubsup> <mo>:=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>if&#xA0;</mtext> </mstyle> </mrow> <mi>i</mi> <mo>=</mo> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>&#xA0;and&#xA0;</mtext> </mstyle> </mrow> <mi>deg</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x2260;<!-- ≠ --></mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mi>deg</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mi>deg</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo stretchy="false">)</mo> </msqrt> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>if&#xA0;</mtext> </mstyle> </mrow> <mi>i</mi> <mo>&#x2260;<!-- ≠ --></mo> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>&#xA0;and&#xA0;</mtext> </mstyle> </mrow> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>&#xA0;is adjacent to&#xA0;</mtext> </mstyle> </mrow> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>otherwise</mtext> </mstyle> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L_{i,j}^{\text{sym}}:={\begin{cases}1&amp;{\mbox{if }}i=j{\mbox{ and }}\deg(v_{i})\neq 0\\-{\frac {1}{\sqrt {\deg(v_{i})\deg(v_{j})}}}&amp;{\mbox{if }}i\neq j{\mbox{ and }}v_{i}{\mbox{ is adjacent to }}v_{j}\\0&amp;{\mbox{otherwise}}.\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f3c4182a1ee1d1859911a983b0c2a6feac2d2a73" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.005ex; width:58.9ex; height:11.176ex;" alt="{\displaystyle L_{i,j}^{\text{sym}}:={\begin{cases}1&amp;{\mbox{if }}i=j{\mbox{ and }}\deg(v_{i})\neq 0\\-{\frac {1}{\sqrt {\deg(v_{i})\deg(v_{j})}}}&amp;{\mbox{if }}i\neq j{\mbox{ and }}v_{i}{\mbox{ is adjacent to }}v_{j}\\0&amp;{\mbox{otherwise}}.\end{cases}}}"></span></dd></dl> <p>The symmetrically normalized Laplacian matrix is symmetric if and only if the adjacency matrix is symmetric. </p> <table class="wikitable"> <tbody><tr> <th><a href="/wiki/Adjacency_matrix" title="Adjacency matrix">Adjacency matrix</a> </th> <th>Degree matrix </th> <th>Normalized Laplacian </th></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left({\begin{array}{rrr}0&amp;1&amp;0\\1&amp;0&amp;1\\0&amp;1&amp;0\\\end{array}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right right right" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left({\begin{array}{rrr}0&amp;1&amp;0\\1&amp;0&amp;1\\0&amp;1&amp;0\\\end{array}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/612061505a0c7cc1a47a4f77f8d01efbac666c60" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:12.951ex; height:9.176ex;" alt="{\textstyle \left({\begin{array}{rrr}0&amp;1&amp;0\\1&amp;0&amp;1\\0&amp;1&amp;0\\\end{array}}\right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left({\begin{array}{rrr}1&amp;0&amp;0\\0&amp;2&amp;0\\0&amp;0&amp;1\\\end{array}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right right right" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>2</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left({\begin{array}{rrr}1&amp;0&amp;0\\0&amp;2&amp;0\\0&amp;0&amp;1\\\end{array}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a25907fb17f0a6735ed4f0ee6e93e759abd9d3ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:12.951ex; height:9.176ex;" alt="{\textstyle \left({\begin{array}{rrr}1&amp;0&amp;0\\0&amp;2&amp;0\\0&amp;0&amp;1\\\end{array}}\right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left({\begin{array}{rrr}1&amp;-{\sqrt {1/2}}&amp;0\\-{\sqrt {1/2}}&amp;1&amp;-{\sqrt {1/2}}\\0&amp;-{\sqrt {1/2}}&amp;1\\\end{array}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right right right" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </msqrt> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </msqrt> </mrow> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </msqrt> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </msqrt> </mrow> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left({\begin{array}{rrr}1&amp;-{\sqrt {1/2}}&amp;0\\-{\sqrt {1/2}}&amp;1&amp;-{\sqrt {1/2}}\\0&amp;-{\sqrt {1/2}}&amp;1\\\end{array}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1be37b4a3313aa450d816a375d63dfde4b954eaf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.005ex; width:32.321ex; height:11.176ex;" alt="{\textstyle \left({\begin{array}{rrr}1&amp;-{\sqrt {1/2}}&amp;0\\-{\sqrt {1/2}}&amp;1&amp;-{\sqrt {1/2}}\\0&amp;-{\sqrt {1/2}}&amp;1\\\end{array}}\right)}"></span> </td></tr></tbody></table> <p>For a non-symmetric adjacency matrix of a directed graph, either of <a href="/wiki/Degree_(graph_theory)" title="Degree (graph theory)">indegree and outdegree</a> can be used for normalization: </p> <table class="wikitable"> <tbody><tr> <th><a href="/wiki/Adjacency_matrix" title="Adjacency matrix">Adjacency matrix</a> </th> <th>Out-Degree matrix </th> <th>Out-Degree normalized Laplacian </th> <th>In-Degree matrix </th> <th>In-Degree normalized Laplacian </th></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left({\begin{array}{rrr}0&amp;1&amp;1\\0&amp;0&amp;1\\1&amp;0&amp;0\\\end{array}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right right right" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left({\begin{array}{rrr}0&amp;1&amp;1\\0&amp;0&amp;1\\1&amp;0&amp;0\\\end{array}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6f3eede6e0fdb65007814bf3bd70dc5bf4ce9ff6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:12.951ex; height:9.176ex;" alt="{\textstyle \left({\begin{array}{rrr}0&amp;1&amp;1\\0&amp;0&amp;1\\1&amp;0&amp;0\\\end{array}}\right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left({\begin{array}{rrr}2&amp;0&amp;0\\0&amp;1&amp;0\\0&amp;0&amp;1\\\end{array}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right right right" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>2</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left({\begin{array}{rrr}2&amp;0&amp;0\\0&amp;1&amp;0\\0&amp;0&amp;1\\\end{array}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3974694bf18cbff53cda15af92ae700e9002695e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:12.951ex; height:9.176ex;" alt="{\textstyle \left({\begin{array}{rrr}2&amp;0&amp;0\\0&amp;1&amp;0\\0&amp;0&amp;1\\\end{array}}\right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left({\begin{array}{rrr}1&amp;-{\sqrt {1/2}}&amp;-{\sqrt {1/2}}\\0&amp;1&amp;-1\\-{\sqrt {1/2}}&amp;0&amp;1\\\end{array}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right right right" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </msqrt> </mrow> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </msqrt> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </msqrt> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left({\begin{array}{rrr}1&amp;-{\sqrt {1/2}}&amp;-{\sqrt {1/2}}\\0&amp;1&amp;-1\\-{\sqrt {1/2}}&amp;0&amp;1\\\end{array}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75bfe3fcb5c45eebf0b69a2f48001de10717f502" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.671ex; width:32.321ex; height:10.509ex;" alt="{\textstyle \left({\begin{array}{rrr}1&amp;-{\sqrt {1/2}}&amp;-{\sqrt {1/2}}\\0&amp;1&amp;-1\\-{\sqrt {1/2}}&amp;0&amp;1\\\end{array}}\right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left({\begin{array}{rrr}1&amp;0&amp;0\\0&amp;1&amp;0\\0&amp;0&amp;2\\\end{array}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right right right" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>2</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left({\begin{array}{rrr}1&amp;0&amp;0\\0&amp;1&amp;0\\0&amp;0&amp;2\\\end{array}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/55d72f70c5d93d6ebf3336ee890168c1bd75538f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:12.951ex; height:9.176ex;" alt="{\textstyle \left({\begin{array}{rrr}1&amp;0&amp;0\\0&amp;1&amp;0\\0&amp;0&amp;2\\\end{array}}\right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left({\begin{array}{rrr}1&amp;-1&amp;-{\sqrt {1/2}}\\0&amp;1&amp;-{\sqrt {1/2}}\\-{\sqrt {1/2}}&amp;0&amp;1\\\end{array}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right right right" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </msqrt> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </msqrt> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </msqrt> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left({\begin{array}{rrr}1&amp;-1&amp;-{\sqrt {1/2}}\\0&amp;1&amp;-{\sqrt {1/2}}\\-{\sqrt {1/2}}&amp;0&amp;1\\\end{array}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8f55407c92c640ba7124b2612ccf05a5cc5c772a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.005ex; width:27.673ex; height:11.176ex;" alt="{\textstyle \left({\begin{array}{rrr}1&amp;-1&amp;-{\sqrt {1/2}}\\0&amp;1&amp;-{\sqrt {1/2}}\\-{\sqrt {1/2}}&amp;0&amp;1\\\end{array}}\right)}"></span> </td></tr></tbody></table> <div class="mw-heading mw-heading4"><h4 id="Left_(random-walk)_and_right_normalized_Laplacians"><span id="Left_.28random-walk.29_and_right_normalized_Laplacians"></span>Left (random-walk) and right normalized Laplacians</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Laplacian_matrix&amp;action=edit&amp;section=7" title="Edit section: Left (random-walk) and right normalized Laplacians"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The left (random-walk) normalized Laplacian matrix is defined as: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{\text{rw}}:=D^{+}L=I-D^{+}A,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>rw</mtext> </mrow> </msup> <mo>:=</mo> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <mi>L</mi> <mo>=</mo> <mi>I</mi> <mo>&#x2212;<!-- − --></mo> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <mi>A</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{\text{rw}}:=D^{+}L=I-D^{+}A,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffb4a3d555e4e16ed97f028fc4b292844712edbb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:25.345ex; height:2.843ex;" alt="{\displaystyle L^{\text{rw}}:=D^{+}L=I-D^{+}A,}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D^{+}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D^{+}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cd4db53bf465a1b1357923aee2e0afffa7e124b8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.435ex; height:2.509ex;" alt="{\displaystyle D^{+}}"></span> is the <a href="/wiki/Moore%E2%80%93Penrose_inverse" title="Moore–Penrose inverse">Moore–Penrose inverse</a>. The elements of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle L^{\text{rw}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>rw</mtext> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle L^{\text{rw}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c438d3bf1184e9960349798a42dbe1196a9a9bb0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.646ex; height:2.176ex;" alt="{\textstyle L^{\text{rw}}}"></span> are given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L_{i,j}^{\text{rw}}:={\begin{cases}1&amp;{\mbox{if }}i=j{\mbox{ and }}\deg(v_{i})\neq 0\\-{\frac {1}{\deg(v_{i})}}&amp;{\mbox{if }}i\neq j{\mbox{ and }}v_{i}{\mbox{ is adjacent to }}v_{j}\\0&amp;{\mbox{otherwise}}.\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>rw</mtext> </mrow> </msubsup> <mo>:=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>if&#xA0;</mtext> </mstyle> </mrow> <mi>i</mi> <mo>=</mo> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>&#xA0;and&#xA0;</mtext> </mstyle> </mrow> <mi>deg</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x2260;<!-- ≠ --></mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>deg</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>if&#xA0;</mtext> </mstyle> </mrow> <mi>i</mi> <mo>&#x2260;<!-- ≠ --></mo> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>&#xA0;and&#xA0;</mtext> </mstyle> </mrow> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>&#xA0;is adjacent to&#xA0;</mtext> </mstyle> </mrow> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>otherwise</mtext> </mstyle> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L_{i,j}^{\text{rw}}:={\begin{cases}1&amp;{\mbox{if }}i=j{\mbox{ and }}\deg(v_{i})\neq 0\\-{\frac {1}{\deg(v_{i})}}&amp;{\mbox{if }}i\neq j{\mbox{ and }}v_{i}{\mbox{ is adjacent to }}v_{j}\\0&amp;{\mbox{otherwise}}.\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed9ba74a99b2873a1188482c509b031ee0d37a9e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.338ex; width:50.559ex; height:9.843ex;" alt="{\displaystyle L_{i,j}^{\text{rw}}:={\begin{cases}1&amp;{\mbox{if }}i=j{\mbox{ and }}\deg(v_{i})\neq 0\\-{\frac {1}{\deg(v_{i})}}&amp;{\mbox{if }}i\neq j{\mbox{ and }}v_{i}{\mbox{ is adjacent to }}v_{j}\\0&amp;{\mbox{otherwise}}.\end{cases}}}"></span></dd></dl> <p>Similarly, the right normalized Laplacian matrix is defined as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle LD^{+}=I-AD^{+}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <mo>=</mo> <mi>I</mi> <mo>&#x2212;<!-- − --></mo> <mi>A</mi> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle LD^{+}=I-AD^{+}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5473f6dca73ea9371afbe3b7ddfabc864d82096c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:17.307ex; height:2.676ex;" alt="{\displaystyle LD^{+}=I-AD^{+}}"></span>.</dd></dl> <p>The left or right normalized Laplacian matrix is not symmetric if the adjacency matrix is symmetric, except for the trivial case of all isolated vertices. For example, </p> <table class="wikitable"> <tbody><tr> <th><a href="/wiki/Adjacency_matrix" title="Adjacency matrix">Adjacency matrix</a> </th> <th>Degree matrix </th> <th>Left normalized Laplacian </th> <th>Right normalized Laplacian </th></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left({\begin{array}{rrr}0&amp;1&amp;0\\1&amp;0&amp;1\\0&amp;1&amp;0\\\end{array}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right right right" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left({\begin{array}{rrr}0&amp;1&amp;0\\1&amp;0&amp;1\\0&amp;1&amp;0\\\end{array}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/612061505a0c7cc1a47a4f77f8d01efbac666c60" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:12.951ex; height:9.176ex;" alt="{\textstyle \left({\begin{array}{rrr}0&amp;1&amp;0\\1&amp;0&amp;1\\0&amp;1&amp;0\\\end{array}}\right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left({\begin{array}{rrr}1&amp;0&amp;0\\0&amp;2&amp;0\\0&amp;0&amp;1\\\end{array}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right right right" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>2</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left({\begin{array}{rrr}1&amp;0&amp;0\\0&amp;2&amp;0\\0&amp;0&amp;1\\\end{array}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a25907fb17f0a6735ed4f0ee6e93e759abd9d3ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:12.951ex; height:9.176ex;" alt="{\textstyle \left({\begin{array}{rrr}1&amp;0&amp;0\\0&amp;2&amp;0\\0&amp;0&amp;1\\\end{array}}\right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left({\begin{array}{rrr}1&amp;-1&amp;0\\-1/2&amp;1&amp;-1/2\\0&amp;-1&amp;1\\\end{array}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right right right" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left({\begin{array}{rrr}1&amp;-1&amp;0\\-1/2&amp;1&amp;-1/2\\0&amp;-1&amp;1\\\end{array}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ffb175b99071a812c1d0e4374e69e575145d0c9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.171ex; width:23.025ex; height:9.509ex;" alt="{\textstyle \left({\begin{array}{rrr}1&amp;-1&amp;0\\-1/2&amp;1&amp;-1/2\\0&amp;-1&amp;1\\\end{array}}\right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left({\begin{array}{rrr}1&amp;-1/2&amp;0\\-1&amp;1&amp;-1\\0&amp;-1/2&amp;1\\\end{array}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right right right" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left({\begin{array}{rrr}1&amp;-1/2&amp;0\\-1&amp;1&amp;-1\\0&amp;-1/2&amp;1\\\end{array}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dd5b49381ee792849a3b5ec6d3062ac49c2b1ea7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.171ex; width:20.7ex; height:9.509ex;" alt="{\textstyle \left({\begin{array}{rrr}1&amp;-1/2&amp;0\\-1&amp;1&amp;-1\\0&amp;-1/2&amp;1\\\end{array}}\right)}"></span> </td></tr></tbody></table> <p>The example also demonstrates that if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle G}"></span> has no isolated vertices, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D^{+}A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D^{+}A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f65efaebd2b4db290b929198774f485ab3670c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.178ex; height:2.509ex;" alt="{\displaystyle D^{+}A}"></span> <a href="/wiki/Stochastic_matrix" title="Stochastic matrix">right stochastic</a> and hence is the matrix of a <a href="/wiki/Random_walk" title="Random walk">random walk</a>, so that the left normalized Laplacian <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{\text{rw}}:=D^{+}L=I-D^{+}A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>rw</mtext> </mrow> </msup> <mo>:=</mo> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <mi>L</mi> <mo>=</mo> <mi>I</mi> <mo>&#x2212;<!-- − --></mo> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{\text{rw}}:=D^{+}L=I-D^{+}A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7024137ba9464ea890b57641df4c2595c923e2a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:24.698ex; height:2.676ex;" alt="{\displaystyle L^{\text{rw}}:=D^{+}L=I-D^{+}A}"></span> has each row summing to zero. Thus we sometimes alternatively call <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{\text{rw}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>rw</mtext> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{\text{rw}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c4ed8f347420184aa43df63d4c2a5314e7f88c88" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.646ex; height:2.343ex;" alt="{\displaystyle L^{\text{rw}}}"></span> the <a href="/wiki/Random_walk" title="Random walk">random-walk</a> normalized Laplacian. In the less uncommonly used right normalized Laplacian <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle LD^{+}=I-AD^{+}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <mo>=</mo> <mi>I</mi> <mo>&#x2212;<!-- − --></mo> <mi>A</mi> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle LD^{+}=I-AD^{+}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5473f6dca73ea9371afbe3b7ddfabc864d82096c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:17.307ex; height:2.676ex;" alt="{\displaystyle LD^{+}=I-AD^{+}}"></span> each column sums to zero since <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle AD^{+}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle AD^{+}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c49f0157212272c840236ca6b48967100ee6bafc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.178ex; height:2.509ex;" alt="{\displaystyle AD^{+}}"></span> is <a href="/wiki/Stochastic_matrix" title="Stochastic matrix">left stochastic</a>. </p><p>For a non-symmetric adjacency matrix of a directed graph, one also needs to choose <a href="/wiki/Degree_(graph_theory)" title="Degree (graph theory)">indegree or outdegree</a> for normalization: </p> <table class="wikitable"> <tbody><tr> <th><a href="/wiki/Adjacency_matrix" title="Adjacency matrix">Adjacency matrix</a> </th> <th>Out-Degree matrix </th> <th>Out-Degree left normalized Laplacian </th> <th>In-Degree matrix </th> <th>In-Degree right normalized Laplacian </th></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left({\begin{array}{rrr}0&amp;1&amp;1\\0&amp;0&amp;1\\1&amp;0&amp;0\\\end{array}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right right right" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left({\begin{array}{rrr}0&amp;1&amp;1\\0&amp;0&amp;1\\1&amp;0&amp;0\\\end{array}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6f3eede6e0fdb65007814bf3bd70dc5bf4ce9ff6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:12.951ex; height:9.176ex;" alt="{\textstyle \left({\begin{array}{rrr}0&amp;1&amp;1\\0&amp;0&amp;1\\1&amp;0&amp;0\\\end{array}}\right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left({\begin{array}{rrr}2&amp;0&amp;0\\0&amp;1&amp;0\\0&amp;0&amp;1\\\end{array}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right right right" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>2</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left({\begin{array}{rrr}2&amp;0&amp;0\\0&amp;1&amp;0\\0&amp;0&amp;1\\\end{array}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3974694bf18cbff53cda15af92ae700e9002695e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:12.951ex; height:9.176ex;" alt="{\textstyle \left({\begin{array}{rrr}2&amp;0&amp;0\\0&amp;1&amp;0\\0&amp;0&amp;1\\\end{array}}\right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left({\begin{array}{rrr}1&amp;-1/2&amp;-1/2\\0&amp;1&amp;-1\\-1&amp;0&amp;1\\\end{array}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right right right" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left({\begin{array}{rrr}1&amp;-1/2&amp;-1/2\\0&amp;1&amp;-1\\-1&amp;0&amp;1\\\end{array}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dc83e915736f1afbafe6d33165ad4e2e0e8f6d33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.171ex; width:23.025ex; height:9.509ex;" alt="{\textstyle \left({\begin{array}{rrr}1&amp;-1/2&amp;-1/2\\0&amp;1&amp;-1\\-1&amp;0&amp;1\\\end{array}}\right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left({\begin{array}{rrr}1&amp;0&amp;0\\0&amp;1&amp;0\\0&amp;0&amp;2\\\end{array}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right right right" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>2</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left({\begin{array}{rrr}1&amp;0&amp;0\\0&amp;1&amp;0\\0&amp;0&amp;2\\\end{array}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/55d72f70c5d93d6ebf3336ee890168c1bd75538f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:12.951ex; height:9.176ex;" alt="{\textstyle \left({\begin{array}{rrr}1&amp;0&amp;0\\0&amp;1&amp;0\\0&amp;0&amp;2\\\end{array}}\right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left({\begin{array}{rrr}1&amp;-1&amp;-1/2\\0&amp;1&amp;-1/2\\-1&amp;0&amp;1\\\end{array}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right right right" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left({\begin{array}{rrr}1&amp;-1&amp;-1/2\\0&amp;1&amp;-1/2\\-1&amp;0&amp;1\\\end{array}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b9c4928920cbae6449b987cb599e409cda7b56ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.171ex; width:20.7ex; height:9.509ex;" alt="{\textstyle \left({\begin{array}{rrr}1&amp;-1&amp;-1/2\\0&amp;1&amp;-1/2\\-1&amp;0&amp;1\\\end{array}}\right)}"></span> </td></tr></tbody></table> <p>The left out-degree normalized Laplacian with row-sums all 0 relates to <a href="/wiki/Stochastic_matrix" title="Stochastic matrix">right stochastic</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{\text{out}}^{+}A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>out</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msubsup> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D_{\text{out}}^{+}A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86450f245f0fd6b2c7912f9f1b154fc7f13946ee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.275ex; height:3.009ex;" alt="{\displaystyle D_{\text{out}}^{+}A}"></span> , while the right in-degree normalized Laplacian with column-sums all 0 contains <a href="/wiki/Stochastic_matrix" title="Stochastic matrix">left stochastic</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle AD_{\text{in}}^{+}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <msubsup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>in</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle AD_{\text{in}}^{+}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0db5f0500265521203eb5d5ec1b0c4967fd8f64a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:5.271ex; height:3.176ex;" alt="{\displaystyle AD_{\text{in}}^{+}}"></span>. </p> <div class="mw-heading mw-heading2"><h2 id="Definitions_for_graphs_with_weighted_edges">Definitions for graphs with weighted edges</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Laplacian_matrix&amp;action=edit&amp;section=8" title="Edit section: Definitions for graphs with weighted edges"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Common in applications graphs with weighted edges are conveniently defined by their adjacency matrices where values of the entries are numeric and no longer limited to zeros and ones. In <a href="/wiki/Spectral_clustering" title="Spectral clustering">spectral clustering</a> and graph-based <a href="/wiki/Signal_processing" title="Signal processing">signal processing</a>, where graph vertices represent data points, the edge weights can be computed, e.g., as inversely proportional to the <a href="/wiki/Distance_matrix" title="Distance matrix">distances</a> between pairs of data points, leading to all weights being non-negative with larger values informally corresponding to more similar pairs of data points. Using correlation and anti-correlation between the data points naturally leads to both positive and negative weights. Most definitions for simple graphs are trivially extended to the standard case of non-negative weights, while negative weights require more attention, especially in normalization. </p> <div class="mw-heading mw-heading3"><h3 id="Laplacian_matrix_2">Laplacian matrix</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Laplacian_matrix&amp;action=edit&amp;section=9" title="Edit section: Laplacian matrix"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Laplacian matrix is defined by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L=D-A,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo>=</mo> <mi>D</mi> <mo>&#x2212;<!-- − --></mo> <mi>A</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L=D-A,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/712994d22cc3a9e0bd6148764a17c1628f843062" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.836ex; height:2.509ex;" alt="{\displaystyle L=D-A,}"></span></dd></dl> <p>where <i>D</i> is the <a href="/wiki/Degree_matrix" title="Degree matrix">degree matrix</a> and <i>A</i> is the <a href="/wiki/Adjacency_matrix" title="Adjacency matrix">adjacency matrix</a> of the graph. </p><p>For <a href="/wiki/Directed_graph" title="Directed graph">directed graphs</a>, either the <a href="/wiki/Degree_(graph_theory)" title="Degree (graph theory)">indegree or outdegree</a> might be used, depending on the application, as in the following example: </p> <table class="wikitable"> <tbody><tr> <th><a href="/wiki/Adjacency_matrix" title="Adjacency matrix">Adjacency matrix</a> </th> <th>In-Degree matrix </th> <th>In-Degree Laplacian </th> <th>Out-Degree matrix </th> <th>Out-Degree Laplacian </th></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left({\begin{array}{rrr}0&amp;1&amp;2\\3&amp;0&amp;5\\6&amp;7&amp;0\\\end{array}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right right right" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mn>3</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>5</mn> </mtd> </mtr> <mtr> <mtd> <mn>6</mn> </mtd> <mtd> <mn>7</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left({\begin{array}{rrr}0&amp;1&amp;2\\3&amp;0&amp;5\\6&amp;7&amp;0\\\end{array}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6cd69100e8719f799ac33bacdc7ec496356c695e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:12.951ex; height:9.176ex;" alt="{\textstyle \left({\begin{array}{rrr}0&amp;1&amp;2\\3&amp;0&amp;5\\6&amp;7&amp;0\\\end{array}}\right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left({\begin{array}{rrr}9&amp;0&amp;0\\0&amp;8&amp;0\\0&amp;0&amp;7\\\end{array}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right right right" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>9</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>8</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>7</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left({\begin{array}{rrr}9&amp;0&amp;0\\0&amp;8&amp;0\\0&amp;0&amp;7\\\end{array}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b2b2bfd316ad8dc4cb61760035dfa5abd01f9863" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:12.951ex; height:9.176ex;" alt="{\textstyle \left({\begin{array}{rrr}9&amp;0&amp;0\\0&amp;8&amp;0\\0&amp;0&amp;7\\\end{array}}\right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left({\begin{array}{rrr}9&amp;-1&amp;-2\\-3&amp;8&amp;-5\\-6&amp;-7&amp;7\\\end{array}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right right right" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>9</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> </mtd> <mtd> <mn>8</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>5</mn> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>6</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>7</mn> </mtd> <mtd> <mn>7</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left({\begin{array}{rrr}9&amp;-1&amp;-2\\-3&amp;8&amp;-5\\-6&amp;-7&amp;7\\\end{array}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/21ab4be25aedb4a8c9a19835c420290fe31c2321" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:18.375ex; height:9.176ex;" alt="{\textstyle \left({\begin{array}{rrr}9&amp;-1&amp;-2\\-3&amp;8&amp;-5\\-6&amp;-7&amp;7\\\end{array}}\right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left({\begin{array}{rrr}3&amp;0&amp;0\\0&amp;8&amp;0\\0&amp;0&amp;13\\\end{array}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right right right" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>3</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>8</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>13</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left({\begin{array}{rrr}3&amp;0&amp;0\\0&amp;8&amp;0\\0&amp;0&amp;13\\\end{array}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/34687fdf64f118ee743404c2c6837b5869d25474" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:14.113ex; height:9.176ex;" alt="{\textstyle \left({\begin{array}{rrr}3&amp;0&amp;0\\0&amp;8&amp;0\\0&amp;0&amp;13\\\end{array}}\right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left({\begin{array}{rrr}3&amp;-1&amp;-2\\-3&amp;8&amp;-5\\-6&amp;-7&amp;13\\\end{array}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right right right" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>3</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> </mtd> <mtd> <mn>8</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>5</mn> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>6</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>7</mn> </mtd> <mtd> <mn>13</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left({\begin{array}{rrr}3&amp;-1&amp;-2\\-3&amp;8&amp;-5\\-6&amp;-7&amp;13\\\end{array}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/14d26818353c81af2f031dc258b66752ec75e33b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:18.375ex; height:9.176ex;" alt="{\textstyle \left({\begin{array}{rrr}3&amp;-1&amp;-2\\-3&amp;8&amp;-5\\-6&amp;-7&amp;13\\\end{array}}\right)}"></span> </td></tr></tbody></table> <p>Graph self-loops, manifesting themselves by non-zero entries on the main diagonal of the adjacency matrix, are allowed but do not affect the graph Laplacian values. </p> <div class="mw-heading mw-heading3"><h3 id="Symmetric_Laplacian_via_the_incidence_matrix">Symmetric Laplacian via the incidence matrix</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Laplacian_matrix&amp;action=edit&amp;section=10" title="Edit section: Symmetric Laplacian via the incidence matrix"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Elastic_network_model.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c8/Elastic_network_model.png/220px-Elastic_network_model.png" decoding="async" width="220" height="169" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c8/Elastic_network_model.png/330px-Elastic_network_model.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c8/Elastic_network_model.png/440px-Elastic_network_model.png 2x" data-file-width="451" data-file-height="347" /></a><figcaption>A 2-dimensional spring system.</figcaption></figure> <p>For graphs with weighted edges one can define a weighted incidence matrix <i>B</i> and use it to construct the corresponding symmetric Laplacian as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L=BB^{\textsf {T}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo>=</mo> <mi>B</mi> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="sans-serif">T</mtext> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L=BB^{\textsf {T}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1264fb5a45117177572de405ff4e9e5f88d92896" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.561ex; height:2.676ex;" alt="{\displaystyle L=BB^{\textsf {T}}}"></span>. An alternative cleaner approach, described here, is to separate the weights from the connectivity: continue using the <a href="/wiki/Incidence_matrix" title="Incidence matrix">incidence matrix</a> as for regular graphs and introduce a matrix just holding the values of the weights. A <a href="/wiki/Spring_system" title="Spring system">spring system</a> is an example of this model used in <a href="/wiki/Mechanics" title="Mechanics">mechanics</a> to describe a system of springs of given stiffnesses and unit length, where the values of the stiffnesses play the role of the weights of the graph edges. </p><p>We thus reuse the definition of the weightless <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle |v|\times |e|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle |v|\times |e|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9b36e5de913ed9f9b29d97510170a7bbaeaaf6b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.639ex; height:2.843ex;" alt="{\textstyle |v|\times |e|}"></span> <a href="/wiki/Incidence_matrix" title="Incidence matrix">incidence matrix</a> <i>B</i> with element <i>B</i><sub><i>ve</i></sub> for the vertex <i>v</i> and the edge <i>e</i> (connecting vertexes <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle v_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle v_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6126ad3375b4bd895f169ef76fc2946672ec8d17" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.927ex; height:2.009ex;" alt="{\textstyle v_{i}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle v_{j}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle v_{j}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b3f568e53bcdaed8afc85aac830156e94884b45" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.037ex; height:2.343ex;" alt="{\textstyle v_{j}}"></span>, with <i>i</i>&#160;&gt;&#160;<i>j</i>) defined by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{ve}=\left\{{\begin{array}{rl}1,&amp;{\text{if }}v=v_{i}\\-1,&amp;{\text{if }}v=v_{j}\\0,&amp;{\text{otherwise}}.\end{array}}\right.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> <mi>e</mi> </mrow> </msub> <mo>=</mo> <mrow> <mo>{</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> <mo>,</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>if&#xA0;</mtext> </mrow> <mi>v</mi> <mo>=</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>,</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>if&#xA0;</mtext> </mrow> <mi>v</mi> <mo>=</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> <mo>,</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>otherwise</mtext> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{ve}=\left\{{\begin{array}{rl}1,&amp;{\text{if }}v=v_{i}\\-1,&amp;{\text{if }}v=v_{j}\\0,&amp;{\text{otherwise}}.\end{array}}\right.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9713798e3993aa9c589b84e9690fc1c1d86698c7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.171ex; width:25.64ex; height:9.509ex;" alt="{\displaystyle B_{ve}=\left\{{\begin{array}{rl}1,&amp;{\text{if }}v=v_{i}\\-1,&amp;{\text{if }}v=v_{j}\\0,&amp;{\text{otherwise}}.\end{array}}\right.}"></span></dd></dl> <p>We now also define a diagonal <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle |e|\times |e|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle |e|\times |e|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/34d379e7e02f9cd24f6d759f7d5a1254bcbc520c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.595ex; height:2.843ex;" alt="{\textstyle |e|\times |e|}"></span> matrix <i>W</i> containing the edge weights. Even though the edges in the definition of <i>B</i> are technically directed, their directions can be arbitrary, still resulting in the same symmetric Laplacian <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle |v|\times |v|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle |v|\times |v|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c25465612a3bf69ef26566b8d4f5ad4562cf4136" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.683ex; height:2.843ex;" alt="{\textstyle |v|\times |v|}"></span> matrix <i>L</i> defined as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L=BWB^{\textsf {T}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo>=</mo> <mi>B</mi> <mi>W</mi> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="sans-serif">T</mtext> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L=BWB^{\textsf {T}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2c09862a4dccde35a34661ca4959640f860877be" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:11.996ex; height:2.676ex;" alt="{\displaystyle L=BWB^{\textsf {T}}}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle B^{\textsf {T}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="sans-serif">T</mtext> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle B^{\textsf {T}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f59a8ce346d71e155f4207edbf601f12eef0821e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.116ex; height:2.509ex;" alt="{\textstyle B^{\textsf {T}}}"></span> is the <a href="/wiki/Transpose" title="Transpose">matrix transpose</a> of <i>B</i>. </p><p>The construction is illustrated in the following example, where every edge <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle e_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle e_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/659969b33908fa2748dd30d1fecfd0926705d1d8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.883ex; height:2.009ex;" alt="{\textstyle e_{i}}"></span> is assigned the weight value <i>i</i>, with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle i=1,2,3,4.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>4.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle i=1,2,3,4.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74dfd5bf7fc0acdfafa374196eb0c2f3a136577c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.299ex; height:2.509ex;" alt="{\textstyle i=1,2,3,4.}"></span> </p> <table class="wikitable"> <tbody><tr> <th><a href="/wiki/Undirected_graph" class="mw-redirect" title="Undirected graph">Undirected graph</a> </th> <th><a href="/wiki/Incidence_matrix" title="Incidence matrix">Incidence matrix</a> </th> <th>Edge weights </th> <th>Laplacian matrix </th></tr> <tr> <td><span typeof="mw:File"><a href="/wiki/File:Labeled_undirected_graph.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/90/Labeled_undirected_graph.svg/100px-Labeled_undirected_graph.svg.png" decoding="async" width="100" height="102" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/90/Labeled_undirected_graph.svg/150px-Labeled_undirected_graph.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/90/Labeled_undirected_graph.svg/200px-Labeled_undirected_graph.svg.png 2x" data-file-width="445" data-file-height="455" /></a></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left({\begin{array}{rrrr}1&amp;1&amp;1&amp;0\\-1&amp;0&amp;0&amp;0\\0&amp;-1&amp;0&amp;1\\0&amp;0&amp;-1&amp;-1\\\end{array}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right right right right" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left({\begin{array}{rrrr}1&amp;1&amp;1&amp;0\\-1&amp;0&amp;0&amp;0\\0&amp;-1&amp;0&amp;1\\0&amp;0&amp;-1&amp;-1\\\end{array}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/77ad3181cf7625667615283f520b6115a3c99b5b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:23.668ex; height:12.509ex;" alt="{\textstyle \left({\begin{array}{rrrr}1&amp;1&amp;1&amp;0\\-1&amp;0&amp;0&amp;0\\0&amp;-1&amp;0&amp;1\\0&amp;0&amp;-1&amp;-1\\\end{array}}\right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left({\begin{array}{rrrr}1&amp;0&amp;0&amp;0\\0&amp;2&amp;0&amp;0\\0&amp;0&amp;3&amp;0\\0&amp;0&amp;0&amp;4\\\end{array}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right right right right" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>2</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>3</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>4</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left({\begin{array}{rrrr}1&amp;0&amp;0&amp;0\\0&amp;2&amp;0&amp;0\\0&amp;0&amp;3&amp;0\\0&amp;0&amp;0&amp;4\\\end{array}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/77857c8c7fe70e6d2d2c08f4ea898d3e9ce6cab0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:16.436ex; height:12.509ex;" alt="{\textstyle \left({\begin{array}{rrrr}1&amp;0&amp;0&amp;0\\0&amp;2&amp;0&amp;0\\0&amp;0&amp;3&amp;0\\0&amp;0&amp;0&amp;4\\\end{array}}\right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left({\begin{array}{rrrr}6&amp;-1&amp;-2&amp;-3\\-1&amp;1&amp;0&amp;0\\-2&amp;0&amp;6&amp;-4\\-3&amp;0&amp;-4&amp;7\\\end{array}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right right right right" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>6</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>6</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>4</mn> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>4</mn> </mtd> <mtd> <mn>7</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left({\begin{array}{rrrr}6&amp;-1&amp;-2&amp;-3\\-1&amp;1&amp;0&amp;0\\-2&amp;0&amp;6&amp;-4\\-3&amp;0&amp;-4&amp;7\\\end{array}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9cfd8e190eba391395474982b4cf599f693502b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:23.668ex; height:12.509ex;" alt="{\textstyle \left({\begin{array}{rrrr}6&amp;-1&amp;-2&amp;-3\\-1&amp;1&amp;0&amp;0\\-2&amp;0&amp;6&amp;-4\\-3&amp;0&amp;-4&amp;7\\\end{array}}\right)}"></span> </td></tr></tbody></table> <div class="mw-heading mw-heading3"><h3 id="Symmetric_Laplacian_for_a_directed_graph_2">Symmetric Laplacian for a directed graph</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Laplacian_matrix&amp;action=edit&amp;section=11" title="Edit section: Symmetric Laplacian for a directed graph"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Just like for simple graphs, the Laplacian matrix of a directed weighted graph is by definition generally non-symmetric. The symmetry can be enforced by turning the original directed graph into an undirected graph first before constructing the Laplacian. The adjacency matrix of the undirected graph could, e.g., be defined as a sum of the adjacency matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> of the original directed graph and its <a href="/wiki/Matrix_transpose" class="mw-redirect" title="Matrix transpose">matrix transpose</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A^{T}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A^{T}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d978c0c4f22282a313e4107f97b9eda56315b258" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.132ex; height:2.676ex;" alt="{\displaystyle A^{T}}"></span> as in the following example: </p> <table class="wikitable"> <tbody><tr> <th><a href="/wiki/Adjacency_matrix" title="Adjacency matrix">Adjacency matrix</a> </th> <th>Symmetrized adjacency matrix </th> <th>Symmetric Laplacian matrix </th></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left({\begin{array}{rrr}0&amp;1&amp;1\\0&amp;0&amp;1\\1&amp;0&amp;0\\\end{array}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right right right" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left({\begin{array}{rrr}0&amp;1&amp;1\\0&amp;0&amp;1\\1&amp;0&amp;0\\\end{array}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6f3eede6e0fdb65007814bf3bd70dc5bf4ce9ff6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:12.951ex; height:9.176ex;" alt="{\textstyle \left({\begin{array}{rrr}0&amp;1&amp;1\\0&amp;0&amp;1\\1&amp;0&amp;0\\\end{array}}\right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left({\begin{array}{rrr}0&amp;1&amp;2\\1&amp;0&amp;1\\2&amp;1&amp;0\\\end{array}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right right right" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left({\begin{array}{rrr}0&amp;1&amp;2\\1&amp;0&amp;1\\2&amp;1&amp;0\\\end{array}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c7fb756d6c3b99b244d5f726174a15099a418db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:12.951ex; height:9.176ex;" alt="{\textstyle \left({\begin{array}{rrr}0&amp;1&amp;2\\1&amp;0&amp;1\\2&amp;1&amp;0\\\end{array}}\right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left({\begin{array}{rrr}3&amp;-1&amp;-2\\-1&amp;2&amp;-1\\-2&amp;-1&amp;3\\\end{array}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right right right" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>3</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>2</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>3</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left({\begin{array}{rrr}3&amp;-1&amp;-2\\-1&amp;2&amp;-1\\-2&amp;-1&amp;3\\\end{array}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/21d9377f3f38d0c3666da59e14f94cbb0ec243bb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:18.375ex; height:9.176ex;" alt="{\textstyle \left({\begin{array}{rrr}3&amp;-1&amp;-2\\-1&amp;2&amp;-1\\-2&amp;-1&amp;3\\\end{array}}\right)}"></span> </td></tr></tbody></table> <p>where the zero and one entries of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> are treated as numerical, rather than logical as for simple graphs, values, explaining the difference in the results - for simple graphs, the symmetrized graph still needs to be simple with its symmetrized adjacency matrix having only logical, not numerical values, e.g., the logical sum is 1 v 1 = 1, while the numeric sum is 1 + 1 = 2. </p><p>Alternatively, the symmetric Laplacian matrix can be calculated from the two Laplacians using the <a href="/wiki/Degree_(graph_theory)" title="Degree (graph theory)">indegree and outdegree</a>, as in the following example: </p> <table class="wikitable"> <tbody><tr> <th><a href="/wiki/Adjacency_matrix" title="Adjacency matrix">Adjacency matrix</a> </th> <th>Out-Degree matrix </th> <th>Out-Degree Laplacian </th> <th>In-Degree matrix </th> <th>In-Degree Laplacian </th></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left({\begin{array}{rrr}0&amp;1&amp;1\\0&amp;0&amp;1\\1&amp;0&amp;0\\\end{array}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right right right" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left({\begin{array}{rrr}0&amp;1&amp;1\\0&amp;0&amp;1\\1&amp;0&amp;0\\\end{array}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6f3eede6e0fdb65007814bf3bd70dc5bf4ce9ff6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:12.951ex; height:9.176ex;" alt="{\textstyle \left({\begin{array}{rrr}0&amp;1&amp;1\\0&amp;0&amp;1\\1&amp;0&amp;0\\\end{array}}\right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left({\begin{array}{rrr}2&amp;0&amp;0\\0&amp;1&amp;0\\0&amp;0&amp;1\\\end{array}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right right right" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>2</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left({\begin{array}{rrr}2&amp;0&amp;0\\0&amp;1&amp;0\\0&amp;0&amp;1\\\end{array}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3974694bf18cbff53cda15af92ae700e9002695e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:12.951ex; height:9.176ex;" alt="{\textstyle \left({\begin{array}{rrr}2&amp;0&amp;0\\0&amp;1&amp;0\\0&amp;0&amp;1\\\end{array}}\right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left({\begin{array}{rrr}2&amp;-1&amp;-1\\0&amp;1&amp;-1\\-1&amp;0&amp;1\\\end{array}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right right right" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>2</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left({\begin{array}{rrr}2&amp;-1&amp;-1\\0&amp;1&amp;-1\\-1&amp;0&amp;1\\\end{array}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb159d87de6076ff54efc58144b3b55b2f909db9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:18.375ex; height:9.176ex;" alt="{\textstyle \left({\begin{array}{rrr}2&amp;-1&amp;-1\\0&amp;1&amp;-1\\-1&amp;0&amp;1\\\end{array}}\right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left({\begin{array}{rrr}1&amp;0&amp;0\\0&amp;1&amp;0\\0&amp;0&amp;2\\\end{array}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right right right" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>2</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left({\begin{array}{rrr}1&amp;0&amp;0\\0&amp;1&amp;0\\0&amp;0&amp;2\\\end{array}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/55d72f70c5d93d6ebf3336ee890168c1bd75538f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:12.951ex; height:9.176ex;" alt="{\textstyle \left({\begin{array}{rrr}1&amp;0&amp;0\\0&amp;1&amp;0\\0&amp;0&amp;2\\\end{array}}\right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left({\begin{array}{rrr}1&amp;-1&amp;-1\\0&amp;1&amp;-1\\-1&amp;0&amp;2\\\end{array}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right right right" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>2</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left({\begin{array}{rrr}1&amp;-1&amp;-1\\0&amp;1&amp;-1\\-1&amp;0&amp;2\\\end{array}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/89385fb3a74231a96a6c920966a397a406acd3b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:18.375ex; height:9.176ex;" alt="{\textstyle \left({\begin{array}{rrr}1&amp;-1&amp;-1\\0&amp;1&amp;-1\\-1&amp;0&amp;2\\\end{array}}\right)}"></span> </td></tr></tbody></table> <p>The sum of the out-degree Laplacian transposed and the in-degree Laplacian equals to the symmetric Laplacian matrix. </p> <div class="mw-heading mw-heading3"><h3 id="Laplacian_matrix_normalization_2">Laplacian matrix normalization</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Laplacian_matrix&amp;action=edit&amp;section=12" title="Edit section: Laplacian matrix normalization"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The goal of normalization is, like for simple graphs, to make the diagonal entries of the Laplacian matrix to be all unit, also scaling off-diagonal entries correspondingly. In a <a href="/wiki/Glossary_of_graph_theory#weighted_graph" title="Glossary of graph theory"> weighted graph</a>, a vertex may have a large degree because of a small number of connected edges but with large weights just as well as due to a large number of connected edges with unit weights. </p><p>Graph self-loops, i.e., non-zero entries on the main diagonal of the adjacency matrix, do not affect the graph Laplacian values, but may need to be counted for calculation of the normalization factors. </p> <div class="mw-heading mw-heading4"><h4 id="Symmetrically_normalized_Laplacian_2">Symmetrically normalized Laplacian</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Laplacian_matrix&amp;action=edit&amp;section=13" title="Edit section: Symmetrically normalized Laplacian"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <b>symmetrically normalized Laplacian</b> is defined as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{\text{sym}}:=(D^{+})^{1/2}L(D^{+})^{1/2}=I-(D^{+})^{1/2}A(D^{+})^{1/2},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>sym</mtext> </mrow> </msup> <mo>:=</mo> <mo stretchy="false">(</mo> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> <mi>L</mi> <mo stretchy="false">(</mo> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mi>I</mi> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> <mi>A</mi> <mo stretchy="false">(</mo> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{\text{sym}}:=(D^{+})^{1/2}L(D^{+})^{1/2}=I-(D^{+})^{1/2}A(D^{+})^{1/2},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/381dda52782e0a91149c51ca69bb4e183891a8eb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:51.299ex; height:3.343ex;" alt="{\displaystyle L^{\text{sym}}:=(D^{+})^{1/2}L(D^{+})^{1/2}=I-(D^{+})^{1/2}A(D^{+})^{1/2},}"></span></dd></dl> <p>where <i>L</i> is the unnormalized Laplacian, <i>A</i> is the adjacency matrix, <i>D</i> is the degree matrix, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D^{+}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D^{+}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cd4db53bf465a1b1357923aee2e0afffa7e124b8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.435ex; height:2.509ex;" alt="{\displaystyle D^{+}}"></span> is the <a href="/wiki/Moore%E2%80%93Penrose_inverse" title="Moore–Penrose inverse">Moore–Penrose inverse</a>. Since the degree matrix <i>D</i> is diagonal, its reciprocal square root <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle (D^{+})^{1/2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo stretchy="false">(</mo> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle (D^{+})^{1/2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fef1bcca36b6c2ccf5845b799923328f151644fb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.943ex; height:3.176ex;" alt="{\textstyle (D^{+})^{1/2}}"></span> is just the diagonal matrix whose diagonal entries are the reciprocals of the square roots of the diagonal entries of <i>D</i>. If all the edge weights are nonnegative then all the degree values are automatically also nonnegative and so every degree value has a unique positive square root. To avoid the division by zero, vertices with zero degrees are excluded from the process of the normalization, as in the following example: </p> <table class="wikitable"> <tbody><tr> <th><a href="/wiki/Adjacency_matrix" title="Adjacency matrix">Adjacency matrix</a> </th> <th>In-Degree matrix </th> <th>In-Degree normalized Laplacian </th> <th>Out-Degree matrix </th> <th>Out-Degree normalized Laplacian </th></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left({\begin{array}{rrr}0&amp;1&amp;0\\4&amp;0&amp;0\\0&amp;0&amp;0\\\end{array}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right right right" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>4</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left({\begin{array}{rrr}0&amp;1&amp;0\\4&amp;0&amp;0\\0&amp;0&amp;0\\\end{array}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e68a48bc1e8b46b9d8c468c453bcdef4e0e6b7f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:12.951ex; height:9.176ex;" alt="{\textstyle \left({\begin{array}{rrr}0&amp;1&amp;0\\4&amp;0&amp;0\\0&amp;0&amp;0\\\end{array}}\right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left({\begin{array}{rrr}1&amp;0&amp;0\\0&amp;4&amp;0\\0&amp;0&amp;0\\\end{array}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right right right" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>4</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left({\begin{array}{rrr}1&amp;0&amp;0\\0&amp;4&amp;0\\0&amp;0&amp;0\\\end{array}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59234cf39716033447b5427240ab0da9ce4ea9c2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:12.951ex; height:9.176ex;" alt="{\textstyle \left({\begin{array}{rrr}1&amp;0&amp;0\\0&amp;4&amp;0\\0&amp;0&amp;0\\\end{array}}\right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left({\begin{array}{rrr}1&amp;-1/2&amp;0\\-2&amp;1&amp;0\\0&amp;0&amp;0\\\end{array}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right right right" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left({\begin{array}{rrr}1&amp;-1/2&amp;0\\-2&amp;1&amp;0\\0&amp;0&amp;0\\\end{array}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d215b4f5a040c49beb493577076b68a6bcb232a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.171ex; width:18.892ex; height:9.509ex;" alt="{\textstyle \left({\begin{array}{rrr}1&amp;-1/2&amp;0\\-2&amp;1&amp;0\\0&amp;0&amp;0\\\end{array}}\right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left({\begin{array}{rrr}4&amp;0&amp;0\\0&amp;1&amp;0\\0&amp;0&amp;0\\\end{array}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right right right" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>4</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left({\begin{array}{rrr}4&amp;0&amp;0\\0&amp;1&amp;0\\0&amp;0&amp;0\\\end{array}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ff89ee3a7eb281e9a369a4976d160cf269fa4ca8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:12.951ex; height:9.176ex;" alt="{\textstyle \left({\begin{array}{rrr}4&amp;0&amp;0\\0&amp;1&amp;0\\0&amp;0&amp;0\\\end{array}}\right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left({\begin{array}{rrr}1&amp;-1/2&amp;0\\-2&amp;1&amp;0\\0&amp;0&amp;0\\\end{array}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right right right" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left({\begin{array}{rrr}1&amp;-1/2&amp;0\\-2&amp;1&amp;0\\0&amp;0&amp;0\\\end{array}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d215b4f5a040c49beb493577076b68a6bcb232a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.171ex; width:18.892ex; height:9.509ex;" alt="{\textstyle \left({\begin{array}{rrr}1&amp;-1/2&amp;0\\-2&amp;1&amp;0\\0&amp;0&amp;0\\\end{array}}\right)}"></span> </td></tr></tbody></table> <p>The symmetrically normalized Laplacian is a symmetric matrix if and only if the adjacency matrix <i>A</i> is symmetric and the diagonal entries of <i>D</i> are nonnegative, in which case we can use the term the <i><b>symmetric normalized Laplacian</b></i>. </p><p>The symmetric normalized Laplacian matrix can be also written as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{\text{sym}}:=(D^{+})^{1/2}L(D^{+})^{1/2}=(D^{+})^{1/2}BWB^{\textsf {T}}(D^{+})^{1/2}=SS^{T}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>sym</mtext> </mrow> </msup> <mo>:=</mo> <mo stretchy="false">(</mo> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> <mi>L</mi> <mo stretchy="false">(</mo> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mo stretchy="false">(</mo> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> <mi>B</mi> <mi>W</mi> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="sans-serif">T</mtext> </mrow> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mi>S</mi> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{\text{sym}}:=(D^{+})^{1/2}L(D^{+})^{1/2}=(D^{+})^{1/2}BWB^{\textsf {T}}(D^{+})^{1/2}=SS^{T}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ea75ef54edd5dbdcd8143e721d47fb786ff5535" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:59.72ex; height:3.343ex;" alt="{\displaystyle L^{\text{sym}}:=(D^{+})^{1/2}L(D^{+})^{1/2}=(D^{+})^{1/2}BWB^{\textsf {T}}(D^{+})^{1/2}=SS^{T}}"></span></dd></dl> <p>using the weightless <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle |v|\times |e|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle |v|\times |e|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9b36e5de913ed9f9b29d97510170a7bbaeaaf6b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.639ex; height:2.843ex;" alt="{\textstyle |v|\times |e|}"></span> <a href="/wiki/Incidence_matrix" title="Incidence matrix">incidence matrix</a> <i>B</i> and the diagonal <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle |e|\times |e|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle |e|\times |e|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/34d379e7e02f9cd24f6d759f7d5a1254bcbc520c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.595ex; height:2.843ex;" alt="{\textstyle |e|\times |e|}"></span> matrix <i>W</i> containing the edge weights and defining the new <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle |v|\times |e|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle |v|\times |e|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9b36e5de913ed9f9b29d97510170a7bbaeaaf6b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.639ex; height:2.843ex;" alt="{\textstyle |v|\times |e|}"></span> weighted incidence matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle S=(D^{+})^{1/2}BW^{{1}/{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>S</mi> <mo>=</mo> <mo stretchy="false">(</mo> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> <mi>B</mi> <msup> <mi>W</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle S=(D^{+})^{1/2}BW^{{1}/{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f861b4e5ca4722db6f8275b6518cc85832adbd55" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.51ex; height:3.176ex;" alt="{\textstyle S=(D^{+})^{1/2}BW^{{1}/{2}}}"></span> whose rows are indexed by the vertices and whose columns are indexed by the edges of G such that each column corresponding to an edge <i>e = {u, v}</i> has an entry <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\frac {1}{\sqrt {d_{u}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> </mrow> </msub> </msqrt> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\frac {1}{\sqrt {d_{u}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dda1751dd8a52a08f94b05a6a952b80057d17382" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:4.262ex; height:4.509ex;" alt="{\textstyle {\frac {1}{\sqrt {d_{u}}}}}"></span> in the row corresponding to <i>u</i>, an entry <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle -{\frac {1}{\sqrt {d_{v}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> </mrow> </msub> </msqrt> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle -{\frac {1}{\sqrt {d_{v}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f445e52d4eb03aa145e200358d2ca7b58e9ce58e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:5.954ex; height:4.509ex;" alt="{\textstyle -{\frac {1}{\sqrt {d_{v}}}}}"></span> in the row corresponding to <i>v</i>, and has 0 entries elsewhere. </p> <div class="mw-heading mw-heading4"><h4 id="Random_walk_normalized_Laplacian">Random walk normalized Laplacian</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Laplacian_matrix&amp;action=edit&amp;section=14" title="Edit section: Random walk normalized Laplacian"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <b>random walk normalized Laplacian</b> is defined as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{\text{rw}}:=D^{+}L=I-D^{+}A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>rw</mtext> </mrow> </msup> <mo>:=</mo> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <mi>L</mi> <mo>=</mo> <mi>I</mi> <mo>&#x2212;<!-- − --></mo> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{\text{rw}}:=D^{+}L=I-D^{+}A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7024137ba9464ea890b57641df4c2595c923e2a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:24.698ex; height:2.676ex;" alt="{\displaystyle L^{\text{rw}}:=D^{+}L=I-D^{+}A}"></span></dd></dl> <p>where <i>D</i> is the degree matrix. Since the degree matrix <i>D</i> is diagonal, its inverse <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle D^{+}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle D^{+}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68efb5e48d1130cc413ad6feff7afcb79f315b0c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.435ex; height:2.343ex;" alt="{\textstyle D^{+}}"></span> is simply defined as a diagonal matrix, having diagonal entries which are the reciprocals of the corresponding diagonal entries of <i>D</i>. For the isolated vertices (those with degree 0), a common choice is to set the corresponding element <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle L_{i,i}^{\text{rw}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msubsup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>rw</mtext> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle L_{i,i}^{\text{rw}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3920995f2f0e03ff931d275db9bbb172c303e941" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:3.646ex; height:3.176ex;" alt="{\textstyle L_{i,i}^{\text{rw}}}"></span> to 0. The matrix elements of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle L^{\text{rw}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>rw</mtext> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle L^{\text{rw}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c438d3bf1184e9960349798a42dbe1196a9a9bb0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.646ex; height:2.176ex;" alt="{\textstyle L^{\text{rw}}}"></span> are given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L_{i,j}^{\text{rw}}:={\begin{cases}1&amp;{\mbox{if}}\ i=j\ {\mbox{and}}\ \deg(v_{i})\neq 0\\-{\frac {1}{\deg(v_{i})}}&amp;{\mbox{if}}\ i\neq j\ {\mbox{and}}\ v_{i}{\mbox{ is adjacent to }}v_{j}\\0&amp;{\mbox{otherwise}}.\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>rw</mtext> </mrow> </msubsup> <mo>:=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>if</mtext> </mstyle> </mrow> <mtext>&#xA0;</mtext> <mi>i</mi> <mo>=</mo> <mi>j</mi> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>and</mtext> </mstyle> </mrow> <mtext>&#xA0;</mtext> <mi>deg</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x2260;<!-- ≠ --></mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>deg</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>if</mtext> </mstyle> </mrow> <mtext>&#xA0;</mtext> <mi>i</mi> <mo>&#x2260;<!-- ≠ --></mo> <mi>j</mi> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>and</mtext> </mstyle> </mrow> <mtext>&#xA0;</mtext> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>&#xA0;is adjacent to&#xA0;</mtext> </mstyle> </mrow> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>otherwise</mtext> </mstyle> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L_{i,j}^{\text{rw}}:={\begin{cases}1&amp;{\mbox{if}}\ i=j\ {\mbox{and}}\ \deg(v_{i})\neq 0\\-{\frac {1}{\deg(v_{i})}}&amp;{\mbox{if}}\ i\neq j\ {\mbox{and}}\ v_{i}{\mbox{ is adjacent to }}v_{j}\\0&amp;{\mbox{otherwise}}.\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33096ab8c4e5ada54c3429767b9275f96629a934" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.338ex; width:50.559ex; height:9.843ex;" alt="{\displaystyle L_{i,j}^{\text{rw}}:={\begin{cases}1&amp;{\mbox{if}}\ i=j\ {\mbox{and}}\ \deg(v_{i})\neq 0\\-{\frac {1}{\deg(v_{i})}}&amp;{\mbox{if}}\ i\neq j\ {\mbox{and}}\ v_{i}{\mbox{ is adjacent to }}v_{j}\\0&amp;{\mbox{otherwise}}.\end{cases}}}"></span></dd></dl> <p>The name of the random-walk normalized Laplacian comes from the fact that this matrix is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle L^{\text{rw}}=I-P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>rw</mtext> </mrow> </msup> <mo>=</mo> <mi>I</mi> <mo>&#x2212;<!-- − --></mo> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle L^{\text{rw}}=I-P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a686cedf7348300f0521bc032ca2f807c0a73814" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:12.502ex; height:2.343ex;" alt="{\textstyle L^{\text{rw}}=I-P}"></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle P=D^{+}A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>P</mi> <mo>=</mo> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle P=D^{+}A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9965cf5df55b68e5723a5ffa35f994210ad9adb0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.022ex; height:2.343ex;" alt="{\textstyle P=D^{+}A}"></span> is simply the transition matrix of a random walker on the graph, assuming non-negative weights. For example, let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle e_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle e_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/659969b33908fa2748dd30d1fecfd0926705d1d8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.883ex; height:2.009ex;" alt="{\textstyle e_{i}}"></span> denote the i-th <a href="/wiki/Standard_basis" title="Standard basis">standard basis</a> vector. Then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle x=e_{i}P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle x=e_{i}P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e22d0be6a8f043877d3e803f6ea850f60de6356e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.057ex; height:2.509ex;" alt="{\textstyle x=e_{i}P}"></span> is a <a href="/wiki/Probability_vector" title="Probability vector">probability vector</a> representing the distribution of a random walker's locations after taking a single step from vertex <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5b0f327332497b21a059c479e7b2ce098baa1a7e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\textstyle i}"></span>; i.e., <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle x_{j}=\mathbb {P} \left(v_{i}\to v_{j}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">P</mi> </mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">&#x2192;<!-- → --></mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle x_{j}=\mathbb {P} \left(v_{i}\to v_{j}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b1e5bdd1e8e55b8c93c35ce69e40d6a76d1c16b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:16.533ex; height:3.009ex;" alt="{\textstyle x_{j}=\mathbb {P} \left(v_{i}\to v_{j}\right)}"></span>. More generally, if the vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d951e0f3b54b6a3d73bb9a0a005749046cbce781" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\textstyle x}"></span> is a probability distribution of the location of a random walker on the vertices of the graph, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle x'=xP^{t}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mi>x</mi> <msup> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle x'=xP^{t}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dd889ee8b8a5010f381a88dc7d30484f671cbbcd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.09ex; height:2.509ex;" alt="{\textstyle x&#039;=xP^{t}}"></span> is the probability distribution of the walker after <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b2bc926f90178739fccd01a96c6fa778ab3535d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\textstyle t}"></span> steps. </p><p>The random walk normalized Laplacian can also be called the left normalized Laplacian <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{\text{rw}}:=D^{+}L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>rw</mtext> </mrow> </msup> <mo>:=</mo> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{\text{rw}}:=D^{+}L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ddd2d957039b6aa7f164a5100cb335ddeb1a9e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:12.41ex; height:2.509ex;" alt="{\displaystyle L^{\text{rw}}:=D^{+}L}"></span> since the normalization is performed by multiplying the Laplacian by the normalization matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D^{+}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D^{+}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cd4db53bf465a1b1357923aee2e0afffa7e124b8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.435ex; height:2.509ex;" alt="{\displaystyle D^{+}}"></span> on the left. It has each row summing to zero since <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P=D^{+}A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo>=</mo> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P=D^{+}A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f17db1db1cd1695ceba83b2536676e646f5f1638" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.022ex; height:2.509ex;" alt="{\displaystyle P=D^{+}A}"></span> is <a href="/wiki/Stochastic_matrix" title="Stochastic matrix">right stochastic</a>, assuming all the weights are non-negative. </p><p>In the less uncommonly used right normalized Laplacian <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle LD^{+}=I-AD^{+}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <mo>=</mo> <mi>I</mi> <mo>&#x2212;<!-- − --></mo> <mi>A</mi> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle LD^{+}=I-AD^{+}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5473f6dca73ea9371afbe3b7ddfabc864d82096c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:17.307ex; height:2.676ex;" alt="{\displaystyle LD^{+}=I-AD^{+}}"></span> each column sums to zero since <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle AD^{+}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle AD^{+}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c49f0157212272c840236ca6b48967100ee6bafc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.178ex; height:2.509ex;" alt="{\displaystyle AD^{+}}"></span> is <a href="/wiki/Stochastic_matrix" title="Stochastic matrix">left stochastic</a>. </p><p>For a non-symmetric adjacency matrix of a directed graph, one also needs to choose <a href="/wiki/Degree_(graph_theory)" title="Degree (graph theory)">indegree or outdegree</a> for normalization: </p> <table class="wikitable"> <tbody><tr> <th><a href="/wiki/Adjacency_matrix" title="Adjacency matrix">Adjacency matrix</a> </th> <th>Out-Degree matrix </th> <th>Out-Degree left normalized Laplacian </th> <th>In-Degree matrix </th> <th>In-Degree right normalized Laplacian </th></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left({\begin{array}{rrr}0&amp;1&amp;0\\0&amp;0&amp;2\\1&amp;0&amp;0\\\end{array}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right right right" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left({\begin{array}{rrr}0&amp;1&amp;0\\0&amp;0&amp;2\\1&amp;0&amp;0\\\end{array}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81aa562c32c5fce1c26d83e115108a41f161c5ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:12.951ex; height:9.176ex;" alt="{\textstyle \left({\begin{array}{rrr}0&amp;1&amp;0\\0&amp;0&amp;2\\1&amp;0&amp;0\\\end{array}}\right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left({\begin{array}{rrr}1&amp;0&amp;0\\0&amp;2&amp;0\\0&amp;0&amp;1\\\end{array}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right right right" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>2</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left({\begin{array}{rrr}1&amp;0&amp;0\\0&amp;2&amp;0\\0&amp;0&amp;1\\\end{array}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a25907fb17f0a6735ed4f0ee6e93e759abd9d3ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:12.951ex; height:9.176ex;" alt="{\textstyle \left({\begin{array}{rrr}1&amp;0&amp;0\\0&amp;2&amp;0\\0&amp;0&amp;1\\\end{array}}\right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left({\begin{array}{rrr}1&amp;-1&amp;0\\0&amp;1&amp;-1\\-1&amp;0&amp;1\\\end{array}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right right right" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left({\begin{array}{rrr}1&amp;-1&amp;0\\0&amp;1&amp;-1\\-1&amp;0&amp;1\\\end{array}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/efaf9f6d3fd1716183529dd8ded2c7e131c392b8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:18.375ex; height:9.176ex;" alt="{\textstyle \left({\begin{array}{rrr}1&amp;-1&amp;0\\0&amp;1&amp;-1\\-1&amp;0&amp;1\\\end{array}}\right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left({\begin{array}{rrr}1&amp;0&amp;0\\0&amp;1&amp;0\\0&amp;0&amp;2\\\end{array}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right right right" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>2</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left({\begin{array}{rrr}1&amp;0&amp;0\\0&amp;1&amp;0\\0&amp;0&amp;2\\\end{array}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/55d72f70c5d93d6ebf3336ee890168c1bd75538f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:12.951ex; height:9.176ex;" alt="{\textstyle \left({\begin{array}{rrr}1&amp;0&amp;0\\0&amp;1&amp;0\\0&amp;0&amp;2\\\end{array}}\right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left({\begin{array}{rrr}1&amp;-1&amp;0\\0&amp;1&amp;-1\\-1&amp;0&amp;1\\\end{array}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right right right" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left({\begin{array}{rrr}1&amp;-1&amp;0\\0&amp;1&amp;-1\\-1&amp;0&amp;1\\\end{array}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/efaf9f6d3fd1716183529dd8ded2c7e131c392b8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:18.375ex; height:9.176ex;" alt="{\textstyle \left({\begin{array}{rrr}1&amp;-1&amp;0\\0&amp;1&amp;-1\\-1&amp;0&amp;1\\\end{array}}\right)}"></span> </td></tr></tbody></table> <p>The left out-degree normalized Laplacian with row-sums all 0 relates to <a href="/wiki/Stochastic_matrix" title="Stochastic matrix">right stochastic</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{\text{out}}^{+}A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>out</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msubsup> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D_{\text{out}}^{+}A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86450f245f0fd6b2c7912f9f1b154fc7f13946ee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.275ex; height:3.009ex;" alt="{\displaystyle D_{\text{out}}^{+}A}"></span> , while the right in-degree normalized Laplacian with column-sums all 0 contains <a href="/wiki/Stochastic_matrix" title="Stochastic matrix">left stochastic</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle AD_{\text{in}}^{+}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <msubsup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>in</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle AD_{\text{in}}^{+}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0db5f0500265521203eb5d5ec1b0c4967fd8f64a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:5.271ex; height:3.176ex;" alt="{\displaystyle AD_{\text{in}}^{+}}"></span>. </p> <div class="mw-heading mw-heading4"><h4 id="Negative_weights">Negative weights</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Laplacian_matrix&amp;action=edit&amp;section=15" title="Edit section: Negative weights"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Negative weights present several challenges for normalization: </p> <ul><li>The presence of negative weights may naturally result in zero row- and/or column-sums for non-isolated vertices. A vertex with a large row-sum of positive weights and equally negatively large row-sum of negative weights, together summing up to zero, could be considered a heavy node and both large values scaled, while the diagonal entry remains zero, like for a isolated vertex.</li> <li>Negative weights may also give negative row- and/or column-sums, so that the corresponding diagonal entry in the non-normalized Laplacian matrix would be negative and a positive square root needed for the symmetric normalization would not exist.</li> <li>Arguments can be made to take the absolute value of the row- and/or column-sums for the purpose of normalization, thus treating a possible value -1 as a legitimate unit entry of the main diagonal of the normalized Laplacian matrix.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Properties">Properties</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Laplacian_matrix&amp;action=edit&amp;section=16" title="Edit section: Properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For an (undirected) graph <i>G</i> and its Laplacian matrix <i>L</i> with <a href="/wiki/Eigenvalues" class="mw-redirect" title="Eigenvalues">eigenvalues</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \lambda _{0}\leq \lambda _{1}\leq \cdots \leq \lambda _{n-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>&#x2264;<!-- ≤ --></mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2264;<!-- ≤ --></mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>&#x2264;<!-- ≤ --></mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \lambda _{0}\leq \lambda _{1}\leq \cdots \leq \lambda _{n-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/304c4456d300b6b879cdcae14d059f04e4fc8e27" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:21.512ex; height:2.509ex;" alt="{\textstyle \lambda _{0}\leq \lambda _{1}\leq \cdots \leq \lambda _{n-1}}"></span>: </p> <ul><li><i>L</i> is <a href="/wiki/Symmetric_matrix" title="Symmetric matrix">symmetric</a>.</li> <li><i>L</i> is <a href="/wiki/Positive-definite_matrix" class="mw-redirect" title="Positive-definite matrix">positive-semidefinite</a> (that is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \lambda _{i}\geq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2265;<!-- ≥ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \lambda _{i}\geq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/25d581ddf2527c11423bfdc78786ea6a454abafd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.416ex; height:2.509ex;" alt="{\textstyle \lambda _{i}\geq 0}"></span> for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5b0f327332497b21a059c479e7b2ce098baa1a7e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\textstyle i}"></span>). This can be seen from the fact that the Laplacian is symmetric and <a href="/wiki/Diagonally_dominant_matrix#Applications_and_properties" title="Diagonally dominant matrix">diagonally dominant</a>.</li> <li><i>L</i> is an <a href="/wiki/M-matrix" title="M-matrix">M-matrix</a> (its off-diagonal entries are nonpositive, yet the real parts of its eigenvalues are nonnegative).</li> <li>Every row sum and column sum of <i>L</i> is zero. Indeed, in the sum, the degree of the vertex is summed with a "−1" for each neighbor.</li> <li>In consequence, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \lambda _{0}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \lambda _{0}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a92bba928ae9eee4728e221099d624e440a7482d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.67ex; height:2.509ex;" alt="{\textstyle \lambda _{0}=0}"></span>, because the vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \mathbf {v} _{0}=(1,1,\dots ,1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \mathbf {v} _{0}=(1,1,\dots ,1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/beaa10e1cab1d3442a9b2af757439d80b5b631b9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.072ex; height:2.843ex;" alt="{\textstyle \mathbf {v} _{0}=(1,1,\dots ,1)}"></span> satisfies <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle L\mathbf {v} _{0}=\mathbf {0} .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>L</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">0</mn> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle L\mathbf {v} _{0}=\mathbf {0} .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/236b012a9a07ce15f7887263ba37e0018c784817" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.13ex; height:2.509ex;" alt="{\textstyle L\mathbf {v} _{0}=\mathbf {0} .}"></span> This also implies that the Laplacian matrix is singular.</li> <li>The number of <a href="/wiki/Connected_component_(graph_theory)" class="mw-redirect" title="Connected component (graph theory)">connected components</a> in the graph is the dimension of the <a href="/wiki/Kernel_(linear_algebra)" title="Kernel (linear algebra)">nullspace</a> of the Laplacian and the <a href="/wiki/Eigenvalues_and_eigenvectors#Algebraic_multiplicity" title="Eigenvalues and eigenvectors">algebraic multiplicity</a> of the 0 eigenvalue.</li> <li>The smallest non-zero eigenvalue of <i>L</i> is called the <a href="/wiki/Spectral_gap" title="Spectral gap">spectral gap</a>.</li> <li>The second smallest eigenvalue of <i>L</i> (could be zero) is the <a href="/wiki/Algebraic_connectivity" title="Algebraic connectivity">algebraic connectivity</a> (or <a href="/wiki/Fiedler_value" class="mw-redirect" title="Fiedler value">Fiedler value</a>) of <i>G</i> and approximates the <a href="/wiki/Cut_(graph_theory)#Sparsest_cut" title="Cut (graph theory)">sparsest cut</a> of a graph.</li> <li>The <a href="/wiki/Laplacian" class="mw-redirect" title="Laplacian">Laplacian</a> is an operator on the n-dimensional vector space of functions <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle f:V\to \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mi>V</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle f:V\to \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d4eab74699b6446be51acdfd2cc8abfb23283251" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.295ex; height:2.509ex;" alt="{\textstyle f:V\to \mathbb {R} }"></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d67b50b7ba03a56fea637093cf80e12807852d19" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\textstyle V}"></span> is the vertex set of G, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle n=|V|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle n=|V|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d9fca49cffbf0d682c7a4ff0c29e2976c8261be2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.574ex; height:2.843ex;" alt="{\textstyle n=|V|}"></span>.</li> <li>When G is <a href="/wiki/K-regular_graph" class="mw-redirect" title="K-regular graph">k-regular</a>, the normalized Laplacian is: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\mathcal {L}}={\tfrac {1}{k}}L=I-{\tfrac {1}{k}}A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mi>k</mi> </mfrac> </mstyle> </mrow> <mi>L</mi> <mo>=</mo> <mi>I</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mi>k</mi> </mfrac> </mstyle> </mrow> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\mathcal {L}}={\tfrac {1}{k}}L=I-{\tfrac {1}{k}}A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7bfdc87866e708b82a92a9e285fc8392d79a20e7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:18.524ex; height:3.676ex;" alt="{\textstyle {\mathcal {L}}={\tfrac {1}{k}}L=I-{\tfrac {1}{k}}A}"></span>, where A is the adjacency matrix and I is an identity matrix.</li> <li>For a graph with multiple <a href="/wiki/Connected_component_(graph_theory)" class="mw-redirect" title="Connected component (graph theory)">connected components</a>, <i>L</i> is a <a href="/wiki/Block_matrix#Block_diagonal_matrices" title="Block matrix">block diagonal</a> matrix, where each block is the respective Laplacian matrix for each component, possibly after reordering the vertices (i.e. <i>L</i> is permutation-similar to a block diagonal matrix).</li> <li>The trace of the Laplacian matrix <i>L</i> is equal to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle 2m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mn>2</mn> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle 2m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3089e576b8a33dfac9b09f4621087dca1ca2bbe9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.203ex; height:2.176ex;" alt="{\textstyle 2m}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3296968aacae7d971a6d649f6b32b5969ed6d4d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\textstyle m}"></span> is the number of edges of the considered graph.</li> <li>Now consider an eigendecomposition of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8fb88de7e4d31737dae8f02575033272f29e6720" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\textstyle L}"></span>, with unit-norm eigenvectors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \mathbf {v} _{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \mathbf {v} _{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6bdf50b90dbd50c72fc7e2d8c56e5ef0a2cf1405" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.211ex; height:2.009ex;" alt="{\textstyle \mathbf {v} _{i}}"></span> and corresponding eigenvalues <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \lambda _{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \lambda _{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2e7595a3324abd3ad66d491f32d4cb299dae4114" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.155ex; height:2.509ex;" alt="{\textstyle \lambda _{i}}"></span>:</li></ul> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\lambda _{i}&amp;=\mathbf {v} _{i}^{\textsf {T}}L\mathbf {v} _{i}\\&amp;=\mathbf {v} _{i}^{\textsf {T}}M^{\textsf {T}}M\mathbf {v} _{i}\\&amp;=\left(M\mathbf {v} _{i}\right)^{\textsf {T}}\left(M\mathbf {v} _{i}\right).\\\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="sans-serif">T</mtext> </mrow> </mrow> </msubsup> <mi>L</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="sans-serif">T</mtext> </mrow> </mrow> </msubsup> <msup> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="sans-serif">T</mtext> </mrow> </mrow> </msup> <mi>M</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mrow> <mi>M</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="sans-serif">T</mtext> </mrow> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mi>M</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\lambda _{i}&amp;=\mathbf {v} _{i}^{\textsf {T}}L\mathbf {v} _{i}\\&amp;=\mathbf {v} _{i}^{\textsf {T}}M^{\textsf {T}}M\mathbf {v} _{i}\\&amp;=\left(M\mathbf {v} _{i}\right)^{\textsf {T}}\left(M\mathbf {v} _{i}\right).\\\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/60f6492cf61d2a40793e9bf84b8b03b5c07f8522" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.505ex; width:21.702ex; height:10.176ex;" alt="{\displaystyle {\begin{aligned}\lambda _{i}&amp;=\mathbf {v} _{i}^{\textsf {T}}L\mathbf {v} _{i}\\&amp;=\mathbf {v} _{i}^{\textsf {T}}M^{\textsf {T}}M\mathbf {v} _{i}\\&amp;=\left(M\mathbf {v} _{i}\right)^{\textsf {T}}\left(M\mathbf {v} _{i}\right).\\\end{aligned}}}"></span></dd></dl> <p>Because <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \lambda _{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \lambda _{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2e7595a3324abd3ad66d491f32d4cb299dae4114" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.155ex; height:2.509ex;" alt="{\textstyle \lambda _{i}}"></span> can be written as the inner product of the vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle M\mathbf {v} _{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>M</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle M\mathbf {v} _{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4f2ecb0cf600360bf36607495f8d83dc87028e30" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.653ex; height:2.509ex;" alt="{\textstyle M\mathbf {v} _{i}}"></span> with itself, this shows that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \lambda _{i}\geq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2265;<!-- ≥ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \lambda _{i}\geq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/25d581ddf2527c11423bfdc78786ea6a454abafd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.416ex; height:2.509ex;" alt="{\textstyle \lambda _{i}\geq 0}"></span> and so the eigenvalues of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8fb88de7e4d31737dae8f02575033272f29e6720" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\textstyle L}"></span> are all non-negative. </p> <ul><li>All eigenvalues of the normalized symmetric Laplacian satisfy 0 = μ<sub>0</sub> ≤ … ≤ μ<sub>n−1</sub> ≤ 2. These eigenvalues (known as the spectrum of the normalized Laplacian) relate well to other graph invariants for general graphs.<sup id="cite_ref-Fan_Chung_1-2" class="reference"><a href="#cite_note-Fan_Chung-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup></li></ul> <ul><li>One can check that:</li></ul> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{\text{rw}}=I-D^{-{\frac {1}{2}}}\left(I-L^{\text{sym}}\right)D^{\frac {1}{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>rw</mtext> </mrow> </msup> <mo>=</mo> <mi>I</mi> <mo>&#x2212;<!-- − --></mo> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mi>I</mi> <mo>&#x2212;<!-- − --></mo> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>sym</mtext> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{\text{rw}}=I-D^{-{\frac {1}{2}}}\left(I-L^{\text{sym}}\right)D^{\frac {1}{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f837271307ba11e7e5a07e08de229b17f36e1fcc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:30.651ex; height:4.009ex;" alt="{\displaystyle L^{\text{rw}}=I-D^{-{\frac {1}{2}}}\left(I-L^{\text{sym}}\right)D^{\frac {1}{2}}}"></span>,</dd></dl> <p>i.e., <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle L^{\text{rw}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>rw</mtext> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle L^{\text{rw}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c438d3bf1184e9960349798a42dbe1196a9a9bb0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.646ex; height:2.176ex;" alt="{\textstyle L^{\text{rw}}}"></span> is <a href="/wiki/Matrix_similarity" title="Matrix similarity"> similar</a> to the normalized Laplacian <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle L^{\text{sym}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>sym</mtext> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle L^{\text{sym}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2c77f75035a9dd5b636edf0064c6d8bbfa897989" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.7ex; height:2.176ex;" alt="{\textstyle L^{\text{sym}}}"></span>. For this reason, even if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle L^{\text{rw}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>rw</mtext> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle L^{\text{rw}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c438d3bf1184e9960349798a42dbe1196a9a9bb0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.646ex; height:2.176ex;" alt="{\textstyle L^{\text{rw}}}"></span> is in general not symmetric, it has real eigenvalues — exactly the same as the eigenvalues of the normalized symmetric Laplacian <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle L^{\text{sym}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>sym</mtext> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle L^{\text{sym}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2c77f75035a9dd5b636edf0064c6d8bbfa897989" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.7ex; height:2.176ex;" alt="{\textstyle L^{\text{sym}}}"></span>. </p> <div class="mw-heading mw-heading2"><h2 id="Interpretation_as_the_discrete_Laplace_operator_approximating_the_continuous_Laplacian">Interpretation as the discrete Laplace operator approximating the continuous Laplacian</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Laplacian_matrix&amp;action=edit&amp;section=17" title="Edit section: Interpretation as the discrete Laplace operator approximating the continuous Laplacian"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The graph Laplacian matrix can be further viewed as a matrix form of the negative <a href="/wiki/Discrete_Laplace_operator" title="Discrete Laplace operator">discrete Laplace operator</a> on a graph approximating the negative continuous <a href="/wiki/Laplacian" class="mw-redirect" title="Laplacian">Laplacian</a> operator obtained by the <a href="/wiki/Finite_difference_method" title="Finite difference method">finite difference method</a>. (See <a href="/wiki/Discrete_Poisson_equation" title="Discrete Poisson equation">Discrete Poisson equation</a>)<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> In this interpretation, every graph vertex is treated as a grid point; the local connectivity of the vertex determines the finite difference approximation <a href="/wiki/Stencil_(numerical_analysis)" title="Stencil (numerical analysis)">stencil</a> at this grid point, the grid size is always one for every edge, and there are no constraints on any grid points, which corresponds to the case of the homogeneous <a href="/wiki/Neumann_boundary_condition" title="Neumann boundary condition">Neumann boundary condition</a>, i.e., free boundary. Such an interpretation allows one, e.g., generalizing the Laplacian matrix to the case of graphs with an infinite number of vertices and edges, leading to a Laplacian matrix of an infinite size. </p> <div class="mw-heading mw-heading2"><h2 id="Generalizations_and_extensions_of_the_Laplacian_matrix">Generalizations and extensions of the Laplacian matrix</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Laplacian_matrix&amp;action=edit&amp;section=18" title="Edit section: Generalizations and extensions of the Laplacian matrix"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Generalized_Laplacian">Generalized Laplacian</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Laplacian_matrix&amp;action=edit&amp;section=19" title="Edit section: Generalized Laplacian"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The generalized Laplacian <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8752c7023b4b3286800fe3238271bbca681219ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.838ex; height:2.509ex;" alt="{\displaystyle Q}"></span> is defined as:<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{cases}Q_{i,j}&lt;0&amp;{\mbox{if }}i\neq j{\mbox{ and }}v_{i}{\mbox{ is adjacent to }}v_{j}\\Q_{i,j}=0&amp;{\mbox{if }}i\neq j{\mbox{ and }}v_{i}{\mbox{ is not adjacent to }}v_{j}\\{\mbox{any number}}&amp;{\mbox{otherwise}}.\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>&lt;</mo> <mn>0</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>if&#xA0;</mtext> </mstyle> </mrow> <mi>i</mi> <mo>&#x2260;<!-- ≠ --></mo> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>&#xA0;and&#xA0;</mtext> </mstyle> </mrow> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>&#xA0;is adjacent to&#xA0;</mtext> </mstyle> </mrow> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>if&#xA0;</mtext> </mstyle> </mrow> <mi>i</mi> <mo>&#x2260;<!-- ≠ --></mo> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>&#xA0;and&#xA0;</mtext> </mstyle> </mrow> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>&#xA0;is not adjacent to&#xA0;</mtext> </mstyle> </mrow> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>any number</mtext> </mstyle> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>otherwise</mtext> </mstyle> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{cases}Q_{i,j}&lt;0&amp;{\mbox{if }}i\neq j{\mbox{ and }}v_{i}{\mbox{ is adjacent to }}v_{j}\\Q_{i,j}=0&amp;{\mbox{if }}i\neq j{\mbox{ and }}v_{i}{\mbox{ is not adjacent to }}v_{j}\\{\mbox{any number}}&amp;{\mbox{otherwise}}.\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1077164acb43f2ab20849d4386b0540524f44093" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.838ex; width:51.317ex; height:8.843ex;" alt="{\displaystyle {\begin{cases}Q_{i,j}&lt;0&amp;{\mbox{if }}i\neq j{\mbox{ and }}v_{i}{\mbox{ is adjacent to }}v_{j}\\Q_{i,j}=0&amp;{\mbox{if }}i\neq j{\mbox{ and }}v_{i}{\mbox{ is not adjacent to }}v_{j}\\{\mbox{any number}}&amp;{\mbox{otherwise}}.\end{cases}}}"></span></dd></dl> <p>Notice the ordinary Laplacian is a generalized Laplacian. </p> <div class="mw-heading mw-heading3"><h3 id="Admittance_matrix_of_an_AC_circuit">Admittance matrix of an AC circuit</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Laplacian_matrix&amp;action=edit&amp;section=20" title="Edit section: Admittance matrix of an AC circuit"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Laplacian of a graph was first introduced to model electrical networks. In an alternating current (AC) electrical network, real-valued resistances are replaced by complex-valued impedances. The weight of edge (<i>i</i>, <i>j</i>) is, by convention, <i>minus</i> the reciprocal of the impedance directly between <i>i</i> and <i>j</i>. In models of such networks, the entries of the <a href="/wiki/Adjacency_matrix" title="Adjacency matrix">adjacency matrix</a> are complex, but the Kirchhoff matrix remains symmetric, rather than being <a href="/wiki/Hermitian" class="mw-redirect" title="Hermitian">Hermitian</a>. Such a matrix is usually called an "<a href="/wiki/Admittance_matrix" class="mw-redirect" title="Admittance matrix">admittance matrix</a>", denoted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span>, rather than a "Laplacian". This is one of the rare applications that give rise to <a href="/wiki/Symmetric_matrix#Complex" title="Symmetric matrix">complex symmetric matrices</a>. </p> <table class="wikitable"> <tbody><tr> <th><a href="/wiki/Adjacency_matrix" title="Adjacency matrix">Adjacency matrix</a> </th> <th>Weighted degree matrix </th> <th>Admittance matrix </th></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left({\begin{array}{rrrr}0&amp;i&amp;0&amp;0\\i&amp;0&amp;1-2i&amp;0\\0&amp;1-2i&amp;0&amp;1\\0&amp;0&amp;1&amp;0\\\end{array}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right right right right" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mi>i</mi> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>i</mi> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>i</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>i</mi> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left({\begin{array}{rrrr}0&amp;i&amp;0&amp;0\\i&amp;0&amp;1-2i&amp;0\\0&amp;1-2i&amp;0&amp;1\\0&amp;0&amp;1&amp;0\\\end{array}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2514c60664dc3d592e1534652570cfa84c75cd0e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:26.047ex; height:12.509ex;" alt="{\textstyle \left({\begin{array}{rrrr}0&amp;i&amp;0&amp;0\\i&amp;0&amp;1-2i&amp;0\\0&amp;1-2i&amp;0&amp;1\\0&amp;0&amp;1&amp;0\\\end{array}}\right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left({\begin{array}{rrrr}i&amp;0&amp;0&amp;0\\0&amp;1-i&amp;0&amp;0\\0&amp;0&amp;2-2i&amp;0\\0&amp;0&amp;0&amp;1\\\end{array}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right right right right" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>i</mi> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>2</mn> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>i</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left({\begin{array}{rrrr}i&amp;0&amp;0&amp;0\\0&amp;1-i&amp;0&amp;0\\0&amp;0&amp;2-2i&amp;0\\0&amp;0&amp;0&amp;1\\\end{array}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/50dfbba523d6554b056972daa07eb5e85e3a3bf7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:24.884ex; height:12.509ex;" alt="{\textstyle \left({\begin{array}{rrrr}i&amp;0&amp;0&amp;0\\0&amp;1-i&amp;0&amp;0\\0&amp;0&amp;2-2i&amp;0\\0&amp;0&amp;0&amp;1\\\end{array}}\right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left({\begin{array}{rrrr}-i&amp;i&amp;0&amp;0\\i&amp;-1+i&amp;1-2i&amp;0\\0&amp;1-2i&amp;-2+2i&amp;1\\0&amp;0&amp;1&amp;-1\\\end{array}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right right right right" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> </mtd> <mtd> <mi>i</mi> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>i</mi> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>+</mo> <mi>i</mi> </mtd> <mtd> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>i</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>i</mi> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mo>+</mo> <mn>2</mn> <mi>i</mi> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left({\begin{array}{rrrr}-i&amp;i&amp;0&amp;0\\i&amp;-1+i&amp;1-2i&amp;0\\0&amp;1-2i&amp;-2+2i&amp;1\\0&amp;0&amp;1&amp;-1\\\end{array}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81b275a9ffa7c6788e7d1df22d99f31b7bdcbcf3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:31.757ex; height:12.509ex;" alt="{\textstyle \left({\begin{array}{rrrr}-i&amp;i&amp;0&amp;0\\i&amp;-1+i&amp;1-2i&amp;0\\0&amp;1-2i&amp;-2+2i&amp;1\\0&amp;0&amp;1&amp;-1\\\end{array}}\right)}"></span> </td></tr></tbody></table> <div class="mw-heading mw-heading3"><h3 id="Magnetic_Laplacian">Magnetic Laplacian</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Laplacian_matrix&amp;action=edit&amp;section=21" title="Edit section: Magnetic Laplacian"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>There are other situations in which entries of the adjacency matrix are complex-valued, and the Laplacian does become a <a href="/wiki/Hermitian_matrix" title="Hermitian matrix">Hermitian matrix</a>. The Magnetic Laplacian for a directed graph with real weights <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle w_{ij}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle w_{ij}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3302ff355269436b43bc2fbe180303881c09321" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.141ex; height:2.343ex;" alt="{\displaystyle w_{ij}}"></span> is constructed as the <a href="/wiki/Hadamard_product_(matrices)" title="Hadamard product (matrices)">Hadamard product</a> of the <a href="/wiki/Symmetric_matrix#Real_symmetric_matrices" title="Symmetric matrix">real symmetric matrix</a> of the symmetrized Laplacian and the Hermitian phase matrix with the <a href="/wiki/Complex_number" title="Complex number">complex</a> entries </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma _{q}(i,j)=e^{i2\pi q(w_{ij}-w_{ji})}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>q</mi> <mo stretchy="false">(</mo> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma _{q}(i,j)=e^{i2\pi q(w_{ij}-w_{ji})}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b7df1788227cc49cb19c2ad8af8ff35ddfa91711" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:21.559ex; height:3.509ex;" alt="{\displaystyle \gamma _{q}(i,j)=e^{i2\pi q(w_{ij}-w_{ji})}}"></span></dd></dl> <p>which encode the edge direction into the phase in the complex plane. In the context of quantum physics, the magnetic Laplacian can be interpreted as the operator that describes the phenomenology of a free charged particle on a graph, which is subject to the action of a magnetic field and the parameter <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></span> is called electric charge.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> In the following example <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q=1/4}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> <mo>=</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>4</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q=1/4}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/616a32e0af8bece9f504665a584169caba639f39" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.655ex; height:2.843ex;" alt="{\displaystyle q=1/4}"></span>: </p> <table class="wikitable"> <tbody><tr> <th><a href="/wiki/Adjacency_matrix" title="Adjacency matrix">Adjacency matrix</a> </th> <th>Symmetrized Laplacian </th> <th>Phase matrix </th> <th>Magnetic Laplacian </th></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left({\begin{array}{rrrr}0&amp;1&amp;0&amp;0\\1&amp;0&amp;1&amp;0\\0&amp;0&amp;0&amp;0\\0&amp;0&amp;1&amp;0\\\end{array}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right right right right" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left({\begin{array}{rrrr}0&amp;1&amp;0&amp;0\\1&amp;0&amp;1&amp;0\\0&amp;0&amp;0&amp;0\\0&amp;0&amp;1&amp;0\\\end{array}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e87a447e2a63f9f45a02ad9c8c3f95d102e11a55" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:16.436ex; height:12.509ex;" alt="{\textstyle \left({\begin{array}{rrrr}0&amp;1&amp;0&amp;0\\1&amp;0&amp;1&amp;0\\0&amp;0&amp;0&amp;0\\0&amp;0&amp;1&amp;0\\\end{array}}\right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left({\begin{array}{rrrr}2&amp;-2&amp;0&amp;0\\-2&amp;3&amp;-1&amp;0\\0&amp;-1&amp;2&amp;-1\\0&amp;0&amp;-1&amp;1\\\end{array}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right right right right" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>2</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mtd> <mtd> <mn>3</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>2</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left({\begin{array}{rrrr}2&amp;-2&amp;0&amp;0\\-2&amp;3&amp;-1&amp;0\\0&amp;-1&amp;2&amp;-1\\0&amp;0&amp;-1&amp;1\\\end{array}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cf5747cc5edf831ba45ca08bab5f02325ad59ec9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:23.668ex; height:12.509ex;" alt="{\textstyle \left({\begin{array}{rrrr}2&amp;-2&amp;0&amp;0\\-2&amp;3&amp;-1&amp;0\\0&amp;-1&amp;2&amp;-1\\0&amp;0&amp;-1&amp;1\\\end{array}}\right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left({\begin{array}{rrrr}1&amp;1&amp;1&amp;1\\1&amp;1&amp;i&amp;1\\1&amp;-i&amp;1&amp;-i\\1&amp;1&amp;i&amp;1\\\end{array}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right right right right" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mi>i</mi> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mi>i</mi> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left({\begin{array}{rrrr}1&amp;1&amp;1&amp;1\\1&amp;1&amp;i&amp;1\\1&amp;-i&amp;1&amp;-i\\1&amp;1&amp;i&amp;1\\\end{array}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed0852f74335023ff4c1b30a81494e3997260ec0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:19.332ex; height:12.509ex;" alt="{\textstyle \left({\begin{array}{rrrr}1&amp;1&amp;1&amp;1\\1&amp;1&amp;i&amp;1\\1&amp;-i&amp;1&amp;-i\\1&amp;1&amp;i&amp;1\\\end{array}}\right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left({\begin{array}{rrrr}2&amp;-2&amp;0&amp;0\\-2&amp;3&amp;-i&amp;0\\0&amp;i&amp;2&amp;i\\0&amp;0&amp;-i&amp;1\\\end{array}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right right right right" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>2</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mtd> <mtd> <mn>3</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mi>i</mi> </mtd> <mtd> <mn>2</mn> </mtd> <mtd> <mi>i</mi> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left({\begin{array}{rrrr}2&amp;-2&amp;0&amp;0\\-2&amp;3&amp;-i&amp;0\\0&amp;i&amp;2&amp;i\\0&amp;0&amp;-i&amp;1\\\end{array}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e898e03bb09b993901031f4ca759c9db2e5b7902" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:21.5ex; height:12.509ex;" alt="{\textstyle \left({\begin{array}{rrrr}2&amp;-2&amp;0&amp;0\\-2&amp;3&amp;-i&amp;0\\0&amp;i&amp;2&amp;i\\0&amp;0&amp;-i&amp;1\\\end{array}}\right)}"></span> </td></tr></tbody></table> <div class="mw-heading mw-heading3"><h3 id="Deformed_Laplacian">Deformed Laplacian</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Laplacian_matrix&amp;action=edit&amp;section=22" title="Edit section: Deformed Laplacian"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <b>deformed Laplacian</b> is commonly defined as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta (s)=I-sA+s^{2}(D-I)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>I</mi> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> <mi>A</mi> <mo>+</mo> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>D</mi> <mo>&#x2212;<!-- − --></mo> <mi>I</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta (s)=I-sA+s^{2}(D-I)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb157a06e9108ca147cc3eedfa602bcb38a33e94" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:27.511ex; height:3.176ex;" alt="{\displaystyle \Delta (s)=I-sA+s^{2}(D-I)}"></span></dd></dl> <p>where <i>I</i> is the identity matrix, <i>A</i> is the adjacency matrix, <i>D</i> is the degree matrix, and <i>s</i> is a (complex-valued) number. <sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup><br /> The standard Laplacian is just <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \Delta (1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \Delta (1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df89afe7abe3e35b2bdf8ab41ab8c9b67df6559c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.908ex; height:2.843ex;" alt="{\textstyle \Delta (1)}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \Delta (-1)=D+A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mi>D</mi> <mo>+</mo> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \Delta (-1)=D+A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/566f5fa2e04237dd8749ba8f3afd54ed32ffff18" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.322ex; height:2.843ex;" alt="{\textstyle \Delta (-1)=D+A}"></span> is the signless Laplacian. </p> <div class="mw-heading mw-heading3"><h3 id="Signless_Laplacian">Signless Laplacian</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Laplacian_matrix&amp;action=edit&amp;section=23" title="Edit section: Signless Laplacian"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <b>signless Laplacian</b> is defined as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q=D+A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> <mo>=</mo> <mi>D</mi> <mo>+</mo> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q=D+A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88a52da33f84a7cc111009148eb64d1662342558" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.445ex; height:2.509ex;" alt="{\displaystyle Q=D+A}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34a0c600395e5d4345287e21fb26efd386990e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.924ex; height:2.176ex;" alt="{\displaystyle D}"></span> is the degree matrix, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> is the adjacency matrix.<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> Like the signed Laplacian <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span>, the signless Laplacian <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8752c7023b4b3286800fe3238271bbca681219ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.838ex; height:2.509ex;" alt="{\displaystyle Q}"></span> also is positive semi-definite as it can be factored as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q=RR^{\textsf {T}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> <mo>=</mo> <mi>R</mi> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="sans-serif">T</mtext> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q=RR^{\textsf {T}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6c41811b2a166a7ee26fedcc9f230176ca2e072f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.816ex; height:3.009ex;" alt="{\displaystyle Q=RR^{\textsf {T}}}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/197e66194eb64577670e2a100026bff6fb15d236" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\textstyle R}"></span> is the incidence matrix. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8752c7023b4b3286800fe3238271bbca681219ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.838ex; height:2.509ex;" alt="{\displaystyle Q}"></span> has a 0-eigenvector if and only if it has a bipartite connected component (isolated vertices being bipartite connected components). This can be shown as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} ^{\textsf {T}}Q\mathbf {x} =\mathbf {x} ^{\textsf {T}}RR^{\textsf {T}}\mathbf {x} \implies R^{\textsf {T}}\mathbf {x} =\mathbf {0} .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="sans-serif">T</mtext> </mrow> </mrow> </msup> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="sans-serif">T</mtext> </mrow> </mrow> </msup> <mi>R</mi> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="sans-serif">T</mtext> </mrow> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mspace width="thickmathspace" /> <mo stretchy="false">&#x27F9;<!-- ⟹ --></mo> <mspace width="thickmathspace" /> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="sans-serif">T</mtext> </mrow> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">0</mn> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} ^{\textsf {T}}Q\mathbf {x} =\mathbf {x} ^{\textsf {T}}RR^{\textsf {T}}\mathbf {x} \implies R^{\textsf {T}}\mathbf {x} =\mathbf {0} .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/049405921057a0f5871e6b9bfda0c0bb340b6463" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:34.158ex; height:3.009ex;" alt="{\displaystyle \mathbf {x} ^{\textsf {T}}Q\mathbf {x} =\mathbf {x} ^{\textsf {T}}RR^{\textsf {T}}\mathbf {x} \implies R^{\textsf {T}}\mathbf {x} =\mathbf {0} .}"></span></dd></dl> <p>This has a solution where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} \neq \mathbf {0} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>&#x2260;<!-- ≠ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">0</mn> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} \neq \mathbf {0} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/69eca9e760a206e635a7b11f0eefe15db4bc10fb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.846ex; height:2.676ex;" alt="{\displaystyle \mathbf {x} \neq \mathbf {0} }"></span> if and only if the graph has a bipartite connected component. </p> <div class="mw-heading mw-heading3"><h3 id="Directed_multigraphs">Directed multigraphs</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Laplacian_matrix&amp;action=edit&amp;section=24" title="Edit section: Directed multigraphs"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>An analogue of the Laplacian matrix can be defined for directed multigraphs.<sup id="cite_ref-Chaiken1978_7-0" class="reference"><a href="#cite_note-Chaiken1978-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> In this case the Laplacian matrix <i>L</i> is defined as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L=D-A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo>=</mo> <mi>D</mi> <mo>&#x2212;<!-- − --></mo> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L=D-A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/043a9a4a219bbee58c30add2d40b74054a3f15f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:11.189ex; height:2.343ex;" alt="{\displaystyle L=D-A}"></span></dd></dl> <p>where <i>D</i> is a diagonal matrix with <i>D</i><sub><i>i</i>,<i>i</i></sub> equal to the outdegree of vertex <i>i</i> and <i>A</i> is a matrix with <i>A</i><sub><i>i</i>,<i>j</i></sub> equal to the number of edges from <i>i</i> to <i>j</i> (including loops). </p> <div class="mw-heading mw-heading2"><h2 id="Open_source_software_implementations">Open source software implementations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Laplacian_matrix&amp;action=edit&amp;section=25" title="Edit section: Open source software implementations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/SciPy" title="SciPy">SciPy</a><sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup></li> <li><a href="/wiki/NetworkX" title="NetworkX">NetworkX</a><sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup></li> <li><a href="/wiki/Julia_(programming_language)" title="Julia (programming language)">Julia</a><sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup></li></ul> <div class="mw-heading mw-heading2"><h2 id="Application_software">Application software</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Laplacian_matrix&amp;action=edit&amp;section=26" title="Edit section: Application software"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Scikit-learn" title="Scikit-learn">scikit-learn</a> Spectral Clustering<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup></li> <li>PyGSP: Graph Signal Processing in Python<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup></li> <li>megaman: Manifold Learning for Millions of Points<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup></li> <li>smoothG<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup></li> <li>Laplacian Change Point Detection for Dynamic Graphs (KDD 2020)<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup></li> <li>LaplacianOpt (A Julia Package for Maximizing Laplacian's Second Eigenvalue of Weighted Graphs) <sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup></li> <li>LigMG (Large Irregular Graph MultiGrid)<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup></li> <li>Laplacians.jl<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup></li></ul> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Laplacian_matrix&amp;action=edit&amp;section=27" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Stiffness_matrix" title="Stiffness matrix">Stiffness matrix</a></li> <li><a href="/wiki/Resistance_distance" title="Resistance distance">Resistance distance</a></li> <li><a href="/wiki/Transition_rate_matrix" class="mw-redirect" title="Transition rate matrix">Transition rate matrix</a></li> <li><a href="/wiki/Calculus_on_finite_weighted_graphs" title="Calculus on finite weighted graphs">Calculus on finite weighted graphs</a></li> <li><a href="/wiki/Graph_Fourier_Transform" class="mw-redirect" title="Graph Fourier Transform">Graph Fourier transform</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Laplacian_matrix&amp;action=edit&amp;section=28" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-Fan_Chung-1"><span class="mw-cite-backlink">^ <a href="#cite_ref-Fan_Chung_1-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Fan_Chung_1-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Fan_Chung_1-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFChung1997" class="citation book cs1"><a href="/wiki/Fan_Chung" title="Fan Chung">Chung, Fan</a> (1997) [1992]. <a rel="nofollow" class="external text" href="http://www.math.ucsd.edu/~fan/research/revised.html"><i>Spectral Graph Theory</i></a>. American Mathematical Society. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0821803158" title="Special:BookSources/978-0821803158"><bdi>978-0821803158</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Spectral+Graph+Theory&amp;rft.pub=American+Mathematical+Society&amp;rft.date=1997&amp;rft.isbn=978-0821803158&amp;rft.aulast=Chung&amp;rft.aufirst=Fan&amp;rft_id=http%3A%2F%2Fwww.math.ucsd.edu%2F~fan%2Fresearch%2Frevised.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALaplacian+matrix" class="Z3988"></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSmolaKondor2003" class="citation cs2">Smola, Alexander J.; Kondor, Risi (2003), "Kernels and regularization on graphs", <i>Learning Theory and Kernel Machines: 16th Annual Conference on Learning Theory and 7th Kernel Workshop, COLT/Kernel 2003, Washington, DC, USA, August 24–27, 2003, Proceedings</i>, Lecture Notes in Computer Science, vol.&#160;2777, Springer, pp.&#160;144–158, <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.7020">10.1.1.3.7020</a></span>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-540-45167-9_12">10.1007/978-3-540-45167-9_12</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-540-40720-1" title="Special:BookSources/978-3-540-40720-1"><bdi>978-3-540-40720-1</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Kernels+and+regularization+on+graphs&amp;rft.btitle=Learning+Theory+and+Kernel+Machines%3A+16th+Annual+Conference+on+Learning+Theory+and+7th+Kernel+Workshop%2C+COLT%2FKernel+2003%2C+Washington%2C+DC%2C+USA%2C+August+24%E2%80%9327%2C+2003%2C+Proceedings&amp;rft.series=Lecture+Notes+in+Computer+Science&amp;rft.pages=144-158&amp;rft.pub=Springer&amp;rft.date=2003&amp;rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.3.7020%23id-name%3DCiteSeerX&amp;rft_id=info%3Adoi%2F10.1007%2F978-3-540-45167-9_12&amp;rft.isbn=978-3-540-40720-1&amp;rft.aulast=Smola&amp;rft.aufirst=Alexander+J.&amp;rft.au=Kondor%2C+Risi&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALaplacian+matrix" class="Z3988"></span>.</span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGodsilRoyle2001" class="citation book cs1">Godsil, C.; Royle, G. (2001). <i>Algebraic Graph Theory, Graduate Texts in Mathematics</i>. Springer-Verlag.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Algebraic+Graph+Theory%2C+Graduate+Texts+in+Mathematics&amp;rft.pub=Springer-Verlag&amp;rft.date=2001&amp;rft.aulast=Godsil&amp;rft.aufirst=C.&amp;rft.au=Royle%2C+G.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALaplacian+matrix" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSatoshi_FurutaniToshiki_ShibaharaMitsuaki_AkiyamaKunio_Hato2020" class="citation conference cs1">Satoshi Furutani; Toshiki Shibahara; Mitsuaki Akiyama; Kunio Hato; Masaki Aida (2020). <a rel="nofollow" class="external text" href="https://ecmlpkdd2019.org/downloads/paper/499.pdf"><i>Graph Signal Processing for Directed Graphs based on the Hermitian Laplacian</i></a> <span class="cs1-format">(PDF)</span>. ECML PKDD 2019: Machine Learning and Knowledge Discovery in Databases. pp.&#160;447–463. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-030-46150-8_27">10.1007/978-3-030-46150-8_27</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=conference&amp;rft.btitle=Graph+Signal+Processing+for+Directed+Graphs+based+on+the+Hermitian+Laplacian&amp;rft.pages=447-463&amp;rft.date=2020&amp;rft_id=info%3Adoi%2F10.1007%2F978-3-030-46150-8_27&amp;rft.au=Satoshi+Furutani&amp;rft.au=Toshiki+Shibahara&amp;rft.au=Mitsuaki+Akiyama&amp;rft.au=Kunio+Hato&amp;rft.au=Masaki+Aida&amp;rft_id=https%3A%2F%2Fecmlpkdd2019.org%2Fdownloads%2Fpaper%2F499.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALaplacian+matrix" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMorbidi2013" class="citation journal cs1">Morbidi, F. (2013). <a rel="nofollow" class="external text" href="http://hal.archives-ouvertes.fr/docs/00/96/14/91/PDF/Morbidi_AUTO13_ExtVer.pdf">"The Deformed Consensus Protocol"</a> <span class="cs1-format">(PDF)</span>. <i>Automatica</i>. <b>49</b> (10): 3049–3055. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.automatica.2013.07.006">10.1016/j.automatica.2013.07.006</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:205767404">205767404</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Automatica&amp;rft.atitle=The+Deformed+Consensus+Protocol&amp;rft.volume=49&amp;rft.issue=10&amp;rft.pages=3049-3055&amp;rft.date=2013&amp;rft_id=info%3Adoi%2F10.1016%2Fj.automatica.2013.07.006&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A205767404%23id-name%3DS2CID&amp;rft.aulast=Morbidi&amp;rft.aufirst=F.&amp;rft_id=http%3A%2F%2Fhal.archives-ouvertes.fr%2Fdocs%2F00%2F96%2F14%2F91%2FPDF%2FMorbidi_AUTO13_ExtVer.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALaplacian+matrix" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCvetkovićSimić2010" class="citation journal cs1">Cvetković, Dragoš; Simić, Slobodan K. (2010). <a rel="nofollow" class="external text" href="https://doi.org/10.2298%2FAADM1000001C">"Towards a Spectral Theory of Graphs Based on the Signless Laplacian, III"</a>. <i>Applicable Analysis and Discrete Mathematics</i>. <b>4</b> (1): 156–166. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.2298%2FAADM1000001C">10.2298/AADM1000001C</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1452-8630">1452-8630</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/43671298">43671298</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Applicable+Analysis+and+Discrete+Mathematics&amp;rft.atitle=Towards+a+Spectral+Theory+of+Graphs+Based+on+the+Signless+Laplacian%2C+III&amp;rft.volume=4&amp;rft.issue=1&amp;rft.pages=156-166&amp;rft.date=2010&amp;rft.issn=1452-8630&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F43671298%23id-name%3DJSTOR&amp;rft_id=info%3Adoi%2F10.2298%2FAADM1000001C&amp;rft.aulast=Cvetkovi%C4%87&amp;rft.aufirst=Drago%C5%A1&amp;rft.au=Simi%C4%87%2C+Slobodan+K.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.2298%252FAADM1000001C&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALaplacian+matrix" class="Z3988"></span></span> </li> <li id="cite_note-Chaiken1978-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-Chaiken1978_7-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChaiken,_S.Kleitman,_D.1978" class="citation journal cs1">Chaiken, S.; <a href="/wiki/Daniel_Kleitman" title="Daniel Kleitman">Kleitman, D.</a> (1978). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0097-3165%2878%2990067-5">"Matrix Tree Theorems"</a>. <i>Journal of Combinatorial Theory, Series A</i>. <b>24</b> (3): 377–381. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0097-3165%2878%2990067-5">10.1016/0097-3165(78)90067-5</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0097-3165">0097-3165</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Combinatorial+Theory%2C+Series+A&amp;rft.atitle=Matrix+Tree+Theorems&amp;rft.volume=24&amp;rft.issue=3&amp;rft.pages=377-381&amp;rft.date=1978&amp;rft_id=info%3Adoi%2F10.1016%2F0097-3165%2878%2990067-5&amp;rft.issn=0097-3165&amp;rft.au=Chaiken%2C+S.&amp;rft.au=Kleitman%2C+D.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252F0097-3165%252878%252990067-5&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALaplacian+matrix" class="Z3988"></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://github.com/scipy/scipy/blob/main/scipy/sparse/csgraph/_laplacian.py">"SciPy"</a>. <i><a href="/wiki/GitHub" title="GitHub">GitHub</a></i>. 4 October 2023.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=GitHub&amp;rft.atitle=SciPy&amp;rft.date=2023-10-04&amp;rft_id=https%3A%2F%2Fgithub.com%2Fscipy%2Fscipy%2Fblob%2Fmain%2Fscipy%2Fsparse%2Fcsgraph%2F_laplacian.py&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALaplacian+matrix" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://github.com/networkx/networkx/blob/main/networkx/linalg/laplacianmatrix.py">"NetworkX"</a>. <i><a href="/wiki/GitHub" title="GitHub">GitHub</a></i>. 4 October 2023.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=GitHub&amp;rft.atitle=NetworkX&amp;rft.date=2023-10-04&amp;rft_id=https%3A%2F%2Fgithub.com%2Fnetworkx%2Fnetworkx%2Fblob%2Fmain%2Fnetworkx%2Flinalg%2Flaplacianmatrix.py&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALaplacian+matrix" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://github.com/JuliaGraphs/Graphs.jl/blob/0fa5f52856f7f779e8f2ca49bc6cee26e5e19b50/src/linalg/spectral.jl#L78-L88">"Julia"</a>. <i><a href="/wiki/GitHub" title="GitHub">GitHub</a></i>. 4 October 2023.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=GitHub&amp;rft.atitle=Julia&amp;rft.date=2023-10-04&amp;rft_id=https%3A%2F%2Fgithub.com%2FJuliaGraphs%2FGraphs.jl%2Fblob%2F0fa5f52856f7f779e8f2ca49bc6cee26e5e19b50%2Fsrc%2Flinalg%2Fspectral.jl%23L78-L88&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALaplacian+matrix" class="Z3988"></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://scikit-learn.org/stable/modules/clustering.html#spectral-clustering">"2.3. Clustering"</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=2.3.+Clustering&amp;rft_id=https%3A%2F%2Fscikit-learn.org%2Fstable%2Fmodules%2Fclustering.html%23spectral-clustering&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALaplacian+matrix" class="Z3988"></span></span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://github.com/epfl-lts2/pygsp">"PyGSP: Graph Signal Processing in Python"</a>. <i><a href="/wiki/GitHub" title="GitHub">GitHub</a></i>. 23 March 2022.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=GitHub&amp;rft.atitle=PyGSP%3A+Graph+Signal+Processing+in+Python&amp;rft.date=2022-03-23&amp;rft_id=https%3A%2F%2Fgithub.com%2Fepfl-lts2%2Fpygsp&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALaplacian+matrix" class="Z3988"></span></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://github.com/mmp2/megaman">"Megaman: Manifold Learning for Millions of Points"</a>. <i><a href="/wiki/GitHub" title="GitHub">GitHub</a></i>. 14 March 2022.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=GitHub&amp;rft.atitle=Megaman%3A+Manifold+Learning+for+Millions+of+Points&amp;rft.date=2022-03-14&amp;rft_id=https%3A%2F%2Fgithub.com%2Fmmp2%2Fmegaman&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALaplacian+matrix" class="Z3988"></span></span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://github.com/LLNL/smoothG">"SmoothG"</a>. <i><a href="/wiki/GitHub" title="GitHub">GitHub</a></i>. 17 September 2020.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=GitHub&amp;rft.atitle=SmoothG&amp;rft.date=2020-09-17&amp;rft_id=https%3A%2F%2Fgithub.com%2FLLNL%2FsmoothG&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALaplacian+matrix" class="Z3988"></span></span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://complexdatalabmcgill.github.io/papers/post-andy-kdd2020paper/">"Announcing Our Paper at KDD 2020"</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Announcing+Our+Paper+at+KDD+2020&amp;rft_id=https%3A%2F%2Fcomplexdatalabmcgill.github.io%2Fpapers%2Fpost-andy-kdd2020paper%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALaplacian+matrix" class="Z3988"></span></span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://github.com/harshangrjn/LaplacianOpt.jl">"Harshangrjn/LaplacianOpt.jl"</a>. <i><a href="/wiki/GitHub" title="GitHub">GitHub</a></i>. 2 February 2022.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=GitHub&amp;rft.atitle=Harshangrjn%2FLaplacianOpt.jl&amp;rft.date=2022-02-02&amp;rft_id=https%3A%2F%2Fgithub.com%2Fharshangrjn%2FLaplacianOpt.jl&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALaplacian+matrix" class="Z3988"></span></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://github.com/ligmg/ligmg">"LigMG (Large Irregular Graph MultiGrid)-- A distributed memory graph Laplacian solver for large irregular graphs"</a>. <i><a href="/wiki/GitHub" title="GitHub">GitHub</a></i>. 5 January 2022.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=GitHub&amp;rft.atitle=LigMG+%28Large+Irregular+Graph+MultiGrid%29--+A+distributed+memory+graph+Laplacian+solver+for+large+irregular+graphs&amp;rft.date=2022-01-05&amp;rft_id=https%3A%2F%2Fgithub.com%2Fligmg%2Fligmg&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALaplacian+matrix" class="Z3988"></span></span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://github.com/danspielman/Laplacians.jl">"Laplacians.jl"</a>. <i><a href="/wiki/GitHub" title="GitHub">GitHub</a></i>. 11 March 2022.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=GitHub&amp;rft.atitle=Laplacians.jl&amp;rft.date=2022-03-11&amp;rft_id=https%3A%2F%2Fgithub.com%2Fdanspielman%2FLaplacians.jl&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALaplacian+matrix" class="Z3988"></span></span> </li> </ol></div></div> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Matrix_classes" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Matrix_classes" title="Template:Matrix classes"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Matrix_classes" title="Template talk:Matrix classes"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Matrix_classes" title="Special:EditPage/Template:Matrix classes"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Matrix_classes" style="font-size:114%;margin:0 4em"><a href="/wiki/Matrix_(mathematics)" title="Matrix (mathematics)">Matrix</a> classes</div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Explicitly constrained entries</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Alternant_matrix" title="Alternant matrix">Alternant</a></li> <li><a href="/wiki/Anti-diagonal_matrix" title="Anti-diagonal matrix">Anti-diagonal</a></li> <li><a href="/wiki/Skew-Hermitian_matrix" title="Skew-Hermitian matrix">Anti-Hermitian</a></li> <li><a href="/wiki/Skew-symmetric_matrix" title="Skew-symmetric matrix">Anti-symmetric</a></li> <li><a href="/wiki/Arrowhead_matrix" title="Arrowhead matrix">Arrowhead</a></li> <li><a href="/wiki/Band_matrix" title="Band matrix">Band</a></li> <li><a href="/wiki/Bidiagonal_matrix" title="Bidiagonal matrix">Bidiagonal</a></li> <li><a href="/wiki/Bisymmetric_matrix" title="Bisymmetric matrix">Bisymmetric</a></li> <li><a href="/wiki/Block-diagonal_matrix" class="mw-redirect" title="Block-diagonal matrix">Block-diagonal</a></li> <li><a href="/wiki/Block_matrix" title="Block matrix">Block</a></li> <li><a href="/wiki/Block_tridiagonal_matrix" class="mw-redirect" title="Block tridiagonal matrix">Block tridiagonal</a></li> <li><a href="/wiki/Boolean_matrix" title="Boolean matrix">Boolean</a></li> <li><a href="/wiki/Cauchy_matrix" title="Cauchy matrix">Cauchy</a></li> <li><a href="/wiki/Centrosymmetric_matrix" title="Centrosymmetric matrix">Centrosymmetric</a></li> <li><a href="/wiki/Conference_matrix" title="Conference matrix">Conference</a></li> <li><a href="/wiki/Complex_Hadamard_matrix" title="Complex Hadamard matrix">Complex Hadamard</a></li> <li><a href="/wiki/Copositive_matrix" title="Copositive matrix">Copositive</a></li> <li><a href="/wiki/Diagonally_dominant_matrix" title="Diagonally dominant matrix">Diagonally dominant</a></li> <li><a href="/wiki/Diagonal_matrix" title="Diagonal matrix">Diagonal</a></li> <li><a href="/wiki/DFT_matrix" title="DFT matrix">Discrete Fourier Transform</a></li> <li><a href="/wiki/Elementary_matrix" title="Elementary matrix">Elementary</a></li> <li><a href="/wiki/Equivalent_matrix" class="mw-redirect" title="Equivalent matrix">Equivalent</a></li> <li><a href="/wiki/Frobenius_matrix" title="Frobenius matrix">Frobenius</a></li> <li><a href="/wiki/Generalized_permutation_matrix" title="Generalized permutation matrix">Generalized permutation</a></li> <li><a href="/wiki/Hadamard_matrix" title="Hadamard matrix">Hadamard</a></li> <li><a href="/wiki/Hankel_matrix" title="Hankel matrix">Hankel</a></li> <li><a href="/wiki/Hermitian_matrix" title="Hermitian matrix">Hermitian</a></li> <li><a href="/wiki/Hessenberg_matrix" title="Hessenberg matrix">Hessenberg</a></li> <li><a href="/wiki/Hollow_matrix" title="Hollow matrix">Hollow</a></li> <li><a href="/wiki/Integer_matrix" title="Integer matrix">Integer</a></li> <li><a href="/wiki/Logical_matrix" title="Logical matrix">Logical</a></li> <li><a href="/wiki/Matrix_unit" title="Matrix unit">Matrix unit</a></li> <li><a href="/wiki/Metzler_matrix" title="Metzler matrix">Metzler</a></li> <li><a href="/wiki/Moore_matrix" title="Moore matrix">Moore</a></li> <li><a href="/wiki/Nonnegative_matrix" title="Nonnegative matrix">Nonnegative</a></li> <li><a href="/wiki/Pentadiagonal_matrix" class="mw-redirect" title="Pentadiagonal matrix">Pentadiagonal</a></li> <li><a href="/wiki/Permutation_matrix" title="Permutation matrix">Permutation</a></li> <li><a href="/wiki/Persymmetric_matrix" title="Persymmetric matrix">Persymmetric</a></li> <li><a href="/wiki/Polynomial_matrix" title="Polynomial matrix">Polynomial</a></li> <li><a href="/wiki/Quaternionic_matrix" title="Quaternionic matrix">Quaternionic</a></li> <li><a href="/wiki/Signature_matrix" title="Signature matrix">Signature</a></li> <li><a href="/wiki/Skew-Hermitian_matrix" title="Skew-Hermitian matrix">Skew-Hermitian</a></li> <li><a href="/wiki/Skew-symmetric_matrix" title="Skew-symmetric matrix">Skew-symmetric</a></li> <li><a href="/wiki/Skyline_matrix" title="Skyline matrix">Skyline</a></li> <li><a href="/wiki/Sparse_matrix" title="Sparse matrix">Sparse</a></li> <li><a href="/wiki/Sylvester_matrix" title="Sylvester matrix">Sylvester</a></li> <li><a href="/wiki/Symmetric_matrix" title="Symmetric matrix">Symmetric</a></li> <li><a href="/wiki/Toeplitz_matrix" title="Toeplitz matrix">Toeplitz</a></li> <li><a href="/wiki/Triangular_matrix" title="Triangular matrix">Triangular</a></li> <li><a href="/wiki/Tridiagonal_matrix" title="Tridiagonal matrix">Tridiagonal</a></li> <li><a href="/wiki/Vandermonde_matrix" title="Vandermonde matrix">Vandermonde</a></li> <li><a href="/wiki/Walsh_matrix" title="Walsh matrix">Walsh</a></li> <li><a href="/wiki/Z-matrix_(mathematics)" title="Z-matrix (mathematics)">Z</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Constant</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Exchange_matrix" title="Exchange matrix">Exchange</a></li> <li><a href="/wiki/Hilbert_matrix" title="Hilbert matrix">Hilbert</a></li> <li><a href="/wiki/Identity_matrix" title="Identity matrix">Identity</a></li> <li><a href="/wiki/Lehmer_matrix" title="Lehmer matrix">Lehmer</a></li> <li><a href="/wiki/Matrix_of_ones" title="Matrix of ones">Of ones</a></li> <li><a href="/wiki/Pascal_matrix" title="Pascal matrix">Pascal</a></li> <li><a href="/wiki/Pauli_matrices" title="Pauli matrices">Pauli</a></li> <li><a href="/wiki/Redheffer_matrix" title="Redheffer matrix">Redheffer</a></li> <li><a href="/wiki/Shift_matrix" title="Shift matrix">Shift</a></li> <li><a href="/wiki/Zero_matrix" title="Zero matrix">Zero</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Conditions on <a href="/wiki/Eigenvalues_and_eigenvectors" title="Eigenvalues and eigenvectors">eigenvalues or eigenvectors</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Companion_matrix" title="Companion matrix">Companion</a></li> <li><a href="/wiki/Convergent_matrix" title="Convergent matrix">Convergent</a></li> <li><a href="/wiki/Defective_matrix" title="Defective matrix">Defective</a></li> <li><a href="/wiki/Definite_matrix" title="Definite matrix">Definite</a></li> <li><a href="/wiki/Diagonalizable_matrix" title="Diagonalizable matrix">Diagonalizable</a></li> <li><a href="/wiki/Hurwitz-stable_matrix" title="Hurwitz-stable matrix">Hurwitz-stable</a></li> <li><a href="/wiki/Positive-definite_matrix" class="mw-redirect" title="Positive-definite matrix">Positive-definite</a></li> <li><a href="/wiki/Stieltjes_matrix" title="Stieltjes matrix">Stieltjes</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Satisfying conditions on <a href="/wiki/Matrix_product" class="mw-redirect" title="Matrix product">products</a> or <a href="/wiki/Inverse_of_a_matrix" class="mw-redirect" title="Inverse of a matrix">inverses</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Matrix_congruence" title="Matrix congruence">Congruent</a></li> <li><a href="/wiki/Idempotent_matrix" title="Idempotent matrix">Idempotent</a> or <a href="/wiki/Projection_(linear_algebra)" title="Projection (linear algebra)">Projection</a></li> <li><a href="/wiki/Invertible_matrix" title="Invertible matrix">Invertible</a></li> <li><a href="/wiki/Involutory_matrix" title="Involutory matrix">Involutory</a></li> <li><a href="/wiki/Nilpotent_matrix" title="Nilpotent matrix">Nilpotent</a></li> <li><a href="/wiki/Normal_matrix" title="Normal matrix">Normal</a></li> <li><a href="/wiki/Orthogonal_matrix" title="Orthogonal matrix">Orthogonal</a></li> <li><a href="/wiki/Unimodular_matrix" title="Unimodular matrix">Unimodular</a></li> <li><a href="/wiki/Unipotent" title="Unipotent">Unipotent</a></li> <li><a href="/wiki/Unitary_matrix" title="Unitary matrix">Unitary</a></li> <li><a href="/wiki/Totally_unimodular_matrix" class="mw-redirect" title="Totally unimodular matrix">Totally unimodular</a></li> <li><a href="/wiki/Weighing_matrix" title="Weighing matrix">Weighing</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">With specific applications</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Adjugate_matrix" title="Adjugate matrix">Adjugate</a></li> <li><a href="/wiki/Alternating_sign_matrix" title="Alternating sign matrix">Alternating sign</a></li> <li><a href="/wiki/Augmented_matrix" title="Augmented matrix">Augmented</a></li> <li><a href="/wiki/B%C3%A9zout_matrix" title="Bézout matrix">Bézout</a></li> <li><a href="/wiki/Carleman_matrix" title="Carleman matrix">Carleman</a></li> <li><a href="/wiki/Cartan_matrix" title="Cartan matrix">Cartan</a></li> <li><a href="/wiki/Circulant_matrix" title="Circulant matrix">Circulant</a></li> <li><a href="/wiki/Cofactor_matrix" class="mw-redirect" title="Cofactor matrix">Cofactor</a></li> <li><a href="/wiki/Commutation_matrix" title="Commutation matrix">Commutation</a></li> <li><a href="/wiki/Confusion_matrix" title="Confusion matrix">Confusion</a></li> <li><a href="/wiki/Coxeter_matrix" class="mw-redirect" title="Coxeter matrix">Coxeter</a></li> <li><a href="/wiki/Distance_matrix" title="Distance matrix">Distance</a></li> <li><a href="/wiki/Duplication_and_elimination_matrices" title="Duplication and elimination matrices">Duplication and elimination</a></li> <li><a href="/wiki/Euclidean_distance_matrix" title="Euclidean distance matrix">Euclidean distance</a></li> <li><a href="/wiki/Fundamental_matrix_(linear_differential_equation)" title="Fundamental matrix (linear differential equation)">Fundamental (linear differential equation)</a></li> <li><a href="/wiki/Generator_matrix" title="Generator matrix">Generator</a></li> <li><a href="/wiki/Gram_matrix" title="Gram matrix">Gram</a></li> <li><a href="/wiki/Hessian_matrix" title="Hessian matrix">Hessian</a></li> <li><a href="/wiki/Householder_transformation" title="Householder transformation">Householder</a></li> <li><a href="/wiki/Jacobian_matrix_and_determinant" title="Jacobian matrix and determinant">Jacobian</a></li> <li><a href="/wiki/Moment_matrix" title="Moment matrix">Moment</a></li> <li><a href="/wiki/Payoff_matrix" class="mw-redirect" title="Payoff matrix">Payoff</a></li> <li><a href="/wiki/Pick_matrix" class="mw-redirect" title="Pick matrix">Pick</a></li> <li><a href="/wiki/Random_matrix" title="Random matrix">Random</a></li> <li><a href="/wiki/Rotation_matrix" title="Rotation matrix">Rotation</a></li> <li><a href="/wiki/Routh%E2%80%93Hurwitz_matrix" title="Routh–Hurwitz matrix">Routh-Hurwitz</a></li> <li><a href="/wiki/Seifert_matrix" class="mw-redirect" title="Seifert matrix">Seifert</a></li> <li><a href="/wiki/Shear_matrix" class="mw-redirect" title="Shear matrix">Shear</a></li> <li><a href="/wiki/Similarity_matrix" class="mw-redirect" title="Similarity matrix">Similarity</a></li> <li><a href="/wiki/Symplectic_matrix" title="Symplectic matrix">Symplectic</a></li> <li><a href="/wiki/Totally_positive_matrix" title="Totally positive matrix">Totally positive</a></li> <li><a href="/wiki/Transformation_matrix" title="Transformation matrix">Transformation</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Used in <a href="/wiki/Statistics" title="Statistics">statistics</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Centering_matrix" title="Centering matrix">Centering</a></li> <li><a href="/wiki/Correlation_matrix" class="mw-redirect" title="Correlation matrix">Correlation</a></li> <li><a href="/wiki/Covariance_matrix" title="Covariance matrix">Covariance</a></li> <li><a href="/wiki/Design_matrix" title="Design matrix">Design</a></li> <li><a href="/wiki/Doubly_stochastic_matrix" title="Doubly stochastic matrix">Doubly stochastic</a></li> <li><a href="/wiki/Fisher_information_matrix" class="mw-redirect" title="Fisher information matrix">Fisher information</a></li> <li><a href="/wiki/Projection_matrix" title="Projection matrix">Hat</a></li> <li><a href="/wiki/Precision_(statistics)" title="Precision (statistics)">Precision</a></li> <li><a href="/wiki/Stochastic_matrix" title="Stochastic matrix">Stochastic</a></li> <li><a href="/wiki/Stochastic_matrix" title="Stochastic matrix">Transition</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Used in <a href="/wiki/Graph_theory" title="Graph theory">graph theory</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Adjacency_matrix" title="Adjacency matrix">Adjacency</a></li> <li><a href="/wiki/Biadjacency_matrix" class="mw-redirect" title="Biadjacency matrix">Biadjacency</a></li> <li><a href="/wiki/Degree_matrix" title="Degree matrix">Degree</a></li> <li><a href="/wiki/Edmonds_matrix" title="Edmonds matrix">Edmonds</a></li> <li><a href="/wiki/Incidence_matrix" title="Incidence matrix">Incidence</a></li> <li><a class="mw-selflink selflink">Laplacian</a></li> <li><a href="/wiki/Seidel_adjacency_matrix" title="Seidel adjacency matrix">Seidel adjacency</a></li> <li><a href="/wiki/Tutte_matrix" title="Tutte matrix">Tutte</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Used in science and engineering</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cabibbo%E2%80%93Kobayashi%E2%80%93Maskawa_matrix" title="Cabibbo–Kobayashi–Maskawa matrix">Cabibbo–Kobayashi–Maskawa</a></li> <li><a href="/wiki/Density_matrix" title="Density matrix">Density</a></li> <li><a href="/wiki/Fundamental_matrix_(computer_vision)" title="Fundamental matrix (computer vision)">Fundamental (computer vision)</a></li> <li><a href="/wiki/Fuzzy_associative_matrix" title="Fuzzy associative matrix">Fuzzy associative</a></li> <li><a href="/wiki/Gamma_matrices" title="Gamma matrices">Gamma</a></li> <li><a href="/wiki/Gell-Mann_matrices" title="Gell-Mann matrices">Gell-Mann</a></li> <li><a href="/wiki/Hamiltonian_matrix" title="Hamiltonian matrix">Hamiltonian</a></li> <li><a href="/wiki/Irregular_matrix" title="Irregular matrix">Irregular</a></li> <li><a href="/wiki/Overlap_matrix" class="mw-redirect" title="Overlap matrix">Overlap</a></li> <li><a href="/wiki/S-matrix" title="S-matrix">S</a></li> <li><a href="/wiki/State-transition_matrix" title="State-transition matrix">State transition</a></li> <li><a href="/wiki/Substitution_matrix" title="Substitution matrix">Substitution</a></li> <li><a href="/wiki/Z-matrix_(chemistry)" title="Z-matrix (chemistry)">Z (chemistry)</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Related terms</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Jordan_normal_form" title="Jordan normal form">Jordan normal form</a></li> <li><a href="/wiki/Linear_independence" title="Linear independence">Linear independence</a></li> <li><a href="/wiki/Matrix_exponential" title="Matrix exponential">Matrix exponential</a></li> <li><a href="/wiki/Matrix_representation_of_conic_sections" title="Matrix representation of conic sections">Matrix representation of conic sections</a></li> <li><a href="/wiki/Perfect_matrix" title="Perfect matrix">Perfect matrix</a></li> <li><a href="/wiki/Pseudoinverse" class="mw-redirect" title="Pseudoinverse">Pseudoinverse</a></li> <li><a href="/wiki/Row_echelon_form" title="Row echelon form">Row echelon form</a></li> <li><a href="/wiki/Wronskian" title="Wronskian">Wronskian</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><b><span class="nowrap"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Nuvola_apps_edu_mathematics_blue-p.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/16px-Nuvola_apps_edu_mathematics_blue-p.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/24px-Nuvola_apps_edu_mathematics_blue-p.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/32px-Nuvola_apps_edu_mathematics_blue-p.svg.png 2x" data-file-width="128" data-file-height="128" /></a></span> </span><a href="/wiki/Portal:Mathematics" title="Portal:Mathematics">Mathematics&#32;portal</a></b></li> <li><a href="/wiki/List_of_matrices" class="mw-redirect" title="List of matrices">List of matrices</a></li> <li><a href="/wiki/Category:Matrices" title="Category:Matrices">Category:Matrices</a></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐drjjp Cached time: 20241122142328 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.770 seconds Real time usage: 1.001 seconds Preprocessor visited node count: 2293/1000000 Post‐expand include size: 55820/2097152 bytes Template argument size: 749/2097152 bytes Highest expansion depth: 12/100 Expensive parser function count: 3/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 77097/5000000 bytes Lua time usage: 0.371/10.000 seconds Lua memory usage: 5298547/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 552.055 1 -total 44.17% 243.866 1 Template:Reflist 26.82% 148.071 1 Template:Short_description 20.10% 110.984 1 Template:Matrix_classes 19.59% 108.132 2 Template:Pagetype 19.47% 107.460 1 Template:Navbox 17.90% 98.797 2 Template:Cite_book 11.35% 62.664 11 Template:Cite_web 5.65% 31.198 1 Template:Use_American_English 5.00% 27.597 3 Template:Cite_journal --> <!-- Saved in parser cache with key enwiki:pcache:1448472:|#|:idhash:canonical and timestamp 20241122142328 and revision id 1253781572. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Laplacian_matrix&amp;oldid=1253781572">https://en.wikipedia.org/w/index.php?title=Laplacian_matrix&amp;oldid=1253781572</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Algebraic_graph_theory" title="Category:Algebraic graph theory">Algebraic graph theory</a></li><li><a href="/wiki/Category:Matrices" title="Category:Matrices">Matrices</a></li><li><a href="/wiki/Category:Numerical_differential_equations" title="Category:Numerical differential equations">Numerical differential equations</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Use_American_English_from_March_2019" title="Category:Use American English from March 2019">Use American English from March 2019</a></li><li><a href="/wiki/Category:All_Wikipedia_articles_written_in_American_English" title="Category:All Wikipedia articles written in American English">All Wikipedia articles written in American English</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_matches_Wikidata" title="Category:Short description matches Wikidata">Short description matches Wikidata</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 27 October 2024, at 21:18<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Laplacian_matrix&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-72jvb","wgBackendResponseTime":151,"wgPageParseReport":{"limitreport":{"cputime":"0.770","walltime":"1.001","ppvisitednodes":{"value":2293,"limit":1000000},"postexpandincludesize":{"value":55820,"limit":2097152},"templateargumentsize":{"value":749,"limit":2097152},"expansiondepth":{"value":12,"limit":100},"expensivefunctioncount":{"value":3,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":77097,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 552.055 1 -total"," 44.17% 243.866 1 Template:Reflist"," 26.82% 148.071 1 Template:Short_description"," 20.10% 110.984 1 Template:Matrix_classes"," 19.59% 108.132 2 Template:Pagetype"," 19.47% 107.460 1 Template:Navbox"," 17.90% 98.797 2 Template:Cite_book"," 11.35% 62.664 11 Template:Cite_web"," 5.65% 31.198 1 Template:Use_American_English"," 5.00% 27.597 3 Template:Cite_journal"]},"scribunto":{"limitreport-timeusage":{"value":"0.371","limit":"10.000"},"limitreport-memusage":{"value":5298547,"limit":52428800},"limitreport-logs":"table#1 {\n [\"size\"] = \"tiny\",\n}\n"},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-drjjp","timestamp":"20241122142328","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Laplacian matrix","url":"https:\/\/en.wikipedia.org\/wiki\/Laplacian_matrix","sameAs":"http:\/\/www.wikidata.org\/entity\/Q772067","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q772067","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2005-01-30T16:41:49Z","dateModified":"2024-10-27T21:18:18Z","headline":"matrix representation of a graph"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10