CINXE.COM

Search results for: olive pulp

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: olive pulp</title> <meta name="description" content="Search results for: olive pulp"> <meta name="keywords" content="olive pulp"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="olive pulp" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="olive pulp"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 341</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: olive pulp</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">341</span> Utilization and Characterizations of Olive Oil Industry By-Products</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sawsan%20Dacrory">Sawsan Dacrory</a>, <a href="https://publications.waset.org/abstracts/search?q=Hussein%20Abou-Yousef"> Hussein Abou-Yousef</a>, <a href="https://publications.waset.org/abstracts/search?q=Samir%20Kamel"> Samir Kamel</a>, <a href="https://publications.waset.org/abstracts/search?q=Ragab%20E.%20Abou-Zeid"> Ragab E. Abou-Zeid</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20S.%20Abdel-Aziz"> Mohamed S. Abdel-Aziz</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Elbadry"> Mohamed Elbadry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A considerable amount of lignocellulosic by-product could be obtained from olive pulp during olive oil extraction industry. The major constituents of the olive pulp are husks and seeds. The separation of each portion of olive pulp (seeds and husks) was carried out by water flotation where seeds were sediment in the bottom. Both seeds and husks were dignified by 15% NaOH followed by complete lignin removal by using sodium chlorite in acidic medium. The isolated holocellulose, &alpha;-cellulose, hydrogel and CMC which prepared from cellulose of both seeds and husk fractions were characterized by FTIR and SEM. The present study focused on the investigation of the chemical components of the lignocellulosic fraction of olive pulp. Biofunctionlization of hydrogel was achieved through loading of silver nanoparticles AgNPs in to the prepared hydrogel. The antimicrobial activity of the loaded silver hydrogel against G-ve, and G+ve, and candida was demonstrated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellulose" title="cellulose">cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=carboxymethyle%20cellulose" title=" carboxymethyle cellulose"> carboxymethyle cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=olive%20pulp" title=" olive pulp"> olive pulp</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogel" title=" hydrogel"> hydrogel</a> </p> <a href="https://publications.waset.org/abstracts/40837/utilization-and-characterizations-of-olive-oil-industry-by-products" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40837.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">474</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">340</span> Infestations of Olive Fruit Fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae), in Different Olive Cultivars in Çanakkale, Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanife%20Gen%C3%A7">Hanife Genç</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The olive fruit fly, <em>Bactrocera oleae</em> (Rossi), is an economically important and endemic pest in olive (<em>Oleae europae</em>) orchards in Turkey. The aim of this study was to determine olive fruit fly infestation in different olive cultivars in the laboratory. Olive fly infested fruits were collected in &Ccedil;anakkale province to establish wild fly population. After having reproductive olive fly colonies, 14 olive cultivars were tested in the controlled laboratory conditions, at 23&plusmn;2 &deg;C, 65% RH and 16:8 h (light: dark) photoperiod. The olive samples from 14 different olive cultivars were collected in October 2015, in Campus of Dardanos, &Ccedil;anakkale Onsekiz Mart University. Observations were carried out detecting some biological parameters such as the number of oviposition stings, active infestation, total infestation, the number of pupae and the adult emergence. The results indicated that oviposition stings were not associated with pupal yield. A few pupae were found within olive fruits which were not able to exit. Screening of the varieties suggested that less susceptible cultivar to olive fruit fly attacks was Arbequin while Gemlik-2M 2/3 showed significant susceptibility. Ovipositional preference of olive fly females and the success of larval development in different olive varieties are crucial for establishing new olive orchards to prevent high olive fruit fly infestation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=infestation" title="infestation">infestation</a>, <a href="https://publications.waset.org/abstracts/search?q=olive%20fruit%20fly" title=" olive fruit fly"> olive fruit fly</a>, <a href="https://publications.waset.org/abstracts/search?q=olive%20cultivars" title=" olive cultivars"> olive cultivars</a>, <a href="https://publications.waset.org/abstracts/search?q=oviposition%20sting" title=" oviposition sting"> oviposition sting</a> </p> <a href="https://publications.waset.org/abstracts/48621/infestations-of-olive-fruit-fly-bactrocera-oleae-rossi-diptera-tephritidae-in-different-olive-cultivars-in-canakkale-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48621.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">339</span> Application of Phenol Degrading Microorganisms for the Treatment of Olive Mill Waste (OMW)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20El-Khateeb">M. A. El-Khateeb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The growth of the olive oil production in Saudi Arabia peculiarly in Al Jouf region in recent years has been accompanied by an increase in the discharge of associated processing waste. Olive mill waste is produced throughout the extraction of oil from the olive fruit using the traditional mill and press process. Deterioration of the environment due to olive mill disposal wastes is a serious problem. When olive mill waste disposed into the soil, it affects soil quality, soil micro flora, and also toxic to plants. The aim of this work is to isolate microorganism (bacterial or fungal strains) from OMW capable of degrading phenols. Olive mill wastewater, olive mill waste and soil (beside oil production mill) contaminated with olive waste were used for isolation of phenol tolerant microorganisms. Four strains (two fungal and two bacterial) were isolated from olive mill waste. The isolated strains were Candida tropicalis and Phanerochaete chrysosporium (fungal strains) and Bacillus sp. and Rhodococcus sp. (bacterial strains). These strains were able to degrade phenols and could be used for bioremediation of olive mill waste. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title="bioremediation">bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteria" title=" bacteria"> bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=fungi" title=" fungi"> fungi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sakaka" title=" Sakaka"> Sakaka</a> </p> <a href="https://publications.waset.org/abstracts/15825/application-of-phenol-degrading-microorganisms-for-the-treatment-of-olive-mill-waste-omw" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15825.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">338</span> Nutritive Value of Three-Stage Olive Cake (Olea europaea L.) for Growing Rabbit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zahia%20Dorbane">Zahia Dorbane</a>, <a href="https://publications.waset.org/abstracts/search?q=Si%20Ammar%20Kadi"> Si Ammar Kadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Dalila%20Boudouma"> Dalila Boudouma</a>, <a href="https://publications.waset.org/abstracts/search?q=Thierry%20Gidenne"> Thierry Gidenne</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In rabbits feeding, minimum fibre intake is essential to avoid digestive disorders. However, this concentration of fibre is not easy to obtain when formulating feeds, without reduction of nutritional value. Three stage olive cake, the residual material after oil extraction by centrifugation, including pulp and stones, can be used as a fibre source in rabbit diet. The incorporation of olive cake can allow a better balance between different fibre fractions and reduce health disorder. However, for practical use of any raw material, it is necessary to know its chemical and nutritive value. The aim of this study was to assess the nutritive value of three-stage olive cake (TSOC) for growing rabbits. Thus, 36 rabbits weaned at 35 days (702.8 ± 28.5) were divided into three groups of 12 receiving one of the following diets: control with 0% of TSOC, TSOC10 (10% of TSOC) and TSOC20 (20% TSOC). The rabbits were individually housed in digestibility cages and received ad libitum one of the three diets, fresh and clean water was provided ad libitum. After an adaptation period of 7d, feces were collected for 4d. Collected feces were frozen and stored for further analysis. The chemical composition of TSOC shows that it is a rich fiber raw material since it contains (%DM): 6% of CP; 7.4% of EE; 78.7% of NDF; 55.4% of ADF and 24.3% of ADL. The inclusion of TSOC at 20% of basal diet reduced the digestibility coefficient of organic matter, crude protein and NDF from 67.8 to 55.3%, 80.4 to 75.3% and from 31.5 to 18.4% (p < 0.001) respectively. The digestible energy and digestible protein content of the three-stage olive cake estimated by regression was 2.94 ± 0.52MJ DE/kg DM and 22.4 ± 6 g DP/kg DM respectively. In conclusion, based on the results of the present experiment, the three-stage olive cake can be used as a fibre source for rabbit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digestibility" title="digestibility">digestibility</a>, <a href="https://publications.waset.org/abstracts/search?q=nutritive%20value" title=" nutritive value"> nutritive value</a>, <a href="https://publications.waset.org/abstracts/search?q=olive%20cake" title=" olive cake"> olive cake</a>, <a href="https://publications.waset.org/abstracts/search?q=rabbit" title=" rabbit"> rabbit</a> </p> <a href="https://publications.waset.org/abstracts/106579/nutritive-value-of-three-stage-olive-cake-olea-europaea-l-for-growing-rabbit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106579.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">337</span> Strategies and Perceptions of Small Olive Oil Farmers of By-Product Valorization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Judit%20Manuel-i-Martin">Judit Manuel-i-Martin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mechthild%20Donner"> Mechthild Donner</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivana%20Radic"> Ivana Radic</a>, <a href="https://publications.waset.org/abstracts/search?q=Yamna%20Erraach"> Yamna Erraach</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatima%20Elhadad"> Fatima Elhadad</a>, <a href="https://publications.waset.org/abstracts/search?q=Taoufik%20Yatribi"> Taoufik Yatribi</a>, <a href="https://publications.waset.org/abstracts/search?q=Feliu%20Lopez-i-Gelats"> Feliu Lopez-i-Gelats</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates how small olive farmers and olive oil producers implement circular economy practices to manage olive related waste and how such strategies are perceived by the farmers themselves. While there is a lot of data and research about possible uses of olive oil by-products, the perceptions and related practices of olive oil farmers is a much less investigated domain. A total of 60 semi-structured interviews were conducted in one of the most relevant olive oil producing regions in the Iberian Peninsula -the region of Terres de Ponent (Catalonia – Spain) - to examine the different by-product valorization strategies the olive oil farms develop. We test the hypothesis that the strategies conducted depend on the nature and amount of resources available by the farm. The results obtained point that access to milling infrastructure is a determining factor. We also found that olive tree pruning biomass and olive pomace are the most common by-products valorized by farmers, the first one on-farm and the latter in mills. Results indicate that high value uses for olive oil by-products are rarely implemented by farmers. We conclude that olive farmers tend to perceive by-product valorization strategies as waste management practices rather than as additional sources of value for their farm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=circular%20economy" title="circular economy">circular economy</a>, <a href="https://publications.waset.org/abstracts/search?q=discourses" title=" discourses"> discourses</a>, <a href="https://publications.waset.org/abstracts/search?q=Mediterranean%20region" title=" Mediterranean region"> Mediterranean region</a>, <a href="https://publications.waset.org/abstracts/search?q=olive%20oil%20by-products" title=" olive oil by-products"> olive oil by-products</a>, <a href="https://publications.waset.org/abstracts/search?q=farmers%E2%80%99%20strategies" title=" farmers’ strategies"> farmers’ strategies</a>, <a href="https://publications.waset.org/abstracts/search?q=olive%20pomace" title=" olive pomace"> olive pomace</a> </p> <a href="https://publications.waset.org/abstracts/138492/strategies-and-perceptions-of-small-olive-oil-farmers-of-by-product-valorization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138492.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">336</span> Environmental Performance of Olive Oil Production in Greece</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Tsarouhas">P. Tsarouhas</a>, <a href="https://publications.waset.org/abstracts/search?q=Ch.%20Achillas"> Ch. Achillas</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Aidonis"> D. Aidonis</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Folinas"> D. Folinas</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Maslis"> V. Maslis</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Moussiopoulos"> N. Moussiopoulos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Agricultural production is a sector with high socioeconomic significance and key implications on employment and nutritional security. However, the impacts of agrifood production and consumption patterns on the environment are considerable, mainly due to the demand of large inputs of resources. This paper presents a case study of olive oil production in Greece, an important agri-product especially for countries in the Mediterranean basin. Life Cycle Analysis has been used to quantify the environmental performance of olive oil production. All key parameters that are associated with the life cycle of olive oil production are studied and environmental “hotspots” are diagnosed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LCA" title="LCA">LCA</a>, <a href="https://publications.waset.org/abstracts/search?q=olive%20oil%20production" title=" olive oil production"> olive oil production</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20impact" title=" environmental impact"> environmental impact</a>, <a href="https://publications.waset.org/abstracts/search?q=case%20study" title=" case study"> case study</a>, <a href="https://publications.waset.org/abstracts/search?q=Greece" title=" Greece"> Greece</a> </p> <a href="https://publications.waset.org/abstracts/14486/environmental-performance-of-olive-oil-production-in-greece" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14486.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">335</span> Vital Pulp Therapy: A Paradigm Shift in Treating Irreversible Pulpitis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fadwa%20Chtioui">Fadwa Chtioui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vital Pulp Therapy (VPT) is nowadays challenging the deep-rooted dogma of root canal treatment, being the only therapeutic option for permanent teeth diagnosed with irreversible pulpitis or carious pulp exposure. Histologic and clinical research has shown that compromised dental pulp can be treated without the full removal or excavation of all healthy pulp, and the outcome of the partial or full pulpotomy followed by a Tricalcium-Silicate-based dressing seems to show promising results in maintaining pulp vitality and preserving affected teeth in the long term. By reviewing recent advances in the techniques of VPT and their clinical effectiveness and safety in permanent teeth with irreversible Pulpitis, this work provides a new understanding of pulp pathophysiology and defense mechanisms and will reform dental practitioners' decision-making in treating irreversible pulpits from root canal therapy to vital pulp therapy by taking advantage of the biological effects of Tricalcium Silicate materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=irreversible%20pulpitis" title="irreversible pulpitis">irreversible pulpitis</a>, <a href="https://publications.waset.org/abstracts/search?q=vital%20pulp%20therapy" title=" vital pulp therapy"> vital pulp therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=pulpotomy" title=" pulpotomy"> pulpotomy</a>, <a href="https://publications.waset.org/abstracts/search?q=Tricalcium%20Silicate" title=" Tricalcium Silicate"> Tricalcium Silicate</a> </p> <a href="https://publications.waset.org/abstracts/170030/vital-pulp-therapy-a-paradigm-shift-in-treating-irreversible-pulpitis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170030.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">60</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">334</span> Valorization Bio-Waste Argan Pulp for Green Synthesis of Silver Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omar%20Drissi">Omar Drissi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadia%20El%20Harfaoui"> Nadia El Harfaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Khalid%20Nouneh"> Khalid Nouneh</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachid%20Hsissou"> Rachid Hsissou</a>, <a href="https://publications.waset.org/abstracts/search?q=Badre%20Daoudi"> Badre Daoudi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The pulp endures of having a lower importance, incompletely because of the way that it has been less studied, and it has been recognized as a pivotal product got from biomass that can be utilized in different fields. The current research focuses on pulp of Argania spinosa (L). To this end, the aim is to study the characteristics and properties of Argan pulp, such as shape, chemical and macromineral composition. As a result, X-Ray Fluorescence (XRF), Fourier transform infrared spectroscopy (FTIR), and Scanning Electron Microscopy (SEM) were used in the research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=argania%20spinose" title="argania spinose">argania spinose</a>, <a href="https://publications.waset.org/abstracts/search?q=argan%20pulp" title=" argan pulp"> argan pulp</a>, <a href="https://publications.waset.org/abstracts/search?q=argan%20bio-waste" title=" argan bio-waste"> argan bio-waste</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20synthesis" title=" green synthesis"> green synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=silver%20nanoparticles" title=" silver nanoparticles"> silver nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=valorization" title=" valorization"> valorization</a> </p> <a href="https://publications.waset.org/abstracts/167565/valorization-bio-waste-argan-pulp-for-green-synthesis-of-silver-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167565.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">333</span> Extraction of Squalene from Lebanese Olive Oil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Henri%20El%20Zakhem">Henri El Zakhem</a>, <a href="https://publications.waset.org/abstracts/search?q=Christina%20Romanos"> Christina Romanos</a>, <a href="https://publications.waset.org/abstracts/search?q=Charlie%20Bakhos"> Charlie Bakhos</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Chahal"> Hassan Chahal</a>, <a href="https://publications.waset.org/abstracts/search?q=Jessica%20Koura"> Jessica Koura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Squalene is a valuable component of the oil composed of 30 carbon atoms and is mainly used for cosmetic materials. The main concern of this article is to study the Squalene composition in the Lebanese olive oil and to compare it with foreign oil results. To our knowledge, extraction of Squalene from the Lebanese olive oil has not been conducted before. Three different techniques were studied and experiments were performed on three brands of olive oil, Al Wadi Al Akhdar, Virgo Bio and Boulos. The techniques performed are the Fractional Crystallization, the Soxhlet and the Esterification. By comparing the results, it is found that the Lebanese oil contains squalene and Soxhlet method is the most effective between the three methods extracting about 6.5E-04 grams of Squalene per grams of olive oil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=squalene" title="squalene">squalene</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=crystallization" title=" crystallization"> crystallization</a>, <a href="https://publications.waset.org/abstracts/search?q=Soxhlet" title=" Soxhlet"> Soxhlet</a> </p> <a href="https://publications.waset.org/abstracts/15134/extraction-of-squalene-from-lebanese-olive-oil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15134.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">519</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">332</span> Co-Pyrolysis of Olive Pomace with Plastic Wastes and Characterization of Pyrolysis Products</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Merve%20Sogancioglu">Merve Sogancioglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Esra%20Yel"> Esra Yel</a>, <a href="https://publications.waset.org/abstracts/search?q=Ferda%20Tartar"> Ferda Tartar</a>, <a href="https://publications.waset.org/abstracts/search?q=Nihan%20Canan%20Iskender"> Nihan Canan Iskender</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Waste polyethylene (PE) is classified as waste low density polyethylene (LDPE) and waste high density polyethylene (HDPE) according to their densities. Pyrolysis of plastic waste may have an important role in dealing with the enormous amounts of plastic waste produced all over the world, by decreasing their negative impact on the environment. This waste may be converted into economically valuable hydrocarbons, which can be used both as fuels and as feed stock in the petrochemical industry. End product yields and properties depend on the plastic waste composition. Pyrolytic biochar is one of the most important products of waste plastics pyrolysis. In this study, HDPE and LDPE plastic wastes were co-pyrolyzed together with waste olive pomace. Pyrolysis runs were performed at temperature 700&deg;C with heating rates of 5&deg;C/min. Higher pyrolysis oil and gas yields were observed by the using waste olive pomace. The biochar yields of HDPE- olive pomace and LDPEolive pomace were 6.37% and 7.26% respectively for 50% olive pomace doses. The calorific value of HDPE-olive pomace and LDPE-olive pomace of pyrolysis oil were 8350 and 8495 kCal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biochar" title="biochar">biochar</a>, <a href="https://publications.waset.org/abstracts/search?q=co-pyrolysis" title=" co-pyrolysis"> co-pyrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20plastic" title=" waste plastic"> waste plastic</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20olive%20pomace" title=" waste olive pomace"> waste olive pomace</a> </p> <a href="https://publications.waset.org/abstracts/43077/co-pyrolysis-of-olive-pomace-with-plastic-wastes-and-characterization-of-pyrolysis-products" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43077.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">331</span> Olive Seed Tannins as Bioadhesives for Manufacturing Wood-Based Panels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ajith%20K.%20A.%20Gedara">Ajith K. A. Gedara</a>, <a href="https://publications.waset.org/abstracts/search?q=Iva%20Chianella"> Iva Chianella</a>, <a href="https://publications.waset.org/abstracts/search?q=Jose%20L.%20Endrino"> Jose L. Endrino</a>, <a href="https://publications.waset.org/abstracts/search?q=Qi%20Zhang"> Qi Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The olive seed is a by-product of the olive oil production industry. Biuret test and ferric chloride test revealed that water or alkali NaOH extractions of olive seed flour are rich in proteins and tannins. Both protein and tannins are well-known bio-based wood adhesives in the wood-based panel industry. In general, tannins-based adhesives show better mechanical and physical properties than protein wood adhesives. This paper explores different methods of extracting tannins from olive seed flour against the tannins yield and their applications as bio-based adhesives in wood-based panels. Once investigated, the physical and the mechanical properties of wood-based panels made using bio-adhesives based tannins extracted from olive seed flour revealed that the resulting products seemed to satisfy the Japanese Industrial Standards JIS A 5908:2015. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-adhesives" title="bio-adhesives">bio-adhesives</a>, <a href="https://publications.waset.org/abstracts/search?q=olive%20seed%20flour" title=" olive seed flour"> olive seed flour</a>, <a href="https://publications.waset.org/abstracts/search?q=tannins" title=" tannins"> tannins</a>, <a href="https://publications.waset.org/abstracts/search?q=wood-based%20panels" title=" wood-based panels"> wood-based panels</a> </p> <a href="https://publications.waset.org/abstracts/137443/olive-seed-tannins-as-bioadhesives-for-manufacturing-wood-based-panels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137443.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">330</span> Anaerobic Digestion of Organic Wastes for Biogas Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayhan%20Varol">Ayhan Varol</a>, <a href="https://publications.waset.org/abstracts/search?q=Aysenur%20Ugurlu"> Aysenur Ugurlu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the depletion of fossil fuels and climate change, there is a rising interest in renewable energy sources. In this concept, a wide range of biomass (energy crops, animal manure, solid wastes, etc.) are used for energy production. There has been a growing interest in biomethane production from biomass. Biomethane production from organic wastes is a promising alternative for waste management by providing organic matter stabilization. Anaerobic digestion of organic material produces biogas, and organic substrate is degraded into a more stable material. Therefore, anaerobic digestion technology helps reduction of carbon emissions and produces renewable energy. The hydraulic retention time (HRT) and organic loading rate (OLR), as well as TS (VS) loadings, influences the anaerobic digestion of organic wastes significantly. The optimum range for HRT varies between 15 days to 30 days, whereas OLR differs between 0.5 to 5 g/L.d depending on the substrate type and its lipid, protein and carbohydrate contents. The organic wastes have biogas production potential through anaerobic digestion. In this study, biomethane production potential of wastes like sugar beet bagasse, agricultural residues, food wastes, olive mill pulp, and dairy manure having different characteristics was investigated in mesophilic CSTR reactor, and their performances were compared. The reactor was mixed in order to provide homogenized content at a rate of 80 rpm. The organic matter content of these wastes was between 85 to 94 % with 61% (olive pulp) to 22 % (food waste) dry matter content. The hydraulic retention time changed between 20-30 days. High biogas productions, 13.45 to 5.70 mL/day, were achieved from the wastes studied when operated at 9 to 10.5% TS loadings where OLR varied between 2.92 and 3.95 gVS/L.day. The results showed that food wastes have higher specific methane production rate and volumetric methane production potential than the other wastes studied, under the similar OLR values. The SBP was 680, 585, 540, 390 and 295 mL/g VS for food waste, agricultural residues, sugar beet bagasse, olive pulp and dairy manure respectively. The methane content of the biogas varied between 72 and 60 %. The volatile solids conversion rate for food waste was 62%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biogas%20production" title="biogas production">biogas production</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20wastes" title=" organic wastes"> organic wastes</a>, <a href="https://publications.waset.org/abstracts/search?q=biomethane" title=" biomethane"> biomethane</a>, <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20digestion" title=" anaerobic digestion"> anaerobic digestion</a> </p> <a href="https://publications.waset.org/abstracts/52438/anaerobic-digestion-of-organic-wastes-for-biogas-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52438.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">329</span> Olive Stone Valorization to Its Application on the Ceramic Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Mart%C3%ADn-Morales">M. Martín-Morales</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Eliche-Quesada"> D. Eliche-Quesada</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20P%C3%A9rez-Villarejo"> L. Pérez-Villarejo</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zamorano"> M. Zamorano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Olive oil is a product of particular importance within the Mediterranean and Spanish agricultural food system, and more specifically in Andalusia, owing to be the world's main production area. Olive oil processing generates olive stones which are dried and cleaned to remove pulp and olive stones fines to produce biofuel characterized to have high energy efficiency in combustion processes. Olive stones fine fraction is not too much appreciated as biofuel, so it is important the study of alternative solutions to be valorized. Some researchers have studied recycling different waste to produce ceramic bricks. The main objective of this study is to investigate the effects of olive stones addition on the properties of fired clay bricks for building construction. Olive stones were substituted by volume (7.5%, 15%, and 25%) to brick raw material in three different sizes (lower than 1 mm, lower than 2 mm and between 1 and 2 mm). In order to obtain comparable results, a series without olive stones was also prepared. The prepared mixtures were compacted in laboratory type extrusion under a pressure of 2.5MPa for rectangular shaped (30 mm x 60 mm x 10 mm). Dried and fired industrial conditions were applied to obtain laboratory brick samples. Mass loss after sintering, bulk density, porosity, water absorption and compressive strength of fired samples were investigated and compared with a sample manufactured without biomass. Results obtained have shown that olive stone addition decreased mechanical properties due to the increase in water absorption, although values tested satisfied the requirements in EN 772-1 about methods of test for masonry units (Part 1: Determination of compressive strength). Finally, important advantages related to the properties of bricks as well as their environmental effects could be obtained with the use of biomass studied to produce ceramic bricks. The increasing of the percentage of olive stones incorporated decreased bulk density and then increased the porosity of bricks. On the one hand, this lower density supposes a weight reduction of bricks to be transported, handled as well as the lightening of building; on the other hand, biomass in clay contributes to auto thermal combustion which involves lower fuel consumption during firing step. Consequently, the production of porous clay bricks using olive stones could reduce atmospheric emissions and improve their life cycle assessment, producing eco-friendly clay bricks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clay%20bricks" title="clay bricks">clay bricks</a>, <a href="https://publications.waset.org/abstracts/search?q=olive%20stones" title=" olive stones"> olive stones</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=valorization" title=" valorization"> valorization</a> </p> <a href="https://publications.waset.org/abstracts/75187/olive-stone-valorization-to-its-application-on-the-ceramic-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75187.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">328</span> Storage Influence on Physico-Chemical Composition and Antioxidant Activity of Jamun Drink Prepared From Two Types of Pulp</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Atif%20Randhawa">Muhammad Atif Randhawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahreen%20Akhtar"> Mahreen Akhtar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sidrah"> Sidrah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, Jamun (Syzygium cumini; Myrtaceae) drink enriched with jamun pulp and seed was assessed for different physicochemical parameters (titratable acidity, pH, TSS, ascorbic acid, and total sugars and reducing sugars) and phytochemical aspects at every 15 days interval till 60 days storage period. Jamun pulp both with seed and without seed were used at levels of 7, 10 and 13 percent to prepare jamun drink in six combinations; T1 (7% pulp without seed), T2 (10% pulp without seed), T3 (13% pulp without seed), T4 (7% pulp with seed), T5 (10% pulp with seed), T6 (13% pulp with seed). Storage period resulted decrease in pH (4.18 to 4.08) and ascorbic acid (21.92%) significantly along with phenolic contents (6.13 to 4.85g of GAE/kg) and antioxidant activity (70.68 to 48.62 percent) within treatments. All treatments showed significant increases in total sugars (11.59 to 11.80%), reducing sugars (2.30 to 2.50%), TSS (12.2 to 13.32 °B) and acidity (0.23% to 0.31%) during storage. Treatments T3, T5 and T6 showed best results in terms of all physicochemical parameters during storage. Statistically significant differences were obtained among sensory parameters as a function of pulp type and concentration, while treatment T5 (10% pulp with seed) obtained highest score (7.16) in terms of all sensory parameters. It can be concluded that nutrient rich jamun drink can be prepared as an attempt to add value to the underutilized jamun fruit of Pakistan. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title="antioxidant activity">antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamun%20beverage" title=" Jamun beverage"> Jamun beverage</a>, <a href="https://publications.waset.org/abstracts/search?q=physicochemical" title=" physicochemical"> physicochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=storage" title=" storage"> storage</a> </p> <a href="https://publications.waset.org/abstracts/41444/storage-influence-on-physico-chemical-composition-and-antioxidant-activity-of-jamun-drink-prepared-from-two-types-of-pulp" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41444.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">327</span> Polyphenol and Antimicrobial Activity in Olive Oil from Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamel%20Zemour">Kamel Zemour</a>, <a href="https://publications.waset.org/abstracts/search?q=Kada%20Mohamed%20Amine%20Chouhim"> Kada Mohamed Amine Chouhim</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Mairif"> Mohamed Mairif</a>, <a href="https://publications.waset.org/abstracts/search?q=Tadj%20Eddine%20Adda%20Ardjan"> Tadj Eddine Adda Ardjan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many recent studies show the positive effect of phenolic compounds in olive oil on health. They are known for their biological properties, where they have shown potential activity as an antioxidant, anti-inflammatory, and antimicrobial agents. However, this characteristic is rarely studied in olive oil from different regions of Algeria. Different samples collected from the western region of Algeria were evaluated for their polyphenol content, antioxidant activity, and antimicrobial effect. The obtained results demonstrated that this oil is rich in polyphenols and revealed high antimicrobial activity against Staphylococcus aureus and Escherichia coli. Finally, this study has highlighted the nutritional and pharmaceutical importance of olive oil grown in Algeria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=olive%20oil" title="olive oil">olive oil</a>, <a href="https://publications.waset.org/abstracts/search?q=polyphenols" title=" polyphenols"> polyphenols</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title=" antimicrobial activity"> antimicrobial activity</a> </p> <a href="https://publications.waset.org/abstracts/159649/polyphenol-and-antimicrobial-activity-in-olive-oil-from-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159649.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">326</span> Investigation of the Usability of Biochars Obtained from Olive Pomace and Smashed Olive Seeds as Additives for Bituminous Binders</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammed%20Ertugrul%20Celoglu">Muhammed Ertugrul Celoglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Beyza%20Furtana"> Beyza Furtana</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Yilmaz"> Mehmet Yilmaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Baha%20Vural%20Kok"> Baha Vural Kok</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biomass, which is considered to be one of the largest renewable energy sources in the world, has a potential to be utilized as a bitumen additive after it is processed by a wide variety of thermochemical methods. Furthermore, biomasses are renewable in short amounts of time, and they possess a hydrocarbon structure. These characteristics of biomass promote their usability as additives. One of the most common ways to create materials with significant economic values from biomasses is the processes of pyrolysis. Pyrolysis is defined as the process of an organic matter’s thermochemical degradation (carbonization) at a high temperature and in an anaerobic environment. The resultant liquid substance at the end of the pyrolysis is defined as bio-oil, whereas the resultant solid substance is defined as biochar. Olive pomace is the resultant mildly oily pulp with seeds after olive is pressed and its oil is extracted. It is a significant source of biomass as the waste of olive oil factories. Because olive pomace is waste material, it could create problems just as other waste unless there are appropriate and acceptable areas of utilization. The waste material, which is generated in large amounts, is generally used as fuel and fertilizer. Generally, additive materials are used in order to improve the properties of bituminous binders, and these are usually expensive materials, which are produced chemically. The aim of this study is to investigate the usability of biochars obtained after subjecting olive pomace and smashed olive seeds, which are considered as waste materials, to pyrolysis as additives in bitumen modification. In this way, various ways of use will be provided for waste material, providing both economic and environmental benefits. In this study, olive pomace and smashed olive seeds were used as sources of biomass. Initially, both materials were ground and processed through a No.50 sieve. Both of the sieved materials were subjected to pyrolysis (carbonization) at 400 ℃. Following the process of pyrolysis, bio-oil and biochar were obtained. The obtained biochars were added to B160/220 grade pure bitumen at 10% and 15% rates and modified bitumens were obtained by mixing them in high shear mixtures at 180 ℃ for 1 hour at 2000 rpm. Pure bitumen and four different types of bitumen obtained as a result of the modifications were tested with penetration, softening point, rotational viscometer, and dynamic shear rheometer, evaluating the effects of additives and the ratios of additives. According to the test results obtained, both biochar modifications at both ratios provided improvements in the performance of pure bitumen. In the comparison of the test results of the binders modified with the biochars of olive pomace and smashed olive seed, it was revealed that there was no notable difference in their performances. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bituminous%20binders" title="bituminous binders">bituminous binders</a>, <a href="https://publications.waset.org/abstracts/search?q=biochar" title=" biochar"> biochar</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=olive%20pomace" title=" olive pomace"> olive pomace</a>, <a href="https://publications.waset.org/abstracts/search?q=pomace" title=" pomace"> pomace</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrolysis" title=" pyrolysis"> pyrolysis</a> </p> <a href="https://publications.waset.org/abstracts/111479/investigation-of-the-usability-of-biochars-obtained-from-olive-pomace-and-smashed-olive-seeds-as-additives-for-bituminous-binders" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111479.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">325</span> Production and Evaluation of Mango Pulp by Using Ohmic Heating Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sobhy%20M.%20Mohsen">Sobhy M. Mohsen</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20M.%20El-Nikeety"> Mohamed M. El-Nikeety</a>, <a href="https://publications.waset.org/abstracts/search?q=Tarek%20G.%20Mohamed"> Tarek G. Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Murkovic"> Michael Murkovic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work aimed to study the use of ohmic heating in the processing of mango pulp comparing to conventional method. Mango pulp was processed by using ohmic heating under the studied suitable conditions. Physical, chemical and microbiological properties of mango pulp were studied. The results showed that processing of mango pulp by using either ohmic heating or conventional method caused a decrease in the contents of TSS, total carbohydrates, total acidity, total sugars (reducing and non-reducing sugar) and an increase in phenol content, ascorbic acid and carotenoids compared to the conventional process. The increase in electric conductivity of mango pulp during ohmic heating was due to the addition of some electrolytes (salts) to increase the ions and enhance the process. The results also indicate that mango pulp processed by ohmic heating contained more phenols, carbohydrates and vitamin C and less HMF compared to that produced by conventional one. Total pectin and its fractions had slightly reduced by ohmic heating compared to conventional method. Enzymatic activities showed a reduction in poly phenoloxidase (PPO) and polygalacturonase (PG) activity in mango pulp processed by conventional method. However, ohmic heating completely inhibited PPO and PG activities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ohmic%20heating" title="ohmic heating">ohmic heating</a>, <a href="https://publications.waset.org/abstracts/search?q=mango%20pulp" title=" mango pulp"> mango pulp</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic" title=" phenolic"> phenolic</a>, <a href="https://publications.waset.org/abstracts/search?q=sarotenoids" title=" sarotenoids "> sarotenoids </a> </p> <a href="https://publications.waset.org/abstracts/7967/production-and-evaluation-of-mango-pulp-by-using-ohmic-heating-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7967.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">455</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">324</span> Calcium Phosphate Cement/Gypsum Composite as Dental Pulp Capping</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jung-Feng%20Lin">Jung-Feng Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei-Tang%20Chen"> Wei-Tang Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Chung-King%20Hsu"> Chung-King Hsu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chun-Pin%20Lin"> Chun-Pin Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Feng-Huei%20Lin"> Feng-Huei Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the objectives of operative dentistry is to maintain pulp health in compromised teeth. Mostly used methods for this purpose are direct pulp capping and pulpotomy, which consist of placement of biocompatible materials and bio-inductors on the exposed pulp tissue to preserve its health and stimulate repair by mineralized tissue formation. In this study, we developed a material (calcium phosphate cement (CPC)/gypsum composite) as the dental pulp capping material for shortening setting time and improving handling properties. We further discussed the influence of five different ratio of gypsum to CPC on HAP conversion, microstructure, setting time, weight loss, pH value, temperature difference, viscosity, mechanical properties, porosity, and biocompatibility. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calcium%20phosphate%20cement" title="calcium phosphate cement">calcium phosphate cement</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium%20sulphate%20hemihydrate" title=" calcium sulphate hemihydrate"> calcium sulphate hemihydrate</a>, <a href="https://publications.waset.org/abstracts/search?q=pulp%20capping" title=" pulp capping"> pulp capping</a>, <a href="https://publications.waset.org/abstracts/search?q=fast%20setting%20time" title=" fast setting time"> fast setting time</a> </p> <a href="https://publications.waset.org/abstracts/63252/calcium-phosphate-cementgypsum-composite-as-dental-pulp-capping" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63252.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">323</span> Role of Pulp Volume Method in Assessment of Age and Gender in Lucknow, India, an Observational Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anurag%20Tripathi">Anurag Tripathi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanad%20Khandelwal"> Sanad Khandelwal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Age and gender determination are required in forensic for victim identification. There is secondary dentine deposition throughout life, resulting in decreased pulp volume and size. Evaluation of pulp volume using Cone Beam Computed Tomography (CBCT)is a noninvasive method to evaluate the age and gender of an individual. The study was done to evaluate the efficacy of pulp volume method in the determination of age and gender.Aims/Objectives: The study was conducted to estimate age and determine sex by measuring tooth pulp volume with the help of CBCT. An observational study of one year duration on CBCT data of individuals was conducted in Lucknow. Maxillary central incisors (CI) and maxillary canine (C) of the randomly selected samples were assessed for measurement of pulp volume using a software. Statistical analysis: Chi Square Test, Arithmetic Mean, Standard deviation, Pearson’s Correlation, Linear & Logistic regression analysis. Results: The CBCT data of Ninety individuals with age range between 18-70 years was evaluated for pulp volume of central incisor and canine (CI & C). The Pearson correlation coefficient between the tooth pulp volume (CI & C) and chronological age suggested that pulp volume decreased with age. The validation of the equations for sex determination showed higher prediction accuracy for CI (56.70%) and lower for C (53.30%).Conclusion: Pulp volume obtained from CBCT is a reliable indicator for age estimation and gender prediction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forensic" title="forensic">forensic</a>, <a href="https://publications.waset.org/abstracts/search?q=dental%20age" title=" dental age"> dental age</a>, <a href="https://publications.waset.org/abstracts/search?q=pulp%20volume" title=" pulp volume"> pulp volume</a>, <a href="https://publications.waset.org/abstracts/search?q=cone%20beam%20computed%20tomography" title=" cone beam computed tomography"> cone beam computed tomography</a> </p> <a href="https://publications.waset.org/abstracts/157795/role-of-pulp-volume-method-in-assessment-of-age-and-gender-in-lucknow-india-an-observational-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157795.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">322</span> Algae Biomass as Alternatives to Wood Pulp in Handmade Paper Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Piyali%20Mukherjee">Piyali Mukherjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Jai%20Prakash%20Keshri"> Jai Prakash Keshri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Anticipated shortages of raw materials for paper industry have forged the entry of algae as alternatives to wood pulp. Five algal species: Pithophora sp., Lyngbya sp., Hydrodictyon sp., Cladophora sp. and Rhizoclonium sp. were collected from different parts of Burdwan town, West Bengal, India. Their biomass compositional values were determined with respect to eucalyptus wood pulp. Paper characteristics were studied in terms of breaking length, tensile strength, CI index, pH, brightness, recyclability, and durability. Hydrodictyon sp., besides Rhizoclonium sp. and Cladophora sp. were established as the most suitable candidates for paper pulp formulation in terms of high cellulose, hemicelluloses contents and low lignin and silica contents. Paper from pure Hydrodictyon sp. pulp was found to have statistically significant (p < 0.05) improved breaking-length and tensile strength properties compared to that obtained from Lyngbya sp. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algae" title="algae">algae</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=paper" title=" paper"> paper</a>, <a href="https://publications.waset.org/abstracts/search?q=pulp" title=" pulp"> pulp</a>, <a href="https://publications.waset.org/abstracts/search?q=wood" title=" wood"> wood</a> </p> <a href="https://publications.waset.org/abstracts/101196/algae-biomass-as-alternatives-to-wood-pulp-in-handmade-paper-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101196.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">321</span> Autohydrolysis Treatment of Olive Cake to Extract Fructose and Sucrose</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Bl%C3%A1zquez">G. Blázquez</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20G%C3%A1lvez-P%C3%A9rez"> A. Gálvez-Pérez</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Calero"> M. Calero</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20I%C3%A1%C3%B1ez-Rodr%C3%ADguez"> I. Iáñez-Rodríguez</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Mart%C3%ADn-Lara"> M. A. Martín-Lara</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20P%C3%A9rez"> A. Pérez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The production of olive oil is considered as one of the most important agri-food industries. However, some of the by-products generated in the process are potential pollutants and cause environmental problems. Consequently, the management of these by-products is currently considered as a challenge for the olive oil industry. In this context, several technologies have been developed and tested. In this sense, the autohydrolysis of these by-products could be considered as a promising technique. Therefore, this study focused on autohydrolysis treatments of a solid residue from the olive oil industry denominated olive cake. This one comes from the olive pomace extraction with hexane. Firstly, a water washing was carried out to eliminate the water soluble compounds. Then, an experimental design was developed for the autohydrolysis experiments carried out in the hydrothermal pressure reactor. The studied variables were temperature (30, 60 and 90 &ordm;C) and time (30, 60, 90 min). On the other hand, aliquots of liquid obtained fractions were analysed by HPLC to determine the fructose and sucrose contents present in the liquid fraction. Finally, the obtained results of sugars contents and the yields of the different experiments were fitted to a neuro-fuzzy and to a polynomial model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ANFIS" title="ANFIS">ANFIS</a>, <a href="https://publications.waset.org/abstracts/search?q=olive%20cake" title=" olive cake"> olive cake</a>, <a href="https://publications.waset.org/abstracts/search?q=polyols" title=" polyols"> polyols</a>, <a href="https://publications.waset.org/abstracts/search?q=saccharides" title=" saccharides"> saccharides</a> </p> <a href="https://publications.waset.org/abstracts/98419/autohydrolysis-treatment-of-olive-cake-to-extract-fructose-and-sucrose" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98419.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">320</span> Effect of the Accelerated Carbonation in Fibercement Composites Reinforced with Eucalyptus Pulp and Nanofibrillated Cellulose</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Viviane%20da%20Costa%20Correia">Viviane da Costa Correia</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergio%20Francisco%20Santos"> Sergio Francisco Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=Holmer%20Savastano%20Junior"> Holmer Savastano Junior</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main purpose of this work was verify the influence of the accelerated carbonation in the physical and mechanical properties of the hybrid composites, reinforced with micro and nanofibers and composites with microfibers. The composites were produced by the slurry vacuum dewatering method, followed by pressing. It was produced using two formulations: 8% of eucalyptus pulp + 1% of the nanofibrillated cellulose and 9% of eucalyptus pulp, both were subjected to accelerated carbonation. The results showed that the accelerated carbonation contributed to improve the physical and mechanical properties of the hybrid composites and of the composites reinforced with microfibers (eucalyptus pulp). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbonation" title="carbonation">carbonation</a>, <a href="https://publications.waset.org/abstracts/search?q=cement%20composites" title=" cement composites"> cement composites</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofibrillated%20cellulose" title=" nanofibrillated cellulose"> nanofibrillated cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=eucalyptus%20pulp" title=" eucalyptus pulp"> eucalyptus pulp</a> </p> <a href="https://publications.waset.org/abstracts/14125/effect-of-the-accelerated-carbonation-in-fibercement-composites-reinforced-with-eucalyptus-pulp-and-nanofibrillated-cellulose" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14125.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">319</span> Phylogenetic Analysis of the Myxosporea Detected from Emaciated Olive Flounder (Paralichthys olivaceus) in Korea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seung%20Min%20Kim">Seung Min Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyu%20Jin%20Jun"> Lyu Jin Jun</a>, <a href="https://publications.waset.org/abstracts/search?q=Joon%20Bum%20Jeong"> Joon Bum Jeong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Myxosporea to cause emaciation disease in the olive flounder (Paralichthys olivaceus) is a pathogen to cause severe losses in the aquafarming industry in Korea. The 3,362 bp of DNA nucleotide sequences of four myxosporean strains (EM-HM-12, EM-MA-13, EM-JJ-14, and EM-MS-15) detected by PCR method from olive flounder suffering from emaciation disease in Korea during 2012-2015 were sequenced and deposited in GenBank database (GenBank accession numbers: KU377574, KT321705, KU377575 and KU377573, respectively). The homologies of DNA nucleotide sequences of four strains were compared to each other and were more than 99.7% homologous between the four strains. All of the strains were identified as Parvicapsula petunia based on the results of phylogenetic analysis. The results in this study would be useful for the research of emaciation disease in olive flounder of Korea. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=disease" title="disease">disease</a>, <a href="https://publications.waset.org/abstracts/search?q=emaciation" title=" emaciation"> emaciation</a>, <a href="https://publications.waset.org/abstracts/search?q=olive%20flounder" title=" olive flounder"> olive flounder</a>, <a href="https://publications.waset.org/abstracts/search?q=phylogenetic%20analysis" title=" phylogenetic analysis"> phylogenetic analysis</a> </p> <a href="https://publications.waset.org/abstracts/97913/phylogenetic-analysis-of-the-myxosporea-detected-from-emaciated-olive-flounder-paralichthys-olivaceus-in-korea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97913.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">318</span> Ammonia and Biogenic Amine Production of Fish Spoilage Bacteria: Affected by Olive Leaf, Olive Cake and Black Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Kuley">E. Kuley</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Durmu%C5%9F"> M. Durmuş</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Balikci"> E. Balikci</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Ozyurt"> G. Ozyurt</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20U%C3%A7ar"> Y. Uçar</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Kuley"> F. Kuley</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Ozogul"> F. Ozogul</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Ozogul"> Y. Ozogul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ammonia and biogenic amine production of fish spoilage bacteria in sardine infusion decarboxylase broth and antimicrobial effect of olive by products (olive leaf extract:OL, olive cake: OC and black water:BW) was monitored using HPLC method. Fish spoilage bacteria produced all biogenic amine tested, mainly histamine and serotonin. Ammonia was accumulated more than 13.60 mg/L. Histamine production was in range 37.50 mg/L by Ser. liquefaciens and 86.71 mg/L by Ent. cloacae. The highest putrescine and cadaverine production was observed by Ent. cloacae (17.80 vs. 17.69 mg/L). The presence of OL, OC and BW in the broth significantly affected biogenic amine accumulation by bacteria. The antibacterial effect of olive by products depended on bacterial strains. OL and OC resulted in significant inhibition effect on HIS accumulation by bacteria apart from Ser. liquefaciens and Prot. mirabilis. The study result revealed that usefulness of OL and OC to prevent the accumulation of this amine which may affect human health. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Antimicrobials" title="Antimicrobials">Antimicrobials</a>, <a href="https://publications.waset.org/abstracts/search?q=biogenic%20amine" title=" biogenic amine"> biogenic amine</a>, <a href="https://publications.waset.org/abstracts/search?q=fish%20spoilage%20bacteria" title=" fish spoilage bacteria"> fish spoilage bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=olive-by%20products" title=" olive-by products"> olive-by products</a> </p> <a href="https://publications.waset.org/abstracts/19395/ammonia-and-biogenic-amine-production-of-fish-spoilage-bacteria-affected-by-olive-leaf-olive-cake-and-black-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19395.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">502</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">317</span> Use of Green Coconut Pulp as Cream, Milk, Stabilizer and Emulsifier Replacer in Germinated Brown Rice Ice Cream</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naruemon%20Prapasuwannakul">Naruemon Prapasuwannakul</a>, <a href="https://publications.waset.org/abstracts/search?q=Supitcha%20Boonchai"> Supitcha Boonchai</a>, <a href="https://publications.waset.org/abstracts/search?q=Nawapat%20Pengpengpit"> Nawapat Pengpengpit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to determine physicochemical and sensory properties of germinated brown rice ice cream as affected by replacement of cream, milk, stabilizer, and emulsifier with green coconut pulp. Five different formulations of ice cream were performed. Regular formulation of ice cream consisted of GBR juice, milk cream, milk powder, stabilizer, emulsifier, sucrose and salt. Replacing of cream, milk, stabilizer, and emulsifier with coconut pulp resulted in an increase in viscosity and overrun, but a decrease in hardness, melting rate, lightness (l*) and redness (a*). However, there was no significant difference among all formulations on any sensory attributes. The results also showed that the ice cream with replacement of coconut pulp contained less fat and protein than those of the regular ice cream. The findings suggested that green coconut pulp can be used as alternative ingredient to replace fat, milk stabilizer and emulsifier even in a high carbohydrate ice cream formulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ice%20cream" title="ice cream">ice cream</a>, <a href="https://publications.waset.org/abstracts/search?q=germinated%20brown%20rice" title=" germinated brown rice"> germinated brown rice</a>, <a href="https://publications.waset.org/abstracts/search?q=coconut%20pulp" title=" coconut pulp"> coconut pulp</a>, <a href="https://publications.waset.org/abstracts/search?q=milk" title=" milk"> milk</a>, <a href="https://publications.waset.org/abstracts/search?q=cream" title=" cream"> cream</a> </p> <a href="https://publications.waset.org/abstracts/8201/use-of-green-coconut-pulp-as-cream-milk-stabilizer-and-emulsifier-replacer-in-germinated-brown-rice-ice-cream" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8201.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">316</span> Entomological Study of Pests of Olive Trees in the Region of Batna - Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Smail%20Chafaa">Smail Chafaa</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelkrim%20Si%20Bachir"> Abdelkrim Si Bachir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Our work aims to study the insect diversity based on bioclimatic levels of pests in olive cultures (Olea europea L.) in the area of Batna (arid and semi arid north eastern Algeria) during the period from January 2011 to May 2011. Several sampling techniques were used, those of hunting on sight, visual inspection, hatches traps, colored traps, Japanese umbrella and sweep net. We have identified in total, 2311 individuals with results in inventory 206 species divided to 74 families and 11 orders, including Coleoptera order is quantitatively the most represented with 47.1%. The most dominant diet in our inventory is the phytophagous. Between the herbivorous insects that we have listed and which are the main olive pest of olive cultivation; we quote the olive fly (Bactrocera oleae), cochineal purple olive (Parlatoria oleae) the psyllid olive (Euphyllura olivina) and olive Trips (Liothrips oleae). The distribution of species between stations shows that Boumia resort with the most number of species (113) compared to other resorts and beetles are also better represented in three groves. Total wealth is high in Boumia station compared with the others stations. The values of (H') exceeding 3.9 bits for all the stations studied indicate a specific wealth and diversity of ecological nests in insect species. The values of equitability are near the unit; that suggests a balance between the numbers of insect populations sampled in the various stations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=entomology" title="entomology">entomology</a>, <a href="https://publications.waset.org/abstracts/search?q=olive" title=" olive"> olive</a>, <a href="https://publications.waset.org/abstracts/search?q=grove" title=" grove"> grove</a>, <a href="https://publications.waset.org/abstracts/search?q=batna" title=" batna"> batna</a>, <a href="https://publications.waset.org/abstracts/search?q=Algeria" title=" Algeria"> Algeria</a> </p> <a href="https://publications.waset.org/abstracts/32370/entomological-study-of-pests-of-olive-trees-in-the-region-of-batna-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32370.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">315</span> Olive Oils from Algeria: Phenolic Compounds Composition and Antibacterial Activity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Firdaousse%20Laincer">Firdaousse Laincer</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahima%20Laribi"> Rahima Laribi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abderazak%20Tamendjari"> Abderazak Tamendjari</a>, <a href="https://publications.waset.org/abstracts/search?q=Rovellini%20Venturini"> Rovellini Venturini </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phenolic compounds present in olive oil have received much attention in recent years due to their beneficial functional and nutritional effects. Phenolic composition, antibacterial activity of phenolic extracts of olive oil varieties from Algeria were investigated. The analysis of polyphenols was performed by Folin-Ciocalteu and HPLC. As a result, many phenolic compounds were identified and quantified by using HPLC; derivatives of oleuropein and ligstroside, hydroxytyrosol, tyrosol, flavonoids, and lignans reporting unique and characteristic phenolic profile. These phenolic fractions also differentiate the total antibacterial activity. Among the bacteria tested, S. aureus and, to a lesser extent, B. subtilis showed the highest sensitivity; the MIC varied from 0.6 to 1.6 mg•mL-1 and 1.2 to 1.8 mg•mL-1, respectively. The results obtained denote that Algerian olive oils may constitute a good source of healthy compounds, phenolics compounds, in the diet, suggesting that their consumption could be useful in the prevention of diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20activity" title="antibacterial activity">antibacterial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=olive%20oil" title=" olive oil"> olive oil</a>, <a href="https://publications.waset.org/abstracts/search?q=phenols" title=" phenols"> phenols</a>, <a href="https://publications.waset.org/abstracts/search?q=HPLC" title=" HPLC"> HPLC</a> </p> <a href="https://publications.waset.org/abstracts/13202/olive-oils-from-algeria-phenolic-compounds-composition-and-antibacterial-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13202.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">314</span> Phytochemical Screening, Proximate Analysis, Lethality Studies and Anti-Tumor Potential of Annona muricata L. (Soursop) Fruit Extract in Rattus novergicus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20C.%20Abbah">O. C. Abbah</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Obidoa"> O. Obidoa</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Omale"> J. Omale</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Prostate tumor is fast becoming a leading cause of morbidity and mortality in human male adults, with 50 percent of men aged 50 years and above having histological evidence of the benign tumor. The study was set out to undertake phytochemical screening and proximate analysis of the pulp of A. muricata fruit - soursop; to determine the acute toxicity of the fruit pulp extract and its effect on male albino Wistar rats with concurrent induction of experimental benign prostate hyperplasia (BPH). Eighteen rats (average weight of 100g) were used for the lethality studies and were orally administered graded doses of aqueous extracts of the fruit pulp up to 5000 mg/kg body weight. Twenty five rats weighing 150-200g were divided into five groups of five rats each for the tumor studies. The groups included four controls – Hormone control, HC, which took Testosterone, T; and Estradiol, E2 – only, in olive oil as vehicle; Vehicle control, VC; Soursop control, SC, which received the extract only; VS, Vehicle and Soursop – and the Test group, TG (500mg/kg b.w.). All rats were dosed orally. Tumor was induced with exogenous Testosterone propionate: Estradiol valerate at 300µg: 80µg/kg b.w. (respectively) in olive oil, administered subcutaneously in the inguinal region of the rats on alternate days for 21 days. Administration of the fruit pulp at graded doses up to 5000mg/kg resulted in no lethality even after 72 hours. Results from tumor studies revealed that the administration of the fruit extracts significantly (p < 0.05) reduced the relative prostate weight of the TG compared with the HC, with values of 006±0.001 and 0.010±0.003 respectively. Treatment with vehicle, soursop and vehicle with soursop caused no significant (p>0.05) change in prostate size, with their respective relative prostate weights being 0.002±0.001, 0.004±0.002 and 0.002±0.001 compared with TG. Also, treatment with A. muricata fruit extract significantly decreased (p < 0.05) serum prostate specific antigen, PSA, in TG compared with HC, with values 0.055±0.017 and 0.194±0.068 ng/ml respectively. Furthermore, A. muricata administration displayed Testosterone boosting, Estradiol lowering and consequently testosterone-estradiol ratio increasing potential at the end of the 21 days. The preventive property of soursop against experimental BPH was corroborated by histological evidence in this study. The study concludes that A. muricata fruit holds a great potential for benign prostate tumor prevention and, possibly, management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=annona%20muricata" title="annona muricata">annona muricata</a>, <a href="https://publications.waset.org/abstracts/search?q=benign%20prostate%20tumor" title=" benign prostate tumor"> benign prostate tumor</a>, <a href="https://publications.waset.org/abstracts/search?q=hormone" title=" hormone"> hormone</a>, <a href="https://publications.waset.org/abstracts/search?q=preventive%20potential" title=" preventive potential"> preventive potential</a>, <a href="https://publications.waset.org/abstracts/search?q=soursop" title=" soursop"> soursop</a> </p> <a href="https://publications.waset.org/abstracts/37746/phytochemical-screening-proximate-analysis-lethality-studies-and-anti-tumor-potential-of-annona-muricata-l-soursop-fruit-extract-in-rattus-novergicus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37746.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">313</span> LCA of Waste Disposal from Olive Oil Production: Anaerobic Digestion and Conventional Disposal on Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Tommasi">T. Tommasi</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Batuecas"> E. Batuecas</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Mancini"> G. Mancini</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Saracco"> G. Saracco</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Fino"> D. Fino</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Extra virgin olive-oil (EVO) production is an important economic activity for several countries, especially in the Mediterranean area such as Spain, Italy, Greece and Tunisia. The two major by-products from olive oil production, solid-liquid Olive Pomace (OP) and the Olive Mill Waste Waters (OMWW), are still mainly disposed on soil, in spite of the existence of legislation which already limits this practice. The present study compares the environmental impacts associated with two different scenarios for the management of waste from olive oil production through a comparative Life Cycle Assessment (LCA). The two alternative scenarios are: (I) Anaerobic Digestion and (II) current Disposal on soil. The analysis was performed through SimaPro software and the assessment of the impact categories was based on International Life Cycle Data and Cumulative Energy Demand methods. Both the scenarios are mostly related to the cultivation and harvesting phase and are highly dependent on the irrigation practice and related energy demand. Results from the present study clearly show that as the waste disposal on soil causes the worst environmental performance of all the impact categories here considered. Important environmental benefits have been identified when anaerobic digestion is instead chosen as the final treatment. It was consequently demonstrated that anaerobic digestion should be considered a feasible alternative for olive mills, to produce biogas from common olive oil residues, reducing the environmental burden and adding value to the olive oil production chain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20digestion" title="anaerobic digestion">anaerobic digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20management" title=" waste management"> waste management</a>, <a href="https://publications.waset.org/abstracts/search?q=agro-food%20waste" title=" agro-food waste"> agro-food waste</a>, <a href="https://publications.waset.org/abstracts/search?q=biogas" title=" biogas"> biogas</a> </p> <a href="https://publications.waset.org/abstracts/106861/lca-of-waste-disposal-from-olive-oil-production-anaerobic-digestion-and-conventional-disposal-on-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106861.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">312</span> Mycorrhizal Autochthonous Consortium Induced Defense-Related Mechanisms of Olive Trees against Verticillium dahliae</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanane%20Boutaj">Hanane Boutaj</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelilah%20Meddich"> Abdelilah Meddich</a>, <a href="https://publications.waset.org/abstracts/search?q=Said%20Wahbi"> Said Wahbi</a>, <a href="https://publications.waset.org/abstracts/search?q=Zainab%20El%20Alaoui-Talibi"> Zainab El Alaoui-Talibi</a>, <a href="https://publications.waset.org/abstracts/search?q=Allal%20Douira"> Allal Douira</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelkarim%20Filali-Maltouf"> Abdelkarim Filali-Maltouf</a>, <a href="https://publications.waset.org/abstracts/search?q=Cherkaoui%20El%20Modafar"> Cherkaoui El Modafar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work aims to investigate the effect of arbuscular mycorrhizal fungi (AMF) in improving the olive tree resistance to Verticillium wilt caused by Verticillium dahliae. Inoculated plants with a mycorrhizal autochthonous consortium 'Rhizolive consortium' and pure strain 'Glomus irregulare' were infected after three months with V. dahliae. The improving of olive tree resistance was determined through disease severity, incidence, and defoliation. On the other hand, the defense mechanisms of olive plants were evaluated through lignin content, phenylalanine ammonia lyase (PAL) activity, and polyphenol content. The results revealed that both AMF significantly (p < 0.05) reduced disease development and the rate of defoliation in infected olive plants. Moreover, the contents of lignin were boosted after mycorrhizal inoculation in both the roots and the stems of olive plants, which remained significantly (p < 0.001) higher after the 90th days of V. dahliae inoculation. PAL activity was increased after V. dahliae inoculation in the stems of 'Rhizolive consortium' treatment that were 17 times higher than those in the roots of olive plants. The polyphenol content in the stems was about twice higher than those in the roots. The reduction of disease severity was accompanied by increased levels of lignin content, PAL activity, and polyphenol content, particularly in the stems of olive plants, indicating the strengthening of the olive plant immune system against V. dahliae. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=olive%20tree" title="olive tree">olive tree</a>, <a href="https://publications.waset.org/abstracts/search?q=Mycorrhizal%20autochthonous%20consortium" title=" Mycorrhizal autochthonous consortium"> Mycorrhizal autochthonous consortium</a>, <a href="https://publications.waset.org/abstracts/search?q=Glomus%20irregulare" title=" Glomus irregulare"> Glomus irregulare</a>, <a href="https://publications.waset.org/abstracts/search?q=Verticillium%20dahliae" title=" Verticillium dahliae"> Verticillium dahliae</a>, <a href="https://publications.waset.org/abstracts/search?q=defense%20mechanisms" title=" defense mechanisms"> defense mechanisms</a> </p> <a href="https://publications.waset.org/abstracts/113552/mycorrhizal-autochthonous-consortium-induced-defense-related-mechanisms-of-olive-trees-against-verticillium-dahliae" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113552.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=olive%20pulp&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=olive%20pulp&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=olive%20pulp&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=olive%20pulp&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=olive%20pulp&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=olive%20pulp&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=olive%20pulp&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=olive%20pulp&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=olive%20pulp&amp;page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=olive%20pulp&amp;page=11">11</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=olive%20pulp&amp;page=12">12</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=olive%20pulp&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10