CINXE.COM
Search results for: oscillating cylinder
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: oscillating cylinder</title> <meta name="description" content="Search results for: oscillating cylinder"> <meta name="keywords" content="oscillating cylinder"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="oscillating cylinder" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="oscillating cylinder"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 425</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: oscillating cylinder</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">425</span> A 2D Numerical Model of Viscous Flow-Cylinder Interaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bang-Fuh%20Chen">Bang-Fuh Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Chih-Chun%20Chu"> Chih-Chun Chu </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The flow induced cylinder vibration or earthquake-induced cylinder motion are moving in an arbitrary direction with time. The phenomenon of flow across cylinder is highly nonlinear and a linear-superposition of flow pattern across separated oscillating direction of cylinder motion is not valid to obtain the flow pattern across a cylinder oscillating in multiple directions. A novel finite difference scheme is developed to simulate the viscous flow across an arbitrary moving circular cylinder and we call this a complete 2D (two-dimensional) flow-cylinder interaction. That is, the cylinder is simultaneously oscillating in x- and y- directions. The time-dependent domain and meshes associated with the moving cylinder are mapped to a fixed computational domain and meshes, which are time independent. The numerical results are validated by several bench mark studies. Several examples are introduced including flow across steam-wise, transverse oscillating cylinder and flow across rotating cylinder and flow across arbitrary moving cylinder. The Morison’s formula can not describe the complex interaction phenomenon between cross flow and oscillating circular cylinder. And the completed 2D computational fluid dynamic analysis should be made to obtain the correct hydrodynamic force acting on the cylinder. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=2D%20cylinder" title="2D cylinder">2D cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=finite-difference%20method" title=" finite-difference method"> finite-difference method</a>, <a href="https://publications.waset.org/abstracts/search?q=flow-cylinder%20interaction" title=" flow-cylinder interaction"> flow-cylinder interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20induced%20vibration" title=" flow induced vibration"> flow induced vibration</a> </p> <a href="https://publications.waset.org/abstracts/30200/a-2d-numerical-model-of-viscous-flow-cylinder-interaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30200.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">511</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">424</span> Flow Visualization around a Rotationally Oscillating Cylinder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cemre%20Polat">Cemre Polat</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Soyler"> Mustafa Soyler</a>, <a href="https://publications.waset.org/abstracts/search?q=Bulent%20Yaniktepe"> Bulent Yaniktepe</a>, <a href="https://publications.waset.org/abstracts/search?q=Coskun%20Ozalp"> Coskun Ozalp</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, it was aimed to control the flow actively by giving an oscillating rotational motion to a vertically placed cylinder, and flow characteristics were determined. In the study, firstly, the flow structure around the flat cylinder was investigated with dye experiments, and then the cylinders with different oscillation angles (θ = 60°, θ = 120°, and θ = 180°) and different rotation speeds (15 rpm and 30 rpm) the flow structure around it was examined. Thus, the effectiveness of oscillation and rotation speed in flow control has been investigated. In the dye experiments, the dye/water mixture obtained by mixing Rhodamine 6G in powder form with water, which shines under laser light and allows detailed observation of the flow structure, was used. During the experiments, the dye was injected into the flow with the help of a thin needle at a distance that would not affect the flow from the front of the cylinder. In dye experiments, 100 frames per second were taken with a Canon brand EOS M50 (24MP) digital mirrorless camera at a resolution of 1280 * 720 pixels. Then, the images taken were analyzed, and the pictures representing the flow structure for each experiment were obtained. As a result of the study, it was observed that no separation points were formed at 180° swing angle at 15 rpm speed, 120° and 180° swing angle at 30 rpm, and the flow was controlled according to the fixed cylinder. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20flow%20control" title="active flow control">active flow control</a>, <a href="https://publications.waset.org/abstracts/search?q=cylinder" title=" cylinder"> cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20visualization%20rotationally%20oscillating" title=" flow visualization rotationally oscillating"> flow visualization rotationally oscillating</a> </p> <a href="https://publications.waset.org/abstracts/130645/flow-visualization-around-a-rotationally-oscillating-cylinder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130645.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">423</span> Analysis of the Secondary Stationary Flow Around an Oscillating Circular Cylinder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Artem%20Nuriev">Artem Nuriev</a>, <a href="https://publications.waset.org/abstracts/search?q=Olga%20Zaitseva"> Olga Zaitseva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is devoted to the study of a viscous incompressible flow around a circular cylinder performing harmonic oscillations, especially the steady streaming phenomenon. The research methodology is based on the asymptotic explanation method combined with the computational bifurcation analysis. Present studies allow to identify several regimes of the secondary streaming with different flow structures. The results of the research are in good agreement with experimental and numerical simulation data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oscillating%20cylinder" title="oscillating cylinder">oscillating cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=secondary%20streaming" title=" secondary streaming"> secondary streaming</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20regimes" title=" flow regimes"> flow regimes</a>, <a href="https://publications.waset.org/abstracts/search?q=asymptotic%20and%20bifurcation%20analysis" title=" asymptotic and bifurcation analysis"> asymptotic and bifurcation analysis</a> </p> <a href="https://publications.waset.org/abstracts/15706/analysis-of-the-secondary-stationary-flow-around-an-oscillating-circular-cylinder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15706.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">422</span> On the Effects of External Cross-Flow Excitation Forces on the Vortex-Induced-Vibrations of an Oscillating Cylinder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abouzar%20Kaboudian">Abouzar Kaboudian</a>, <a href="https://publications.waset.org/abstracts/search?q=Ravi%20Chaithanya%20Mysa"> Ravi Chaithanya Mysa</a>, <a href="https://publications.waset.org/abstracts/search?q=Boo%20Cheong%20Khoo"> Boo Cheong Khoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajeev%20Kumar%20Jaiman"> Rajeev Kumar Jaiman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vortex induced vibrations can significantly affect the effectiveness of structures in aerospace as well as offshore marine industries. The oscillatory nature of the forces resulting from the vortex shedding around bluff bodies can result in undesirable effects such as increased loading, stresses, deflections, vibrations and noise in the structures, and also reduced fatigue life of the structures. To date, most studies concentrate on either the free oscillations or the prescribed motion of the bluff bodies. However, the structures in operation are usually subject to the external oscillatory forces (e.g. due to the platform motions in offshore industries). In this work, we present the effects of the external cross-flow forces on the vortex-induced vibrations of an oscillating cylinder. The effects of the amplitude, as well as the frequency of the external force on the fluid-forces on the oscillating cylinder are carefully studied and presented. Moreover, we present the transition of the response to be dominated by the vortex-induced-vibrations to the range where it is mostly dictated by the external oscillatory forces. Furthermore, we will discuss how the external forces can affect the flow structures around a cylinder. All results are compared against free oscillations of the cylinder. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=circular%20cylinder" title="circular cylinder">circular cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=external%20force" title=" external force"> external force</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex-shedding" title=" vortex-shedding"> vortex-shedding</a>, <a href="https://publications.waset.org/abstracts/search?q=VIV" title=" VIV"> VIV</a> </p> <a href="https://publications.waset.org/abstracts/25468/on-the-effects-of-external-cross-flow-excitation-forces-on-the-vortex-induced-vibrations-of-an-oscillating-cylinder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25468.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">421</span> On the Effects of the Frequency and Amplitude of Sinusoidal External Cross-Flow Excitation Forces on the Vortex-Induced-Vibrations of an Oscillating Cylinder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abouzar%20Kaboudian">Abouzar Kaboudian</a>, <a href="https://publications.waset.org/abstracts/search?q=Ravi%20Chaithanya%20Mysa"> Ravi Chaithanya Mysa</a>, <a href="https://publications.waset.org/abstracts/search?q=Boo%20Cheong%20Khoo"> Boo Cheong Khoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajeev%20Kumar%20Jaiman"> Rajeev Kumar Jaiman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vortex induced vibrations can significantly affect the effectiveness of structures in aerospace as well as offshore marine industries. The oscillatory nature of the forces resulting from the vortex shedding around bluff bodies can result in undesirable effects such as increased loading, stresses, deflections, vibrations and noise in the structures, and also reduced fatigue life of the structures. To date, most studies concentrate on either the free oscillations or the prescribed motion of the bluff bodies. However, the structures in operation are usually subject to the external oscillatory forces (e.g. due to the platform motions in offshore industries). Periodic forces can be considered as a combinations of sinusoids. In this work, we present the effects of sinusoidal external cross-flow forces on the vortex-induced vibrations of an oscillating cylinder. The effects of the amplitude, as well as the frequency of these sinusoidal external force on the fluid-forces on the oscillating cylinder are carefully studied and presented. Moreover, we present the transition of the response to be dominated by the vortex-induced-vibrations to the range where it is mostly dictated by the external oscillatory forces. Furthermore, we will discuss how the external forces can affect the flow structures around a cylinder. All results are compared against free oscillations of the cylinder. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=circular%20cylinder" title="circular cylinder">circular cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=external%20force" title=" external force"> external force</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex-shedding" title=" vortex-shedding"> vortex-shedding</a>, <a href="https://publications.waset.org/abstracts/search?q=VIV" title=" VIV"> VIV</a> </p> <a href="https://publications.waset.org/abstracts/25480/on-the-effects-of-the-frequency-and-amplitude-of-sinusoidal-external-cross-flow-excitation-forces-on-the-vortex-induced-vibrations-of-an-oscillating-cylinder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25480.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">420</span> Oscillating Water Column Wave Energy Converter with Deep Water Reactance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=William%20C.%20Alexander">William C. Alexander</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The oscillating water column (OSC) wave energy converter (WEC) with deep water reactance (DWR) consists of a large hollow sphere filled with seawater at the base, referred to as the ‘stabilizer’, a hollow cylinder at the top of the device, with a said cylinder having a bottom open to the sea and a sealed top save for an orifice which leads to an air turbine, and a long, narrow rod connecting said stabilizer with said cylinder. A small amount of ballast at the bottom of the stabilizer and a small amount of floatation in the cylinder keeps the device upright in the sea. The floatation is set such that the mean water level is nominally halfway up the cylinder. The entire device is loosely moored to the seabed to keep it from drifting away. In the presence of ocean waves, seawater will move up and down within the cylinder, producing the ‘oscillating water column’. This gives rise to air pressure within the cylinder alternating between positive and negative gauge pressure, which in turn causes air to alternately leave and enter the cylinder through said top-cover situated orifice. An air turbine situated within or immediately adjacent to said orifice converts the oscillating airflow into electric power for transport to shore or elsewhere by electric power cable. Said oscillating air pressure produces large up and down forces on the cylinder. Said large forces are opposed through the rod to the large mass of water retained within the stabilizer, which is located deep enough to be mostly free of any wave influence and which provides the deepwater reactance. The cylinder and stabilizer form a spring-mass system which has a vertical (heave) resonant frequency. The diameter of the cylinder largely determines the power rating of the device, while the size (and water mass within) of the stabilizer determines said resonant frequency. Said frequency is chosen to be on the lower end of the wave frequency spectrum to maximize the average power output of the device over a large span of time (such as a year). The upper portion of the device (the cylinder) moves laterally (surge) with the waves. This motion is accommodated with minimal loading on the said rod by having the stabilizer shaped like a sphere, allowing the entire device to rotate about the center of the stabilizer without rotating the seawater within the stabilizer. A full-scale device of this type may have the following dimensions. The cylinder may be 16 meters in diameter and 30 meters high, the stabilizer 25 meters in diameter, and the rod 55 meters long. Simulations predict that this will produce 1,400 kW in waves of 3.5-meter height and 12 second period, with a relatively flat power curve between 5 and 16 second wave periods, as will be suitable for an open-ocean location. This is nominally 10 times higher power than similar-sized WEC spar buoys as reported in the literature, and the device is projected to have only 5% of the mass per unit power of other OWC converters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oscillating%20water%20column" title="oscillating water column">oscillating water column</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20energy%20converter" title=" wave energy converter"> wave energy converter</a>, <a href="https://publications.waset.org/abstracts/search?q=spar%20bouy" title=" spar bouy"> spar bouy</a>, <a href="https://publications.waset.org/abstracts/search?q=stabilizer" title=" stabilizer"> stabilizer</a> </p> <a href="https://publications.waset.org/abstracts/132525/oscillating-water-column-wave-energy-converter-with-deep-water-reactance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132525.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">419</span> Enhancing Oscillation Amplitude Response Generated by Vortex Induced Vibrations Through Experimental Identification of Optimum Parameters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20F.%20Alhaddad">Mohammed F. Alhaddad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vortex induced Vibrations (VIV) is a phenomenon that occurs as a result of a flow passing by a bluff body. This phenomenon has been mainly studied to be suppressed to prevent fatigue and instability in offshore platforms. In 2006, some studies were conducted to maximize VIV instead of suppressing it, as these studies claimed that VIV is a potential method of generating energy. The aim of this paper is to identify factors for maximizing oscillation amplitude generated by VIV in order to enhance the energy harnessed through this method. The experimental study in this paper will examine the effect of oscillating cylinder diameter, surface roughness, the location of surface roughness with respect to the centerline of the oscillating cylinder and the velocity on the oscillation amplitude of the used module. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy" title="energy">energy</a>, <a href="https://publications.waset.org/abstracts/search?q=generation" title=" generation"> generation</a>, <a href="https://publications.waset.org/abstracts/search?q=generating" title=" generating"> generating</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration" title=" vibration"> vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex." title=" vortex."> vortex.</a> </p> <a href="https://publications.waset.org/abstracts/187303/enhancing-oscillation-amplitude-response-generated-by-vortex-induced-vibrations-through-experimental-identification-of-optimum-parameters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187303.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">61</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">418</span> Comparison of Flow and Mixing Characteristics between Non-Oscillating and Transversely Oscillating Jet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dinku%20Seyoum%20Zeleke">Dinku Seyoum Zeleke</a>, <a href="https://publications.waset.org/abstracts/search?q=Rong%20Fung%20Huang"> Rong Fung Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ching%20Min%20Hsu"> Ching Min Hsu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Comparison of flow and mixing characteristics between non-oscillating jet and transversely oscillating jet was investigated experimentally. Flow evolution process was detected by using high-speed digital camera, and jet spread width was calculated using binary edge detection techniques by using the long-exposure images. The velocity characteristics of transversely oscillating jet induced by a V-shaped fluidic oscillator were measured using single component hot-wire anemometer. The jet spread width of non-oscillating jet was much smaller than the jet exit gap because of behaving natural jet behaviors. However, the transversely oscillating jet has a larger jet spread width, which was associated with the excitation of the flow by self-induced oscillation. As a result, the flow mixing characteristics desperately improved both near-field and far-field. Therefore, this transversely oscillating jet has a better turbulence intensity, entrainment, and spreading width so that it augments flow-mixing characteristics desperately. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flow%20mixing" title="flow mixing">flow mixing</a>, <a href="https://publications.waset.org/abstracts/search?q=transversely%20oscillating" title=" transversely oscillating"> transversely oscillating</a>, <a href="https://publications.waset.org/abstracts/search?q=spreading%20width" title=" spreading width"> spreading width</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity%20characteristics" title=" velocity characteristics"> velocity characteristics</a> </p> <a href="https://publications.waset.org/abstracts/124309/comparison-of-flow-and-mixing-characteristics-between-non-oscillating-and-transversely-oscillating-jet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124309.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">417</span> Two Kinds of Self-Oscillating Circuits Mechanically Demonstrated</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shiang-Hwua%20Yu">Shiang-Hwua Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Po-Hsun%20Wu"> Po-Hsun Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study introduces two types of self-oscillating circuits that are frequently found in power electronics applications. Special effort is made to relate the circuits to the analogous mechanical systems of some important scientific inventions: Galileo’s pendulum clock and Coulomb’s friction model. A little touch of related history and philosophy of science will hopefully encourage curiosity, advance the understanding of self-oscillating systems and satisfy the aspiration of some students for scientific literacy. Finally, the two self-oscillating circuits are applied to design a simple class-D audio amplifier. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=self-oscillation" title="self-oscillation">self-oscillation</a>, <a href="https://publications.waset.org/abstracts/search?q=sigma-delta%20modulator" title=" sigma-delta modulator"> sigma-delta modulator</a>, <a href="https://publications.waset.org/abstracts/search?q=pendulum%20clock" title=" pendulum clock"> pendulum clock</a>, <a href="https://publications.waset.org/abstracts/search?q=Coulomb%20friction" title=" Coulomb friction"> Coulomb friction</a>, <a href="https://publications.waset.org/abstracts/search?q=class-D%20amplifier" title=" class-D amplifier"> class-D amplifier</a> </p> <a href="https://publications.waset.org/abstracts/9932/two-kinds-of-self-oscillating-circuits-mechanically-demonstrated" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9932.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">416</span> Effects of Viscous and Pressure Forces in Vortex and Wake Induced Vibrations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ravi%20Chaithanya%20Mysa">Ravi Chaithanya Mysa</a>, <a href="https://publications.waset.org/abstracts/search?q=Abouzar%20Kaboudian"> Abouzar Kaboudian</a>, <a href="https://publications.waset.org/abstracts/search?q=Boo%20Cheong%20Khoo"> Boo Cheong Khoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajeev%20Kumar%20Jaiman"> Rajeev Kumar Jaiman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cross-flow vortex-induced vibrations of a circular cylinder are compared with the wake-induced oscillations of the downstream cylinder of a tandem cylinder arrangement. It is known that the synchronization of the frequency of vortex shedding with the natural frequency of the structure leads to large amplitude motions. In the case of tandem cylinders, the large amplitudes of the downstream cylinder found are compared to single cylinder setup. In this work, in the tandem arrangement, the upstream cylinder is fixed and the downstream cylinder is free to oscillate in transverse direction. We show that the wake from the upstream cylinder interacts with the downstream cylinder which influences the response of the coupled system. Extensive numerical experiments have been performed on single cylinder as well as tandem cylinder arrangements in cross-flow. Here, the wake interactions in connection to the forces generated are systematically studied. The ratio of the viscous loads to the pressure loads is found to play a major role in the displacement response of the single and tandem cylinder arrangements, as the viscous forces dissipate the energy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=circular%20cylinder" title="circular cylinder">circular cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex-shedding" title=" vortex-shedding"> vortex-shedding</a>, <a href="https://publications.waset.org/abstracts/search?q=VIV" title=" VIV"> VIV</a>, <a href="https://publications.waset.org/abstracts/search?q=wake-induced" title=" wake-induced"> wake-induced</a>, <a href="https://publications.waset.org/abstracts/search?q=vibrations" title=" vibrations "> vibrations </a> </p> <a href="https://publications.waset.org/abstracts/25526/effects-of-viscous-and-pressure-forces-in-vortex-and-wake-induced-vibrations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25526.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">415</span> Design and Finite Element Analysis of Clamp Cylinder for Capacity Augmentation of Injection Moulding Machine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vimal%20Jasoliya">Vimal Jasoliya</a>, <a href="https://publications.waset.org/abstracts/search?q=Purnank%20Bhatt"> Purnank Bhatt</a>, <a href="https://publications.waset.org/abstracts/search?q=Mit%20Shah"> Mit Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Injection Moulding is one of the principle methods of conversions of plastics into various end products using a very wide range of plastics materials from commodity plastics to specialty engineering plastics. Injection Moulding Machines are rated as per the tonnage force applied. The work present includes Design & Finite Element Analysis of a structure component of injection moulding machine i.e. clamp cylinder. The work of the project is to upgrade the 1300T clamp cylinder to 1500T clamp cylinder for injection moulding machine. The design of existing clamp cylinder of 1300T is checked. Finite Element analysis is carried out for 1300T clamp cylinder in ANSYS Workbench, and the stress values are compared with acceptance criteria and theoretical calculation. The relation between the clamp cylinder diameter and the tonnage capacity has been derived and verified for 1300T clamp cylinder. The same correlation is used to find out the thickness for 1500T clamp cylinder. The detailed design of 1500T cylinder is carried out based on calculated thickness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clamp%20cylinder" title="clamp cylinder">clamp cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue%20analysis" title=" fatigue analysis"> fatigue analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=injection%20moulding%20machines" title=" injection moulding machines"> injection moulding machines</a> </p> <a href="https://publications.waset.org/abstracts/66452/design-and-finite-element-analysis-of-clamp-cylinder-for-capacity-augmentation-of-injection-moulding-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66452.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">414</span> The Effects of the Aspect Ratio of a Flexible Cylinder on the Vortex Dynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abouzar%20Kaboudian">Abouzar Kaboudian</a>, <a href="https://publications.waset.org/abstracts/search?q=Ravi%20Chaithanya%20Mysa"> Ravi Chaithanya Mysa</a>, <a href="https://publications.waset.org/abstracts/search?q=Boo%20Cheong%20Khoo"> Boo Cheong Khoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajeev%20Kumar%20Jaiman"> Rajeev Kumar Jaiman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The vortex structures observed in the wake of a flexible cylinder can be significantly different from those of a traditional vibrating, spring mounted, rigid cylinder. These differences can significantly affect the VIV characteristics of the flow and subsequently the VIV response of the cylindrical structures. In this work, we present how the aspect ratio of a flexible cylinder can change the vortex structures in its wake. We will discuss different vortex dynamics which can be observed in the wake of the vibrating flexible cylinder, and how they can affect the vibrational response of the cylinder. Moreover, we will study the transition of these structures versus the aspect ratio of the flexible cylinder. We will discuss how these transitions affect the in-line and transverse forces on the structure. In the end, we will provide general guidelines on the minimum acceptable aspect ratio for the offshore riser studies which may have grave implications for future numerical and experimental works. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aspect%20ratio" title="aspect ratio">aspect ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20cylinder" title=" flexible cylinder"> flexible cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex-shedding" title=" vortex-shedding"> vortex-shedding</a>, <a href="https://publications.waset.org/abstracts/search?q=VIV" title=" VIV"> VIV</a> </p> <a href="https://publications.waset.org/abstracts/25475/the-effects-of-the-aspect-ratio-of-a-flexible-cylinder-on-the-vortex-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25475.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">488</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">413</span> Experimental Investigation with Different Inclination Angles on Copper Oscillating Heat Pipes Performance Using Fe2O3 / Kerosene under Magnetic Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20R.%20Goshayeshi">H. R. Goshayeshi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mansori"> M. Mansori</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ahmady"> M. Ahmady</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zhaloyi"> M. Zhaloyi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the result of an experimental investigation regarding the use of Fe2O3 nanoparticles added to Kerosene as a working fluid, under magnetic field for Copper Oscillating Heat pipe with inclination angle of 0°(horizontal), 15°, 30°, 45°, 60°, 75°, and 90° (vertical). The following were examined; measure the temperature distribution and heat transfer rate on Oscillating Heat Pipe (OHP), with magnetic field under different angles. Results showed that the addition of Fe2O3 nanoparticles under magnetic field improved thermal performance of OHP especially in 75°. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=copper%20oscillating%20heat%20pipe" title="copper oscillating heat pipe">copper oscillating heat pipe</a>, <a href="https://publications.waset.org/abstracts/search?q=Fe2O3" title=" Fe2O3"> Fe2O3</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=inclination%20angles" title=" inclination angles"> inclination angles</a> </p> <a href="https://publications.waset.org/abstracts/34708/experimental-investigation-with-different-inclination-angles-on-copper-oscillating-heat-pipes-performance-using-fe2o3-kerosene-under-magnetic-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34708.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">412</span> Application of Metakaolin from Northeast of Thailand Used as Binder in Casting Process of Rice Polishing Cylinder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Boonkang">T. Boonkang</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Santhaweesuk"> C. Santhaweesuk</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Pianthong"> N. Pianthong</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Neeramon"> P. Neeramon</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Phimhlo"> A. Phimhlo</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Bangphan"> S. Bangphan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this research was to apply metakaolin from northeast of Thailand as a binder in the casting process of rice polishing cylinder in replacement of the imported calcined magnesite cement and to reduce the production cost of the cylinder. Metakaolin was obtained from three different regions (Udon Thani, Nakhon Phanom, and Ubon Ratchathani). The design of experiment analysis using the MINITAB Release 14 based on the compressive strength and tensile strength testing was conducted. According to the analysis results, it was found that the optimal proportions were calcined magnesite cement: metakaolin from Udon Thani, Nakhon Phanom and Ubon Ratchathani equal to 63:37, 71:29, and 100:0, respectively. When used this formula to cast the cylinder and test the rice milling, it was found that the average broken rice percent was 32.52 and 38.29 for the cylinder contained the metakaolin from Udon Thani and Nakhon Phanom, respectively, which implied that the cylinder which contained the metakaolin from Udon Thani has higher efficiency than the cylinder which contained the metakaolin from Nakhon Phanom at 0.05 level of statistical significance. Whereas, the average wear rate of cylinder from both resources were 7.27 and 6.53 g/h, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=binder" title="binder">binder</a>, <a href="https://publications.waset.org/abstracts/search?q=casting" title=" casting"> casting</a>, <a href="https://publications.waset.org/abstracts/search?q=metakaolin" title=" metakaolin"> metakaolin</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20polishing%20cylinder" title=" rice polishing cylinder"> rice polishing cylinder</a> </p> <a href="https://publications.waset.org/abstracts/59707/application-of-metakaolin-from-northeast-of-thailand-used-as-binder-in-casting-process-of-rice-polishing-cylinder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59707.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">411</span> Multiscale Structures and Their Evolution in a Screen Cylinder Wake</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azlin%20Mohd%20Azmi">Azlin Mohd Azmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tongming%20Zhou"> Tongming Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Akira%20Rinoshika"> Akira Rinoshika</a>, <a href="https://publications.waset.org/abstracts/search?q=Liang%20Cheng"> Liang Cheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The turbulent structures in the wake (x/d =10 to 60) of a screen cylinder have been reduced to understand the roles of the various structures as evolving downstream by comparing with those obtained in a solid circular cylinder wake at Reynolds number, Re of 7000. Using a wavelet multi-resolution technique, the flow structures are decomposed into a number of wavelet components based on their central frequencies. It is observed that in the solid cylinder wake, large-scale structures (of frequency f0 and 1.2 f0) make the largest contribution to the Reynolds stresses although they start to lose their roles significantly at x/d > 20. In the screen cylinder wake, the intermediate-scale structures (2f0 and 4f0) contribute the most to the Reynolds stresses at x/d =10 before being taken over by the large-scale structures (f0) further downstream. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=turbulent%20structure" title="turbulent structure">turbulent structure</a>, <a href="https://publications.waset.org/abstracts/search?q=screen%20cylinder" title=" screen cylinder"> screen cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex" title=" vortex"> vortex</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelet%20multi-resolution%20analysis" title=" wavelet multi-resolution analysis"> wavelet multi-resolution analysis</a> </p> <a href="https://publications.waset.org/abstracts/2815/multiscale-structures-and-their-evolution-in-a-screen-cylinder-wake" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2815.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">410</span> Experimental Measurements of Mean and Turbulence Quantities behind the Circular Cylinder by Attaching Different Number of Tripping Wires</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20Bak%20Khoshnevis">Amir Bak Khoshnevis</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdieh%20Khodadadi"> Mahdieh Khodadadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Aghil%20Lotfi"> Aghil Lotfi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For a bluff body, roughness elements in simulating a turbulent boundary layer, leading to delayed flow separation, a smaller wake, and lower form drag. In the present work, flow past a circular cylinder with using tripping wires is studied experimentally. The wind tunnel used for modeling free stream is open blow circuit (maximum speed = 30m/s and maximum turbulence of free stream = 0.1%). The selected Reynolds number for all tests was constant (Re = 25000). The circular cylinder selected for this experiment is 20 and 400mm in diameter and length, respectively. The aim of this research is to find the optimal operation mode. In this study installed some tripping wires 1mm in diameter, with a different number of wires on the circular cylinder and the wake characteristics of the circular cylinder is studied. Results showed that by increasing number of tripping wires attached to the circular cylinder (6, 8, and 10, respectively), The optimal angle for the tripping wires with 1mm in diameter to be installed on the cylinder is 60̊ (or 6 wires required at angle difference of 60̊). Strouhal number for the cylinder with tripping wires 1mm in diameter at angular position 60̊ showed the maximum value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wake%20of%20circular%20cylinder" title="wake of circular cylinder">wake of circular cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=trip%20wire" title=" trip wire"> trip wire</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity%20defect" title=" velocity defect"> velocity defect</a>, <a href="https://publications.waset.org/abstracts/search?q=strouhal%20number" title=" strouhal number"> strouhal number</a> </p> <a href="https://publications.waset.org/abstracts/36656/experimental-measurements-of-mean-and-turbulence-quantities-behind-the-circular-cylinder-by-attaching-different-number-of-tripping-wires" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36656.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">409</span> Heat and Mass Transfer of an Oscillating Flow in a Porous Channel with Chemical Reaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Neffah">Zahra Neffah</a>, <a href="https://publications.waset.org/abstracts/search?q=Henda%20Kahalerras"> Henda Kahalerras</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A numerical study is made in a parallel-plate porous channel subjected to an oscillating flow and an exothermic chemical reaction on its walls. The flow field in the porous region is modeled by the Darcy–Brinkman–Forchheimer model and the finite volume method is used to solve the governing equations. The effects of the modified Frank-Kamenetskii (FKm) and Damköhler (Dm) numbers, the amplitude of oscillation (A), and the Strouhal number (St) are examined. The main results show an increase of heat and mass transfer rates with A and St, and their decrease with FKm and Dm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20reaction" title="chemical reaction">chemical reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20and%20mass%20transfer" title=" heat and mass transfer"> heat and mass transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=oscillating%20flow" title=" oscillating flow"> oscillating flow</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20channel" title=" porous channel"> porous channel</a> </p> <a href="https://publications.waset.org/abstracts/31340/heat-and-mass-transfer-of-an-oscillating-flow-in-a-porous-channel-with-chemical-reaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31340.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">408</span> Vibration Characteristics of Functionally Graded Thick Hollow Cylinders Using Galerkin Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pejman%20Daryabor">Pejman Daryabor</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamal%20Mohammadi"> Kamal Mohammadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present work, the study of vibration characteristics of a functionally graded thick hollow cylinder is investigated. The cylinder natural frequencies are obtained using Galerkin finite element method. The functionally graded cylinder is assumed to be made from many subcylinders. Each subcylinder is considered as an isotropic layer. Material’s properties in each layer are constant and functionally graded properties result by exponential function of layer radius in multilayer cylinder. To validate the FE results code, plane strain model of functionally graded cylinder are also modeled in ABAQUS. Analytical results are validated for both models. Also, a good agreement is found between the present results and those reported in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20frequency" title="natural frequency">natural frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=functionally%20graded%20material" title=" functionally graded material"> functionally graded material</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=thick%20cylinder" title=" thick cylinder"> thick cylinder</a> </p> <a href="https://publications.waset.org/abstracts/44724/vibration-characteristics-of-functionally-graded-thick-hollow-cylinders-using-galerkin-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44724.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">473</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">407</span> Non-Stationary Stochastic Optimization of an Oscillating Water Column</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mar%C3%ADa%20L.%20Jal%C3%B3n">María L. Jalón</a>, <a href="https://publications.waset.org/abstracts/search?q=Feargal%20Brennan"> Feargal Brennan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A non-stationary stochastic optimization methodology is applied to an OWC (oscillating water column) to find the design that maximizes the wave energy extraction. Different temporal cycles are considered to represent the long-term variability of the wave climate at the site in the optimization problem. The results of the non-stationary stochastic optimization problem are compared against those obtained by a stationary stochastic optimization problem. The comparative analysis reveals that the proposed non-stationary optimization provides designs with a better fit to reality. However, the stationarity assumption can be adequate when looking at averaged system response. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-stationary%20stochastic%20optimization" title="non-stationary stochastic optimization">non-stationary stochastic optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=oscillating%20water" title=" oscillating water"> oscillating water</a>, <a href="https://publications.waset.org/abstracts/search?q=temporal%20variability" title=" temporal variability"> temporal variability</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20energy" title=" wave energy"> wave energy</a> </p> <a href="https://publications.waset.org/abstracts/75300/non-stationary-stochastic-optimization-of-an-oscillating-water-column" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75300.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">406</span> Numerical Analysis of Passive Controlled Turbulent Flow around a Circular Cylinder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Soyler">Mustafa Soyler</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20M.%20Yavuz"> Mustafa M. Yavuz</a>, <a href="https://publications.waset.org/abstracts/search?q=Bulent%20Yaniktepe"> Bulent Yaniktepe</a>, <a href="https://publications.waset.org/abstracts/search?q=Coskun%20Ozalp"> Coskun Ozalp</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, unsteady two-dimensional turbulent flow around a circular cylinder and passive control of the flow with groove on the cylinder was examined. In the CFD analysis, solutions were made using turbulent flow conditions. Steady and unsteady solutions were used in turbulent flow analysis. Numerical analysis of the flow around the circular cylinder is difficult since flow is not in a stable regime when Reynold number is between 1000 and 10000. The analyses in this study were performed at a subcritical Re number of 5000 and the results were compared with available experimental results of the drag coefficient (Cd) and Strouhal (St) number values in the literature. The effect of different groove types and depths on the Cd coefficient has been analyzed and grooves increase the Cd coefficient compared to the smooth cylinder. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=drag%20coefficient" title=" drag coefficient"> drag coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20over%20cylinder" title=" flow over cylinder"> flow over cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20flow%20control" title=" passive flow control"> passive flow control</a> </p> <a href="https://publications.waset.org/abstracts/130644/numerical-analysis-of-passive-controlled-turbulent-flow-around-a-circular-cylinder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130644.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">405</span> Analysis of Stall Angle Delay in Airfoil Coupled with Spinning Cylinder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Kiran">N. Kiran</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Vikas"> S. A. Vikas</a>, <a href="https://publications.waset.org/abstracts/search?q=Yatish%20Chandra"> Yatish Chandra</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Srinivasan"> S. Srinivasan </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Several Centuries ago, the aerodynamic studies on rotating cylinders and spheres have started. From the observation, the rotation of a cylinder has a remarkable effect on the aerodynamic characteristics is noticed. In case of airfoils as the angle of attack increases, the drag increases with reduction in lift i.e at the critical angle of attack. If at this point a strong impulse is imparted to the boundary layer by means of a spinning cylinder, the re-energisation of boundary layer is achieved and hence delaying the boundary layer separation and stalling characteristics. Analysis of aerodynamic effects spinning cylinder either at leading edge or at trailing edge of the airfoil is carried in the past, the positioning of cylinder close to trailing edge and its effects in delaying the stall are yet to be analyzed in depth. This paper aim is to understand the combined aerodynamic effects of coupling the spinning cylinder with the airfoil closer to the Trailing edge, by considering different spin ratio of the cylinder, its location and geometrical parameters in relation to the chord of the airfoil. From the analysis, it was observed that the spinning cylinder speed of rotation and location had a impact on stalling characteristics for a prescribed free stream condition. The results predicted through CFD analysis and experimental analysis showed a raise in aerodynamic efficiency and as the spin ratio increases, increase in stalling angle of attack is noticed when compared to the airfoil without spinning cylinder. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamics" title="aerodynamics">aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=airfoil" title=" airfoil"> airfoil</a>, <a href="https://publications.waset.org/abstracts/search?q=spinning%20cylinder" title=" spinning cylinder"> spinning cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=stalling" title=" stalling"> stalling</a> </p> <a href="https://publications.waset.org/abstracts/34802/analysis-of-stall-angle-delay-in-airfoil-coupled-with-spinning-cylinder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34802.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">404</span> Steady State Creep Behavior of Functionally Graded Thick Cylinder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tejeet%20Singh">Tejeet Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Harmanjit%20Singh"> Harmanjit Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Creep behavior of thick-walled functionally graded cylinder consisting of AlSiC and subjected to internal pressure and high temperature has been analyzed. The functional relationship between strain rate with stress can be described by the well-known threshold stress based creep law with a stress exponent of five. The effect of imposing non-linear particle gradient on the distribution of creep stresses in the thick-walled functionally graded composite cylinder has been investigated. The study revealed that for the assumed non-linear particle distribution, the radial stress decreases throughout the cylinder, whereas the tangential, axial and effective stresses have averaging effect. The strain rates in the functionally graded composite cylinder could be reduced to significant extent by employing non-linear gradient in the distribution of reinforcement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=functionally%20graded%20material" title="functionally graded material">functionally graded material</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure" title=" pressure"> pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=steady%20state%20creep" title=" steady state creep"> steady state creep</a>, <a href="https://publications.waset.org/abstracts/search?q=thick-cylinder" title=" thick-cylinder"> thick-cylinder</a> </p> <a href="https://publications.waset.org/abstracts/3831/steady-state-creep-behavior-of-functionally-graded-thick-cylinder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3831.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">477</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">403</span> Cyrus Cylinder; A Law for His Future Time</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hasanzadeh%20Mehran">Hasanzadeh Mehran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Cyrus Cylinder, which is a baked clay tablet, was written in 539 BC by order of the Achaemenid king Cyrus. This clay tablet contains orders and is considered a historical document of the humanitarian behaviour of the victorious army during the conquest of Babylon. Some believe that these laws are the first declaration of human rights in the ancient world. After the conquest of Babylon, Cyrus created laws that had never been seen anywhere in history. For this reason, in this article it has been tried to mention the human aspects and the reasons and grounds for the formation of such laws at that time. The origin of the creation of these progressive and humanitarian laws in the Cyrus cylinder should be sought in the cultural roots of civilization and his social and individual teachings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iran" title="Iran">Iran</a>, <a href="https://publications.waset.org/abstracts/search?q=cyrus" title=" cyrus"> cyrus</a>, <a href="https://publications.waset.org/abstracts/search?q=cyrus%20cylinder" title=" cyrus cylinder"> cyrus cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20rights" title=" human rights"> human rights</a> </p> <a href="https://publications.waset.org/abstracts/173009/cyrus-cylinder-a-law-for-his-future-time" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173009.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">402</span> Optimum Design of Combine Threshing Cylinder for Soybean Harvest</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Choi%20Duckkyu">Choi Duckkyu</a>, <a href="https://publications.waset.org/abstracts/search?q=Choi%20Yong"> Choi Yong</a>, <a href="https://publications.waset.org/abstracts/search?q=Kang%20Taegyoung"> Kang Taegyoung</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Hyeonjong"> Jun Hyeonjong</a>, <a href="https://publications.waset.org/abstracts/search?q=Choi%20Ilsu"> Choi Ilsu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyun%20Changsik"> Hyun Changsik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was carried out to develop a soybean combine thresher that enables to reduce the damage rate of soybean threshing and the rate of unthreshing. The combine threshing cylinder was developed with 6 circular axis at each end and fixed with disc plates. It was attached to the prototype combine thresher. A combine thresher that has a cylinder with circular rod type threshing pegs was used for a comparative test. A series of comparative tests were conducted using dae-won soybean. The test of the soybean thresher was performed at the cylinder speeds of 210, 240, 270 and 300 rpm, and with the concave clearance of 10, 13 and 16 mm. The separating positions of soybean after threshing were researched on a separate box with 4 sections. The soybean positions of front, center, rear and rear outside, of 59.5%, 30.6%, 7.8% and 2.2% respectively, were obtained. At the cylinder speeds from 210 rpm to 300 rpm, the damage rate of soybean was increased from 0.1% to 4.2% correspondingly to speeds. The unthreshed rate of soybean under the same condition was increased from 0.9% to 4.1% correspondingly to speeds. 0.7% of the damage rate and 1.5% of the unthreshed rate was achieved at the cylinder speed of 240 rpm and with the concave clearance of 10 mm. For Daewon soybean, an optimum cylinder speed of 240 rpm and the concave clearance of 10 mm were identified. These results will be useful for the design, construction, and operation of soybean threshing harvesters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soybean%20harvest" title="soybean harvest">soybean harvest</a>, <a href="https://publications.waset.org/abstracts/search?q=combine%20threshing" title=" combine threshing"> combine threshing</a>, <a href="https://publications.waset.org/abstracts/search?q=threshing%20cylinder" title=" threshing cylinder"> threshing cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=optimum%20design" title=" optimum design"> optimum design</a> </p> <a href="https://publications.waset.org/abstracts/23993/optimum-design-of-combine-threshing-cylinder-for-soybean-harvest" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23993.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">529</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">401</span> Experimental Study of Flow Characteristics for a Cylinder with Respect to Attached Flexible Strip Body of Various Reynolds Number</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Teksin">S. Teksin</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Yayla"> S. Yayla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the present study was to investigate details of flow structure in downstream of a circular cylinder base mounted on a flat surface in a rectangular duct with the dimensions of 8000 x 1000 x 750 mm in deep water flow for the Reynolds number 2500, 5000 and 7500. A flexible strip was attached to behind the cylinder and compared the bare body. Also, it was analyzed that how boundary layer affects the structure of flow around the cylinder. Diameter of the cylinder was 60 mm and the length of the flexible splitter plate which had a certain modulus of elasticity was 150 mm (L/D=2.5). Time-averaged velocity vectors, vortex contours, streamwise and transverse velocity components were investigated via Particle Image Velocimetry (PIV). Velocity vectors and vortex contours were displayed through the sections in which boundary layer effect was not present. On the other hand, streamwise and transverse velocity components were monitored for both cases, i.e. with and without boundary layer effect. Experiment results showed that the vortex formation occured in a larger area for L/D=2.5 and the point where the vortex was maximum from the base of the cylinder was shifted. Streamwise and transverse velocity component contours were symmetrical with reference to the center of the cylinder for all cases. All Froud numbers based on the Reynolds numbers were quite smaller than 1. The flow characteristics of velocity component values of attached circular cylinder arrangement decreased approximately twenty five percent comparing to bare cylinder case. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=partical%20image%20velocimetry" title="partical image velocimetry">partical image velocimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20plate" title=" elastic plate"> elastic plate</a>, <a href="https://publications.waset.org/abstracts/search?q=cylinder" title=" cylinder"> cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20structure" title=" flow structure"> flow structure</a> </p> <a href="https://publications.waset.org/abstracts/11609/experimental-study-of-flow-characteristics-for-a-cylinder-with-respect-to-attached-flexible-strip-body-of-various-reynolds-number" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11609.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">400</span> Experimental Investigation of Flow Structure around a Rectangular Cylinder in Different Configurations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cemre%20Polat">Cemre Polat</a>, <a href="https://publications.waset.org/abstracts/search?q=Dogan%20B.%20Saydam"> Dogan B. Saydam</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Soyler"> Mustafa Soyler</a>, <a href="https://publications.waset.org/abstracts/search?q=Coskun%20Ozalp"> Coskun Ozalp</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the flow structure was investigated by particle imaging velocimetry (PIV) method at Re = 26000 for two different rectangular cylinders placed perpendicular and parallel to the flow direction. After obtaining streamwise and spanwise velocity data, average vorticity, streamlines, velocity magnitude, turbulence kinetic energy, root mean square of streamwise and spanwise velocity fluctuations are calculated, and critical points of flow structure are explained. As a result of the study, it was seen that the vertical configuration has less effect on the flow structure in the back region of the body compared to the horizontal configuration. When the streamwise velocity component is examined in both configurations, it is seen that the negative velocity component is stronger on the long sides compared to the short sides. It has been observed that the vertically positioned cylinder expands the flow separation point compared to the horizontally positioned cylinder; also the vertical cylinder creates an increase in turbulence kinetic energy compared to the horizontal cylinder. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bluff%20body" title="bluff body">bluff body</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20characteristics" title=" flow characteristics"> flow characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=PIV" title=" PIV"> PIV</a>, <a href="https://publications.waset.org/abstracts/search?q=rectangular%20cylinder" title=" rectangular cylinder"> rectangular cylinder</a> </p> <a href="https://publications.waset.org/abstracts/130636/experimental-investigation-of-flow-structure-around-a-rectangular-cylinder-in-different-configurations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130636.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">399</span> Nonstationary Waves Excited by the Rigid Cylinder in Elastic Medium </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tukeaban%20Hasanova">Tukeaban Hasanova</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamila%20Imamalieva"> Jamila Imamalieva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> By the operational method, the problem on two-dimensional wave propagation in elastic medium excited by the round cylinder is solved. An analytical solution responding to instantaneous application of speed to the inclusion at its subsequent change is constructed. The two-dimensional problem on wave propagation in an elastic medium is considered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cylinder" title="cylinder">cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=inclusion" title=" inclusion"> inclusion</a>, <a href="https://publications.waset.org/abstracts/search?q=wave" title=" wave"> wave</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20medium" title=" elastic medium"> elastic medium</a>, <a href="https://publications.waset.org/abstracts/search?q=speed" title=" speed"> speed</a> </p> <a href="https://publications.waset.org/abstracts/101749/nonstationary-waves-excited-by-the-rigid-cylinder-in-elastic-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101749.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">398</span> Numerical Simulation of External Flow Around D-Shaped Cylinders </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ouldouz%20Nourani%20Zonouz">Ouldouz Nourani Zonouz</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Salmanpour"> Mehdi Salmanpour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Investigation and analysis of flow behavior around different shapes bluff bodies is one of the reputed topics for several years. The importance of these researches is about the unwanted phenomena called flow separation. The location of separation and the size of the wake region should be considered in different industrial designs. In this research a bluff body with D-shaped cross section has been analyzed. In circular cylinder flow separation point changes with Reynolds number but in D-Shaped cylinder there is fix flow separation point. So there is more wake steadiness in D-Shaped cylinder as compared to Circular cylinder and drag reduction because of wake steadiness. In the present work CFD simulation is carried out for flow past a D-Shaped cylinder to see the wake behavior. The Reynolds number regime currently studied corresponds to low Reynolds number and nominally two-dimensional wake. Also the effect of D-Shaped cylinders on the rate of heat transfer has been considered. Various results such as velocity, pressure and temperature contours and also some dimensionless numbers like drag coefficient, pressure coefficient and Nusselt number calculated for different cases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=D-shaped" title="D-shaped">D-shaped</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=external%20flow" title=" external flow"> external flow</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20Reynolds%20number" title=" low Reynolds number"> low Reynolds number</a>, <a href="https://publications.waset.org/abstracts/search?q=square%20cylinder" title=" square cylinder"> square cylinder</a> </p> <a href="https://publications.waset.org/abstracts/20748/numerical-simulation-of-external-flow-around-d-shaped-cylinders" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20748.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">397</span> Numerical Simulation of Flow Past Inline Tandem Cylinders in Uniform Shear Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20Bhatt">Rajesh Bhatt</a>, <a href="https://publications.waset.org/abstracts/search?q=Dilip%20Kumar%20Maiti"> Dilip Kumar Maiti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The incompressible shear flow past a square cylinder placed parallel to a plane wall of side length A in presence of upstream rectangular cylinder of height 0.5A and width 0.25A in an inline tandem arrangement are numerically investigated using finite volume method. The discretized equations are solved by an implicit, time-marching, pressure correction based SIMPLE algorithm. This study provides the qualitative insight in to the dependency of basic structure (i.e. vortex shedding or suppression) of flow over the downstream square cylinder and the upstream rectangular cylinder (and hence the aerodynamic characteristics) on inter-cylinder spacing (S) and Reynolds number (Re). The spacing between the cylinders is varied systematically from S = 0.5A to S = 7.0A so the sensitivity of the flow structure between the cylinders can be inspected. A sudden jump in strouhal number is observed, which shows the transition of flow pattern in the wake of the cylinders. The results are presented at Re = 100 and 200 in term of Strouhal number, RMS and mean of lift and drag coefficients and contour plots for different spacing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=square%20cylinder" title="square cylinder">square cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex%20shedding" title=" vortex shedding"> vortex shedding</a>, <a href="https://publications.waset.org/abstracts/search?q=isolated" title=" isolated"> isolated</a>, <a href="https://publications.waset.org/abstracts/search?q=tandem%20arrangement" title=" tandem arrangement"> tandem arrangement</a>, <a href="https://publications.waset.org/abstracts/search?q=spacing%20distance" title=" spacing distance"> spacing distance</a> </p> <a href="https://publications.waset.org/abstracts/17017/numerical-simulation-of-flow-past-inline-tandem-cylinders-in-uniform-shear-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17017.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">549</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">396</span> Heat Transfer Dependent Vortex Shedding of Thermo-Viscous Shear-Thinning Fluids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Markus%20R%C3%BCtten">Markus Rütten</a>, <a href="https://publications.waset.org/abstracts/search?q=Olaf%20W%C3%BCnsch"> Olaf Wünsch</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Non-Newtonian fluid properties can change the flow behaviour significantly, its prediction is more difficult when thermal effects come into play. Hence, the focal point of this work is the wake flow behind a heated circular cylinder in the laminar vortex shedding regime for thermo-viscous shear thinning fluids. In the case of isothermal flows of Newtonian fluids the vortex shedding regime is characterised by a distinct Reynolds number and an associated Strouhal number. In the case of thermo-viscous shear thinning fluids the flow regime can significantly change in dependence of the temperature of the viscous wall of the cylinder. The Reynolds number alters locally and, consequentially, the Strouhal number globally. In the present CFD study the temperature dependence of the Reynolds and Strouhal number is investigated for the flow of a Carreau fluid around a heated cylinder. The temperature dependence of the fluid viscosity has been modelled by applying the standard Williams-Landel-Ferry (WLF) equation. In the present simulation campaign thermal boundary conditions have been varied over a wide range in order to derive a relation between dimensionless heat transfer, Reynolds and Strouhal number. Together with the shear thinning due to the high shear rates close to the cylinder wall this leads to a significant decrease of viscosity of three orders of magnitude in the nearfield of the cylinder and a reduction of two orders of magnitude in the wake field. Yet the shear thinning effect is able to change the flow topology: a complex K´arm´an vortex street occurs, also revealing distinct characteristic frequencies associated with the dominant and sub-dominant vortices. Heating up the cylinder wall leads to a delayed flow separation and narrower wake flow, giving lesser space for the sequence of counter-rotating vortices. This spatial limitation does not only reduce the amplitude of the oscillating wake flow it also shifts the dominant frequency to higher frequencies, furthermore it damps higher harmonics. Eventually the locally heated wake flow smears out. Eventually, the CFD simulation results of the systematically varied thermal flow parameter study have been used to describe a relation for the main characteristic order parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title="heat transfer">heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=thermo-viscous%20fluids" title=" thermo-viscous fluids"> thermo-viscous fluids</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20thinning" title=" shear thinning"> shear thinning</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex%20shedding" title=" vortex shedding"> vortex shedding</a> </p> <a href="https://publications.waset.org/abstracts/66430/heat-transfer-dependent-vortex-shedding-of-thermo-viscous-shear-thinning-fluids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66430.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oscillating%20cylinder&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oscillating%20cylinder&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oscillating%20cylinder&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oscillating%20cylinder&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oscillating%20cylinder&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oscillating%20cylinder&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oscillating%20cylinder&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oscillating%20cylinder&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oscillating%20cylinder&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oscillating%20cylinder&page=14">14</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oscillating%20cylinder&page=15">15</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oscillating%20cylinder&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>