CINXE.COM

Search results for: proteomic analysis

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: proteomic analysis</title> <meta name="description" content="Search results for: proteomic analysis"> <meta name="keywords" content="proteomic analysis"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="proteomic analysis" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="proteomic analysis"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 27892</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: proteomic analysis</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27892</span> Assessing Proteomic Variations Due to Genetic Modification of Tomatoes Using Three Complementary Approaches</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanaa%20A.%20S.%20Oraby">Hanaa A. S. Oraby</a>, <a href="https://publications.waset.org/abstracts/search?q=Amal%20A.%20M.%20Hassan"> Amal A. M. Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20M.%20Sakr"> Mahmoud M. Sakr</a>, <a href="https://publications.waset.org/abstracts/search?q=Atef%20A.%20A.%20Haiba"> Atef A. A. Haiba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Applying the profiling approach for the assessment of proteomic variations due to genetic modification of the Egyptian tomato cultivar "Edkawy", three complementary approaches were used. These methods are amino acids analysis, gel electrophoresis, and Gas chromatography coupled with mass spectrometry (GC/MS). The results of the present study Show evidence of proteomic variations between both modified tomato and its non-modified counterpart. Amino acids concentrations, and the protein patterns separation on the 1D SDS-PAGE were not similar in the case of transformed tomato compared to that of the non-transformed counterpart. These detected differences are most likely derived from the process of transformation. Results also revealed that the efficiency of GC/MS approach to identify a mixture of unknown proteins is limited. GC/MS analysis was only able to identify few number of protein molecules. Therefore, more advanced and specific technologies like MALDI-TOF-MS are recommended to be employed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GMOs" title="GMOs">GMOs</a>, <a href="https://publications.waset.org/abstracts/search?q=unintended%20effects" title=" unintended effects"> unintended effects</a>, <a href="https://publications.waset.org/abstracts/search?q=proteomic%20variations" title=" proteomic variations"> proteomic variations</a>, <a href="https://publications.waset.org/abstracts/search?q=1D%20SDS-PAGE" title=" 1D SDS-PAGE"> 1D SDS-PAGE</a>, <a href="https://publications.waset.org/abstracts/search?q=GC%2FMS" title=" GC/MS "> GC/MS </a> </p> <a href="https://publications.waset.org/abstracts/26200/assessing-proteomic-variations-due-to-genetic-modification-of-tomatoes-using-three-complementary-approaches" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26200.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27891</span> Proteomic Analysis of 2,4-Epibrassinolide Alleviating Low Temperature Stress in Rice Seedling Leaves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiang%20Xu">Jiang Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Daoping%20Wang"> Daoping Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Qun%20Li"> Qun Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Yinghong%20Pan"> Yinghong Pan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 2,4-Epibrassinolide (EBR), which is a kind of plant hormone Brassinosteroids (BRs), is widely studied and applied in the global scale but the proteomic characteristics of EBR alleviating low temperature stress in rice seedling leaves are still not clear. In this study, seeding rice of Nipponbare were treated with EBR and distilled water, then stressed at 4℃ or 26 ℃, and analyzed by mass spectrometry analysis, verified by parallel reaction monitoring technique (PRM). The results showed that 5778 proteins were identified in total and 4834 proteins were identified with quantitative information. Among them, 401 up-regulated and 220 down-regulated proteins may be related to EBR alleviating low temperature stress in rice seedling leaves. The molecular functions of most of up-regulated proteins are RNA binding and hydrolase activity and are mainly enriched in the pathways of carbon metabolism, folic acid synthesis, and amino acid biosynthesis. The down-regulated proteins are mainly related to catalytic activity and oxidoreductase activity and are mainly enriched in the pathways of limonene and pinene degradation, riboflavin metabolism, porphyrin and chlorophyll metabolism, and other metabolic pathways. PRM validation and literature analysis showed that NADP-malic acidase, peroxidase, 3-phosphoglycerate dehydrogenase, enolase, glyceraldehyde-3- phosphate dehydrogenase and pyruvate kinase are closely related to the effect of EBR on low temperature stress. These results also suggested that BRs could relieve the effect of low temperature stress on rice seed germination in many ways. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=2" title="2">2</a>, <a href="https://publications.waset.org/abstracts/search?q=4-Epibrassinolid" title="4-Epibrassinolid">4-Epibrassinolid</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20temperature%20stress" title=" low temperature stress"> low temperature stress</a>, <a href="https://publications.waset.org/abstracts/search?q=proteomic%20analysis" title=" proteomic analysis"> proteomic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=rice" title=" rice"> rice</a> </p> <a href="https://publications.waset.org/abstracts/85350/proteomic-analysis-of-24-epibrassinolide-alleviating-low-temperature-stress-in-rice-seedling-leaves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85350.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27890</span> Comparative Proteomic Analysis of Rice bri1 Mutant Leaves at Jointing-Booting Stage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiang%20Xu">Jiang Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Daoping%20Wang"> Daoping Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yinghong%20Pan"> Yinghong Pan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The jointing-booting stage is a critical period of both vegetative growth and reproductive growth in rice. Therefore, the proteomic analysis of the mutant Osbri1, whose corresponding gene OsBRI1 encodes the putative BRs receptor OsBRI1, at jointing-booting stage is very important for understanding the effects of BRs on vegetative and reproductive growth. In this study, the proteomes of leaves from an allelic mutant of the DWARF 61 (D61, OsBRI1) gene, Fn189 (dwarf54, d54) and its wild-type variety T65 (Taichung 65) at jointing-booting stage were analysed by using a Q Exactive plus orbitrap mass spectrometer, and more than 3,100 proteins were identified in each sample. Ontology analysis showed that these proteins distribute in various space of the cells, such as the chloroplast, mitochondrion, and nucleus, they functioned as structural components and/or catalytic enzymes and involved in many physiological processes. Moreover, quantitative analysis displayed that 266 proteins were differentially expressed in two samples, among them, 77 proteins decreased and 189 increased more than two times in Fn189 compared with T65, the proteins whose content decreased in Fn189 including b5-like Heme/Steroid binding domain containing protein, putative retrotransposon protein, putative glutaminyl-tRNA synthetase, and higher content proteins such as mTERF, putative Oligopeptidase homologue, zinc knuckle protein, and so on. A former study founded that the transcription level of a mTERF was up-regulated in the leaves of maize seedling after EBR treatment. In our experiments, it was interesting that one mTERF protein increased, but another mTERF decreased in leaves of Fn189 at jointing-booting stage, which suggested that BRs may have differential regulation mechanisms on the expression of various mTERF proteins. The relationship between other differential proteins with BRs is still unclear, and the effects of BRs on rice protein contents and its regulation mechanisms still need further research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bri1%20mutant" title="bri1 mutant">bri1 mutant</a>, <a href="https://publications.waset.org/abstracts/search?q=jointing-booting%20stage" title=" jointing-booting stage"> jointing-booting stage</a>, <a href="https://publications.waset.org/abstracts/search?q=proteomic%20analysis" title=" proteomic analysis"> proteomic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=rice" title=" rice"> rice</a> </p> <a href="https://publications.waset.org/abstracts/85257/comparative-proteomic-analysis-of-rice-bri1-mutant-leaves-at-jointing-booting-stage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85257.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27889</span> Combined Proteomic and Metabolomic Analysis Approaches to Investigate the Modification in the Proteome and Metabolome of in vitro Models Treated with Gold Nanoparticles (AuNPs)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Chassaigne">H. Chassaigne</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Gioria"> S. Gioria</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Lobo%20Vicente"> J. Lobo Vicente</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Carpi"> D. Carpi</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Barboro"> P. Barboro</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Tomasi"> G. Tomasi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Kinsner-Ovaskainen"> A. Kinsner-Ovaskainen</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Rossi"> F. Rossi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Emerging approaches in the area of exposure to nanomaterials and assessment of human health effects combine the use of in vitro systems and analytical techniques to study the perturbation of the proteome and/or the metabolome. We investigated the modification in the cytoplasmic compartment of the Balb/3T3 cell line exposed to gold nanoparticles. On one hand, the proteomic approach is quite standardized even if it requires precautions when dealing with in vitro systems. On the other hand, metabolomic analysis is challenging due to the chemical diversity of cellular metabolites that complicate data elaboration and interpretation. Differentially expressed proteins were found to cover a range of functions including stress response, cell metabolism, cell growth and cytoskeleton organization. In addition, de-regulated metabolites were annotated using the HMDB database. The "omics" fields hold huge promises in the interaction of nanoparticles with biological systems. The combination of proteomics and metabolomics data is possible however challenging. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20processing" title="data processing">data processing</a>, <a href="https://publications.waset.org/abstracts/search?q=gold%20nanoparticles" title=" gold nanoparticles"> gold nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20vitro%20systems" title=" in vitro systems"> in vitro systems</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolomics" title=" metabolomics"> metabolomics</a>, <a href="https://publications.waset.org/abstracts/search?q=proteomics" title=" proteomics"> proteomics</a> </p> <a href="https://publications.waset.org/abstracts/5961/combined-proteomic-and-metabolomic-analysis-approaches-to-investigate-the-modification-in-the-proteome-and-metabolome-of-in-vitro-models-treated-with-gold-nanoparticles-aunps" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5961.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">503</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27888</span> Proteomic Evaluation of Sex Differences in the Plasma of Non-human Primates Exposed to Ionizing Radiation for Biomarker Discovery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christina%20Williams">Christina Williams</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehari%20Weldemariam"> Mehari Weldemariam</a>, <a href="https://publications.waset.org/abstracts/search?q=Ann%20M.%20Farese"> Ann M. Farese</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20J.%20MacVittie"> Thomas J. MacVittie</a>, <a href="https://publications.waset.org/abstracts/search?q=Maureen%20A.%20Kane"> Maureen A. Kane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Radiation exposure results in dose-dependent and time-dependent multi-organ damage. Drug development of medical countermeasures (MCM) for radiation-induced injury occurs under the FDA Animal Rule because human efficacy studies are not ethical or feasible. The FDA Animal Rule requires the representation of both sexes and describes several uses for biomarkers in MCM drug development studies. Currently, MCMs are limited and there is no FDA-approved biomarker for any radiation injury. Sex as a variable is essential to identifying biomarkers and developing effective MCMs for acute radiation exposure (ARS) and delayed effects of acute radiation exposure (DEARE). These studies aim to address the death of information on sex differences that have not been determined by studies that included only male, single-sex cohorts. Studies have reported differences in radiosensitivity according to sex. As such, biomarker discovery for radiation-induced damage must consider sex as a variable. This study evaluated the plasma proteomic profile of Rhesus macaque non-human primates after different exposures and doses, as well as time points after radiation. Exposures and doses included total body irradiation between 5-7.5 Gy and partial body irradiation with 5% bone marrow sparing at 9, 9.5 and 10 Gy. Timepoints after irradiation included days 1, 3, 60, and 180, which encompassed both acute radiation syndromes and delayed effects of acute radiation exposure. Bottom-up proteomic analyses of plasma included equal numbers of males and females. In the control animals, few proteomic differences are observed between the sexes. In the irradiated animals, there are a few sex differences, with changes mostly consisting of proteins upregulated in the female animals. Multiple canonical pathways were upregulated in irradiated animals relative to the control animals when subjected to pathway analysis, but differential responses between the sexes are limited. These data provide critical baseline differences according to sex and establish sex differences in non-human primate models relevant to drug development of MCM under the FDA Animal Rule. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ionizing%20radiation" title="ionizing radiation">ionizing radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=sex%20differences" title=" sex differences"> sex differences</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20proteomics" title=" plasma proteomics"> plasma proteomics</a>, <a href="https://publications.waset.org/abstracts/search?q=biomarker%20discovery" title=" biomarker discovery"> biomarker discovery</a> </p> <a href="https://publications.waset.org/abstracts/171393/proteomic-evaluation-of-sex-differences-in-the-plasma-of-non-human-primates-exposed-to-ionizing-radiation-for-biomarker-discovery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171393.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27887</span> Differential Proteomic Profile and Terpenoid Production in Somatic Embryos of Jatropha curcas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anamarel%20Medina-Hernandez">Anamarel Medina-Hernandez</a>, <a href="https://publications.waset.org/abstracts/search?q=Teresa%20Ponce-Noyola"> Teresa Ponce-Noyola</a>, <a href="https://publications.waset.org/abstracts/search?q=Ileana%20Vera-Reyes"> Ileana Vera-Reyes</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20C.%20Ramos-Valdivia"> Ana C. Ramos-Valdivia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Somatic embryos reproduce original seed characteristics and could be implemented in biotechnological studies. Jatropha curcas L. is an important plant for biodiesel production, but also is used in traditional medicine. Seeds from J. curcas are toxic because contain diterpenoids called phorbol esters, but in Mexico exist a non-toxic variety. Therefore, somatic embryos suspension cultures from non-toxic J. curcas variety were induced. In order to investigate the characteristics of somatic embryos, a differential proteomic analysis was made between pre-globular and globular stages by 2-D gel electrophoresis. 108 spots were differentially expressed (p<0.02), and 20 spots from globular somatic embryos were sequenced by MALDI-TOF-TOF mass spectrometry. A comparative analysis of terpenoids production between the two stages was made by RP-18 TLC plates. The sequenced proteins were related to energy production (68%), protein destination and storage (9%), secondary metabolism (9%), signal transduction (5%), cell structure (5%) and aminoacid metabolism (4%). Regarding terpenoid production, in pre-globular and globular somatic embryos were identified sterols and triterpenes of pharmacological interest (alpha-amyrin and betulinic acid) but also it was found compounds that were unique to each stage. The results of this work are the basis to characterize at different levels the J. curcas somatic embryos so that this system can be used efficiently in biotechnological processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jatropha%20curcas" title="Jatropha curcas">Jatropha curcas</a>, <a href="https://publications.waset.org/abstracts/search?q=proteomics" title=" proteomics"> proteomics</a>, <a href="https://publications.waset.org/abstracts/search?q=somatic%20embryo" title=" somatic embryo"> somatic embryo</a>, <a href="https://publications.waset.org/abstracts/search?q=terpenoids" title=" terpenoids"> terpenoids</a> </p> <a href="https://publications.waset.org/abstracts/71308/differential-proteomic-profile-and-terpenoid-production-in-somatic-embryos-of-jatropha-curcas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71308.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27886</span> Impact of Totiviridae L-A dsRNA Virus on Saccharomyces Cerevisiae Host: Transcriptomic and Proteomic Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juliana%20Luk%C5%A1a">Juliana Lukša</a>, <a href="https://publications.waset.org/abstracts/search?q=Bazil%C4%97%20Ravoityt%C4%97"> Bazilė Ravoitytė</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20Servien%C4%97"> Elena Servienė</a>, <a href="https://publications.waset.org/abstracts/search?q=Saulius%20Serva"> Saulius Serva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Totiviridae L-A virus is a persistent Saccharomyces cerevisiae dsRNA virus. It encodes the major structural capsid protein Gag and Gag-Pol fusion protein, responsible for virus replication and encapsulation. These features also enable the copying of satellite dsRNAs (called M dsRNAs) encoding a secreted toxin and immunity to it (known as killer toxin). Viral capsid pore presumably functions in nucleotide uptake and viral mRNA release. During cell division, sporogenesis, and cell fusion, the virions remain intracellular and are transferred to daughter cells. By employing high throughput RNA sequencing data analysis, we describe the influence of solely L-A virus on the expression of genes in three different S. cerevisiae hosts. We provide a new perception into Totiviridae L-A virus-related transcriptional regulation, encompassing multiple bioinformatics analyses. Transcriptional responses to L-A infection were similar to those induced upon stress or availability of nutrients. It also delves into the connection between the cell metabolism and L-A virus-conferred demands to the host transcriptome by uncovering host proteins that may be associated with intact virions. To better understand the virus-host interaction, we applied differential proteomic analysis of virus particle-enriched fractions of yeast strains that harboreither complete killer system (L-A-lus and M-2 virus), M-2 depleted orvirus-free. Our analysis resulted in the identification of host proteins, associated with structural proteins of the virus (Gag and Gag-Pol). This research was funded by the European Social Fund under the No.09.3.3-LMT-K-712-19-0157“Development of Competences of Scientists, other Researchers, and Students through Practical Research Activities” measure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=totiviridae" title="totiviridae">totiviridae</a>, <a href="https://publications.waset.org/abstracts/search?q=killer%20virus" title=" killer virus"> killer virus</a>, <a href="https://publications.waset.org/abstracts/search?q=proteomics" title=" proteomics"> proteomics</a>, <a href="https://publications.waset.org/abstracts/search?q=transcriptomics" title=" transcriptomics"> transcriptomics</a> </p> <a href="https://publications.waset.org/abstracts/146170/impact-of-totiviridae-l-a-dsrna-virus-on-saccharomyces-cerevisiae-host-transcriptomic-and-proteomic-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146170.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27885</span> The Advantages of Using DNA-Barcoding for Determining the Fraud in Seafood</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elif%20Tugce%20Aksun%20Tumerkan">Elif Tugce Aksun Tumerkan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although seafood is an important part of human diet and categorized highly traded food industry internationally, it is remain overlooked generally in the global food security aspect. Food product authentication is the main interest in the aim of both avoids commercial fraud and to consider the risks that might be harmful to human health safety. In recent years, with increasing consumer demand for regarding food content and it's transparency, there are some instrumental analyses emerging for determining food fraud depend on some analytical methodologies such as proteomic and metabolomics. While, fish and seafood consumed as fresh previously, within advanced technology, processed or packaged seafood consumption have increased. After processing or packaging seafood, morphological identification is impossible when some of the external features have been removed. The main fish and seafood quality-related issues are the authentications of seafood contents such as mislabelling products which may be contaminated and replacement partly or completely, by lower quality or cheaper ones. For all mentioned reasons, truthful consistent and easily applicable analytical methods are needed for assurance the correct labelling and verifying of seafood products. DNA-barcoding methods become popular robust that used in taxonomic research for endangered or cryptic species in recent years; they are used for determining food traceability also. In this review, when comparing the other proteomic and metabolic analysis, DNA-based methods are allowing a chance to identification all type of food even as raw, spiced and processed products. This privilege caused by DNA is a comparatively stable molecule than protein and other molecules. Furthermore showing variations in sequence based on different species and founding in all organisms, make DNA-based analysis more preferable. This review was performed to clarify the main advantages of using DNA-barcoding for determining seafood fraud among other techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DNA-barcoding" title="DNA-barcoding">DNA-barcoding</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20analysis" title=" genetic analysis"> genetic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20fraud" title=" food fraud"> food fraud</a>, <a href="https://publications.waset.org/abstracts/search?q=mislabelling" title=" mislabelling"> mislabelling</a>, <a href="https://publications.waset.org/abstracts/search?q=packaged%20seafood" title=" packaged seafood"> packaged seafood</a> </p> <a href="https://publications.waset.org/abstracts/95287/the-advantages-of-using-dna-barcoding-for-determining-the-fraud-in-seafood" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95287.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27884</span> A Proteomic Approach for Discovery of Microbial Cellulolytic Enzymes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Matlala">M. S. Matlala</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Ignatious"> I. Ignatious</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Environmental sustainability has taken the center stage in human life all over the world. Energy is the most essential component of our life. The conventional sources of energy are non-renewable and have a detrimental environmental impact. Therefore, there is a need to move from conventional to non-conventional renewable energy sources to satisfy the world’s energy demands. The study aimed at screening for microbial cellulolytic enzymes using a proteomic approach. The objectives were to screen for microbial cellulases with high specific activity and separate the cellulolytic enzymes using a combination of zymography and two-dimensional (2-D) gel electrophoresis followed by tryptic digestion, Matrix-assisted Laser Desorption Ionisation-Time of Flight (MALDI-TOF) and bioinformatics analysis. Fungal and bacterial isolates were cultured in M9 minimal and Mandel media for a period of 168 hours at 60°C and 30°C with cellobiose and Avicel as carbon sources. Microbial cells were separated from supernatants through centrifugation, and the crude enzyme from the cultures was used for the determination of cellulase activity, zymography, SDS-PAGE, and two-dimensional gel electrophoresis. Five isolates, with lytic action on carbon sources studied, were a bacterial strain (BARK) and fungal strains (VCFF1, VCFF14, VCFF17, and VCFF18). Peak cellulase production by the selected isolates was found to be 3.8U/ml, 2.09U/ml, 3.38U/ml, 3.18U/ml, and 1.95U/ml, respectively. Two-dimensional gel protein maps resulted in the separation and quantitative expression of different proteins by the microbial isolates. MALDI-TOF analysis and database search showed that the expressed proteins in this study closely relate to different glycoside hydrolases produced by other microbial species with an acceptable confidence level of 100%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellulases" title="cellulases">cellulases</a>, <a href="https://publications.waset.org/abstracts/search?q=energy" title=" energy"> energy</a>, <a href="https://publications.waset.org/abstracts/search?q=two-dimensional%20gel%20electrophoresis" title=" two-dimensional gel electrophoresis"> two-dimensional gel electrophoresis</a>, <a href="https://publications.waset.org/abstracts/search?q=matrix-assisted%20laser%20desorption%20ionisation-time%20of%20flight" title=" matrix-assisted laser desorption ionisation-time of flight"> matrix-assisted laser desorption ionisation-time of flight</a>, <a href="https://publications.waset.org/abstracts/search?q=MALDI-TOF%20MS" title=" MALDI-TOF MS"> MALDI-TOF MS</a> </p> <a href="https://publications.waset.org/abstracts/111097/a-proteomic-approach-for-discovery-of-microbial-cellulolytic-enzymes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111097.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27883</span> Adaptation Mechanisms of the Polyextremophile Natranaerobius Thermophilus to Saline-Alkaline-Hermal Environments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qinghua%20Xing">Qinghua Xing</a>, <a href="https://publications.waset.org/abstracts/search?q=Xinyi%20Tao"> Xinyi Tao</a>, <a href="https://publications.waset.org/abstracts/search?q=Haisheng%20Wang"> Haisheng Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Baisuo%20Zhao"> Baisuo Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The first true anaerobic, halophilic alkali thermophile, Natranaerobius thermophilus DSM 18059T, serves as a valuable model for studying cellular adaptations to saline, alkaline and thermal extremes. To uncover the adaptive strategies employed by N. thermophilus in coping with these challenges, we conducted a comprehensive iTRAQ-based quantitative proteomic analysis under different conditions of salinity (3.5 M vs. 2.5 M Na+), pH (pH 9.6 vs. pH 8.6), and temperature (52°C vs. 42°C). The increased intracellular accumulation of glycine betaine, through both synthesis and transport, plays a critical role in N. thermophilus' adaptation to these combined stresses. Under all three stress conditions, the up-regulation of Trk family proteins responsible for K+ transport is observed. Intracellular K+ concentration rises in response to salt and pH levels. Multiple types of Na+/H+ antiporter (NhaC family, Mrp family and CPA family) and a diverse range of FOF1-ATP synthase are identified as vital components for maintaining ionic balance under different stress conditions. Importantly, proteins involved in amino acid metabolism, carbohydrate metabolism, ABC transporters, signaling and chemotaxis, as well as biological macromolecule repair and protection, exhibited significant up-regulation in response to these extreme conditions. These metabolic pathways emerge as critical factors in N. thermophilus' adaptation mechanisms under extreme environmental stress. To validate the proteomic data, ddPCR analysis confirmed changes in mRNA expression, thereby corroborating the up-regulation and down-regulation patterns of 19 co-up-regulated and 36 key proteins under saline, alkaline and thermal stresses. This research enriches our understanding of the complex regulatory systems that enable polyextremophiles to survive in combined extreme conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polyextremophiles" title="polyextremophiles">polyextremophiles</a>, <a href="https://publications.waset.org/abstracts/search?q=natranaerobius%20thermophilus" title=" natranaerobius thermophilus"> natranaerobius thermophilus</a>, <a href="https://publications.waset.org/abstracts/search?q=saline-%20alkaline-%20thermal%20stresses" title=" saline- alkaline- thermal stresses"> saline- alkaline- thermal stresses</a>, <a href="https://publications.waset.org/abstracts/search?q=combined%20extremes" title=" combined extremes"> combined extremes</a> </p> <a href="https://publications.waset.org/abstracts/185460/adaptation-mechanisms-of-the-polyextremophile-natranaerobius-thermophilus-to-saline-alkaline-hermal-environments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185460.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">55</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27882</span> CMPD: Cancer Mutant Proteome Database</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Po-Jung%20Huang">Po-Jung Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chi-Ching%20Lee"> Chi-Ching Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Bertrand%20Chin-Ming%20Tan"> Bertrand Chin-Ming Tan</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuan-Ming%20Yeh"> Yuan-Ming Yeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Julie%20Lichieh%20Chu"> Julie Lichieh Chu</a>, <a href="https://publications.waset.org/abstracts/search?q=Tin-Wen%20Chen"> Tin-Wen Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng-Yang%20Lee"> Cheng-Yang Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruei-Chi%20Gan"> Ruei-Chi Gan</a>, <a href="https://publications.waset.org/abstracts/search?q=Hsuan%20Liu"> Hsuan Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Petrus%20Tang"> Petrus Tang </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Whole-exome sequencing focuses on the protein coding regions of disease/cancer associated genes based on a priori knowledge is the most cost-effective method to study the association between genetic alterations and disease. Recent advances in high throughput sequencing technologies and proteomic techniques has provided an opportunity to integrate genomics and proteomics, allowing readily detectable mutated peptides corresponding to mutated genes. Since sequence database search is the most widely used method for protein identification using Mass spectrometry (MS)-based proteomics technology, a mutant proteome database is required to better approximate the real protein pool to improve disease-associated mutated protein identification. Large-scale whole exome/genome sequencing studies were launched by National Cancer Institute (NCI), Broad Institute, and The Cancer Genome Atlas (TCGA), which provide not only a comprehensive report on the analysis of coding variants in diverse samples cell lines but a invaluable resource for extensive research community. No existing database is available for the collection of mutant protein sequences related to the identified variants in these studies. CMPD is designed to address this issue, serving as a bridge between genomic data and proteomic studies and focusing on protein sequence-altering variations originated from both germline and cancer-associated somatic variations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=TCGA" title="TCGA">TCGA</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer" title=" cancer"> cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=mutant" title=" mutant"> mutant</a>, <a href="https://publications.waset.org/abstracts/search?q=proteome" title=" proteome"> proteome</a> </p> <a href="https://publications.waset.org/abstracts/16077/cmpd-cancer-mutant-proteome-database" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16077.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">593</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27881</span> Genomic and Proteomic Variability in Glycine Max Genotypes in Response to Salt Stress</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faheema%20Khan">Faheema Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To investigate the ability of sensitive and tolerant genotype of Glycine max to adapt to a saline environment in a field, we examined the growth performance, water relation and activities of antioxidant enzymes in relation to photosynthetic rate, chlorophyll a fluorescence, photosynthetic pigment concentration, protein and proline in plants exposed to salt stress. Ten soybean genotypes (Pusa-20, Pusa-40, Pusa-37, Pusa-16, Pusa-24, Pusa-22, BRAGG, PK-416, PK-1042, and DS-9712) were selected and grown hydroponically. After 3 days of proper germination, the seedlings were transferred to Hoagland’s solution (Hoagland and Arnon 1950). The growth chamber was maintained at a photosynthetic photon flux density of 430 μmol m−2 s−1, 14 h of light, 10 h of dark and a relative humidity of 60%. The nutrient solution was bubbled with sterile air and changed on alternate days. Ten-day-old seedlings were given seven levels of salt in the form of NaCl viz., T1 = 0 mM NaCl, T2=25 mM NaCl, T3=50 mM NaCl, T4=75 mM NaCl, T5=100 mM NaCl, T6=125 mM NaCl, T7=150 mM NaCl. The investigation showed that genotype Pusa-24, PK-416 and Pusa-20 appeared to be the most salt-sensitive. genotypes as inferred from their significantly reduced length, fresh weight and dry weight in response to the NaCl exposure. Pusa-37 appeared to be the most tolerant genotype since no significant effect of NaCl treatment on growth was found. We observed a greater decline in the photosynthetic variables like photosynthetic rate, chlorophyll fluorescence and chlorophyll content, in salt-sensitive (Pusa-24) genotype than in salt-tolerant Pusa-37 under high salinity. Numerous primers were verified on ten soybean genotypes obtained from Operon technologies among which 30 RAPD primers shown high polymorphism and genetic variation. The Jaccard’s similarity coefficient values for each pairwise comparison between cultivars were calculated and similarity coefficient matrix was constructed. The closer varieties in the cluster behaved similar in their response to salinity tolerance. Intra-clustering within the two clusters precisely grouped the 10 genotypes in sub-cluster as expected from their physiological findings.Salt tolerant genotype Pusa-37, was further analysed by 2-Dimensional gel electrophoresis to analyse the differential expression of proteins at high salt stress. In the Present study, 173 protein spots were identified. Of these, 40 proteins responsive to salinity were either up- or down-regulated in Pusa-37. Proteomic analysis in salt-tolerant genotype (Pusa-37) led to the detection of proteins involved in a variety of biological processes, such as protein synthesis (12 %), redox regulation (19 %), primary and secondary metabolism (25 %), or disease- and defence-related processes (32 %). In conclusion, the soybean plants in our study responded to salt stress by changing their protein expression pattern. The photosynthetic, biochemical and molecular study showed that there is variability in salt tolerance behaviour in soybean genotypes. Pusa-24 is the salt-sensitive and Pusa-37 is the salt-tolerant genotype. Moreover this study gives new insights into the salt-stress response in soybean and demonstrates the power of genomic and proteomic approach in plant biology studies which finally could help us in identifying the possible regulatory switches (gene/s) controlling the salt tolerant genotype of the crop plants and their possible role in defence mechanism. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glycine%20max" title="glycine max">glycine max</a>, <a href="https://publications.waset.org/abstracts/search?q=salt%20stress" title=" salt stress"> salt stress</a>, <a href="https://publications.waset.org/abstracts/search?q=RAPD" title=" RAPD"> RAPD</a>, <a href="https://publications.waset.org/abstracts/search?q=genomic%20and%20proteomic%20variability" title=" genomic and proteomic variability"> genomic and proteomic variability</a> </p> <a href="https://publications.waset.org/abstracts/16636/genomic-and-proteomic-variability-in-glycine-max-genotypes-in-response-to-salt-stress" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16636.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">423</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27880</span> Profiling of Apoptotic Protein Expressions after Trabectedin Treatment in Human Prostate Cancer Cell Line PC-3 by Protein Array Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harika%20Atmaca">Harika Atmaca</a>, <a href="https://publications.waset.org/abstracts/search?q=Emir%20Bozkurt"> Emir Bozkurt</a>, <a href="https://publications.waset.org/abstracts/search?q=Latife%20Merve%20Oktay"> Latife Merve Oktay</a>, <a href="https://publications.waset.org/abstracts/search?q=Selim%20Uzunoglu"> Selim Uzunoglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruchan%20Uslu"> Ruchan Uslu</a>, <a href="https://publications.waset.org/abstracts/search?q=Bur%C3%A7ak%20Karaca"> Burçak Karaca</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microarrays have been developed for highly parallel enzyme-linked immunosorbent assay (ELISA) applications. The most common protein arrays are produced by using multiple monoclonal antibodies, since they are robust molecules which can be easily handled and immobilized by standard procedures without loss of activity. Protein expression profiling with protein array technology allows simultaneous analysis of the protein expression pattern of a large number of proteins. Trabectedin, a tetrahydroisoquinoline alkaloid derived from a Caribbean tunicate, Ecteinascidia turbinata, has been shown to have antitumor effects. Here, we used a novel proteomic approach to explore the mechanism of action of trabectedin in prostate cancer cell line PC-3 by apoptosis antibody microarray. XTT cell proliferation kit and Cell Death Detection Elisa Plus Kit (Roche) was used for measuring cytotoxicity and apoptosis. Human Apoptosis Protein Array (R&D Systems) which consists of 35 apoptosis related proteins was used to assess the omic protein expression pattern. Trabectedin induced cytotoxicity and apoptosis in prostate cancer cells in a time and concentration-dependent manner. The expression levels of the death receptor pathway molecules, TRAIL-R1/DR4, TRAIL R2/DR5, TNF R1/TNFRSF1A, FADD were significantly increased by 4.0-, 21.0-, 4.20- and 11.5-fold by trabectedin treatment in PC-3 cells. Moreover, mitochondrial pathway related pro-apoptotic proteins Bax, Bad, Cytochrome c, and Cleaved Caspase-3 expressions were induced by 2.68-, 2.07-, 2.8-, and 4.5-fold and the expression levels of anti-apoptotic proteins Bcl-2 and Bcl-XL were reduced by 3.5- and 5.2-fold in PC-3 cells. Proteomic (antibody microarray) analysis suggests that the mechanism of action of trabectedin may be exerted via the induction of both intrinsic and extrinsic apoptotic pathways. The antibody microarray platform can be utilised to explore the molecular mechanism of action of novel anticancer agents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=trabectedin" title="trabectedin">trabectedin</a>, <a href="https://publications.waset.org/abstracts/search?q=prostate%20cancer" title=" prostate cancer"> prostate cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=omic%20protein%20expression%20profile" title=" omic protein expression profile"> omic protein expression profile</a>, <a href="https://publications.waset.org/abstracts/search?q=apoptosis" title=" apoptosis"> apoptosis</a> </p> <a href="https://publications.waset.org/abstracts/19822/profiling-of-apoptotic-protein-expressions-after-trabectedin-treatment-in-human-prostate-cancer-cell-line-pc-3-by-protein-array-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19822.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27879</span> Differential Proteomics Expression in Purple Rice Supplemented Type 2 Diabetic Rats’ Skeletal Muscle </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ei%20Ei%20Hlaing">Ei Ei Hlaing</a>, <a href="https://publications.waset.org/abstracts/search?q=Narissara%20Lailerd"> Narissara Lailerd</a>, <a href="https://publications.waset.org/abstracts/search?q=Sittiruk%20Roytrakul"> Sittiruk Roytrakul</a>, <a href="https://publications.waset.org/abstracts/search?q=Pichapat%20Piamrojanaphat"> Pichapat Piamrojanaphat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Type 2 diabetes is one of the most common metabolic diseases all over the world. The pathogenesis of type 2 diabetes is not the only dysfunction of pancreatic beta cells but also insulin resistance in muscle, liver and adipose tissue. High levels of circulating free fatty acids, an increased lipid content of muscle cells, impaired insulin-mediated glucose uptake and diminished mitochondrial functioning are pathophysiological hallmarks of diabetic skeletal muscles. Purple rice (Oryza sativa L. indica) has been shown to have antidiabetic effects. However, the underlying mechanism(s) of antidiabetic activity of purple rice is still unraveled. In this research, to explore in-depth cellular mechanism(s), proteomic profile of purple rice supplemented type 2 diabetic rats’ skeletal muscle were analyzed contract with non-supplemented rats. Diabetic rats were induced high-fat diet combined with streptozotocin injection. By using one- dimensional gel electrophoresis (1-DE) and LC-MS/MS quantitative proteomic method, we analyzed proteomic profiles in skeletal muscle of normal rats, normal rats with purple rice supplementation, type 2 diabetic rats, and type 2 diabetic rats with purple rice supplementation. Total 2676 polypeptide expressions were identified. Among them, 24 peptides were only expressed in type 2 diabetic rats, and 24 peptides were unique peptides in type 2 diabetic rats with purple rice supplementation. Acetyl CoA carboxylase 1 (ACACA) found as unique protein in type 2 diabetic rats which is the major enzyme in lipid synthesis and metabolism. Interestingly, DNA damage response protein, heterogeneous nuclear ribonucleoprotein K [Mus musculus] (Hnrnpk), was upregulated in type 2 diabetic rats’ skeletal muscle. Meanwhile, unique proteins of type 2 diabetic rats with purple rice supplementation (bone morphogenetic 7 protein preproprotein, BMP7; and forkhead box protein NX4, Foxn4) involved with muscle cells growth through the regulation of TGF-β/Smad signaling network. Moreover, BMP7 may effect on insulin signaling through the downstream signaling of protein kinase B (Akt) which acts in protein synthesis, glucose uptake, and glycogen synthesis. In conclusion, our study supports that type 2 diabetes impairs muscular lipid metabolism. In addition, purple rice might recover the muscle cells growth and insulin signaling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=proteomics" title="proteomics">proteomics</a>, <a href="https://publications.waset.org/abstracts/search?q=purple%20rice%20bran" title=" purple rice bran"> purple rice bran</a>, <a href="https://publications.waset.org/abstracts/search?q=skeletal%20muscle" title=" skeletal muscle"> skeletal muscle</a>, <a href="https://publications.waset.org/abstracts/search?q=type%202%20diabetic%20rats" title=" type 2 diabetic rats"> type 2 diabetic rats</a> </p> <a href="https://publications.waset.org/abstracts/58923/differential-proteomics-expression-in-purple-rice-supplemented-type-2-diabetic-rats-skeletal-muscle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58923.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">253</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27878</span> Testing Serum Proteome between Elite Sprinters and Long-Distance Runners</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hung-Chieh%20Chen">Hung-Chieh Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuo-Hui%20Wang"> Kuo-Hui Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Tsu-Lin%20Yeh"> Tsu-Lin Yeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Proteomics represent the performance of genomic complement proteins and the protein level on functional genomics. This study adopted proteomic strategies for comparing serum proteins among three groups: elite sprinter (sprint runner group, SR), long-distance runners (long-distance runner group, LDR), and the untrained control group (control group, CON). Purposes: This study aims to identify elite sprinters and long-distance runners’ serum protein and to provide a comparison of their serum proteome’ composition. Methods: Serum protein fractionations that separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and analyzed by a quantitative nano-LC-MS/MS-based proteomic profiling. The one-way analysis of variance (ANOVA) and Scheffe post hoc comparison (α= 0.05) was used to determine whether there is any significant difference in each protein level among the three groups. Results: (1) After analyzing the 307 identified proteins, there were 26 unique proteins in the SR group, and 18 unique proteins in the LDR group. (2) For the LDR group, 7 coagulation function-associated proteins’ expression levels were investigated: vitronectin, serum paraoxonase/arylesterase 1, fibulin-1, complement C3, vitamin K-dependent protein, inter-alpha-trypsin inhibitor heavy chain H3 and von Willebrand factor, and the findings show the seven coagulation function-associated proteins were significantly lower than the group of SR. (3) Comparing to the group of SR, this study found that the LDR group’s expression levels of the 2 antioxidant proteins (afamin and glutathione peroxidase 3) were also significantly lower. (4) The LDR group’s expression levels of seven immune function-related proteins (Ig gamma-3 chain C region, Ig lambda-like polypeptide 5, clusterin, complement C1s subcomponent, complement factor B, complement C4-A, complement C1q subcomponent subunit A) were also significantly lower than the group of SR. Conclusion: This study identified the potential serum protein markers for elite sprinters and long-distance runners. The changes in the regulation of coagulation, antioxidant, or immune function-specific proteins may also provide further clinical applications for these two different track athletes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomarkers" title="biomarkers">biomarkers</a>, <a href="https://publications.waset.org/abstracts/search?q=coagulation" title=" coagulation"> coagulation</a>, <a href="https://publications.waset.org/abstracts/search?q=immune%20response" title=" immune response"> immune response</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a> </p> <a href="https://publications.waset.org/abstracts/119958/testing-serum-proteome-between-elite-sprinters-and-long-distance-runners" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119958.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27877</span> Common Ragweed (Ambrosia artemisiifolia): Changing Proteomic Patterns of Pollen under Elevated NO₂ Concentration and/or Future Rising Temperature Scenario</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiaojie%20Cheng">Xiaojie Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Ulrike%20Frank"> Ulrike Frank</a>, <a href="https://publications.waset.org/abstracts/search?q=Feng%20Zhao"> Feng Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Karin%20Pritsch"> Karin Pritsch</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ragweed (Ambrosia artemisiifolia) is an invasive weed that has become an increasing global problem. In addition to affecting land use and crop yields, ragweed has a strong impact on human health as it produces highly allergenic pollen. Global warming will result in an earlier and longer pollen season enhanced pollen production and an increase in pollen allergenicity with a negative effect on atopic patients. The aims of this study were to investigate the effects of increasing temperature, the future climate scenario in the Munich area, southern Germany, predicted on the basis of RCP8.5 until the end of 2050s, or/and NO₂, a major air pollutant, 1) on the vegetative and reproductive characteristics of ragweed plants, 2) on the total allergenicity of ragweed pollen, 3) on the total pollen proteomic patterns. Ragweed plants were cultivated for the whole plant vegetation period under controlled conditions either under ambient climate conditions or 4°C higher temperatures with or without additional NO₂. Higher temperature resulted in bigger plant sizes, longer male inflorescences, and longer pollen seasons. The total allergenic potential of the pollen was accessed by dot blot using serum from ragweed pollen sensitized patients. The comparative immunoblot analysis revealed that the in vivo fumigation of ragweed plants with elevated NO₂-concentrations significantly increased the allergenic potential of the pollen, and in combination with increased temperature, the allergenic potential was even higher. On the other hand, label-free protein quantification by liquid chromatography-tandem mass spectrometry (LC-MS/MS) was performed. The results showed that more proteins were significantly up- and down-regulated under higher temperatures with/without elevated NO₂ conditions. Most of the highly expressed proteins were participating intensively in the metabolic process, the cellular process, and the stress defense process. These findings suggest that rising temperature and elevated NO₂ are important environmental factors for higher abiotic stress activities, catalytic activities, and thus higher allergenic potential observed in pollen proteins. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=NO%E2%82%82" title=" NO₂"> NO₂</a>, <a href="https://publications.waset.org/abstracts/search?q=pollen%20proteome" title=" pollen proteome"> pollen proteome</a>, <a href="https://publications.waset.org/abstracts/search?q=ragweed" title=" ragweed"> ragweed</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a> </p> <a href="https://publications.waset.org/abstracts/137167/common-ragweed-ambrosia-artemisiifolia-changing-proteomic-patterns-of-pollen-under-elevated-no2-concentration-andor-future-rising-temperature-scenario" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137167.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">191</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27876</span> Proteomic Analysis of Excretory Secretory Antigen (ESA) from Entamoeba histolytica HM1: IMSS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Othman">N. Othman</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Ujang"> J. Ujang</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20N.%20Ismail"> M. N. Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Noordin"> R. Noordin</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20H.%20Lim"> B. H. Lim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Amoebiasis is caused by the Entamoeba histolytica and still endemic in many parts of the tropical region, worldwide. Currently, there is no available vaccine against amoebiasis. Hence, there is an urgent need to develop a vaccine. The excretory secretory antigen (ESA) of E. histolytica is a suitable biomarker for the vaccine candidate since it can modulate the host immune response. Hence, the objective of this study is to identify the proteome of the ESA towards finding suitable biomarker for the vaccine candidate. The non-gel based and gel-based proteomics analyses were performed to identify proteins. Two kinds of mass spectrometry with different ionization systems were utilized i.e. LC-MS/MS (ESI) and MALDI-TOF/TOF. Then, the functional proteins classification analysis was performed using PANTHER software. Combination of the LC -MS/MS for the non-gel based and MALDI-TOF/TOF for the gel-based approaches identified a total of 273 proteins from the ESA. Both systems identified 29 similar proteins whereby 239 and 5 more proteins were identified by LC-MS/MS and MALDI-TOF/TOF, respectively. Functional classification analysis showed the majority of proteins involved in the metabolic process (24%), primary metabolic process (19%) and protein metabolic process (10%). Thus, this study has revealed the proteome the E. histolytica ESA and the identified proteins merit further investigations as a vaccine candidate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20histolytica" title="E. histolytica">E. histolytica</a>, <a href="https://publications.waset.org/abstracts/search?q=ESA" title=" ESA"> ESA</a>, <a href="https://publications.waset.org/abstracts/search?q=proteomics" title=" proteomics"> proteomics</a>, <a href="https://publications.waset.org/abstracts/search?q=biomarker" title=" biomarker "> biomarker </a> </p> <a href="https://publications.waset.org/abstracts/34707/proteomic-analysis-of-excretory-secretory-antigen-esa-from-entamoeba-histolytica-hm1-imss" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34707.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27875</span> High Throughput LC-MS/MS Studies on Sperm Proteome of Malnad Gidda (Bos Indicus) Cattle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kerekoppa%20Puttaiah%20Bhatta%20Ramesha">Kerekoppa Puttaiah Bhatta Ramesha</a>, <a href="https://publications.waset.org/abstracts/search?q=Uday%20Kannegundla"> Uday Kannegundla</a>, <a href="https://publications.waset.org/abstracts/search?q=Praseeda%20Mol"> Praseeda Mol</a>, <a href="https://publications.waset.org/abstracts/search?q=Lathika%20Gopalakrishnan"> Lathika Gopalakrishnan</a>, <a href="https://publications.waset.org/abstracts/search?q=Jagish%20Kour%20Reen"> Jagish Kour Reen</a>, <a href="https://publications.waset.org/abstracts/search?q=Gourav%20Dey"> Gourav Dey</a>, <a href="https://publications.waset.org/abstracts/search?q=Manish%20Kumar"> Manish Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sakthivel%20Jeyakumar"> Sakthivel Jeyakumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Arumugam%20Kumaresan"> Arumugam Kumaresan</a>, <a href="https://publications.waset.org/abstracts/search?q=Kiran%20Kumar%20M."> Kiran Kumar M.</a>, <a href="https://publications.waset.org/abstracts/search?q=Thottethodi%20Subrahmanya%20Keshava%20Prasad"> Thottethodi Subrahmanya Keshava Prasad </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spermatozoa are the highly specialized transcriptionally and translationally inactive haploid male gamete. The understanding of proteome of sperm is indispensable to explore the mechanism of sperm motility and fertility. Though there is a large number of human sperm proteomic studies, in-depth proteomic information on Bos indicus spermatozoa is not well established yet. Therefore, we illustrated the profile of sperm proteome in indigenous cattle, Malnad gidda (Bos Indicus), using high-resolution mass spectrometry. In the current study, two semen ejaculates from 3 breeding bulls were collected employing the artificial vaginal method. Using 45% percoll purification, spermatozoa cells were isolated. Protein was extracted using lysis buffer containing 2% Sodium Dodecyl Sulphate (SDS) and protein concentration was estimated. Fifty micrograms of protein from each individual were pooled for further downstream processing. Pooled sample was fractionated using SDS-Poly Acrylamide Gel Electrophoresis, which is followed by in-gel digestion. The peptides were subjected to C18 Stage Tip clean-up and analyzed in Orbitrap Fusion Tribrid mass spectrometer interfaced with Proxeon Easy-nano LC II system (Thermo Scientific, Bremen, Germany). We identified a total of 6773 peptides with 28426 peptide spectral matches, which belonged to 1081 proteins. Gene ontology analysis has been carried out to determine the biological processes, molecular functions and cellular components associated with sperm protein. The biological process chiefly represented our data is an oxidation-reduction process (5%), spermatogenesis (2.5%) and spermatid development (1.4%). The highlighted molecular functions are ATP, and GTP binding (14%) and the prominent cellular components most observed in our data were nuclear membrane (1.5%), acrosomal vesicle (1.4%), and motile cilium (1.3%). Seventeen percent of sperm proteins identified in this study were involved in metabolic pathways. To the best of our knowledge, this data represents the first total sperm proteome from indigenous cattle, Malnad Gidda. We believe that our preliminary findings could provide a strong base for the future understanding of bovine sperm proteomics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bos%20indicus" title="Bos indicus">Bos indicus</a>, <a href="https://publications.waset.org/abstracts/search?q=Malnad%20Gidda" title=" Malnad Gidda"> Malnad Gidda</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20spectrometry" title=" mass spectrometry"> mass spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=spermatozoa" title=" spermatozoa"> spermatozoa</a> </p> <a href="https://publications.waset.org/abstracts/84954/high-throughput-lc-msms-studies-on-sperm-proteome-of-malnad-gidda-bos-indicus-cattle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84954.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27874</span> Genomic and Proteomic Variation in Glycine Max Genotypes towards Salinity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faheema%20Khan">Faheema Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to investigate the influence of genetic background on salt tolerance in Soybean (Glycine max) ten soybean genotypes released/notified in India were selected. (Pusa-20, Pusa-40, Pusa-37, Pusa-16, Pusa-24, Pusa-22, BRAGG, PK-416, PK-1042, and DS-9712). The 10-day-old seedlings were subjected to 0, 25, 50, 75, 100, 125, and 150 mM NaCl for 15 days. Plant growth, leaf osmotic adjustment, and RAPD analysis were studied. In comparison to control plants, the plant growth in all genotypes was decreased by salt stress, respectively. Salt stress decreased leaf osmotic potential in all genotypes however the maximum reduction was observed in genotype Pusa-24 followed by PK-416 and Pusa-20. The difference in osmotic adjustment between all the genotypes was correlated with the concentrations of ion examined such as Na+ and the leaf proline concentration. These results suggest that the genotypic variation for salt tolerance can be partially accounted for by plant physiological measures. The genetic polymorphisms between soybean genotypes differing in response to salt stress were characterized using 25 RAPD primers. These primers generated a total of 1640 amplification products, among which 1615 were found to be polymorphic. A very high degree of polymorphism (98.30%) was observed. UPGMA cluster analysis of genetic similarity indices grouped all the genotypes into two major clusters. Intra-clustering within the two clusters precisely grouped the 10 genotypes in sub-cluster as expected from their physiological findings. Our results show that RAPD technique is a sensitive, precise and efficient tool for genomic analysis in soybean genotypes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glycine%20max" title="glycine max">glycine max</a>, <a href="https://publications.waset.org/abstracts/search?q=NaCl" title=" NaCl"> NaCl</a>, <a href="https://publications.waset.org/abstracts/search?q=RAPD" title=" RAPD"> RAPD</a>, <a href="https://publications.waset.org/abstracts/search?q=proteomics" title=" proteomics"> proteomics</a> </p> <a href="https://publications.waset.org/abstracts/18089/genomic-and-proteomic-variation-in-glycine-max-genotypes-towards-salinity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18089.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">585</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27873</span> Specific Colon Cancer Prophylaxis Using Dendritic Stem Cells and Gold Nanoparticles Functionalized with Colon Cancer Epitopes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Teodora%20Mocan">Teodora Mocan</a>, <a href="https://publications.waset.org/abstracts/search?q=Matea%20Cristian"> Matea Cristian</a>, <a href="https://publications.waset.org/abstracts/search?q=Cornel%20Iancu"> Cornel Iancu</a>, <a href="https://publications.waset.org/abstracts/search?q=Flaviu%20A.%20Tabaran"> Flaviu A. Tabaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Florin%20Zaharie"> Florin Zaharie</a>, <a href="https://publications.waset.org/abstracts/search?q=Bartos%20Dana"> Bartos Dana</a>, <a href="https://publications.waset.org/abstracts/search?q=Lucian%20Mocan"> Lucian Mocan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Colon cancer (CC) a lethal human malignancy, is one of the most commonly diagnosed cancer. With its high increased mortality rate, as well as low survival rate combined with high resistance to chemotherapy CC, represents one of the most important global health issues. In the presented research, we have developed a distinct nanostructured colon carcinoma vaccine model based on a nano-biosystem composed of 39 nm gold nanoparticles conjugated to colon cancer epitopes. We prove by means of proteomic analysis, immunocytochemistry, flow cytometry and hyperspectral microscopy that our developed nanobioconjugate was able to contribute to an optimal prophylactic effect against CC by promoting major histocompatibility complex mediated (MHC) antigen presentation by dendritic cells. We may conclude that the proposed immunoprophylactic approach could be more effective than the current treatments of CC because it promotes recognition of the tumoral antigens by the immune system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anticancer%20vaccine" title="anticancer vaccine">anticancer vaccine</a>, <a href="https://publications.waset.org/abstracts/search?q=colon%20cancer" title=" colon cancer"> colon cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=gold%20nanoparticles" title=" gold nanoparticles"> gold nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=tumor%20antigen" title=" tumor antigen"> tumor antigen</a> </p> <a href="https://publications.waset.org/abstracts/33389/specific-colon-cancer-prophylaxis-using-dendritic-stem-cells-and-gold-nanoparticles-functionalized-with-colon-cancer-epitopes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33389.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">453</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27872</span> Comparative Proteomic Profiling of Planktonic and Biofilms from Staphylococcus aureus Using Tandem Mass Tag-Based Mass Spectrometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arifur%20Rahman">Arifur Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Ardeshir%20Amirkhani"> Ardeshir Amirkhani</a>, <a href="https://publications.waset.org/abstracts/search?q=Honghua%20Hu"> Honghua Hu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mark%20Molloy"> Mark Molloy</a>, <a href="https://publications.waset.org/abstracts/search?q=Karen%20Vickery"> Karen Vickery</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction and Objectives: Staphylococcus aureus and coagulase-negative staphylococci comprises approximately 65% of infections associated with medical devices and are well known for their biofilm formatting ability. Biofilm-related infections are extremely difficult to eradicate owing to their high tolerance to antibiotics and host immune defences. Currently, there is no efficient method for early biofilm detection. A better understanding to enable detection of biofilm specific proteins in vitro and in vivo can be achieved by studying planktonic and different growth phases of biofilms using a proteome analysis approach. Our goal was to construct a reference map of planktonic and biofilm associated proteins of S. aureus. Methods: S. aureus reference strain (ATCC 25923) was used to grow 24 hours planktonic, 3-day wet biofilm (3DWB), and 12-day wet biofilm (12DWB). Bacteria were grown in tryptic soy broth (TSB) liquid medium. Planktonic growth was used late logarithmic bacteria, and the Centres for Disease Control (CDC) biofilm reactor was used to grow 3 days, and 12-day hydrated biofilms, respectively. Samples were subjected to reduction, alkylation and digestion steps prior to Multiplex labelling using Tandem Mass Tag (TMT) 10-plex reagent (Thermo Fisher Scientific). The labelled samples were pooled and fractionated by high pH RP-HPLC which followed by loading of the fractions on a nanoflow UPLC system (Eksigent UPLC system, AB SCIEX). Mass spectrometry (MS) data were collected on an Orbitrap Elite (Thermo Fisher Scientific) Mass Spectrometer. Protein identification and relative quantitation of protein levels were performed using Proteome Discoverer (version 1.3, Thermo Fisher Scientific). After the extraction of protein ratios with Proteome Discoverer, additional processing, and statistical analysis was done using the TMTPrePro R package. Results and Discussion: The present study showed that a considerable proteomic difference exists among planktonic and biofilms from S. aureus. We identified 1636 total extracellular secreted proteins, of which 350 and 137 proteins of 3DWB and 12DWB showed significant abundance variation from planktonic preparation, respectively. Of these, simultaneous up-regulation in between 3DWB and 12DWB proteins such as extracellular matrix-binding protein ebh, enolase, transketolase, triosephosphate isomerase, chaperonin, peptidase, pyruvate kinase, hydrolase, aminotransferase, ribosomal protein, acetyl-CoA acetyltransferase, DNA gyrase subunit A, glycine glycyltransferase and others we found in this biofilm producer. On the contrary, simultaneous down-regulation in between 3DWB and 12DWB proteins such as alpha and delta-hemolysin, lipoteichoic acid synthase, enterotoxin I, serine protease, lipase, clumping factor B, regulatory protein Spx, phosphoglucomutase, and others also we found in this biofilm producer. In addition, we also identified a big percentage of hypothetical proteins including unique proteins. Therefore, a comprehensive knowledge of planktonic and biofilm associated proteins identified by S. aureus will provide a basis for future studies on the development of vaccines and diagnostic biomarkers. Conclusions: In this study, we constructed an initial reference map of planktonic and various growth phase of biofilm associated proteins which might be helpful to diagnose biofilm associated infections. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacterial%20biofilms" title="bacterial biofilms">bacterial biofilms</a>, <a href="https://publications.waset.org/abstracts/search?q=CDC%20bioreactor" title=" CDC bioreactor"> CDC bioreactor</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20aureus" title=" S. aureus"> S. aureus</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20spectrometry" title=" mass spectrometry"> mass spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=TMT" title=" TMT"> TMT</a> </p> <a href="https://publications.waset.org/abstracts/77519/comparative-proteomic-profiling-of-planktonic-and-biofilms-from-staphylococcus-aureus-using-tandem-mass-tag-based-mass-spectrometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77519.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27871</span> Analysis of Extracellular Vesicles Interactomes of two Isoforms of Tau Protein via SHSY-5Y Cell Lines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Aladwan">Mohammad Aladwan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alzheimer’s disease (AD) is a widespread dementing illness with a complex and poorly understood etiology. An important role in improving our understanding of the AD process is the modeling of disease-associated changes in tau protein phosphorylation, a protein known to mediate events essential to the onset and progression of AD. A main feature of AD is the abnormal phosphorylation of tau protein and the presence of neurofibrillary tangles. In order to evaluate the respective roles of the microtubule-binding region (MTBR) and alternatively spliced exons in the N-terminal projection domains in AD, we have constructed SHSY-5Y cell lines that stably overexpress four different species of tau protein (4R2N, 4R0N, N(E-2), N(E+2)). Since the toxicity and spreading of tau lesions in AD depends on the interactions of tau with other proteins, we have performed a proteomic analysis of exosome-fraction interactomes for cell lysates and media samples that were isolated from SHSY-5Y cell lines. Functional analysis of tau interactomes based on gene ontology (GO) terms was performed using the String 10.5 database program. The highest number of exosomes proteomes and tau associated proteins were found with 4R2N isoform (2771 and 159) in cell lysate and they have a high strength of connectivity (78%) between proteins, while N(E-2) isoform in the media proteomes has the highest number of proteins and tau associated protein (1829 and 205). Moreover, known AD markers were significantly enriched in secreted interactomes relative to lysate interactomes in the SHSY-5Y cells of tau isoforms lacking exons 2 and 3 in the N-terminal. The lack of exon 2 (E-2) from tau protein can be mediated by tau secretion and spreading to different cells. Enriched functions in the secreted E-2 interactome include signaling and developmental pathways that have been linked to a) tau misprocessing and lesion development and b) tau secretion and which, therefore, could play novel roles in AD pathogenesis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alzheimer%27s%20disease" title="Alzheimer&#039;s disease">Alzheimer&#039;s disease</a>, <a href="https://publications.waset.org/abstracts/search?q=dementia" title=" dementia"> dementia</a>, <a href="https://publications.waset.org/abstracts/search?q=tau%20protein" title=" tau protein"> tau protein</a>, <a href="https://publications.waset.org/abstracts/search?q=neurodegenration%20disease" title=" neurodegenration disease"> neurodegenration disease</a> </p> <a href="https://publications.waset.org/abstracts/149709/analysis-of-extracellular-vesicles-interactomes-of-two-isoforms-of-tau-protein-via-shsy-5y-cell-lines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149709.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27870</span> Modern Proteomics and the Application of Machine Learning Analyses in Proteomic Studies of Chronic Kidney Disease of Unknown Etiology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dulanjali%20Ranasinghe">Dulanjali Ranasinghe</a>, <a href="https://publications.waset.org/abstracts/search?q=Isuru%20Supasan"> Isuru Supasan</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaushalya%20Premachandra"> Kaushalya Premachandra</a>, <a href="https://publications.waset.org/abstracts/search?q=Ranjan%20Dissanayake"> Ranjan Dissanayake</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajith%20Rajapaksha"> Ajith Rajapaksha</a>, <a href="https://publications.waset.org/abstracts/search?q=Eustace%20Fernando"> Eustace Fernando</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Proteomics studies of organisms are considered to be significantly information-rich compared to their genomic counterparts because proteomes of organisms represent the expressed state of all proteins of an organism at a given time. In modern top-down and bottom-up proteomics workflows, the primary analysis methods employed are gel–based methods such as two-dimensional (2D) electrophoresis and mass spectrometry based methods. Machine learning (ML) and artificial intelligence (AI) have been used increasingly in modern biological data analyses. In particular, the fields of genomics, DNA sequencing, and bioinformatics have seen an incremental trend in the usage of ML and AI techniques in recent years. The use of aforesaid techniques in the field of proteomics studies is only beginning to be materialised now. Although there is a wealth of information available in the scientific literature pertaining to proteomics workflows, no comprehensive review addresses various aspects of the combined use of proteomics and machine learning. The objective of this review is to provide a comprehensive outlook on the application of machine learning into the known proteomics workflows in order to extract more meaningful information that could be useful in a plethora of applications such as medicine, agriculture, and biotechnology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=proteomics" title="proteomics">proteomics</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=gel-based%20proteomics" title=" gel-based proteomics"> gel-based proteomics</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20spectrometry" title=" mass spectrometry"> mass spectrometry</a> </p> <a href="https://publications.waset.org/abstracts/137471/modern-proteomics-and-the-application-of-machine-learning-analyses-in-proteomic-studies-of-chronic-kidney-disease-of-unknown-etiology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137471.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27869</span> Quantitative Proteome Analysis and Bioactivity Testing of New Zealand Honeybee Venom</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Ghamsari">Maryam Ghamsari</a>, <a href="https://publications.waset.org/abstracts/search?q=Mitchell%20Nye-Wood"> Mitchell Nye-Wood</a>, <a href="https://publications.waset.org/abstracts/search?q=Kelvin%20Wang"> Kelvin Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Angela%20Juhasz"> Angela Juhasz</a>, <a href="https://publications.waset.org/abstracts/search?q=Michelle%20Colgrave"> Michelle Colgrave</a>, <a href="https://publications.waset.org/abstracts/search?q=Don%20Otter"> Don Otter</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Lu"> Jun Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Nazimah%20Hamid"> Nazimah Hamid</a>, <a href="https://publications.waset.org/abstracts/search?q=Thao%20T.%20Le"> Thao T. Le</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bee venom, a complex mixture of peptides, proteins, enzymes, and other bioactive compounds, has been widely studied for its therapeutic application. This study investigated the proteins present in New Zealand (NZ) honeybee venom (BV) using bottom-up proteomics. Two sample digestion techniques, in-solution digestion and filter-aided sample preparation (FASP), were employed to obtain the optimal method for protein digestion. Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH–MS) analysis was conducted to quantify the protein compositions of NZ BV and investigate variations in collection years. Our results revealed high protein content (158.12 µg/mL), with the FASP method yielding a larger number of identified proteins (125) than in-solution digestion (95). SWATH–MS indicated melittin and phospholipase A2 as the most abundant proteins. Significant variations in protein compositions across samples from different years (2018, 2019, 2021) were observed, with implications for venom's bioactivity. In vitro testing demonstrated immunomodulatory and antioxidant activities, with a viable range for cell growth established at 1.5-5 µg/mL. The study underscores the value of proteomic tools in characterizing bioactive compounds in bee venom, paving the way for deeper exploration into their therapeutic potentials. Further research is needed to fractionate the venom and elucidate the mechanisms of action for the identified bioactive components. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=honeybee%20venom" title="honeybee venom">honeybee venom</a>, <a href="https://publications.waset.org/abstracts/search?q=proteomics" title=" proteomics"> proteomics</a>, <a href="https://publications.waset.org/abstracts/search?q=bioactivity" title=" bioactivity"> bioactivity</a>, <a href="https://publications.waset.org/abstracts/search?q=fractionation" title=" fractionation"> fractionation</a>, <a href="https://publications.waset.org/abstracts/search?q=swath-ms" title=" swath-ms"> swath-ms</a>, <a href="https://publications.waset.org/abstracts/search?q=melittin" title=" melittin"> melittin</a>, <a href="https://publications.waset.org/abstracts/search?q=phospholipase%20a2" title=" phospholipase a2"> phospholipase a2</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20zealand" title=" new zealand"> new zealand</a>, <a href="https://publications.waset.org/abstracts/search?q=immunomodulatory" title=" immunomodulatory"> immunomodulatory</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a> </p> <a href="https://publications.waset.org/abstracts/187480/quantitative-proteome-analysis-and-bioactivity-testing-of-new-zealand-honeybee-venom" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187480.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">40</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27868</span> Evaluation of the Role of Bacteria-Derived Flavins as Plant Growth Promoting Molecules</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nivethika%20Ajeethan">Nivethika Ajeethan</a>, <a href="https://publications.waset.org/abstracts/search?q=Lord%20Abbey"> Lord Abbey</a>, <a href="https://publications.waset.org/abstracts/search?q=Svetlana%20Yurge"> Svetlana Yurge</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Riboflavin is a water-soluble vitamin and the direct precursor of the flavin cofactors flavin mononucleotide and flavin adenine dinucleotide. Flavins (FLs) are bioactive molecules that have a beneficial effect on plant growth and development. Sinorhizobium meliloti strain 1021 is an α-proteobacterium that forms agronomically important N₂-fixing symbiosis with Medicago plants and secretes a considerable amount of FLs (FL⁺ strain). This strain was also implicated in plant growth promotion in its association with non-legume host plants. However, the mechanism of this plant growth promotion is not well understood. In this study, we evaluated the growth and development of tomato plants inoculated with S. meliloti 1021 and its mutant (FL⁻ strain) with limited ability to secrete FLs. Our preliminary experiments indicated that inoculation with FL⁺ strain significantly increased seedlings' root and shoot length and surface area compared to those of plants inoculated with FL⁻ strain. For example, the root lengths of 9-day old seedlings inoculated with FL⁺ strain were 35% longer than seedlings inoculated with the mutant. Proteomic approaches combined with the analysis of plant physiological responses such as growth and photosynthetic rate, stomatal conductance, transpiration rate, and chlorophyll content will be used to evaluate the host-plant response to bacteria-derived FLs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flavin" title="flavin">flavin</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20growth%20promotion" title=" plant growth promotion"> plant growth promotion</a>, <a href="https://publications.waset.org/abstracts/search?q=riboflavin" title=" riboflavin"> riboflavin</a>, <a href="https://publications.waset.org/abstracts/search?q=Sinorhizobium%20meliloti" title=" Sinorhizobium meliloti"> Sinorhizobium meliloti</a> </p> <a href="https://publications.waset.org/abstracts/135412/evaluation-of-the-role-of-bacteria-derived-flavins-as-plant-growth-promoting-molecules" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135412.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27867</span> Gene Expression Profile Reveals Breast Cancer Proliferation and Metastasis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nandhana%20Vivek">Nandhana Vivek</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhaskar%20Gogoi"> Bhaskar Gogoi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayyavu%20Mahesh"> Ayyavu Mahesh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Breast cancer metastasis plays a key role in cancer progression and fatality. The present study examines the potential causes of metastasis in breast cancer by investigating the novel interactions between genes and their pathways. The gene expression profile of GSE99394, GSE1246464, and GSE103865 was downloaded from the GEO data repository to analyze the differentially expressed genes (DEGs). Protein-protein interactions, target factor interactions, pathways and gene relationships, and functional enrichment networks were investigated. The proliferation pathway was shown to be highly expressed in breast cancer progression and metastasis in all three datasets. Gene Ontology analysis revealed 11 DEGs as gene targets to control breast cancer metastasis: LYN, DLGAP5, CXCR4, CDC6, NANOG, IFI30, TXP2, AGTR1, MKI67, and FTH1. Upon studying the function, genomic and proteomic data, and pathway involvement of the target genes, DLGAP5 proved to be a promising candidate due to it being highly differentially expressed in all datasets. The study takes a unique perspective on the avenues through which DLGAP5 promotes metastasis. The current investigation helps pave the way in understanding the role DLGAP5 plays in metastasis, which leads to an increased incidence of death among breast cancer patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genomics" title="genomics">genomics</a>, <a href="https://publications.waset.org/abstracts/search?q=metastasis" title=" metastasis"> metastasis</a>, <a href="https://publications.waset.org/abstracts/search?q=microarray" title=" microarray"> microarray</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer" title=" cancer"> cancer</a> </p> <a href="https://publications.waset.org/abstracts/155120/gene-expression-profile-reveals-breast-cancer-proliferation-and-metastasis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155120.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27866</span> Chitin Degradation in Pseudomonas fluorescens</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azhar%20Alhasawi">Azhar Alhasawi</a>, <a href="https://publications.waset.org/abstracts/search?q=Vasu%20D.%20Appanna"> Vasu D. Appanna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chitin, the second most abundant bio-polymer in nature after cellulose, composed of β (1→4) linked N-acetylglucosamine (GlcNAc), is a major structural component in the cell walls of fungi and the shells of crustaceans. Chitin and its derivatives are gaining importance of economic value due to its biological activity and its industrial and biomedical applications. There are several methods to hydrolyze chitin to NAG, but they are typically expensive and environmentally unfriendly. Chitinase which catalyzes the breakdown of chitin to NAG has received much attention owing to its various applications in biotechnology. The presented research examines the ability of the versatile soil microbe, Pseudomonas fluorescens grown in chitin medium to produce chitinase and a variety of value-added products under abiotic stress. We have found that with high pH, Pseudomonas fluorescens enable to metabolize chitin more than with neutral pH and the overexpression of chitinase was also increased. P-dimethylaminobenzaldehyde (DMAB) assay for NAG production will be monitored and a combination of sodium dodecyl polyacrylamide gels will be used to monitor the proteomic and metabolomic changes as a result of the abiotic stress. The bioreactor of chitinase will also be utilized. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pseudomonas%20fluorescens" title="Pseudomonas fluorescens">Pseudomonas fluorescens</a>, <a href="https://publications.waset.org/abstracts/search?q=chitin" title=" chitin"> chitin</a>, <a href="https://publications.waset.org/abstracts/search?q=DMAB" title=" DMAB"> DMAB</a>, <a href="https://publications.waset.org/abstracts/search?q=chitinase" title=" chitinase"> chitinase</a> </p> <a href="https://publications.waset.org/abstracts/6211/chitin-degradation-in-pseudomonas-fluorescens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6211.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27865</span> Exploring Time-Series Phosphoproteomic Datasets in the Context of Network Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sandeep%20Kaur">Sandeep Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Jenny%20Vuong"> Jenny Vuong</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcel%20Julliard"> Marcel Julliard</a>, <a href="https://publications.waset.org/abstracts/search?q=Sean%20O%27Donoghue"> Sean O&#039;Donoghue</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Time-series data are useful for modelling as they can enable model-evaluation. However, when reconstructing models from phosphoproteomic data, often non-exact methods are utilised, as the knowledge regarding the network structure, such as, which kinases and phosphatases lead to the observed phosphorylation state, is incomplete. Thus, such reactions are often hypothesised, which gives rise to uncertainty. Here, we propose a framework, implemented via a web-based tool (as an extension to Minardo), which given time-series phosphoproteomic datasets, can generate κ models. The incompleteness and uncertainty in the generated model and reactions are clearly presented to the user via the visual method. Furthermore, we demonstrate, via a toy EGF signalling model, the use of algorithmic verification to verify κ models. Manually formulated requirements were evaluated with regards to the model, leading to the highlighting of the nodes causing unsatisfiability (i.e. error causing nodes). We aim to integrate such methods into our web-based tool and demonstrate how the identified erroneous nodes can be presented to the user via the visual method. Thus, in this research we present a framework, to enable a user to explore phosphorylation proteomic time-series data in the context of models. The observer can visualise which reactions in the model are highly uncertain, and which nodes cause incorrect simulation outputs. A tool such as this enables an end-user to determine the empirical analysis to perform, to reduce uncertainty in the presented model - thus enabling a better understanding of the underlying system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%CE%BA-models" title="κ-models">κ-models</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20verification" title=" model verification"> model verification</a>, <a href="https://publications.waset.org/abstracts/search?q=time-series%20phosphoproteomic%20datasets" title=" time-series phosphoproteomic datasets"> time-series phosphoproteomic datasets</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty%20and%20error%20visualisation" title=" uncertainty and error visualisation"> uncertainty and error visualisation</a> </p> <a href="https://publications.waset.org/abstracts/60772/exploring-time-series-phosphoproteomic-datasets-in-the-context-of-network-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60772.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27864</span> Modulation of Fish Allergenicity towards the Production of a Low Allergen Farmed Fish</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Denise%20Schrama">Denise Schrama</a>, <a href="https://publications.waset.org/abstracts/search?q=Claudia%20Raposo"> Claudia Raposo</a>, <a href="https://publications.waset.org/abstracts/search?q=Pedro%20Rodrigues"> Pedro Rodrigues</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Food allergies are conducted by a hypersensitive response of the immune system. These allergies are a global concern for the public health. Consumption of fish is increasing worldwide as it is a healthy meat with high nutritional value. Unfortunately, fish can cause adverse immune-mediate reactions, affecting part of the population with higher incidence in children. β-parvalbumin, a small, highly conserved stable, calcium or magnesium binding muscle protein is the main fish allergen. In fish-allergic patients, cross-reactivity between different fish species exist due to recognition of highly identical protein regions. Enolases, aldolases, or fish gelatin are other identified fish allergens in some fish species. With no available cure for fish allergies, clinical management is only based on an avoidance diet aiming at the total exclusion of offending food. Methods: Mediterranean fish (S. aurata and D. labrax) were fed specifically designed diets, enriched in components that target the expression or inactivation of parvalbumin (creatine and EDTA, respectively). After 90 days fish were sampled and biological tissues were excised. Proteomics was used to access fish allergens characterization and expression in muscle while IgE assays to confirm the lower allergenic potential are conducted in patients with history of fish allergies. Fish welfare and quality of flesh were established with biochemical, texture and sensorial analysis. Results: Fish welfare shows no major impact between diets. In case of creatine supplementation in D. labrax proteomic analysis show a slight decrease in parvalbumin expression. No accumulation of this compound was found in muscle. For EDTA supplementation in S. aurata IgE assay show a slight decrease in allergenicity when using sera of fish allergic patients. Conclusion: Supplementation with these two compounds seems to change slightly the allergenicity of the two mean Mediterranean species. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fish%20allergies" title="fish allergies">fish allergies</a>, <a href="https://publications.waset.org/abstracts/search?q=fish%20nutrition" title=" fish nutrition"> fish nutrition</a>, <a href="https://publications.waset.org/abstracts/search?q=proteomics" title=" proteomics"> proteomics</a>, <a href="https://publications.waset.org/abstracts/search?q=aquaculture" title=" aquaculture"> aquaculture</a> </p> <a href="https://publications.waset.org/abstracts/93373/modulation-of-fish-allergenicity-towards-the-production-of-a-low-allergen-farmed-fish" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93373.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27863</span> Proteomic Analysis of Cytoplasmic Antigen from Brucella canis to Characterize Immunogenic Proteins Responded with Naturally Infected Dogs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20J.%20Lee">J. J. Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20R.%20Sung"> S. R. Sung</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20J.%20Yum"> E. J. Yum</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20C.%20Kim"> S. C. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20H.%20Hyun"> B. H. Hyun</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Her"> M. Her</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20S.%20Lee"> H. S. Lee </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Canine brucellosis is a critical problem in dogs leading to reproductive diseases which are mainly caused by Brucella canis. There are, nonetheless, not clear symptoms so that it may go unnoticed in most of the cases. Serodiagnosis for canine brucellosis has not been confirmed. Moreover, it has substantial difficulties due to broad cross-reactivity between the rough cell wall antigens of B. canis and heterospecific antibodies present in normal, uninfected dogs. Thus, this study was conducted to characterize the immunogenic proteins in cytoplasmic antigen (CPAg) of B. canis, which defined the antigenic sensitivity of the humoral antibody responses to B. canis-infected dogs. In analysis of B. canis CPAg, first, we extracted and purified the cytoplasmic proteins from cultured B. canis by hot-saline inactivation, ultrafiltration, sonication, and ultracentrifugation step by step according to the sonicated antigen extract method. For characterization of this antigen, we checked the sort and range of each protein on SDS-PAGE and verified the immunogenic proteins leading to reaction with antisera of B. canis-infected dogs. Selected immunodominant proteins were identified using MALDI-MS/MS. As a result, in an immunoproteomic assay, several polypeptides in CPAg on one or two-dimensional electrophoresis (DE) were specifically reacted to antisera from B. canis-infected dogs but not from non-infected dogs. The polypeptides with approximate 150, 80, 60, 52, 33, 26, 17, 15, 13, 11 kDa on 1-DE were dominantly recognized by antisera from B. canis-infected dogs. In the immunoblot profiles on 2-DE, ten immunodominant proteins in CPAg were detected with antisera of infected dogs between pI 3.5-6.5 at approximate 35 to 10 KDa, without any nonspecific reaction with sera in non-infected dogs. Ten immunodominant proteins identified by MALDI-MS/MS were identified as superoxide dismutase, bacteroferritin, amino acid ABC transporter substrate-binding protein, extracellular solute-binding protein family3, transaldolase, 26kDa periplasmic immunogenic protein, Rhizopine-binding protein, enoyl-CoA hydratase, arginase and type1 glyceraldehyde-3-phosphate dehydrogenase. Most of these proteins were determined by their cytoplasmic or periplasmic localization with metabolism and transporter functions. Consequently, this study discovered and identified the prominent immunogenic proteins in B. canis CPAg, highlighting that those antigenic proteins may accomplish a specific serodiagnosis for canine brucellosis. Furthermore, we will evaluate those immunodominant proteins for applying to the advanced diagnostic methods with high specificity and accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brucella%20canis" title="Brucella canis">Brucella canis</a>, <a href="https://publications.waset.org/abstracts/search?q=Canine%20brucellosis" title=" Canine brucellosis"> Canine brucellosis</a>, <a href="https://publications.waset.org/abstracts/search?q=cytoplasmic%20antigen" title=" cytoplasmic antigen"> cytoplasmic antigen</a>, <a href="https://publications.waset.org/abstracts/search?q=immunogenic%20proteins" title=" immunogenic proteins"> immunogenic proteins</a> </p> <a href="https://publications.waset.org/abstracts/86209/proteomic-analysis-of-cytoplasmic-antigen-from-brucella-canis-to-characterize-immunogenic-proteins-responded-with-naturally-infected-dogs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86209.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=proteomic%20analysis&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=proteomic%20analysis&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=proteomic%20analysis&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=proteomic%20analysis&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=proteomic%20analysis&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=proteomic%20analysis&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=proteomic%20analysis&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=proteomic%20analysis&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=proteomic%20analysis&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=proteomic%20analysis&amp;page=929">929</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=proteomic%20analysis&amp;page=930">930</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=proteomic%20analysis&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10