CINXE.COM
Search results for: automated geospatial watershed assessment
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <script> var _paq = window._paq = window._paq || []; /* tracker methods like "setCustomDimension" should be called before "trackPageView" */ _paq.push(['trackPageView']); _paq.push(['enableLinkTracking']); (function() { var u="//matomo.waset.org/"; _paq.push(['setTrackerUrl', u+'matomo.php']); _paq.push(['setSiteId', '2']); var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0]; g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s); })(); </script> <!-- End Matomo Code --> <title>Search results for: automated geospatial watershed assessment</title> <meta name="description" content="Search results for: automated geospatial watershed assessment"> <meta name="keywords" content="automated geospatial watershed assessment"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="automated geospatial watershed assessment" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2025/2026/2027">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="automated geospatial watershed assessment"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 6939</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: automated geospatial watershed assessment</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6939</span> Modeling of Erosion and Sedimentation Impacts from off-Road Vehicles in Arid Regions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abigail%20Rosenberg">Abigail Rosenberg</a>, <a href="https://publications.waset.org/abstracts/search?q=Jennifer%20Duan"> Jennifer Duan</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20%20Poteuck"> Michael Poteuck</a>, <a href="https://publications.waset.org/abstracts/search?q=Chunshui%20Yu"> Chunshui Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Barry M. Goldwater Range, West in southwestern Arizona encompasses 2,808 square kilometers of Sonoran Desert. The hyper-arid range has an annual rainfall of less than 10 cm with an average high temperature of 41 degrees Celsius in July to an average low of 4 degrees Celsius in January. The range shares approximately 60 kilometers of the international border with Mexico. A majority of the range is open for recreational use, primarily off-highway vehicles. Because of its proximity to Mexico, the range is also heavily patrolled by U.S. Customs and Border Protection seeking to intercept and apprehend inadmissible people and illicit goods. Decades of off-roading and Border Patrol activities have negatively impacted this sensitive desert ecosystem. To assist the range program managers, this study is developing a model to identify erosion prone areas and calibrate the model’s parameters using the Automated Geospatial Watershed Assessment modeling tool. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arid%20lands" title="arid lands">arid lands</a>, <a href="https://publications.waset.org/abstracts/search?q=automated%20geospatial%20watershed%20assessment" title=" automated geospatial watershed assessment"> automated geospatial watershed assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=erosion%20modeling" title=" erosion modeling"> erosion modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=sedimentation%20modeling" title=" sedimentation modeling"> sedimentation modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=watershed%20modeling" title=" watershed modeling"> watershed modeling</a> </p> <a href="https://publications.waset.org/abstracts/59846/modeling-of-erosion-and-sedimentation-impacts-from-off-road-vehicles-in-arid-regions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59846.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6938</span> Prediction of Saturated Hydraulic Conductivity Dynamics in an Iowan Agriculture Watershed</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Elhakeem">Mohamed Elhakeem</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20N.%20Thanos%20Papanicolaou"> A. N. Thanos Papanicolaou</a>, <a href="https://publications.waset.org/abstracts/search?q=Christopher%20Wilson"> Christopher Wilson</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Jia%20Chang"> Yi-Jia Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a physically-based, modelling framework was developed to predict saturated hydraulic conductivity (KSAT) dynamics in the Clear Creek Watershed (CCW), Iowa. The modelling framework integrated selected pedotransfer functions and watershed models with geospatial tools. A number of pedotransfer functions and agricultural watershed models were examined to select the appropriate models that represent the study site conditions. Models selection was based on statistical measures of the models’ errors compared to the KSAT field measurements conducted in the CCW under different soil, climate and land use conditions. The study has shown that the predictions of the combined pedotransfer function of Rosetta and the Water Erosion Prediction Project (WEPP) provided the best agreement to the measured KSAT values in the CCW compared to the other tested models. Therefore, Rosetta and WEPP were integrated with the Geographic Information System (GIS) tools for visualization of the data in forms of geospatial maps and prediction of KSAT variability in CCW due to the seasonal changes in climate and land use activities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=saturated%20hydraulic%20conductivity" title="saturated hydraulic conductivity">saturated hydraulic conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=pedotransfer%20functions" title=" pedotransfer functions"> pedotransfer functions</a>, <a href="https://publications.waset.org/abstracts/search?q=watershed%20models" title=" watershed models"> watershed models</a>, <a href="https://publications.waset.org/abstracts/search?q=geospatial%20tools" title=" geospatial tools"> geospatial tools</a> </p> <a href="https://publications.waset.org/abstracts/5877/prediction-of-saturated-hydraulic-conductivity-dynamics-in-an-iowan-agriculture-watershed" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5877.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6937</span> Enabling Quantitative Urban Sustainability Assessment with Big Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Changfeng%20Fu">Changfeng Fu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sustainable urban development has been widely accepted a common sense in the modern urban planning and design. However, the measurement and assessment of urban sustainability, especially the quantitative assessment have been always an issue obsessing planning and design professionals. This paper will present an on-going research on the principles and technologies to develop a quantitative urban sustainability assessment principles and techniques which aim to integrate indicators, geospatial and geo-reference data, and assessment techniques together into a mechanism. It is based on the principles and techniques of geospatial analysis with GIS and statistical analysis methods. The decision-making technologies and methods such as AHP and SMART are also adopted to address overall assessment conclusions. The possible interfaces and presentation of data and quantitative assessment results are also described. This research is based on the knowledge, situations and data sources of UK, but it is potentially adaptable to other countries or regions. The implementation potentials of the mechanism are also discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=urban%20sustainability%20assessment" title="urban sustainability assessment">urban sustainability assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=quantitative%20analysis" title=" quantitative analysis"> quantitative analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability%20indicator" title=" sustainability indicator"> sustainability indicator</a>, <a href="https://publications.waset.org/abstracts/search?q=geospatial%20data" title=" geospatial data"> geospatial data</a>, <a href="https://publications.waset.org/abstracts/search?q=big%20data" title=" big data"> big data</a> </p> <a href="https://publications.waset.org/abstracts/59903/enabling-quantitative-urban-sustainability-assessment-with-big-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59903.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6936</span> Development of Open Source Geospatial Certification Model Based on Geospatial Technology Competency Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tanzeel%20Ur%20Rehman%20Khan">Tanzeel Ur Rehman Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Franz%20Josef%20Behr"> Franz Josef Behr</a>, <a href="https://publications.waset.org/abstracts/search?q=Phillip%20Davis"> Phillip Davis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Open source geospatial certifications are needed in geospatial technology education and industry sector. In parallel with proprietary software, free and open source software solutions become important in geospatial technology research and play an important role for the growth of the geospatial industry. ESRI, GISCI (GIS Certification Institute), ASPRS (American Society of Photogrammetry and remote sensing), and Meta spatial are offering certifications on proprietary and open source software. These are portfolio and competency based certifications depending on GIS Body of Knowledge (Bok). The analysis of these certification approaches might lead to the discovery of some gaps in them and will open a new way to develop certifications related to the geospatial open source (OS). This new certification will investigate the different geospatial competencies according to open source tools that help to identify geospatial professionals and strengthen the geospatial academic content. The goal of this research is to introduce a geospatial certification model based on geospatial technology competency model (GTCM).The developed certification will not only incorporate the importance of geospatial education and production of the geospatial competency-based workforce in universities and companies (private or public) as well as describe open source solutions with tools and technology. Job analysis, market analysis, survey analysis of this certification opens a new horizon for business as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geospatial%20certification" title="geospatial certification">geospatial certification</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20source" title=" open source"> open source</a>, <a href="https://publications.waset.org/abstracts/search?q=geospatial%20technology%20competency%20model" title=" geospatial technology competency model"> geospatial technology competency model</a>, <a href="https://publications.waset.org/abstracts/search?q=geoscience" title=" geoscience"> geoscience</a> </p> <a href="https://publications.waset.org/abstracts/33486/development-of-open-source-geospatial-certification-model-based-on-geospatial-technology-competency-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33486.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">572</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6935</span> Automated Natural Hazard Zonation System with Internet-SMS Warning: Distributed GIS for Sustainable Societies Creating Schema and Interface for Mapping and Communication</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Devanjan%20Bhattacharya">Devanjan Bhattacharya</a>, <a href="https://publications.waset.org/abstracts/search?q=Jitka%20Komarkova"> Jitka Komarkova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research describes the implementation of a novel and stand-alone system for dynamic hazard warning. The system uses all existing infrastructure already in place like mobile networks, a laptop/PC and the small installation software. The geospatial dataset are the maps of a region which are again frugal. Hence there is no need to invest and it reaches everyone with a mobile. A novel architecture of hazard assessment and warning introduced where major technologies in ICT interfaced to give a unique WebGIS based dynamic real time geohazard warning communication system. A never before architecture introduced for integrating WebGIS with telecommunication technology. Existing technologies interfaced in a novel architectural design to address a neglected domain in a way never done before–through dynamically updatable WebGIS based warning communication. The work publishes new architecture and novelty in addressing hazard warning techniques in sustainable way and user friendly manner. Coupling of hazard zonation and hazard warning procedures into a single system has been shown. Generalized architecture for deciphering a range of geo-hazards has been developed. Hence the developmental work presented here can be summarized as the development of internet-SMS based automated geo-hazard warning communication system; integrating a warning communication system with a hazard evaluation system; interfacing different open-source technologies towards design and development of a warning system; modularization of different technologies towards development of a warning communication system; automated data creation, transformation and dissemination over different interfaces. The architecture of the developed warning system has been functionally automated as well as generalized enough that can be used for any hazard and setup requirement has been kept to a minimum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geospatial" title="geospatial">geospatial</a>, <a href="https://publications.waset.org/abstracts/search?q=web-based%20GIS" title=" web-based GIS"> web-based GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=geohazard" title=" geohazard"> geohazard</a>, <a href="https://publications.waset.org/abstracts/search?q=warning%20system" title=" warning system"> warning system</a> </p> <a href="https://publications.waset.org/abstracts/5232/automated-natural-hazard-zonation-system-with-internet-sms-warning-distributed-gis-for-sustainable-societies-creating-schema-and-interface-for-mapping-and-communication" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5232.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">414</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6934</span> Assessment of Sustainability in the Wulo Abiye Watershed, Central Highlands of Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Getabalew%20Derib">Getabalew Derib</a>, <a href="https://publications.waset.org/abstracts/search?q=Arragaw%20Alemayehu"> Arragaw Alemayehu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Assessing the sustainability of watersheds holds significant importance for regional natural resource management and to achieve sustainable development. This study investigated the sustainability of the Wulo Abiye watershed, central highlands of Ethiopia. The sustainability status of the watershed was evaluated by using 17 indicators representing the economic, social, and environmental dimensions of sustainable development goals (SDGs) based on the local and existing conditions of the watershed. The results indicated that environmental sustainability was at a ’ high’ level, while social and economic sustainability and the aggregate index were at ‘moderate’ levels. The overall level of community participation in the planning and evaluation phases of watershed management was at ’low’ levels. The implementation phase was at ’high’ level. Overall , the sustainability status of watershed management and level of community participation were at ‘moderate’ levels. The study concluded that integrated support is needed to overcome the identified challenges to achieve sustainable development in watersheds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wulo%20Abiye%20watershed" title="Wulo Abiye watershed">Wulo Abiye watershed</a>, <a href="https://publications.waset.org/abstracts/search?q=community%20participation" title=" community participation"> community participation</a>, <a href="https://publications.waset.org/abstracts/search?q=watershed%20management" title=" watershed management"> watershed management</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title=" sustainable development"> sustainable development</a> </p> <a href="https://publications.waset.org/abstracts/186988/assessment-of-sustainability-in-the-wulo-abiye-watershed-central-highlands-of-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186988.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">53</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6933</span> Modeling of Sediment Yield and Streamflow of Watershed Basin in the Philippines Using the Soil Water Assessment Tool Model for Watershed Sustainability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Warda%20L.%20Panondi">Warda L. Panondi</a>, <a href="https://publications.waset.org/abstracts/search?q=Norihiro%20Izumi"> Norihiro Izumi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sedimentation is a significant threat to the sustainability of reservoirs and their watershed. In the Philippines, the Pulangi watershed experienced a high sediment loss mainly due to land conversions and plantations that showed critical erosion rates beyond the tolerable limit of -10 ton/ha/yr in all of its sub-basin. From this event, the prediction of runoff volume and sediment yield is essential to examine using the country's soil conservation techniques realistically. In this research, the Pulangi watershed was modeled using the soil water assessment tool (SWAT) to predict its watershed basin's annual runoff and sediment yield. For the calibration and validation of the model, the SWAT-CUP was utilized. The model was calibrated with monthly discharge data for 1990-1993 and validated for 1994-1997. Simultaneously, the sediment yield was calibrated in 2014 and validated in 2015 because of limited observed datasets. Uncertainty analysis and calculation of efficiency indexes were accomplished through the SUFI-2 algorithm. According to the coefficient of determination (R2), Nash Sutcliffe efficiency (NSE), King-Gupta efficiency (KGE), and PBIAS, the calculation of streamflow indicates a good performance for both calibration and validation periods while the sediment yield resulted in a satisfactory performance for both calibration and validation. Therefore, this study was able to identify the most critical sub-basin and severe needs of soil conservation. Furthermore, this study will provide baseline information to prevent floods and landslides and serve as a useful reference for land-use policies and watershed management and sustainability in the Pulangi watershed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pulangi%20watershed" title="Pulangi watershed">Pulangi watershed</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment%20yield" title=" sediment yield"> sediment yield</a>, <a href="https://publications.waset.org/abstracts/search?q=streamflow" title=" streamflow"> streamflow</a>, <a href="https://publications.waset.org/abstracts/search?q=SWAT%20model" title=" SWAT model"> SWAT model</a> </p> <a href="https://publications.waset.org/abstracts/133502/modeling-of-sediment-yield-and-streamflow-of-watershed-basin-in-the-philippines-using-the-soil-water-assessment-tool-model-for-watershed-sustainability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133502.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6932</span> Multi-Temporal Analysis of Vegetation Change within High Contaminated Watersheds by Superfund Sites in Wisconsin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Punwath%20Prum">Punwath Prum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Superfund site is recognized publicly to be a severe environmental problem to surrounding communities and biodiversity due to its hazardous chemical waste from industrial activities. It contaminates the soil and water but also is a leading potential point-source pollution affecting ecosystem in watershed areas from chemical substances. The risks of Superfund site on watershed can be effectively measured by utilizing publicly available data and geospatial analysis by free and open source application. This study analyzed the vegetation change within high risked contaminated watersheds in Wisconsin. The high risk watersheds were measured by which watershed contained high number Superfund sites. The study identified two potential risk watersheds in Lafayette and analyzed the temporal changes of vegetation within the areas based on Normalized difference vegetation index (NDVI) analysis. The raster statistic was used to compare the change of NDVI value over the period. The analysis results showed that the NDVI value within the Superfund sites’ boundary has a significant lower value than nearby surrounding and provides an analogy for environmental hazard affect by the chemical contamination in Superfund site. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20contamination" title="soil contamination">soil contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20analysis" title=" spatial analysis"> spatial analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=watershed" title=" watershed"> watershed</a> </p> <a href="https://publications.waset.org/abstracts/119900/multi-temporal-analysis-of-vegetation-change-within-high-contaminated-watersheds-by-superfund-sites-in-wisconsin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119900.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6931</span> Assessment of the Impacts of Climate Change on Watershed Runoff Using Soil and Water Assessment Tool Model in Southeast Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samuel%20Emeka%20Anarah">Samuel Emeka Anarah</a>, <a href="https://publications.waset.org/abstracts/search?q=Kingsley%20Nnaemeka%20Ogbu"> Kingsley Nnaemeka Ogbu</a>, <a href="https://publications.waset.org/abstracts/search?q=Obasi%20Arinze"> Obasi Arinze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quantifying the hydrological response due to changes in climate change is imperative for proper management of water resources within a watershed. The impact of climate change on the hydrology of the Upper Ebony River (UER) watershed, South East Nigeria, was studied using the Soil and Water Assessment Tool (SWAT) hydrological model. A climatological time series analysis from 1985 - 2014 using non-parametric test showed significant negative trends in precipitation and relative humidity trend while minimum and maximum temperature, solar radiation and wind speed showed significant positive trends. Future hypothetical land-use change scenarios (Scenarios 1, 2, 3 and 4) representing urbanization and conversion of forest to agricultural land were combined with future downscaled climate model (CSIRO-Mk3-6-0) and simulated in SWAT model. Relative to the Baseline scenario (2005 - 2014), the results showed a decrease in streamflow by 10.29%, 26.20%, 11.80% and 26.72% for Scenarios 1, 2, 3, and 4 respectively. Model results suggest development of adaptation strategies to cope with the predicted hydrological conditions under future climate change in the watershed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrology" title=" hydrology"> hydrology</a>, <a href="https://publications.waset.org/abstracts/search?q=runoff" title=" runoff"> runoff</a>, <a href="https://publications.waset.org/abstracts/search?q=SWAT%20model" title=" SWAT model"> SWAT model</a> </p> <a href="https://publications.waset.org/abstracts/87127/assessment-of-the-impacts-of-climate-change-on-watershed-runoff-using-soil-and-water-assessment-tool-model-in-southeast-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87127.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6930</span> Identification of Watershed Landscape Character Types in Middle Yangtze River within Wuhan Metropolitan Area</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huijie%20Wang">Huijie Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Bin%20Zhang"> Bin Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In China, the middle reaches of the Yangtze River are well-developed, boasting a wealth of different types of watershed landscape. In this regard, landscape character assessment (LCA) can serve as a basis for protection, management and planning of trans-regional watershed landscape types. For this study, we chose the middle reaches of the Yangtze River in Wuhan metropolitan area as our study site, wherein the water system consists of rich variety in landscape types. We analyzed trans-regional data to cluster and identify types of landscape characteristics at two levels. 55 basins were analyzed as variables with topography, land cover and river system features in order to identify the watershed landscape character types. For watershed landscape, drainage density and degree of curvature were specified as special variables to directly reflect the regional differences of river system features. Then, we used the principal component analysis (PCA) method and hierarchical clustering algorithm based on the geographic information system (GIS) and statistical products and services solution (SPSS) to obtain results for clusters of watershed landscape which were divided into 8 characteristic groups. These groups highlighted watershed landscape characteristics of different river systems as well as key landscape characteristics that can serve as a basis for targeted protection of watershed landscape characteristics, thus helping to rationally develop multi-value landscape resources and promote coordinated development of trans-regions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GIS" title="GIS">GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20clustering" title=" hierarchical clustering"> hierarchical clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=landscape%20character" title=" landscape character"> landscape character</a>, <a href="https://publications.waset.org/abstracts/search?q=landscape%20typology" title=" landscape typology"> landscape typology</a>, <a href="https://publications.waset.org/abstracts/search?q=principal%20component%20analysis" title=" principal component analysis"> principal component analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=watershed" title=" watershed"> watershed</a> </p> <a href="https://publications.waset.org/abstracts/105594/identification-of-watershed-landscape-character-types-in-middle-yangtze-river-within-wuhan-metropolitan-area" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105594.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6929</span> Digital Geography and Geographic Information System in Schools: Towards a Hierarchical Geospatial Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mary%20Fargher">Mary Fargher</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper examines the opportunities of using a more hierarchical approach to geospatial enquiry in using GIS in school geography. A case is made that it is not just the lack of teacher technological knowledge that is stopping some teachers from using GIS in the classroom but that there is a gap in their understanding of how to link GIS use more specifically to the pedagogy of teaching geography with GIS. Using a hierarchical approach to geospatial enquiry as a theoretical framework, the analysis shows clearly how concepts of spatial distribution, interaction, relation, comparison, and temporal relationships can be used by teachers more explicitly to capitalise on the analytical power of GIS and to construct what can be interpreted as powerful geographical knowledge. An exemplar illustrating this approach on the topic of geo-hazards is then presented for critical analysis and discussion. Recommendations are then made for a model of progression for geography teacher education with GIS through hierarchical geospatial enquiry that takes into account beginner, intermediate, and more advanced users. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20geography" title="digital geography">digital geography</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=education" title=" education"> education</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20geospatial%20enquiry" title=" hierarchical geospatial enquiry"> hierarchical geospatial enquiry</a>, <a href="https://publications.waset.org/abstracts/search?q=powerful%20geographical%20knowledge" title=" powerful geographical knowledge"> powerful geographical knowledge</a> </p> <a href="https://publications.waset.org/abstracts/125215/digital-geography-and-geographic-information-system-in-schools-towards-a-hierarchical-geospatial-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125215.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6928</span> Risks for Cyanobacteria Harmful Algal Blooms in Georgia Piedmont Waterbodies Due to Land Management and Climate Interactions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sam%20Weber">Sam Weber</a>, <a href="https://publications.waset.org/abstracts/search?q=Deepak%20Mishra"> Deepak Mishra</a>, <a href="https://publications.waset.org/abstracts/search?q=Susan%20Wilde"> Susan Wilde</a>, <a href="https://publications.waset.org/abstracts/search?q=Elizabeth%20Kramer"> Elizabeth Kramer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The frequency and severity of cyanobacteria harmful blooms (CyanoHABs) have been increasing over time, with point and non-point source eutrophication and shifting climate paradigms being blamed as the primary culprits. Excessive nutrients, warm temperatures, quiescent water, and heavy and less regular rainfall create more conducive environments for CyanoHABs. CyanoHABs have the potential to produce a spectrum of toxins that cause gastrointestinal stress, organ failure, and even death in humans and animals. To promote enhanced, proactive CyanoHAB management, risk modeling using geospatial tools can act as predictive mechanisms to supplement current CyanoHAB monitoring, management and mitigation efforts. The risk maps would empower water managers to focus their efforts on high risk water bodies in an attempt to prevent CyanoHABs before they occur, and/or more diligently observe those waterbodies. For this research, exploratory spatial data analysis techniques were used to identify the strongest predicators for CyanoHAB blooms based on remote sensing-derived cyanobacteria cell density values for 771 waterbodies in the Georgia Piedmont and landscape characteristics of their watersheds. In-situ datasets for cyanobacteria cell density, nutrients, temperature, and rainfall patterns are not widely available, so free gridded geospatial datasets were used as proxy variables for assessing CyanoHAB risk. For example, the percent of a watershed that is agriculture was used as a proxy for nutrient loading, and the summer precipitation within a watershed was used as a proxy for water quiescence. Cyanobacteria cell density values were calculated using atmospherically corrected images from the European Space Agency’s Sentinel-2A satellite and multispectral instrument sensor at a 10-meter ground resolution. Seventeen explanatory variables were calculated for each watershed utilizing the multi-petabyte geospatial catalogs available within the Google Earth Engine cloud computing interface. The seventeen variables were then used in a multiple linear regression model, and the strongest predictors of cyanobacteria cell density were selected for the final regression model. The seventeen explanatory variables included land cover composition, winter and summer temperature and precipitation data, topographic derivatives, vegetation index anomalies, and soil characteristics. Watershed maximum summer temperature, percent agriculture, percent forest, percent impervious, and waterbody area emerged as the strongest predictors of cyanobacteria cell density with an adjusted R-squared value of 0.31 and a p-value ~ 0. The final regression equation was used to make a normalized cyanobacteria cell density index, and a Jenks Natural Break classification was used to assign waterbodies designations of low, medium, or high risk. Of the 771 waterbodies, 24.38% were low risk, 37.35% were medium risk, and 38.26% were high risk. This study showed that there are significant relationships between free geospatial datasets representing summer maximum temperatures, nutrient loading associated with land use and land cover, and the area of a waterbody with cyanobacteria cell density. This data analytics approach to CyanoHAB risk assessment corroborated the literature-established environmental triggers for CyanoHABs, and presents a novel approach for CyanoHAB risk mapping in waterbodies across the greater southeastern United States. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyanobacteria" title="cyanobacteria">cyanobacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20use%2Fland%20cover" title=" land use/land cover"> land use/land cover</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20mapping" title=" risk mapping"> risk mapping</a> </p> <a href="https://publications.waset.org/abstracts/79007/risks-for-cyanobacteria-harmful-algal-blooms-in-georgia-piedmont-waterbodies-due-to-land-management-and-climate-interactions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79007.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6927</span> Current Design Approach for Seismic Resistant Automated Rack Supported Warehouses: Strong Points and Critical Aspects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Agnese%20Natali">Agnese Natali</a>, <a href="https://publications.waset.org/abstracts/search?q=Francesco%20Morelli"> Francesco Morelli</a>, <a href="https://publications.waset.org/abstracts/search?q=Walter%20Salvatore"> Walter Salvatore</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Automated Rack Supported Warehouses (ARSWs) are structures currently designed as steel racks. Even if there are common characteristics, there are differences that don’t allow to adopt the same design approach. Aiming to highlight the factors influencing the design and the behavior of ARSWs, a set of 5 structures designed by 5 European companies specialized in this field is used to perform both a critical analysis of the design approaches and the assessment of the seismic performance, which is used to point out the criticalities and the necessity of new design philosophy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=steel%20racks" title="steel racks">steel racks</a>, <a href="https://publications.waset.org/abstracts/search?q=automated%20rack%20supported%20warehouse" title=" automated rack supported warehouse"> automated rack supported warehouse</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20walled%20cold-formed%20elements" title=" thin walled cold-formed elements"> thin walled cold-formed elements</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20assessment" title=" seismic assessment"> seismic assessment</a> </p> <a href="https://publications.waset.org/abstracts/143717/current-design-approach-for-seismic-resistant-automated-rack-supported-warehouses-strong-points-and-critical-aspects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143717.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6926</span> Households’ Willingness to Pay for Watershed Management Practices in Lake Hawassa Watershed, Southern Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mulugeta%20Fola">Mulugeta Fola</a>, <a href="https://publications.waset.org/abstracts/search?q=Mengistu%20Ketema"> Mengistu Ketema</a>, <a href="https://publications.waset.org/abstracts/search?q=Kumilachew%20Alamerie"> Kumilachew Alamerie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Watershed provides vast economic benefits within and beyond the management area of interest. But most watersheds in Ethiopia are increasingly facing the threats of degradation due to both natural and man-made causes. To reverse these problems, communities’ participation in sustainable management programs is among the necessary measures. Hence, this study assessed the households’ willingness to pay for watershed management practices through a contingent valuation study approach. Double bounded dichotomous choice with open-ended follow-up format was used to elicit the households’ willingness to pay. Based on data collected from 275 randomly selected households, descriptive statistics results indicated that most households (79.64%) were willing to pay for watershed management practices. A bivariate Probit model was employed to identify determinants of households’ willingness to pay and estimate mean willingness to pay. Its result shows that age, gender, income, livestock size, perception of watershed degradation, social position, and offered bids were important variables affecting willingness to pay for watershed management practices. The study also revealed that the mean willingness to pay for watershed management practices was calculated to be 58.41 Birr and 47.27 Birr per year from the double bounded and open-ended format, respectively. The study revealed that the aggregate welfare gains from watershed management practices were calculated to be 931581.09 Birr and 753909.23 Birr per year from double bounded dichotomous choice and open-ended format, respectively. Therefore, the policymakers should make households to pay for the services of watershed management practices in the study area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bivariate%20probit%20model" title="bivariate probit model">bivariate probit model</a>, <a href="https://publications.waset.org/abstracts/search?q=contingent%20valuation" title=" contingent valuation"> contingent valuation</a>, <a href="https://publications.waset.org/abstracts/search?q=watershed%20management%20practices" title=" watershed management practices"> watershed management practices</a>, <a href="https://publications.waset.org/abstracts/search?q=willingness%20to%20pay" title=" willingness to pay"> willingness to pay</a> </p> <a href="https://publications.waset.org/abstracts/139235/households-willingness-to-pay-for-watershed-management-practices-in-lake-hawassa-watershed-southern-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139235.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6925</span> Building and Tree Detection Using Multiscale Matched Filtering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20H.%20%C3%96zcan">Abdullah H. Özcan</a>, <a href="https://publications.waset.org/abstracts/search?q=Dilara%20Hisar"> Dilara Hisar</a>, <a href="https://publications.waset.org/abstracts/search?q=Yetkin%20Sayar"> Yetkin Sayar</a>, <a href="https://publications.waset.org/abstracts/search?q=Cem%20%C3%9Cnsalan"> Cem Ünsalan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, an automated building and tree detection method is proposed using DSM data and true orthophoto image. A multiscale matched filtering is used on DSM data. Therefore, first watershed transform is applied. Then, Otsu’s thresholding method is used as an adaptive threshold to segment each watershed region. Detected objects are masked with NDVI to separate buildings and trees. The proposed method is able to detect buildings and trees without entering any elevation threshold. We tested our method on ISPRS semantic labeling dataset and obtained promising results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20detection" title="building detection">building detection</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20maximum%20filtering" title=" local maximum filtering"> local maximum filtering</a>, <a href="https://publications.waset.org/abstracts/search?q=matched%20filtering" title=" matched filtering"> matched filtering</a>, <a href="https://publications.waset.org/abstracts/search?q=multiscale" title=" multiscale"> multiscale</a> </p> <a href="https://publications.waset.org/abstracts/59277/building-and-tree-detection-using-multiscale-matched-filtering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59277.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6924</span> Challenges and Opportunities: One Stop Processing for the Automation of Indonesian Large-Scale Topographic Base Map Using Airborne LiDAR Data </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elyta%20Widyaningrum">Elyta Widyaningrum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The LiDAR data acquisition has been recognizable as one of the fastest solution to provide the basis data for topographic base mapping in Indonesia. The challenges to accelerate the provision of large-scale topographic base maps as a development plan basis gives the opportunity to implement the automated scheme in the map production process. The one stop processing will also contribute to accelerate the map provision especially to conform with the Indonesian fundamental spatial data catalog derived from ISO 19110 and geospatial database integration. Thus, the automated LiDAR classification, DTM generation and feature extraction will be conducted in one GIS-software environment to form all layers of topographic base maps. The quality of automated topographic base map will be assessed and analyzed based on its completeness, correctness, contiguity, consistency and possible customization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automation" title="automation">automation</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS%20environment" title=" GIS environment"> GIS environment</a>, <a href="https://publications.waset.org/abstracts/search?q=LiDAR%20processing" title=" LiDAR processing"> LiDAR processing</a>, <a href="https://publications.waset.org/abstracts/search?q=map%20quality" title=" map quality"> map quality</a> </p> <a href="https://publications.waset.org/abstracts/60469/challenges-and-opportunities-one-stop-processing-for-the-automation-of-indonesian-large-scale-topographic-base-map-using-airborne-lidar-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6923</span> Flood Hazard Assessment and Land Cover Dynamics of the Orai Khola Watershed, Bardiya, Nepal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Loonibha%20Manandhar">Loonibha Manandhar</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajendra%20Bhandari"> Rajendra Bhandari</a>, <a href="https://publications.waset.org/abstracts/search?q=Kumud%20Raj%20Kafle"> Kumud Raj Kafle</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nepal’s Terai region is a part of the Ganges river basin which is one of the most disaster-prone areas of the world, with recurrent monsoon flooding causing millions in damage and the death and displacement of hundreds of people and households every year. The vulnerability of human settlements to natural disasters such as floods is increasing, and mapping changes in land use practices and hydro-geological parameters is essential in developing resilient communities and strong disaster management policies. The objective of this study was to develop a flood hazard zonation map of Orai Khola watershed and map the decadal land use/land cover dynamics of the watershed. The watershed area was delineated using SRTM DEM, and LANDSAT images were classified into five land use classes (forest, grassland, sediment and bare land, settlement area and cropland, and water body) using pixel-based semi-automated supervised maximum likelihood classification. Decadal changes in each class were then quantified using spatial modelling. Flood hazard mapping was performed by assigning weights to factors slope, rainfall distribution, distance from the river and land use/land cover on the basis of their estimated influence in causing flood hazard and performing weighed overlay analysis to identify areas that are highly vulnerable. The forest and grassland coverage increased by 11.53 km² (3.8%) and 1.43 km² (0.47%) from 1996 to 2016. The sediment and bare land areas decreased by 12.45 km² (4.12%) from 1996 to 2016 whereas settlement and cropland areas showed a consistent increase to 14.22 km² (4.7%). Waterbody coverage also increased to 0.3 km² (0.09%) from 1996-2016. 1.27% (3.65 km²) of total watershed area was categorized into very low hazard zone, 20.94% (60.31 km²) area into low hazard zone, 37.59% (108.3 km²) area into moderate hazard zone, 29.25% (84.27 km²) area into high hazard zone and 31 villages which comprised 10.95% (31.55 km²) were categorized into high hazard zone area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flood%20hazard" title="flood hazard">flood hazard</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20use%2Fland%20cover" title=" land use/land cover"> land use/land cover</a>, <a href="https://publications.waset.org/abstracts/search?q=Orai%20river" title=" Orai river"> Orai river</a>, <a href="https://publications.waset.org/abstracts/search?q=supervised%20maximum%20likelihood%20classification" title=" supervised maximum likelihood classification"> supervised maximum likelihood classification</a>, <a href="https://publications.waset.org/abstracts/search?q=weighed%20overlay%20analysis" title=" weighed overlay analysis"> weighed overlay analysis</a> </p> <a href="https://publications.waset.org/abstracts/83533/flood-hazard-assessment-and-land-cover-dynamics-of-the-orai-khola-watershed-bardiya-nepal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83533.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6922</span> Development of National Scale Hydropower Resource Assessment Scheme Using SWAT and Geospatial Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rowane%20May%20A.%20Fesalbon">Rowane May A. Fesalbon</a>, <a href="https://publications.waset.org/abstracts/search?q=Greyland%20C.%20Agno"> Greyland C. Agno</a>, <a href="https://publications.waset.org/abstracts/search?q=Jodel%20L.%20Cuasay"> Jodel L. Cuasay</a>, <a href="https://publications.waset.org/abstracts/search?q=Dindo%20A.%20Malonzo"> Dindo A. Malonzo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ma.%20Rosario%20Concepcion%20O.%20Ang"> Ma. Rosario Concepcion O. Ang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Department of Energy of the Republic of the Philippines estimates that the country’s energy reserves for 2015 are dwindling– observed in the rotating power outages in several localities. To aid in the energy crisis, a national hydropower resource assessment scheme is developed. Hydropower is a resource that is derived from flowing water and difference in elevation. It is a renewable energy resource that is deemed abundant in the Philippines – being an archipelagic country that is rich in bodies of water and water resources. The objectives of this study is to develop a methodology for a national hydropower resource assessment using hydrologic modeling and geospatial techniques in order to generate resource maps for future reference and use of the government and other stakeholders. The methodology developed for this purpose is focused on two models – the implementation of the Soil and Water Assessment Tool (SWAT) for the river discharge and the use of geospatial techniques to analyze the topography and obtain the head, and generate the theoretical hydropower potential sites. The methodology is highly coupled with Geographic Information Systems to maximize the use of geodatabases and the spatial significance of the determined sites. The hydrologic model used in this workflow is SWAT integrated in the GIS software ArcGIS. The head is determined by a developed algorithm that utilizes a Synthetic Aperture Radar (SAR)-derived digital elevation model (DEM) which has a resolution of 10-meters. The initial results of the developed workflow indicate hydropower potential in the river reaches ranging from pico (less than 5 kW) to mini (1-3 MW) theoretical potential. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ArcSWAT" title="ArcSWAT">ArcSWAT</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrologic%20model" title=" hydrologic model"> hydrologic model</a>, <a href="https://publications.waset.org/abstracts/search?q=hydropower" title=" hydropower"> hydropower</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a> </p> <a href="https://publications.waset.org/abstracts/40789/development-of-national-scale-hydropower-resource-assessment-scheme-using-swat-and-geospatial-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40789.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6921</span> Automated Driving Deep Neural Networks Model Accuracy and Performance Assessment in a Simulated Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=David%20Tena-Gago">David Tena-Gago</a>, <a href="https://publications.waset.org/abstracts/search?q=Jose%20M.%20Alcaraz%20Calero"> Jose M. Alcaraz Calero</a>, <a href="https://publications.waset.org/abstracts/search?q=Qi%20Wang"> Qi Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The evolution and integration of automated vehicles have become more and more tangible in recent years. State-of-the-art technological advances in the field of camera-based Artificial Intelligence (AI) and computer vision greatly favor the performance and reliability of the Advanced Driver Assistance System (ADAS), leading to a greater knowledge of vehicular operation and resembling human behavior. However, the exclusive use of this technology still seems insufficient to control vehicular operation at 100%. To reveal the degree of accuracy of the current camera-based automated driving AI modules, this paper studies the structure and behavior of one of the main solutions in a controlled testing environment. The results obtained clearly outline the lack of reliability when using exclusively the AI model in the perception stage, thereby entailing using additional complementary sensors to improve its safety and performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accuracy%20assessment" title="accuracy assessment">accuracy assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=AI-driven%20mobility" title=" AI-driven mobility"> AI-driven mobility</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title=" artificial intelligence"> artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=automated%20vehicles" title=" automated vehicles"> automated vehicles</a> </p> <a href="https://publications.waset.org/abstracts/149282/automated-driving-deep-neural-networks-model-accuracy-and-performance-assessment-in-a-simulated-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149282.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6920</span> Computer-Aided Detection of Simultaneous Abdominal Organ CT Images by Iterative Watershed Transform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Belgherbi%20Aicha">Belgherbi Aicha</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadjidj%20Ismahen"> Hadjidj Ismahen</a>, <a href="https://publications.waset.org/abstracts/search?q=Bessaid%20Abdelhafid"> Bessaid Abdelhafid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Interpretation of medical images benefits from anatomical and physiological priors to optimize computer-aided diagnosis applications. Segmentation of liver, spleen and kidneys is regarded as a major primary step in the computer-aided diagnosis of abdominal organ diseases. In this paper, a semi-automated method for medical image data is presented for the abdominal organ segmentation data using mathematical morphology. Our proposed method is based on hierarchical segmentation and watershed algorithm. In our approach, a powerful technique has been designed to suppress over-segmentation based on mosaic image and on the computation of the watershed transform. Our algorithm is currency in two parts. In the first, we seek to improve the quality of the gradient-mosaic image. In this step, we propose a method for improving the gradient-mosaic image by applying the anisotropic diffusion filter followed by the morphological filters. Thereafter, we proceed to the hierarchical segmentation of the liver, spleen and kidney. To validate the segmentation technique proposed, we have tested it on several images. Our segmentation approach is evaluated by comparing our results with the manual segmentation performed by an expert. The experimental results are described in the last part of this work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anisotropic%20diffusion%20filter" title="anisotropic diffusion filter">anisotropic diffusion filter</a>, <a href="https://publications.waset.org/abstracts/search?q=CT%20images" title=" CT images"> CT images</a>, <a href="https://publications.waset.org/abstracts/search?q=morphological%20filter" title=" morphological filter"> morphological filter</a>, <a href="https://publications.waset.org/abstracts/search?q=mosaic%20image" title=" mosaic image"> mosaic image</a>, <a href="https://publications.waset.org/abstracts/search?q=simultaneous%20organ%20segmentation" title=" simultaneous organ segmentation"> simultaneous organ segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20watershed%20algorithm" title=" the watershed algorithm"> the watershed algorithm</a> </p> <a href="https://publications.waset.org/abstracts/19602/computer-aided-detection-of-simultaneous-abdominal-organ-ct-images-by-iterative-watershed-transform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19602.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">446</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6919</span> Debris Flow Mapping Using Geographical Information System Based Model and Geospatial Data in Middle Himalayas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anand%20Malik">Anand Malik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Himalayas with high tectonic activities poses a great threat to human life and property. Climate change is another reason which triggering extreme events multiple fold effect on high mountain glacial environment, rock falls, landslides, debris flows, flash flood and snow avalanches. One such extreme event of cloud burst along with breach of moraine dammed Chorabri Lake occurred from June 14 to June 17, 2013, triggered flooding of Saraswati and Mandakini rivers in the Kedarnath Valley of Rudraprayag district of Uttrakhand state of India. As a result, huge volume of water with its high velocity created a catastrophe of the century, which resulted into loss of large number of human/animals, pilgrimage, tourism, agriculture and property. Thus a comprehensive assessment of debris flow hazards requires GIS-based modeling using numerical methods. The aim of present study is to focus on analysis and mapping of debris flow movements using geospatial data with flow-r (developed by team at IGAR, University of Lausanne). The model is based on combined probabilistic and energetic algorithms for the assessment of spreading of flow with maximum run out distances. Aster Digital Elevation Model (DEM) with 30m x 30m cell size (resolution) is used as main geospatial data for preparing the run out assessment, while Landsat data is used to analyze land use land cover change in the study area. The results of the study area show that model can be applied with great accuracy as the model is very useful in determining debris flow areas. The results are compared with existing available landslides/debris flow maps. ArcGIS software is used in preparing run out susceptibility maps which can be used in debris flow mitigation and future land use planning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=debris%20flow" title="debris flow">debris flow</a>, <a href="https://publications.waset.org/abstracts/search?q=geospatial%20data" title=" geospatial data"> geospatial data</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS%20based%20modeling" title=" GIS based modeling"> GIS based modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=flow-R" title=" flow-R "> flow-R </a> </p> <a href="https://publications.waset.org/abstracts/85185/debris-flow-mapping-using-geographical-information-system-based-model-and-geospatial-data-in-middle-himalayas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85185.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6918</span> Automated Manual Handling Risk Assessments: Practitioner Experienced Determinants of Automated Risk Analysis and Reporting Being a Benefit or Distraction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Cowley">S. Cowley</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Lawrance"> M. Lawrance</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20%20Bick"> D. Bick</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20McCord"> R. McCord</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Technology that automates manual handling (musculoskeletal disorder or MSD) risk assessments is increasingly available to ergonomists, engineers, generalist health and safety practitioners alike. The risk assessment process is generally based on the use of wearable motion sensors that capture information about worker movements for real-time or for posthoc analysis. Traditionally, MSD risk assessment is undertaken with the assistance of a checklist such as that from the SafeWork Australia code of practice, the expert assessor observing the task and ideally engaging with the worker in a discussion about the detail. Automation enables the non-expert to complete assessments and does not always require the assessor to be there. This clearly has cost and time benefits for the practitioner but is it an improvement on the assessment by the human. Human risk assessments draw on the knowledge and expertise of the assessor but, like all risk assessments, are highly subjective. The complexity of the checklists and models used in the process can be off-putting and sometimes will lead to the assessment becoming the focus and the end rather than a means to an end; the focus on risk control is lost. Automated risk assessment handles the complexity of the assessment for the assessor and delivers a simple risk score that enables decision-making regarding risk control. Being machine-based, they are objective and will deliver the same each time they assess an identical task. However, the WHS professional needs to know that this emergent technology asks the right questions and delivers the right answers. Whether it improves the risk assessment process and results or simply distances the professional from the task and the worker. They need clarity as to whether automation of manual task risk analysis and reporting leads to risk control or to a focus on the worker. Critically, they need evidence as to whether automation in this area of hazard management leads to better risk control or just a bigger collection of assessments. Practitioner experienced determinants of this automated manual task risk analysis and reporting being a benefit or distraction will address an understanding of emergent risk assessment technology, its use and things to consider when making decisions about adopting and applying these technologies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automated" title="automated">automated</a>, <a href="https://publications.waset.org/abstracts/search?q=manual-handling" title=" manual-handling"> manual-handling</a>, <a href="https://publications.waset.org/abstracts/search?q=risk-assessment" title=" risk-assessment"> risk-assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=machine-based" title=" machine-based"> machine-based</a> </p> <a href="https://publications.waset.org/abstracts/148338/automated-manual-handling-risk-assessments-practitioner-experienced-determinants-of-automated-risk-analysis-and-reporting-being-a-benefit-or-distraction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148338.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6917</span> Assessment of Soil Erosion Risk Using Soil and Water Assessment Tools Model: Case of Siliana Watershed, Northwest Tunisia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sana%20Dridi">Sana Dridi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jalel%20Aouissi"> Jalel Aouissi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafla%20Attia"> Rafla Attia</a>, <a href="https://publications.waset.org/abstracts/search?q=Taoufik%20Hermassi"> Taoufik Hermassi</a>, <a href="https://publications.waset.org/abstracts/search?q=Thouraya%20Sahli"> Thouraya Sahli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil erosion is an increasing issue in Mediterranean countries. In Tunisia, the capacity of dam reservoirs continues to decrease as a consequence of soil erosion. This study aims to predict sediment yield to enrich soil management practices using Soil and Water Assessment Tools model (SWAT) in the Siliana watershed (1041.6 km²), located in the northwest of Tunisia. A database was constructed using remote sensing and Geographical Information System. Climatic and flow data were collected from water resources directorates in Tunisia. The SWAT model was built to simulate hydrological processes and sediment transport. A sensitivity analysis, calibration, and validation were performed using SWAT-CUP software. The model calibration of stream flow simulations shows a good performance with NSE and R² values of 0.77 and 0.79, respectively. The model validation shows a very good performance with values of NSE and R² for 0.8 and 0.88, respectively. After calibration and validation of stream flow simulation, the model was used to simulate the soil erosion and sediment load transport. The spatial distributions of soil loss rate for determining the critical sediment source areas show that 63 % of the study area has a low soil loss rate less than 7 t ha⁻¹y⁻¹. The annual average soil loss rate simulated with the SWAT model in the Siliana watershed is 4.62 t ha⁻¹y⁻¹. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20erosion" title="water erosion">water erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=SWAT%20model" title=" SWAT model"> SWAT model</a>, <a href="https://publications.waset.org/abstracts/search?q=streamflow" title=" streamflow"> streamflow</a>, <a href="https://publications.waset.org/abstracts/search?q=SWATCUP" title=" SWATCUP"> SWATCUP</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment%20yield" title=" sediment yield"> sediment yield</a> </p> <a href="https://publications.waset.org/abstracts/162454/assessment-of-soil-erosion-risk-using-soil-and-water-assessment-tools-model-case-of-siliana-watershed-northwest-tunisia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162454.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6916</span> Faculty Use of Geospatial Tools for Deep Learning in Science and Engineering Courses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Laura%20Rodriguez%20Amaya">Laura Rodriguez Amaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Advances in science, technology, engineering, and mathematics (STEM) are viewed as important to countries’ national economies and their capacities to be competitive in the global economy. However, many countries experience low numbers of students entering these disciplines. To strengthen the professional STEM pipelines, it is important that students are retained in these disciplines at universities. Scholars agree that to retain students in universities’ STEM degrees, it is necessary that STEM course content shows the relevance of these academic fields to their daily lives. By increasing students’ understanding on the importance of these degrees and careers, students’ motivation to remain in these academic programs can also increase. An effective way to make STEM content relevant to students’ lives is the use of geospatial technologies and geovisualization in the classroom. The Geospatial Revolution, and the science and technology associated with it, has provided scientists and engineers with an incredible amount of data about Earth and Earth systems. This data can be used in the classroom to support instruction and make content relevant to all students. The purpose of this study was to find out the prevalence use of geospatial technologies and geovisualization as teaching practices in a USA university. The Teaching Practices Inventory survey, which is a modified version of the Carl Wieman Science Education Initiative Teaching Practices Inventory, was selected for the study. Faculty in the STEM disciplines that participated in a summer learning institute at a 4-year university in the USA constituted the population selected for the study. One of the summer learning institute’s main purpose was to have an impact on the teaching of STEM courses, particularly the teaching of gateway courses taken by many STEM majors. The sample population for the study is 97.5 of the total number of summer learning institute participants. Basic descriptive statistics through the Statistical Package for the Social Sciences (SPSS) were performed to find out: 1) The percentage of faculty using geospatial technologies and geovisualization; 2) Did the faculty associated department impact their use of geospatial tools?; and 3) Did the number of years in a teaching capacity impact their use of geospatial tools? Findings indicate that only 10 percent of respondents had used geospatial technologies, and 18 percent had used geospatial visualization. In addition, the use of geovisualization among faculty of different disciplines was broader than the use of geospatial technologies. The use of geospatial technologies concentrated in the engineering departments. Data seems to indicate the lack of incorporation of geospatial tools in STEM education. The use of geospatial tools is an effective way to engage students in deep STEM learning. Future research should look at the effect on student learning and retention in science and engineering programs when geospatial tools are used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=engineering%20education" title="engineering education">engineering education</a>, <a href="https://publications.waset.org/abstracts/search?q=geospatial%20technology" title=" geospatial technology"> geospatial technology</a>, <a href="https://publications.waset.org/abstracts/search?q=geovisualization" title=" geovisualization"> geovisualization</a>, <a href="https://publications.waset.org/abstracts/search?q=STEM" title=" STEM"> STEM</a> </p> <a href="https://publications.waset.org/abstracts/74820/faculty-use-of-geospatial-tools-for-deep-learning-in-science-and-engineering-courses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74820.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6915</span> Progressive Watershed Management Approaches in Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20H.%20R.%20Sadeghi">S. H. R. Sadeghi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Sadoddin"> A. Sadoddin</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Najafinejad"> A. Najafinejad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Expansionism and ever-increasing population menace all different resources worldwide. The issue, hence, is critical in developing countries like Iran where new technologies are rapidly luxuriated and unguardedly applied, resulting in unexpected outcomes. However, uncommon and comprehensive approaches are introduced to take all the different aspects involved into consideration. In the last decade, few approaches such as community-based, stakeholders-oriented, adaptive and ultimately integrated management, have emerged and are developing for efficient, Co-management or best management, economic and sustainable development and management of watershed resources in Iran. In the present paper, an attempt has been made to focus on state-of-the-art approaches for the management of watershed resources applied in Iran. The study has been then supported by reports of some case studies conducted throughout the country involving previously mentioned approaches. Scrutinizing results of the researches verified a progressive tendency of the managerial approaches in watershed management strategies leading to a general approaching balance situation. The approaches are firmly rooted in educational, research, executive, legal and policy-making sectors leading to some recuperation at different levels. However, there is a long way ahead to naturalize detrimental effects of unscientific, illegal and over exploitation of the watershed resources in Iran. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=comprehensive%20management" title="comprehensive management">comprehensive management</a>, <a href="https://publications.waset.org/abstracts/search?q=ecosystem%20balance" title=" ecosystem balance"> ecosystem balance</a>, <a href="https://publications.waset.org/abstracts/search?q=integrated%20watershed%20management" title=" integrated watershed management"> integrated watershed management</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20resources%20optimization" title=" land resources optimization"> land resources optimization</a> </p> <a href="https://publications.waset.org/abstracts/75597/progressive-watershed-management-approaches-in-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75597.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6914</span> Enhancing Quality Management Systems through Automated Controls and Neural Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shara%20Toibayeva">Shara Toibayeva</a>, <a href="https://publications.waset.org/abstracts/search?q=Irbulat%20Utepbergenov"> Irbulat Utepbergenov</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyazzat%20Issabekova"> Lyazzat Issabekova</a>, <a href="https://publications.waset.org/abstracts/search?q=Aidana%20Bodesova"> Aidana Bodesova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The article discusses the importance of quality assessment as a strategic tool in business and emphasizes the significance of the effectiveness of quality management systems (QMS) for enterprises. The evaluation of these systems takes into account the specificity of quality indicators, the multilevel nature of the system, and the need for optimal selection of the number of indicators and evaluation of the system state, which is critical for making rational management decisions. Methods and models of automated enterprise quality management are proposed, including an intelligent automated quality management system integrated with the Management Information and Control System. These systems make it possible to automate the implementation and support of QMS, increasing the validity, efficiency, and effectiveness of management decisions by automating the functions performed by decision makers and personnel. The paper also emphasizes the use of recurrent neural networks to improve automated quality management. Recurrent neural networks (RNNs) are used to analyze and process sequences of data, which is particularly useful in the context of document quality assessment and non-conformance detection in quality management systems. These networks are able to account for temporal dependencies and complex relationships between different data elements, which improves the accuracy and efficiency of automated decisions. The project was supported by a grant from the Ministry of Education and Science of the Republic of Kazakhstan under the Zhas Galym project No. AR 13268939, dedicated to research and development of digital technologies to ensure consistency of QMS regulatory documents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automated%20control%20system" title="automated control system">automated control system</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20management" title=" quality management"> quality management</a>, <a href="https://publications.waset.org/abstracts/search?q=document%20structure" title=" document structure"> document structure</a>, <a href="https://publications.waset.org/abstracts/search?q=formal%20language" title=" formal language"> formal language</a> </p> <a href="https://publications.waset.org/abstracts/188968/enhancing-quality-management-systems-through-automated-controls-and-neural-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188968.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">46</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6913</span> Calibration and Validation of ArcSWAT Model for Estimation of Surface Runoff and Sediment Yield from Dhangaon Watershed</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20P.%20Tripathi">M. P. Tripathi</a>, <a href="https://publications.waset.org/abstracts/search?q=Priti%20Tiwari"> Priti Tiwari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil and Water Assessment Tool (SWAT) is a distributed parameter continuous time model and was tested on daily and fortnightly basis for a small agricultural watershed (Dhangaon) of Chhattisgarh state in India. The SWAT model recently interfaced with ArcGIS and called as ArcSWAT. The watershed and sub-watershed boundaries, drainage networks, slope and texture maps were generated in the environment of ArcGIS of ArcSWAT. Supervised classification method was used for land use/cover classification from satellite imageries of the years 2009 and 2012. Manning's roughness coefficient 'n' for overland flow and channel flow and Fraction of Field Capacity (FFC) were calibrated for monsoon season of the years 2009 and 2010. The model was validated on a daily basis for the years 2011 and 2012 by using the observed daily rainfall and temperature data. Calibration and validation results revealed that the model was predicting the daily surface runoff and sediment yield satisfactorily. Sensitivity analysis showed that the annual sediment yield was inversely proportional to the overland and channel 'n' values whereas; annual runoff and sediment yields were directly proportional to the FFC. The model was also tested (calibrated and validated) for the fortnightly runoff and sediment yield for the year 2009-10 and 2011-12, respectively. Simulated values of fortnightly runoff and sediment yield for the calibration and validation years compared well with their observed counterparts. The calibration and validation results revealed that the ArcSWAT model could be used for identification of critical sub-watershed and for developing management scenarios for the Dhangaon watershed. Further, the model should be tested for simulating the surface runoff and sediment yield using generated rainfall and temperature before applying it for developing the management scenario for the critical or priority sub-watersheds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=watershed" title="watershed">watershed</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrologic%20and%20water%20quality" title=" hydrologic and water quality"> hydrologic and water quality</a>, <a href="https://publications.waset.org/abstracts/search?q=ArcSWAT%20model" title=" ArcSWAT model"> ArcSWAT model</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=runoff%20and%20sediment%20yield" title=" runoff and sediment yield"> runoff and sediment yield</a> </p> <a href="https://publications.waset.org/abstracts/22112/calibration-and-validation-of-arcswat-model-for-estimation-of-surface-runoff-and-sediment-yield-from-dhangaon-watershed" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22112.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6912</span> Integrated Watershed Management Practice in Chelchai Hyrcanian Forests in the North of Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mashad%20Maramaei">Mashad Maramaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Behrooz%20Chogan"> Behrooz Chogan</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Ahmadi"> Reza Ahmadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Human health and the health of his watershed are inseparable. This is because a watershed is an interconnected system of "land", "water", "air" and "life". Nowadays, most of the world's watersheds show symptoms of unhealthiness and require a prompt solution. It is believed that suitable solution is a participatory and Integrated Watershed Management (IWM). In recent decades the Hyrcanian forests in the north of Iran, which belongs to the end of the third geological era, are suffering from many environmental challenges such as land degradation, increasing trends of flood, drought and accelerated soil erosion. These challenges in the main forested area of the country impose many tangible and intangible damages and human losses. This is despite the fact that in the past decades, forestry programs, watershed management and other activities in the region have been implemented in a parallel and uncoordinated manner. Therefore, recently; the Natural Resources and Watershed Management Organization has resorted to the concept of IWM planning the Hyrcanian watersheds. The Chelchai watershed as mostly degraded watershed in the eastern part of the Hyrcanian forests has been selected as a pilot watershed for implementation of the IWM. It has a drainage area of 25680 hectares and receives an average annual precipitation of 650 mm. In this mountainous region, the average temperature is 17.3 degrees Celsius. About 34% of the watershed is under cultivation, 64% under forest cover, 2% under built up areas and etc. In this research, the effectiveness or ineffectiveness of the IWM model implementation of the Natural Resources and Watershed Management Organization has been evaluated based on questionnaire method and field studies. The results indicated that IWM activities in the study area should be reconsidered and revived. Based on this research and the lessons learned during five years' experience in the Chelchai watershed; authors believe that seven important tasks are necessary for socially acceptable and successful implementation of IWM projects. These are: 1) Establishment of Local Coordination Committee (LCC) at the watershed level 2) working for development of a IWM law among government organizations to organize watershed management and eliminate parallel and contradictory activities 3) More investment on education of local communities, especially women and children 4) Development of trust builder and pattern projects that showing best agricultural and livestock management activities at each of 26 villages 5) Assigning forest protection to local communities. 6) Capacity building of government stakeholders. 7) Helping in the marketing of watershed products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=integrated%20watershed%20management" title="integrated watershed management">integrated watershed management</a>, <a href="https://publications.waset.org/abstracts/search?q=Chelchai" title=" Chelchai"> Chelchai</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyrcanian%20forests" title=" Hyrcanian forests"> Hyrcanian forests</a>, <a href="https://publications.waset.org/abstracts/search?q=Iran" title=" Iran"> Iran</a> </p> <a href="https://publications.waset.org/abstracts/191691/integrated-watershed-management-practice-in-chelchai-hyrcanian-forests-in-the-north-of-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191691.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">27</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6911</span> Effects of Urbanization on Land Use/Land Cover and Stream Flow of a Sub-Tropical River Basin of India </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Satyavati%20Shukla">Satyavati Shukla</a>, <a href="https://publications.waset.org/abstracts/search?q=Lakhan%20V.%20Rathod"> Lakhan V. Rathod</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohan%20V.%20Khire"> Mohan V. Khire</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rapid urbanization changes the land use/land cover pattern of a developing region. Due to these land surface changes, stream flow of the rivers also changes. It is important to investigate the factors affecting hydrological characteristics of the river basin for better river basin management planning. This study is aimed to understand the effect of Land Use/Land Cover (LU/LC) changes on stream flow of Upper Bhima River basin which is highly stressed in terms of water resources. In this study, Upper Bhima River basin is divided into two adjacent sub-watersheds: Mula-Mutha (urbanized) sub-watershed and Bhima (non-urbanized) sub-watershed. First of all, LU/LC changes were estimated over 1980, 2002, and 2009 for both Mula-Mutha and Bhima sub-watersheds. Further, stream flow simulations were done using Soil and Water Assessment Tool (SWAT) for the streams draining both watersheds. Results revealed that stream flow was relatively higher for urbanized sub-watershed. Through Sensitivity Analysis it was observed that out of all the parameters used, base flow was the most sensitive parameter towards LU/LC changes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=land%20use%2Fland%20cover" title="land use/land cover">land use/land cover</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=stream%20flow" title=" stream flow"> stream flow</a>, <a href="https://publications.waset.org/abstracts/search?q=urbanization" title=" urbanization"> urbanization</a> </p> <a href="https://publications.waset.org/abstracts/44757/effects-of-urbanization-on-land-useland-cover-and-stream-flow-of-a-sub-tropical-river-basin-of-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44757.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6910</span> Modeling and Mapping of Soil Erosion Risk Using Geographic Information Systems, Remote Sensing, and Deep Learning Algorithms: Case of the Oued Mikkes Watershed, Morocco</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=My%20Hachem%20Aouragh">My Hachem Aouragh</a>, <a href="https://publications.waset.org/abstracts/search?q=Hind%20Ragragui"> Hind Ragragui</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdellah%20El-Hmaidi"> Abdellah El-Hmaidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Essahlaoui"> Ali Essahlaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelhadi%20El%20Ouali"> Abdelhadi El Ouali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates soil erosion susceptibility in the Oued Mikkes watershed, located in the Meknes-Fez region of northern Morocco, utilizing advanced techniques such as deep learning algorithms and remote sensing integrated within Geographic Information Systems (GIS). Spanning approximately 1,920 km², the watershed is characterized by a semi-arid Mediterranean climate with irregular rainfall and limited water resources. The waterways within the watershed, especially the Oued Mikkes, are vital for agricultural irrigation and potable water supply. The research assesses the extent of erosion risk upstream of the Sidi Chahed dam while developing a spatial model of soil loss. Several important factors, including topography, land use/land cover, and climate, were analyzed, with data on slope, NDVI, and rainfall erosivity processed using deep learning models (DLNN, CNN, RNN). The results demonstrated excellent predictive performance, with AUC values of 0.92, 0.90, and 0.88 for DLNN, CNN, and RNN, respectively. The resulting susceptibility maps provide critical insights for soil management and conservation strategies, identifying regions at high risk for erosion across 24% of the study area. The most high-risk areas are concentrated on steep slopes, particularly near the Ifrane district and the surrounding mountains, while low-risk areas are located in flatter regions with less rugged topography. The combined use of remote sensing and deep learning offers a powerful tool for accurate erosion risk assessment and resource management in the Mikkes watershed, highlighting the implications of soil erosion on dam siltation and operational efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20erosion" title="soil erosion">soil erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=Mikkes%20Watershed" title=" Mikkes Watershed"> Mikkes Watershed</a>, <a href="https://publications.waset.org/abstracts/search?q=Morocco" title=" Morocco"> Morocco</a> </p> <a href="https://publications.waset.org/abstracts/193099/modeling-and-mapping-of-soil-erosion-risk-using-geographic-information-systems-remote-sensing-and-deep-learning-algorithms-case-of-the-oued-mikkes-watershed-morocco" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193099.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">30</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automated%20geospatial%20watershed%20assessment&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automated%20geospatial%20watershed%20assessment&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automated%20geospatial%20watershed%20assessment&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automated%20geospatial%20watershed%20assessment&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automated%20geospatial%20watershed%20assessment&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automated%20geospatial%20watershed%20assessment&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automated%20geospatial%20watershed%20assessment&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automated%20geospatial%20watershed%20assessment&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automated%20geospatial%20watershed%20assessment&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automated%20geospatial%20watershed%20assessment&page=231">231</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automated%20geospatial%20watershed%20assessment&page=232">232</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automated%20geospatial%20watershed%20assessment&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2025 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>