CINXE.COM
Search results for: water purification agents
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: water purification agents</title> <meta name="description" content="Search results for: water purification agents"> <meta name="keywords" content="water purification agents"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="water purification agents" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="water purification agents"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 10227</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: water purification agents</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10227</span> Water Purification By Novel Nanocomposite Membrane</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20S.%20Johal">E. S. Johal</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Saini"> M. S. Saini</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20K.%20Jha"> M. K. Jha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, 1.1 billion people are at risk due to lack of clean water and about 35 % of people in the developed world die from water related problem. To alleviate these problems water purification technology requires new approaches for effective management and conservation of water resources. Electrospun nanofibres membrane has a potential for water purification due to its high large surface area and good mechanical strength. In the present study PAMAM dendrimers composite nynlon-6 nanofibres membrane was prepared by crosslinking method using Glutaraldehyde. Further, the efficacy of the modified membrane can be renewed by mere exposure of the saturated membrane with the solution having acidic pH. The modified membrane can be used as an effective tool for water purification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dendrimer" title="dendrimer">dendrimer</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofibers" title=" nanofibers"> nanofibers</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite%20membrane" title=" nanocomposite membrane"> nanocomposite membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20purification" title=" water purification"> water purification</a> </p> <a href="https://publications.waset.org/abstracts/9638/water-purification-by-novel-nanocomposite-membrane" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9638.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10226</span> Silver Nanoparticles in Drinking Water Purification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Pooja%20Pragati">S. Pooja Pragati</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Sudarsan"> B. Sudarsan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Rajkumar"> S. Rajkumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Silver nanoparticles (AgNP) are known for their excellent antimicrobial agents, and thus can be used as alternative disinfectant agents. However, released silver nanoparticles is a threat to naturally occurring microorganisms. This paper exhibits information on the environmental fate, toxicological effects, and application of AgNP and the current estimate on the physicochemical and antimicrobial properties of AgNP in different aqueous solutions, as well as their application as alternative disinfectants in water-treatment systems. It also gives a better approximation and experimental data of AgNP’s antimicrobial properties at different water chemistry conditions. A saturation-type fitting curve was established, showing the survival of bacteria under different water chemistry conditions as a function of the size of the nanoparticles. The results obtained show that silver nanoparticles in surface water, ground water, and brackish water are stable. The paper demonstrates the comparative study of AgNP-impregnated point-of-use ceramic water filters and ceramic filters impregnated with silver nitrate. It is observed that AgNP-impregnated ceramic water filters are more appropriate for this application due to the lesser amount of silver desorbed. Experimental data of the comparison of a polymer-based quaternary amine functionalized silsesquioxanes compound and AgNP are also tabulated and conclusions are analysed with the goal of optimizing. The simplicity of synthesis and application of Silver nanoparticles enables us to consider its effective modified version for the purification of water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=disinfectant%20agent" title="disinfectant agent">disinfectant agent</a>, <a href="https://publications.waset.org/abstracts/search?q=purification%20of%20water" title=" purification of water"> purification of water</a>, <a href="https://publications.waset.org/abstracts/search?q=nano%20particles" title=" nano particles"> nano particles</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20treatment" title=" water treatment "> water treatment </a> </p> <a href="https://publications.waset.org/abstracts/29418/silver-nanoparticles-in-drinking-water-purification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29418.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10225</span> Sorption of Charged Organic Dyes from Anionic Hydrogels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Georgios%20Linardatos">Georgios Linardatos</a>, <a href="https://publications.waset.org/abstracts/search?q=Miltiadis%20Zamparas"> Miltiadis Zamparas</a>, <a href="https://publications.waset.org/abstracts/search?q=Vlasoula%20Bekiari"> Vlasoula Bekiari</a>, <a href="https://publications.waset.org/abstracts/search?q=Georgios%20Bokias"> Georgios Bokias</a>, <a href="https://publications.waset.org/abstracts/search?q=Georgios%20Hotos"> Georgios Hotos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrogels are three-dimensional, hydrophilic, polymeric networks composed of homopolymers or copolymers and are insoluble in water due to the presence of chemical or physical cross-links. When hydrogels come in contact with aqueous solutions, they can effectively sorb and retain the dissolved substances, depending on the nature of the monomeric units comprising the hydrogel. For this reason, hydrogels have been proposed in several studies as water purification agents. At the present work anionic hydrogels bearing negatively charged –COO- groups were prepared and investigated. These gels are based on sodium acrylate (ANa), either homopolymerized (poly(sodiumacrylate), PANa) or copolymerized (P(DMAM-co-ANa)) with N,N Dimethylacrylamide (DMAM). The hydrogels were used to extract some model organic dyes from water. It is found that cationic dyes are strongly sorbed and retained by the hydrogels, while sorption of anionic dyes was negligible. In all cases it was found that both maximum sorption capacity and equilibrium binding constant varied from one dye to the other depending on the chemical structure of the dye, the presence of functional chemical groups and the hydrophobic-hydrophilic balance. Finally, the nonionic hydrogel of the homopolymer poly(N,N-dimethylacrylamide), PDMAM, was also used for reasons of comparison. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anionic%20organic%20hydrogels" title="anionic organic hydrogels">anionic organic hydrogels</a>, <a href="https://publications.waset.org/abstracts/search?q=sorption" title=" sorption"> sorption</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20dyes" title=" organic dyes"> organic dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20purification%20agents" title=" water purification agents"> water purification agents</a> </p> <a href="https://publications.waset.org/abstracts/39319/sorption-of-charged-organic-dyes-from-anionic-hydrogels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39319.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10224</span> Ingini Seeds: A Qualitative Study on Its Use in Water Purification in the Dry Zone of Sri Lanka</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iranga%20Weerakkody">Iranga Weerakkody</a>, <a href="https://publications.waset.org/abstracts/search?q=Palitha%20Sri%20Geegana%20Arachchige"> Palitha Sri Geegana Arachchige</a>, <a href="https://publications.waset.org/abstracts/search?q=Dasith%20Tilakaratna"> Dasith Tilakaratna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this research is to study how folk wisdom can be applied to assist in the process of purification of water. This is qualitative research, and by random sampling, it is focused on to the dry zone of Sri Lanka. The research limitation has been set to the use of Ingini seeds (Strychnos potatorum) to purify water. Here the research is based on connecting traditional knowledge regarding water purification using Ingini seeds to modern times and the advantages and disadvantages of using Ingini seeds to purify water sources. Ingini seeds have been used among villagers of the dry zone to purify water for a long time by methods such as planting Ingini plants around water sources and depositing seeds covered with a cotton cloth inside wells. Crushed Ingini seeds have been put into clay water pots to reduce the hardness of water, as well as the number of impurities present in the water. This shows that Ingini seeds have a property that is successful in precipitating dissolved impurities in water. Ingini seeds are also used to precipitate solid impurities in herbal wine. The advantages of using Ingini seeds are that it can be obtained naturally from the ecology without an additional cost and that it is completely organic forest produce. Another specialty is that in practices, it is used to treat kidney stones and other water-related diseases affecting the kidneys. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=folklife" title="folklife">folklife</a>, <a href="https://publications.waset.org/abstracts/search?q=Ingini%20seeds" title=" Ingini seeds"> Ingini seeds</a>, <a href="https://publications.waset.org/abstracts/search?q=Strychnos%20potatorum" title=" Strychnos potatorum"> Strychnos potatorum</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20forest%20produce" title=" organic forest produce"> organic forest produce</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20purification" title=" water purification"> water purification</a> </p> <a href="https://publications.waset.org/abstracts/128366/ingini-seeds-a-qualitative-study-on-its-use-in-water-purification-in-the-dry-zone-of-sri-lanka" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128366.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10223</span> Solar-Powered Water Purification Using Ozone and Sand Filtration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kayla%20Youhanaie">Kayla Youhanaie</a>, <a href="https://publications.waset.org/abstracts/search?q=Kenneth%20Dott"> Kenneth Dott</a>, <a href="https://publications.waset.org/abstracts/search?q=Greg%20Gillis-Smith"> Greg Gillis-Smith</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Access to clean water is a global challenge that affects nearly one-third of the world’s population. A lack of safe drinking water negatively affects a person’s health, safety, and economic status. However, many regions of the world that face this clean water challenge also have high solar energy potential. To address this worldwide issue and utilize available resources, a solar-powered water purification device was developed that could be implemented in communities around the world that lack access to potable water. The device uses ozone to destroy water-borne pathogens and sand filtration to filter out particulates from the water. To select the best method for this application, a quantitative energy efficiency comparison of three water purification methods was conducted: heat, UV light, and ozone. After constructing an initial prototype, the efficacy of the device was tested using agar petri dishes to test for bacteria growth in treated water samples at various time intervals after applying the device to contaminated water. The results demonstrated that the water purification device successfully removed all bacteria and particulates from the water within three minutes, making it safe for human consumption. These results, as well as the proposed design that utilizes widely available resources in target communities, suggest that the device is a sustainable solution to address the global water crisis and could improve the quality of life for millions of people worldwide. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clean%20water" title="clean water">clean water</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20powered%20water%20purification" title=" solar powered water purification"> solar powered water purification</a>, <a href="https://publications.waset.org/abstracts/search?q=ozonation" title=" ozonation"> ozonation</a>, <a href="https://publications.waset.org/abstracts/search?q=sand%20filtration" title=" sand filtration"> sand filtration</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20water%20crisis" title=" global water crisis"> global water crisis</a> </p> <a href="https://publications.waset.org/abstracts/162398/solar-powered-water-purification-using-ozone-and-sand-filtration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162398.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10222</span> Factors Affecting Aluminum Dissolve from Acidified Water Purification Sludge</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wen%20Po%20Cheng">Wen Po Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Chi%20Hua%20Fu"> Chi Hua Fu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ping%20Hung%20Chen"> Ping Hung Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruey%20Fang%20Yu"> Ruey Fang Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recovering resources from water purification sludge (WPS) have been gradually stipulated in environmental protection laws and regulations in many nations. Hence, reusing the WPS is becoming an important topic, and recovering alum from WPS is one of the many practical alternatives. Most previous research efforts have been conducted on studying the amphoteric characteristic of aluminum hydroxide for investigating the optimum pH range to dissolve the Al(III) species from WPS, but it has been lack of reaction kinetics or mechanisms related discussion. Therefore, in this investigation, water purification sludge (WPS) solution was broken by ultrasound to make particle size of reactants smaller, specific surface area larger. According to the reaction kinetics, these phenomena let the dissolved aluminum salt quantity increased and the reaction rate go faster. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminum" title="aluminum">aluminum</a>, <a href="https://publications.waset.org/abstracts/search?q=acidification" title=" acidification"> acidification</a>, <a href="https://publications.waset.org/abstracts/search?q=sludge" title=" sludge"> sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=recovery" title=" recovery"> recovery</a> </p> <a href="https://publications.waset.org/abstracts/7385/factors-affecting-aluminum-dissolve-from-acidified-water-purification-sludge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7385.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">629</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10221</span> Study of Environmental Impact</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Houmame%20Benbouali">Houmame Benbouali </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The risks, in general, exist in any project; one can hardly carry out a project without taking risks. The hydraulic works are rather complex projects in their design, realization and exploitation, and are often subjected at the multiple risks being able to influence with their good performance, and can have an negative impact on their environment. The present study was carried out to quote the impacts caused by purification plant STEP Chlef on the environment, it aims has studies the environmental impacts during construction and when designing this STEP, it is divided into two parts: The first part results from a research task bibliographer which contain three chapters (-cleansing of water worn-general information on water worn-proceed of purification of waste water). The second part is an experimental part which is divided into four chapters (detailed state initial-description of the station of purification-evaluation of the impacts of the project analyzes measurements and recommendations). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=treatment%20plant" title="treatment plant">treatment plant</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20water" title=" waste water"> waste water</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20water%20treatment" title=" waste water treatment"> waste water treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20impact" title=" environmental impact"> environmental impact</a> </p> <a href="https://publications.waset.org/abstracts/23227/study-of-environmental-impact" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23227.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">511</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10220</span> A Machine Learning Approach for Anomaly Detection in Environmental IoT-Driven Wastewater Purification Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Giovanni%20Cicceri">Giovanni Cicceri</a>, <a href="https://publications.waset.org/abstracts/search?q=Roberta%20Maisano"> Roberta Maisano</a>, <a href="https://publications.waset.org/abstracts/search?q=Nathalie%20Morey"> Nathalie Morey</a>, <a href="https://publications.waset.org/abstracts/search?q=Salvatore%20Distefano"> Salvatore Distefano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main goal of this paper is to present a solution for a water purification system based on an Environmental Internet of Things (EIoT) platform to monitor and control water quality and machine learning (ML) models to support decision making and speed up the processes of purification of water. A real case study has been implemented by deploying an EIoT platform and a network of devices, called Gramb meters and belonging to the Gramb project, on wastewater purification systems located in Calabria, south of Italy. The data thus collected are used to control the wastewater quality, detect anomalies and predict the behaviour of the purification system. To this extent, three different statistical and machine learning models have been adopted and thus compared: Autoregressive Integrated Moving Average (ARIMA), Long Short Term Memory (LSTM) autoencoder, and Facebook Prophet (FP). The results demonstrated that the ML solution (LSTM) out-perform classical statistical approaches (ARIMA, FP), in terms of both accuracy, efficiency and effectiveness in monitoring and controlling the wastewater purification processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environmental%20internet%20of%20things" title="environmental internet of things">environmental internet of things</a>, <a href="https://publications.waset.org/abstracts/search?q=EIoT" title=" EIoT"> EIoT</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=anomaly%20detection" title=" anomaly detection"> anomaly detection</a>, <a href="https://publications.waset.org/abstracts/search?q=environment%20monitoring" title=" environment monitoring"> environment monitoring</a> </p> <a href="https://publications.waset.org/abstracts/130838/a-machine-learning-approach-for-anomaly-detection-in-environmental-iot-driven-wastewater-purification-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130838.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10219</span> Valorization of Sawdust for the Treatment of Purified Water for Irrigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dalila%20Oulhaci">Dalila Oulhaci</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Zahaf"> Mohammed Zahaf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The watering technique is essential to maintain a moist perimeter around the roots of the crop. This is the case with topical watering, where the soil around the root system can be kept permanently moist between the two extremes of water content. Moreover, one of the oldest methods used since Roman times throughout North Africa and the Near East was based on the repeated pouring of water into porous earthen vessels buried in the ground. In this context, these two techniques have been combined by replacing the earthen vase with plastic bottles filled with sand which release water through their perforated walls into the surrounding soil. The objective of this work is to first determine the purifying power of the activated sludge treatment plant of Toggourt and then that of the bottled Sawdust filter. For the station, the BOD purification rate was (96.5%), the COD purification rate was (87%) and suspended solids (90%). For the bottle, the BOD removal rate was (35%), and COD removal rate was (12.58%). This work falls within the framework of water saving, sustainable development and environmental protection, and also within the framework of agriculture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wasterwater" title="wasterwater">wasterwater</a>, <a href="https://publications.waset.org/abstracts/search?q=sawdust" title=" sawdust"> sawdust</a>, <a href="https://publications.waset.org/abstracts/search?q=purification" title=" purification"> purification</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigation" title=" irrigation"> irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=touggourt%20%28Algeria%29" title=" touggourt (Algeria)"> touggourt (Algeria)</a> </p> <a href="https://publications.waset.org/abstracts/169605/valorization-of-sawdust-for-the-treatment-of-purified-water-for-irrigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169605.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10218</span> Study of Treatment Plant of The City Chlef Study of Environmental Impact</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Houmame%20Benbouali">Houmame Benbouali</a>, <a href="https://publications.waset.org/abstracts/search?q=Aboubakr%20Gribi"> Aboubakr Gribi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The risks, in general, exist in any project, one can hardly carry out a project without taking risks. The hydraulic works are rather complex projects in their design, realization and exploitation and are often subjected at the multiple risks being able to influence with their good performance and can have a negative impact on their environment. The present study was carried out to quote the impacts caused by purification plant STEP Chlef on the environment, it aims has studied the environmental impacts during construction and when designing this STEP, it is divided into two parts: The first part results from a research task bibliographer which contain three chapters (- cleansing of water-worn- general information on water worn-proceed of purification of waste water). The second part is an experimental part which is divided into four chapters (detailed state initial description of the station of purification-evaluation of the impacts of the project analyzes measurements and recommendations). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=treatment%20plant" title="treatment plant">treatment plant</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20water" title=" waste water"> waste water</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20water%20treatment" title=" waste water treatment"> waste water treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=Chlef" title=" Chlef"> Chlef</a> </p> <a href="https://publications.waset.org/abstracts/24546/study-of-treatment-plant-of-the-city-chlef-study-of-environmental-impact" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24546.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10217</span> Solar Photovoltaic Pumping and Water Treatment Tools: A Case Study in Ethiopian Village</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Corinna%20Barraco">Corinna Barraco</a>, <a href="https://publications.waset.org/abstracts/search?q=Ornella%20Salimbene"> Ornella Salimbene</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research involves the Ethiopian locality of Jeldi (North Africa), an area particularly affected by water shortage and in which the pumping and treatment of drinking water are extremely sensitive issues. The study aims to develop and apply low-cost tools for the design of solar water pumping and water purification systems in a not developed country. Consequently, two technical tools have been implemented in Excel i) Solar photovoltaic Pumping (Spv-P) ii) Water treatment (Wt). The Spv-P tool was applied to the existing well (depth 110 [m], dynamic water level 90 [m], static water level 53 [m], well yield 0.1728 [m³h⁻¹]) in the Jeldi area, where estimated water demand is about 50 [m3d-1]. Through the application of the tool, it was designed the water extraction system of the well, obtaining the number of pumps and solar panels necessary for water pumping from the well of Jeldi. Instead, the second tool Wt has been applied in the subsequent phase of extracted water treatment. According to the chemical-physical parameters of the water, Wt returns as output the type of purification treatment(s) necessary to potable the extracted water. In the case of the well of Jeldi, the tool identified a high criticality regarding the turbidity parameter (12 [NTU] vs 5 [NTU]), and a medium criticality regarding the exceeding limits of sodium concentration (234 [mg/L Na⁺] vs 200 [mg/L Na⁺]) and ammonia (0.64 [mg/L NH³-N] vs 0.5 [mg/L NH³-N]). To complete these tools, two specific manuals are provided for the users. The joint use of the two tools would help reduce problems related to access to water resources compared to the current situation and represents a simplified solution for the design of pumping systems and analysis of purification treatments to be performed in undeveloped countries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drinking%20water" title="drinking water">drinking water</a>, <a href="https://publications.waset.org/abstracts/search?q=Ethiopia" title=" Ethiopia"> Ethiopia</a>, <a href="https://publications.waset.org/abstracts/search?q=treatments" title=" treatments"> treatments</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20pumping" title=" water pumping"> water pumping</a> </p> <a href="https://publications.waset.org/abstracts/117278/solar-photovoltaic-pumping-and-water-treatment-tools-a-case-study-in-ethiopian-village" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117278.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10216</span> Impact of Activated Carbon and Magnetic Field in Slow Sand Filter on Water Purification for Rural Dwellers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Baiyeri%20R.%20M">Baiyeri R. M</a>, <a href="https://publications.waset.org/abstracts/search?q=Oloriegbe%20Y.%20A."> Oloriegbe Y. A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Saad%20A.%20O."> Saad A. O.</a>, <a href="https://publications.waset.org/abstracts/search?q=Yusuf"> Yusuf</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20O."> K. O.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most farmers that produce food crops in Nigeria live in rural areas where potable water is not available. The farmers in some areas have problem of water borne diseases which could affect their health and could lead to death. This study was conducted to determine the impact of incorporating Granular Activated Carbon(GAC) and Magnetic Field(MF) in Slow Sand Filter(SSF) on the purification of water for rural dwellers. The SSF was developed using PVC pipe with diameter 152.4 mm and 1100 mm long, with layers of fine sand with size 0.25 mm and 350 mm depth, followed by GAC 10 mm size and 100 mm depth, fine sand 0.25mm with 500 mm depth and gravel grain size 10-14 mm and 100 mm depth. The SSF was kept moist for 21 days for biofilm layer (schmutzdecke) to fully develop, which is essential for trapping bacteria. Two SSFs fabricated consist of SSF+GAC as Filter 1, SSF+GAC+MF as Filter 2 and Control (Raw water without passing through filter. Water samples were collected from the filter and analyzed. The flow rate of Filter was 25 litres/h Total bacteria counts(TBC) for Filter 1 and Filter 2 and control were 2.4, 4.6 and 8.1 cfu/mg, respectively. Total coliform count for Filter 1 and Filter 2 and control were 1.7, 3.0 and 6.4 cfu/100mL, respectively. The filters reduced water hardness, turbidity, lead, copper, electrical conductivity and TBC by 53.13-73.44% but increased pH from 5.8 to 7.1-7.3. SSF is recommended for water purification in the rural areas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetised%20water" title="magnetised water">magnetised water</a>, <a href="https://publications.waset.org/abstracts/search?q=sow%20sand%20filter" title=" sow sand filter"> sow sand filter</a>, <a href="https://publications.waset.org/abstracts/search?q=portable%20water" title=" portable water"> portable water</a>, <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title=" activated carbon"> activated carbon</a> </p> <a href="https://publications.waset.org/abstracts/169477/impact-of-activated-carbon-and-magnetic-field-in-slow-sand-filter-on-water-purification-for-rural-dwellers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169477.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10215</span> Preparation of Biodiesel by Three Step Method Followed Purification by Various Silica Sources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chanchal%20Mewar">Chanchal Mewar</a>, <a href="https://publications.waset.org/abstracts/search?q=Shikha%20Gangil"> Shikha Gangil</a>, <a href="https://publications.waset.org/abstracts/search?q=Yashwant%20%20Parihar"> Yashwant Parihar</a>, <a href="https://publications.waset.org/abstracts/search?q=Virendra%20Dhakar"> Virendra Dhakar</a>, <a href="https://publications.waset.org/abstracts/search?q=Bharat%20Modhera"> Bharat Modhera</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biodiesel was prepared from Karanja oil by three step methods: saponification, acidification and esterification. In first step, saponification was done in presence of methanol and KOH or NaOH with Karanja oil. During second step acidification, various acids such as H3PO4, HCl, H2SO4 were used as acid catalyst. In third step, esterification followed by purification was done with various silica sources as Ludox (colloidal silicate) and fumed silica gel. It was found that there was no significant change in density, kinematic viscosity, iodine number, acid value, saponification number, flash point, cloud point, pour point and cetane number after purification by these adsorbents. The objective of this research is the comparison among different adsorbents which were used for the purification of biodiesel. Ludox (colloidal silicate) and fumed silica gel were used as adsorbents for the removal of glycerin from biodiesel and evaluate the effectiveness of biodiesel purity. Furthermore, this study compared the results of distilled water washing also. It was observed that Ludox, fumed silica gel and distilled water produced yield about 93%, 91% and 83% respectively. Highest yield was obtained with Ludox at 100 oC temperature using H3PO4 as acid catalyst and NaOH as base catalyst with methanol, (3:1) alcohol to oil molar ratio in 90 min. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title="biodiesel">biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=three%20step%20method" title=" three step method"> three step method</a>, <a href="https://publications.waset.org/abstracts/search?q=purification" title=" purification"> purification</a>, <a href="https://publications.waset.org/abstracts/search?q=silica%20sources" title=" silica sources"> silica sources</a> </p> <a href="https://publications.waset.org/abstracts/35335/preparation-of-biodiesel-by-three-step-method-followed-purification-by-various-silica-sources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35335.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">503</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10214</span> Evaluation of Coagulation Efficiency of Protein Extracts from Lupinus Albus L., Moringa Stenopetala Cufod., Trigonella Foenum-Graecum L. And Vicia Faba L. For Water Purification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neway%20Adele">Neway Adele</a>, <a href="https://publications.waset.org/abstracts/search?q=Adey%20Feleke"> Adey Feleke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Access to clean drinking water is a basic human right. However, an estimated 1.2 billion people across the world consume unclean water daily. Interest has been growing in natural coagulants as the health and environmental concerns of conventional chemical coagulants are rising. Natural coagulants have the potential to serve as alternative water treatment agents. In this study, Lupinus albus, Moringa stenopetala, Trigonella foenum-graecum and Vicia faba protein extracts were evaluated as natural coagulants for water treatment. The protein extracts were purified from crude extracts using a protein purifier, and protein concentrations were determined by the spectrophotometric method. Small-volume coagulation efficiency tests were conducted on raw water taken from the Legedadi water treatment plant. These were done using a completely randomized design (CRD) experiment with settling times of 0 min (initial time), 90 min, 180 min and 270 min and protein extract doses of 5 mg/L, 10 mg/L, 15 mg/L and 20 mg/L. Raw water as negative control and polyelectrolyte as positive control were also included. The optical density (OD) values were measured for all the samples. At 270 min and 20 mg/L, the coagulation efficiency percentages for Lupinus albus, Moringa stenopetala, Trigonella foenum-graecum and Vicia faba protein extracts were 71%, 89%, 12% and 67% in the water sample collected in April 2019 respectively. Similarly, Lupinus albus, Moringa stenopetala and Vicia faba achieved 17%, 92% and 12% at 270 min settling times and 5 mg/L, 20 mg/L and 10 mg/L concentration in the water sample collected from August 2019, respectively. Negative control (raw water) and polyelectrolyte (positive control) were also 6 − 10% and 89 − 94% at 270 min settling time in April and August 2019, respectively. Among the four protein extracts, Moringa stenopetala showed the highest coagulation efficiency, similar to polyelectrolyte. This study concluded that Moringa stenopetala protein extract could be used as a natural coagulant for water purification in both sampling times. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coagulation%20efficiency" title="coagulation efficiency">coagulation efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20coagulant" title=" natural coagulant"> natural coagulant</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20extract" title=" protein extract"> protein extract</a> </p> <a href="https://publications.waset.org/abstracts/169808/evaluation-of-coagulation-efficiency-of-protein-extracts-from-lupinus-albus-l-moringa-stenopetala-cufod-trigonella-foenum-graecum-l-and-vicia-faba-l-for-water-purification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169808.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10213</span> Gene Expression and Staining Agents: Exploring the Factors That Influence the Electrophoretic Properties of Fluorescent Proteins</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elif%20Tugce%20Aksun%20Tumerkan">Elif Tugce Aksun Tumerkan</a>, <a href="https://publications.waset.org/abstracts/search?q=Chris%20Lowe"> Chris Lowe</a>, <a href="https://publications.waset.org/abstracts/search?q=Hannah%20Krupa"> Hannah Krupa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fluorescent proteins are self-sufficient in forming chromophores with a visible wavelength from 3 amino acids sequence within their own polypeptide structure. This chromophore – a molecule that absorbs a photon of light and exhibits an energy transition equal to the energy of the absorbed photon. Fluorescent proteins (FPs) consisted of a chain of 238 amino acid residues and composed of 11 beta strands shaped in a cylinder surrounding an alpha helix structure. A better understanding of the system of the chromospheres and the increasing advance in protein engineering in recent years, the properties of FPs offers the potential for new applications. They have used sensors and probes in molecular biology and cell-based research that giving a chance to observe these FPs tagged cell localization, structural variation and movement. For clarifying functional uses of fluorescent proteins, electrophoretic properties of these proteins are one of the most important parameters. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) analysis is used for determining electrophoretic properties commonly. While there are many techniques are used for determining the functionality of protein-based research, SDS-PAGE analysis can only provide a molecular level assessment of the proteolytic fragments. Before SDS-PAGE analysis, fluorescent proteins need to successfully purified. Due to directly purification of the target, FPs is difficult from the animal, gene expression is commonly used which must be done by transformation with the plasmid. Furthermore, used gel within electrophoresis and staining agents properties have a key role. In this review, the different factors that have the impact on the electrophoretic properties of fluorescent proteins explored. Fluorescent protein separation and purification are the essential steps before electrophoresis that should be done very carefully. For protein purification, gene expression process and following steps have a significant function. For successful gene expression, the properties of selected bacteria for expression, used plasmid are essential. Each bacteria has own characteristics which are very sensitive to gene expression, also used procedure is the important factor for fluorescent protein expression. Another important factors are gel formula and used staining agents. Gel formula has an effect on the specific proteins mobilization and staining with correct agents is a key step for visualization of electrophoretic bands of protein. Visuality of proteins can be changed depending on staining reagents. Apparently, this review has emphasized that gene expression and purification have a stronger effect than electrophoresis protocol and staining agents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell%20biology" title="cell biology">cell biology</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20expression" title=" gene expression"> gene expression</a>, <a href="https://publications.waset.org/abstracts/search?q=staining%20agents" title=" staining agents"> staining agents</a>, <a href="https://publications.waset.org/abstracts/search?q=SDS-page" title=" SDS-page"> SDS-page</a> </p> <a href="https://publications.waset.org/abstracts/94082/gene-expression-and-staining-agents-exploring-the-factors-that-influence-the-electrophoretic-properties-of-fluorescent-proteins" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94082.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10212</span> Application of Three Phase Partitioning (TPP) for the Purification of Serratiopeptidase</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Swapnil%20V.%20Pakhale">Swapnil V. Pakhale</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunil%20S.%20Bhagwat"> Sunil S. Bhagwat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Three phase partitioning (TPP) an efficient bioseparation technique integrates the concentration and partial purification step of downstream processing of a biomolecule. Three Phase Partitioning is reported here for the first time for purification of Serratiopeptidase from fermentation broths of Serratia marcescens NRRL B-23112. The influence of various salts and solvents, Concentration of ammonium sulphate (20-60% w/v), Crude extract to t-butanol ratio (1:0.5-1:2.5) and system pH on Serratiopeptidase partitioning were investigated and optimum conditions for TPP were obtained in order to enhance the degree of purification and activity recovery of Serratiopeptidase. Under the optimal conditions of TPP, serratiopeptidase has been efficiently separated and concentrated with maximum recovery and degree of purification of 95.70% and 4.95 fold respectively. The present study shows TPP as an attractive downstream process for the purification of serratiopeptidase. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=three%20phase%20partitioning" title="three phase partitioning">three phase partitioning</a>, <a href="https://publications.waset.org/abstracts/search?q=serratiopeptidase" title=" serratiopeptidase"> serratiopeptidase</a>, <a href="https://publications.waset.org/abstracts/search?q=serratia%20marcescens%20NRRL%20B-23112" title=" serratia marcescens NRRL B-23112"> serratia marcescens NRRL B-23112</a>, <a href="https://publications.waset.org/abstracts/search?q=t-butanol" title=" t-butanol"> t-butanol</a>, <a href="https://publications.waset.org/abstracts/search?q=bioseparation" title=" bioseparation"> bioseparation</a> </p> <a href="https://publications.waset.org/abstracts/19531/application-of-three-phase-partitioning-tpp-for-the-purification-of-serratiopeptidase" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19531.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">548</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10211</span> Parametric Studies of Ethylene Dichloride Purification Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sh.%20Arzani">Sh. Arzani</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Kazemi%20Esfeh"> H. Kazemi Esfeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Galeh%20Zadeh"> Y. Galeh Zadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Akbari"> V. Akbari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ethylene dichloride is a colorless liquid with a smell like chloroform. EDC is classified in the simple hydrocarbon group which is obtained from chlorinating ethylene gas. Its chemical formula is C2H2Cl2 which is used as the main mediator in VCM production. Therefore, the purification process of EDC is important in the petrochemical process. In this study, the purification unit of EDC was simulated, and then validation was performed. Finally, the impact of process parameter was studied for the degree of EDC purity. The results showed that by increasing the feed flow, the reflux impure combinations increase and result in an EDC purity decrease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ethylene%20dichloride" title="ethylene dichloride">ethylene dichloride</a>, <a href="https://publications.waset.org/abstracts/search?q=purification" title=" purification"> purification</a>, <a href="https://publications.waset.org/abstracts/search?q=edc" title=" edc"> edc</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/35735/parametric-studies-of-ethylene-dichloride-purification-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35735.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10210</span> Wastewater Treatment Using Sodom Apple Tree in Arid Regions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Oulhaci">D. Oulhaci</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zehah"> M. Zehah</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Meguellati"> S. Meguellati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Collected by the sewerage network, the wastewater contains many polluting elements, coming from the population, commercial, industrial and agricultural activities. These waters are collected and discharged into the natural environment and pollute it. Hence the need to transport them before discharge to a treatment plant to undergo several treatment phases. The objective of this study is to highlight the purification performance of the "Sodom apple tree" which is a very common shrub in the region of Djanet and Illizi in Algeria. As material, we used small buckets filled with sand with a gravel substrate. We sowed seeds that we let grow a few weeks. The water supply is under a horizontal flow regime under-ground. The urban wastewater used is preceded by preliminary treatment. The water obtained after purification is collected using a tap in a container placed under the seal. The comparison between the inlet and the outlet waters showed that the presence of the Sodom apple tree contributes to reducing their pollutant parameters with significant rates: 81% for COD, 84%, for BOD , 95% for SM , 82% for NO⁻² , and 85% for NO⁻³ and can be released into the environment without risk of pollution <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arid%20zone" title="arid zone">arid zone</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=purification" title=" purification"> purification</a>, <a href="https://publications.waset.org/abstracts/search?q=re-use" title=" re-use"> re-use</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater." title=" wastewater."> wastewater.</a> </p> <a href="https://publications.waset.org/abstracts/160425/wastewater-treatment-using-sodom-apple-tree-in-arid-regions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160425.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10209</span> Mathematical Modelling, Simulation and Prototype Designing of Potable Water System on Basis of Forward Osmosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ridhish%20Kumar">Ridhish Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudeep%20Nadukkandy"> Sudeep Nadukkandy</a>, <a href="https://publications.waset.org/abstracts/search?q=Anirban%20Roy"> Anirban Roy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of reverse osmosis happened in 1960. Along the years this technique has been widely accepted all over the world for varied applications ranging from seawater desalination to municipal water treatment. Forward osmosis (FO) is one of the foremost technologies for low energy consuming solutions for water purification. In this study, we have carried out a detailed analysis on selection, design, and pricing for a prototype of potable water system for purifying water in emergency situations. The portable and light purification system is envisaged to be driven by FO. This pouch will help to serve as an emergency water filtration device. The current effort employs a model to understand the interplay of permeability and area on the rate of purification of water from any impure source/brackish water. The draw solution for the FO pouch is considered to be a combination of salt and sugar such that dilution of the same would result in an oral rehydration solution (ORS) which is a boon for dehydrated patients. However, the effort takes an extra step to actually estimate the cost and pricing of designing such a prototype. While the mathematical model yields the best membrane (compositions are taken from literature) combination in terms of permeability and area, the pricing takes into account the feasibility of such a solution to be made available as a retail item. The product is envisaged to be a market competitor for packaged drinking water and ORS combination (costing around $0.5 combined) and thus, to be feasible has to be priced around the same range with greater margins in order to have a better distribution. Thus a proper business plan and production of the same has been formulated in order to be a feasible solution for unprecedented calamities and emergency situations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forward%20osmosis" title="forward osmosis">forward osmosis</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20treatment" title=" water treatment"> water treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=oral%20rehydration%20solution" title=" oral rehydration solution"> oral rehydration solution</a>, <a href="https://publications.waset.org/abstracts/search?q=prototype" title=" prototype"> prototype</a> </p> <a href="https://publications.waset.org/abstracts/87604/mathematical-modelling-simulation-and-prototype-designing-of-potable-water-system-on-basis-of-forward-osmosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87604.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10208</span> Water Quality Calculation and Management System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20B.%20N%20Jayasinghe">H. M. B. N Jayasinghe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The water is found almost everywhere on Earth. Water resources contain a lot of pollution. Some diseases can be spread through the water to the living beings. So to be clean water it should undergo a number of treatments necessary to make it drinkable. So it is must to have purification technology for the wastewater. So the waste water treatment plants act a major role in these issues. When considering the procedures taken after the water treatment process was always based on manual calculations and recordings. Water purification plants may interact with lots of manual processes. It means the process taking much time consuming. So the final evaluation and chemical, biological treatment process get delayed. So to prevent those types of drawbacks there are some computerized programmable calculation and analytical techniques going to be introduced to the laboratory staff. To solve this problem automated system will be a solution in which guarantees the rational selection. A decision support system is a way to model data and make quality decisions based upon it. It is widely used in the world for the various kind of process automation. Decision support systems that just collect data and organize it effectively are usually called passive models where they do not suggest a specific decision but only reveal information. This web base system is based on global positioning data adding facility with map location. Most worth feature is SMS and E-mail alert service to inform the appropriate person on a critical issue. The technological influence to the system is HTML, MySQL, PHP, and some other web developing technologies. Current issues in the computerized water chemistry analysis are not much deep in progress. For an example the swimming pool water quality calculator. The validity of the system has been verified by test running and comparison with an existing plant data. Automated system will make the life easier in productively and qualitatively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automated%20system" title="automated system">automated system</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=purification%20technology" title=" purification technology"> purification technology</a>, <a href="https://publications.waset.org/abstracts/search?q=map%20location" title=" map location"> map location</a> </p> <a href="https://publications.waset.org/abstracts/19813/water-quality-calculation-and-management-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19813.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10207</span> Design of Low-Cost Water Purification System Using Activated Carbon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nayan%20Kishore%20Giri">Nayan Kishore Giri</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramakar%20Jha"> Ramakar Jha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water is a major element for the life of all the mankind in the earth. India’s surface water flows through fourteen major streams. Indian rivers are the main source of potable water in India. In the eastern part of India many toxic hazardous metals discharged into the river from mining industries, which leads many deadly diseases to human being. So the potable water quality is very significant and vital concern at present as it is related with the present and future health perspective of the human race. Consciousness of health risks linked with unsafe water is still very low among the many rural and urban areas in India. Only about 7% of total Indian people using water purifier. This unhealthy situation of water is not only present in India but also present in many underdeveloped countries. The major reason behind this is the high cost of water purifier. This current study geared towards development of economical and efficient technology for the removal of maximum possible toxic metals and pathogen bacteria. The work involves the design of portable purification system and purifying material. In this design Coconut shell granular activated carbon(GAC) and polypropylene filter cloths were used in this system. The activated carbon is impregnated with Iron(Fe). Iron is used because it enhances the adsorption capacity of activated carbon. The thorough analysis of iron impregnated activated carbon(Fe-AC) is done by Scanning Electron Microscope (SEM), X-ray diffraction (XRD) , BET surface area test were done. Then 10 ppm of each toxic metal were infiltrated through the designed purification system and they were analysed in Atomic absorption spectrum (AAS). The results are very promising and it is low cost. This work will help many people who are in need of potable water. They can be benefited for its affordability. It could be helpful in industries and other domestic usage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=potable%20water" title="potable water">potable water</a>, <a href="https://publications.waset.org/abstracts/search?q=coconut%20shell%20GAC" title=" coconut shell GAC"> coconut shell GAC</a>, <a href="https://publications.waset.org/abstracts/search?q=polypropylene%20filter%20cloths" title=" polypropylene filter cloths"> polypropylene filter cloths</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=BET" title=" BET"> BET</a>, <a href="https://publications.waset.org/abstracts/search?q=AAS" title=" AAS"> AAS</a> </p> <a href="https://publications.waset.org/abstracts/21577/design-of-low-cost-water-purification-system-using-activated-carbon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21577.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10206</span> Dewatering Agents for Granular Bauxite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bruno%20Diniz%20Fecchio">Bruno Diniz Fecchio</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Operations have been demanding increasingly challenging operational targets for the dewatering process, requiring lower humidity for concentrates. Chemical dewatering agents are able to improve solid/liquid separation processes, allowing operations to deal with increased complexity caused by either mineralogical changes or seasonal events that present operations with challenging moisture requirements for transportation and downstream steps. These chemicals reduce water retention by reducing the capillary pressure of the mineral and contributing to improved water drainage. This current study addresses the reagent effects on pile dewatering for Bauxite. Such chemicals were able to decrease the moisture of granulated Bauxite (particle size of 5 – 50 mm). The results of the laboratory scale tests and industrial trials presented the obtention of up to 11% relative moisture reduction, which reinforced the strong interaction between dewatering agents and the particle surface of granulated Bauxite. The evaluated dewatering agents, however, did not present any negative impact on these operations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bauxite" title="bauxite">bauxite</a>, <a href="https://publications.waset.org/abstracts/search?q=dewatering%20agents" title=" dewatering agents"> dewatering agents</a>, <a href="https://publications.waset.org/abstracts/search?q=pile%20dewatering" title=" pile dewatering"> pile dewatering</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture%20reduction" title=" moisture reduction"> moisture reduction</a> </p> <a href="https://publications.waset.org/abstracts/162764/dewatering-agents-for-granular-bauxite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162764.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10205</span> High Temperature and High Pressure Purification of Hydrogen from Syngas Using Metal Organic Framework Adsorbent</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samira%20Rostom">Samira Rostom</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Symonds"> Robert Symonds</a>, <a href="https://publications.waset.org/abstracts/search?q=Robin%20W.%20Hughes"> Robin W. Hughes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrogen is considered as one of the most important clean and renewable energy carriers for a sustainable energy future. However, its efficient and cost-effective purification remains challenging. This paper presents the potential of using metal–organic frameworks (MOFs) in combination with pressure swing adsorption (PSA) technology for syngas based H2 purification. PSA process analysis is done considering high pressure and elevated temperature process conditions, it reduces the demand for off-gas recycle to the fuel reactor and simultaneously permits higher desorption pressure, thereby reducing the parasitic load on the hydrogen compressor. The elevated pressure and temperature adsorption we present here is beneficial to minimizing overall process heating and cooling demand compared to existing processes. Here, we report the comparative performance of zeolite-5A, Cu-BTC, and the mix of zeolite-5A/Cu-BTC for H2 purification from syngas typical of those exiting water-gas-shift reactors. The MOFs were synthesized hydrothermally and then mixed systematically at different weight ratios to find the optimum composition based on the adsorption performance. The formation of different compounds were characterized by XRD, N2 adsorption and desorption, SEM, FT-IR, TG, and water vapor adsorption technologies. Single-component adsorption isotherms of CO2, CO, CH4, N2, and H2 over single materials and composites were measured at elevated pressures and different temperatures to determine their equilibrium adsorption capacity. The examination of the stability and regeneration performance of metal–organic frameworks was carried out using a gravimetric system at temperature ranges of 25-150℃ for a pressure range of 0-30 bar. The studies of adsorption/desorption on the MOFs showed selective adsorption of CO2, CH4, CO, and N2 over H2. Overall, the findings of this study suggest that the Ni-MOF-74/Cu-BTC composites are promising candidates for industrial H2 purification processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MOF" title="MOF">MOF</a>, <a href="https://publications.waset.org/abstracts/search?q=H2%20purification" title=" H2 purification"> H2 purification</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20T" title=" high T"> high T</a>, <a href="https://publications.waset.org/abstracts/search?q=PSA" title=" PSA"> PSA</a> </p> <a href="https://publications.waset.org/abstracts/160618/high-temperature-and-high-pressure-purification-of-hydrogen-from-syngas-using-metal-organic-framework-adsorbent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160618.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10204</span> Additional Method for the Purification of Lanthanide-Labeled Peptide Compounds Pre-Purified by Weak Cation Exchange Cartridge</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Eryilmaz">K. Eryilmaz</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Mercanoglu"> G. Mercanoglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aim: Purification of the final product, which is the last step in the synthesis of lanthanide-labeled peptide compounds, can be accomplished by different methods. Among these methods, the two most commonly used methods are C18 solid phase extraction (SPE) and weak cation exchanger cartridge elution. SPE C18 solid phase extraction method yields high purity final product, while elution from the weak cation exchanger cartridge is pH dependent and ineffective in removing colloidal impurities. The aim of this work is to develop an additional purification method for the lanthanide-labeled peptide compound in cases where the desired radionuclidic and radiochemical purity of the final product can not be achieved because of pH problem or colloidal impurity. Material and Methods: For colloidal impurity formation, 3 mL of water for injection (WFI) was added to 30 mCi of 177LuCl3 solution and allowed to stand for 1 day. 177Lu-DOTATATE was synthesized using EZAG ML-EAZY module (10 mCi/mL). After synthesis, the final product was mixed with the colloidal impurity solution (total volume:13 mL, total activity: 40 mCi). The resulting mixture was trapped in SPE-C18 cartridge. The cartridge was washed with 10 ml saline to remove impurities to the waste vial. The product trapped in the cartridge was eluted with 2 ml of 50% ethanol and collected to the final product vial via passing through a 0.22μm filter. The final product was diluted with 10 mL of saline. Radiochemical purity before and after purification was analysed by HPLC method. (column: ACE C18-100A. 3µm. 150 x 3.0mm, mobile phase: Water-Acetonitrile-Trifluoro acetic acid (75:25:1), flow rate: 0.6 mL/min). Results: UV and radioactivity detector results in HPLC analysis showed that colloidal impurities were completely removed from the 177Lu-DOTATATE/ colloidal impurity mixture by purification method. Conclusion: The improved purification method can be used as an additional method to remove impurities that may result from the lanthanide-peptide synthesis in which the weak cation exchange purification technique is used as the last step. The purification of the final product and the GMP compliance (the final aseptic filtration and the sterile disposable system components) are two major advantages. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lanthanide" title="lanthanide">lanthanide</a>, <a href="https://publications.waset.org/abstracts/search?q=peptide" title=" peptide"> peptide</a>, <a href="https://publications.waset.org/abstracts/search?q=labeling" title=" labeling"> labeling</a>, <a href="https://publications.waset.org/abstracts/search?q=purification" title=" purification"> purification</a>, <a href="https://publications.waset.org/abstracts/search?q=radionuclide" title=" radionuclide"> radionuclide</a>, <a href="https://publications.waset.org/abstracts/search?q=radiopharmaceutical" title=" radiopharmaceutical"> radiopharmaceutical</a>, <a href="https://publications.waset.org/abstracts/search?q=synthesis" title=" synthesis"> synthesis</a> </p> <a href="https://publications.waset.org/abstracts/96095/additional-method-for-the-purification-of-lanthanide-labeled-peptide-compounds-pre-purified-by-weak-cation-exchange-cartridge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96095.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10203</span> Investigating The Effects of Utilizing Different Curing Agents on High-Performance Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20M.%20Ahmed">Mostafa M. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Kotaro%20Nose"> Kotaro Nose</a>, <a href="https://publications.waset.org/abstracts/search?q=Takashi%20Fujii"> Takashi Fujii</a>, <a href="https://publications.waset.org/abstracts/search?q=Toshiki%20Ayano"> Toshiki Ayano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Study shed the light on the effects of employing varied curing agents (No.1-No.6): bleeding water, and sprinkling water, aqueous basic silica compound, modified acrylic resin, the emulsion of solid wax and nonionic surfactant, and water-based paraffin wax, on the properties of high-performance concrete (HPC) in comparison with the cured specimens according to the standard curing at 20 ± 3°C (JIS A 0203:2019). The specimens cured in accordance with standard curing exhibit a better compressive strength and higher freeze-thaw resistance compared to most non-standard-cured samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=curing%20agents" title="curing agents">curing agents</a>, <a href="https://publications.waset.org/abstracts/search?q=high-performance%20concrete" title=" high-performance concrete"> high-performance concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=cumulative%20scaling" title=" cumulative scaling"> cumulative scaling</a>, <a href="https://publications.waset.org/abstracts/search?q=freeze-thaw%20resistance" title=" freeze-thaw resistance"> freeze-thaw resistance</a> </p> <a href="https://publications.waset.org/abstracts/164913/investigating-the-effects-of-utilizing-different-curing-agents-on-high-performance-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164913.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10202</span> Solar Aided Vacuum Desalination of Sea-Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Miraz%20Hafiz%20Rossy">Miraz Hafiz Rossy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As part of planning to address shortfalls in fresh water supply for the world, Sea water can be a huge source of fresh water. But Desalinating sea water to get fresh water could require a lots of fossil fuels. To save the fossil fuel in terms of save the green world but meet the up growing need for fresh water, a very useful but energy efficient method needs to be introduced. Vacuum desalination of sea water using only the Renewable energy can be an effective solution to this issue. Taking advantage of sensitivity of water's boiling point to air pressure a vacuum desalination water treatment plant can be designed which would only use sea water as feed water and solar energy as fuel to produce fresh drinking water. The study indicates that reducing the air pressure to a certain value water can be boiled at very low temperature. Using solar energy to provide the condensation and the vacuum creation would be very useful and efficient. Compared to existing resources, desalination is considered to be expensive, but using only renewable energy the cost can be reduced significantly. Despite its very few drawbacks, it can be considered a possible solution to the world's fresh water shortages. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=desalination" title="desalination">desalination</a>, <a href="https://publications.waset.org/abstracts/search?q=scarcity%20of%20fresh%20water" title=" scarcity of fresh water"> scarcity of fresh water</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20purification" title=" water purification"> water purification</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20treatment" title=" water treatment"> water treatment</a> </p> <a href="https://publications.waset.org/abstracts/73292/solar-aided-vacuum-desalination-of-sea-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73292.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10201</span> Elimination of Phosphorus by Activated Carbon Prepared from Algerian Dates Stones</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Kamarchoua">A. Kamarchoua</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Bebaa"> A. A. Bebaa</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Douadi"> A. Douadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current work has a goal of the preparation of activated carbon from the stones of dates from southern Algeria (El-Oued province) using a simple pyrolysis proceeded by chemical impregnation in sulphuric acid. For the preparation of the carbon, we choose the diameter of the pellets (0.5-1)mm, activation by acid and water (1:1), carbonization at 450˚C. The prepared carbon has the following characteristics: specific surface 125.86 m2/g, methylene blue number 40, CCE = 0.3meq.g/l, IR and micrographics SEM. The activated carbon thus obtained is used at the water purification in wastewater treatment plant (WWTP) at Kouinine, El- Oued province, to totally eliminate phosphorus. We analyzed the water at the WWTP before the purification procedure. In this study, we have looked at the effect of the following parameters on the adsorption of carbon: the pH, the contact time (Tc) and the agitation speed (Va). The best conditions for phosphorus adsorption are: pH=4 or pH >5, Tc = 60 min and Va = 900 rotations per minute. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title="activated carbon">activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=date%20stones" title=" date stones"> date stones</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrolysis" title=" pyrolysis"> pyrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphate%20pollutants" title=" phosphate pollutants "> phosphate pollutants </a> </p> <a href="https://publications.waset.org/abstracts/40846/elimination-of-phosphorus-by-activated-carbon-prepared-from-algerian-dates-stones" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40846.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10200</span> Purification of Bilge Water by Adsorption</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatiha%20Atmani">Fatiha Atmani</a>, <a href="https://publications.waset.org/abstracts/search?q=Lamia%20Djellab"> Lamia Djellab</a>, <a href="https://publications.waset.org/abstracts/search?q=Nacera%20Yeddou%20Mezenner"> Nacera Yeddou Mezenner</a>, <a href="https://publications.waset.org/abstracts/search?q=Zohra%20Bensaadi"> Zohra Bensaadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Generally, bilge waters can be briefly defined as saline and greasy wastewaters. The oil and grease are mixed with the sea water, which affects many marine species. Bilge water is a complex mixture of various compounds such as solvents, surfactants, fuel, lubricating oils, and hydraulic oils. It is resulted mainly by the leakage from the machinery and fresh water washdowns,which are allowed to drain to the lowest inner part of the ship's hull. There are several physicochemical methods used for bilge water treatment such as biodegradation electrochemical and electro-coagulation/flotation.The research herein presented discusses adsorption as a method to treat bilge water and eggshells were studied as an adsorbent. The influence of operating parameters as contact time, temperature and adsorbent dose (0,2 - 2g/l) on the removal efficiency of Chemical oxygen demand, COD, and turbidity was analyzed. The bilge wastewater used for this study was supplied by Harbour Bouharoune. Chemical oxygen demand removal increased from 26.7% to 68.7% as the adsorbent dose increased from 0.2 to 2 g. The kinetics of adsorption by eggshells were fast, reaching 55 % of the total adsorption capacity in ten minutes (T= 20°C, pH =7.66, m=2g/L). It was found that the turbidity removal efficiency decreased and 95% were achieved at the end of 90 min reaction. The adsorption process was found to be effective for the purification of bilge water and pseudo-second-order kinetic model was fitted for COD removal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=bilge%20water" title=" bilge water"> bilge water</a>, <a href="https://publications.waset.org/abstracts/search?q=eggshells%20and%20kinetics" title=" eggshells and kinetics"> eggshells and kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=equilibrium%20and%20kinetics" title=" equilibrium and kinetics "> equilibrium and kinetics </a> </p> <a href="https://publications.waset.org/abstracts/32584/purification-of-bilge-water-by-adsorption" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32584.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10199</span> Isolation of Antimicrobial Compounds from Marine Sponge Neopetrosia exigua</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haitham%20Qaralleh">Haitham Qaralleh</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Z.%20Idid"> Syed Z. Idid</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahbudin%20Saad"> Shahbudin Saad</a>, <a href="https://publications.waset.org/abstracts/search?q=Deny%20Susanti"> Deny Susanti</a>, <a href="https://publications.waset.org/abstracts/search?q=Osama%20Althunibat"> Osama Althunibat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was carried out to isolate the active antimicrobial compounds from Neopetrosia exigua using bio-guided assay isolation against Staphylococcus aureus. N. exigua was extracted using methanol and subjected to liquid-liquid extraction using solvents with different polarity (n-hexane, carbon tetrachloride, dichloromethane, n-butanol and water). Purification of the active components of n-butanol and dichloromethane fractions was done using Sephadex LH-20 and reverse phase chromatography. Based on the biological guided fractionation results, dichloromethane and n-butanol fractions showed the highest antimicrobial activity. Purification of the active components of n-butanol and dichloromethane fractions yielded three compounds. The structure of the isolated compounds were elucidated and found to be 5-hydroxy-1H-indole-3-carboxylic acid methyl ester, cyclo-1`-demethylcystalgerone and avarol derivative. Avarol was showed potent bactericidal effect against S. aureus. N. exigua appears to be rich source of natural antimicrobial agents. Further studies are needed to investigate the mode of action of these compounds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial" title="antimicrobial">antimicrobial</a>, <a href="https://publications.waset.org/abstracts/search?q=avarol" title=" avarol"> avarol</a>, <a href="https://publications.waset.org/abstracts/search?q=Neopetrosia%20exigua" title=" Neopetrosia exigua"> Neopetrosia exigua</a>, <a href="https://publications.waset.org/abstracts/search?q=Staphylococcus%20aureus" title=" Staphylococcus aureus"> Staphylococcus aureus</a> </p> <a href="https://publications.waset.org/abstracts/10115/isolation-of-antimicrobial-compounds-from-marine-sponge-neopetrosia-exigua" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10115.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10198</span> Purification and Characterization of Phycoerythrin from a Mesophilic Cyanobacterium Nostoc piscinale PUPCCC 405.17</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sandeep%20Kaur">Sandeep Kaur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phycoerythrin (PE) from the mesophilic filamentous cyanobacterium Nostoc piscinale PUPCCC 405.17, a good producer of phycobiliproteins, has been characterized in terms of their unit assembly and stability. The phycoerythrin was extracted by freeze-thawing the cells in water, concentrated by ammonium sulphate fractionation and purified by anion exchange chromatography. The purification process resulted in 2.90 fold increase in phycoerythrin purity reaching to 1.54. Sodium Dodecyl Sulphate- Polyacrylamide Gel Electrophoresis of purified PE demonstrated three protein bands of 14.3, 27.54 and 39.81 kDa. The native PE also showed one band of 125.87 kDa, assumed to be a dimer (αβ)2γ based on results of non-denaturing PAGE. Lyophilized powder PE was more stable compared to phycoerythrin in the solution. The half-life of dry PE is 80 days when stored at 4 °C under dark. The phycoerythrin from this organism has potential applications in food as natural colour and as a fluorescent marker. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=characterization" title="characterization">characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=Nostoc%20piscinale" title=" Nostoc piscinale"> Nostoc piscinale</a>, <a href="https://publications.waset.org/abstracts/search?q=phycoerythrin" title=" phycoerythrin"> phycoerythrin</a>, <a href="https://publications.waset.org/abstracts/search?q=purification" title=" purification "> purification </a> </p> <a href="https://publications.waset.org/abstracts/108813/purification-and-characterization-of-phycoerythrin-from-a-mesophilic-cyanobacterium-nostoc-piscinale-pupccc-40517" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108813.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20purification%20agents&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20purification%20agents&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20purification%20agents&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20purification%20agents&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20purification%20agents&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20purification%20agents&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20purification%20agents&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20purification%20agents&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20purification%20agents&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20purification%20agents&page=340">340</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20purification%20agents&page=341">341</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20purification%20agents&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>