CINXE.COM

Mendelian Genetics

<HTML> <HEAD> <!-- Created by AOLpress/1.2 --> <TITLE>Mendelian Genetics</TITLE> </HEAD> <BODY BACKGROUND= "../gif/genebg.jpg" LINK="#0000ff" VLINK="#0000ff"> <P> <TABLE BORDER=0 CELLPADDING=4> <TR> <TD COLSPAN=2> <IMG SRC="mendel.gif" WIDTH=225 HEIGHT=31 BORDER=0> </TD> </TR> <TR> <TD VALIGN=TOP WIDTH=120> <FONT FACE="ARIAL, HELVETICA, AVANT GARDE"><FONT SIZE=-1><B>Mendel's First Law</B></FONT> <P> <FONT SIZE=-1><A HREF="mendel2.htm">Variations to Mendel's First Law</A></FONT> <P> <FONT SIZE=-1><A HREF="mendel9.htm">Pedigree Analysis</A></FONT> <P> <FONT SIZE=-1><A HREF="mendel3.htm">Mendel's Second Law</FONT></A> <P> <FONT SIZE=-1><A HREF="mendel4.htm">Chi-Square Test</FONT></A> <P> <FONT SIZE=-1><A HREF="mendel5.htm">Pleiotropy</FONT></A> <P> <FONT SIZE=-1><A HREF="mendel6.htm">Epistasis</FONT></A> <P> <FONT SIZE=-1><A HREF="mendel7.htm">Modifier Genes</FONT></A> <P> <FONT SIZE=-1><A HREF="mendel8.htm">Penetrance and Expressivity</FONT></A> <P> <FONT SIZE=-1><A HREF="mendel_study.htm">Study Questions</FONT></A> <P> <FONT SIZE=-1><A HREF="../overheads/mendel/mend1.htm">Mendelian Genetics Overheads</FONT></A> <P> <FONT SIZE=-1><A HREF="mendellinks.htm">Mendelian Genetics WWW Links</FONT></A> <P> <FONT SIZE=-1><A HREF="../431g.htm">Genetic Topics</FONT></A> </FONT> </TD> <TD WIDTH=415><FONT FACE="ARIAL, HELVETICA, AVANT GARDE"> <H2> Mendel's First Law of Genetics (Law of Segregation) </H2> <P> Genetic analysis predates Gregor Mendel, but Mendel's laws form the theoretical basis of our understanding of the genetics of inheritance. <P> Mendel made two innovations to the science of genetics: <P> <OL> <P> <B></B> <LI> developed pure lines <B></B> <LI> counted his results and kept statistical notes </OL> <P> <B>Pure Line</B> - a population that breeds true for a particular trait [this was an important innovation because any non-pure (segregating) generation would and did confuse the results of genetic experiments] <P> <B>Results from Mendel's Experiments</B> <P> <TABLE border=1 cellpadding=6> <FONT FACE="ARIAL, HELVETICA, AVANT GARDE"><TR> <TD> <B><FONT FACE="ARIAL, HELVETICA, AVANT GARDE">Parental Cross</FONT></B> </TD> <TD> <B><FONT FACE="ARIAL, HELVETICA, AVANT GARDE">F<SUB>1</SUB></FONT> <FONT FACE="ARIAL, HELVETICA, AVANT GARDE">Phenotype</FONT></B> </TD> <TD> <B><FONT FACE="ARIAL, HELVETICA, AVANT GARDE">F<SUB>2</SUB></FONT> <FONT FACE="ARIAL, HELVETICA, AVANT GARDE">Phenotypic Ratio</FONT></B> </TD> <TD> <B><FONT FACE="ARIAL, HELVETICA, AVANT GARDE">F<SUB>2</SUB> Ratio</FONT></B> </TD> </TR></FONT> <TR> <TD> <FONT FACE="ARIAL, HELVETICA, AVANT GARDE">Round x Wrinkled Seed</FONT> </TD> <TD> <FONT FACE="ARIAL, HELVETICA, AVANT GARDE">Round</FONT> </TD> <TD> <FONT FACE="ARIAL, HELVETICA, AVANT GARDE">5474 Round:1850 Wrinkled</FONT> </TD> <TD> <FONT FACE="ARIAL, HELVETICA, AVANT GARDE">2.96:1</FONT> </TD> </TR> <TR> <TD> <FONT FACE="ARIAL, HELVETICA, AVANT GARDE">Yellow x Green Seeds</FONT> </TD> <TD> <FONT FACE="ARIAL, HELVETICA, AVANT GARDE">Yellow</FONT> </TD> <TD> <FONT FACE="ARIAL, HELVETICA, AVANT GARDE">6022 Yellow:2001 Green</FONT> </TD> <TD> <FONT FACE="ARIAL, HELVETICA, AVANT GARDE">3.01:1</FONT> </TD> </TR> <TR> <TD> <FONT FACE="ARIAL, HELVETICA, AVANT GARDE">Red x White Flowers</FONT> </TD> <TD> <FONT FACE="ARIAL, HELVETICA, AVANT GARDE">Red</FONT> </TD> <TD> <FONT FACE="ARIAL, HELVETICA, AVANT GARDE">705 Red:224 White</FONT> </TD> <TD> <FONT FACE="ARIAL, HELVETICA, AVANT GARDE">3.15:1</FONT> </TD> </TR> <TR> <TD> <FONT FACE="ARIAL, HELVETICA, AVANT GARDE">Tall x Dwarf Plants</FONT> </TD> <TD> <FONT FACE="ARIAL, HELVETICA, AVANT GARDE">Tall</FONT> </TD> <TD> <FONT FACE="ARIAL, HELVETICA, AVANT GARDE">l787 Tall:227 Dwarf</FONT> </TD> <TD> <FONT FACE="ARIAL, HELVETICA, AVANT GARDE">2.84:1</FONT> </TD> </TR> </TABLE> <P> <B>Terms and Results Found in the Table</B> <P> <B>Phenotype</B> - literally means "the form that is shown"; it is the outward, physical appearance of a particular trait <P> Mendel's pea plants exhibited the following phenotypes: <P> <UL> <LI> - round or wrinkled seed phenotype <LI> - yellow or green seed phenotype <LI> - red or white flower phenotype <LI> - tall or dwarf plant phenotype </UL> <P> <B>Seed Color</B>: Green and yellow seeds.<P> <IMG SRC="peacolor.gif" WIDTH=200 HEIGHT=100 BORDER=0> <P> <B>Seed Shape</B>: Wrinkled and Round seeds.<P> <IMG SRC="peashape.gif" WIDTH=120 HEIGHT=123 BORDER=0> <P> What is seen in the F<SUB>1</SUB> generation? We always see only one of the two parental phenotypes in this generation. But the F<SUB>1</SUB> possesses the information needed to produce both parental phenotypes in the following generation. The F<SUB>2</SUB> generation always produced a 3:1 ratio where the dominant trait is present three times as often as the recessive trait. Mendel coined two terms to describe the relationship of the two phenotypes based on the F<SUB>1</SUB> and F<SUB>2</SUB> phenotypes. <P> <B>Dominant</B> - the allele that expresses itself at the expense of an alternate allele; the phenotype that is expressed in the F<SUB>1</SUB> generation from the cross of two pure lines <P> <B>Recessive</B> - an allele whose expression is suppressed in the presence of a dominant allele; the phenotype that disappears in the F<SUB>1</SUB> generation from the cross of two pure lines and reappears in the F<SUB>2</SUB> generation <P> <B>Mendel's Conclusions</B> <OL> <LI> The hereditary determinants are of a particulate nature. These determinants are called genes. <P> <LI> Each parent has a gene pair in each cell for each trait studied. The F<SUB>1</SUB> from a cross of two pure lines contains one allele for the dominant phenotype and one for the recessive phenotype. These two alleles comprise the gene pair. <P> <LI> One member of the gene pair segregates into a gamete, thus each gamete only carries one member of the gene pair. <P> <LI> Gametes unite at random and irrespective of the other gene pairs involved. </OL> <P> <P> <B>Mendelian Genetics Definitions</B> <UL> <P> <B></B> <LI> <B>Allele</B> - one alternative form of a given allelic pair; tall and dwarf are the alleles for the height of a pea plant; more than two alleles can exist for any specific gene, but only two of them will be found within any individual <P> <LI> <B>Allelic pair</B> - the combination of two alleles which comprise the gene pair <P> <LI> <B>Homozygote</B> - an individual which contains only one allele at the allelic pair; for example DD is homozygous dominant and dd is homozygous recessive; pure lines are homozygous for the gene of interest <P> <LI> <B>Heterozygote</B> - an individual which contains one of each member of the gene pair; for example the Dd heterozygote <P> <LI> <B>Genotype</B> - the specific allelic combination for a certain gene or set of genes </UL> <P> Using symbols we can depict the cross of tall and short pea plants in the following manner: <P> <IMG SRC="2-fig1a.gif" WIDTH=361 HEIGHT=143 BORDER=0> <P> The F<SUB>2</SUB> generation was created by selfing the F<SUB>1</SUB> plants. This can be depicted graphically in a Punnett square. From these results Mendel coined several other terms and formulated his first law. First the Punnett Square is shown. <P> <TABLE BORDER=0 CELLPADDING=6> <TR> <TD ROWSPAN=3><FONT FACE="ARIAL, HELVETICA, AVANT GARDE"><B>Union of Gametes<BR>At Random</B></FONT> </TD> <TD></TD> <TD><I><B>D</B></I></TD> <TD><I><B>d</B></I></TD> <TD ROWSPAN=3><FONT FACE="ARIAL, HELVETICA, AVANT GARDE"><B>Punnett<BR>Square</B></FONT> </TD> </TR> <TR> <TD><FONT FACE="ARIAL, HELVETICA, AVANT GARDE"><I><B>D</B></I></FONT> </TD> <TD><FONT FACE="ARIAL, HELVETICA, AVANT GARDE"><I>DD</I><BR>(Tall)</FONT> </TD> <TD><FONT FACE="ARIAL, HELVETICA, AVANT GARDE"><I>Dd</I><BR>(Tall)</FONT> </TD> </TR> <TR> <TD><FONT FACE="ARIAL, HELVETICA, AVANT GARDE"><I><B>d</B></I></FONT> </TD> <TD><FONT FACE="ARIAL, HELVETICA, AVANT GARDE"><I>Dd</I><BR>(Tall)</FONT> </TD> <TD><FONT FACE="ARIAL, HELVETICA, AVANT GARDE"><I>dd</I><BR>(Short)</FONT> </TD> </TR> </TABLE> <P> The Punnett Square allows us to determine specific genetic ratios. <P> Genotypic ratio of F<SUB>2</SUB>: 1 DD : 2 Dd : 1 dd (or 3 D_ : 1 dd) <P> Phenotypic ratio of F<SUB>2</SUB>: 3 tall : 1 dwarf <P> <B>Mendel's First Law</B> - the law of segregation; during gamete formation each member of the allelic pair separates from the other member to form the genetic constitution of the gamete <P> <B>Confirmation of Mendel's First Law Hypothesis</B> <P> With these observations, Mendel could form a hypothesis about segregation. To test this hypothesis, Mendel selfed the F<SUB>2</SUB> plants. If his law was correct he could predict what the results would be. And indeed, the results occurred has he expected. <P> <IMG SRC="2-fig3a.gif" WIDTH=573 HEIGHT=173 BORDER=0> <P> From these results we can now confirm the genotype of the F<SUB>2</SUB> individuals. <TABLE BORDER=0 CELLPADDING="6"> <TR> <TD><FONT FACE="ARIAL, HELVETICA, AVANT GARDE"><B>Phenotypes</B></FONT> </TD> <TD><FONT FACE="ARIAL, HELVETICA, AVANT GARDE"><B>Genotypes</B></FONT></TD> <TD><FONT FACE="ARIAL, HELVETICA, AVANT GARDE"><B>Genetic Description</B></FONT></TD> </TR> <TR VALIGN="Top"> <TD><FONT FACE="ARIAL, HELVETICA, AVANT GARDE">F<SUB>2</SUB> Tall Plants</FONT></TD> <TD><FONT FACE="ARIAL, HELVETICA, AVANT GARDE">1/3 <I>DD</I><BR>2/3 <I>Dd</I></FONT></TD> <TD><FONT FACE="ARIAL, HELVETICA, AVANT GARDE">Pure line homozygote dominant<BR>Heterozygotes</FONT></TD> </TR> <TR> <TD><FONT FACE="ARIAL, HELVETICA, AVANT GARDE">F<SUB>2</SUB> Dwarf Plants</FONT></TD> <TD><FONT FACE="ARIAL, HELVETICA, AVANT GARDE">all <I>dd</I></FONT> </TD> <TD><FONT FACE="ARIAL, HELVETICA, AVANT GARDE">Pure line homozygote recessive</FONT></TD> </TR> </TABLE> <P> Thus the F<SUB>2</SUB> is genotypically 1/4 Dd : 1/2 Dd : 1/4 dd <P> This data was also available from the Punnett Square using the gametes from the F<SUB>1</SUB> individual. So although the phenotypic ratio is 3:1 the genotypic ratio is 1:2:1 <P> Mendel performed one other cross to confirm the hypothesis of segregation --- the backcross. Remember, the first cross is between two pure line parents to produce an F<SUB>1</SUB> heterozygote. <P> <IMG SRC="2-fig4a.gif" WIDTH=313 HEIGHT=106 BORDER=0> <P> At this point instead of selfing the F<SUB>1</SUB>, Mendel crossed it to a pure line, homozygote dwarf plant. <P> <B>Backcross</B>: <I>Dd</I> x <I>dd</I> <P> <TABLE BORDER=0 CELLPADDING=2> <TR> <TD> </TD> <TD> </TD> <TD><B><CENTER><FONT FACE="ARIAL, HELVETICA, AVANT GARDE">Male<br>Gametes</FONT></CENTER></B> </TD> </TR> <TR> <TD> </TD> <TD> </TD> <TD><CENTER><B><I><FONT FACE="ARIAL, HELVETICA, AVANT GARDE">d</FONT></I></B></CENTER> </TD> </TR> <TR> <TD ROWSPAN=2><CENTER><B><FONT FACE="ARIAL, HELVETICA, AVANT GARDE">Female<BR>Gametes</FONT></B></CENTER> </TD> <TD><B><I><FONT FACE="ARIAL, HELVETICA, AVANT GARDE">D</FONT></I></B> </TD> <TD><CENTER><FONT FACE="ARIAL, HELVETICA, AVANT GARDE"><I>DD</I><BR>(Tall)</FONT></CENTER> </TD> </TR> <TR> <TD><I><B><FONT FACE="ARIAL, HELVETICA, AVANT GARDE">d</FONT></B></I> </TD> <TD><CENTER><FONT FACE="ARIAL, HELVETICA, AVANT GARDE"><I>dd</I><BR>(Short)</FONT></CENTER> </TD> </TR> </TABLE> <P> <B>Backcross One or (BC<SUB>1</SUB>) Phenotypes</B>: 1 Tall : 1 Dwarf <P> <B>BC<SUB>1</SUB> Genotypes</B>: 1 Dd : 1 dd <P> <B>Backcross</B> - the cross of an F<SUB>1</SUB> hybrid to one of the homozygous parents; for pea plant height the cross would be Dd x DD or Dd x dd; most often, though a backcross is a cross to a fully recessive parent <P> <B>Testcross</B> - the cross of any individual to a homozygous recessive parent; used to determine if the individual is homozygous dominant or heterozygous <P> So far, all the discussion has concentrated on monohybrid crosses. <P> <B>Monohybrid cross</B> - a cross between parents that differ at a single gene pair (usually <I>AA</I> x <I>aa</I>) <P> <B>Monohybrid</B> - the offspring of two parents that are homozygous for alternate alleles of a gene pair <P> <B>Remember</B> --- a monohybrid cross is not the cross of two monohybrids. <P> Monohybrids are good for describing the relationship between alleles. When an allele is homozygous it will show its phenotype. It is the phenotype of the heterozygote which permits us to determine the relationship of the alleles. <P> <B>Dominance</B> - the ability of one allele to express its phenotype at the expense of an alternate allele; the major form of interaction between alleles; generally the dominant allele will make a gene product that the recessive can not; therefore the dominant allele will express itself whenever it is present <P> <B>Copyright &#169; 2000. Phillip McClean</B><P> </TD> </TR> </TABLE></FONT> <P> </BODY></HTML>

Pages: 1 2 3 4 5 6 7 8 9 10