CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 134 results for author: <span class="mathjax">D枚rfler, F</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/eess" aria-role="search"> Searching in archive <strong>eess</strong>. <a href="/search/?searchtype=author&amp;query=D%C3%B6rfler%2C+F">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="D枚rfler, F"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=D%C3%B6rfler%2C+F&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="D枚rfler, F"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=D%C3%B6rfler%2C+F&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=D%C3%B6rfler%2C+F&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=D%C3%B6rfler%2C+F&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=D%C3%B6rfler%2C+F&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.18845">arXiv:2503.18845</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2503.18845">pdf</a>, <a href="https://arxiv.org/format/2503.18845">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Choose Wisely: Data-Enabled Predictive Control for Nonlinear Systems Using Online Data Selection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=N%C3%A4f%2C+J">Joshua N盲f</a>, <a href="/search/eess?searchtype=author&amp;query=Moffat%2C+K">Keith Moffat</a>, <a href="/search/eess?searchtype=author&amp;query=Eising%2C+J">Jaap Eising</a>, <a href="/search/eess?searchtype=author&amp;query=D%C3%B6rfler%2C+F">Florian D枚rfler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.18845v1-abstract-short" style="display: inline;"> This paper proposes Select-Data-Enabled Predictive Control (Select-DeePC), a new method for controlling nonlinear systems using output-feedback for which data are available but an explicit model is not. At each timestep, Select-DeePC employs only the most relevant data to implicitly linearize the dynamics in ``trajectory space.&#39;&#39; Then, taking user-defined output constraints into account, it makes&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.18845v1-abstract-full').style.display = 'inline'; document.getElementById('2503.18845v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.18845v1-abstract-full" style="display: none;"> This paper proposes Select-Data-Enabled Predictive Control (Select-DeePC), a new method for controlling nonlinear systems using output-feedback for which data are available but an explicit model is not. At each timestep, Select-DeePC employs only the most relevant data to implicitly linearize the dynamics in ``trajectory space.&#39;&#39; Then, taking user-defined output constraints into account, it makes control decisions using a convex optimization. This optimal control is applied in a receding-horizon manner. As the online data-selection is the core of Select-DeePC, we propose and verify both norm-based and manifold-embedding-based selection methods. We evaluate Select-DeePC on three benchmark nonlinear system simulators -- rocket-landing, a robotic arm and cart-pole inverted pendulum swing-up -- comparing them with standard DeePC and Time-Windowed DeePC, and find that Select-DeePC outperforms both methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.18845v1-abstract-full').style.display = 'none'; document.getElementById('2503.18845v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.16107">arXiv:2503.16107</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2503.16107">pdf</a>, <a href="https://arxiv.org/format/2503.16107">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Learn to Bid as a Price-Maker Wind Power Producer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Singhal%2C+S">Shobhit Singhal</a>, <a href="/search/eess?searchtype=author&amp;query=Fochesato%2C+M">Marta Fochesato</a>, <a href="/search/eess?searchtype=author&amp;query=Aolaritei%2C+L">Liviu Aolaritei</a>, <a href="/search/eess?searchtype=author&amp;query=D%C3%B6rfler%2C+F">Florian D枚rfler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.16107v1-abstract-short" style="display: inline;"> Wind power producers (WPPs) participating in short-term power markets face significant imbalance costs due to their non-dispatchable and variable production. While some WPPs have a large enough market share to influence prices with their bidding decisions, existing optimal bidding methods rarely account for this aspect. Price-maker approaches typically model bidding as a bilevel optimization probl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.16107v1-abstract-full').style.display = 'inline'; document.getElementById('2503.16107v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.16107v1-abstract-full" style="display: none;"> Wind power producers (WPPs) participating in short-term power markets face significant imbalance costs due to their non-dispatchable and variable production. While some WPPs have a large enough market share to influence prices with their bidding decisions, existing optimal bidding methods rarely account for this aspect. Price-maker approaches typically model bidding as a bilevel optimization problem, but these methods require complex market models, estimating other participants&#39; actions, and are computationally demanding. To address these challenges, we propose an online learning algorithm that leverages contextual information to optimize WPP bids in the price-maker setting. We formulate the strategic bidding problem as a contextual multi-armed bandit, ensuring provable regret minimization. The algorithm&#39;s performance is evaluated against various benchmark strategies using a numerical simulation of the German day-ahead and real-time markets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.16107v1-abstract-full').style.display = 'none'; document.getElementById('2503.16107v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.13583">arXiv:2503.13583</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2503.13583">pdf</a>, <a href="https://arxiv.org/ps/2503.13583">ps</a>, <a href="https://arxiv.org/format/2503.13583">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Stability results for MIMO LTI systems via Scaled Relative Graphs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Baron-Prada%2C+E">Eder Baron-Prada</a>, <a href="/search/eess?searchtype=author&amp;query=Anta%2C+A">Adolfo Anta</a>, <a href="/search/eess?searchtype=author&amp;query=Padoan%2C+A">Alberto Padoan</a>, <a href="/search/eess?searchtype=author&amp;query=D%C3%B6rfler%2C+F">Florian D枚rfler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.13583v1-abstract-short" style="display: inline;"> This paper proposes a new approach for stability analysis of multi-input, multi-output (MIMO) feedback systems through Scaled Relative Graphs (SRGs). Unlike traditional methods, such as the Generalized Nyquist Criterion (GNC), which relies on a coupled analysis that requires the multiplication of models, our approach enables the evaluation of system stability in a decoupled fashion and provides an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.13583v1-abstract-full').style.display = 'inline'; document.getElementById('2503.13583v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.13583v1-abstract-full" style="display: none;"> This paper proposes a new approach for stability analysis of multi-input, multi-output (MIMO) feedback systems through Scaled Relative Graphs (SRGs). Unlike traditional methods, such as the Generalized Nyquist Criterion (GNC), which relies on a coupled analysis that requires the multiplication of models, our approach enables the evaluation of system stability in a decoupled fashion and provides an intuitive, visual representation of system behavior. Our results provide conditions for certifying the stability of feedback MIMO Linear Time-Invariant (LTI) systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.13583v1-abstract-full').style.display = 'none'; document.getElementById('2503.13583v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To be submitted to CDC 2025</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.13367">arXiv:2503.13367</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2503.13367">pdf</a>, <a href="https://arxiv.org/ps/2503.13367">ps</a>, <a href="https://arxiv.org/format/2503.13367">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Mixed Small Gain and Phase Theorem: A new view using Scale Relative Graphs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Baron-Prada%2C+E">Eder Baron-Prada</a>, <a href="/search/eess?searchtype=author&amp;query=Anta%2C+A">Adolfo Anta</a>, <a href="/search/eess?searchtype=author&amp;query=Padoan%2C+A">Alberto Padoan</a>, <a href="/search/eess?searchtype=author&amp;query=D%C3%B6rfler%2C+F">Florian D枚rfler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.13367v1-abstract-short" style="display: inline;"> We introduce a novel approach to feedback stability analysis for linear time-invariant (LTI) systems, overcoming the limitations of the sectoriality assumption in the small phase theorem. While phase analysis for single-input single-output (SISO) systems is well-established, multi-input multi-output (MIMO) systems lack a comprehensive phase analysis until recent advances introduced with the small-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.13367v1-abstract-full').style.display = 'inline'; document.getElementById('2503.13367v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.13367v1-abstract-full" style="display: none;"> We introduce a novel approach to feedback stability analysis for linear time-invariant (LTI) systems, overcoming the limitations of the sectoriality assumption in the small phase theorem. While phase analysis for single-input single-output (SISO) systems is well-established, multi-input multi-output (MIMO) systems lack a comprehensive phase analysis until recent advances introduced with the small-phase theorem. A limitation of the small-phase theorem is the sectorial condition, which states that an operator&#39;s eigenvalues must lie within a specified angle sector of the complex plane. We propose a framework based on Scaled Relative Graphs (SRGs) to remove this assumption. We derive two main results: a graphical set-based stability condition using SRGs and a small-phase theorem with no sectorial assumption. These results broaden the scope of phase analysis and feedback stability for MIMO systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.13367v1-abstract-full').style.display = 'none'; document.getElementById('2503.13367v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To appear in ECC 2025</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.10498">arXiv:2503.10498</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2503.10498">pdf</a>, <a href="https://arxiv.org/format/2503.10498">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Safety Filter for Limiting the Current of Grid-Forming Matrix Modular Multilevel Converters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Schneeberger%2C+M">Michael Schneeberger</a>, <a href="/search/eess?searchtype=author&amp;query=Mastellone%2C+S">Silvia Mastellone</a>, <a href="/search/eess?searchtype=author&amp;query=D%C3%B6rfler%2C+F">Florian D枚rfler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.10498v1-abstract-short" style="display: inline;"> Grid-forming (GFM) converters face significant challenges in limiting current during transient grid events while preserving their grid-forming behavior. This paper offers an elegant solution to the problem with a priori guarantees, presenting a safety filter approach based on Control Barrier Functions (CBFs) to enforce current constraints with minimal deviation from the nominal voltage reference.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.10498v1-abstract-full').style.display = 'inline'; document.getElementById('2503.10498v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.10498v1-abstract-full" style="display: none;"> Grid-forming (GFM) converters face significant challenges in limiting current during transient grid events while preserving their grid-forming behavior. This paper offers an elegant solution to the problem with a priori guarantees, presenting a safety filter approach based on Control Barrier Functions (CBFs) to enforce current constraints with minimal deviation from the nominal voltage reference. The safety filter is implemented as a Quadratic Program, enabling real-time computation of safe voltage adjustments that ensure smooth transitions and maintain the GFM behavior during nominal operation. To provide formal safety certificate, the CBF is synthesized offline using a Sum-of-Squares optimization framework, ensuring that the converter remains within its allowable operating limits under all conditions. Additionally, a Control Lyapunov Function is incorporated to facilitate a smooth return to the nominal operating region following grid events. The proposed method is modular and can be integrated into many of the GFM control architectures, as demonstrated with two different GFM implementations. High-fidelity simulations conducted with an enhanced matrix modular multilevel converter connected to both high-inertia and low-inertia grid scenarios validate the effectiveness of the safety filter, showing that it successfully limits current during faults, preserves GFM behavior, and ensures a seamless recovery to nominal operation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.10498v1-abstract-full').style.display = 'none'; document.getElementById('2503.10498v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.07324">arXiv:2503.07324</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2503.07324">pdf</a>, <a href="https://arxiv.org/format/2503.07324">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Decision-Dependent Stochastic Optimization: The Role of Distribution Dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=He%2C+Z">Zhiyu He</a>, <a href="/search/eess?searchtype=author&amp;query=Bolognani%2C+S">Saverio Bolognani</a>, <a href="/search/eess?searchtype=author&amp;query=D%C3%B6rfler%2C+F">Florian D枚rfler</a>, <a href="/search/eess?searchtype=author&amp;query=Muehlebach%2C+M">Michael Muehlebach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.07324v1-abstract-short" style="display: inline;"> Distribution shifts have long been regarded as troublesome external forces that a decision-maker should either counteract or conform to. An intriguing feedback phenomenon termed decision dependence arises when the deployed decision affects the environment and alters the data-generating distribution. In the realm of performative prediction, this is encoded by distribution maps parameterized by deci&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.07324v1-abstract-full').style.display = 'inline'; document.getElementById('2503.07324v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.07324v1-abstract-full" style="display: none;"> Distribution shifts have long been regarded as troublesome external forces that a decision-maker should either counteract or conform to. An intriguing feedback phenomenon termed decision dependence arises when the deployed decision affects the environment and alters the data-generating distribution. In the realm of performative prediction, this is encoded by distribution maps parameterized by decisions due to strategic behaviors. In contrast, we formalize an endogenous distribution shift as a feedback process featuring nonlinear dynamics that couple the evolving distribution with the decision. Stochastic optimization in this dynamic regime provides a fertile ground to examine the various roles played by dynamics in the composite problem structure. To this end, we develop an online algorithm that achieves optimal decision-making by both adapting to and shaping the dynamic distribution. Throughout the paper, we adopt a distributional perspective and demonstrate how this view facilitates characterizations of distribution dynamics and the optimality and generalization performance of the proposed algorithm. We showcase the theoretical results in an opinion dynamics context, where an opportunistic party maximizes the affinity of a dynamic polarized population, and in a recommender system scenario, featuring performance optimization with discrete distributions in the probability simplex. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.07324v1-abstract-full').style.display = 'none'; document.getElementById('2503.07324v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.05403">arXiv:2503.05403</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2503.05403">pdf</a>, <a href="https://arxiv.org/format/2503.05403">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Quantitative Decentralized Stability Certificates for Grid-Forming Converter Control </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=H%C3%A4berle%2C+V">Verena H盲berle</a>, <a href="/search/eess?searchtype=author&amp;query=He%2C+X">Xiuqiang He</a>, <a href="/search/eess?searchtype=author&amp;query=Huang%2C+L">Linbin Huang</a>, <a href="/search/eess?searchtype=author&amp;query=D%C3%B6rfler%2C+F">Florian D枚rfler</a>, <a href="/search/eess?searchtype=author&amp;query=Low%2C+S">Steven Low</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.05403v3-abstract-short" style="display: inline;"> We propose a decentralized framework for guaranteeing the small-signal stability of future power systems with grid-forming converters. Our approach leverages dynamic loop-shifting techniques to compensate for the lack of passivity in the network dynamics and establishes decentralized parametric stability certificates, depending on the local device-level controls and incorporating the effects of th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.05403v3-abstract-full').style.display = 'inline'; document.getElementById('2503.05403v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.05403v3-abstract-full" style="display: none;"> We propose a decentralized framework for guaranteeing the small-signal stability of future power systems with grid-forming converters. Our approach leverages dynamic loop-shifting techniques to compensate for the lack of passivity in the network dynamics and establishes decentralized parametric stability certificates, depending on the local device-level controls and incorporating the effects of the network dynamics. By following practical tuning rules, we are able to ensure plug-and-play operation without centralized coordination. Unlike prior works, our approach accommodates coupled frequency and voltage dynamics, incorporates network dynamics, and does not rely on specific network configurations or operating points, offering a general and scalable solution for the integration of power-electronics-based devices into future power systems. We validate our theoretical stability results through numerical case studies in a high-fidelity simulation model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.05403v3-abstract-full').style.display = 'none'; document.getElementById('2503.05403v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.02985">arXiv:2503.02985</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2503.02985">pdf</a>, <a href="https://arxiv.org/format/2503.02985">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> </div> </div> <p class="title is-5 mathjax"> Regularization for Covariance Parameterization of Direct Data-Driven LQR Control </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Zhao%2C+F">Feiran Zhao</a>, <a href="/search/eess?searchtype=author&amp;query=Chiuso%2C+A">Alessandro Chiuso</a>, <a href="/search/eess?searchtype=author&amp;query=D%C3%B6rfler%2C+F">Florian D枚rfler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.02985v1-abstract-short" style="display: inline;"> As the benchmark of data-driven control methods, the linear quadratic regulator (LQR) problem has gained significant attention. A growing trend is direct LQR design, which finds the optimal LQR gain directly from raw data and bypassing system identification. To achieve this, our previous work develops a direct LQR formulation parameterized by sample covariance. In this paper, we propose a regulari&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.02985v1-abstract-full').style.display = 'inline'; document.getElementById('2503.02985v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.02985v1-abstract-full" style="display: none;"> As the benchmark of data-driven control methods, the linear quadratic regulator (LQR) problem has gained significant attention. A growing trend is direct LQR design, which finds the optimal LQR gain directly from raw data and bypassing system identification. To achieve this, our previous work develops a direct LQR formulation parameterized by sample covariance. In this paper, we propose a regularization method for the covariance-parameterized LQR. We show that the regularizer accounts for the uncertainty in both the steady-state covariance matrix corresponding to closed-loop stability, and the LQR cost function corresponding to averaged control performance. With a positive or negative coefficient, the regularizer can be interpreted as promoting either exploitation or exploration, which are well-known trade-offs in reinforcement learning. In simulations, we observe that our covariance-parameterized LQR with regularization can significantly outperform the certainty-equivalence LQR in terms of both the optimality gap and the robust closed-loop stability. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.02985v1-abstract-full').style.display = 'none'; document.getElementById('2503.02985v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to C-LSS and CDC</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.13676">arXiv:2502.13676</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.13676">pdf</a>, <a href="https://arxiv.org/format/2502.13676">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> </div> </div> <p class="title is-5 mathjax"> An Adaptive Data-Enabled Policy Optimization Approach for Autonomous Bicycle Control </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Persson%2C+N">Niklas Persson</a>, <a href="/search/eess?searchtype=author&amp;query=Zhao%2C+F">Feiran Zhao</a>, <a href="/search/eess?searchtype=author&amp;query=Kaheni%2C+M">Mojtaba Kaheni</a>, <a href="/search/eess?searchtype=author&amp;query=D%C3%B6rfler%2C+F">Florian D枚rfler</a>, <a href="/search/eess?searchtype=author&amp;query=Papadopoulos%2C+A+V">Alessandro V. Papadopoulos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.13676v1-abstract-short" style="display: inline;"> This paper presents a unified control framework that integrates a Feedback Linearization (FL) controller in the inner loop with an adaptive Data-Enabled Policy Optimization (DeePO) controller in the outer loop to balance an autonomous bicycle. While the FL controller stabilizes and partially linearizes the inherently unstable and nonlinear system, its performance is compromised by unmodeled dynami&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.13676v1-abstract-full').style.display = 'inline'; document.getElementById('2502.13676v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.13676v1-abstract-full" style="display: none;"> This paper presents a unified control framework that integrates a Feedback Linearization (FL) controller in the inner loop with an adaptive Data-Enabled Policy Optimization (DeePO) controller in the outer loop to balance an autonomous bicycle. While the FL controller stabilizes and partially linearizes the inherently unstable and nonlinear system, its performance is compromised by unmodeled dynamics and time-varying characteristics. To overcome these limitations, the DeePO controller is introduced to enhance adaptability and robustness. The initial control policy of DeePO is obtained from a finite set of offline, persistently exciting input and state data. To improve stability and compensate for system nonlinearities and disturbances, a robustness-promoting regularizer refines the initial policy, while the adaptive section of the DeePO framework is enhanced with a forgetting factor to improve adaptation to time-varying dynamics. The proposed DeePO+FL approach is evaluated through simulations and real-world experiments on an instrumented autonomous bicycle. Results demonstrate its superiority over the FL-only approach, achieving more precise tracking of the reference lean angle and lean rate. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.13676v1-abstract-full').style.display = 'none'; document.getElementById('2502.13676v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.12973">arXiv:2502.12973</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.12973">pdf</a>, <a href="https://arxiv.org/format/2502.12973">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Social and Information Networks">cs.SI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> </div> </div> <p class="title is-5 mathjax"> Optimizing Social Network Interventions via Hypergradient-Based Recommender System Design </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=K%C3%BChne%2C+M">Marino K眉hne</a>, <a href="/search/eess?searchtype=author&amp;query=Grontas%2C+P+D">Panagiotis D. Grontas</a>, <a href="/search/eess?searchtype=author&amp;query=De+Pasquale%2C+G">Giulia De Pasquale</a>, <a href="/search/eess?searchtype=author&amp;query=Belgioioso%2C+G">Giuseppe Belgioioso</a>, <a href="/search/eess?searchtype=author&amp;query=D%C3%B6rfler%2C+F">Florian D枚rfler</a>, <a href="/search/eess?searchtype=author&amp;query=Lygeros%2C+J">John Lygeros</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.12973v1-abstract-short" style="display: inline;"> Although social networks have expanded the range of ideas and information accessible to users, they are also criticized for amplifying the polarization of user opinions. Given the inherent complexity of these phenomena, existing approaches to counteract these effects typically rely on handcrafted algorithms and heuristics. We propose an elegant solution: we act on the network weights that model us&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.12973v1-abstract-full').style.display = 'inline'; document.getElementById('2502.12973v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.12973v1-abstract-full" style="display: none;"> Although social networks have expanded the range of ideas and information accessible to users, they are also criticized for amplifying the polarization of user opinions. Given the inherent complexity of these phenomena, existing approaches to counteract these effects typically rely on handcrafted algorithms and heuristics. We propose an elegant solution: we act on the network weights that model user interactions on social networks (e.g., frequency of communication), to optimize a performance metric (e.g., polarization reduction), while users&#39; opinions follow the classical Friedkin-Johnsen model. Our formulation gives rise to a challenging large-scale optimization problem with non-convex constraints, for which we develop a gradient-based algorithm. Our scheme is simple, scalable, and versatile, as it can readily integrate different, potentially non-convex, objectives. We demonstrate its merit by: (i) rapidly solving complex social network intervention problems with 3 million variables based on the Reddit and DBLP datasets; (ii) significantly outperforming competing approaches in terms of both computation time and disagreement reduction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.12973v1-abstract-full').style.display = 'none'; document.getElementById('2502.12973v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.17002">arXiv:2412.17002</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.17002">pdf</a>, <a href="https://arxiv.org/format/2412.17002">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Science and Game Theory">cs.GT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> To Travel Quickly or to Park Conveniently: Coupled Resource Allocations with Multi-Karma Economies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Elokda%2C+E">Ezzat Elokda</a>, <a href="/search/eess?searchtype=author&amp;query=Censi%2C+A">Andrea Censi</a>, <a href="/search/eess?searchtype=author&amp;query=Bolognani%2C+S">Saverio Bolognani</a>, <a href="/search/eess?searchtype=author&amp;query=D%C3%B6rfler%2C+F">Florian D枚rfler</a>, <a href="/search/eess?searchtype=author&amp;query=Frazzoli%2C+E">Emilio Frazzoli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.17002v1-abstract-short" style="display: inline;"> The large-scale allocation of public resources (e.g., transportation, energy) is among the core challenges of future Cyber-Physical-Human Systems (CPHS). In order to guarantee that these systems are efficient and fair, recent works have investigated non-monetary resource allocation schemes, including schemes that employ karma. Karma is a non-tradable token that flows from users gaining resources t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.17002v1-abstract-full').style.display = 'inline'; document.getElementById('2412.17002v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.17002v1-abstract-full" style="display: none;"> The large-scale allocation of public resources (e.g., transportation, energy) is among the core challenges of future Cyber-Physical-Human Systems (CPHS). In order to guarantee that these systems are efficient and fair, recent works have investigated non-monetary resource allocation schemes, including schemes that employ karma. Karma is a non-tradable token that flows from users gaining resources to users yielding resources. Thus far karma-based solutions considered the allocation of a single public resource, however, modern CPHS are complex as they involve the allocation of multiple coupled resources. For example, a user might want to trade-off fast travel on highways for convenient parking in the city center, and different users could have heterogeneous preferences for such coupled resources. In this paper, we explore how to optimally combine multiple karma economies for coupled resource allocations, using two mechanism-design instruments: (non-uniform) karma redistribution; and (non-unit) exchange rates. We first extend the existing Dynamic Population Game (DPG) model that predicts the Stationary Nash Equilibrium (SNE) of the multi-karma economies. Then, in a numerical case study, we demonstrate that the design of redistribution significantly affects the coupled resource allocations, while non-unit exchange rates play a minor role. To assess the allocation outcomes under user heterogeneity, we adopt Nash welfare as our social welfare function, since it makes no interpersonal comparisons and it is axiomatically rooted in social choice theory. Our findings suggest that the simplest mechanism design, that is, uniform redistribution with unit exchange rates, also attains maximum social welfare. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.17002v1-abstract-full').style.display = 'none'; document.getElementById('2412.17002v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.10964">arXiv:2412.10964</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.10964">pdf</a>, <a href="https://arxiv.org/ps/2412.10964">ps</a>, <a href="https://arxiv.org/format/2412.10964">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Dynamical Systems">math.DS</span> </div> </div> <p class="title is-5 mathjax"> A Stability Condition for Online Feedback Optimization without Timescale Separation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Bianchi%2C+M">Mattia Bianchi</a>, <a href="/search/eess?searchtype=author&amp;query=D%C3%B6rfler%2C+F">Florian D枚rfler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.10964v1-abstract-short" style="display: inline;"> Online Feedback Optimization (OFO) is a control approach to drive a dynamical plant to an optimal steady state. By interconnecting optimization algorithms with real-time plant measurements, OFO provides all the benefits of feedback control, yet without requiring exact knowledge of plant dynamics for computing a setpoint. On the downside, existing stability guarantees for OFO require the controller&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.10964v1-abstract-full').style.display = 'inline'; document.getElementById('2412.10964v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.10964v1-abstract-full" style="display: none;"> Online Feedback Optimization (OFO) is a control approach to drive a dynamical plant to an optimal steady state. By interconnecting optimization algorithms with real-time plant measurements, OFO provides all the benefits of feedback control, yet without requiring exact knowledge of plant dynamics for computing a setpoint. On the downside, existing stability guarantees for OFO require the controller to evolve on a sufficiently slower timescale than the plant, possibly affecting transient performance and responsiveness to disturbances. In this paper, we prove that, under suitable conditions, OFO ensures stability without any timescale separation. In particular, the condition we propose is independent of the time constant of the plant, hence it is scaling-invariant. Our analysis leverages a composite Lyapunov function, which is the $\max$ of plant-related and controller-related components. We corroborate our theoretical results with numerical examples. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.10964v1-abstract-full').style.display = 'none'; document.getElementById('2412.10964v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.09052">arXiv:2412.09052</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.09052">pdf</a>, <a href="https://arxiv.org/ps/2412.09052">ps</a>, <a href="https://arxiv.org/format/2412.09052">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> </div> </div> <p class="title is-5 mathjax"> Subspace tracking for online system identification </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Sasfi%2C+A">Andr谩s Sasfi</a>, <a href="/search/eess?searchtype=author&amp;query=Padoan%2C+A">Alberto Padoan</a>, <a href="/search/eess?searchtype=author&amp;query=Markovsky%2C+I">Ivan Markovsky</a>, <a href="/search/eess?searchtype=author&amp;query=D%C3%B6rfler%2C+F">Florian D枚rfler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.09052v1-abstract-short" style="display: inline;"> This paper introduces an online approach for identifying time-varying subspaces defined by linear dynamical systems, leveraging optimization on the Grassmannian manifold leading to the Grassmannian Recursive Algorithm for Tracking (GREAT) method. The approach of representing linear systems by non-parametric subspace models has received significant interest in the field of data-driven control recen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.09052v1-abstract-full').style.display = 'inline'; document.getElementById('2412.09052v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.09052v1-abstract-full" style="display: none;"> This paper introduces an online approach for identifying time-varying subspaces defined by linear dynamical systems, leveraging optimization on the Grassmannian manifold leading to the Grassmannian Recursive Algorithm for Tracking (GREAT) method. The approach of representing linear systems by non-parametric subspace models has received significant interest in the field of data-driven control recently. We view subspaces as points on the Grassmannian manifold, and therefore, tracking is achieved by performing optimization on the manifold. At each time step, a single measurement from the current subspace corrupted by a bounded error is available. The subspace estimate is updated online using Grassmannian gradient descent on a cost function incorporating a window of the most recent data. Under suitable assumptions on the signal-to-noise ratio of the online data and the subspace&#39;s rate of change, we establish theoretical guarantees for the resulting algorithm. More specifically, we prove an exponential convergence rate and provide a consistent uncertainty quantification of the estimates in terms of an upper bound on their distance to the true subspace. The applicability of the proposed algorithm is demonstrated by means of numerical examples, and it is shown to compare favorably with competing parametric system identification methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.09052v1-abstract-full').style.display = 'none'; document.getElementById('2412.09052v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to IEEE Transactions on Automatic Control</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.11542">arXiv:2411.11542</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.11542">pdf</a>, <a href="https://arxiv.org/ps/2411.11542">ps</a>, <a href="https://arxiv.org/format/2411.11542">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Data-Driven Structured Robust Control of Linear Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Miller%2C+J">Jared Miller</a>, <a href="/search/eess?searchtype=author&amp;query=Eising%2C+J">Jaap Eising</a>, <a href="/search/eess?searchtype=author&amp;query=D%C3%B6rfler%2C+F">Florian D枚rfler</a>, <a href="/search/eess?searchtype=author&amp;query=Smith%2C+R+S">Roy S. Smith</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.11542v1-abstract-short" style="display: inline;"> Static structured control refers to the task of designing a state-feedback controller such that the control gain satisfies a subspace constraint. Structured control has applications in control of communication-inhibited dynamical systems, such as systems in networked environments. This work performs $H_2$-suboptimal regulation under a common structured state-feedback controller for a class of data&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11542v1-abstract-full').style.display = 'inline'; document.getElementById('2411.11542v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.11542v1-abstract-full" style="display: none;"> Static structured control refers to the task of designing a state-feedback controller such that the control gain satisfies a subspace constraint. Structured control has applications in control of communication-inhibited dynamical systems, such as systems in networked environments. This work performs $H_2$-suboptimal regulation under a common structured state-feedback controller for a class of data-consistent plants. The certification of $H_2$-performance is attained through a combination of standard $H_2$ LMIs, convex sufficient conditions for structured control, and a matrix S-lemma for set-membership. The resulting convex optimization problems are linear matrix inequalities whose size scales independently of the number of data samples collected. Data-driven structured $H_2$-regulation control is demonstrated on example systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11542v1-abstract-full').style.display = 'none'; document.getElementById('2411.11542v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.03909">arXiv:2411.03909</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.03909">pdf</a>, <a href="https://arxiv.org/format/2411.03909">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> </div> </div> <p class="title is-5 mathjax"> Direct Adaptive Control of Grid-Connected Power Converters via Output-Feedback Data-Enabled Policy Optimization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Zhao%2C+F">Feiran Zhao</a>, <a href="/search/eess?searchtype=author&amp;query=Leng%2C+R">Ruohan Leng</a>, <a href="/search/eess?searchtype=author&amp;query=Huang%2C+L">Linbin Huang</a>, <a href="/search/eess?searchtype=author&amp;query=Xin%2C+H">Huanhai Xin</a>, <a href="/search/eess?searchtype=author&amp;query=You%2C+K">Keyou You</a>, <a href="/search/eess?searchtype=author&amp;query=D%C3%B6rfler%2C+F">Florian D枚rfler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.03909v1-abstract-short" style="display: inline;"> Power electronic converters are gradually becoming the main components of modern power systems due to the increasing integration of renewable energy sources. However, power converters may become unstable when interacting with the complex and time-varying power grid. To deal with this problem, an adaptive control design scheme for power converters is preferable, which can capture the closed-loop dy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03909v1-abstract-full').style.display = 'inline'; document.getElementById('2411.03909v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.03909v1-abstract-full" style="display: none;"> Power electronic converters are gradually becoming the main components of modern power systems due to the increasing integration of renewable energy sources. However, power converters may become unstable when interacting with the complex and time-varying power grid. To deal with this problem, an adaptive control design scheme for power converters is preferable, which can capture the closed-loop dynamical interaction between the converter and the grid via online data. In this paper, we propose an adaptive data-driven control method, called data-enabled policy optimization (DeePO), to stabilize power converters by using only online input-output data. Our contributions are threefold. First, we propose a covariance parameterization of partially observed linear systems with input-output data. Second, we develop a DeePO algorithm, which updates the parameterized policy with data-based gradient descent to achieve computationally efficient adaptive control. Third, we use high-fidelity simulations to verify that DeePO can effectively stabilize grid-connected power converters and quickly adapt to the changes in the power grid. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03909v1-abstract-full').style.display = 'none'; document.getElementById('2411.03909v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.21510">arXiv:2410.21510</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.21510">pdf</a>, <a href="https://arxiv.org/format/2410.21510">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Carbon-Aware Computing for Data Centers with Probabilistic Performance Guarantees </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Hall%2C+S">Sophie Hall</a>, <a href="/search/eess?searchtype=author&amp;query=Micheli%2C+F">Francesco Micheli</a>, <a href="/search/eess?searchtype=author&amp;query=Belgioioso%2C+G">Giuseppe Belgioioso</a>, <a href="/search/eess?searchtype=author&amp;query=Radovanovi%C4%87%2C+A">Ana Radovanovi膰</a>, <a href="/search/eess?searchtype=author&amp;query=D%C3%B6rfler%2C+F">Florian D枚rfler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.21510v2-abstract-short" style="display: inline;"> Data centers are significant contributors to carbon emissions and can strain power systems due to their high electricity consumption. To mitigate this impact and to participate in demand response programs, cloud computing companies strive to balance and optimize operations across their global fleets by making strategic decisions about when and where to place compute jobs for execution. In this pap&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.21510v2-abstract-full').style.display = 'inline'; document.getElementById('2410.21510v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.21510v2-abstract-full" style="display: none;"> Data centers are significant contributors to carbon emissions and can strain power systems due to their high electricity consumption. To mitigate this impact and to participate in demand response programs, cloud computing companies strive to balance and optimize operations across their global fleets by making strategic decisions about when and where to place compute jobs for execution. In this paper, we introduce a load shaping scheme which reacts to time-varying grid signals by leveraging both temporal and spatial flexibility of compute jobs to provide risk-aware management guidelines and job placement with provable performance guarantees based on distributionally robust optimization. Our approach divides the problem into two key components: (i) day-ahead planning, which generates an optimal scheduling strategy based on historical load data, and (ii) real-time job placement and (time) scheduling, which dynamically tracks the optimal strategy generated in (i). We validate our method in simulation using normalized load profiles from randomly selected Google clusters, incorporating time-varying grid signals. We can demonstrate significant reductions in carbon cost and peak power with our approach compared to myopic greedy policies, while maintaining computational efficiency and abiding to system constraints. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.21510v2-abstract-full').style.display = 'none'; document.getElementById('2410.21510v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.14912">arXiv:2410.14912</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.14912">pdf</a>, <a href="https://arxiv.org/format/2410.14912">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Grid-Forming Control of Modular Dynamic Virtual Power Plants </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=He%2C+X">Xiuqiang He</a>, <a href="/search/eess?searchtype=author&amp;query=Duarte%2C+J">Josu茅 Duarte</a>, <a href="/search/eess?searchtype=author&amp;query=H%C3%A4berle%2C+V">Verena H盲berle</a>, <a href="/search/eess?searchtype=author&amp;query=D%C3%B6rfler%2C+F">Florian D枚rfler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.14912v1-abstract-short" style="display: inline;"> This article explores a flexible and coordinated control design for an aggregation of heterogeneous distributed energy resources (DERs) in a dynamic virtual power plant (DVPP). The control design aims to provide a desired aggregate grid-forming (GFM) response based on the coordination of power contributions between different DERs. Compared to existing DVPP designs with an AC-coupled AC-output conf&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14912v1-abstract-full').style.display = 'inline'; document.getElementById('2410.14912v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.14912v1-abstract-full" style="display: none;"> This article explores a flexible and coordinated control design for an aggregation of heterogeneous distributed energy resources (DERs) in a dynamic virtual power plant (DVPP). The control design aims to provide a desired aggregate grid-forming (GFM) response based on the coordination of power contributions between different DERs. Compared to existing DVPP designs with an AC-coupled AC-output configuration, a more generic modular DVPP design is proposed in this article, which comprises four types of basic DVPP modules, involving AC- or DC-coupling and AC- or DC-output, adequately accommodating diverse DER integration setups, such as AC, DC, AC/DC hybrid microgrids and renewable power plants. The control design is first developed for the four basic modules by the aggregation of DERs and the disaggregation of the control objectives, and then extended to modular DVPPs through a systematic top-down approach. The control performance is comprehensively validated through simulation. The modular DVPP design offers scalable and standardizable advanced grid interfaces (AGIs) for building and operating AC/DC hybrid power grids. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14912v1-abstract-full').style.display = 'none'; document.getElementById('2410.14912v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.03495">arXiv:2409.03495</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.03495">pdf</a>, <a href="https://arxiv.org/ps/2409.03495">ps</a>, <a href="https://arxiv.org/format/2409.03495">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation">stat.CO</span> </div> </div> <p class="title is-5 mathjax"> Maximum likelihood inference for high-dimensional problems with multiaffine variable relations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Brouillon%2C+J">Jean-S茅bastien Brouillon</a>, <a href="/search/eess?searchtype=author&amp;query=D%C3%B6rfler%2C+F">Florian D枚rfler</a>, <a href="/search/eess?searchtype=author&amp;query=Ferrari-Trecate%2C+G">Giancarlo Ferrari-Trecate</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.03495v1-abstract-short" style="display: inline;"> Maximum Likelihood Estimation of continuous variable models can be very challenging in high dimensions, due to potentially complex probability distributions. The existence of multiple interdependencies among variables can make it very difficult to establish convergence guarantees. This leads to a wide use of brute-force methods, such as grid searching and Monte-Carlo sampling and, when applicable,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03495v1-abstract-full').style.display = 'inline'; document.getElementById('2409.03495v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.03495v1-abstract-full" style="display: none;"> Maximum Likelihood Estimation of continuous variable models can be very challenging in high dimensions, due to potentially complex probability distributions. The existence of multiple interdependencies among variables can make it very difficult to establish convergence guarantees. This leads to a wide use of brute-force methods, such as grid searching and Monte-Carlo sampling and, when applicable, complex and problem-specific algorithms. In this paper, we consider inference problems where the variables are related by multiaffine expressions. We propose a novel Alternating and Iteratively-Reweighted Least Squares (AIRLS) algorithm, and prove its convergence for problems with Generalized Normal Distributions. We also provide an efficient method to compute the variance of the estimates obtained using AIRLS. Finally, we show how the method can be applied to graphical statistical models. We perform numerical experiments on several inference problems, showing significantly better performance than state-of-the-art approaches in terms of scalability, robustness to noise, and convergence speed due to an empirically observed super-linear convergence rate. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03495v1-abstract-full').style.display = 'none'; document.getElementById('2409.03495v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.16899">arXiv:2408.16899</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.16899">pdf</a>, <a href="https://arxiv.org/format/2408.16899">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> </div> </div> <p class="title is-5 mathjax"> Network-aware Recommender System via Online Feedback Optimization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Chandrasekaran%2C+S">Sanjay Chandrasekaran</a>, <a href="/search/eess?searchtype=author&amp;query=De+Pasquale%2C+G">Giulia De Pasquale</a>, <a href="/search/eess?searchtype=author&amp;query=Belgioioso%2C+G">Giuseppe Belgioioso</a>, <a href="/search/eess?searchtype=author&amp;query=D%C3%B6rfler%2C+F">Florian D枚rfler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.16899v2-abstract-short" style="display: inline;"> Personalized content on social platforms can exacerbate negative phenomena such as polarization, partly due to the feedback interactions between recommendations and the users. In this paper, we present a control-theoretic recommender system that explicitly accounts for this feedback loop to mitigate polarization. Our approach extends online feedback optimization - a control paradigm for steady-sta&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.16899v2-abstract-full').style.display = 'inline'; document.getElementById('2408.16899v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.16899v2-abstract-full" style="display: none;"> Personalized content on social platforms can exacerbate negative phenomena such as polarization, partly due to the feedback interactions between recommendations and the users. In this paper, we present a control-theoretic recommender system that explicitly accounts for this feedback loop to mitigate polarization. Our approach extends online feedback optimization - a control paradigm for steady-state optimization of dynamical systems - to develop a recommender system that trades off users engagement and polarization reduction, while relying solely on online click data. We establish theoretical guarantees for optimality and stability of the proposed design and validate its effectiveness via numerical experiments with a user population governed by Friedkin-Johnsen dynamics. Our results show these &#34;network-aware&#34; recommendations can significantly reduce polarization while maintaining high levels of user engagement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.16899v2-abstract-full').style.display = 'none'; document.getElementById('2408.16899v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.14427">arXiv:2405.14427</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.14427">pdf</a>, <a href="https://arxiv.org/format/2405.14427">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Advanced Safety Filter for Smooth Transient Operation of a Battery Energy Storage System </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Schneeberger%2C+M">Michael Schneeberger</a>, <a href="/search/eess?searchtype=author&amp;query=D%C3%B6rfler%2C+F">Florian D枚rfler</a>, <a href="/search/eess?searchtype=author&amp;query=Mastellone%2C+S">Silvia Mastellone</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.14427v1-abstract-short" style="display: inline;"> In this paper, we implement an advanced safety filter to smoothly limit the current of an inverter-based Battery Energy Storage System. The task involves finding suitable Control Barrier Function and Control Lyapunov Function via Sum-of-Squares optimization to certify the system&#39;s safety during grid transients. In contrast to the conventional safety filter, the advanced safety filter not only prov&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.14427v1-abstract-full').style.display = 'inline'; document.getElementById('2405.14427v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.14427v1-abstract-full" style="display: none;"> In this paper, we implement an advanced safety filter to smoothly limit the current of an inverter-based Battery Energy Storage System. The task involves finding suitable Control Barrier Function and Control Lyapunov Function via Sum-of-Squares optimization to certify the system&#39;s safety during grid transients. In contrast to the conventional safety filter, the advanced safety filter not only provides a safety certificate but also achieves finite-time convergence to a nominal region. Within this region, the action of the nominal control, i.e. the Enhanced Direct Power Control, remains unaltered by the safety filter. The advanced safety filter is implemented using a Quadratically Constrained Quadratic Program, providing the capability to also encode quadratic input constraints. Finally, we showcase the effectiveness of the implementation through simulations involving a load step at the Point of Common Coupling, and we compare the outcomes with those obtained using a standard vector current controller. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.14427v1-abstract-full').style.display = 'none'; document.getElementById('2405.14427v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.19547">arXiv:2404.19547</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.19547">pdf</a>, <a href="https://arxiv.org/format/2404.19547">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Multiagent Systems">cs.MA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> </div> </div> <p class="title is-5 mathjax"> Distributed Traffic Signal Control via Coordinated Maximum Pressure-plus-Penalty </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=T%C3%BCtsch%2C+V">Vinzenz T眉tsch</a>, <a href="/search/eess?searchtype=author&amp;query=He%2C+Z">Zhiyu He</a>, <a href="/search/eess?searchtype=author&amp;query=D%C3%B6rfler%2C+F">Florian D枚rfler</a>, <a href="/search/eess?searchtype=author&amp;query=Zhang%2C+K">Kenan Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.19547v1-abstract-short" style="display: inline;"> This paper develops an adaptive traffic control policy inspired by Maximum Pressure (MP) while imposing coordination across intersections. The proposed Coordinated Maximum Pressure-plus-Penalty (CMPP) control policy features a local objective for each intersection that consists of the total pressure within the neighborhood and a penalty accounting for the queue capacities and continuous green time&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.19547v1-abstract-full').style.display = 'inline'; document.getElementById('2404.19547v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.19547v1-abstract-full" style="display: none;"> This paper develops an adaptive traffic control policy inspired by Maximum Pressure (MP) while imposing coordination across intersections. The proposed Coordinated Maximum Pressure-plus-Penalty (CMPP) control policy features a local objective for each intersection that consists of the total pressure within the neighborhood and a penalty accounting for the queue capacities and continuous green time for certain movements. The corresponding control task is reformulated as a distributed optimization problem and solved via two customized algorithms: one based on the alternating direction method of multipliers (ADMM) and the other follows a greedy heuristic augmented with a majority vote. CMPP not only provides a theoretical guarantee of queuing network stability but also outperforms several benchmark controllers in simulations on a large-scale real traffic network with lower average travel and waiting time per vehicle, as well as less network congestion. Furthermore, CPMM with the greedy algorithm enjoys comparable computational efficiency as fully decentralized controllers without significantly compromising the control performance, which highlights its great potential for real-world deployment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.19547v1-abstract-full').style.display = 'none'; document.getElementById('2404.19547v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.16318">arXiv:2404.16318</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.16318">pdf</a>, <a href="https://arxiv.org/format/2404.16318">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> The Continuous-Time Weighted-Median Opinion Dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Han%2C+Y">Yi Han</a>, <a href="/search/eess?searchtype=author&amp;query=Chen%2C+G">Ge Chen</a>, <a href="/search/eess?searchtype=author&amp;query=D%C3%B6rfler%2C+F">Florian D枚rfler</a>, <a href="/search/eess?searchtype=author&amp;query=Mei%2C+W">Wenjun Mei</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.16318v2-abstract-short" style="display: inline;"> Opinion dynamics models are important in understanding and predicting opinion formation processes within social groups. Although the weighted-averaging opinion-update mechanism is widely adopted as the micro-foundation of opinion dynamics, it bears a non-negligibly unrealistic implication: opinion attractiveness increases with opinion distance. Recently, the weighted-median mechanism has been prop&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.16318v2-abstract-full').style.display = 'inline'; document.getElementById('2404.16318v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.16318v2-abstract-full" style="display: none;"> Opinion dynamics models are important in understanding and predicting opinion formation processes within social groups. Although the weighted-averaging opinion-update mechanism is widely adopted as the micro-foundation of opinion dynamics, it bears a non-negligibly unrealistic implication: opinion attractiveness increases with opinion distance. Recently, the weighted-median mechanism has been proposed as a new microscopic mechanism of opinion exchange. Numerous advancements have been achieved regarding this new micro-foundation, from theoretical analysis to empirical validation, in a discrete-time asynchronous setup. However, the original discrete-time weighted-median model does not allow for &#34;compromise behavior&#34; in opinion exchanges, i.e., no intermediate opinions are created between disagreeing agents. To resolve this problem, this paper propose a novel continuous-time weighted-median opinion dynamics model, in which agents&#39; opinions move towards the weighted-medians of their out-neighbors&#39; opinions. It turns out that the proof methods for the original discrete-time asynchronous model are no longer applicable to the analysis of the continuous-time model. In this paper, we first establish the existence and uniqueness of the solution to the continuous-time weighted-median opinion dynamics by showing that the weighted-median mapping is contractive on any graph. We also characterize the set of all the equilibria. Then, by leveraging a new LaSalle invariance principle argument, we prove the convergence of the continuous-time weighted-median model for any initial condition and derive a necessary and sufficient condition for the convergence to consensus. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.16318v2-abstract-full').style.display = 'none'; document.getElementById('2404.16318v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 1 figure</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 91D30(Primary) 93A16(Secondary) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.13376">arXiv:2404.13376</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.13376">pdf</a>, <a href="https://arxiv.org/format/2404.13376">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/TPEL.2024.3500885">10.1109/TPEL.2024.3500885 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cross-Forming Control and Fault Current Limiting for Grid-Forming Inverters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=He%2C+X">Xiuqiang He</a>, <a href="/search/eess?searchtype=author&amp;query=Desai%2C+M+A">Maitraya Avadhut Desai</a>, <a href="/search/eess?searchtype=author&amp;query=Huang%2C+L">Linbin Huang</a>, <a href="/search/eess?searchtype=author&amp;query=D%C3%B6rfler%2C+F">Florian D枚rfler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.13376v4-abstract-short" style="display: inline;"> This article proposes a &#34;cross-forming&#34; control concept for grid-forming inverters operating against grid faults. Cross-forming refers to voltage angle forming and current magnitude forming. It differs from classical grid-forming and grid-following paradigms that feature voltage magnitude-and-angle forming and voltage magnitude-and-angle following (or current magnitude-and-angle forming), respecti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.13376v4-abstract-full').style.display = 'inline'; document.getElementById('2404.13376v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.13376v4-abstract-full" style="display: none;"> This article proposes a &#34;cross-forming&#34; control concept for grid-forming inverters operating against grid faults. Cross-forming refers to voltage angle forming and current magnitude forming. It differs from classical grid-forming and grid-following paradigms that feature voltage magnitude-and-angle forming and voltage magnitude-and-angle following (or current magnitude-and-angle forming), respectively. The cross-forming concept addresses the need for inverters to remain grid-forming (particularly voltage angle forming, as required by grid codes) while managing fault current limitation. Simple and feasible cross-forming control implementations are proposed, enabling inverters to quickly limit fault currents to a prescribed level while preserving voltage angle forming for grid-forming synchronization and providing dynamic ancillary services, during symmetrical or asymmetrical fault ride-through. Moreover, the cross-forming control yields an equivalent system featuring a constant virtual impedance and a &#34;normal form&#34; representation, allowing for the extension of previously established transient stability results to include scenarios involving current saturation. Simulations and experiments validate the efficacy of the proposed cross-forming control implementations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.13376v4-abstract-full').style.display = 'none'; document.getElementById('2404.13376v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> IEEE Transactions on Power Electronics, 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.12165">arXiv:2404.12165</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.12165">pdf</a>, <a href="https://arxiv.org/format/2404.12165">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Stability Certificates for Receding Horizon Games </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Hall%2C+S">Sophie Hall</a>, <a href="/search/eess?searchtype=author&amp;query=Liao-McPherson%2C+D">Dominic Liao-McPherson</a>, <a href="/search/eess?searchtype=author&amp;query=Belgioioso%2C+G">Giuseppe Belgioioso</a>, <a href="/search/eess?searchtype=author&amp;query=D%C3%B6rfler%2C+F">Florian D枚rfler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.12165v1-abstract-short" style="display: inline;"> Game-theoretic MPC (or Receding Horizon Games) is an emerging control methodology for multi-agent systems that generates control actions by solving a dynamic game with coupling constraints in a receding-horizon fashion. This control paradigm has recently received an increasing attention in various application fields, including robotics, autonomous driving, traffic networks, and energy grids, due t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.12165v1-abstract-full').style.display = 'inline'; document.getElementById('2404.12165v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.12165v1-abstract-full" style="display: none;"> Game-theoretic MPC (or Receding Horizon Games) is an emerging control methodology for multi-agent systems that generates control actions by solving a dynamic game with coupling constraints in a receding-horizon fashion. This control paradigm has recently received an increasing attention in various application fields, including robotics, autonomous driving, traffic networks, and energy grids, due to its ability to model the competitive nature of self-interested agents with shared resources while incorporating future predictions, dynamic models, and constraints into the decision-making process. In this work, we present the first formal stability analysis based on dissipativity and monotone operator theory that is valid also for non-potential games. Specifically, we derive LMI-based certificates that ensure asymptotic stability and are numerically verifiable. Moreover, we show that, if the agents have decoupled dynamics, the numerical verification can be performed in a scalable manner. Finally, we present tuning guidelines for the agents&#39; cost function weights to fulfill the certificates and, thus, ensure stability. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.12165v1-abstract-full').style.display = 'none'; document.getElementById('2404.12165v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.10071">arXiv:2404.10071</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.10071">pdf</a>, <a href="https://arxiv.org/format/2404.10071">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Dynamic Complex-Frequency Control of Grid-Forming Converters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Domingo-Enrich%2C+R">Roger Domingo-Enrich</a>, <a href="/search/eess?searchtype=author&amp;query=He%2C+X">Xiuqiang He</a>, <a href="/search/eess?searchtype=author&amp;query=H%C3%A4berle%2C+V">Verena H盲berle</a>, <a href="/search/eess?searchtype=author&amp;query=D%C3%B6rfler%2C+F">Florian D枚rfler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.10071v2-abstract-short" style="display: inline;"> Complex droop control, alternatively known as dispatchable virtual oscillator control (dVOC), stands out for its unique capabilities in synchronization and voltage stabilization among existing control strategies for grid-forming converters. Complex droop control leverages the novel concept of ``complex frequency&#39;&#39;, thereby establishing a coupled connection between active and reactive power inputs&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.10071v2-abstract-full').style.display = 'inline'; document.getElementById('2404.10071v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.10071v2-abstract-full" style="display: none;"> Complex droop control, alternatively known as dispatchable virtual oscillator control (dVOC), stands out for its unique capabilities in synchronization and voltage stabilization among existing control strategies for grid-forming converters. Complex droop control leverages the novel concept of ``complex frequency&#39;&#39;, thereby establishing a coupled connection between active and reactive power inputs and frequency and rate-of-change-of voltage outputs. However, its reliance on static droop gains limits its ability to exhibit crucial dynamic response behaviors required in future power systems. To address this limitation, this paper introduces dynamic complex-frequency control, upgrading static droop gains with dynamic transfer functions to enhance the richness and flexibility in dynamic responses for frequency and voltage control. Unlike existing approaches, the complex-frequency control framework treats frequency and voltage dynamics collectively, ensuring small-signal stability for frequency synchronization and voltage stabilization simultaneously. The control framework is validated through detailed numerical case studies on the IEEE nine-bus system, also showcasing its applicability in multi-converter setups. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.10071v2-abstract-full').style.display = 'none'; document.getElementById('2404.10071v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 Pages, 7 Figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.07682">arXiv:2404.07682</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.07682">pdf</a>, <a href="https://arxiv.org/format/2404.07682">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.epsr.2024.110746">10.1016/j.epsr.2024.110746 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Saturation-Informed Current-Limiting Control for Grid-Forming Converters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Desai%2C+M+A">Maitraya Avadhut Desai</a>, <a href="/search/eess?searchtype=author&amp;query=He%2C+X">Xiuqiang He</a>, <a href="/search/eess?searchtype=author&amp;query=Huang%2C+L">Linbin Huang</a>, <a href="/search/eess?searchtype=author&amp;query=D%C3%B6rfler%2C+F">Florian D枚rfler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.07682v2-abstract-short" style="display: inline;"> In this paper, we investigate the transient stability of a state-of-the-art grid-forming complex-droop control (i.e., dispatchable virtual oscillator control, dVOC) under current saturation. We quantify the saturation level of a converter by introducing the concept of degree of saturation (DoS), and we propose a provably stable current-limiting control with saturation-informed feedback, which feed&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.07682v2-abstract-full').style.display = 'inline'; document.getElementById('2404.07682v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.07682v2-abstract-full" style="display: none;"> In this paper, we investigate the transient stability of a state-of-the-art grid-forming complex-droop control (i.e., dispatchable virtual oscillator control, dVOC) under current saturation. We quantify the saturation level of a converter by introducing the concept of degree of saturation (DoS), and we propose a provably stable current-limiting control with saturation-informed feedback, which feeds the degree of saturation back to the inner voltage-control loop and the outer grid-forming loop. As a result, although the output current is saturated, the voltage phase angle can still be generated from an internal virtual voltage-source node that is governed by an equivalent complex-droop control. We prove that the proposed control achieves transient stability during current saturation under grid faults. We also provide parametric stability conditions for multi-converter systems under grid-connected and islanded scenarios. The stability performance of the current-limiting control is validated with various case studies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.07682v2-abstract-full').style.display = 'none'; document.getElementById('2404.07682v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Electric Power Systems Research, 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.04355">arXiv:2404.04355</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.04355">pdf</a>, <a href="https://arxiv.org/format/2404.04355">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Gray-Box Nonlinear Feedback Optimization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=He%2C+Z">Zhiyu He</a>, <a href="/search/eess?searchtype=author&amp;query=Bolognani%2C+S">Saverio Bolognani</a>, <a href="/search/eess?searchtype=author&amp;query=Muehlebach%2C+M">Michael Muehlebach</a>, <a href="/search/eess?searchtype=author&amp;query=D%C3%B6rfler%2C+F">Florian D枚rfler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.04355v1-abstract-short" style="display: inline;"> Feedback optimization enables autonomous optimality seeking of a dynamical system through its closed-loop interconnection with iterative optimization algorithms. Among various iteration structures, model-based approaches require the input-output sensitivity of the system to construct gradients, whereas model-free approaches bypass this need by estimating gradients from real-time evaluations of the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.04355v1-abstract-full').style.display = 'inline'; document.getElementById('2404.04355v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.04355v1-abstract-full" style="display: none;"> Feedback optimization enables autonomous optimality seeking of a dynamical system through its closed-loop interconnection with iterative optimization algorithms. Among various iteration structures, model-based approaches require the input-output sensitivity of the system to construct gradients, whereas model-free approaches bypass this need by estimating gradients from real-time evaluations of the objective. These approaches own complementary benefits in sample efficiency and accuracy against model mismatch, i.e., errors of sensitivities. To achieve the best of both worlds, we propose gray-box feedback optimization controllers, featuring systematic incorporation of approximate sensitivities into model-free updates via adaptive convex combination. We quantify conditions on the accuracy of the sensitivities that render the gray-box approach preferable. We elucidate how the closed-loop performance is determined by the number of iterations, the problem dimension, and the cumulative effect of inaccurate sensitivities. The proposed controller contributes to a balanced closed-loop behavior, which retains provable sample efficiency and optimality guarantees for nonconvex problems. We further develop a running gray-box controller to handle constrained time-varying problems with changing objectives and steady-state maps. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.04355v1-abstract-full').style.display = 'none'; document.getElementById('2404.04355v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.02687">arXiv:2404.02687</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.02687">pdf</a>, <a href="https://arxiv.org/format/2404.02687">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Economics">econ.GN</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Science and Game Theory">cs.GT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Dynamic Resource Allocation with Karma: An Experimental Study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Elokda%2C+E">Ezzat Elokda</a>, <a href="/search/eess?searchtype=author&amp;query=Nax%2C+H">Heinrich Nax</a>, <a href="/search/eess?searchtype=author&amp;query=Bolognani%2C+S">Saverio Bolognani</a>, <a href="/search/eess?searchtype=author&amp;query=D%C3%B6rfler%2C+F">Florian D枚rfler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.02687v2-abstract-short" style="display: inline;"> A system of non-tradable credits that flow between individuals like karma, hence proposed under that name, is a mechanism for repeated resource allocation that comes with attractive efficiency and fairness properties, in theory. In this study, we test karma in an online experiment in which human subjects repeatedly compete for a resource with time-varying and stochastic individual preferences or u&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.02687v2-abstract-full').style.display = 'inline'; document.getElementById('2404.02687v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.02687v2-abstract-full" style="display: none;"> A system of non-tradable credits that flow between individuals like karma, hence proposed under that name, is a mechanism for repeated resource allocation that comes with attractive efficiency and fairness properties, in theory. In this study, we test karma in an online experiment in which human subjects repeatedly compete for a resource with time-varying and stochastic individual preferences or urgency to acquire the resource. We confirm that karma has significant and sustained welfare benefits even in a population with no prior training. We identify mechanism usage in contexts with sporadic high urgency, more so than with frequent moderate urgency, and implemented as a simple (binary) karma bidding scheme as particularly effective for welfare improvements: relatively larger aggregate efficiency gains are realized that are (almost) Pareto superior. These findings provide guidance for further testing and for future implementation plans of such mechanisms in the real world. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.02687v2-abstract-full').style.display = 'none'; document.getElementById('2404.02687v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.16565">arXiv:2403.16565</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.16565">pdf</a>, <a href="https://arxiv.org/format/2403.16565">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Decoupling parameter variation from noise: Biquadratic Lyapunov forms in data-driven LPV control </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Verhoek%2C+C">Chris Verhoek</a>, <a href="/search/eess?searchtype=author&amp;query=Eising%2C+J">Jaap Eising</a>, <a href="/search/eess?searchtype=author&amp;query=D%C3%B6rfler%2C+F">Florian D枚rfler</a>, <a href="/search/eess?searchtype=author&amp;query=T%C3%B3th%2C+R">Roland T贸th</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.16565v2-abstract-short" style="display: inline;"> A promising step from linear towards nonlinear data-driven control is via the design of controllers for linear parameter-varying (LPV) systems, which are linear systems whose parameters are varying along a measurable scheduling signal. However, the interplay between uncertainty arising from corrupted data and the parameter-varying nature of these systems impacts the stability analysis and limits t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.16565v2-abstract-full').style.display = 'inline'; document.getElementById('2403.16565v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.16565v2-abstract-full" style="display: none;"> A promising step from linear towards nonlinear data-driven control is via the design of controllers for linear parameter-varying (LPV) systems, which are linear systems whose parameters are varying along a measurable scheduling signal. However, the interplay between uncertainty arising from corrupted data and the parameter-varying nature of these systems impacts the stability analysis and limits the generalization of well-understood data-driven methods available for linear time-invariant systems. In this work, we decouple this interplay using a recently developed variant of the Fundamental Lemma for LPV systems and the concept of data-informativity, in combination with biquadratic Lyapunov forms. Together, these allow us to develop novel linear matrix inequality conditions for the existence of scheduling-dependent Lyapunov functions, incorporating the intrinsic nonlinearity. Appealingly, these results are stated purely in terms of the collected data and bounds on the noise, and they are computationally favorable to check. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.16565v2-abstract-full').style.display = 'none'; document.getElementById('2403.16565v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for the 63rd IEEE Conference on Decision and Control</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.13605">arXiv:2403.13605</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.13605">pdf</a>, <a href="https://arxiv.org/format/2403.13605">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Optimal control of continuous-time symmetric systems with unknown dynamics and noisy measurements </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Taghavian%2C+H">Hamed Taghavian</a>, <a href="/search/eess?searchtype=author&amp;query=Dorfler%2C+F">Florian Dorfler</a>, <a href="/search/eess?searchtype=author&amp;query=Johansson%2C+M">Mikael Johansson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.13605v1-abstract-short" style="display: inline;"> An iterative learning algorithm is presented for continuous-time linear-quadratic optimal control problems where the system is externally symmetric with unknown dynamics. Both finite-horizon and infinite-horizon problems are considered. It is shown that the proposed algorithm is globally convergent to the optimal solution and has some advantages over adaptive dynamic programming, including being u&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.13605v1-abstract-full').style.display = 'inline'; document.getElementById('2403.13605v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.13605v1-abstract-full" style="display: none;"> An iterative learning algorithm is presented for continuous-time linear-quadratic optimal control problems where the system is externally symmetric with unknown dynamics. Both finite-horizon and infinite-horizon problems are considered. It is shown that the proposed algorithm is globally convergent to the optimal solution and has some advantages over adaptive dynamic programming, including being unbiased under noisy measurements and having a relatively low computational burden. Numerical experiments show the effectiveness of the results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.13605v1-abstract-full').style.display = 'none'; document.getElementById('2403.13605v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.06152">arXiv:2403.06152</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.06152">pdf</a>, <a href="https://arxiv.org/format/2403.06152">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Social and Information Networks">cs.SI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> </div> <p class="title is-5 mathjax"> Control Strategies for Recommendation Systems in Social Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Sprenger%2C+B">Ben Sprenger</a>, <a href="/search/eess?searchtype=author&amp;query=De+Pasquale%2C+G">Giulia De Pasquale</a>, <a href="/search/eess?searchtype=author&amp;query=Soloperto%2C+R">Raffaele Soloperto</a>, <a href="/search/eess?searchtype=author&amp;query=Lygeros%2C+J">John Lygeros</a>, <a href="/search/eess?searchtype=author&amp;query=D%C3%B6rfler%2C+F">Florian D枚rfler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.06152v1-abstract-short" style="display: inline;"> A closed-loop control model to analyze the impact of recommendation systems on opinion dynamics within social networks is introduced. The core contribution is the development and formalization of model-free and model-based approaches to recommendation system design, integrating the dynamics of social interactions within networks via an extension of the Friedkin-Johnsen (FJ) model. Comparative anal&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.06152v1-abstract-full').style.display = 'inline'; document.getElementById('2403.06152v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.06152v1-abstract-full" style="display: none;"> A closed-loop control model to analyze the impact of recommendation systems on opinion dynamics within social networks is introduced. The core contribution is the development and formalization of model-free and model-based approaches to recommendation system design, integrating the dynamics of social interactions within networks via an extension of the Friedkin-Johnsen (FJ) model. Comparative analysis and numerical simulations demonstrate the effectiveness of the proposed control strategies in maximizing user engagement and their potential for influencing opinion formation processes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.06152v1-abstract-full').style.display = 'none'; document.getElementById('2403.06152v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.01782">arXiv:2403.01782</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.01782">pdf</a>, <a href="https://arxiv.org/format/2403.01782">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Tuning and Testing an Online Feedback Optimization Controller to Provide Curative Distribution Grid Flexibility </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Ortmann%2C+L">Lukas Ortmann</a>, <a href="/search/eess?searchtype=author&amp;query=B%C3%B6hm%2C+F">Fabian B枚hm</a>, <a href="/search/eess?searchtype=author&amp;query=Klein-Helmkamp%2C+F">Florian Klein-Helmkamp</a>, <a href="/search/eess?searchtype=author&amp;query=Ulbig%2C+A">Andreas Ulbig</a>, <a href="/search/eess?searchtype=author&amp;query=Bolognani%2C+S">Saverio Bolognani</a>, <a href="/search/eess?searchtype=author&amp;query=D%C3%B6rfler%2C+F">Florian D枚rfler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.01782v1-abstract-short" style="display: inline;"> Due to more volatile generation, flexibility will become more important in transmission grids. One potential source of this flexibility can be distribution grids. A flexibility request from the transmission grid to a distribution grid then needs to be split up onto the different flexibility providing units (FPU) in the distribution grid. One potential way to do this is Online Feedback Optimization&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.01782v1-abstract-full').style.display = 'inline'; document.getElementById('2403.01782v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.01782v1-abstract-full" style="display: none;"> Due to more volatile generation, flexibility will become more important in transmission grids. One potential source of this flexibility can be distribution grids. A flexibility request from the transmission grid to a distribution grid then needs to be split up onto the different flexibility providing units (FPU) in the distribution grid. One potential way to do this is Online Feedback Optimization (OFO). OFO is a new control method that steers power systems to the optimal solution of an optimization problem using minimal model information and computation power. This paper will show how to choose the optimization problem and how to tune the OFO controller. Afterward, we test the resulting controller on a real distribution grid laboratory and show its performance, its interaction with other controllers in the grid, and how it copes with disturbances. Overall, the paper makes a clear recommendation on how to phrase the optimization problem and tune the OFO controller. Furthermore, it experimentally verifies that an OFO controller is a powerful tool to disaggregate flexibility requests onto FPUs while satisfying operational constraints inside the flexibility providing distribution grid. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.01782v1-abstract-full').style.display = 'none'; document.getElementById('2403.01782v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.17793">arXiv:2401.17793</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.17793">pdf</a>, <a href="https://arxiv.org/format/2401.17793">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Optimal Dynamic Ancillary Services Provision Based on Local Power Grid Perception </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=H%C3%A4berle%2C+V">Verena H盲berle</a>, <a href="/search/eess?searchtype=author&amp;query=He%2C+X">Xiuqiang He</a>, <a href="/search/eess?searchtype=author&amp;query=Huang%2C+L">Linbin Huang</a>, <a href="/search/eess?searchtype=author&amp;query=Prieto-Araujo%2C+E">Eduardo Prieto-Araujo</a>, <a href="/search/eess?searchtype=author&amp;query=D%C3%B6rfler%2C+F">Florian D枚rfler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.17793v4-abstract-short" style="display: inline;"> In this paper, we propose a systematic closed-loop approach to provide optimal dynamic ancillary services with converter-interfaced generation systems based on local power grid perception. In particular, we structurally encode dynamic ancillary services such as fast frequency and voltage regulation in the form of a parametric transfer function matrix, which includes several parameters to define a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.17793v4-abstract-full').style.display = 'inline'; document.getElementById('2401.17793v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.17793v4-abstract-full" style="display: none;"> In this paper, we propose a systematic closed-loop approach to provide optimal dynamic ancillary services with converter-interfaced generation systems based on local power grid perception. In particular, we structurally encode dynamic ancillary services such as fast frequency and voltage regulation in the form of a parametric transfer function matrix, which includes several parameters to define a set of different feasible response behaviors, among which we aim to find the optimal one to be realized by the converter system. Our approach is based on a so-called &#34;perceive-and-optimize&#34; (P&amp;O) strategy: First, we identify a grid dynamic equivalent at the interconnection terminals of the converter system. Second, we consider the closed-loop interconnection of the identified grid equivalent and the parametric transfer function matrix, which we optimize for the set of transfer function parameters, resulting in a stable and optimal closed-loop performance for ancillary services provision. In the process, we ensure that grid-code and device-level requirements are satisfied. Finally, we demonstrate the effectiveness of our approach in different numerical case studies based on a modified Kundur two-area test system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.17793v4-abstract-full').style.display = 'none'; document.getElementById('2401.17793v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 20 Figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.14871">arXiv:2401.14871</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.14871">pdf</a>, <a href="https://arxiv.org/format/2401.14871">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Data-Enabled Policy Optimization for Direct Adaptive Learning of the LQR </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Zhao%2C+F">Feiran Zhao</a>, <a href="/search/eess?searchtype=author&amp;query=D%C3%B6rfler%2C+F">Florian D枚rfler</a>, <a href="/search/eess?searchtype=author&amp;query=Chiuso%2C+A">Alessandro Chiuso</a>, <a href="/search/eess?searchtype=author&amp;query=You%2C+K">Keyou You</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.14871v4-abstract-short" style="display: inline;"> Direct data-driven design methods for the linear quadratic regulator (LQR) mainly use offline or episodic data batches, and their online adaptation has been acknowledged as an open problem. In this paper, we propose a direct adaptive method to learn the LQR from online closed-loop data. First, we propose a new policy parameterization based on the sample covariance to formulate a direct data-driven&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.14871v4-abstract-full').style.display = 'inline'; document.getElementById('2401.14871v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.14871v4-abstract-full" style="display: none;"> Direct data-driven design methods for the linear quadratic regulator (LQR) mainly use offline or episodic data batches, and their online adaptation has been acknowledged as an open problem. In this paper, we propose a direct adaptive method to learn the LQR from online closed-loop data. First, we propose a new policy parameterization based on the sample covariance to formulate a direct data-driven LQR problem, which is shown to be equivalent to the certainty-equivalence LQR with optimal non-asymptotic guarantees. Second, we design a novel data-enabled policy optimization (DeePO) method to directly update the policy, where the gradient is explicitly computed using only a batch of persistently exciting (PE) data. Third, we establish its global convergence via a projected gradient dominance property. Importantly, we efficiently use DeePO to adaptively learn the LQR by performing only one-step projected gradient descent per sample of the closed-loop system, which also leads to an explicit recursive update of the policy. Under PE inputs and for bounded noise, we show that the average regret of the LQR cost is upper-bounded by two terms signifying a sublinear decrease in time $\mathcal{O}(1/\sqrt{T})$ plus a bias scaling inversely with signal-to-noise ratio (SNR), which are independent of the noise statistics. Finally, we perform simulations to validate the theoretical results and demonstrate the computational and sample efficiency of our method. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.14871v4-abstract-full').style.display = 'none'; document.getElementById('2401.14871v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to IEEE TAC</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.14029">arXiv:2401.14029</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.14029">pdf</a>, <a href="https://arxiv.org/format/2401.14029">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/LCSYS.2024.3406943">10.1109/LCSYS.2024.3406943 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Towards a Systems Theory of Algorithms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=D%C3%B6rfler%2C+F">Florian D枚rfler</a>, <a href="/search/eess?searchtype=author&amp;query=He%2C+Z">Zhiyu He</a>, <a href="/search/eess?searchtype=author&amp;query=Belgioioso%2C+G">Giuseppe Belgioioso</a>, <a href="/search/eess?searchtype=author&amp;query=Bolognani%2C+S">Saverio Bolognani</a>, <a href="/search/eess?searchtype=author&amp;query=Lygeros%2C+J">John Lygeros</a>, <a href="/search/eess?searchtype=author&amp;query=Muehlebach%2C+M">Michael Muehlebach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.14029v2-abstract-short" style="display: inline;"> Traditionally, numerical algorithms are seen as isolated pieces of code confined to an {\em in silico} existence. However, this perspective is not appropriate for many modern computational approaches in control, learning, or optimization, wherein {\em in vivo} algorithms interact with their environment. Examples of such {\em open algorithms} include various real-time optimization-based control str&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.14029v2-abstract-full').style.display = 'inline'; document.getElementById('2401.14029v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.14029v2-abstract-full" style="display: none;"> Traditionally, numerical algorithms are seen as isolated pieces of code confined to an {\em in silico} existence. However, this perspective is not appropriate for many modern computational approaches in control, learning, or optimization, wherein {\em in vivo} algorithms interact with their environment. Examples of such {\em open algorithms} include various real-time optimization-based control strategies, reinforcement learning, decision-making architectures, online optimization, and many more. Further, even {\em closed} algorithms in learning or optimization are increasingly abstracted in block diagrams with interacting dynamic modules and pipelines. In this opinion paper, we state our vision on a to-be-cultivated {\em systems theory of algorithms} and argue in favor of viewing algorithms as open dynamical systems interacting with other algorithms, physical systems, humans, or databases. Remarkably, the manifold tools developed under the umbrella of systems theory are well suited for addressing a range of challenges in the algorithmic domain. We survey various instances where the principles of algorithmic systems theory are being developed and outline pertinent modeling, analysis, and design challenges. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.14029v2-abstract-full').style.display = 'none'; document.getElementById('2401.14029v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.09989">arXiv:2401.09989</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.09989">pdf</a>, <a href="https://arxiv.org/format/2401.09989">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applications">stat.AP</span> </div> </div> <p class="title is-5 mathjax"> Power Grid Parameter Estimation Without Phase Measurements: Theory and Empirical Validation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Brouillon%2C+J">Jean-S茅bastien Brouillon</a>, <a href="/search/eess?searchtype=author&amp;query=Moffat%2C+K">Keith Moffat</a>, <a href="/search/eess?searchtype=author&amp;query=D%C3%B6rfler%2C+F">Florian D枚rfler</a>, <a href="/search/eess?searchtype=author&amp;query=Ferrari-trecate%2C+G">Giancarlo Ferrari-trecate</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.09989v1-abstract-short" style="display: inline;"> Reliable integration and operation of renewable distributed energy resources requires accurate distribution grid models. However, obtaining precise models is often prohibitively expensive, given their large scale and the ongoing nature of grid operations. To address this challenge, considerable efforts have been devoted to harnessing abundant consumption data for automatic model inference. The pri&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.09989v1-abstract-full').style.display = 'inline'; document.getElementById('2401.09989v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.09989v1-abstract-full" style="display: none;"> Reliable integration and operation of renewable distributed energy resources requires accurate distribution grid models. However, obtaining precise models is often prohibitively expensive, given their large scale and the ongoing nature of grid operations. To address this challenge, considerable efforts have been devoted to harnessing abundant consumption data for automatic model inference. The primary result of the paper is that, while the impedance of a line or a network can be estimated without synchronized phase angle measurements in a consistent way, the admittance cannot. Furthermore, a detailed statistical analysis is presented, quantifying the expected estimation errors of four prevalent admittance estimation methods. Such errors constitute fundamental model inference limitations that cannot be resolved with more data. These findings are empirically validated using synthetic data and real measurements from the town of Walenstadt, Switzerland, confirming the theory. The results contribute to our understanding of grid estimation limitations and uncertainties, offering guidance for both practitioners and researchers in the pursuit of more reliable and cost-effective solutions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.09989v1-abstract-full').style.display = 'none'; document.getElementById('2401.09989v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.09853">arXiv:2401.09853</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.09853">pdf</a>, <a href="https://arxiv.org/format/2401.09853">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Receding Horizon Games for Modeling Competitive Supply Chains </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Hall%2C+S">Sophie Hall</a>, <a href="/search/eess?searchtype=author&amp;query=Guerrini%2C+L">Laura Guerrini</a>, <a href="/search/eess?searchtype=author&amp;query=D%C3%B6rfler%2C+F">Florian D枚rfler</a>, <a href="/search/eess?searchtype=author&amp;query=Liao-McPherson%2C+D">Dominic Liao-McPherson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.09853v2-abstract-short" style="display: inline;"> The vast majority of products we use daily are supplied to us through complex global supply chains that transform raw materials into finished goods and distribute them to end consumers. This paper proposes a modeling methodology for dynamic competitive supply chains based on game theory and model predictive control. We model each manufacturer in the supply chain as a rational utility maximizing ag&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.09853v2-abstract-full').style.display = 'inline'; document.getElementById('2401.09853v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.09853v2-abstract-full" style="display: none;"> The vast majority of products we use daily are supplied to us through complex global supply chains that transform raw materials into finished goods and distribute them to end consumers. This paper proposes a modeling methodology for dynamic competitive supply chains based on game theory and model predictive control. We model each manufacturer in the supply chain as a rational utility maximizing agent that selects their actions by finding an open-loop generalized Nash equilibrium of a multi-stage game. To react to competitors and the state of the market, every agent re-plans their actions in a receding horizon manner based on estimates of market and supplier parameters thereby creating an approximate closed-loop equilibrium policy. We demonstrate through numerical simulations that this modeling approach is computationally tractable and generates economically interpretable behaviors in a variety of settings such as demand spikes, supply shocks, and information asymmetry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.09853v2-abstract-full').style.display = 'none'; document.getElementById('2401.09853v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.06901">arXiv:2401.06901</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.06901">pdf</a>, <a href="https://arxiv.org/format/2401.06901">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Advanced safety filter based on SOS Control Barrier and Lyapunov Functions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Schneeberger%2C+M">Michael Schneeberger</a>, <a href="/search/eess?searchtype=author&amp;query=Mastellone%2C+S">Silvia Mastellone</a>, <a href="/search/eess?searchtype=author&amp;query=D%C3%B6rfler%2C+F">Florian D枚rfler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.06901v2-abstract-short" style="display: inline;"> This paper presents a novel safety filter framework that ensures both safety and the preservation of the legacy control action within a nominal region. This modular design allows the safety filter to be integrated into the control hierarchy without compromising the performance of the existing legacy controller within the nominal region. This is accomplished by formulating multiple Control Barrier&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.06901v2-abstract-full').style.display = 'inline'; document.getElementById('2401.06901v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.06901v2-abstract-full" style="display: none;"> This paper presents a novel safety filter framework that ensures both safety and the preservation of the legacy control action within a nominal region. This modular design allows the safety filter to be integrated into the control hierarchy without compromising the performance of the existing legacy controller within the nominal region. This is accomplished by formulating multiple Control Barrier Functions (CBFs) and Control Lyapunov-like Functions (CLFs) conditions, alongside a forward invariance condition for the legacy controller, as sum-of-squares constraints utilizing Putinar&#39;s Positivstellensatz. Additionally, the state-dependent inequality constraints of the resulting Quadratic Program -- encoding the CBF and CLF conditions -- are designed to remain inactive within the nominal region, ensuring perfect tracking of the legacy control action. Our safety filter design is also the first to include quadratic input constraints, and does not need an explicit specification of the attractor, as it is implicitly defined by the legacy controller. To avoid the chattering effect and guarantee the uniqueness and Lipschitz continuity of solutions, the state-dependent inequality constraints of the Quadratic Program are selected to be sufficiently regular. Finally, we demonstrate the method in a detailed case study involving the control of a three-phase ac/dc power converter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.06901v2-abstract-full').style.display = 'none'; document.getElementById('2401.06901v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.07324">arXiv:2312.07324</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.07324">pdf</a>, <a href="https://arxiv.org/format/2312.07324">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Distributionally Robust Infinite-horizon Control: from a pool of samples to the design of dependable controllers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Brouillon%2C+J">Jean-S茅bastien Brouillon</a>, <a href="/search/eess?searchtype=author&amp;query=Martin%2C+A">Andrea Martin</a>, <a href="/search/eess?searchtype=author&amp;query=Lygeros%2C+J">John Lygeros</a>, <a href="/search/eess?searchtype=author&amp;query=D%C3%B6rfler%2C+F">Florian D枚rfler</a>, <a href="/search/eess?searchtype=author&amp;query=Trecate%2C+G+F">Giancarlo Ferrari Trecate</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.07324v2-abstract-short" style="display: inline;"> We study control of constrained linear systems with only partial statistical information about the uncertainty affecting the system dynamics and the sensor measurements. Specifically, given a finite collection of disturbance realizations drawn from a generic distribution, we consider the problem of designing a stabilizing control policy with provable safety and performance guarantees despite the m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.07324v2-abstract-full').style.display = 'inline'; document.getElementById('2312.07324v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.07324v2-abstract-full" style="display: none;"> We study control of constrained linear systems with only partial statistical information about the uncertainty affecting the system dynamics and the sensor measurements. Specifically, given a finite collection of disturbance realizations drawn from a generic distribution, we consider the problem of designing a stabilizing control policy with provable safety and performance guarantees despite the mismatch between the empirical and true distributions. We capture this discrepancy using Wasserstein ambiguity sets, and we formulate a distributionally robust (DR) optimal control problem, which provides guarantees on the expected cost, safety, and stability of the system. To solve this problem, we first present new results for DR optimization of quadratic objectives using convex programming, showing that strong duality holds under mild conditions. Then, by combining our results with the system-level parametrization of linear feedback policies, we show that the design problem can be reduced to a semidefinite program. We present numerical simulations to validate the effectiveness of our approach and to highlight the value of empirical distributions for control design. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.07324v2-abstract-full').style.display = 'none'; document.getElementById('2312.07324v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.09851">arXiv:2311.09851</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.09851">pdf</a>, <a href="https://arxiv.org/format/2311.09851">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> Urban traffic congestion control: a DeePC change </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Rimoldi%2C+A">Alessio Rimoldi</a>, <a href="/search/eess?searchtype=author&amp;query=Cenedese%2C+C">Carlo Cenedese</a>, <a href="/search/eess?searchtype=author&amp;query=Padoan%2C+A">Alberto Padoan</a>, <a href="/search/eess?searchtype=author&amp;query=D%C3%B6rfler%2C+F">Florian D枚rfler</a>, <a href="/search/eess?searchtype=author&amp;query=Lygeros%2C+J">John Lygeros</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.09851v1-abstract-short" style="display: inline;"> Urban traffic congestion remains a pressing challenge in our rapidly expanding cities, despite the abundance of available data and the efforts of policymakers. By leveraging behavioral system theory and data-driven control, this paper exploits the DeePC algorithm in the context of urban traffic control performed via dynamic traffic lights. To validate our approach, we consider a high-fidelity case&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.09851v1-abstract-full').style.display = 'inline'; document.getElementById('2311.09851v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.09851v1-abstract-full" style="display: none;"> Urban traffic congestion remains a pressing challenge in our rapidly expanding cities, despite the abundance of available data and the efforts of policymakers. By leveraging behavioral system theory and data-driven control, this paper exploits the DeePC algorithm in the context of urban traffic control performed via dynamic traffic lights. To validate our approach, we consider a high-fidelity case study using the state-of-the-art simulation software package Simulation of Urban MObility (SUMO). Preliminary results indicate that DeePC outperforms existing approaches across various key metrics, including travel time and CO$_2$ emissions, demonstrating its potential for effective traffic management <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.09851v1-abstract-full').style.display = 'none'; document.getElementById('2311.09851v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This paper has been submitted to IEEE ECC24</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.09408">arXiv:2311.09408</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.09408">pdf</a>, <a href="https://arxiv.org/format/2311.09408">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Decentralized Feedback Optimization via Sensitivity Decoupling: Stability and Sub-optimality </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Wang%2C+W">Wenbin Wang</a>, <a href="/search/eess?searchtype=author&amp;query=He%2C+Z">Zhiyu He</a>, <a href="/search/eess?searchtype=author&amp;query=Belgioioso%2C+G">Giuseppe Belgioioso</a>, <a href="/search/eess?searchtype=author&amp;query=Bolognani%2C+S">Saverio Bolognani</a>, <a href="/search/eess?searchtype=author&amp;query=D%C3%B6rfler%2C+F">Florian D枚rfler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.09408v2-abstract-short" style="display: inline;"> Online feedback optimization is a controller design paradigm for optimizing the steady-state behavior of a dynamical system. It employs an optimization algorithm as a dynamic feedback controller and utilizes real-time measurements to bypass knowing exact plant dynamics and disturbances. Different from existing centralized settings, we present a fully decentralized feedback optimization controller&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.09408v2-abstract-full').style.display = 'inline'; document.getElementById('2311.09408v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.09408v2-abstract-full" style="display: none;"> Online feedback optimization is a controller design paradigm for optimizing the steady-state behavior of a dynamical system. It employs an optimization algorithm as a dynamic feedback controller and utilizes real-time measurements to bypass knowing exact plant dynamics and disturbances. Different from existing centralized settings, we present a fully decentralized feedback optimization controller for networked systems to lift the communication burden and improve scalability. We approximate the overall input-output sensitivity matrix through its diagonal elements, which capture local model information. For the closed-loop behavior, we characterize the stability and bound the sub-optimality due to decentralization. We prove that the proposed decentralized controller yields solutions that correspond to the Nash equilibria of a non-cooperative game. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.09408v2-abstract-full').style.display = 'none'; document.getElementById('2311.09408v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.15354">arXiv:2310.15354</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.15354">pdf</a>, <a href="https://arxiv.org/ps/2310.15354">ps</a>, <a href="https://arxiv.org/format/2310.15354">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Data-driven representations of conical, convex, and affine behaviors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Padoan%2C+A">Alberto Padoan</a>, <a href="/search/eess?searchtype=author&amp;query=D%C3%B6rfler%2C+F">Florian D枚rfler</a>, <a href="/search/eess?searchtype=author&amp;query=Lygeros%2C+J">John Lygeros</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.15354v1-abstract-short" style="display: inline;"> The paper studies conical, convex, and affine models in the framework of behavioral systems theory. We investigate basic properties of such behaviors and address the problem of constructing models from measured data. We prove that closed, shift-invariant, conical, convex, and affine models have the intersection property, thereby enabling the definition of most powerful unfalsified models based on&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.15354v1-abstract-full').style.display = 'inline'; document.getElementById('2310.15354v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.15354v1-abstract-full" style="display: none;"> The paper studies conical, convex, and affine models in the framework of behavioral systems theory. We investigate basic properties of such behaviors and address the problem of constructing models from measured data. We prove that closed, shift-invariant, conical, convex, and affine models have the intersection property, thereby enabling the definition of most powerful unfalsified models based on infinite-horizon measurements. We then provide necessary and sufficient conditions for representing conical, convex, and affine finite-horizon behaviors using raw data matrices, expressing persistence of excitation requirements in terms of non-negative rank conditions. The applicability of our results is demonstrated by a numerical example arising in population ecology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.15354v1-abstract-full').style.display = 'none'; document.getElementById('2310.15354v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.15347">arXiv:2310.15347</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.15347">pdf</a>, <a href="https://arxiv.org/ps/2310.15347">ps</a>, <a href="https://arxiv.org/format/2310.15347">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Controller implementability: a data-driven approach </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Padoan%2C+A">Alberto Padoan</a>, <a href="/search/eess?searchtype=author&amp;query=Coulson%2C+J">Jeremy Coulson</a>, <a href="/search/eess?searchtype=author&amp;query=D%C3%B6rfler%2C+F">Florian D枚rfler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.15347v1-abstract-short" style="display: inline;"> We study the controller implementability problem, which seeks to determine if a controller can make the closed-loop behavior of a given plant match that of a desired reference behavior. We establish necessary and sufficient conditions for controller implementability which only rely on raw data. Subsequently, we consider the problem of constructing controllers directly from data. By leveraging the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.15347v1-abstract-full').style.display = 'inline'; document.getElementById('2310.15347v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.15347v1-abstract-full" style="display: none;"> We study the controller implementability problem, which seeks to determine if a controller can make the closed-loop behavior of a given plant match that of a desired reference behavior. We establish necessary and sufficient conditions for controller implementability which only rely on raw data. Subsequently, we consider the problem of constructing controllers directly from data. By leveraging the concept of canonical controller, we provide a formula to directly construct controllers that implement plant-compatible reference behaviors using measurements of both reference and plant behaviors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.15347v1-abstract-full').style.display = 'none'; document.getElementById('2310.15347v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.09935">arXiv:2310.09935</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.09935">pdf</a>, <a href="https://arxiv.org/format/2310.09935">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/TPWRS.2024.3360707">10.1109/TPWRS.2024.3360707 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Passivity and Decentralized Stability Conditions for Grid-Forming Converters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=He%2C+X">Xiuqiang He</a>, <a href="/search/eess?searchtype=author&amp;query=D%C3%B6rfler%2C+F">Florian D枚rfler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.09935v2-abstract-short" style="display: inline;"> We prove that the popular grid-forming control, i.e., dispatchable virtual oscillator control (dVOC), also termed complex droop control, exhibits output-feedback passivity in its large-signal model, featuring an explicit and physically meaningful passivity index. Using this passivity property, we derive decentralized stability conditions for the transient stability of dVOC in multi-converter grid-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.09935v2-abstract-full').style.display = 'inline'; document.getElementById('2310.09935v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.09935v2-abstract-full" style="display: none;"> We prove that the popular grid-forming control, i.e., dispatchable virtual oscillator control (dVOC), also termed complex droop control, exhibits output-feedback passivity in its large-signal model, featuring an explicit and physically meaningful passivity index. Using this passivity property, we derive decentralized stability conditions for the transient stability of dVOC in multi-converter grid-connected systems, beyond prior small-signal stability results. The decentralized conditions are of practical significance, particularly for ensuring the transient stability of renewable power plants under grid disturbances. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.09935v2-abstract-full').style.display = 'none'; document.getElementById('2310.09935v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> IEEE Transactions on Power Systems, 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.09933">arXiv:2310.09933</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.09933">pdf</a>, <a href="https://arxiv.org/format/2310.09933">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/TPEL.2024.3404251">10.1109/TPEL.2024.3404251 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantitative Stability Conditions for Grid-Forming Converters With Complex Droop Control </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=He%2C+X">Xiuqiang He</a>, <a href="/search/eess?searchtype=author&amp;query=Huang%2C+L">Linbin Huang</a>, <a href="/search/eess?searchtype=author&amp;query=Suboti%C4%87%2C+I">Irina Suboti膰</a>, <a href="/search/eess?searchtype=author&amp;query=H%C3%A4berle%2C+V">Verena H盲berle</a>, <a href="/search/eess?searchtype=author&amp;query=D%C3%B6rfler%2C+F">Florian D枚rfler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.09933v3-abstract-short" style="display: inline;"> In this paper, we analytically study the transient stability of grid-connected converters with grid-forming complex droop control, also known as dispatchable virtual oscillator control. We prove theoretically that complex droop control, as a state-of-the-art grid-forming control, always possesses steady-state equilibria whereas classical droop control does not. We provide quantitative conditions f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.09933v3-abstract-full').style.display = 'inline'; document.getElementById('2310.09933v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.09933v3-abstract-full" style="display: none;"> In this paper, we analytically study the transient stability of grid-connected converters with grid-forming complex droop control, also known as dispatchable virtual oscillator control. We prove theoretically that complex droop control, as a state-of-the-art grid-forming control, always possesses steady-state equilibria whereas classical droop control does not. We provide quantitative conditions for complex droop control maintaining transient stability (global asymptotic stability) under grid disturbances, which is beyond the well-established local (non-global) stability for classical droop control. For the transient instability of complex droop control, we reveal that the unstable trajectories are bounded, manifesting as limit cycle oscillations. Moreover, we extend our stability results from second-order grid-forming control dynamics to full-order system dynamics that additionally encompass both circuit electromagnetic transients and inner-loop dynamics. Our theoretical results contribute an insightful understanding of the transient stability and instability of complex droop control and offer practical guidelines for parameter tuning and stability guarantees. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.09933v3-abstract-full').style.display = 'none'; document.getElementById('2310.09933v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> IEEE Transactions on Power Electronics, 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.01552">arXiv:2310.01552</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.01552">pdf</a>, <a href="https://arxiv.org/format/2310.01552">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Dynamic Ancillary Services: From Grid Codes to Transfer Function-Based Converter Control </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=H%C3%A4berle%2C+V">Verena H盲berle</a>, <a href="/search/eess?searchtype=author&amp;query=Huang%2C+L">Linbin Huang</a>, <a href="/search/eess?searchtype=author&amp;query=He%2C+X">Xiuqiang He</a>, <a href="/search/eess?searchtype=author&amp;query=Prieto-Araujo%2C+E">Eduardo Prieto-Araujo</a>, <a href="/search/eess?searchtype=author&amp;query=D%C3%B6rfler%2C+F">Florian D枚rfler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.01552v5-abstract-short" style="display: inline;"> Conventional grid-code specifications for dynamic ancillary services provision such as fast frequency and voltage regulation are typically defined by means of piece-wise linear step-response capability curves in the time domain. However, although the specification of such time-domain curves is straightforward, their practical implementation in a converter-based generation system is not immediate,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.01552v5-abstract-full').style.display = 'inline'; document.getElementById('2310.01552v5-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.01552v5-abstract-full" style="display: none;"> Conventional grid-code specifications for dynamic ancillary services provision such as fast frequency and voltage regulation are typically defined by means of piece-wise linear step-response capability curves in the time domain. However, although the specification of such time-domain curves is straightforward, their practical implementation in a converter-based generation system is not immediate, and no customary methods have been developed yet. In this paper, we thus propose a systematic approach for the practical implementation of piece-wise linear time-domain curves to provide dynamic ancillary services by converter-based generation systems, while ensuring grid-code and device-level requirements to be reliably satisfied. Namely, we translate the piece-wise linear time-domain curves for active and reactive power provision in response to a frequency and voltage step change into a desired rational parametric transfer function in the frequency domain, which defines a dynamic response behavior to be realized by the converter. The obtained transfer function can be easily implemented e.g. via a PI-based matching control in the power loop of standard converter control architectures. We demonstrate the performance of our method in numerical grid-code compliance tests, and reveal its superiority over classical droop and virtual inertia schemes which may not satisfy the grid codes due to their structural limitations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.01552v5-abstract-full').style.display = 'none'; document.getElementById('2310.01552v5-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.00728">arXiv:2310.00728</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.00728">pdf</a>, <a href="https://arxiv.org/format/2310.00728">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> Physics-Informed Graph Neural Network for Dynamic Reconfiguration of Power Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Authier%2C+J">Jules Authier</a>, <a href="/search/eess?searchtype=author&amp;query=Haider%2C+R">Rabab Haider</a>, <a href="/search/eess?searchtype=author&amp;query=Annaswamy%2C+A">Anuradha Annaswamy</a>, <a href="/search/eess?searchtype=author&amp;query=Dorfler%2C+F">Florian Dorfler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.00728v2-abstract-short" style="display: inline;"> To maintain a reliable grid we need fast decision-making algorithms for complex problems like Dynamic Reconfiguration (DyR). DyR optimizes distribution grid switch settings in real-time to minimize grid losses and dispatches resources to supply loads with available generation. DyR is a mixed-integer problem and can be computationally intractable to solve for large grids and at fast timescales. We&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.00728v2-abstract-full').style.display = 'inline'; document.getElementById('2310.00728v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.00728v2-abstract-full" style="display: none;"> To maintain a reliable grid we need fast decision-making algorithms for complex problems like Dynamic Reconfiguration (DyR). DyR optimizes distribution grid switch settings in real-time to minimize grid losses and dispatches resources to supply loads with available generation. DyR is a mixed-integer problem and can be computationally intractable to solve for large grids and at fast timescales. We propose GraPhyR, a Physics-Informed Graph Neural Network (GNNs) framework tailored for DyR. We incorporate essential operational and connectivity constraints directly within the GNN framework and train it end-to-end. Our results show that GraPhyR is able to learn to optimize the DyR task. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.00728v2-abstract-full').style.display = 'none'; document.getElementById('2310.00728v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures, 2 tables. To appear at PSCC 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.08037">arXiv:2309.08037</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.08037">pdf</a>, <a href="https://arxiv.org/format/2309.08037">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Gain and Phase: Decentralized Stability Conditions for Power Electronics-Dominated Power Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Huang%2C+L">Linbin Huang</a>, <a href="/search/eess?searchtype=author&amp;query=Wang%2C+D">Dan Wang</a>, <a href="/search/eess?searchtype=author&amp;query=Wang%2C+X">Xiongfei Wang</a>, <a href="/search/eess?searchtype=author&amp;query=Xin%2C+H">Huanhai Xin</a>, <a href="/search/eess?searchtype=author&amp;query=Ju%2C+P">Ping Ju</a>, <a href="/search/eess?searchtype=author&amp;query=Johansson%2C+K+H">Karl H. Johansson</a>, <a href="/search/eess?searchtype=author&amp;query=D%C3%B6rfler%2C+F">Florian D枚rfler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.08037v2-abstract-short" style="display: inline;"> This paper proposes decentralized stability conditions for multi-converter systems based on the combination of the small gain theorem and the small phase theorem. Instead of directly computing the closed-loop dynamics, e.g., eigenvalues of the state-space matrix, or using the generalized Nyquist stability criterion, the proposed stability conditions are more scalable and computationally lighter, w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.08037v2-abstract-full').style.display = 'inline'; document.getElementById('2309.08037v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.08037v2-abstract-full" style="display: none;"> This paper proposes decentralized stability conditions for multi-converter systems based on the combination of the small gain theorem and the small phase theorem. Instead of directly computing the closed-loop dynamics, e.g., eigenvalues of the state-space matrix, or using the generalized Nyquist stability criterion, the proposed stability conditions are more scalable and computationally lighter, which aim at evaluating the closed-loop system stability by comparing the individual converter dynamics with the network dynamics in a decentralized and open-loop manner. Moreover, our approach can handle heterogeneous converters&#39; dynamics and is suitable to analyze large-scale multi-converter power systems that contain grid-following (GFL), grid-forming (GFM) converters, and synchronous generators. Compared with other decentralized stability conditions, e.g., passivity-based stability conditions, the proposed conditions are significantly less conservative and can be generally satisfied in practice across the whole frequency range. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.08037v2-abstract-full').style.display = 'none'; document.getElementById('2309.08037v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.01321">arXiv:2309.01321</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.01321">pdf</a>, <a href="https://arxiv.org/format/2309.01321">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> </div> </div> <p class="title is-5 mathjax"> Joint Oscillation Damping and Inertia Provision Service for Converter-Interfaced Generation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Feng%2C+C">Cheng Feng</a>, <a href="/search/eess?searchtype=author&amp;query=Huang%2C+L">Linbin Huang</a>, <a href="/search/eess?searchtype=author&amp;query=He%2C+X">Xiuqiang He</a>, <a href="/search/eess?searchtype=author&amp;query=Wang%2C+Y">Yi Wang</a>, <a href="/search/eess?searchtype=author&amp;query=D%C3%B6rfler%2C+F">Florian D枚rfler</a>, <a href="/search/eess?searchtype=author&amp;query=Chen%2C+Q">Qixin Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.01321v1-abstract-short" style="display: inline;"> As renewable generation becomes more prevalent, traditional power systems dominated by synchronous generators are transitioning to systems dominated by converter-interfaced generation. These devices, with their weaker damping capabilities and lower inertia, compromise the system&#39;s ability to withstand disturbances, pose a threat to system stability, and lead to oscillations and poor frequency resp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.01321v1-abstract-full').style.display = 'inline'; document.getElementById('2309.01321v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.01321v1-abstract-full" style="display: none;"> As renewable generation becomes more prevalent, traditional power systems dominated by synchronous generators are transitioning to systems dominated by converter-interfaced generation. These devices, with their weaker damping capabilities and lower inertia, compromise the system&#39;s ability to withstand disturbances, pose a threat to system stability, and lead to oscillations and poor frequency response performance. While some new converter-interfaced generations are capable of providing superior damping and fast frequency control, there is a lack of effective measures to incentivize manufacturers to adopt them. To address this gap, this paper defines the joint oscillation damping and inertia provision services at the system level, seeking to encourage converter-interfaced generation to provide enhanced damping and fast frequency response capabilities. Our approach is anchored in a novel convex parametric formulation that combines oscillation mode and frequency stability constraints. These constraints ensure a sufficient damping ratio for all oscillation modes and maintain transient frequency trajectories within acceptable limits. They are designed to integrate smoothly into various operational and planning optimization frameworks. Using this formulation, we introduce a joint service for oscillation damping and inertia provision based on a cost-minimization problem. This facilitates the optimal allocation of damping and virtual inertia to converters, achieving both small-signal stability and frequency stability. Furthermore, we investigate the economic effects of introducing this service into a new ancillary service market, assessing its impact on system operations and cost-efficiency. Numerical tests highlight the service&#39;s efficacy in ensuring both small-signal stability and frequency stability, and offer insights into potential economic benefits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.01321v1-abstract-full').style.display = 'none'; document.getElementById('2309.01321v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted for IEEE PES journal for possible publications</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.00882">arXiv:2309.00882</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.00882">pdf</a>, <a href="https://arxiv.org/format/2309.00882">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Experimental Validation of a Dynamic Virtual Power Plant Concept Based on Multiple-Converter Power Hardware-In-the-Loop Test Bench </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Andrejewski%2C+M">Moritz Andrejewski</a>, <a href="/search/eess?searchtype=author&amp;query=H%C3%A4berle%2C+V">Verena H盲berle</a>, <a href="/search/eess?searchtype=author&amp;query=Goldschmidt%2C+N">Nico Goldschmidt</a>, <a href="/search/eess?searchtype=author&amp;query=D%C3%B6rfler%2C+F">Florian D枚rfler</a>, <a href="/search/eess?searchtype=author&amp;query=Schulte%2C+H">Horst Schulte</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.00882v1-abstract-short" style="display: inline;"> Recently, the concept of dynamic virtual power plants (DVPP) has been proposed to collectively provide desired dynamic ancillary services such as fast frequency and voltage control by a heterogeneous ensemble of distributed energy resources (DER). This paper presents an experimental validation of a recent DVPP control design approach on a multi-converter power hardware-in-the-loop (PHIL) test bed&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.00882v1-abstract-full').style.display = 'inline'; document.getElementById('2309.00882v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.00882v1-abstract-full" style="display: none;"> Recently, the concept of dynamic virtual power plants (DVPP) has been proposed to collectively provide desired dynamic ancillary services such as fast frequency and voltage control by a heterogeneous ensemble of distributed energy resources (DER). This paper presents an experimental validation of a recent DVPP control design approach on a multi-converter power hardware-in-the-loop (PHIL) test bed system. More specifically, we consider a DVPP composed of a wind generation system, a photovoltaic (PV) system, and a STATCOM with small storage capacity to collectively provide grid-following fast frequency regulation in the presence of grid-frequency and load variations. The performance of the aggregated DVPP response is evaluated with respect to its ability to match a desired dynamic behavior while taking practical limitations of the individual DVPP units into account. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.00882v1-abstract-full').style.display = 'none'; document.getElementById('2309.00882v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 Pages, 11 Figures, 22nd Wind &amp; Solar Integration Workshop 2023</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=D%C3%B6rfler%2C+F&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=D%C3%B6rfler%2C+F&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=D%C3%B6rfler%2C+F&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=D%C3%B6rfler%2C+F&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10